DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwai, P; Lins, L Nadler
Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT ormore » IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.« less
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.
Jinno, Shunta; Tachibana, Hidenobu; Moriya, Shunsuke; Mizuno, Norifumi; Takahashi, Ryo; Kamima, Tatsuya; Ishibashi, Satoru; Sato, Masanori
2018-05-21
In inhomogeneous media, there is often a large systematic difference in the dose between the conventional Clarkson algorithm (C-Clarkson) for independent calculation verification and the superposition-based algorithms of treatment planning systems (TPSs). These treatment site-dependent differences increase the complexity of the radiotherapy planning secondary check. We developed a simple and effective method of heterogeneity correction integrated with the Clarkson algorithm (L-Clarkson) to account for the effects of heterogeneity in the lateral dimension, and performed a multi-institutional study to evaluate the effectiveness of the method. In the method, a 2D image reconstructed from computed tomography (CT) images is divided according to lines extending from the reference point to the edge of the multileaf collimator (MLC) or jaw collimator for each pie sector, and the radiological path length (RPL) of each line is calculated on the 2D image to obtain a tissue maximum ratio and phantom scatter factor, allowing the dose to be calculated. A total of 261 plans (1237 beams) for conventional breast and lung treatments and lung stereotactic body radiotherapy were collected from four institutions. Disagreements in dose between the on-site TPSs and a verification program using the C-Clarkson and L-Clarkson algorithms were compared. Systematic differences with the L-Clarkson method were within 1% for all sites, while the C-Clarkson method resulted in systematic differences of 1-5%. The L-Clarkson method showed smaller variations. This heterogeneity correction integrated with the Clarkson algorithm would provide a simple evaluation within the range of -5% to +5% for a radiotherapy plan secondary check.
Fluorescence lifetime measurements in heterogeneous scattering medium
NASA Astrophysics Data System (ADS)
Nishimura, Goro; Awasthi, Kamlesh; Furukawa, Daisuke
2016-07-01
Fluorescence lifetime in heterogeneous multiple light scattering systems is analyzed by an algorithm without solving the diffusion or radiative transfer equations. The algorithm assumes that the optical properties of medium are constant in the excitation and emission wavelength regions. If the assumption is correct and the fluorophore is a single species, the fluorescence lifetime can be determined by a set of measurements of temporal point-spread function of the excitation light and fluorescence at two different concentrations of the fluorophore. This method is not dependent on the heterogeneity of the optical properties of the medium as well as the geometry of the excitation-detection on an arbitrary shape of the sample. The algorithm was validated by an indocyanine green fluorescence in phantom measurements and demonstrated by an in vivo measurement.
Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe
2013-09-21
The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
Kanematsu, Nobuyuki
2011-04-01
This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method referred to as Gaussian beam splitting. The original GDS algorithm suffered from distortion of dose distribution for beams tilted with respect to the dose-grid axes. Use of intermediate grids normal to the beam field has solved the beam-tilting distortion. Interplay of arrangement between beams and grids was found as another intrinsic source of artifact. Inclusion of rectangular-kernel convolution in beam transport, to share the beam contribution among the nearest grids in a regulatory manner, has solved the interplay problem. This algorithmic framework was applied to a tilted proton pencil beam and a broad carbon-ion beam. In these cases, while the elementary pencil beams individually split into several tens, the calculation time increased only by several times with the GDS algorithm. The GDS and beam-splitting methods will complementarily enable accurate and efficient dose calculations for radiotherapy with protons and ions. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marchant, T. E.; Joshi, K. D.; Moore, C. J.
2018-03-01
Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).
Kanematsu, Nobuyuki; Komori, Masataka; Yonai, Shunsuke; Ishizaki, Azusa
2009-04-07
The pencil-beam algorithm is valid only when elementary Gaussian beams are small enough compared to the lateral heterogeneity of a medium, which is not always true in actual radiotherapy with protons and ions. This work addresses a solution for the problem. We found approximate self-similarity of Gaussian distributions, with which Gaussian beams can split into narrower and deflecting daughter beams when their sizes have overreached lateral heterogeneity in the beam-transport calculation. The effectiveness was assessed in a carbon-ion beam experiment in the presence of steep range compensation, where the splitting calculation reproduced a detour effect amounting to about 10% in dose or as large as the lateral particle disequilibrium effect. The efficiency was analyzed in calculations for carbon-ion and proton radiations with a heterogeneous phantom model, where the beam splitting increased computing times by factors of 4.7 and 3.2. The present method generally improves the accuracy of the pencil-beam algorithm without severe inefficiency. It will therefore be useful for treatment planning and potentially other demanding applications.
NASA Astrophysics Data System (ADS)
Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.
2006-03-01
The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, P; Zhuang, T; Magnelli, A
2015-06-15
Purpose It was recommended to use the prescription of 54 Gy/3 with heterogeneity corrections for previously established dose scheme of 60 Gy/3 with homogeneity calculation. This study is to investigate dose coverage for the internal target volume (ITV) with and without heterogeneity correction. Methods Thirty patients who received stereotactic body radiotherapy (SBRT) to a dose of 60 Gy in 3 fractions with homogeneous planning for early stage non-small-cell lung cancer (NSCLC) were selected. ITV was created either from 4DCT scans or a fusion of multi-phase respiratory scans. Planning target volume (PTV) was a 5 mm expansion of the ITV. Formore » this study, we recalculated homogeneous clinical plans using heterogeneity corrections with monitor units set as clinically delivered. All plans were calculated with 3 mm dose grids and collapsed cone convolution algorithm. To account for uncertainties from tumor delineation and image-guided radiotherapy, a structure ITV2mm was created by expanding ITV with 2 mm margins. Dose coverage to the PTV, ITV and ITV2mm were compared with a student paired t-test. Results With heterogeneity corrections, the PTV V60Gy decreased by 10.1% ± 18.4% (p<0.01) while the maximum dose to the PTV increased by 3.7 ± 4.3% (p<0.01). With and without corrections, D99% was 65.8 ± 4.0 Gy and 66.7 ± 4.8 Gy (p=0.15) for the ITV, and 63.9 ± 3.4 Gy and 62.9 ± 4.6 Gy for the ITV2mm (p=0.22), respectively. The mean dose to the ITV and ITV2mm increased 3.6% ± 4.7% (p<0.01) and 2.3% ± 5.2% (p=0.01) with heterogeneity corrections. Conclusion After heterogeneity correction, the peripheral coverage of the PTV decreased to approximately 54 Gy, but D99% of the ITV and ITV2mm was unchanged and the mean dose to the ITV and ITV2mm was increased. Clinical implication of these results requires more investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, S; Lai, P; Karotki, A
2014-06-01
Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented usingmore » MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and Engineering Research Council of Canada.« less
NASA Astrophysics Data System (ADS)
Kurugol, Sila; Dy, Jennifer G.; Rajadhyaksha, Milind; Gossage, Kirk W.; Weissmann, Jesse; Brooks, Dana H.
2011-03-01
The examination of the dermis/epidermis junction (DEJ) is clinically important for skin cancer diagnosis. Reflectance confocal microscopy (RCM) is an emerging tool for detection of skin cancers in vivo. However, visual localization of the DEJ in RCM images, with high accuracy and repeatability, is challenging, especially in fair skin, due to low contrast, heterogeneous structure and high inter- and intra-subject variability. We recently proposed a semi-automated algorithm to localize the DEJ in z-stacks of RCM images of fair skin, based on feature segmentation and classification. Here we extend the algorithm to dark skin. The extended algorithm first decides the skin type and then applies the appropriate DEJ localization method. In dark skin, strong backscatter from the pigment melanin causes the basal cells above the DEJ to appear with high contrast. To locate those high contrast regions, the algorithm operates on small tiles (regions) and finds the peaks of the smoothed average intensity depth profile of each tile. However, for some tiles, due to heterogeneity, multiple peaks in the depth profile exist and the strongest peak might not be the basal layer peak. To select the correct peak, basal cells are represented with a vector of texture features. The peak with most similar features to this feature vector is selected. The results show that the algorithm detected the skin types correctly for all 17 stacks tested (8 fair, 9 dark). The DEJ detection algorithm achieved an average distance from the ground truth DEJ surface of around 4.7μm for dark skin and around 7-14μm for fair skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaparpalvi, R; Mynampati, D; Kuo, H
Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performedmore » using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm may very well be warranted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
2014-06-01
Purpose: Lung-SBRT uses hypo-fractionated dose in small non-IMRT fields with tissue-heterogeneity corrected plans. An independent MU verification is mandatory for safe and effective delivery of the treatment plan. This report compares planned MU obtained from iPlan-XVM-Calgorithm against spreadsheet-based hand-calculation using most commonly used simple TMR-based method. Methods: Treatment plans of 15 patients who underwent for MC-based lung-SBRT to 50Gy in 5 fractions for PTV V100%=95% were studied. ITV was delineated on MIP images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1- 106.5cc(average=48.6cc). MC-SBRT plans were generated using a combination of non-coplanar conformal arcs/beams using iPlan XVM-Calgorithm (BrainLAB iPlan ver.4.1.2)more » for Novalis-TX consisting of micro-MLCs and 6MV-SRS (1000MU/min) beam. These plans were re-computed using heterogeneity-corrected Pencil-Beam (PB-hete) algorithm without changing any beam parameters, such as MLCs/MUs. Dose-ratio: PB-hete/MC gave beam-by-beam inhomogeneity-correction-factors (ICFs):Individual Correction. For independent-2nd-check, MC-MUs were verified using TMR-based hand-calculation and obtained an average ICF:Average Correction, whereas TMR-based hand-calculation systematically underestimated MC-MUs by ∼5%. Also, first 10 MC-plans were verified with an ion-chamber measurement using homogenous phantom. Results: For both beams/arcs, mean PB-hete dose was systematically overestimated by 5.5±2.6% and mean hand-calculated MU systematic underestimated by 5.5±2.5% compared to XVMC. With individual correction, mean hand-calculated MUs matched with XVMC by - 0.3±1.4%/0.4±1.4 for beams/arcs, respectively. After average 5% correction, hand-calculated MUs matched with XVMC by 0.5±2.5%/0.6±2.0% for beams/arcs, respectively. Smaller dependence on tumor volume(TV)/field size(FS) was also observed. Ion-chamber measurement was within ±3.0%. Conclusion: PB-hete overestimates dose to lung tumor relative to XVMC. XVMC-algorithm is much more-complex and accurate with tissues-heterogeneities. Measurement at machine is time consuming and need extra resources; also direct measurement of dose for heterogeneous treatment plans is not clinically practiced, yet. This simple correction-based method was very helpful for independent-2nd-check of MC-lung-SBRT plans and routinely used in our clinic. A look-up table can be generated to include TV/FS dependence in ICFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less
Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny
2011-01-01
Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Shi, Longxiang; Li, Shijian; Yang, Xiaoran; Qi, Jiaheng; Pan, Gang; Zhou, Binbin
2017-01-01
With the explosion of healthcare information, there has been a tremendous amount of heterogeneous textual medical knowledge (TMK), which plays an essential role in healthcare information systems. Existing works for integrating and utilizing the TMK mainly focus on straightforward connections establishment and pay less attention to make computers interpret and retrieve knowledge correctly and quickly. In this paper, we explore a novel model to organize and integrate the TMK into conceptual graphs. We then employ a framework to automatically retrieve knowledge in knowledge graphs with a high precision. In order to perform reasonable inference on knowledge graphs, we propose a contextual inference pruning algorithm to achieve efficient chain inference. Our algorithm achieves a better inference result with precision and recall of 92% and 96%, respectively, which can avoid most of the meaningless inferences. In addition, we implement two prototypes and provide services, and the results show our approach is practical and effective.
Yang, Xiaoran; Qi, Jiaheng; Pan, Gang; Zhou, Binbin
2017-01-01
With the explosion of healthcare information, there has been a tremendous amount of heterogeneous textual medical knowledge (TMK), which plays an essential role in healthcare information systems. Existing works for integrating and utilizing the TMK mainly focus on straightforward connections establishment and pay less attention to make computers interpret and retrieve knowledge correctly and quickly. In this paper, we explore a novel model to organize and integrate the TMK into conceptual graphs. We then employ a framework to automatically retrieve knowledge in knowledge graphs with a high precision. In order to perform reasonable inference on knowledge graphs, we propose a contextual inference pruning algorithm to achieve efficient chain inference. Our algorithm achieves a better inference result with precision and recall of 92% and 96%, respectively, which can avoid most of the meaningless inferences. In addition, we implement two prototypes and provide services, and the results show our approach is practical and effective. PMID:28299322
Calculating the True and Observed Rates of Complex Heterogeneous Catalytic Reactions
NASA Astrophysics Data System (ADS)
Avetisov, A. K.; Zyskin, A. G.
2018-06-01
Equations of the theory of steady-state complex reactions are considered in matrix form. A set of stage stationarity equations is given, and an algorithm is described for deriving the canonic set of stationarity equations with appropriate corrections for the existence of fast stages in a mechanism. A formula for calculating the number of key compounds is presented. The applicability of the Gibbs rule to estimating the number of independent compounds in a complex reaction is analyzed. Some matrix equations relating the rates of dependent and key substances are derived. They are used as a basis to determine the general diffusion stoichiometry relationships between temperature, the concentrations of dependent reaction participants, and the concentrations of key reaction participants in a catalyst grain. An algorithm is described for calculating heat and mass transfer in a catalyst grain with respect to arbitrary complex heterogeneous catalytic reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, M.
With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less
Scaling, soil moisture and evapotranspiration in runoff models
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in the land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, the probability distribution for evaporation is derived which illustrates the conditions for which scaling should work. A correction algorithm that may appropriate for the land parameterization of a GCM is derived using a 2nd order linearization scheme. The performance of the algorithm is evaluated.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.
2015-12-01
Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.
Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik
2017-05-01
To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Hueso-González, Fernando; Ballester, Facundo; Perez-Calatayud, Jose; Siebert, Frank-André; Vijande, Javier
RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 125 I seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. Dose-volume histogram-related parameters like prostate D 90 , rectum D 2cc , or urethra D 10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Real-time text extraction based on the page layout analysis system
NASA Astrophysics Data System (ADS)
Soua, M.; Benchekroun, A.; Kachouri, R.; Akil, M.
2017-05-01
Several approaches were proposed in order to extract text from scanned documents. However, text extraction in heterogeneous documents stills a real challenge. Indeed, text extraction in this context is a difficult task because of the variation of the text due to the differences of sizes, styles and orientations, as well as to the complexity of the document region background. Recently, we have proposed the improved hybrid binarization based on Kmeans method (I-HBK)5 to extract suitably the text from heterogeneous documents. In this method, the Page Layout Analysis (PLA), part of the Tesseract OCR engine, is used to identify text and image regions. Afterwards our hybrid binarization is applied separately on each kind of regions. In one side, gamma correction is employed before to process image regions. In the other side, binarization is performed directly on text regions. Then, a foreground and background color study is performed to correct inverted region colors. Finally, characters are located from the binarized regions based on the PLA algorithm. In this work, we extend the integration of the PLA algorithm within the I-HBK method. In addition, to speed up the separation of text and image step, we employ an efficient GPU acceleration. Through the performed experiments, we demonstrate the high F-measure accuracy of the PLA algorithm reaching 95% on the LRDE dataset. In addition, we illustrate the sequential and the parallel compared PLA versions. The obtained results give a speedup of 3.7x when comparing the parallel PLA implementation on GPU GTX 660 to the CPU version.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, L.
With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less
Malinovsky, Yaakov; Albert, Paul S; Roy, Anindya
2016-03-01
In the context of group testing screening, McMahan, Tebbs, and Bilder (2012, Biometrics 68, 287-296) proposed a two-stage procedure in a heterogenous population in the presence of misclassification. In earlier work published in Biometrics, Kim, Hudgens, Dreyfuss, Westreich, and Pilcher (2007, Biometrics 63, 1152-1162) also proposed group testing algorithms in a homogeneous population with misclassification. In both cases, the authors evaluated performance of the algorithms based on the expected number of tests per person, with the optimal design being defined by minimizing this quantity. The purpose of this article is to show that although the expected number of tests per person is an appropriate evaluation criteria for group testing when there is no misclassification, it may be problematic when there is misclassification. Specifically, a valid criterion needs to take into account the amount of correct classification and not just the number of tests. We propose, a more suitable objective function that accounts for not only the expected number of tests, but also the expected number of correct classifications. We then show how using this objective function that accounts for correct classification is important for design when considering group testing under misclassification. We also present novel analytical results which characterize the optimal Dorfman (1943) design under the misclassification. © 2015, The International Biometric Society.
Juan-Albarracín, Javier; Fuster-Garcia, Elies; Pérez-Girbés, Alexandre; Aparici-Robles, Fernando; Alberich-Bayarri, Ángel; Revert-Ventura, Antonio; Martí-Bonmatí, Luis; García-Gómez, Juan M
2018-06-01
Purpose To determine if preoperative vascular heterogeneity of glioblastoma is predictive of overall survival of patients undergoing standard-of-care treatment by using an unsupervised multiparametric perfusion-based habitat-discovery algorithm. Materials and Methods Preoperative magnetic resonance (MR) imaging including dynamic susceptibility-weighted contrast material-enhanced perfusion studies in 50 consecutive patients with glioblastoma were retrieved. Perfusion parameters of glioblastoma were analyzed and used to automatically draw four reproducible habitats that describe the tumor vascular heterogeneity: high-angiogenic and low-angiogenic regions of the enhancing tumor, potentially tumor-infiltrated peripheral edema, and vasogenic edema. Kaplan-Meier and Cox proportional hazard analyses were conducted to assess the prognostic potential of the hemodynamic tissue signature to predict patient survival. Results Cox regression analysis yielded a significant correlation between patients' survival and maximum relative cerebral blood volume (rCBV max ) and maximum relative cerebral blood flow (rCBF max ) in high-angiogenic and low-angiogenic habitats (P < .01, false discovery rate-corrected P < .05). Moreover, rCBF max in the potentially tumor-infiltrated peripheral edema habitat was also significantly correlated (P < .05, false discovery rate-corrected P < .05). Kaplan-Meier analysis demonstrated significant differences between the observed survival of populations divided according to the median of the rCBV max or rCBF max at the high-angiogenic and low-angiogenic habitats (log-rank test P < .05, false discovery rate-corrected P < .05), with an average survival increase of 230 days. Conclusion Preoperative perfusion heterogeneity contains relevant information about overall survival in patients who undergo standard-of-care treatment. The hemodynamic tissue signature method automatically describes this heterogeneity, providing a set of vascular habitats with high prognostic capabilities. © RSNA, 2018.
An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm
NASA Astrophysics Data System (ADS)
Jacques, Robert; McNutt, Todd
2014-03-01
Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.
Ensemble stacking mitigates biases in inference of synaptic connectivity.
Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N
2018-01-01
A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.
Optimization of permanent breast seed implant dosimetry incorporating tissue heterogeneity
NASA Astrophysics Data System (ADS)
Mashouf, Shahram
Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG43 formalism, which generates the dose in homogeneous water medium. Recently, AAPM task group no. 186 (TG186) emphasized the importance of accounting for heterogeneities. In this work we introduce an analytical dose calculation algorithm in heterogeneous media using CT images. The advantages over other methods are computational efficiency and the ease of integration into clinical use. An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of the source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. The dose distributions obtained through applying ICF to TG43 protocol agreed very well with those of Monte Carlo simulations and experiments in all phantoms. In all cases, the mean relative error was reduced by at least a factor of two when ICF correction factor was applied to the TG43 protocol. In conclusion we have developed a new analytical dose calculation method, which enables personalized dose calculations in heterogeneous media using CT images. The methodology offers several advantages including the use of standard TG43 formalism, fast calculation time and extraction of the ICF parameters directly from Hounsfield Units. The methodology was implemented into our clinical treatment planning system where a cohort of 140 patients were processed to study the clinical benefits of a heterogeneity corrected dose.
NASA Astrophysics Data System (ADS)
Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Byungdo; Cheong, Kwang-Ho
2014-12-01
For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose-calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 × 3 × 3 cm3) or teflon (2 × 2 × 2 cm3 or 3 × 3 × 3 cm3), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 × 2, 3 × 3, and 5 × 5 cm2. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy (<5%) in heterogeneities.
A spherical aberration-free microscopy system for live brain imaging.
Ue, Yoshihiro; Monai, Hiromu; Higuchi, Kaori; Nishiwaki, Daisuke; Tajima, Tetsuya; Okazaki, Kenya; Hama, Hiroshi; Hirase, Hajime; Miyawaki, Atsushi
2018-06-02
The high-resolution in vivo imaging of mouse brain for quantitative analysis of fine structures, such as dendritic spines, requires objectives with high numerical apertures (NAs) and long working distances (WDs). However, this imaging approach is often hampered by spherical aberration (SA) that results from the mismatch of refractive indices in the optical path and becomes more severe with increasing depth of target from the brain surface. Whereas a revolving objective correction collar has been designed to compensate SA, its adjustment requires manual operation and is inevitably accompanied by considerable focal shift, making it difficult to acquire the best image of a given fluorescent object. To solve the problems, we have created an objective-attached device and formulated a fast iterative algorithm for the realization of an automatic SA compensation system. The device coordinates the collar rotation and the Z-position of an objective, enabling correction collar adjustment while stably focusing on a target. The algorithm provides the best adjustment on the basis of the calculated contrast of acquired images. Together, they enable the system to compensate SA at a given depth. As proof of concept, we applied the SA compensation system to in vivo two-photon imaging with a 25 × water-immersion objective (NA, 1.05; WD, 2 mm). It effectively reduced SA regardless of location, allowing quantitative and reproducible analysis of fine structures of YFP-labeled neurons in the mouse cerebral cortical layers. Interestingly, although the cortical structure was optically heterogeneous along the z-axis, the refractive index of each layer could be assessed on the basis of the compensation degree. It was also possible to make fully corrected three-dimensional reconstructions of YFP-labeled neurons in live brain samples. Our SA compensation system, called Deep-C, is expected to bring out the best in all correction-collar-equipped objectives for imaging deep regions of heterogeneous tissues. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cates, J; Drzymala, R
2015-06-15
Purpose: The purpose of this study was to develop and use a novel phantom to evaluate the accuracy and usefulness of the Leskell Gamma Plan convolution-based dose calculation algorithm compared with the current TMR10 algorithm. Methods: A novel phantom was designed to fit the Leskell Gamma Knife G Frame which could accommodate various materials in the form of one inch diameter, cylindrical plugs. The plugs were split axially to allow EBT2 film placement. Film measurements were made during two experiments. The first utilized plans generated on a homogeneous acrylic phantom setup using the TMR10 algorithm, with various materials inserted intomore » the phantom during film irradiation to assess the effect on delivered dose due to unplanned heterogeneities upstream in the beam path. The second experiment utilized plans made on CT scans of different heterogeneous setups, with one plan using the TMR10 dose calculation algorithm and the second using the convolution-based algorithm. Materials used to introduce heterogeneities included air, LDPE, polystyrene, Delrin, Teflon, and aluminum. Results: The data shows that, as would be expected, having heterogeneities in the beam path does induce dose delivery error when using the TMR10 algorithm, with the largest errors being due to the heterogeneities with electron densities most different from that of water, i.e. air, Teflon, and aluminum. Additionally, the Convolution algorithm did account for the heterogeneous material and provided a more accurate predicted dose, in extreme cases up to a 7–12% improvement over the TMR10 algorithm. The convolution algorithm expected dose was accurate to within 3% in all cases. Conclusion: This study proves that the convolution algorithm is an improvement over the TMR10 algorithm when heterogeneities are present. More work is needed to determine what the heterogeneity size/volume limits are where this improvement exists, and in what clinical and/or research cases this would be relevant.« less
Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu
2016-01-08
Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.
A Family of Algorithms for Computing Consensus about Node State from Network Data
Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.
2013-01-01
Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions. PMID:23874167
Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing
NASA Technical Reports Server (NTRS)
Gerstl, S. A. W.; Simmer, C.; Zardecki, A. (Principal Investigator)
1985-01-01
The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field.
An Effective Cache Algorithm for Heterogeneous Storage Systems
Li, Yong; Feng, Dan
2013-01-01
Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms. PMID:24453890
NASA Astrophysics Data System (ADS)
Gatzsche, Kathrin; Babel, Wolfgang; Falge, Eva; Pyles, Rex David; Tha Paw U, Kyaw; Raabe, Armin; Foken, Thomas
2018-05-01
The ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) model, with a higher-order closure for tall vegetation, has already been successfully tested and validated for homogeneous spruce forests. The aim of this paper is to test the model using a footprint-weighted tile approach for a clearing with a heterogeneous structure of the underlying surface. The comparison with flux data shows a good agreement with a footprint-aggregated tile approach of the model. However, the results of a comparison with a tile approach on the basis of the mean land use classification of the clearing is not significantly different. It is assumed that the footprint model is not accurate enough to separate small-scale heterogeneities. All measured fluxes are corrected by forcing the energy balance closure of the test data either by maintaining the measured Bowen ratio or by the attribution of the residual depending on the fractions of sensible and latent heat flux to the buoyancy flux. The comparison with the model, in which the energy balance is closed, shows that the buoyancy correction for Bowen ratios > 1.5 better fits the measured data. For lower Bowen ratios, the correction probably lies between the two methods, but the amount of available data was too small to make a conclusion. With an assumption of similarity between water and carbon dioxide fluxes, no correction of the net ecosystem exchange is necessary for Bowen ratios > 1.5.
Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram
2013-04-09
A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithmmore » is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.« less
A distributed scheduling algorithm for heterogeneous real-time systems
NASA Technical Reports Server (NTRS)
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
Page, Andrew J.; Keane, Thomas M.; Naughton, Thomas J.
2010-01-01
We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms. PMID:20862190
Research on distributed heterogeneous data PCA algorithm based on cloud platform
NASA Astrophysics Data System (ADS)
Zhang, Jin; Huang, Gang
2018-05-01
Principal component analysis (PCA) of heterogeneous data sets can solve the problem that centralized data scalability is limited. In order to reduce the generation of intermediate data and error components of distributed heterogeneous data sets, a principal component analysis algorithm based on heterogeneous data sets under cloud platform is proposed. The algorithm performs eigenvalue processing by using Householder tridiagonalization and QR factorization to calculate the error component of the heterogeneous database associated with the public key to obtain the intermediate data set and the lost information. Experiments on distributed DBM heterogeneous datasets show that the model method has the feasibility and reliability in terms of execution time and accuracy.
NASA Astrophysics Data System (ADS)
Kong, J.; Ryu, Y.
2017-12-01
Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.
SU-F-T-22: Clinical Implications When Using TG-186 (ACE) Heterogeneity Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Likhacheva, A; Grade, E; Sadeghi, A
Purpose: The purpose of this study is to compare dosimetric calculations using traditional TG-43 formalism and Oncentra Brachy Advanced Collapsed cone Engine (ACE) TG-186 calculation algorithm in clinical setting. Methods: We analyzed dosimetry of four patients treated with accelerated partial breast irradiation using a multi-channel intracavitary device (SAVI). All patients were treated to 34 Gy in 10 fractions using a high-dose-rate (192) Ir source. The plans were designed and treated using the TG-43 model. ACE was used to assess the effect heterogeneity correction on various dosimetric parameters. Mass density was estimated using Hounsfield units. Results: Compared to TG-43 formalism, ACEmore » estimated lower doses to targets and organs at risk. The mean difference was 19.8% (range 15.3–24.1%) for PTV-eval V200, 12.0% (range 9.7–17.7%) for PTV-eval V150, 4.3% (range 3.3–6.5%) for PTV-eval D95, 3.3% (range 1.4–5.4%) for PTV-eval D90, 5.4% (range 2.9–9.9%) for maximum rib dose, and 5.7% (2.4–7.4%) for maximum skin dose. There was no correlation between the magnitude of the difference and the PTV-eval volume, air volume, or tissue-applicator conformance. Conclusion: Based on our preliminary study, the TG-43 algorithm appears to overestimate the dose to targets and organs at risk when compared to the ACE TG-186 software. We hypothesize that air adjacent to the SAVI struts contributes to lack of scatter thereby contributing a significant difference in dose calculation when using ACE. We believe that ACE calculation provides a more realistic isodose distribution than TG-43. We plan to further investigate the impact of heterogeneity correction on brachytherapy planning for a wide variety of clinical scenarios, include skin, cervix/uterus, prostate, and lung.« less
Speckle contrast diffuse correlation tomography of complex turbid medium flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chong; Irwin, Daniel; Lin, Yu
2015-07-15
Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupledmore » to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary data and, with further studies, a high potential for translatability to real tissues with arbitrary boundaries. A requisite correction was also found for measurements in the fashion of scDCT to recover accurate speckle contrast of deep tissues.« less
Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu
2016-01-01
Small fields smaller than 4×4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model‐based algorithms, X‐ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS‐Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth‐of‐dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth‐dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1×1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1×1 cm2 field showed maximum deviation, except in 6 MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower‐density materials compared to high‐density materials. PACS numbers: 87.53.Bn, 87.53.kn, 87.56.bd, 87.55.Kd, 87.56.jf PMID:26894345
Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network
NASA Astrophysics Data System (ADS)
Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao
2018-03-01
Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.
Alleviating bias leads to accurate and personalized recommendation
NASA Astrophysics Data System (ADS)
Qiu, Tian; Wang, Tian-Tian; Zhang, Zi-Ke; Zhong, Li-Xin; Chen, Guang
2013-11-01
Recommendation bias towards objects has been found to have an impact on personalized recommendation, since objects present heterogeneous characteristics in some network-based recommender systems. In this article, based on a biased heat conduction recommendation algorithm (BHC) which considers the heterogeneity of the target objects, we propose a heterogeneous heat conduction algorithm (HHC), by further taking the heterogeneity of the source objects into account. Tested on three real datasets, the Netflix, RYM and MovieLens, the HHC algorithm is found to present better recommendation in both the accuracy and diversity than two benchmark algorithms, i.e., the original BHC and a hybrid algorithm of heat conduction and mass diffusion (HHM), while not requiring any other accessorial information or parameter. Moreover, the HHC algorithm also elevates the recommendation accuracy on cold objects, referring to the so-called cold-start problem. Eigenvalue analyses show that, the HHC algorithm effectively alleviates the recommendation bias towards objects with different level of popularity, which is beneficial to solving the accuracy-diversity dilemma.
Classification of physical activities based on body-segments coordination.
Fradet, Laetitia; Marin, Frederic
2016-09-01
Numerous innovations based on connected objects and physical activity (PA) monitoring have been proposed. However, recognition of PAs requires robust algorithm and methodology. The current study presents an innovative approach for PA recognition. It is based on the heuristic definition of postures and the use of body-segments coordination obtained through external sensors. The first part of this study presents the methodology required to define the set of accelerations which is the most appropriate to represent the particular body-segments coordination involved in the chosen PAs (here walking, running, and cycling). For that purpose, subjects of different ages and heterogeneous physical conditions walked, ran, cycled, and performed daily activities at different paces. From the 3D motion capture, vertical and horizontal accelerations of 8 anatomical landmarks representative of the body were computed. Then, the 680 combinations from up to 3 accelerations were compared to identify the most appropriate set of acceleration to discriminate the PAs in terms of body segment coordinations. The discrimination was based on the maximal Hausdorff Distance obtained between the different set of accelerations. The vertical accelerations of both knees demonstrated the best PAs discrimination. The second step was the proof of concept, implementing the proposed algorithm to classify PAs of new group of subjects. The originality of the proposed algorithm is the possibility to use the subject's specific measures as reference data. With the proposed algorithm, 94% of the trials were correctly classified. In conclusion, our study proposed a flexible and extendable methodology. At the current stage, the algorithm has been shown to be valid for heterogeneous subjects, which suggests that it could be deployed in clinical or health-related applications regardless of the subjects' physical abilities or characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paudel, Moti R; Kim, Anthony; Sarfehnia, Arman; Ahmad, Sayed B; Beachey, David J; Sahgal, Arjun; Keller, Brian M
2016-11-08
A new GPU-based Monte Carlo dose calculation algorithm (GPUMCD), devel-oped by the vendor Elekta for the Monaco treatment planning system (TPS), is capable of modeling dose for both a standard linear accelerator and an Elekta MRI linear accelerator. We have experimentally evaluated this algorithm for a standard Elekta Agility linear accelerator. A beam model was developed in the Monaco TPS (research version 5.09.06) using the commissioned beam data for a 6 MV Agility linac. A heterogeneous phantom representing several scenarios - tumor-in-lung, lung, and bone-in-tissue - was designed and built. Dose calculations in Monaco were done using both the current clinical Monte Carlo algorithm, XVMC, and the new GPUMCD algorithm. Dose calculations in a Pinnacle TPS were also produced using the collapsed cone convolution (CCC) algorithm with heterogeneity correc-tion. Calculations were compared with the measured doses using an ionization chamber (A1SL) and Gafchromic EBT3 films for 2 × 2 cm2, 5 × 5 cm2, and 10 × 10 cm2 field sizes. The percentage depth doses (PDDs) calculated by XVMC and GPUMCD in a homogeneous solid water phantom were within 2%/2 mm of film measurements and within 1% of ion chamber measurements. For the tumor-in-lung phantom, the calculated doses were within 2.5%/2.5 mm of film measurements for GPUMCD. For the lung phantom, doses calculated by all of the algorithms were within 3%/3 mm of film measurements, except for the 2 × 2 cm2 field size where the CCC algorithm underestimated the depth dose by ~ 5% in a larger extent of the lung region. For the bone phantom, all of the algorithms were equivalent and calculated dose to within 2%/2 mm of film measurements, except at the interfaces. Both GPUMCD and XVMC showed interface effects, which were more pronounced for GPUMCD and were comparable to film measurements, whereas the CCC algorithm showed these effects poorly. © 2016 The Authors.
Reconstruction of financial networks for robust estimation of systemic risk
NASA Astrophysics Data System (ADS)
Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo
2012-03-01
In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, D; Takahashi, R; Kamima, T
2015-06-15
Purpose: The accuracy of dose distribution depends on treatment planning system especially in heterogeneity-region. The tolerance level (TL) of the secondary check using the independent dose verification may be variable in lung SBRT plans. We conducted a multi-institutional study to evaluate the tolerance level of lung SBRT plans shown in the AAPM TG114. Methods: Five institutes in Japan participated in this study. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiological path length. Analytical Anisotropic Algorithm (AAA), Pencilmore » Beam Convolution with modified Batho-method (PBC-B) and Adaptive Convolve (AC) were used for lung SBRT planning. A measurement using an ion-chamber was performed in a heterogeneous phantom to compare doses from the three different algorithms and the SMU to the measured dose. In addition to it, a retrospective analysis using clinical lung SBRT plans (547 beams from 77 patients) was conducted to evaluate the confidence limit (CL, Average±2SD) in dose between the three algorithms and the SMU. Results: Compared to the measurement, the AAA showed the larger systematic dose error of 2.9±3.2% than PBC-B and AC. The Clarkson-based SMU showed larger error of 5.8±3.8%. The CLs for clinical plans were 7.7±6.0 % (AAA), 5.3±3.3 % (AC), 5.7±3.4 % (PBC -B), respectively. Conclusion: The TLs from the CLs were evaluated. A Clarkson-based system shows a large systematic variation because of inhomogeneous correction. The AAA showed a significant variation. Thus, we must consider the difference of inhomogeneous correction as well as the dependence of dose calculation engine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosarge, Christina L., E-mail: cbosarge@umail.iu.edu; Ewing, Marvene M.; DesRosiers, Colleen M.
To demonstrate the dosimetric advantages and disadvantages of standard anteroposterior-posteroanterior (S-AP/PA{sub AAA}), inverse-planned AP/PA (IP-AP/PA) and volumetry-modulated arc (VMAT) radiotherapies in the treatment of children undergoing whole-lung irradiation. Each technique was evaluated by means of target coverage and normal tissue sparing, including data regarding low doses. A historical approach with and without tissue heterogeneity corrections is also demonstrated. Computed tomography (CT) scans of 10 children scanned from the neck to the reproductive organs were used. For each scan, 6 plans were created: (1) S-AP/PA{sub AAA} using the anisotropic analytical algorithm (AAA), (2) IP-AP/PA, (3) VMAT, (4) S-AP/PA{sub NONE} without heterogeneitymore » corrections, (5) S-AP/PA{sub PB} using the Pencil-Beam algorithm and enforcing monitor units from technique 4, and (6) S-AP/PA{sub AAA[FM]} using AAA and forcing fixed monitor units. The first 3 plans compare modern methods and were evaluated based on target coverage and normal tissue sparing. Body maximum and lower body doses (50% and 30%) were also analyzed. Plans 4 to 6 provide a historic view on the progression of heterogeneity algorithms and elucidate what was actually delivered in the past. Averages of each comparison parameter were calculated for all techniques. The S-AP/PA{sub AAA} technique resulted in superior target coverage but had the highest maximum dose to every normal tissue structure. The IP-AP/PA technique provided the lowest dose to the esophagus, stomach, and lower body doses. VMAT excelled at body maximum dose and maximum doses to the heart, spine, and spleen, but resulted in the highest dose in the 30% body range. It was, however, superior to the S-AP/PA{sub AAA} approach in the 50% range. Each approach has strengths and weaknesses thus associated. Techniques may be selected on a case-by-case basis and by physician preference of target coverage vs normal tissue sparing.« less
fDOT for in vivo follow-up of tumor development in mice lungs
NASA Astrophysics Data System (ADS)
Koenig, Anne; Hervé, Lionel; Da Silva, Anabela; Dinten, Jean-Marc; Boutet, Jérôme; Berger, Michel; Josserand, Véronique; Coll, Jean-Luc; Peltié, Philippe; Rizo, Philippe
2007-07-01
This paper presents in vivo experiments conducted on cancerous mice bearing mammary murine tumors. In order to reconstruct the fluorescence yield even in highly attenuating and heterogeneous regions like lungs, we developed a fDOT reconstruction method which at first corrects the light propagation model from optical heterogeneities by using the transmitted excitation light measurements. The same approach is also designed to enable working without immersing the mouse in adaptation liquid. The 3D fluorescence map is then reconstructed from the emitted signal of fluorescence and from the corrected propagation model by an ART (Algebraic Reconstruction Technique) algorithm. The system ability to reconstruct fluorescence distribution in presence of high attenuating objects has been validated on phantoms presenting a fluorescent absorbent inclusion. A study was conducted on mice to follow up lungs at different stages of tumor development. The mice were imaged after intravenous injection to the animal of a cancer specific fluorescent marker. A control experiment was conducted in parallel on healthy mice to ensure that the multiple injections of fluorophore did not induce parasite fluorescence distribution. These results validate our system performances for studying small animal lungs tumor evolution. Detection and localization of the fluorophore fixations expresses the tumor development.
NASA Astrophysics Data System (ADS)
Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe
2017-10-01
Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.
Computation of transmitted and received B1 fields in magnetic resonance imaging.
Milles, Julien; Zhu, Yue Min; Chen, Nan-Kuei; Panych, Lawrence P; Gimenez, Gérard; Guttmann, Charles R G
2006-05-01
Computation of B1 fields is a key issue for determination and correction of intensity nonuniformity in magnetic resonance images. This paper presents a new method for computing transmitted and received B1 fields. Our method combines a modified MRI acquisition protocol and an estimation technique based on the Levenberg-Marquardt algorithm and spatial filtering. It enables accurate estimation of transmitted and received B1 fields for both homogeneous and heterogeneous objects. The method is validated using numerical simulations and experimental data from phantom and human scans. The experimental results are in agreement with theoretical expectations.
Privacy Preservation in Distributed Subgradient Optimization Algorithms.
Lou, Youcheng; Yu, Lean; Wang, Shouyang; Yi, Peng
2017-07-31
In this paper, some privacy-preserving features for distributed subgradient optimization algorithms are considered. Most of the existing distributed algorithms focus mainly on the algorithm design and convergence analysis, but not the protection of agents' privacy. Privacy is becoming an increasingly important issue in applications involving sensitive information. In this paper, we first show that the distributed subgradient synchronous homogeneous-stepsize algorithm is not privacy preserving in the sense that the malicious agent can asymptotically discover other agents' subgradients by transmitting untrue estimates to its neighbors. Then a distributed subgradient asynchronous heterogeneous-stepsize projection algorithm is proposed and accordingly its convergence and optimality is established. In contrast to the synchronous homogeneous-stepsize algorithm, in the new algorithm agents make their optimization updates asynchronously with heterogeneous stepsizes. The introduced two mechanisms of projection operation and asynchronous heterogeneous-stepsize optimization can guarantee that agents' privacy can be effectively protected.
NASA Technical Reports Server (NTRS)
Komendera, Erik E.; Adhikari, Shaurav; Glassner, Samantha; Kishen, Ashwin; Quartaro, Amy
2017-01-01
Autonomous robotic assembly by mobile field robots has seen significant advances in recent decades, yet practicality remains elusive. Identified challenges include better use of state estimation to and reasoning with uncertainty, spreading out tasks to specialized robots, and implementing representative joining methods. This paper proposes replacing 1) self-correcting mechanical linkages with generalized joints for improved applicability, 2) assembly serial manipulators with parallel manipulators for higher precision and stability, and 3) all-in-one robots with a heterogeneous team of specialized robots for agent simplicity. This paper then describes a general assembly algorithm utilizing state estimation. Finally, these concepts are tested in the context of solar array assembly, requiring a team of robots to assemble, bond, and deploy a set of solar panel mockups to a backbone truss to an accuracy not built into the parts. This paper presents the results of these tests.
Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong
2015-01-01
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440
NASA Astrophysics Data System (ADS)
Dong, H.; Kun, Z.; Zhang, L.
2015-12-01
This magnetotelluric (MT) system contains static shift correction and 3D inversion. The correction method is based on the data study on 3D forward modeling and field test. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with zero-cost, and avoids the additional field work and indoor processing with good results shown in Figure 1a-e. Figure 1a shows a normal model (I) without any local heterogeneity. Figure 1b shows a static-shifted model (II) with two local heterogeneous bodies (10 and 1000 ohm.m). Figure 1c is the inversion result (A) for the synthetic data generated from model I. Figure 1d is the inversion result (B) for the static-shifted data generated from model II. Figure 1e is the inversion result (C) for the static-shifted data from model II, but with static shift correction. The results show that the correction method is useful. The 3D inversion algorithm is improved base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the frequency based parallel structure, improved the computational efficiency, reduced the memory of computer, added the topographic and marine factors, and added the constraints of geology and geophysics. So the 3D inversion could even work in PAD with high efficiency and accuracy. The application example of theoretical assessment in oil and gas exploration is shown in Figure 1f-i. The synthetic geophysical model consists of five layers (from top to downwards): shale, limestone, gas, oil, groundwater and limestone overlying a basement rock. Figure 1f-g show the 3D model and central profile. Figure 1h shows the centrel section of 3D inversion, the resultsd show a high degree of reduction in difference on the synthetic model. Figure 1i shows the seismic waveform reflects the interfaces of every layer overall, but the relative positions of the interface of the two-way travel time vary, and the interface between limestone and oil at the sides of the section is not reflected. So 3-D MT can make up for the deficiency of the seismic results such as the fake sync-phase axis and multiple waves.
Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation
Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...
2015-06-01
Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less
Experimental testing of four correction algorithms for the forward scattering spectrometer probe
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Oldenburg, John R.; Lock, James A.
1992-01-01
Three number density correction algorithms and one size distribution correction algorithm for the Forward Scattering Spectrometer Probe (FSSP) were compared with data taken by the Phase Doppler Particle Analyzer (PDPA) and an optical number density measuring instrument (NDMI). Of the three number density correction algorithms, the one that compared best to the PDPA and NDMI data was the algorithm developed by Baumgardner, Strapp, and Dye (1985). The algorithm that corrects sizing errors in the FSSP that was developed by Lock and Hovenac (1989) was shown to be within 25 percent of the Phase Doppler measurements at number densities as high as 3000/cc.
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng
2017-06-01
Integration of distributed heterogeneous data sources is the key issues under the big data applications. In this paper the strategy of variable precision is introduced to the concept lattice, and the one-to-one mapping mode of variable precision concept lattice and ontology concept lattice is constructed to produce the local ontology by constructing the variable precision concept lattice for each subsystem, and the distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database is proposed to draw support from the special relationship between concept lattice and ontology construction. Finally, based on the standard of main concept lattice of the existing heterogeneous database generated, a case study has been carried out in order to testify the feasibility and validity of this algorithm, and the differences between the main concept lattice and the standard concept lattice are compared. Analysis results show that this algorithm above-mentioned can automatically process the construction process of distributed concept lattice under the heterogeneous data sources.
NASA Astrophysics Data System (ADS)
Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo
2015-08-01
In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.
Steady-State Algorithmic Analysis M/M/c Two-Priority Queues with Heterogeneous Rates.
1981-04-21
ALGORITHMIC ANALYSIS OF M/M/c TWO-PRIORITY QUEUES WITH HETEROGENEOUS RATES by Douglas R. Miller An algorithm for steady-state analysis of M/M/c nonpreemptive ...practical algorithm for systems involving more than two priority classes. The preemptive case is simpler than the nonpreemptive case; an algorithm for it...priority nonpreemptive queueing system with arrival rates 1 and X2 and service rates V and p42 * The state space can be described as follows. Let xi,j,k be
NASA Astrophysics Data System (ADS)
Liu, WenXiang; Mou, WeiHua; Wang, FeiXue
2012-03-01
As the introduction of triple-frequency signals in GNSS, the multi-frequency ionosphere correction technology has been fast developing. References indicate that the triple-frequency second order ionosphere correction is worse than the dual-frequency first order ionosphere correction because of the larger noise amplification factor. On the assumption that the variances of three frequency pseudoranges were equal, other references presented the triple-frequency first order ionosphere correction, which proved worse or better than the dual-frequency first order correction in different situations. In practice, the PN code rate, carrier-to-noise ratio, parameters of DLL and multipath effect of each frequency are not the same, so three frequency pseudorange variances are unequal. Under this consideration, a new unequal-weighted triple-frequency first order ionosphere correction algorithm, which minimizes the variance of the pseudorange ionosphere-free combination, is proposed in this paper. It is found that conventional dual-frequency first-order correction algorithms and the equal-weighted triple-frequency first order correction algorithm are special cases of the new algorithm. A new pseudorange variance estimation method based on the three carrier combination is also introduced. Theoretical analysis shows that the new algorithm is optimal. The experiment with COMPASS G3 satellite observations demonstrates that the ionosphere-free pseudorange combination variance of the new algorithm is smaller than traditional multi-frequency correction algorithms.
Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space
2000-02-20
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses
Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI.
Gensheimer, Michael F; Hawkins, Douglas S; Ermoian, Ralph P; Trister, Andrew D
2015-02-07
In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.
Development of PET projection data correction algorithm
NASA Astrophysics Data System (ADS)
Bazhanov, P. V.; Kotina, E. D.
2017-12-01
Positron emission tomography is modern nuclear medicine method used in metabolism and internals functions examinations. This method allows to diagnosticate treatments on their early stages. Mathematical algorithms are widely used not only for images reconstruction but also for PET data correction. In this paper random coincidences and scatter correction algorithms implementation are considered, as well as algorithm of PET projection data acquisition modeling for corrections verification.
NASA Technical Reports Server (NTRS)
DeBaca, Richard C.; Sarkissian, Edwin; Madatyan, Mariyetta; Shepard, Douglas; Gluck, Scott; Apolinski, Mark; McDuffie, James; Tremblay, Dennis
2006-01-01
TES L1B Subsystem is a computer program that performs several functions for the Tropospheric Emission Spectrometer (TES). The term "L1B" (an abbreviation of "level 1B"), refers to data, specific to the TES, on radiometric calibrated spectral radiances and their corresponding noise equivalent spectral radiances (NESRs), plus ancillary geolocation, quality, and engineering data. The functions performed by TES L1B Subsystem include shear analysis, monitoring of signal levels, detection of ice build-up, and phase correction and radiometric and spectral calibration of TES target data. Also, the program computes NESRs for target spectra, writes scientific TES level-1B data to hierarchical- data-format (HDF) files for public distribution, computes brightness temperatures, and quantifies interpixel signal variability for the purpose of first-order cloud and heterogeneous land screening by the level-2 software summarized in the immediately following article. This program uses an in-house-developed algorithm, called "NUSRT," to correct instrument line-shape factors.
Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois
2016-12-01
To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range verification and it can be a key component to develop software tools for spatial alignment and correction of CT calibration.
An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization
NASA Astrophysics Data System (ADS)
Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc
2002-09-01
A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.
A novel algorithm for fully automated mapping of geospatial ontologies
NASA Astrophysics Data System (ADS)
Chaabane, Sana; Jaziri, Wassim
2018-01-01
Geospatial information is collected from different sources thus making spatial ontologies, built for the same geographic domain, heterogeneous; therefore, different and heterogeneous conceptualizations may coexist. Ontology integrating helps creating a common repository of the geospatial ontology and allows removing the heterogeneities between the existing ontologies. Ontology mapping is a process used in ontologies integrating and consists in finding correspondences between the source ontologies. This paper deals with the "mapping" process of geospatial ontologies which consist in applying an automated algorithm in finding the correspondences between concepts referring to the definitions of matching relationships. The proposed algorithm called "geographic ontologies mapping algorithm" defines three types of mapping: semantic, topological and spatial.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-03-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-07-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.
An FPGA-based heterogeneous image fusion system design method
NASA Astrophysics Data System (ADS)
Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong
2011-08-01
Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.
Probing Mantle Heterogeneity Across Spatial Scales
NASA Astrophysics Data System (ADS)
Hariharan, A.; Moulik, P.; Lekic, V.
2017-12-01
Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.
CQPSO scheduling algorithm for heterogeneous multi-core DAG task model
NASA Astrophysics Data System (ADS)
Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng
2017-07-01
Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.
Nonuniformity correction for an infrared focal plane array based on diamond search block matching.
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.
Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael
2018-03-02
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †
Nof, Shimon Y.; Edan, Yael
2018-01-01
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683
ERIC Educational Resources Information Center
Vonkova, Hana; Zamarro, Gema; Hitt, Collin
2018-01-01
Self-reports are an indispensable source of information in education research but they are often affected by heterogeneity in reporting behavior. Failing to correct for this heterogeneity can lead to invalid comparisons across groups. The researchers use the parametric anchoring vignette method to correct for cross-country incomparability of…
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-07
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
NASA Astrophysics Data System (ADS)
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-01
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
NASA Astrophysics Data System (ADS)
Niu, Chaojun; Han, Xiang'e.
2015-10-01
Adaptive optics (AO) technology is an effective way to alleviate the effect of turbulence on free space optical communication (FSO). A new adaptive compensation method can be used without a wave-front sensor. Artificial bee colony algorithm (ABC) is a population-based heuristic evolutionary algorithm inspired by the intelligent foraging behaviour of the honeybee swarm with the advantage of simple, good convergence rate, robust and less parameter setting. In this paper, we simulate the application of the improved ABC to correct the distorted wavefront and proved its effectiveness. Then we simulate the application of ABC algorithm, differential evolution (DE) algorithm and stochastic parallel gradient descent (SPGD) algorithm to the FSO system and analyze the wavefront correction capabilities by comparison of the coupling efficiency, the error rate and the intensity fluctuation in different turbulence before and after the correction. The results show that the ABC algorithm has much faster correction speed than DE algorithm and better correct ability for strong turbulence than SPGD algorithm. Intensity fluctuation can be effectively reduced in strong turbulence, but not so effective in week turbulence.
Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.
Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai
2016-03-01
Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.
The GPU implementation of micro - Doppler period estimation
NASA Astrophysics Data System (ADS)
Yang, Liyuan; Wang, Junling; Bi, Ran
2018-03-01
Aiming at the problem that the computational complexity and the deficiency of real-time of the wideband radar echo signal, a program is designed to improve the performance of real-time extraction of micro-motion feature in this paper based on the CPU-GPU heterogeneous parallel structure. Firstly, we discuss the principle of the micro-Doppler effect generated by the rolling of the scattering points on the orbiting satellite, analyses how to use Kalman filter to compensate the translational motion of tumbling satellite and how to use the joint time-frequency analysis and inverse Radon transform to extract the micro-motion features from the echo after compensation. Secondly, the advantages of GPU in terms of real-time processing and the working principle of CPU-GPU heterogeneous parallelism are analysed, and a program flow based on GPU to extract the micro-motion feature from the radar echo signal of rolling satellite is designed. At the end of the article the results of extraction are given to verify the correctness of the program and algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, C; Huet, C; Barraux, V
Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MCmore » algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.« less
Barbee, David L; Flynn, Ryan T; Holden, James E; Nickles, Robert J; Jeraj, Robert
2010-01-01
Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised of partial volume effects which may affect treatment prognosis, assessment, or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discover LS at positions of increasing radii from the scanner’s center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method’s correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom, and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated that similar results could be reached using both methods, but large differences result for the arbitrary selection of SINV-PVC parameters. The presented SV-PVC method was performed without user intervention, requiring only a tumor mask as input. Research involving PET-imaged tumor heterogeneity should include correcting for partial volume effects to improve the quantitative accuracy of results. PMID:20009194
Klann, Jeffrey G; Phillips, Lori C; Turchin, Alexander; Weiler, Sarah; Mandl, Kenneth D; Murphy, Shawn N
2015-12-11
Interoperable phenotyping algorithms, needed to identify patient cohorts meeting eligibility criteria for observational studies or clinical trials, require medical data in a consistent structured, coded format. Data heterogeneity limits such algorithms' applicability. Existing approaches are often: not widely interoperable; or, have low sensitivity due to reliance on the lowest common denominator (ICD-9 diagnoses). In the Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS) we endeavor to use the widely-available Current Procedural Terminology (CPT) procedure codes with ICD-9. Unfortunately, CPT changes drastically year-to-year - codes are retired/replaced. Longitudinal analysis requires grouping retired and current codes. BioPortal provides a navigable CPT hierarchy, which we imported into the Informatics for Integrating Biology and the Bedside (i2b2) data warehouse and analytics platform. However, this hierarchy does not include retired codes. We compared BioPortal's 2014AA CPT hierarchy with Partners Healthcare's SCILHS datamart, comprising three-million patients' data over 15 years. 573 CPT codes were not present in 2014AA (6.5 million occurrences). No existing terminology provided hierarchical linkages for these missing codes, so we developed a method that automatically places missing codes in the most specific "grouper" category, using the numerical similarity of CPT codes. Two informaticians reviewed the results. We incorporated the final table into our i2b2 SCILHS/PCORnet ontology, deployed it at seven sites, and performed a gap analysis and an evaluation against several phenotyping algorithms. The reviewers found the method placed the code correctly with 97 % precision when considering only miscategorizations ("correctness precision") and 52 % precision using a gold-standard of optimal placement ("optimality precision"). High correctness precision meant that codes were placed in a reasonable hierarchal position that a reviewer can quickly validate. Lower optimality precision meant that codes were not often placed in the optimal hierarchical subfolder. The seven sites encountered few occurrences of codes outside our ontology, 93 % of which comprised just four codes. Our hierarchical approach correctly grouped retired and non-retired codes in most cases and extended the temporal reach of several important phenotyping algorithms. We developed a simple, easily-validated, automated method to place retired CPT codes into the BioPortal CPT hierarchy. This complements existing hierarchical terminologies, which do not include retired codes. The approach's utility is confirmed by the high correctness precision and successful grouping of retired with non-retired codes.
NASA Astrophysics Data System (ADS)
Paramestha, D. L.; Santosa, B.
2018-04-01
Two-dimensional Loading Heterogeneous Fleet Vehicle Routing Problem (2L-HFVRP) is a combination of Heterogeneous Fleet VRP and a packing problem well-known as Two-Dimensional Bin Packing Problem (BPP). 2L-HFVRP is a Heterogeneous Fleet VRP in which these costumer demands are formed by a set of two-dimensional rectangular weighted item. These demands must be served by a heterogeneous fleet of vehicles with a fix and variable cost from the depot. The objective function 2L-HFVRP is to minimize the total transportation cost. All formed routes must be consistent with the capacity and loading process of the vehicle. Sequential and unrestricted scenarios are considered in this paper. We propose a metaheuristic which is a combination of the Genetic Algorithm (GA) and the Cross Entropy (CE) named Cross Entropy Genetic Algorithm (CEGA) to solve the 2L-HFVRP. The mutation concept on GA is used to speed up the algorithm CE to find the optimal solution. The mutation mechanism was based on local improvement (2-opt, 1-1 Exchange, and 1-0 Exchange). The probability transition matrix mechanism on CE is used to avoid getting stuck in the local optimum. The effectiveness of CEGA was tested on benchmark instance based 2L-HFVRP. The result of experiments shows a competitive result compared with the other algorithm.
NASA Astrophysics Data System (ADS)
Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang
2008-03-01
The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.
NASA Astrophysics Data System (ADS)
Nag, A.; Mahapatra, D. Roy; Gopalakrishnan, S.
2003-10-01
A hierarchical Genetic Algorithm (GA) is implemented in a high peformance spectral finite element software for identification of delaminations in laminated composite beams. In smart structural health monitoring, the number of delaminations (or any other modes of damage) as well as their locations and sizes are no way completely known. Only known are the healthy structural configuration (mass, stiffness and damping matrices updated from previous phases of monitoring), sensor measurements and some information about the load environment. To handle such enormous complexity, a hierarchical GA is used to represent heterogeneous population consisting of damaged structures with different number of delaminations and their evolution process to identify the correct damage configuration in the structures under monitoring. We consider this similarity with the evolution process in heterogeneous population of species in nature to develop an automated procedure to decide on what possible damaged configuration might have produced the deviation in the measured signals. Computational efficiency of the identification task is demonstrated by considering a single delamination. The behavior of fitness function in GA, which is an important factor for fast convergence, is studied for single and multiple delaminations. Several advantages of the approach in terms of computational cost is discussed. Beside tackling different other types of damage configurations, further scope of research for development of hybrid soft-computing modules are highlighted.
Rivera-Rivera, Carlos J.; Montoya-Burgos, Juan I.
2016-01-01
Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³. PMID:26912812
Density-based clustering analyses to identify heterogeneous cellular sub-populations
NASA Astrophysics Data System (ADS)
Heaster, Tiffany M.; Walsh, Alex J.; Landman, Bennett A.; Skala, Melissa C.
2017-02-01
Autofluorescence microscopy of NAD(P)H and FAD provides functional metabolic measurements at the single-cell level. Here, density-based clustering algorithms were applied to metabolic autofluorescence measurements to identify cell-level heterogeneity in tumor cell cultures. The performance of the density-based clustering algorithm, DENCLUE, was tested in samples with known heterogeneity (co-cultures of breast carcinoma lines). DENCLUE was found to better represent the distribution of cell clusters compared to Gaussian mixture modeling. Overall, DENCLUE is a promising approach to quantify cell-level heterogeneity, and could be used to understand single cell population dynamics in cancer progression and treatment.
2010-01-01
Background The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems'-level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log2- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets. PMID:20128918
Arnold, J B; Liow, J S; Schaper, K A; Stern, J J; Sled, J G; Shattuck, D W; Worth, A J; Cohen, M S; Leahy, R M; Mazziotta, J C; Rottenberg, D A
2001-05-01
The desire to correct intensity nonuniformity in magnetic resonance images has led to the proliferation of nonuniformity-correction (NUC) algorithms with different theoretical underpinnings. In order to provide end users with a rational basis for selecting a given algorithm for a specific neuroscientific application, we evaluated the performance of six NUC algorithms. We used simulated and real MRI data volumes, including six repeat scans of the same subject, in order to rank the accuracy, precision, and stability of the nonuniformity corrections. We also compared algorithms using data volumes from different subjects and different (1.5T and 3.0T) MRI scanners in order to relate differences in algorithmic performance to intersubject variability and/or differences in scanner performance. In phantom studies, the correlation of the extracted with the applied nonuniformity was highest in the transaxial (left-to-right) direction and lowest in the axial (top-to-bottom) direction. Two of the six algorithms demonstrated a high degree of stability, as measured by the iterative application of the algorithm to its corrected output. While none of the algorithms performed ideally under all circumstances, locally adaptive methods generally outperformed nonadaptive methods. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Srivastava, D. C.
2016-12-01
A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.
SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, S; University of Toronto, Dept of Radiation Oncology, Toronto, Ontario; Fatemi-Ardekani, A
Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequencemore » with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.« less
Opoku-Duah, S.; Donoghue, D.N.M.; Burt, T. P.
2008-01-01
This paper compares evapotranspiration estimates from two complementary satellite sensors – NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA's ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the savannah area of the Volta basin in West Africa. This was achieved through solving for evapotranspiration on the basis of the regional energy balance equation, which was computationally-driven by the Surface Energy Balance Algorithm for Land algorithm (SEBAL). The results showed that both sensors are potentially good sources of evapotranspiration estimates over large heterogeneous landscapes. The MODIS sensor measured daily evapotranspiration reasonably well with a strong spatial correlation (R2=0.71) with Landsat ETM+ but underperformed with deviations up to ∼2.0 mm day-1, when compared with local eddy correlation observations and the Penman-Monteith method mainly because of scale mismatch. The AATSR sensor produced much poorer correlations (R2=0.13) with Landsat ETM+ and conventional ET methods also because of differences in atmospheric correction and sensor calibration over land. PMID:27879847
Orżanowski, Tomasz
2016-01-01
This paper presents an infrared focal plane array (IRFPA) response nonuniformity correction (NUC) algorithm which is easy to implement by hardware. The proposed NUC algorithm is based on the linear correction scheme with the useful method of pixel offset correction coefficients update. The new approach to IRFPA response nonuniformity correction consists in the use of pixel response change determined at the actual operating conditions in relation to the reference ones by means of shutter to compensate a pixel offset temporal drift. Moreover, it permits to remove any optics shading effect in the output image as well. To show efficiency of the proposed NUC algorithm some test results for microbolometer IRFPA are presented.
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets
Wernisch, Lorenz
2017-01-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm. PMID:29036190
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.
Gabasova, Evelina; Reid, John; Wernisch, Lorenz
2017-10-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm.
Andreini, Daniele; Lin, Fay Y; Rizvi, Asim; Cho, Iksung; Heo, Ran; Pontone, Gianluca; Bartorelli, Antonio L; Mushtaq, Saima; Villines, Todd C; Carrascosa, Patricia; Choi, Byoung Wook; Bloom, Stephen; Wei, Han; Xing, Yan; Gebow, Dan; Gransar, Heidi; Chang, Hyuk-Jae; Leipsic, Jonathon; Min, James K
2018-06-01
Motion artifact can reduce the diagnostic accuracy of coronary CT angiography (CCTA) for coronary artery disease (CAD). The purpose of this study was to compare the diagnostic performance of an algorithm dedicated to correcting coronary motion artifact with the performance of standard reconstruction methods in a prospective international multicenter study. Patients referred for clinically indicated invasive coronary angiography (ICA) for suspected CAD prospectively underwent an investigational CCTA examination free from heart rate-lowering medications before they underwent ICA. Blinded core laboratory interpretations of motion-corrected and standard reconstructions for obstructive CAD (≥ 50% stenosis) were compared with ICA findings. Segments unevaluable owing to artifact were considered obstructive. The primary endpoint was per-subject diagnostic accuracy of the intracycle motion correction algorithm for obstructive CAD found at ICA. Among 230 patients who underwent CCTA with the motion correction algorithm and standard reconstruction, 92 (40.0%) had obstructive CAD on the basis of ICA findings. At a mean heart rate of 68.0 ± 11.7 beats/min, the motion correction algorithm reduced the number of nondiagnostic scans compared with standard reconstruction (20.4% vs 34.8%; p < 0.001). Diagnostic accuracy for obstructive CAD with the motion correction algorithm (62%; 95% CI, 56-68%) was not significantly different from that of standard reconstruction on a per-subject basis (59%; 95% CI, 53-66%; p = 0.28) but was superior on a per-vessel basis: 77% (95% CI, 74-80%) versus 72% (95% CI, 69-75%) (p = 0.02). The motion correction algorithm was superior in subgroups of patients with severely obstructive (≥ 70%) stenosis, heart rate ≥ 70 beats/min, and vessels in the atrioventricular groove. The motion correction algorithm studied reduces artifacts and improves diagnostic performance for obstructive CAD on a per-vessel basis and in selected subgroups on a per-subject basis.
Algorithms and a short description of the D1_Flow program for numerical modeling of one-dimensional steady-state flow in horizontally heterogeneous aquifers with uneven sloping bases are presented. The algorithms are based on the Dupuit-Forchheimer approximations. The program per...
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Montes, Marcos J.; Davis, Curtiss O.
2003-01-01
This SIMBIOS contract supports several activities over its three-year time-span. These include certain computational aspects of atmospheric correction, including the modification of our hyperspectral atmospheric correction algorithm Tafkaa for various multi-spectral instruments, such as SeaWiFS, MODIS, and GLI. Additionally, since absorbing aerosols are becoming common in many coastal areas, we are making the model calculations to incorporate various absorbing aerosol models into tables used by our Tafkaa atmospheric correction algorithm. Finally, we have developed the algorithms to use MODIS data to characterize thin cirrus effects on aerosol retrieval.
NASA Astrophysics Data System (ADS)
Tan, Xiangli; Yang, Jungang; Deng, Xinpu
2018-04-01
In the process of geometric correction of remote sensing image, occasionally, a large number of redundant control points may result in low correction accuracy. In order to solve this problem, a control points filtering algorithm based on RANdom SAmple Consensus (RANSAC) was proposed. The basic idea of the RANSAC algorithm is that using the smallest data set possible to estimate the model parameters and then enlarge this set with consistent data points. In this paper, unlike traditional methods of geometric correction using Ground Control Points (GCPs), the simulation experiments are carried out to correct remote sensing images, which using visible stars as control points. In addition, the accuracy of geometric correction without Star Control Points (SCPs) optimization is also shown. The experimental results show that the SCPs's filtering method based on RANSAC algorithm has a great improvement on the accuracy of remote sensing image correction.
Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna Roberts
Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order polynomial with 16-bit precision, significant improvement over the one and two-point correction algorithms. All algorithm have been implemented in software with satisfactory results and the third order gain equalization non-uniformity correction algorithm has been implemented in hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin
2013-10-01
To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hueso-Gonzalez, F; Vijande, J; Ballester, F
Purpose: Tissue heterogeneities and calcifications have significant impact on the dosimetry of low energy brachytherapy (BT). RayStretch is an analytical algorithm developed in our institution to incorporate heterogeneity corrections in LDR prostate brachytherapy. The aim of this work is to study its application in clinical cases by comparing its predictions with the results obtained with TG-43 and Monte Carlo (MC) simulations. Methods: A clinical implant (71 I-125 seeds, 15 needles) from a real patient was considered. On this patient, different volumes with calcifications were considered. Its properties were evaluated in three ways by i) the Treatment planning system (TPS) (TG-43),more » ii) a MC study using the Penelope2009 code, and iii) RayStretch. To analyse the performance of RayStretch, calcifications located in the prostate lobules covering 11% of the total prostate volume and larger calcifications located in the lobules and underneath the urethra for a total occupied volume of 30% were considered. Three mass densities (1.05, 1.20, and 1.35 g/cm3) were explored for the calcifications. Therefore, 6 different scenarios ranging from small low density calcifications to large high density ones have been discussed. Results: DVH and D90 results given by RayStretch agree within 1% with the full MC simulations. Although no effort has been done to improve RayStretch numerical performance, its present implementation is able to evaluate a clinical implant in a few seconds to the same level of accuracy as a detailed MC calculation. Conclusion: RayStretch is a robust method for heterogeneity corrections in prostate BT supported on TG-43 data. Its compatibility with commercial TPSs and its high calculation speed makes it feasible for use in clinical settings for improving treatment quality. It will allow in a second phase of this project, its use during intraoperative ultrasound planning. This study was partly supported by a fellowship grant from the Spanish Ministry of Education, by the Generalitat Valenciana under Project PROMETEOII/2013/010, by the Spanish Government under Project No. FIS2013-42156 and by the European Commission within the SeventhFramework Program through ENTERVISION (grant agreement number 264552).« less
Methodologies and systems for heterogeneous concurrent computing
NASA Technical Reports Server (NTRS)
Sunderam, V. S.
1994-01-01
Heterogeneous concurrent computing is gaining increasing acceptance as an alternative or complementary paradigm to multiprocessor-based parallel processing as well as to conventional supercomputing. While algorithmic and programming aspects of heterogeneous concurrent computing are similar to their parallel processing counterparts, system issues, partitioning and scheduling, and performance aspects are significantly different. In this paper, we discuss critical design and implementation issues in heterogeneous concurrent computing, and describe techniques for enhancing its effectiveness. In particular, we highlight the system level infrastructures that are required, aspects of parallel algorithm development that most affect performance, system capabilities and limitations, and tools and methodologies for effective computing in heterogeneous networked environments. We also present recent developments and experiences in the context of the PVM system and comment on ongoing and future work.
Measuring the effects of heterogeneity on distributed systems
NASA Technical Reports Server (NTRS)
El-Toweissy, Mohamed; Zeineldine, Osman; Mukkamala, Ravi
1991-01-01
Distributed computer systems in daily use are becoming more and more heterogeneous. Currently, much of the design and analysis studies of such systems assume homogeneity. This assumption of homogeneity has been mainly driven by the resulting simplicity in modeling and analysis. A simulation study is presented which investigated the effects of heterogeneity on scheduling algorithms for hard real time distributed systems. In contrast to previous results which indicate that random scheduling may be as good as a more complex scheduler, this algorithm is shown to be consistently better than a random scheduler. This conclusion is more prevalent at high workloads as well as at high levels of heterogeneity.
Effect of the lithospheric thermal state on the Moho interface: A case study in South America
NASA Astrophysics Data System (ADS)
Bagherbandi, Mohammad; Bai, Yongliang; Sjöberg, Lars E.; Tenzer, Robert; Abrehdary, Majid; Miranda, Silvia; Alcacer Sanchez, Juan M.
2017-07-01
Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.
Solution for the nonuniformity correction of infrared focal plane arrays.
Zhou, Huixin; Liu, Shangqian; Lai, Rui; Wang, Dabao; Cheng, Yubao
2005-05-20
Based on the S-curve model of the detector response of infrared focal plan arrays (IRFPAs), an improved two-point correction algorithm is presented. The algorithm first transforms the nonlinear image data into linear data and then uses the normal two-point algorithm to correct the linear data. The algorithm can effectively overcome the influence of nonlinearity of the detector's response, and it enlarges the correction precision and the dynamic range of the response. A real-time imaging-signal-processing system for IRFPAs that is based on a digital signal processor and field-programmable gate arrays is also presented. The nonuniformity correction capability of the presented solution is validated by experimental imaging procedures of a 128 x 128 pixel IRFPA camera prototype.
Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping
2011-04-01
In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.
A Distributed Transmission Rate Adjustment Algorithm in Heterogeneous CSMA/CA Networks
Xie, Shuanglong; Low, Kay Soon; Gunawan, Erry
2015-01-01
Distributed transmission rate tuning is important for a wide variety of IEEE 802.15.4 network applications such as industrial network control systems. Such systems often require each node to sustain certain throughput demand in order to guarantee the system performance. It is thus essential to determine a proper transmission rate that can meet the application requirement and compensate for network imperfections (e.g., packet loss). Such a tuning in a heterogeneous network is difficult due to the lack of modeling techniques that can deal with the heterogeneity of the network as well as the network traffic changes. In this paper, a distributed transmission rate tuning algorithm in a heterogeneous IEEE 802.15.4 CSMA/CA network is proposed. Each node uses the results of clear channel assessment (CCA) to estimate the busy channel probability. Then a mathematical framework is developed to estimate the on-going heterogeneous traffics using the busy channel probability at runtime. Finally a distributed algorithm is derived to tune the transmission rate of each node to accurately meet the throughput requirement. The algorithm does not require modifications on IEEE 802.15.4 MAC layer and it has been experimentally implemented and extensively tested using TelosB nodes with the TinyOS protocol stack. The results reveal that the algorithm is accurate and can satisfy the throughput demand. Compared with existing techniques, the algorithm is fully distributed and thus does not require any central coordination. With this property, it is able to adapt to traffic changes and re-adjust the transmission rate to the desired level, which cannot be achieved using the traditional modeling techniques. PMID:25822140
NASA Astrophysics Data System (ADS)
Moharana, S.; Dutta, S.
2015-12-01
Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was observed in different plot levels in the paddy fields from the two images. However, no such significant variation in rice genotypes at growth level was observed. Hence, the spectral information acquired from space platform can be linearly scaled to map the variation in field levels of rice crop which will be act as an informative system for rice agriculture practice.
NASA Astrophysics Data System (ADS)
Sudicky, E. A.; Unger, A. J. A.; Lacombe, S.
1995-02-01
A noniterative algorithm for handling prescribed well bore boundary conditions while pumping or injecting fluid in a three-dimensional heterogeneous aquifer is described. The algorithm is formulated by superimposing conductive one-dimensional line elements representing the well screen onto the three-dimensional matrix elements epresenting the aquifer. Storage in the well casing is also naturally accommodated by the superposition of the line elements. The numerical algorithm is verified by comparison with results obtained from the solution of Papadopulos and Cooper (1967). A large-scale example problem involving groundwater extraction from a partially penetrating pumping well located in a highly heterogeneous confined aquifer is presented to demonstrate the utility of the approach.
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
Information Theoretic Evaluation of a Noiseband-Based Cochlear Implant Simulator
Aguiar, Daniel E.; Taylor, N. Ellen; Li, Jing; Gazanfari, Daniel K.; Talavage, Thomas M.; Laflen, J. Brandon; Neuberger, Heidi; Svirsky, Mario A.
2015-01-01
Noise-band vocoders are often used to simulate the signal processing algorithms used in cochlear implants (CIs), producing acoustic stimuli that may be presented to normal hearing (NH) subjects. Such evaluations may obviate the heterogeneity of CI user populations, achieving greater experimental control than when testing on CI subjects. However, it remains an open question whether advancements in algorithms developed on NH subjects using a simulator will necessarily improve performance in CI users. This study assessed the similarity in vowel identification of CI subjects and NH subjects using an 8-channel noise-band vocoder simulator configured to match input and output frequencies or to mimic output after a basalward shift of input frequencies. Under each stimulus condition, NH subjects performed the task both with and without feedback/training. Similarity of NH subjects to CI users was evaluated using correct identification rates and information theoretic approaches. Feedback/training produced higher rates of correct identification, as expected, but also resulted in error patterns that were closer to those of the CI users. Further evaluation remains necessary to determine how patterns of confusion at the token level are affected by the various parameters in CI simulators, providing insight into how a true CI simulation may be developed to facilitate more rapid prototyping and testing of novel CI signal processing and electrical stimulation strategies. PMID:26409068
Kan, Monica W K; Leung, Lucullus H T; Yu, Peter K N
2013-11-04
A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric-modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no-air) for RapidArc planning in targets with low-density media of different sizes and complexities. The performance of PRO10_no-air and PRO10_air was initially compared using single-arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple-arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non-small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no-air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low-density media were present in or adjacent to the target volume, the use of the air cavity correction option in PRO10 was shown to be beneficial. For NPC cases or cases for which small volumes of both low- and high-density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between optimizations with and without using the air cavity correction option.
NASA Astrophysics Data System (ADS)
Nooshiri, Nima; Heimann, Sebastian; Saul, Joachim; Tilmann, Frederik; Dahm, Torsten
2015-04-01
Automatic earthquake locations are sometimes associated with very large residuals up to 10 s even for clear arrivals, especially for regional stations in subduction zones because of their strongly heterogeneous velocity structure associated. Although these residuals are most likely not related to measurement errors but unmodelled velocity heterogeneity, these stations are usually removed from or down-weighted in the location procedure. While this is possible for large events, it may not be useful if the earthquake is weak. In this case, implementation of travel-time station corrections may significantly improve the automatic locations. Here, the shrinking box source-specific station term method (SSST) [Lin and Shearer, 2005] has been applied to improve relative location accuracy of 1678 events that occurred in the Tonga subduction zone between 2010 and mid-2014. Picks were obtained from the GEOFON earthquake bulletin for all available station networks. We calculated a set of timing corrections for each station which vary as a function of source position. A separate time correction was computed for each source-receiver path at the given station by smoothing the residual field over nearby events. We begin with a very large smoothing radius essentially encompassing the whole event set and iterate by progressively shrinking the smoothing radius. In this way, we attempted to correct for the systematic errors, that are introduced into the locations by the inaccuracies in the assumed velocity structure, without solving for a new velocity model itself. One of the advantages of the SSST technique is that the event location part of the calculation is separate from the station term calculation and can be performed using any single event location method. In this study, we applied a non-linear, probabilistic, global-search earthquake location method using the software package NonLinLoc [Lomax et al., 2000]. The non-linear location algorithm implemented in NonLinLoc is less sensitive to the problem of local misfit minima in the model space. Moreover, the spatial errors estimated by NonLinLoc are much more reliable than those derived by linearized algorithms. According to the obtained results, the root-mean-square (RMS) residual decreased from 1.37 s for the original GEOFON catalog (using a global 1-D velocity model without station specific corrections) to 0.90 s for our SSST catalog. Our results show 45-70% reduction of the median absolute deviation (MAD) of the travel-time residuals at regional stations. Additionally, our locations exhibit less scatter in depth and a sharper image of the seismicity associated with the subducting slab compared to the initial locations.
Marks, Daniel L; Oldenburg, Amy L; Reynolds, J Joshua; Boppart, Stephen A
2003-01-10
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
NASA Astrophysics Data System (ADS)
Marks, Daniel L.; Oldenburg, Amy L.; Reynolds, J. Joshua; Boppart, Stephen A.
2003-01-01
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
Increasing selection response by Bayesian modeling of heterogeneous environmental variances
USDA-ARS?s Scientific Manuscript database
Heterogeneity of environmental variance among genotypes reduces selection response because genotypes with higher variance are more likely to be selected than low-variance genotypes. Modeling heterogeneous variances to obtain weighted means corrected for heterogeneous variances is difficult in likel...
WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensheimer, M; Trister, A; Ermoian, R
2014-06-15
Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segmentsmore » at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was shorter when the primary tumor exhibited larger scale of heterogeneity on contrast-enhanced MRI. If validated on a larger dataset, this imaging biomarker could be useful to help personalize treatment.« less
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANTHI, NANDAKISHORE
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less
Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423
Rocchini, Duccio
2009-01-01
Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600
NASA Astrophysics Data System (ADS)
Sakkas, Georgios; Sakellariou, Nikolaos
2018-05-01
Strong motion recordings are the key in many earthquake engineering applications and are also fundamental for seismic design. The present study focuses on the automated correction of accelerograms, analog and digital. The main feature of the proposed algorithm is the automatic selection for the cut-off frequencies based on a minimum spectral value in a predefined frequency bandwidth, instead of the typical signal-to-noise approach. The algorithm follows the basic steps of the correction procedure (instrument correction, baseline correction and appropriate filtering). Besides the corrected time histories, Peak Ground Acceleration, Peak Ground Velocity, Peak Ground Displacement values and the corrected Fourier Spectra are also calculated as well as the response spectra. The algorithm is written in Matlab environment, is fast enough and can be used for batch processing or in real-time applications. In addition, the possibility to also perform a signal-to-noise ratio is added as well as to perform causal or acausal filtering. The algorithm has been tested in six significant earthquakes (Kozani-Grevena 1995, Aigio 1995, Athens 1999, Lefkada 2003 and Kefalonia 2014) of the Greek territory with analog and digital accelerograms.
Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao
2016-06-01
An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.
Rivera-Rivera, Carlos J; Montoya-Burgos, Juan I
2016-06-01
Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell
2007-01-10
We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Hummer, Gerhard
2015-01-01
We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR) method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions. PMID:26005592
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang
2017-11-01
To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.
NASA Astrophysics Data System (ADS)
Baránek, M.; Běhal, J.; Bouchal, Z.
2018-01-01
In the phase retrieval applications, the Gerchberg-Saxton (GS) algorithm is widely used for the simplicity of implementation. This iterative process can advantageously be deployed in the combination with a spatial light modulator (SLM) enabling simultaneous correction of optical aberrations. As recently demonstrated, the accuracy and efficiency of the aberration correction using the GS algorithm can be significantly enhanced by a vortex image spot used as the target intensity pattern in the iterative process. Here we present an optimization of the spiral phase modulation incorporated into the GS algorithm.
Modeling flow and transport in fracture networks using graphs
NASA Astrophysics Data System (ADS)
Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs.
Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs
Karra, S.; O'Malley, D.; Hyman, J. D.; ...
2018-03-09
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
Modeling flow and transport in fracture networks using graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karra, S.; O'Malley, D.; Hyman, J. D.
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
Implementation and performance of shutterless uncooled micro-bolometer cameras
NASA Astrophysics Data System (ADS)
Das, J.; de Gaspari, D.; Cornet, P.; Deroo, P.; Vermeiren, J.; Merken, P.
2015-06-01
A shutterless algorithm is implemented into the Xenics LWIR thermal cameras and modules. Based on a calibration set and a global temperature coefficient the optimal non-uniformity correction is calculated onboard of the camera. The limited resources in the camera require a compact algorithm, hence the efficiency of the coding is important. The performance of the shutterless algorithm is studied by a comparison of the residual non-uniformity (RNU) and signal-to-noise ratio (SNR) between the shutterless and shuttered correction algorithm. From this comparison we conclude that the shutterless correction is only slightly less performant compared to the standard shuttered algorithm, making this algorithm very interesting for thermal infrared applications where small weight and size, and continuous operation are important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Masao, E-mail: naka2008@med.kobe-u.ac.jp; Yoshida, Kenji; Nishimura, Hideki
2014-04-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose,more » and dose that covers 95% of the PTV between the first and second plans were 1.10 Gy (1.8%), 1.35 Gy (2.2%), 1.10 Gy (1.9%), and 0.56 Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30 Gy (lung V{sub 5}, V{sub 10}, V{sub 20}, and V{sub 30}) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V{sub 5} and V{sub 10}) than on the dosimetric parameters related to the PTV and other OARs.« less
Meterological correction of optical beam refraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukin, V.P.; Melamud, A.E.; Mironov, V.L.
1986-02-01
At the present time laser reference systems (LRS's) are widely used in agrotechnology and in geodesy. The demands for accuracy in LRS's constantly increase, so that a study of error sources and means of considering and correcting them is of practical importance. A theoretical algorithm is presented for correction of the regular component of atmospheric refraction for various types of hydrostatic stability of the atmospheric layer adjacent to the earth. The algorithm obtained is compared to regression equations obtained by processing an experimental data base. It is shown that within admissible accuracy limits the refraction correction algorithm obtained permits constructionmore » of correction tables and design of optical systems with programmable correction for atmospheric refraction on the basis of rapid meteorological measurements.« less
NASA Astrophysics Data System (ADS)
Rodebaugh, Raymond Francis, Jr.
2000-11-01
In this project we applied modifications of the Fermi- Eyges multiple scattering theory to attempt to achieve the goals of a fast, accurate electron dose calculation algorithm. The dose was first calculated for an ``average configuration'' based on the patient's anatomy using a modification of the Hogstrom algorithm. It was split into a measured central axis depth dose component based on the material between the source and the dose calculation point, and an off-axis component based on the physics of multiple coulomb scattering for the average configuration. The former provided the general depth dose characteristics along the beam fan lines, while the latter provided the effects of collimation. The Gaussian localized heterogeneities theory of Jette provided the lateral redistribution of the electron fluence by heterogeneities. Here we terminated Jette's infinite series of fluence redistribution terms after the second term. Experimental comparison data were collected for 1 cm thick x 1 cm diameter air and aluminum pillboxes using the Varian 2100C linear accelerator at Rush-Presbyterian- St. Luke's Medical Center. For an air pillbox, the algorithm results were in reasonable agreement with measured data at both 9 and 20 MeV. For the Aluminum pill box, there were significant discrepancies between the results of this algorithm and experiment. This was particularly apparent for the 9 MeV beam. Of course a one cm thick Aluminum heterogeneity is unlikely to be encountered in a clinical situation; the thickness, linear stopping power, and linear scattering power of Aluminum are all well above what would normally be encountered. We found that the algorithm is highly sensitive to the choice of the average configuration. This is an indication that the series of fluence redistribution terms does not converge fast enough to terminate after the second term. It also makes it difficult to apply the algorithm to cases where there are no a priori means of choosing the best average configuration or where there is a complex geometry containing both lowly and highly scattering heterogeneities. There is some hope of decreasing the sensitivity to the average configuration by including portions of the next term of the localized heterogeneities series.
NASA Astrophysics Data System (ADS)
Sun, Phillip Z.; Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Xiao, Gang; Wu, Renhua
2015-03-01
Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute exchangeable protons and local properties such as pH and temperate, yet its susceptibility to field inhomogeneity limits its in vivo applications. Particularly, CEST measurement varies with RF irradiation power, the dependence of which is complex due to concomitant direct RF saturation (RF spillover) effect. Because the volume transmitters provide relatively homogeneous RF field, they have been conventionally used for CEST imaging despite of their elevated specific absorption rate (SAR) and relatively low sensitivity than surface coils. To address this limitation, we developed an efficient B1 inhomogeneity correction algorithm that enables CEST MRI using surface transceiver coils. This is built on recent work that showed the inverse CEST asymmetry analysis (CESTRind) is not susceptible to confounding RF spillover effect. We here postulated that the linear relationship between RF power level and CESTRind can be extended for correcting B1 inhomogeneity induced CEST MRI artifacts. Briefly, we prepared a tissue-like Creatine gel pH phantom and collected multiparametric MRI including relaxation, field map and CEST MRI under multiple RF power levels, using a conventional surface transceiver coil. The raw CEST images showed substantial heterogeneity due to B1 inhomogeneity, with pH contrast to noise ratio (CNR) being 8.8. In comparison, pH MRI CNR of the fieldinhomogeneity corrected CEST MRI was found to be 17.2, substantially higher than that without correction. To summarize, our study validated an efficient field inhomogeneity correction that enables sensitive CEST MRI with surface transceiver, promising for in vivo translation.
NASA Astrophysics Data System (ADS)
Huang, Lei; Zhou, Chenlu; Gong, Mali; Ma, Xingkun; Bian, Qi
2016-07-01
Deformable mirror is a widely used wavefront corrector in adaptive optics system, especially in astronomical, image and laser optics. A new structure of DM-3D DM is proposed, which has removable actuators and can correct different aberrations with different actuator arrangements. A 3D DM consists of several reflection mirrors. Every mirror has a single actuator and is independent of each other. Two kinds of actuator arrangement algorithm are compared: random disturbance algorithm (RDA) and global arrangement algorithm (GAA). Correction effects of these two algorithms and comparison are analyzed through numerical simulation. The simulation results show that 3D DM with removable actuators can obviously improve the correction effects.
Digital sorting of complex tissues for cell type-specific gene expression profiles.
Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong
2013-03-07
Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
Collegial Activity Learning between Heterogeneous Sensors.
Feuz, Kyle D; Cook, Diane J
2017-11-01
Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.
A survey of provably correct fault-tolerant clock synchronization techniques
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
1988-01-01
Six provably correct fault-tolerant clock synchronization algorithms are examined. These algorithms are all presented in the same notation to permit easier comprehension and comparison. The advantages and disadvantages of the different techniques are examined and issues related to the implementation of these algorithms are discussed. The paper argues for the use of such algorithms in life-critical applications.
NASA Astrophysics Data System (ADS)
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanke, Monika, E-mail: monika@fizyka.umk.pl; Palikot, Ewa, E-mail: epalikot@doktorant.umk.pl; Adamowicz, Ludwik, E-mail: ludwik@email.arizona.edu
2016-05-07
Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H{sub 2} and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.
Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib
2008-10-01
Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moura, Eduardo S., E-mail: emoura@wisc.edu; Micka, John A.; Hammer, Cliff G.
Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. Tomore » compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The TPS relative differences with the Acuros™ algorithm were similar in both experimental and simulated setups. The discrepancy between the BrachyVision™, Acuros™, and TG-43 dose responses in the phantom described by this work exceeded 12% for certain setups. Conclusions: The results derived from the phantom measurements show good agreement with the simulations and TPS calculations, using Acuros™ algorithm. Differences in the dose responses were evident in the experimental results when heterogeneous materials were introduced. These measurements prove the usefulness of the heterogeneous phantom for verification of HDR treatment planning systems based on model-based dose calculation algorithms.« less
NASA Astrophysics Data System (ADS)
Fischer, P.; Jardani, A.; Lecoq, N.
2018-02-01
In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.
Spatial scaling of net primary productivity using subpixel landcover information
NASA Astrophysics Data System (ADS)
Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.
2008-10-01
Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.
Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi
2007-08-01
To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Youngrok
2013-05-15
Heterogeneity exists on a data set when samples from di erent classes are merged into the data set. Finite mixture models can be used to represent a survival time distribution on heterogeneous patient group by the proportions of each class and by the survival time distribution within each class as well. The heterogeneous data set cannot be explicitly decomposed to homogeneous subgroups unless all the samples are precisely labeled by their origin classes; such impossibility of decomposition is a barrier to overcome for estimating nite mixture models. The expectation-maximization (EM) algorithm has been used to obtain maximum likelihood estimates ofmore » nite mixture models by soft-decomposition of heterogeneous samples without labels for a subset or the entire set of data. In medical surveillance databases we can find partially labeled data, that is, while not completely unlabeled there is only imprecise information about class values. In this study we propose new EM algorithms that take advantages of using such partial labels, and thus incorporate more information than traditional EM algorithms. We particularly propose four variants of the EM algorithm named EM-OCML, EM-PCML, EM-HCML and EM-CPCML, each of which assumes a specific mechanism of missing class values. We conducted a simulation study on exponential survival trees with five classes and showed that the advantages of incorporating substantial amount of partially labeled data can be highly signi cant. We also showed model selection based on AIC values fairly works to select the best proposed algorithm on each specific data set. A case study on a real-world data set of gastric cancer provided by Surveillance, Epidemiology and End Results (SEER) program showed a superiority of EM-CPCML to not only the other proposed EM algorithms but also conventional supervised, unsupervised and semi-supervised learning algorithms.« less
Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang
2016-01-01
The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045
NASA Technical Reports Server (NTRS)
Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward
2011-01-01
The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the optical depth of the forested area (better than 35% uncertainty). This study makes use of an unprecedented data set of airborne L-band observations and ground supporting data from the National Airborne Field Experiment 2005 (NAFE'05), which allowed accurate characterisation of the land surface heterogeneity over an area equivalent in size to a SMOS pixel.
Zhang, Jiulou; Shi, Junwei; Guang, Huizhi; Zuo, Simin; Liu, Fei; Bai, Jing; Luo, Jianwen
2016-06-01
High-intensity background fluorescence is generally encountered in fluorescence molecular tomography (FMT), because of the accumulation of fluorescent probes in nontarget tissues or the existence of autofluorescence in biological tissues. The reconstruction results are affected or even distorted by the background fluorescence, especially when the distribution of fluorescent targets is relatively sparse. The purpose of this paper is to reduce the negative effect of background fluorescence on FMT reconstruction. After each iteration of the Tikhonov regularization algorithm, 3-D discrete cosine transform is adopted to filter the intermediate results. And then, a sparsity constraint step based on L1 regularization is applied to restrain the energy of the objective function. Phantom experiments with different fluorescence intensities of homogeneous and heterogeneous background are carried out to validate the performance of the proposed scheme. The results show that the reconstruction quality can be improved with the proposed iterative correction scheme. The influence of background fluorescence in FMT can be reduced effectively because of the filtering of the intermediate results, the detail preservation, and noise suppression of L1 regularization.
Algorithm Updates for the Fourth SeaWiFS Data Reprocessing
NASA Technical Reports Server (NTRS)
Hooker, Stanford, B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Robinson, Wayne D.; Feldman, Gene Carl; Bailey, Sean W.
2003-01-01
The efforts to improve the data quality for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data products have continued, following the third reprocessing of the global data set in May 2000. Analyses have been ongoing to address all aspects of the processing algorithms, particularly the calibration methodologies, atmospheric correction, and data flagging and masking. All proposed changes were subjected to rigorous testing, evaluation and validation. The results of these activities culminated in the fourth reprocessing, which was completed in July 2002. The algorithm changes, which were implemented for this reprocessing, are described in the chapters of this volume. Chapter 1 presents an overview of the activities leading up to the fourth reprocessing, and summarizes the effects of the changes. Chapter 2 describes the modifications to the on-orbit calibration, specifically the focal plane temperature correction and the temporal dependence. Chapter 3 describes the changes to the vicarious calibration, including the stray light correction to the Marine Optical Buoy (MOBY) data and improved data screening procedures. Chapter 4 describes improvements to the near-infrared (NIR) band correction algorithm. Chapter 5 describes changes to the atmospheric correction and the oceanic property retrieval algorithms, including out-of-band corrections, NIR noise reduction, and handling of unusual conditions. Chapter 6 describes various changes to the flags and masks, to increase the number of valid retrievals, improve the detection of the flag conditions, and add new flags. Chapter 7 describes modifications to the level-la and level-3 algorithms, to improve the navigation accuracy, correct certain types of spacecraft time anomalies, and correct a binning logic error. Chapter 8 describes the algorithm used to generate the SeaWiFS photosynthetically available radiation (PAR) product. Chapter 9 describes a coupled ocean-atmosphere model, which is used in one of the changes described in Chapter 4. Finally, Chapter 10 describes a comparison of results from the third and fourth reprocessings along the US. Northeast coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serin, E.; Codel, G.; Mabhouti, H.
Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom.more » Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.« less
Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner
NASA Technical Reports Server (NTRS)
Tanis, Fred J.
1984-01-01
A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.
Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi
2016-09-01
Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.
Simulator for heterogeneous dataflow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
1993-01-01
A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.
Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures
2017-10-04
Report: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures The views, opinions and/or findings contained in this...Chapel Hill Title: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures Report Term: 0-Other Email: dm...algorithms for scientific and geometric computing by exploiting the power and performance efficiency of heterogeneous shared memory architectures . These
The SEASAT altimeter wet tropospheric range correction revisited
NASA Technical Reports Server (NTRS)
Tapley, D. B.; Lundberg, J. B.; Born, G. H.
1984-01-01
An expanded set of radiosonde observations was used to calculate the wet tropospheric range correction for the brightness temperature measurements of the SEASAT scanning multichannel microwave radiometer (SMMR). The accuracy of the conventional algorithm for wet tropospheric range correction was evaluated. On the basis of the expanded observational data set, the algorithm was found to have a bias of about 1.0 cm, and a standard deviation 2.8 cm. In order to improve the algorithm, the exact linear, quadratic and logarithmic relationships between brightness temperatures and range corrections were determined. Various combinations of measurement parameters were used to reduce the standard deviation between SEASAT SMMR and radiosonde observations to about 2.1 cm. The performance of various range correction formulas is compared in a table.
NASA Technical Reports Server (NTRS)
Kitzis, J. L.; Kitzis, S. N.
1979-01-01
The brightness temperature data produced by the SMMR final Antenna Pattern Correction (APC) algorithm is discussed. The algorithm consisted of: (1) a direct comparison of the outputs of the final and interim APC algorithms; and (2) an analysis of a possible relationship between observed cross track gradients in the interim brightness temperatures and the asymmetry in the antenna temperature data. Results indicate a bias between the brightness temperature produced by the final and interim APC algorithm.
Olofsson, Per; Norén, Håkan; Carlsson, Ann
2018-02-01
The updated intrapartum cardiotocography (CTG) classification system by FIGO in 2015 (FIGO2015) and the FIGO2015-approached classification by the Swedish Society of Obstetricians and Gynecologist in 2017 (SSOG2017) are not harmonized with the fetal ECG ST analysis (STAN) algorithm from 2007 (STAN2007). The study aimed to reveal homogeneity and agreement between the systems in classifying CTG and ST events, and relate them to maternal and perinatal outcomes. Among CTG traces with ST events, 100 traces originally classified as normal, 100 as suspicious and 100 as pathological were randomly selected from a STAN database and classified by two experts in consensus. Homogeneity and agreement statistics between the CTG classifications were performed. Maternal and perinatal outcomes were evaluated in cases with clinically hidden ST data (n = 151). A two-tailed p < 0.05 was regarded as significant. For CTG classes, the heterogeneity was significant between the old and new systems, and agreements were moderate to strong (proportion of agreement, kappa index 0.70-0.86). Between the new classifications, heterogeneity was significant and agreements strong (0.90, 0.92). For significant ST events, heterogeneities were significant and agreements moderate to almost perfect (STAN2007 vs. FIGO2015 0.86, 0.72; STAN2007 vs. SSOG2017 0.92, 0.84; FIGO2015 vs. SSOG2017 0.94, 0.87). Significant ST events occurred more often combined with STAN2007 than with FIGO2015 classification, but not with SSOG2017; correct identification of adverse outcomes was not significantly different between the systems. There are discrepancies in the classification of CTG patterns and significant ST events between the old and new systems. The clinical relevance of the findings remains to be shown. © 2017 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
NASA Astrophysics Data System (ADS)
Antoine, David; Morel, Andre
1997-02-01
An algorithm is proposed for the atmospheric correction of the ocean color observations by the MERIS instrument. The principle of the algorithm, which accounts for all multiple scattering effects, is presented. The algorithm is then teste, and its accuracy assessed in terms of errors in the retrieved marine reflectances.
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd
2009-07-01
In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.
Leung, Lucullus H.T.; Yu, Peter K.N.
2013-01-01
A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric‐modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no‐air) for RapidArc planning in targets with low‐density media of different sizes and complexities. The performance of PRO10_no‐air and PRO10_air was initially compared using single‐arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple‐arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non‐small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no‐air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low‐density media were present in or adjacent to the target volume, the use of the air cavity correction option in PROIO was shown to be beneficial. For NPC cases or cases for which small volumes of both low‐ and high‐density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between optimizations with and without using the air cavity correction option. PACS number: 87.55.D‐, 87.55.de, 87.56.N‐
SU-E-T-577: Commissioning of a Deterministic Algorithm for External Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T; Finlay, J; Mesina, C
Purpose: We report commissioning results for a deterministic algorithm for external photon beam treatment planning. A deterministic algorithm solves the radiation transport equations directly using a finite difference method, thus improve the accuracy of dose calculation, particularly under heterogeneous conditions with results similar to that of Monte Carlo (MC) simulation. Methods: Commissioning data for photon energies 6 – 15 MV includes the percentage depth dose (PDD) measured at SSD = 90 cm and output ratio in water (Spc), both normalized to 10 cm depth, for field sizes between 2 and 40 cm and depths between 0 and 40 cm. Off-axismore » ratio (OAR) for the same set of field sizes was used at 5 depths (dmax, 5, 10, 20, 30 cm). The final model was compared with the commissioning data as well as additional benchmark data. The benchmark data includes dose per MU determined for 17 points for SSD between 80 and 110 cm, depth between 5 and 20 cm, and lateral offset of up to 16.5 cm. Relative comparisons were made in a heterogeneous phantom made of cork and solid water. Results: Compared to the commissioning beam data, the agreement are generally better than 2% with large errors (up to 13%) observed in the buildup regions of the FDD and penumbra regions of the OAR profiles. The overall mean standard deviation is 0.04% when all data are taken into account. Compared to the benchmark data, the agreements are generally better than 2%. Relative comparison in heterogeneous phantom is in general better than 4%. Conclusion: A commercial deterministic algorithm was commissioned for megavoltage photon beams. In a homogeneous medium, the agreement between the algorithm and measurement at the benchmark points is generally better than 2%. The dose accuracy for a deterministic algorithm is better than a convolution algorithm in heterogeneous medium.« less
NASA Astrophysics Data System (ADS)
Lee, Kwon-Ho; Kim, Wonkook
2017-04-01
The geostationary ocean color imager-II (GOCI-II), designed to be focused on the ocean environmental monitoring with better spatial (250m for local and 1km for full disk) and spectral resolution (13 bands) then the current operational mission of the GOCI-I. GOCI-II will be launched in 2018. This study presents currently developing algorithm for atmospheric correction and retrieval of surface reflectance over land to be optimized with the sensor's characteristics. We first derived the top-of-atmosphere radiances as the proxy data derived from the parameterized radiative transfer code in the 13 bands of GOCI-II. Based on the proxy data, the algorithm has been made with cloud masking, gas absorption correction, aerosol inversion, computation of aerosol extinction correction. The retrieved surface reflectances are evaluated by the MODIS level 2 surface reflectance products (MOD09). For the initial test period, the algorithm gave error of within 0.05 compared to MOD09. Further work will be progressed to fully implement the GOCI-II Ground Segment system (G2GS) algorithm development environment. These atmospherically corrected surface reflectance product will be the standard GOCI-II product after launch.
Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.
2015-01-01
Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406
NASA Astrophysics Data System (ADS)
Rosete-Aguilar, Martha
2000-06-01
In this paper a lens correction algorithm based on the see- saw diagram developed by Burch is described. The see-saw diagram describes the image correction in rotationally symmetric systems over a finite field of view by means of aspherics surfaces. The algorithm is applied to the design of some basic telescopic configurations such as the classical Cassegrain telescope, the Dall-Kirkham telescope, the Pressman-Camichel telescope and the Ritchey-Chretien telescope in order to show a physically visualizable concept of image correction for optical systems that employ aspheric surfaces. By using the see-saw method the student can visualize the different possible configurations of such telescopes as well as their performances and also the student will be able to understand that it is not always possible to correct more primary aberrations by aspherizing more surfaces.
Liang, Kun; Yang, Cailan; Peng, Li; Zhou, Bo
2017-02-01
In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17 μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.
Nakayama, Masao; Yoshida, Kenji; Nishimura, Hideki; Miyawaki, Daisuke; Uehara, Kazuyuki; Okamoto, Yoshiaki; Okayama, Takanobu; Sasaki, Ryohei
2014-01-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose, and dose that covers 95% of the PTV between the first and second plans were 1.10Gy (1.8%), 1.35Gy (2.2%), 1.10Gy (1.9%), and 0.56Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30Gy (lung V5, V10, V20, and V30) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V5 and V10) than on the dosimetric parameters related to the PTV and other OARs. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical Dosimetrists.
Wright, Gavin; Harrold, Natalie; Bownes, Peter
2018-01-01
Aims To compare the accuracies of the convolution and TMR10 Gamma Knife treatment planning algorithms, and assess the impact upon clinical practice of implementing convolution-based treatment planning. Methods Doses calculated by both algorithms were compared against ionisation chamber measurements in homogeneous and heterogeneous phantoms. Relative dose distributions calculated by both algorithms were compared against film-derived 2D isodose plots in a heterogeneous phantom, with distance-to-agreement (DTA) measured at the 80%, 50% and 20% isodose levels. A retrospective planning study compared 19 clinically acceptable metastasis convolution plans against TMR10 plans with matched shot times, allowing novel comparison of true dosimetric parameters rather than total beam-on-time. Gamma analysis and dose-difference analysis were performed on each pair of dose distributions. Results Both algorithms matched point dose measurement within ±1.1% in homogeneous conditions. Convolution provided superior point-dose accuracy in the heterogeneous phantom (-1.1% v 4.0%), with no discernible differences in relative dose distribution accuracy. In our study convolution-calculated plans yielded D99% 6.4% (95% CI:5.5%-7.3%,p<0.001) less than shot matched TMR10 plans. For gamma passing criteria 1%/1mm, 16% of targets had passing rates >95%. The range of dose differences in the targets was 0.2-4.6Gy. Conclusions Convolution provides superior accuracy versus TMR10 in heterogeneous conditions. Implementing convolution would result in increased target doses therefore its implementation may require a revaluation of prescription doses. PMID:29657896
Luo, Qiang; Yan, Zhuangzhi; Gu, Dongxing; Cao, Lei
This paper proposed an image interpolation algorithm based on bilinear interpolation and a color correction algorithm based on polynomial regression on FPGA, which focused on the limited number of imaging pixels and color distortion of the ultra-thin electronic endoscope. Simulation experiment results showed that the proposed algorithm realized the real-time display of 1280 x 720@60Hz HD video, and using the X-rite color checker as standard colors, the average color difference was reduced about 30% comparing with that before color correction.
Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing
NASA Technical Reports Server (NTRS)
Kishoni, D.; Heyman, J. S.
1986-01-01
Attention is given to a numerical algorithm that, via signal processing, enables the dynamic correction of the shadowing effect of reflections on ultrasonic displays. The algorithm was applied to experimental data from graphite-epoxy composite material immersed in a water bath. It is concluded that images of material defects with the shadowing corrections allow for a more quantitative interpretation of the material state. It is noted that the proposed algorithm is fast and simple enough to be adopted for real time applications in industry.
A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper, we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is decentralized, scalable, and overlaps the node coordination time with that of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
A De-Centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is de-centralized, scalable, and overlaps the node coordination time of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images
Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali
2015-01-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077
HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi
Dongarra, Jack; Gates, Mark; Haidar, Azzam; ...
2015-01-01
This paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for multicore with Intel Xeon Phi coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an overview of the MAGMA MIC library, an open source, high performance library, that incorporates the developments presented here and, more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting heterogeneous architectures that feature a mix of multicore CPUs and coprocessors. The LAPACK-compliance simplifies the use of the MAGMA MIC library in applications, while providing them with portably performant DLA.more » High performance is obtained through the use of the high-performance BLAS, hardware-specific tuning, and a hybridization methodology whereby we split the algorithm into computational tasks of various granularities. Execution of those tasks is properly scheduled over the heterogeneous hardware by minimizing data movements and mapping algorithmic requirements to the architectural strengths of the various heterogeneous hardware components. Our methodology and programming techniques are incorporated into the MAGMA MIC API, which abstracts the application developer from the specifics of the Xeon Phi architecture and is therefore applicable to algorithms beyond the scope of DLA.« less
NASA Astrophysics Data System (ADS)
Lazaro, Clara; Fernandes, Joanna M.
2015-12-01
The GNSS-derived Path Delay (GPD) and the Data Combination (DComb) algorithms were developed by University of Porto (U.Porto), in the scope of different projects funded by ESA, to compute a continuous and improved wet tropospheric correction (WTC) for use in satellite altimetry. Both algorithms are mission independent and are based on a linear space-time objective analysis procedure that combines various wet path delay data sources. A new algorithm that gets the best of each aforementioned algorithm (GNSS-derived Path Delay Plus, GPD+) has been developed at U.Porto in the scope of SL_cci project, where the use of consistent and stable in time datasets is of major importance. The algorithm has been applied to the main eight altimetric missions (TOPEX/Poseidon, Jason-1, Jason-2, ERS-1, ERS-2, Envisat and CryoSat-2 and SARAL). Upcoming Sentinel-3 possesses a two-channel on-board radiometer similar to those that were deployed in ERS-1/2 and Envisat. Consequently, the fine-tuning of the GPD+ algorithm to these missions datasets shall enrich it, by increasing its capability to quickly deal with Sentinel-3 data. Foreseeing that the computation of an improved MWR-based WTC for use with Sentinel-3 data will be required, this study focuses on the results obtained for ERS-1/2 and Envisat missions, which are expected to give insight into the computation of this correction for the upcoming ESA altimetric mission. The various WTC corrections available for each mission (in general, the original correction derived from the on-board MWR, the model correction and the one derived from GPD+) are inter-compared either directly or using various sea level anomaly variance statistical analyses. Results show that the GPD+ algorithm is efficient in generating global and continuous datasets, corrected for land and ice contamination and spurious measurements of instrumental origin, with significant impacts on all ESA missions.
An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays
NASA Astrophysics Data System (ADS)
Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng
2011-12-01
An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.
Single image non-uniformity correction using compressive sensing
NASA Astrophysics Data System (ADS)
Jian, Xian-zhong; Lu, Rui-zhi; Guo, Qiang; Wang, Gui-pu
2016-05-01
A non-uniformity correction (NUC) method for an infrared focal plane array imaging system was proposed. The algorithm, based on compressive sensing (CS) of single image, overcame the disadvantages of "ghost artifacts" and bulk calculating costs in traditional NUC algorithms. A point-sampling matrix was designed to validate the measurements of CS on the time domain. The measurements were corrected using the midway infrared equalization algorithm, and the missing pixels were solved with the regularized orthogonal matching pursuit algorithm. Experimental results showed that the proposed method can reconstruct the entire image with only 25% pixels. A small difference was found between the correction results using 100% pixels and the reconstruction results using 40% pixels. Evaluation of the proposed method on the basis of the root-mean-square error, peak signal-to-noise ratio, and roughness index (ρ) proved the method to be robust and highly applicable.
Geometric and shading correction for images of printed materials using boundary.
Brown, Michael S; Tsoi, Yau-Chat
2006-06-01
A novel technique that uses boundary interpolation to correct geometric distortion and shading artifacts present in images of printed materials is presented. Unlike existing techniques, our algorithm can simultaneously correct a variety of geometric distortions, including skew, fold distortion, binder curl, and combinations of these. In addition, the same interpolation framework can be used to estimate the intrinsic illumination component of the distorted image to correct shading artifacts. We detail our algorithm for geometric and shading correction and demonstrate its usefulness on real-world and synthetic data.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Mou, Xuanqin; Nishikawa, Robert M.
Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual-energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X-ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole-array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures.Methods: In thismore » paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full-field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole-array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast-to-noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole-array interpolation method, and image with scatter correction using the authors' algorithmic method.Results: The authors' results show that the resultant background DE calcification signal can be reduced. The root-mean-square of background DE calcification signal of 1962 μm with scatter-uncorrected data was reduced to 194 μm after scatter correction using the authors' algorithmic method. The range of background DE calcification signals using scatter-uncorrected data was reduced by 58% with scatter-corrected data by algorithmic method. With the scatter-correction algorithm and denoising, the minimum visible calcification size can be reduced from 380 to 280 μm.Conclusions: When applying the proposed algorithmic scatter correction to images, the resultant background DE calcification signals can be reduced and the CNR of calcifications can be improved. This method has similar or even better performance than pinhole-array interpolation method in scatter correction for DEDM; moreover, this method is convenient and requires no extra exposure to the patient. Although the proposed scatter correction method is effective, it is validated by a 5-cm-thick phantom with calcifications and homogeneous background. The method should be tested on structured backgrounds to more accurately gauge effectiveness.« less
Investigation of photon beam models in heterogeneous media of modern radiotherapy.
Ding, W; Johnston, P N; Wong, T P Y; Bubb, I F
2004-06-01
This study investigates the performance of photon beam models in dose calculations involving heterogeneous media in modern radiotherapy. Three dose calculation algorithms implemented in the CMS FOCUS treatment planning system have been assessed and validated using ionization chambers, thermoluminescent dosimeters (TLDs) and film. The algorithms include the multigrid superposition (MGS) algorithm, fast Fourier Transform Convolution (FFTC) algorithm and Clarkson algorithm. Heterogeneous phantoms used in the study consist of air cavities, lung analogue and an anthropomorphic phantom. Depth dose distributions along the central beam axis for 6 MV and 10 MV photon beams with field sizes of 5 cm x 5 cm and 10 cm x 10 cm were measured in the air cavity phantoms and lung analogue phantom. Point dose measurements were performed in the anthropomorphic phantom. Calculated results with three dose calculation algorithms were compared with measured results. In the air cavity phantoms, the maximum dose differences between the algorithms and the measurements were found at the distal surface of the air cavity with a 10 MV photon beam and a 5 cm x 5 cm field size. The differences were 3.8%. 24.9% and 27.7% for the MGS. FFTC and Clarkson algorithms. respectively. Experimental measurements of secondary electron build-up range beyond the air cavity showed an increase with decreasing field size, increasing energy and increasing air cavity thickness. The maximum dose differences in the lung analogue with 5 cm x 5 cm field size were found to be 0.3%. 4.9% and 6.9% for the MGS. FFTC and Clarkson algorithms with a 6 MV photon beam and 0.4%. 6.3% and 9.1% with a 10 MV photon beam, respectively. In the anthropomorphic phantom, the dose differences between calculations using the MGS algorithm and measurements with TLD rods were less than +/-4.5% for 6 MV and 10 MV photon beams with 10 cm x 10 cm field size and 6 MV photon beam with 5 cm x 5 cm field size, and within +/-7.5% for 10 MV with 5 cm x 5 cm field size, respectively. The FFTC and Clarkson algorithms overestimate doses at all dose points in the lung of the anthropomorphic phantom. In conclusion, the MGS is the most accurate dose calculation algorithm of investigated photon beam models. It is strongly recommended for implementation in modern radiotherapy with multiple small fields when heterogeneous media are in the treatment fields.
NASA Astrophysics Data System (ADS)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems
NASA Astrophysics Data System (ADS)
Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi
Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.
Interpretable Categorization of Heterogeneous Time Series Data
NASA Technical Reports Server (NTRS)
Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua
2017-01-01
We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.
NASA Astrophysics Data System (ADS)
Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei
2018-04-01
We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.
NASA Technical Reports Server (NTRS)
Wang, Menghua
2003-01-01
The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.
The significance of tumor heterogeneity for prediction of DNA ploidy of prostate cancer.
Häggarth, Lars; Auer, Gert; Busch, Christer; Norberg, Mona; Häggman, Michael; Egevad, Lars
2005-01-01
In a previous study, we mapped the ploidy heterogeneity of prostate cancer using flow cytometry in 676 tumor samples from 50 radical prostatectomy specimens. Ploidy heterogeneity was common (42% of tumors) and was found in all non-diploid tumors. The volume of non-diploid tumor was estimated and found to predict extra-prostatic extension and seminal vesicle invasion. The aim of this study was to evaluate the impact of tumor heterogeneity on preoperative ploidy assessment. In 50 men at least six core biopsies were taken before prostatectomy. Sections from biopsies with cancer were Feulgen-stained for image cytometry. After exclusion of biopsies with insufficient material, 123 histograms from 48 men (mean 2.6; range 1-7) remained for analysis. In 32 men, biopsies were diploid. In 16 men, at least one biopsy was non-diploid (14 tetraploid, two aneuploid) and 10 of them also had diploid biopsies. In 34 men (71%), the prostatectomy specimens were correctly predicted as being either diploid (48%) or non-diploid (23%). The sensitivity and specificity of biopsies for predicting non-diploid cancer were 55% and 82%, respectively, and the positive and negative predictive values were 69% and 72%, respectively. The ploidy status of tumors with and without ploidy heterogeneity was correctly predicted in 55% and 82% of cases, respectively (p=0.04). Biopsies underestimated ploidy in 9/20 tumors (45%) with heterogeneous ploidy status. Underestimation mainly occurred when one or two cores were analyzed. Preoperative prediction of the ploidy status of prostate cancer is hampered by tumor heterogeneity. Analysis of multiple biopsies is important for correct preoperative ploidy estimation.
An improved non-uniformity correction algorithm and its GPU parallel implementation
NASA Astrophysics Data System (ADS)
Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui
2018-05-01
The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.
Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.
2013-01-01
New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440
Narayanan, Balaji; Hardie, Russell C; Muse, Robert A
2005-06-10
Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.
Application and assessment of a robust elastic motion correction algorithm to dynamic MRI.
Herrmann, K-H; Wurdinger, S; Fischer, D R; Krumbein, I; Schmitt, M; Hermosillo, G; Chaudhuri, K; Krishnan, A; Salganicoff, M; Kaiser, W A; Reichenbach, J R
2007-01-01
The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).
Validation of the Thematic Mapper radiometric and geometric correction algorithms
NASA Technical Reports Server (NTRS)
Fischel, D.
1984-01-01
The radiometric and geometric correction algorithms for Thematic Mapper are critical to subsequent successful information extraction. Earlier Landsat scanners, known as Multispectral Scanners, produce imagery which exhibits striping due to mismatching of detector gains and biases. Thematic Mapper exhibits the same phenomenon at three levels: detector-to-detector, scan-to-scan, and multiscan striping. The cause of these variations has been traced to variations in the dark current of the detectors. An alternative formulation has been tested and shown to be very satisfactory. Unfortunately, the Thematic Mapper detectors exhibit saturation effects suffered while viewing extensive cloud areas, and is not easily correctable. The geometric correction algorithm has been shown to be remarkably reliable. Only minor and modest improvements are indicated and shown to be effective.
Teuho, Jarmo; Saunavaara, Virva; Tolvanen, Tuula; Tuokkola, Terhi; Karlsson, Antti; Tuisku, Jouni; Teräs, Mika
2017-10-01
In PET, corrections for photon scatter and attenuation are essential for visual and quantitative consistency. MR attenuation correction (MRAC) is generally conducted by image segmentation and assignment of discrete attenuation coefficients, which offer limited accuracy compared with CT attenuation correction. Potential inaccuracies in MRAC may affect scatter correction, because the attenuation image (μ-map) is used in single scatter simulation (SSS) to calculate the scatter estimate. We assessed the impact of MRAC to scatter correction using 2 scatter-correction techniques and 3 μ-maps for MRAC. Methods: The tail-fitted SSS (TF-SSS) and a Monte Carlo-based single scatter simulation (MC-SSS) algorithm implementations on the Philips Ingenuity TF PET/MR were used with 1 CT-based and 2 MR-based μ-maps. Data from 7 subjects were used in the clinical evaluation, and a phantom study using an anatomic brain phantom was conducted. Scatter-correction sinograms were evaluated for each scatter correction method and μ-map. Absolute image quantification was investigated with the phantom data. Quantitative assessment of PET images was performed by volume-of-interest and ratio image analysis. Results: MRAC did not result in large differences in scatter algorithm performance, especially with TF-SSS. Scatter sinograms and scatter fractions did not reveal large differences regardless of the μ-map used. TF-SSS showed slightly higher absolute quantification. The differences in volume-of-interest analysis between TF-SSS and MC-SSS were 3% at maximum in the phantom and 4% in the patient study. Both algorithms showed excellent correlation with each other with no visual differences between PET images. MC-SSS showed a slight dependency on the μ-map used, with a difference of 2% on average and 4% at maximum when a μ-map without bone was used. Conclusion: The effect of different MR-based μ-maps on the performance of scatter correction was minimal in non-time-of-flight 18 F-FDG PET/MR brain imaging. The SSS algorithm was not affected significantly by MRAC. The performance of the MC-SSS algorithm is comparable but not superior to TF-SSS, warranting further investigations of algorithm optimization and performance with different radiotracers and time-of-flight imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
NASA Astrophysics Data System (ADS)
Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.
2015-09-01
Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.
Enhanced Handover Decision Algorithm in Heterogeneous Wireless Network
Abdullah, Radhwan Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Transferring a huge amount of data between different network locations over the network links depends on the network’s traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model. PMID:28708067
Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery
NASA Technical Reports Server (NTRS)
Fraser, Robert S.; Kaufman, Yoram J.; Ferrare, Richard A.; Mattoo, Shana
1989-01-01
A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 micron. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.
Algorithm for atmospheric corrections of aircraft and satellite imagery
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Ferrare, R. A.; Kaufman, Y. J.; Markham, B. L.; Mattoo, S.
1992-01-01
A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 microns. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.
Approximate string matching algorithms for limited-vocabulary OCR output correction
NASA Astrophysics Data System (ADS)
Lasko, Thomas A.; Hauser, Susan E.
2000-12-01
Five methods for matching words mistranslated by optical character recognition to their most likely match in a reference dictionary were tested on data from the archives of the National Library of Medicine. The methods, including an adaptation of the cross correlation algorithm, the generic edit distance algorithm, the edit distance algorithm with a probabilistic substitution matrix, Bayesian analysis, and Bayesian analysis on an actively thinned reference dictionary were implemented and their accuracy rates compared. Of the five, the Bayesian algorithm produced the most correct matches (87%), and had the advantage of producing scores that have a useful and practical interpretation.
An improved non-uniformity correction algorithm and its hardware implementation on FPGA
NASA Astrophysics Data System (ADS)
Rong, Shenghui; Zhou, Huixin; Wen, Zhigang; Qin, Hanlin; Qian, Kun; Cheng, Kuanhong
2017-09-01
The Non-uniformity of Infrared Focal Plane Arrays (IRFPA) severely degrades the infrared image quality. An effective non-uniformity correction (NUC) algorithm is necessary for an IRFPA imaging and application system. However traditional scene-based NUC algorithm suffers the image blurring and artificial ghosting. In addition, few effective hardware platforms have been proposed to implement corresponding NUC algorithms. Thus, this paper proposed an improved neural-network based NUC algorithm by the guided image filter and the projection-based motion detection algorithm. First, the guided image filter is utilized to achieve the accurate desired image to decrease the artificial ghosting. Then a projection-based moving detection algorithm is utilized to determine whether the correction coefficients should be updated or not. In this way the problem of image blurring can be overcome. At last, an FPGA-based hardware design is introduced to realize the proposed NUC algorithm. A real and a simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. Experimental results indicated that the proposed NUC algorithm can effectively eliminate the fix pattern noise with less image blurring and artificial ghosting. The proposed hardware design takes less logic elements in FPGA and spends less clock cycles to process one frame of image.
Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms
Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.
2016-04-12
Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the cause of this statistical significance is likely explained by the fact the WANG correction also accounts for cloud cover – a condition not accounted for in the radiance closure experiments.« less
Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.
Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the cause of this statistical significance is likely explained by the fact the WANG correction also accounts for cloud cover – a condition not accounted for in the radiance closure experiments.« less
A method to improve the B0 homogeneity of the heart in vivo.
Jaffer, F A; Wen, H; Balaban, R S; Wolff, S D
1996-09-01
A homogeneous static (B0) magnetic field is required for many NMR experiments such as echo planar imaging, localized spectroscopy, and spiral scan imaging. Although semi-automated techniques have been described to improve the B0 field homogeneity, none has been applied to the in vivo heart. The acquisition of cardiac field maps is complicated by motion, blood flow, and chemical shift artifact from epicardial fat. To overcome these problems, an ungated three-dimensional (3D) chemical shift image (CSI) was collected to generate a time and motion-averaged B0 field map. B0 heterogeneity in the heart was minimized by using a previous algorithm that solves for the optimal shim coil currents for an input field map, using up to third-order current-bounded shims (1). The method improved the B0 homogenelty of the heart in all 11 normal volunteers studied. After application of the algorithm to the unshimmed cardiac field maps, the standard deviation of proton frequency decreased by 43%, the magnitude 1H spectral linewidth decreased by 24%, and the peak-peak gradient decreased by 35%. Simulations of the high-order (second- and third-order) shims in B0 field correction of the heart show that high order shims are important, resulting for nearly half of the improvement in homogeneity for several subjects. The T2* of the left ventricular anterior wall before and after field correction was determined at 4.0 Tesis. Finally, results show that cardiac shimming is of benefit in cardiac 31P NMR spectroscopy and cardiac echo planar imaging.
DOT National Transportation Integrated Search
1986-12-01
The algorithms described in this report determine the differential corrections to be broadcast to users of the Global Positioning System (GPS) who require higher accuracy navigation or position information than the 30 to 100 meters that GPS normally ...
Optimized ECC Implementation for Secure Communication between Heterogeneous IoT Devices.
Marin, Leandro; Pawlowski, Marcin Piotr; Jara, Antonio
2015-08-28
The Internet of Things is integrating information systems, places, users and billions of constrained devices into one global network. This network requires secure and private means of communications. The building blocks of the Internet of Things are devices manufactured by various producers and are designed to fulfil different needs. There would be no common hardware platform that could be applied in every scenario. In such a heterogeneous environment, there is a strong need for the optimization of interoperable security. We present optimized elliptic curve Cryptography algorithms that address the security issues in the heterogeneous IoT networks. We have combined cryptographic algorithms for the NXP/Jennic 5148- and MSP430-based IoT devices and used them to created novel key negotiation protocol.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong
2011-02-21
X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.
Design of the OMPS limb sensor correction algorithm
NASA Astrophysics Data System (ADS)
Jaross, Glen; McPeters, Richard; Seftor, Colin; Kowitt, Mark
The Sensor Data Records (SDR) for the Ozone Mapping and Profiler Suite (OMPS) on NPOESS (National Polar-orbiting Operational Environmental Satellite System) contains geolocated and calibrated radiances, and are similar to the Level 1 data of NASA Earth Observing System and other programs. The SDR algorithms (one for each of the 3 OMPS focal planes) are the processes by which the Raw Data Records (RDR) from the OMPS sensors are converted into the records that contain all data necessary for ozone retrievals. Consequently, the algorithms must correct and calibrate Earth signals, geolocate the data, and identify and ingest collocated ancillary data. As with other limb sensors, ozone profile retrievals are relatively insensitive to calibration errors due to the use of altitude normalization and wavelength pairing. But the profile retrievals as they pertain to OMPS are not immune from sensor changes. In particular, the OMPS Limb sensor images an altitude range of > 100 km and a spectral range of 290-1000 nm on its detector. Uncorrected sensor degradation and spectral registration drifts can lead to changes in the measured radiance profile, which in turn affects the ozone trend measurement. Since OMPS is intended for long-term monitoring, sensor calibration is a specific concern. The calibration is maintained via the ground data processing. This means that all sensor calibration data, including direct solar measurements, are brought down in the raw data and processed separately by the SDR algorithms. One of the sensor corrections performed by the algorithm is the correction for stray light. The imaging spectrometer and the unique focal plane design of OMPS makes these corrections particularly challenging and important. Following an overview of the algorithm flow, we will briefly describe the sensor stray light characterization and the correction approach used in the code.
Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman
2014-12-01
The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra- and postoperative follow-up imaging.
NASA Technical Reports Server (NTRS)
Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir
2012-01-01
Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.
Sensorless adaptive optics for isoSTED nanoscopy
NASA Astrophysics Data System (ADS)
Antonello, Jacopo; Hao, Xiang; Allgeyer, Edward S.; Bewersdorf, Joerg; Rittscher, Jens; Booth, Martin J.
2018-02-01
The presence of aberrations is a major concern when using fluorescence microscopy to image deep inside tissue. Aberrations due to refractive index mismatch and heterogeneity of the specimen under investigation cause severe reduction in the amount of fluorescence emission that is collected by the microscope. Furthermore, aberrations adversely affect the resolution, leading to loss of fine detail in the acquired images. These phenomena are particularly troublesome for super-resolution microscopy techniques such as isotropic stimulated-emission-depletion microscopy (isoSTED), which relies on accurate control of the shape and co-alignment of multiple excitation and depletion foci to operate as expected and to achieve the super-resolution effect. Aberrations can be suppressed by implementing sensorless adaptive optics techniques, whereby aberration correction is achieved by maximising a certain image quality metric. In confocal microscopy for example, one can employ the total image brightness as an image quality metric. Aberration correction is subsequently achieved by iteratively changing the settings of a wavefront corrector device until the metric is maximised. This simplistic approach has limited applicability to isoSTED microscopy where, due to the complex interplay between the excitation and depletion foci, maximising the total image brightness can lead to introducing aberrations in the depletion foci. In this work we first consider the effects that different aberration modes have on isoSTED microscopes. We then propose an iterative, wavelet-based aberration correction algorithm and evaluate its benefits.
Directly reconstructing principal components of heterogeneous particles from cryo-EM images.
Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali
2015-08-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.
Estimating crustal heterogeneity from double-difference tomography
Got, J.-L.; Monteiller, V.; Virieux, J.; Okubo, P.
2006-01-01
Seismic velocity parameters in limited, but heterogeneous volumes can be inferred using a double-difference tomographic algorithm, but to obtain meaningful results accuracy must be maintained at every step of the computation. MONTEILLER et al. (2005) have devised a double-difference tomographic algorithm that takes full advantage of the accuracy of cross-spectral time-delays of large correlated event sets. This algorithm performs an accurate computation of theoretical travel-time delays in heterogeneous media and applies a suitable inversion scheme based on optimization theory. When applied to Kilauea Volcano, in Hawaii, the double-difference tomography approach shows significant and coherent changes to the velocity model in the well-resolved volumes beneath the Kilauea caldera and the upper east rift. In this paper, we first compare the results obtained using MONTEILLER et al.'s algorithm with those obtained using the classic travel-time tomographic approach. Then, we evaluated the effect of using data series of different accuracies, such as handpicked arrival-time differences ("picking differences"), on the results produced by double-difference tomographic algorithms. We show that picking differences have a non-Gaussian probability density function (pdf). Using a hyperbolic secant pdf instead of a Gaussian pdf allows improvement of the double-difference tomographic result when using picking difference data. We completed our study by investigating the use of spatially discontinuous time-delay data. ?? Birkha??user Verlag, Basel, 2006.
Accounting for aquifer heterogeneity from geological data to management tools.
Blouin, Martin; Martel, Richard; Gloaguen, Erwan
2013-01-01
A nested workflow of multiple-point geostatistics (MPG) and sequential Gaussian simulation (SGS) was tested on a study area of 6 km(2) located about 20 km northwest of Quebec City, Canada. In order to assess its geological and hydrogeological parameter heterogeneity and to provide tools to evaluate uncertainties in aquifer management, direct and indirect field measurements are used as inputs in the geostatistical simulations to reproduce large and small-scale heterogeneities. To do so, the lithological information is first associated to equivalent hydrogeological facies (hydrofacies) according to hydraulic properties measured at several wells. Then, heterogeneous hydrofacies (HF) realizations are generated using a prior geological model as training image (TI) with the MPG algorithm. The hydraulic conductivity (K) heterogeneity modeling within each HF is finally computed using SGS algorithm. Different K models are integrated in a finite-element hydrogeological model to calculate multiple transport simulations. Different scenarios exhibit variations in mass transport path and dispersion associated with the large- and small-scale heterogeneity respectively. Three-dimensional maps showing the probability of overpassing different thresholds are presented as examples of management tools. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.
Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen
2016-01-15
Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.
Accuracy assessment of linear spectral mixture model due to terrain undulation
NASA Astrophysics Data System (ADS)
Wang, Tianxing; Chen, Songlin; Ma, Ya
2008-12-01
Mixture spectra are common in remote sensing due to the limitations of spatial resolution and the heterogeneity of land surface. During the past 30 years, a lot of subpixel model have developed to investigate the information within mixture pixels. Linear spectral mixture model (LSMM) is a simper and more general subpixel model. LSMM also known as spectral mixture analysis is a widely used procedure to determine the proportion of endmembers (constituent materials) within a pixel based on the endmembers' spectral characteristics. The unmixing accuracy of LSMM is restricted by variety of factors, but now the research about LSMM is mostly focused on appraisement of nonlinear effect relating to itself and techniques used to select endmembers, unfortunately, the environment conditions of study area which could sway the unmixing-accuracy, such as atmospheric scatting and terrain undulation, are not studied. This paper probes emphatically into the accuracy uncertainty of LSMM resulting from the terrain undulation. ASTER dataset was chosen and the C terrain correction algorithm was applied to it. Based on this, fractional abundances for different cover types were extracted from both pre- and post-C terrain illumination corrected ASTER using LSMM. Simultaneously, the regression analyses and the IKONOS image were introduced to assess the unmixing accuracy. Results showed that terrain undulation could dramatically constrain the application of LSMM in mountain area. Specifically, for vegetation abundances, a improved unmixing accuracy of 17.6% (regression against to NDVI) and 18.6% (regression against to MVI) for R2 was achieved respectively by removing terrain undulation. Anyway, this study indicated in a quantitative way that effective removal or minimization of terrain illumination effects was essential for applying LSMM. This paper could also provide a new instance for LSMM applications in mountainous areas. In addition, the methods employed in this study could be effectively used to evaluate different algorithms of terrain undulation correction for further study.
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.
1987-01-01
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.
Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.
Ruddick, K G; Ovidio, F; Rijkeboer, M
2000-02-20
The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.
NASA Astrophysics Data System (ADS)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.
2015-02-01
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.
A nonlinear lag correction algorithm for a-Si flat-panel x-ray detectors
Starman, Jared; Star-Lack, Josh; Virshup, Gary; Shapiro, Edward; Fahrig, Rebecca
2012-01-01
Purpose: Detector lag, or residual signal, in a-Si flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and correct lag by deconvolution with an impulse response function (IRF). However, the lag correction is sensitive to both the exposure intensity and the technique used for determining the IRF. Even when the LTI correction that produces the minimum error is found, residual artifact remains. A new non-LTI method was developed to take into account the IRF measurement technique and exposure dependencies. Methods: First, a multiexponential (N = 4) LTI model was implemented for lag correction. Next, a non-LTI lag correction, known as the nonlinear consistent stored charge (NLCSC) method, was developed based on the LTI multiexponential method. It differs from other nonlinear lag correction algorithms in that it maintains a consistent estimate of the amount of charge stored in the FP and it does not require intimate knowledge of the semiconductor parameters specific to the FP. For the NLCSC method, all coefficients of the IRF are functions of exposure intensity. Another nonlinear lag correction method that only used an intensity weighting of the IRF was also compared. The correction algorithms were applied to step-response projection data and CT acquisitions of a large pelvic phantom and an acrylic head phantom. The authors collected rising and falling edge step-response data on a Varian 4030CB a-Si FP detector operating in dynamic gain mode at 15 fps at nine incident exposures (2.0%–92% of the detector saturation exposure). For projection data, 1st and 50th frame lag were measured before and after correction. For the CT reconstructions, five pairs of ROIs were defined and the maximum and mean signal differences within a pair were calculated for the different exposures and step-response edge techniques. Results: The LTI corrections left residual 1st and 50th frame lag up to 1.4% and 0.48%, while the NLCSC lag correction reduced 1st and 50th frame residual lags to less than 0.29% and 0.0052%. For CT reconstructions, the NLCSC lag correction gave an average error of 11 HU for the pelvic phantom and 3 HU for the head phantom, compared to 14–19 HU and 2–11 HU for the LTI corrections and 15 HU and 9 HU for the intensity weighted non-LTI algorithm. The maximum ROI error was always smallest for the NLCSC correction. The NLCSC correction was also superior to the intensity weighting algorithm. Conclusions: The NLCSC lag algorithm corrected for the exposure dependence of lag, provided superior image improvement for the pelvic phantom reconstruction, and gave similar results to the best case LTI results for the head phantom. The blurred ring artifact that is left over in the LTI corrections was better removed by the NLCSC correction in all cases. PMID:23039642
Evaluation of atmospheric correction algorithms for processing SeaWiFS data
NASA Astrophysics Data System (ADS)
Ransibrahmanakul, Varis; Stumpf, Richard; Ramachandran, Sathyadev; Hughes, Kent
2005-08-01
To enable the production of the best chlorophyll products from SeaWiFS data NOAA (Coastwatch and NOS) evaluated the various atmospheric correction algorithms by comparing the satellite derived water reflectance derived for each algorithm with in situ data. Gordon and Wang (1994) introduced a method to correct for Rayleigh and aerosol scattering in the atmosphere so that water reflectance may be derived from the radiance measured at the top of the atmosphere. However, since the correction assumed near infrared scattering to be negligible in coastal waters an invalid assumption, the method over estimates the atmospheric contribution and consequently under estimates water reflectance for the lower wavelength bands on extrapolation. Several improved methods to estimate near infrared correction exist: Siegel et al. (2000); Ruddick et al. (2000); Stumpf et al. (2002) and Stumpf et al. (2003), where an absorbing aerosol correction is also applied along with an additional 1.01% calibration adjustment for the 412 nm band. The evaluation show that the near infrared correction developed by Stumpf et al. (2003) result in an overall minimum error for U.S. waters. As of July 2004, NASA (SEADAS) has selected this as the default method for the atmospheric correction used to produce chlorophyll products.
Automated general temperature correction method for dielectric soil moisture sensors
NASA Astrophysics Data System (ADS)
Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao
2017-08-01
An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.
Hlaing, Soe; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir
2012-01-10
Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing performance of current and future satellite ocean color remote sensing missions for monitoring of typical coastal waters. © 2012 Optical Society of America
De Kesel, Pieter M M; Capiau, Sara; Stove, Veronique V; Lambert, Willy E; Stove, Christophe P
2014-10-01
Although dried blood spot (DBS) sampling is increasingly receiving interest as a potential alternative to traditional blood sampling, the impact of hematocrit (Hct) on DBS results is limiting its final breakthrough in routine bioanalysis. To predict the Hct of a given DBS, potassium (K(+)) proved to be a reliable marker. The aim of this study was to evaluate whether application of an algorithm, based upon predicted Hct or K(+) concentrations as such, allowed correction for the Hct bias. Using validated LC-MS/MS methods, caffeine, chosen as a model compound, was determined in whole blood and corresponding DBS samples with a broad Hct range (0.18-0.47). A reference subset (n = 50) was used to generate an algorithm based on K(+) concentrations in DBS. Application of the developed algorithm on an independent test set (n = 50) alleviated the assay bias, especially at lower Hct values. Before correction, differences between DBS and whole blood concentrations ranged from -29.1 to 21.1%. The mean difference, as obtained by Bland-Altman comparison, was -6.6% (95% confidence interval (CI), -9.7 to -3.4%). After application of the algorithm, differences between corrected and whole blood concentrations lay between -19.9 and 13.9% with a mean difference of -2.1% (95% CI, -4.5 to 0.3%). The same algorithm was applied to a separate compound, paraxanthine, which was determined in 103 samples (Hct range, 0.17-0.47), yielding similar results. In conclusion, a K(+)-based algorithm allows correction for the Hct bias in the quantitative analysis of caffeine and its metabolite paraxanthine.
NASA Astrophysics Data System (ADS)
Hervo, Maxime; Poltera, Yann; Haefele, Alexander
2016-07-01
Imperfections in a lidar's overlap function lead to artefacts in the background, range and overlap-corrected lidar signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. A correct specification of the overlap function is hence crucial in the use of automatic elastic lidars (ceilometers) for the detection of the planetary boundary layer or of low cloud. In this study, an algorithm is presented to correct such artefacts. It is based on the assumption of a homogeneous boundary layer and a correct specification of the overlap function down to a minimum range, which must be situated within the boundary layer. The strength of the algorithm lies in a sophisticated quality-check scheme which allows the reliable identification of favourable atmospheric conditions. The algorithm was applied to 2 years of data from a CHM15k ceilometer from the company Lufft. Backscatter signals corrected for background, range and overlap were compared using the overlap function provided by the manufacturer and the one corrected with the presented algorithm. Differences between corrected and uncorrected signals reached up to 45 % in the first 300 m above ground. The amplitude of the correction turned out to be temperature dependent and was larger for higher temperatures. A linear model of the correction as a function of the instrument's internal temperature was derived from the experimental data. Case studies and a statistical analysis of the strongest gradient derived from corrected signals reveal that the temperature model is capable of a high-quality correction of overlap artefacts, in particular those due to diurnal variations. The presented correction method has the potential to significantly improve the detection of the boundary layer with gradient-based methods because it removes false candidates and hence simplifies the attribution of the detected gradients to the planetary boundary layer. A particularly significant benefit can be expected for the detection of shallow stable layers typical of night-time situations. The algorithm is completely automatic and does not require any on-site intervention but requires the definition of an adequate instrument-specific configuration. It is therefore suited for use in large ceilometer networks.
Indirect estimation of signal-dependent noise with nonadaptive heterogeneous samples.
Azzari, Lucio; Foi, Alessandro
2014-08-01
We consider the estimation of signal-dependent noise from a single image. Unlike conventional algorithms that build a scatterplot of local mean-variance pairs from either small or adaptively selected homogeneous data samples, our proposed approach relies on arbitrarily large patches of heterogeneous data extracted at random from the image. We demonstrate the feasibility of our approach through an extensive theoretical analysis based on mixture of Gaussian distributions. A prototype algorithm is also developed in order to validate the approach on simulated data as well as on real camera raw images.
Modeling heterogeneous processor scheduling for real time systems
NASA Technical Reports Server (NTRS)
Leathrum, J. F.; Mielke, R. R.; Stoughton, J. W.
1994-01-01
A new model is presented to describe dataflow algorithms implemented in a multiprocessing system. Called the resource/data flow graph (RDFG), the model explicitly represents cyclo-static processor schedules as circuits of processor arcs which reflect the order that processors execute graph nodes. The model also allows the guarantee of meeting hard real-time deadlines. When unfolded, the model identifies statically the processor schedule. The model therefore is useful for determining the throughput and latency of systems with heterogeneous processors. The applicability of the model is demonstrated using a space surveillance algorithm.
Message Efficient Checkpointing and Rollback Recovery in Heterogeneous Mobile Networks
NASA Astrophysics Data System (ADS)
Jaggi, Parmeet Kaur; Singh, Awadhesh Kumar
2016-06-01
Heterogeneous networks provide an appealing way of expanding the computing capability of mobile networks by combining infrastructure-less mobile ad-hoc networks with the infrastructure-based cellular mobile networks. The nodes in such a network range from low-power nodes to macro base stations and thus, vary greatly in their capabilities such as computation power and battery power. The nodes are susceptible to different types of transient and permanent failures and therefore, the algorithms designed for such networks need to be fault-tolerant. The article presents a checkpointing algorithm for the rollback recovery of mobile hosts in a heterogeneous mobile network. Checkpointing is a well established approach to provide fault tolerance in static and cellular mobile distributed systems. However, the use of checkpointing for fault tolerance in a heterogeneous environment remains to be explored. The proposed protocol is based on the results of zigzag paths and zigzag cycles by Netzer-Xu. Considering the heterogeneity prevalent in the network, an uncoordinated checkpointing technique is employed. Yet, useless checkpoints are avoided without causing a high message overhead.
Correction of WindScat Scatterometric Measurements by Combining with AMSR Radiometric Data
NASA Technical Reports Server (NTRS)
Song, S.; Moore, R. K.
1996-01-01
The Seawinds scatterometer on the advanced Earth observing satellite-2 (ADEOS-2) will determine surface wind vectors by measuring the radar cross section. Multiple measurements will be made at different points in a wind-vector cell. When dense clouds and rain are present, the signal will be attenuated, thereby giving erroneous results for the wind. This report describes algorithms to use with the advanced mechanically scanned radiometer (AMSR) scanning radiometer on ADEOS-2 to correct for the attenuation. One can determine attenuation from a radiometer measurement based on the excess brightness temperature measured. This is the difference between the total measured brightness temperature and the contribution from surface emission. A major problem that the algorithm must address is determining the surface contribution. Two basic approaches were developed for this, one using the scattering coefficient measured along with the brightness temperature, and the other using the brightness temperature alone. For both methods, best results will occur if the wind from the preceding wind-vector cell can be used as an input to the algorithm. In the method based on the scattering coefficient, we need the wind direction from the preceding cell. In the method using brightness temperature alone, we need the wind speed from the preceding cell. If neither is available, the algorithm can work, but the corrections will be less accurate. Both correction methods require iterative solutions. Simulations show that the algorithms make significant improvements in the measured scattering coefficient and thus is the retrieved wind vector. For stratiform rains, the errors without correction can be quite large, so the correction makes a major improvement. For systems of separated convective cells, the initial error is smaller and the correction, although about the same percentage, has a smaller effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different typesmore » of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.« less
Improved forest change detection with terrain illumination corrected landsat images
USDA-ARS?s Scientific Manuscript database
An illumination correction algorithm has been developed to improve the accuracy of forest change detection from Landsat reflectance data. This algorithm is based on an empirical rotation model and was tested on the Landsat imagery pair over Cherokee National Forest, Tennessee, Uinta-Wasatch-Cache N...
ERIC Educational Resources Information Center
Shumway, Jessica F.; Kyriopoulos, Joan
2014-01-01
Being able to find the correct answer to a math problem does not always indicate solid mathematics mastery. A student who knows how to apply the basic algorithms can correctly solve problems without understanding the relationships between numbers or why the algorithms work. The Common Core standards require that students actually understand…
Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, James M.; Barney, Patrick S.; Henson, Tammy D.
1999-07-28
As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effectmore » desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.« less
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
A 3D inversion for all-space magnetotelluric data with static shift correction
NASA Astrophysics Data System (ADS)
Zhang, Kun
2017-04-01
Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results. The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm.
Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.
2013-01-01
Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512
Coastal Zone Color Scanner atmospheric correction - Influence of El Chichon
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Castano, Diego J.
1988-01-01
The addition of an El Chichon-like aerosol layer in the stratosphere is shown to have very little effect on the basic CZCS atmospheric correction algorithm. The additional stratospheric aerosol is found to increase the total radiance exiting the atmosphere, thereby increasing the probability that the sensor will saturate. It is suggested that in the absence of saturation the correction algorithm should perform as well as in the absence of the stratospheric layer.
Nagata, Koichi; Pethel, Timothy D
2017-07-01
Although anisotropic analytical algorithm (AAA) and Acuros XB (AXB) are both radiation dose calculation algorithms that take into account the heterogeneity within the radiation field, Acuros XB is inherently more accurate. The purpose of this retrospective method comparison study was to compare them and evaluate the dose discrepancy within the planning target volume (PTV). Radiation therapy (RT) plans of 11 dogs with intranasal tumors treated by radiation therapy at the University of Georgia were evaluated. All dogs were planned for intensity-modulated radiation therapy using nine coplanar X-ray beams that were equally spaced, then dose calculated with anisotropic analytical algorithm. The same plan with the same monitor units was then recalculated using Acuros XB for comparisons. Each dog's planning target volume was separated into air, bone, and tissue and evaluated. The mean dose to the planning target volume estimated by Acuros XB was 1.3% lower. It was 1.4% higher for air, 3.7% lower for bone, and 0.9% lower for tissue. The volume of planning target volume covered by the prescribed dose decreased by 21% when Acuros XB was used due to increased dose heterogeneity within the planning target volume. Anisotropic analytical algorithm relatively underestimates the dose heterogeneity and relatively overestimates the dose to the bone and tissue within the planning target volume for the radiation therapy planning of canine intranasal tumors. This can be clinically significant especially if the tumor cells are present within the bone, because it may result in relative underdosing of the tumor. © 2017 American College of Veterinary Radiology.
NASA Astrophysics Data System (ADS)
Thieberger, P.; Gassner, D.; Hulsart, R.; Michnoff, R.; Miller, T.; Minty, M.; Sorrell, Z.; Bartnik, A.
2018-04-01
A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.
Thieberger, Peter; Gassner, D.; Hulsart, R.; ...
2018-04-25
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thieberger, Peter; Gassner, D.; Hulsart, R.
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
Thieberger, P; Gassner, D; Hulsart, R; Michnoff, R; Miller, T; Minty, M; Sorrell, Z; Bartnik, A
2018-04-01
A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.
Lin, Muqing; Chan, Siwa; Chen, Jeon-Hor; Chang, Daniel; Nie, Ke; Chen, Shih-Ting; Lin, Cheng-Ju; Shih, Tzu-Ching; Nalcioglu, Orhan; Su, Min-Ying
2011-01-01
Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3+FCM > FCM) in 2 breasts. The results of the second reading session were similar. The performance in each pairwise Wilcoxon signed-rank test is significant, showing N3+FCM superior to both N3 and FCM, and N3 superior to FCM. The performance of the new N3+FCM algorithm was comparable to that of CLIC, showing equivalent quality in 57/60 breasts. Choosing an appropriate bias field correction method is a very important preprocessing step to allow an accurate segmentation of fibroglandular tissues based on breast MRI for quantitative measurement of breast density. The proposed algorithm combining N3+FCM and CLIC both yield satisfactory results.
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna R.; Wickert, Mark A.
2017-05-01
A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and off set characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.
The atmospheric correction algorithm for HY-1B/COCTS
NASA Astrophysics Data System (ADS)
He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun
2008-10-01
China has launched her second ocean color satellite HY-1B on 11 Apr., 2007, which carried two remote sensors. The Chinese Ocean Color and Temperature Scanner (COCTS) is the main sensor on HY-1B, and it has not only eight visible and near-infrared wavelength bands similar to the SeaWiFS, but also two more thermal infrared bands to measure the sea surface temperature. Therefore, COCTS has broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. Atmospheric correction is the key of the quantitative ocean color remote sensing. In this paper, the operational atmospheric correction algorithm of HY-1B/COCTS has been developed. Firstly, based on the vector radiative transfer numerical model of coupled oceanatmosphere system- PCOART, the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT for HY-1B/COCTS have been generated. Secondly, using the generated LUTs, the exactly operational atmospheric correction algorithm for HY-1B/COCTS has been developed. The algorithm has been validated using the simulated spectral data generated by PCOART, and the result shows the error of the water-leaving reflectance retrieved by this algorithm is less than 0.0005, which meets the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the algorithm has been applied to the HY-1B/COCTS remote sensing data, and the retrieved water-leaving radiances are consist with the Aqua/MODIS results, and the corresponding ocean color remote sensing products have been generated including the chlorophyll concentration and total suspended particle matter concentration.
Optimized ECC Implementation for Secure Communication between Heterogeneous IoT Devices
Marin, Leandro; Piotr Pawlowski, Marcin; Jara, Antonio
2015-01-01
The Internet of Things is integrating information systems, places, users and billions of constrained devices into one global network. This network requires secure and private means of communications. The building blocks of the Internet of Things are devices manufactured by various producers and are designed to fulfil different needs. There would be no common hardware platform that could be applied in every scenario. In such a heterogeneous environment, there is a strong need for the optimization of interoperable security. We present optimized elliptic curve Cryptography algorithms that address the security issues in the heterogeneous IoT networks. We have combined cryptographic algorithms for the NXP/Jennic 5148- and MSP430-based IoT devices and used them to created novel key negotiation protocol. PMID:26343677
Warped document image correction method based on heterogeneous registration strategies
NASA Astrophysics Data System (ADS)
Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan
2013-03-01
With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.
Statistical significance of combinatorial regulations
Terada, Aika; Okada-Hatakeyama, Mariko; Tsuda, Koji; Sese, Jun
2013-01-01
More than three transcription factors often work together to enable cells to respond to various signals. The detection of combinatorial regulation by multiple transcription factors, however, is not only computationally nontrivial but also extremely unlikely because of multiple testing correction. The exponential growth in the number of tests forces us to set a strict limit on the maximum arity. Here, we propose an efficient branch-and-bound algorithm called the “limitless arity multiple-testing procedure” (LAMP) to count the exact number of testable combinations and calibrate the Bonferroni factor to the smallest possible value. LAMP lists significant combinations without any limit, whereas the family-wise error rate is rigorously controlled under the threshold. In the human breast cancer transcriptome, LAMP discovered statistically significant combinations of as many as eight binding motifs. This method may contribute to uncover pathways regulated in a coordinated fashion and find hidden associations in heterogeneous data. PMID:23882073
See Something, Say Something: Correction of Global Health Misinformation on Social Media.
Bode, Leticia; Vraga, Emily K
2018-09-01
Social media are often criticized for being a conduit for misinformation on global health issues, but may also serve as a corrective to false information. To investigate this possibility, an experiment was conducted exposing users to a simulated Facebook News Feed featuring misinformation and different correction mechanisms (one in which news stories featuring correct information were produced by an algorithm and another where the corrective news stories were posted by other Facebook users) about the Zika virus, a current global health threat. Results show that algorithmic and social corrections are equally effective in limiting misperceptions, and correction occurs for both high and low conspiracy belief individuals. Recommendations for social media campaigns to correct global health misinformation, including encouraging users to refute false or misleading health information, and providing them appropriate sources to accompany their refutation, are discussed.
Jin, Lifang; Xu, Changsong; Xie, Xueqian; Li, Fan; Lv, Xiuhong; Du, Lianfang
2017-01-01
Enhancement heterogeneity on contrast-enhanced ultrasonography (CEUS) is used to differentiate between benign and malignant thyroid nodules. In this study, we used an algorithm to quantify enhancement heterogeneity of solid thyroid nodules on CEUS. The heterogeneity value (HV) is calculated as standard deviation/mean intensity × 100 (using Adobe Photoshop). The heterogeneity ratio (HR) is calculated as the ratio of the HV of the nodule to that of the surrounding parenchyma. Three phases-ascending, peak and descending phases-were studied. HV values at ascending (HV a ) and peak (HV p ) phases were significantly higher in malignant nodules than in benign nodules (95.57 ± 43.87 vs. 73.06 ± 44.04, p = 0.009, and 32.53 ± 10.73 vs. 26.44 ± 8.25, p = 0.002, respectively). HR a , HR p and HR d were significantly higher in malignant nodules than in benign nodules (1.93 ± 1.03 vs. 1.00 ± 0.47, p = 0.000, 1.43 ± 0.51 vs. 1.09 ± 0.28, p = 0.000, and 1.33 ± 0.40 vs. 1.08 ± 0.33, p = 0.001, respectively). HR a achieved optimal diagnostic performance on receiver operating characteristic curve analysis. The algorithm used for assessment of image heterogeneity on CEUS examination may be a useful adjunct to conventional ultrasound for differential diagnosis of solid thyroid nodules. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Glaser, Johann; Beisteiner, Roland; Bauer, Herbert; Fischmeister, Florian Ph S
2013-11-09
In concurrent EEG/fMRI recordings, EEG data are impaired by the fMRI gradient artifacts which exceed the EEG signal by several orders of magnitude. While several algorithms exist to correct the EEG data, these algorithms lack the flexibility to either leave out or add new steps. The here presented open-source MATLAB toolbox FACET is a modular toolbox for the fast and flexible correction and evaluation of imaging artifacts from concurrently recorded EEG datasets. It consists of an Analysis, a Correction and an Evaluation framework allowing the user to choose from different artifact correction methods with various pre- and post-processing steps to form flexible combinations. The quality of the chosen correction approach can then be evaluated and compared to different settings. FACET was evaluated on a dataset provided with the FMRIB plugin for EEGLAB using two different correction approaches: Averaged Artifact Subtraction (AAS, Allen et al., NeuroImage 12(2):230-239, 2000) and the FMRI Artifact Slice Template Removal (FASTR, Niazy et al., NeuroImage 28(3):720-737, 2005). Evaluation of the obtained results were compared to the FASTR algorithm implemented in the EEGLAB plugin FMRIB. No differences were found between the FACET implementation of FASTR and the original algorithm across all gradient artifact relevant performance indices. The FACET toolbox not only provides facilities for all three modalities: data analysis, artifact correction as well as evaluation and documentation of the results but it also offers an easily extendable framework for development and evaluation of new approaches.
2013-01-01
Background In concurrent EEG/fMRI recordings, EEG data are impaired by the fMRI gradient artifacts which exceed the EEG signal by several orders of magnitude. While several algorithms exist to correct the EEG data, these algorithms lack the flexibility to either leave out or add new steps. The here presented open-source MATLAB toolbox FACET is a modular toolbox for the fast and flexible correction and evaluation of imaging artifacts from concurrently recorded EEG datasets. It consists of an Analysis, a Correction and an Evaluation framework allowing the user to choose from different artifact correction methods with various pre- and post-processing steps to form flexible combinations. The quality of the chosen correction approach can then be evaluated and compared to different settings. Results FACET was evaluated on a dataset provided with the FMRIB plugin for EEGLAB using two different correction approaches: Averaged Artifact Subtraction (AAS, Allen et al., NeuroImage 12(2):230–239, 2000) and the FMRI Artifact Slice Template Removal (FASTR, Niazy et al., NeuroImage 28(3):720–737, 2005). Evaluation of the obtained results were compared to the FASTR algorithm implemented in the EEGLAB plugin FMRIB. No differences were found between the FACET implementation of FASTR and the original algorithm across all gradient artifact relevant performance indices. Conclusion The FACET toolbox not only provides facilities for all three modalities: data analysis, artifact correction as well as evaluation and documentation of the results but it also offers an easily extendable framework for development and evaluation of new approaches. PMID:24206927
An evolutionary algorithm for large traveling salesman problems.
Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan
2004-08-01
This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.
Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji
2016-02-01
In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cannon, Alex J.
2018-01-01
Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.
Beam hardening correction in CT myocardial perfusion measurement
NASA Astrophysics Data System (ADS)
So, Aaron; Hsieh, Jiang; Li, Jian-Ying; Lee, Ting-Yim
2009-05-01
This paper presents a method for correcting beam hardening (BH) in cardiac CT perfusion imaging. The proposed algorithm works with reconstructed images instead of projection data. It applies thresholds to separate low (soft tissue) and high (bone and contrast) attenuating material in a CT image. The BH error in each projection is estimated by a polynomial function of the forward projection of the segmented image. The error image is reconstructed by back-projection of the estimated errors. A BH-corrected image is then obtained by subtracting a scaled error image from the original image. Phantoms were designed to simulate the BH artifacts encountered in cardiac CT perfusion studies of humans and animals that are most commonly used in cardiac research. These phantoms were used to investigate whether BH artifacts can be reduced with our approach and to determine the optimal settings, which depend upon the anatomy of the scanned subject, of the correction algorithm for patient and animal studies. The correction algorithm was also applied to correct BH in a clinical study to further demonstrate the effectiveness of our technique.
NASA Astrophysics Data System (ADS)
Xiao, Zhongxiu
2018-04-01
A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.
Analysis of L-band Multi-Channel Sea Clutter
2010-08-01
Some researchers found that the use of a hybrid algorithm of PS and GA could accelerate the convergence for array beamforming designs (Yeo and Lu...to be shown is array failure correction using the PS algorithm . Assume element 5 of a 32 half-wavelength spacing linear array is in failure. The goal... algorithm . The blue one is the 20 dB Chebyshev pattern and the template in red is the goal pattern to achieve. Two corrected beam patterns are
A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application
Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang
2018-01-01
Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549
Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.
Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji
2016-09-01
It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.
Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra
2017-11-01
We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.
Pokhrel, Damodar; Badkul, Rajeev; Jiang, Hongyu; Kumar, Pravesh; Wang, Fen
2015-01-08
For stereotactic ablative body radiotherapy (SABR) in lung cancer patients, Radiation Therapy Oncology Group (RTOG) protocols currently require radiation dose to be calculated using tissue heterogeneity corrections. Dosimetric criteria of RTOG 0813 were established based on the results obtained from non-Monte Carlo (MC) algorithms, such as superposition/convolutions. Clinically, MC-based algorithms are now routinely used for lung SABR dose calculations. It is essential to confirm that MC calculations in lung SABR meet RTOG guidelines. This report evaluates iPlan MC plans for SABR in lung cancer patients using dose-volume histogram normalization per current RTOG 0813 compliance criteria. Eighteen Stage I-II non-small cell lung cancer (NSCLC) patients with centrally located tumors, who underwent MC-based lung SABR with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (BrainLAB iPlan version 4.1.2), were analyzed. Total dose of 60 Gy in 5 fractions was delivered to planning target volume (PTV) with at least V100% = 95%. Internal target volumes (ITVs) were delineated on maximum intensity projection (MIP) images of 4D CT scans. PTV (ITV + 5 mm margin) volumes ranged from 10.0 to 99.9 cc (mean = 36.8 ± 20.7 cc). Organs at risk (OARs) were delineated on average images of 4D CT scans. Optimal clinical MC SABR plans were generated using a combination of non-coplanar conformal arcs and beams for the Novalis-TX consisting of high definition multileaf collimators (MLCs) and 6 MV-SRS (1000 MU/min) mode. All plans were evaluated using the RTOG 0813 high and intermediate dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2 cm), and percent of normal lung receiving 20 Gy (V20) or more. Other organs-at-risk (OARs) doses were tabulated, including the volume of normal lung receiving 5 Gy (V5), maximum cord dose, dose to < 15 cc of heart, and dose to <5 cc of esophagus. Only six out of 18 patients met all RTOG 0813 compliance criteria. Eight of 18 patients had minor deviations in R100%, four in R50%, and nine in D2 cm. However, only one patient had minor deviation in V20. All other OARs doses, such as maximum cord dose, dose to < 15 cc of heart, and dose to < 5 cc of esophagus, were satisfactory for RTOG criteria, except for one patient, for whom the dose to < 15 cc of heart was higher than RTOG guidelines. The preliminary results for our limited iPlan XVMC dose calculations indicate that the majority (i.e., 2/3) of our patients had minor deviations in the dosimetric guidelines set by RTOG 0813 protocol in one way or another. When using an exclusive highly sophisticated XVMC algorithm, the RTOG 0813 dosimetric compliance criteria such as R100% and D2 cm may need to be revisited. Based on our limited number of patient datasets, in general, about 6% for R100% and 9% for D2 cm corrections could be applied to pass the RTOG 0813 compliance criteria in most of those patients. More patient plans need to be evaluated to make recommendation for R50%. No adjustment is necessary for OAR dose tolerances, including normal lung V20. In order to establish new MC specific dose parameters, further investigation with a large cohort of patients including central, as well as peripheral lung tumors, is anticipated and strongly recommended.
NASA Astrophysics Data System (ADS)
Wetterling, F.; Liehr, M.; Schimpf, P.; Liu, H.; Haueisen, J.
2009-09-01
The non-invasive localization of focal heart activity via body surface potential measurements (BSPM) could greatly benefit the understanding and treatment of arrhythmic heart diseases. However, the in vivo validation of source localization algorithms is rather difficult with currently available measurement techniques. In this study, we used a physical torso phantom composed of different conductive compartments and seven dipoles, which were placed in the anatomical position of the human heart in order to assess the performance of the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. Electric potentials were measured on the torso surface for single dipoles with and without further uncorrelated or correlated dipole activity. The localization error averaged 11 ± 5 mm over 22 dipoles, which shows the ability of RAP-MUSIC to distinguish an uncorrelated dipole from surrounding sources activity. For the first time, real computational modelling errors could be included within the validation procedure due to the physically modelled heterogeneities. In conclusion, the introduced heterogeneous torso phantom can be used to validate state-of-the-art algorithms under nearly realistic measurement conditions.
High-order flux correction/finite difference schemes for strand grids
NASA Astrophysics Data System (ADS)
Katz, Aaron; Work, Dalon
2015-02-01
A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.
Comparison of atmospheric correction algorithms for the Coastal Zone Color Scanner
NASA Technical Reports Server (NTRS)
Tanis, F. J.; Jain, S. C.
1984-01-01
Before Nimbus-7 Costal Zone Color Scanner (CZC) data can be used to distinguish between coastal water types, methods must be developed for the removal of spatial variations in aerosol path radiance. These can dominate radiance measurements made by the satellite. An assessment is presently made of the ability of four different algorithms to quantitatively remove haze effects; each was adapted for the extraction of the required scene-dependent parameters during an initial pass through the data set The CZCS correction algorithms considered are (1) the Gordon (1981, 1983) algorithm; (2) the Smith and Wilson (1981) iterative algorityhm; (3) the pseudooptical depth method; and (4) the residual component algorithm.
NASA Astrophysics Data System (ADS)
Câmara, F.; Oliveira, J.; Hormigo, T.; Araújo, J.; Ribeiro, R.; Falcão, A.; Gomes, M.; Dubois-Matra, O.; Vijendran, S.
2015-06-01
This paper discusses the design and evaluation of data fusion strategies to perform tiered fusion of several heterogeneous sensors and a priori data. The aim is to increase robustness and performance of hazard detection and avoidance systems, while enabling safe planetary and small body landings anytime, anywhere. The focus is on Mars and asteroid landing mission scenarios and three distinct data fusion algorithms are introduced and compared. The first algorithm consists of a hybrid camera-LIDAR hazard detection and avoidance system, the H2DAS, in which data fusion is performed at both sensor-level data (reconstruction of the point cloud obtained with a scanning LIDAR using the navigation motion states and correcting the image for motion compensation using IMU data), feature-level data (concatenation of multiple digital elevation maps, obtained from consecutive LIDAR images, to achieve higher accuracy and resolution maps while enabling relative positioning) as well as decision-level data (fusing hazard maps from multiple sensors onto a single image space, with a single grid orientation and spacing). The second method presented is a hybrid reasoning fusion, the HRF, in which innovative algorithms replace the decision-level functions of the previous method, by combining three different reasoning engines—a fuzzy reasoning engine, a probabilistic reasoning engine and an evidential reasoning engine—to produce safety maps. Finally, the third method presented is called Intelligent Planetary Site Selection, the IPSIS, an innovative multi-criteria, dynamic decision-level data fusion algorithm that takes into account historical information for the selection of landing sites and a piloting function with a non-exhaustive landing site search capability, i.e., capable of finding local optima by searching a reduced set of global maps. All the discussed data fusion strategies and algorithms have been integrated, verified and validated in a closed-loop simulation environment. Monte Carlo simulation campaigns were performed for the algorithms performance assessment and benchmarking. The simulations results comprise the landing phases of Mars and Phobos landing mission scenarios.
Tormene, Paolo; Giorgino, Toni; Quaglini, Silvana; Stefanelli, Mario
2009-01-01
The purpose of this study was to assess the performance of a real-time ("open-end") version of the dynamic time warping (DTW) algorithm for the recognition of motor exercises. Given a possibly incomplete input stream of data and a reference time series, the open-end DTW algorithm computes both the size of the prefix of reference which is best matched by the input, and the dissimilarity between the matched portions. The algorithm was used to provide real-time feedback to neurological patients undergoing motor rehabilitation. We acquired a dataset of multivariate time series from a sensorized long-sleeve shirt which contains 29 strain sensors distributed on the upper limb. Seven typical rehabilitation exercises were recorded in several variations, both correctly and incorrectly executed, and at various speeds, totaling a data set of 840 time series. Nearest-neighbour classifiers were built according to the outputs of open-end DTW alignments and their global counterparts on exercise pairs. The classifiers were also tested on well-known public datasets from heterogeneous domains. Nonparametric tests show that (1) on full time series the two algorithms achieve the same classification accuracy (p-value =0.32); (2) on partial time series, classifiers based on open-end DTW have a far higher accuracy (kappa=0.898 versus kappa=0.447;p<10(-5)); and (3) the prediction of the matched fraction follows closely the ground truth (root mean square <10%). The results hold for the motor rehabilitation and the other datasets tested, as well. The open-end variant of the DTW algorithm is suitable for the classification of truncated quantitative time series, even in the presence of noise. Early recognition and accurate class prediction can be achieved, provided that enough variance is available over the time span of the reference. Therefore, the proposed technique expands the use of DTW to a wider range of applications, such as real-time biofeedback systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.
2015-01-12
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less
AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble.
Abdul-Wahid, Badi'; Feng, Haoyun; Rajan, Dinesh; Costaouec, Ronan; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A
2014-10-27
A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy.
AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble
2015-01-01
A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy. PMID:25207854
NASA Astrophysics Data System (ADS)
Dumouchel, Tyler; Thorn, Stephanie; Kordos, Myra; DaSilva, Jean; Beanlands, Rob S. B.; deKemp, Robert A.
2012-07-01
Quantification in cardiac mouse positron emission tomography (PET) imaging is limited by the imaging spatial resolution. Spillover of left ventricle (LV) myocardial activity into adjacent organs results in partial volume (PV) losses leading to underestimation of myocardial activity. A PV correction method was developed to restore accuracy of the activity distribution for FDG mouse imaging. The PV correction model was based on convolving an LV image estimate with a 3D point spread function. The LV model was described regionally by a five-parameter profile including myocardial, background and blood activities which were separated into three compartments by the endocardial radius and myocardium wall thickness. The PV correction was tested with digital simulations and a physical 3D mouse LV phantom. In vivo cardiac FDG mouse PET imaging was also performed. Following imaging, the mice were sacrificed and the tracer biodistribution in the LV and liver tissue was measured using a gamma-counter. The PV correction algorithm improved recovery from 50% to within 5% of the truth for the simulated and measured phantom data and image uniformity by 5-13%. The PV correction algorithm improved the mean myocardial LV recovery from 0.56 (0.54) to 1.13 (1.10) without (with) scatter and attenuation corrections. The mean image uniformity was improved from 26% (26%) to 17% (16%) without (with) scatter and attenuation corrections applied. Scatter and attenuation corrections were not observed to significantly impact PV-corrected myocardial recovery or image uniformity. Image-based PV correction algorithm can increase the accuracy of PET image activity and improve the uniformity of the activity distribution in normal mice. The algorithm may be applied using different tracers, in transgenic models that affect myocardial uptake, or in different species provided there is sufficient image quality and similar contrast between the myocardium and surrounding structures.
Model-based sensor-less wavefront aberration correction in optical coherence tomography.
Verstraete, Hans R G W; Wahls, Sander; Kalkman, Jeroen; Verhaegen, Michel
2015-12-15
Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.
Adaptive convergence nonuniformity correction algorithm.
Qian, Weixian; Chen, Qian; Bai, Junqi; Gu, Guohua
2011-01-01
Nowadays, convergence and ghosting artifacts are common problems in scene-based nonuniformity correction (NUC) algorithms. In this study, we introduce the idea of space frequency to the scene-based NUC. Then the convergence speed factor is presented, which can adaptively change the convergence speed by a change of the scene dynamic range. In fact, the convergence speed factor role is to decrease the statistical data standard deviation. The nonuniformity space relativity characteristic was summarized by plenty of experimental statistical data. The space relativity characteristic was used to correct the convergence speed factor, which can make it more stable. Finally, real and simulated infrared image sequences were applied to demonstrate the positive effect of our algorithm.
Statistical simplex approach to primary and secondary color correction in thick lens assemblies
NASA Astrophysics Data System (ADS)
Ament, Shelby D. V.; Pfisterer, Richard
2017-11-01
A glass selection optimization algorithm is developed for primary and secondary color correction in thick lens systems. The approach is based on the downhill simplex method, and requires manipulation of the surface color equations to obtain a single glass-dependent parameter for each lens element. Linear correlation is used to relate this parameter to all other glass-dependent variables. The algorithm provides a statistical distribution of Abbe numbers for each element in the system. Examples of several lenses, from 2-element to 6-element systems, are performed to verify this approach. The optimization algorithm proposed is capable of finding glass solutions with high color correction without requiring an exhaustive search of the glass catalog.
Lee, Tae Kyu; Sandison, George A
2003-01-21
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, chi, in the algorithm to be determined in advance of calculation.
NASA Astrophysics Data System (ADS)
Bosca, Ryan J.; Jackson, Edward F.
2016-01-01
Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.
The energy-dependent electron loss model: backscattering and application to heterogeneous slab media
NASA Astrophysics Data System (ADS)
Lee, Tae Kyu; Sandison, George A.
2003-01-01
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, χ, in the algorithm to be determined in advance of calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beammore » configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with tissue-heterogeneities.The magnitude of variation significantly varies with ‘small-island-tumor’ surrounded by low-density lung tissues -PB algorithms lacks later electron scattering. Dose calculation with XVMC for lung SBRT is routinely performed in our clinic, its performance for head'neck/sinus cases will also be investigated.« less
Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222
Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.
Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.
2017-09-01
It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.
A new algorithm for attitude-independent magnetometer calibration
NASA Technical Reports Server (NTRS)
Alonso, Roberto; Shuster, Malcolm D.
1994-01-01
A new algorithm is developed for inflight magnetometer bias determination without knowledge of the attitude. This algorithm combines the fast convergence of a heuristic algorithm currently in use with the correct treatment of the statistics and without discarding data. The algorithm performance is examined using simulated data and compared with previous algorithms.
The Heterogeneous P-Median Problem for Categorization Based Clustering
ERIC Educational Resources Information Center
Blanchard, Simon J.; Aloise, Daniel; DeSarbo, Wayne S.
2012-01-01
The p-median offers an alternative to centroid-based clustering algorithms for identifying unobserved categories. However, existing p-median formulations typically require data aggregation into a single proximity matrix, resulting in masked respondent heterogeneity. A proposed three-way formulation of the p-median problem explicitly considers…
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Cornwell, T. J.
2017-11-01
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measuredmore » a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.« less
NASA Technical Reports Server (NTRS)
Sanyal, Soumya; Jain, Amit; Das, Sajal K.; Biswas, Rupak
2003-01-01
In this paper, we propose a distributed approach for mapping a single large application to a heterogeneous grid environment. To minimize the execution time of the parallel application, we distribute the mapping overhead to the available nodes of the grid. This approach not only provides a fast mapping of tasks to resources but is also scalable. We adopt a hierarchical grid model and accomplish the job of mapping tasks to this topology using a scheduler tree. Results show that our three-phase algorithm provides high quality mappings, and is fast and scalable.
Samanipour, Saer; Dimitriou-Christidis, Petros; Gros, Jonas; Grange, Aureline; Samuel Arey, J
2015-01-02
Comprehensive two-dimensional gas chromatography (GC×GC) is used widely to separate and measure organic chemicals in complex mixtures. However, approaches to quantify analytes in real, complex samples have not been critically assessed. We quantified 7 PAHs in a certified diesel fuel using GC×GC coupled to flame ionization detector (FID), and we quantified 11 target chlorinated hydrocarbons in a lake water extract using GC×GC with electron capture detector (μECD), further confirmed qualitatively by GC×GC with electron capture negative chemical ionization time-of-flight mass spectrometer (ENCI-TOFMS). Target analyte peak volumes were determined using several existing baseline correction algorithms and peak delineation algorithms. Analyte quantifications were conducted using external standards and also using standard additions, enabling us to diagnose matrix effects. We then applied several chemometric tests to these data. We find that the choice of baseline correction algorithm and peak delineation algorithm strongly influence the reproducibility of analyte signal, error of the calibration offset, proportionality of integrated signal response, and accuracy of quantifications. Additionally, the choice of baseline correction and the peak delineation algorithm are essential for correctly discriminating analyte signal from unresolved complex mixture signal, and this is the chief consideration for controlling matrix effects during quantification. The diagnostic approaches presented here provide guidance for analyte quantification using GC×GC. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies.
Rahmani, Elior; Zaitlen, Noah; Baran, Yael; Eng, Celeste; Hu, Donglei; Galanter, Joshua; Oh, Sam; Burchard, Esteban G; Eskin, Eleazar; Zou, James; Halperin, Eran
2016-05-01
In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, A; Casares-Magaz, O; Elstroem, U
Purpose: Cone-beam CT (CBCT) imaging may enable image- and dose-guided proton therapy, but is challenged by image artefacts. The aim of this study was to demonstrate the general applicability of a previously developed a priori scatter correction algorithm to allow CBCT-based proton dose calculations. Methods: The a priori scatter correction algorithm used a plan CT (pCT) and raw cone-beam projections acquired with the Varian On-Board Imager. The projections were initially corrected for bow-tie filtering and beam hardening and subsequently reconstructed using the Feldkamp-Davis-Kress algorithm (rawCBCT). The rawCBCTs were intensity normalised before a rigid and deformable registration were applied on themore » pCTs to the rawCBCTs. The resulting images were forward projected onto the same angles as the raw CB projections. The two projections were subtracted from each other, Gaussian and median filtered, and then subtracted from the raw projections and finally reconstructed to the scatter-corrected CBCTs. For evaluation, water equivalent path length (WEPL) maps (from anterior to posterior) were calculated on different reconstructions of three data sets (CB projections and pCT) of three parts of an Alderson phantom. Finally, single beam spot scanning proton plans (0–360 deg gantry angle in steps of 5 deg; using PyTRiP) treating a 5 cm central spherical target in the pCT were re-calculated on scatter-corrected CBCTs with identical targets. Results: The scatter-corrected CBCTs resulted in sub-mm mean WEPL differences relative to the rigid registration of the pCT for all three data sets. These differences were considerably smaller than what was achieved with the regular Varian CBCT reconstruction algorithm (1–9 mm mean WEPL differences). Target coverage in the re-calculated plans was generally improved using the scatter-corrected CBCTs compared to the Varian CBCT reconstruction. Conclusion: We have demonstrated the general applicability of a priori CBCT scatter correction, potentially opening for CBCT-based image/dose-guided proton therapy, including adaptive strategies. Research agreement with Varian Medical Systems, not connected to the present project.« less
NASA Astrophysics Data System (ADS)
Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.
2015-12-01
There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, to track energy flow through ecosystems, and to identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species, evaluating iron stress of phytoplankton, and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. As a consequence, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. However, the coastal marine environment has special atmospheric correction needs due to error that may be introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals for use in estimating chlorophyll (OC3 algorithm) and phytoplankton functional type (PHYDOTax algorithm) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons - upwelling and the warm, stratified oceanic period for 2013 and 2014. These two periods are dominated by either diatom blooms (occasionally toxic) or red tides. Results presented include chlorophyll and phytoplankton community structure and in-water validation data for these dates during these two seasons.
Saeed, Mohammad
2017-05-01
Systemic lupus erythematosus (SLE) is a complex disorder. Genetic association studies of complex disorders suffer from the following three major issues: phenotypic heterogeneity, false positive (type I error), and false negative (type II error) results. Hence, genes with low to moderate effects are missed in standard analyses, especially after statistical corrections. OASIS is a novel linkage disequilibrium clustering algorithm that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders such as SLE. OASIS was applied to two SLE dbGAP GWAS datasets (6077 subjects; ∼0.75 million single-nucleotide polymorphisms). OASIS identified three known SLE genes viz. IFIH1, TNIP1, and CD44, not previously reported using these GWAS datasets. In addition, 22 novel loci for SLE were identified and the 5 SLE genes previously reported using these datasets were verified. OASIS methodology was validated using single-variant replication and gene-based analysis with GATES. This led to the verification of 60% of OASIS loci. New SLE genes that OASIS identified and were further verified include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1, NCOA3, and CHAF1B. This study presents the OASIS algorithm, software, and the meta-analyses of two publicly available SLE GWAS datasets along with the novel SLE genes. Hence, OASIS is a novel linkage disequilibrium clustering method that can be universally applied to existing GWAS datasets for the identification of new genes.
An algebraic algorithm for nonuniformity correction in focal-plane arrays.
Ratliff, Bradley M; Hayat, Majeed M; Hardie, Russell C
2002-09-01
A scene-based algorithm is developed to compensate for bias nonuniformity in focal-plane arrays. Nonuniformity can be extremely problematic, especially for mid- to far-infrared imaging systems. The technique is based on use of estimates of interframe subpixel shifts in an image sequence, in conjunction with a linear-interpolation model for the motion, to extract information on the bias nonuniformity algebraically. The performance of the proposed algorithm is analyzed by using real infrared and simulated data. One advantage of this technique is its simplicity; it requires relatively few frames to generate an effective correction matrix, thereby permitting the execution of frequent on-the-fly nonuniformity correction as drift occurs. Additionally, the performance is shown to exhibit considerable robustness with respect to lack of the common types of temporal and spatial irradiance diversity that are typically required by statistical scene-based nonuniformity correction techniques.
NASA Astrophysics Data System (ADS)
Minor, G.; Oshkai, P.; Djilali, N.
2007-11-01
The original work of Kang et al (2004 Meas. Sci. Technol. 15 1104 12) presents a scheme for correcting optical distortion caused by the curved surface of a droplet, and illustrates its application in PIV measurements of the velocity field inside evaporating liquid droplets. In this work we re-derive the correction algorithm and show that several terms in the original algorithm proposed by Kang et al are erroneous. This was not evident in the original work because the erroneous terms are negligible for droplets with approximately hemispherical shapes. However, for the more general situation of droplets that have shapes closer to that of a sphere, with heights much larger than their contact-line radii, these errors become quite significant. The corrected algorithm is presented and its application illustrated in comparison with that of Kang et al.
NASA Astrophysics Data System (ADS)
Borys, Damian; Serafin, Wojciech; Gorczewski, Kamil; Kijonka, Marek; Frackiewicz, Mariusz; Palus, Henryk
2018-04-01
The aim of this work was to test the most popular and essential algorithms of the intensity nonuniformity correction of the breast MRI imaging. In this type of MRI imaging, especially in the proximity of the coil, the signal is strong but also can produce some inhomogeneities. Evaluated methods of signal correction were: N3, N3FCM, N4, Nonparametric, and SPM. For testing purposes, a uniform phantom object was used to obtain test images using breast imaging MRI coil. To quantify the results, two measures were used: integral uniformity and standard deviation. For each algorithm minimum, average and maximum values of both evaluation factors have been calculated using the binary mask created for the phantom. In the result, two methods obtained the lowest values in these measures: N3FCM and N4, however, for the second method visually phantom was the most uniform after correction.
NASA Technical Reports Server (NTRS)
Kitzis, J. L.; Kitzis, S. N.
1979-01-01
An evaluation of the versions of the SEASAT-A SMMR antenna pattern correction (APC) algorithm is presented. Two efforts are focused upon in the APC evaluation: the intercomparison of the interim, box, cross, and nominal APC modes; and the development of software to facilitate the creation of matched spacecraft and surface truth data sets which are located together in time and space. The problems discovered in earlier versions of the APC, now corrected, are discussed.
An open, object-based modeling approach for simulating subsurface heterogeneity
NASA Astrophysics Data System (ADS)
Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.
2017-12-01
Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.
Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi
2013-01-01
Purpose To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. Materials and Methods Tissue excised from a genetically engineered mouse model of sarcoma was imaged using a subcellular resolution microendoscope after topical application of a fluorescent anatomical contrast agent: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Results Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. Conclusion The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue. PMID:23824589
Mueller, Jenna L; Harmany, Zachary T; Mito, Jeffrey K; Kennedy, Stephanie A; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G; Willett, Rebecca M; Brown, J Quincy; Ramanujam, Nimmi
2013-01-01
To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.
Distributed consensus for discrete-time heterogeneous multi-agent systems
NASA Astrophysics Data System (ADS)
Zhao, Huanyu; Fei, Shumin
2018-06-01
This paper studies the consensus problem for a class of discrete-time heterogeneous multi-agent systems. Two kinds of consensus algorithms will be considered. The heterogeneous multi-agent systems considered are converted into equivalent error systems by a model transformation. Then we analyse the consensus problem of the original systems by analysing the stability problem of the error systems. Some sufficient conditions for consensus of heterogeneous multi-agent systems are obtained by applying algebraic graph theory and matrix theory. Simulation examples are presented to show the usefulness of the results.
NASA Astrophysics Data System (ADS)
Martin, Adrian
As the applications of mobile robotics evolve it has become increasingly less practical for researchers to design custom hardware and control systems for each problem. This research presents a new approach to control system design that looks beyond end-of-lifecycle performance and considers control system structure, flexibility, and extensibility. Toward these ends the Control ad libitum philosophy is proposed, stating that to make significant progress in the real-world application of mobile robot teams the control system must be structured such that teams can be formed in real-time from diverse components. The Control ad libitum philosophy was applied to the design of the HAA (Host, Avatar, Agent) architecture: a modular hierarchical framework built with provably correct distributed algorithms. A control system for exploration and mapping, search and deploy, and foraging was developed to evaluate the architecture in three sets of hardware-in-the-loop experiments. First, the basic functionality of the HAA architecture was studied, specifically the ability to: a) dynamically form the control system, b) dynamically form the robot team, c) dynamically form the processing network, and d) handle heterogeneous teams. Secondly, the real-time performance of the distributed algorithms was tested, and proved effective for the moderate sized systems tested. Furthermore, the distributed Just-in-time Cooperative Simultaneous Localization and Mapping (JC-SLAM) algorithm demonstrated accuracy equal to or better than traditional approaches in resource starved scenarios, while reducing exploration time significantly. The JC-SLAM strategies are also suitable for integration into many existing particle filter SLAM approaches, complementing their unique optimizations. Thirdly, the control system was subjected to concurrent software and hardware failures in a series of increasingly complex experiments. Even with unrealistically high rates of failure the control system was able to successfully complete its tasks. The HAA implementation designed following the Control ad libitum philosophy proved to be capable of dynamic team formation and extremely robust against both hardware and software failure; and, due to the modularity of the system there is significant potential for reuse of assets and future extensibility. One future goal is to make the source code publically available and establish a forum for the development and exchange of new agents.
Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.
Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang
2017-01-01
Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.
Algorithmic detectability threshold of the stochastic block model
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuro
2018-03-01
The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.
Khare, Rahul; Sala, Guillaume; Kinahan, Paul; Esposito, Giuseppe; Banovac, Filip; Cleary, Kevin; Enquobahrie, Andinet
2013-01-01
Positron emission tomography computed tomography (PET-CT) images are increasingly being used for guidance during percutaneous biopsy. However, due to the physics of image acquisition, PET-CT images are susceptible to problems due to respiratory and cardiac motion, leading to inaccurate tumor localization, shape distortion, and attenuation correction. To address these problems, we present a method for motion correction that relies on respiratory gated CT images aligned using a deformable registration algorithm. In this work, we use two deformable registration algorithms and two optimization approaches for registering the CT images obtained over the respiratory cycle. The two algorithms are the BSpline and the symmetric forces Demons registration. In the first optmization approach, CT images at each time point are registered to a single reference time point. In the second approach, deformation maps are obtained to align each CT time point with its adjacent time point. These deformations are then composed to find the deformation with respect to a reference time point. We evaluate these two algorithms and optimization approaches using respiratory gated CT images obtained from 7 patients. Our results show that overall the BSpline registration algorithm with the reference optimization approach gives the best results.
NASA Astrophysics Data System (ADS)
Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik
2001-05-01
Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.
Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation
NASA Astrophysics Data System (ADS)
Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei
2016-11-01
Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.
The E-Step of the MGROUP EM Algorithm. Program Statistics Research Technical Report No. 93-37.
ERIC Educational Resources Information Center
Thomas, Neal
Mislevy (1984, 1985) introduced an EM algorithm for estimating the parameters of a latent distribution model that is used extensively by the National Assessment of Educational Progress. Second order asymptotic corrections are derived and applied along with more common first order asymptotic corrections to approximate the expectations required by…
NASA Astrophysics Data System (ADS)
Jimenez, Jose Ramón; González Anera, Rosario; Jiménez del Barco, Luis; Hita, Enrique; Pérez-Ocón, Francisco
2005-01-01
We provide a correction factor to be added in ablation algorithms when a Gaussian beam is used in photorefractive laser surgery. This factor, which quantifies the effect of pulse overlapping, depends on beam radius and spot size. We also deduce the expected post-surgical corneal radius and asphericity when considering this factor. Data on 141 eyes operated on LASIK (laser in situ keratomileusis) with a Gaussian profile show that the discrepancy between experimental and expected data on corneal power is significantly lower when using the correction factor. For an effective improvement of post-surgical visual quality, this factor should be applied in ablation algorithms that do not consider the effects of pulse overlapping with a Gaussian beam.
Research on correction algorithm of laser positioning system based on four quadrant detector
NASA Astrophysics Data System (ADS)
Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia
2018-02-01
This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Simonetto, Andrea
This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are establishedmore » to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.« less
NASA Astrophysics Data System (ADS)
Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing
2016-11-01
The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.
Construct validation of an interactive digital algorithm for ostomy care.
Beitz, Janice M; Gerlach, Mary A; Schafer, Vickie
2014-01-01
The purpose of this study was to evaluate construct validity for a previously face and content validated Ostomy Algorithm using digital real-life clinical scenarios. A cross-sectional, mixed-methods Web-based survey design study was conducted. Two hundred ninety-seven English-speaking RNs completed the study; participants practiced in both acute care and postacute settings, with 1 expert ostomy nurse (WOC nurse) and 2 nonexpert nurses. Following written consent, respondents answered demographic questions and completed a brief algorithm tutorial. Participants were then presented with 7 ostomy-related digital scenarios consisting of real-life photos and pertinent clinical information. Respondents used the 11 assessment components of the digital algorithm to choose management options. Participant written comments about the scenarios and the research process were collected. The mean overall percentage of correct responses was 84.23%. Mean percentage of correct responses for respondents with a self-reported basic ostomy knowledge was 87.7%; for those with a self-reported intermediate ostomy knowledge was 85.88% and those who were self-reported experts in ostomy care achieved 82.77% correct response rate. Five respondents reported having no prior ostomy care knowledge at screening and achieved an overall 45.71% correct response rate. No negative comments regarding the algorithm were recorded by participants. The new standardized Ostomy Algorithm remains the only face, content, and construct validated digital clinical decision instrument currently available. Further research on application at the bedside while tracking patient outcomes is warranted.
Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.
2008-02-01
Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.
Young Kim, Eun; Johnson, Hans J
2013-01-01
A robust multi-modal tool, for automated registration, bias correction, and tissue classification, has been implemented for large-scale heterogeneous multi-site longitudinal MR data analysis. This work focused on improving the an iterative optimization framework between bias-correction, registration, and tissue classification inspired from previous work. The primary contributions are robustness improvements from incorporation of following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate high-deformable registration, (3) use extended set of tissue definitions, and (4) use of multi-modal aware intensity-context priors. The benefits of these enhancements were investigated by a series of experiments with both simulated brain data set (BrainWeb) and by applying to highly-heterogeneous data from a 32 site imaging study with quality assessments through the expert visual inspection. The implementation of this tool is tailored for, but not limited to, large-scale data processing with great data variation with a flexible interface. In this paper, we describe enhancements to a joint registration, bias correction, and the tissue classification, that improve the generalizability and robustness for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was evaluated by using both simulated and simulated and human subject MRI images. With these enhancements, the results showed improved robustness for large-scale heterogeneous MRI processing.
Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc
2015-10-01
Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.
An approach for drag correction based on the local heterogeneity for gas-solid flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Wang, Limin; Rogers, William
2016-09-22
The drag models typically used for gas-solids interaction are mainly developed based on homogeneous systems of flow passing fixed particle assembly. It has been shown that the heterogeneous structures, i.e., clusters and bubbles in fluidized beds, need to be resolved to account for their effect in the numerical simulations. Since the heterogeneity is essentially captured through the local concentration gradient in the computational cells, this study proposes a simple approach to account for the non-uniformity of solids spatial distribution inside a computational cell and its effect on the interaction between gas and solid phases. Finally, to validate this approach, themore » predicted drag coefficient has been compared to the results from direct numerical simulations. In addition, the need to account for this type of heterogeneity is discussed for a periodic riser flow simulation with highly resolved numerical grids and the impact of the proposed correction for drag is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, James W.
This project addresses both communication-avoiding algorithms, and reproducible floating-point computation. Communication, i.e. moving data, either between levels of memory or processors over a network, is much more expensive per operation than arithmetic (measured in time or energy), so we seek algorithms that greatly reduce communication. We developed many new algorithms for both dense and sparse, and both direct and iterative linear algebra, attaining new communication lower bounds, and getting large speedups in many cases. We also extended this work in several ways: (1) We minimize writes separately from reads, since writes may be much more expensive than reads on emergingmore » memory technologies, like Flash, sometimes doing asymptotically fewer writes than reads. (2) We extend the lower bounds and optimal algorithms to arbitrary algorithms that may be expressed as perfectly nested loops accessing arrays, where the array subscripts may be arbitrary affine functions of the loop indices (eg A(i), B(i,j+k, k+3*m-7, …) etc.). (3) We extend our communication-avoiding approach to some machine learning algorithms, such as support vector machines. This work has won a number of awards. We also address reproducible floating-point computation. We define reproducibility to mean getting bitwise identical results from multiple runs of the same program, perhaps with different hardware resources or other changes that should ideally not change the answer. Many users depend on reproducibility for debugging or correctness. However, dynamic scheduling of parallel computing resources, combined with nonassociativity of floating point addition, makes attaining reproducibility a challenge even for simple operations like summing a vector of numbers, or more complicated operations like the Basic Linear Algebra Subprograms (BLAS). We describe an algorithm that computes a reproducible sum of floating point numbers, independent of the order of summation. The algorithm depends only on a subset of the IEEE Floating Point Standard 754-2008, uses just 6 words to represent a “reproducible accumulator,” and requires just one read-only pass over the data, or one reduction in parallel. New instructions based on this work are being considered for inclusion in the future IEEE 754-2018 floating-point standard, and new reproducible BLAS are being considered for the next version of the BLAS standard.« less
Automatic Correction Algorithm of Hyfrology Feature Attribute in National Geographic Census
NASA Astrophysics Data System (ADS)
Li, C.; Guo, P.; Liu, X.
2017-09-01
A subset of the attributes of hydrologic features data in national geographic census are not clear, the current solution to this problem was through manual filling which is inefficient and liable to mistakes. So this paper proposes an automatic correction algorithm of hydrologic features attribute. Based on the analysis of the structure characteristics and topological relation, we put forward three basic principles of correction which include network proximity, structure robustness and topology ductility. Based on the WJ-III map workstation, we realize the automatic correction of hydrologic features. Finally, practical data is used to validate the method. The results show that our method is highly reasonable and efficient.
Correction of rotational distortion for catheter-based en face OCT and OCT angiography
Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.
2015-01-01
We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133
Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology.
Otto, Thomas D; Sanders, Mandy; Berriman, Matthew; Newbold, Chris
2010-07-15
The accuracy of reference genomes is important for downstream analysis but a low error rate requires expensive manual interrogation of the sequence. Here, we describe a novel algorithm (Iterative Correction of Reference Nucleotides) that iteratively aligns deep coverage of short sequencing reads to correct errors in reference genome sequences and evaluate their accuracy. Using Plasmodium falciparum (81% A + T content) as an extreme example, we show that the algorithm is highly accurate and corrects over 2000 errors in the reference sequence. We give examples of its application to numerous other eukaryotic and prokaryotic genomes and suggest additional applications. The software is available at http://icorn.sourceforge.net
Bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm
NASA Astrophysics Data System (ADS)
Huang, Chan; Jin, Shiqun; Xia, Guo
2017-10-01
Light emitting diode (LED) is widely employed in industrial applications and scientific researches. With a spectrometer, the chromaticity of LED can be measured. However, chromaticity shift will occur due to the broadening effects of the spectrometer. In this paper, an approach is put forward to bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm. We compare chromaticity of simulated LED spectra by using the proposed method and differential operator method to bandwidth correction. The experimental results show that the proposed approach achieves an excellent performance in bandwidth correction which proves the effectiveness of the approach. The method has also been tested on true blue LED spectra.
Leu, Kevin; Boxerman, Jerrold L; Lai, Albert; Nghiemphu, Phioanh L; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M
2016-11-01
To evaluate a leakage correction algorithm for T 1 and T2* artifacts arising from contrast agent extravasation in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) that accounts for bidirectional contrast agent flux and compare relative cerebral blood volume (CBV) estimates and overall survival (OS) stratification from this model to those made with the unidirectional and uncorrected models in patients with recurrent glioblastoma (GBM). We determined median rCBV within contrast-enhancing tumor before and after bevacizumab treatment in patients (75 scans on 1.5T, 19 scans on 3.0T) with recurrent GBM without leakage correction and with application of the unidirectional and bidirectional leakage correction algorithms to determine whether rCBV stratifies OS. Decreased post-bevacizumab rCBV from baseline using the bidirectional leakage correction algorithm significantly correlated with longer OS (Cox, P = 0.01), whereas rCBV change using the unidirectional model (P = 0.43) or the uncorrected rCBV values (P = 0.28) did not. Estimates of rCBV computed with the two leakage correction algorithms differed on average by 14.9%. Accounting for T 1 and T2* leakage contamination in DSC-MRI using a two-compartment, bidirectional rather than unidirectional exchange model might improve post-bevacizumab survival stratification in patients with recurrent GBM. J. Magn. Reson. Imaging 2016;44:1229-1237. © 2016 International Society for Magnetic Resonance in Medicine.
Heterogeneous Vision Data Fusion for Independently Moving Cameras
2010-03-01
target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY
Umeda, Kenichi; Zivanovic, Lidija; Kobayashi, Kei; Ritala, Juha; Kominami, Hiroaki; Spijker, Peter; Foster, Adam S; Yamada, Hirofumi
2018-05-23
The original version of the Supplementary Information associated with this Article contained an error in Supplementary Figure 9e,f in which the y-axes were incorrectly labelled from '-40' to '40', rather than the correct '-400' to '400'. The HTML has been updated to include a corrected version of the Supplementary Information.
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-01-01
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget. PMID:28208730
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-02-08
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget.
High-performance computing on GPUs for resistivity logging of oil and gas wells
NASA Astrophysics Data System (ADS)
Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.
2017-10-01
We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.
Li, Yiyang; Jin, Weiqi; Li, Shuo; Zhang, Xu; Zhu, Jin
2017-05-08
Cooled infrared detector arrays always suffer from undesired ripple residual nonuniformity (RNU) in sky scene observations. The ripple residual nonuniformity seriously affects the imaging quality, especially for small target detection. It is difficult to eliminate it using the calibration-based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified temporal high-pass nonuniformity correction algorithm using fuzzy scene classification. The fuzzy scene classification is designed to control the correction threshold so that the algorithm can remove ripple RNU without degrading the scene details. We test the algorithm on a real infrared sequence by comparing it to several well-established methods. The result shows that the algorithm has obvious advantages compared with the tested methods in terms of detail conservation and convergence speed for ripple RNU correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA), which has two advantages: (1) low resources consumption; and (2) small hardware delay (less than 10 image rows). It has been successfully applied in an actual system.
Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo
2016-01-01
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble's output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) - k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer's disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases.
Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo
2016-01-01
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble’s output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) − k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer’s disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases. PMID:26764911
Khosravi, H R; Nodehi, Mr Golrokh; Asnaashari, Kh; Mahdavi, S R; Shirazi, A R; Gholami, S
2012-07-01
The aim of this study was to evaluate and analytically compare different calculation algorithms applied in our country radiotherapy centers base on the methodology developed by IAEA for treatment planning systems (TPS) commissioning (IAEA TEC-DOC 1583). Thorax anthropomorphic phantom (002LFC CIRS inc.), was used to measure 7 tests that simulate the whole chain of external beam TPS. The dose were measured with ion chambers and the deviation between measured and TPS calculated dose was reported. This methodology, which employs the same phantom and the same setup test cases, was tested in 4 different hospitals which were using 5 different algorithms/ inhomogeneity correction methods implemented in different TPS. The algorithms in this study were divided into two groups including correction based and model based algorithms. A total of 84 clinical test case datasets for different energies and calculation algorithms were produced, which amounts of differences in inhomogeneity points with low density (lung) and high density (bone) was decreased meaningfully with advanced algorithms. The number of deviations outside agreement criteria was increased with the beam energy and decreased with advancement of the TPS calculation algorithm. Large deviations were seen in some correction based algorithms, so sophisticated algorithms, would be preferred in clinical practices, especially for calculation in inhomogeneous media. Use of model based algorithms with lateral transport calculation, is recommended. Some systematic errors which were revealed during this study, is showing necessity of performing periodic audits on TPS in radiotherapy centers. © 2012 American Association of Physicists in Medicine.
Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia
2017-01-01
Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.
Regier, Michael D; Moodie, Erica E M
2016-05-01
We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.
1979-01-01
Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, Shahram; Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario; Fleury, Emmanuelle
Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43more » dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.« less
Mashouf, Shahram; Fleury, Emmanuelle; Lai, Priscilla; Merino, Tomas; Lechtman, Eli; Kiss, Alex; McCann, Claire; Pignol, Jean-Philippe
2016-03-15
The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V100 and V90 are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases. Copyright © 2016 Elsevier Inc. All rights reserved.
A DSP-based neural network non-uniformity correction algorithm for IRFPA
NASA Astrophysics Data System (ADS)
Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu
2009-07-01
An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.
Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1997-01-01
Significant accomplishments made during the present reporting period are as follows: (1) We developed a new method for identifying the presence of absorbing aerosols and, simultaneously, performing atmospheric correction. The algorithm consists of optimizing the match between the top-of-atmosphere radiance spectrum and the result of models of both the ocean and aerosol optical properties; (2) We developed an algorithm for providing an accurate computation of the diffuse transmittance of the atmosphere given an aerosol model. A module for inclusion into the MODIS atmospheric-correction algorithm was completed; (3) We acquired reflectance data for oceanic whitecaps during a cruise on the RV Ka'imimoana in the Tropical Pacific (Manzanillo, Mexico to Honolulu, Hawaii). The reflectance spectrum of whitecaps was found to be similar to that for breaking waves in the surf zone measured by Frouin, Schwindling and Deschamps, however, the drop in augmented reflectance from 670 to 860 nm was not as great, and the magnitude of the augmented reflectance was significantly less than expected; and (4) We developed a method for the approximate correction for the effects of the MODIS polarization sensitivity. The correction, however, requires adequate characterization of the polarization sensitivity of MODIS prior to launch.
Majumder, Biswanath; Baraneedharan, Ulaganathan; Thiyagarajan, Saravanan; Radhakrishnan, Padhma; Narasimhan, Harikrishna; Dhandapani, Muthu; Brijwani, Nilesh; Pinto, Dency D; Prasath, Arun; Shanthappa, Basavaraja U; Thayakumar, Allen; Surendran, Rajagopalan; Babu, Govind K; Shenoy, Ashok M; Kuriakose, Moni A; Bergthold, Guillaume; Horowitz, Peleg; Loda, Massimo; Beroukhim, Rameen; Agarwal, Shivani; Sengupta, Shiladitya; Sundaram, Mallikarjun; Majumder, Pradip K
2015-02-27
Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca
2016-08-15
The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting andmore » verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was validated successfully.« less
Johnson, Curtis L.; McGarry, Matthew D. J.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.; Sutton, Bradley P.; Georgiadis, John G.
2012-01-01
MRE has been introduced in clinical practice as a possible surrogate for mechanical palpation, but its application to study the human brain in vivo has been limited by low spatial resolution and the complexity of the inverse problem associated with biomechanical property estimation. Here, we report significant improvements in brain MRE data acquisition by reporting images with high spatial resolution and signal-to-noise ratio as quantified by octahedral shear strain metrics. Specifically, we have developed a sequence for brain MRE based on multi-shot, variable-density spiral imaging and three-dimensional displacement acquisition, and implemented a correction scheme for any resulting phase errors. A Rayleigh damped model of brain tissue mechanics was adopted to represent the parenchyma, and was integrated via a finite element-based iterative inversion algorithm. A multi-resolution phantom study demonstrates the need for obtaining high-resolution MRE data when estimating focal mechanical properties. Measurements on three healthy volunteers demonstrate satisfactory resolution of grey and white matter, and mechanical heterogeneities correspond well with white matter histoarchitecture. Together, these advances enable MRE scans that result in high-fidelity, spatially-resolved estimates of in vivo brain tissue mechanical properties, improving upon lower resolution MRE brain studies which only report volume averaged stiffness values. PMID:23001771
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
NASA Astrophysics Data System (ADS)
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten
2017-11-01
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.
Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.
Zhao, Zhi-Qin; Han, Guo-Sheng; Yu, Zu-Guo; Li, Jinyan
2015-08-01
Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use this technique to normalize the gene matrix and the phenotype matrix before the construction of the heterogeneous network, and also use this idea to define the transition matrices of the heterogeneous network. Our method has remarkably better performance than the existing methods for recovering known gene-phenotype relationships. The Shannon information entropy of the distribution of the transition probabilities in our networks is found to be smaller than the networks constructed by the existing methods, implying that a higher number of top-ranked genes can be verified as disease genes. In fact, the most probable gene-phenotype relationships ranked within top 3 or top 5 in our gene lists can be confirmed by the OMIM database for many cases. Our algorithms have shown remarkably superior performance over the state-of-the-art algorithms for recovering gene-phenotype relationships. All Matlab codes can be available upon email request. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atmospheric correction over coastal waters using multilayer neural networks
NASA Astrophysics Data System (ADS)
Fan, Y.; Li, W.; Charles, G.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. H.
2017-12-01
Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid coastal waters may independently vary with pigmented particles, suspended inorganic particles, and colored dissolved organic matter (CDOM). In turbid coastal waters standard AC algorithms often exhibit large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing reflectance (Rrs). We introduce a new atmospheric correction algorithm for coastal waters based on a multilayer neural network (MLNN) machine learning method. We use a coupled atmosphere-ocean radiative transfer model to simulate the Rayleigh-corrected radiance (Lrc) at the top of the atmosphere (TOA) and the Rrs just above the surface simultaneously, and train a MLNN to derive the aerosol optical depth (AOD) and Rrs directly from the TOA Lrc. The SeaDAS NIR algorithm, the SeaDAS NIR/SWIR algorithm, and the MODIS version of the Case 2 regional water - CoastColour (C2RCC) algorithm are included in the comparison with AERONET-OC measurements. The results show that the MLNN algorithm significantly improves retrieval of normalized Lw in blue bands (412 nm and 443 nm) and yields minor improvements in green and red bands. These results indicate that the MLNN algorithm is suitable for application in turbid coastal waters. Application of the MLNN algorithm to MODIS Aqua images in several coastal areas also shows that it is robust and resilient to contamination due to sunglint or adjacency effects of land and cloud edges. The MLNN algorithm is very fast once the neural network has been properly trained and is therefore suitable for operational use. A significant advantage of the MLNN algorithm is that it does not need SWIR bands, which implies significant cost reduction for dedicated OC missions. A recent effort has been made to extend the MLNN AC algorithm to extreme atmospheric conditions (i.e. heavy polluted continental aerosols) over coastal areas by including additional aerosol and ocean models to generate the training dataset. Preliminary tests show very good results. Results of applying the extended MLNN algorithm to VIIRS images over the Yellow Sea and East China Sea areas with extreme atmospheric and marine conditions will be provided.
NASA Astrophysics Data System (ADS)
Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun
2017-12-01
Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.
Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin
2008-08-20
An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.
Generalized algebraic scene-based nonuniformity correction algorithm.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2005-02-01
A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.
Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems
NASA Technical Reports Server (NTRS)
Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy
2007-01-01
High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.
Unweighted least squares phase unwrapping by means of multigrid techniques
NASA Astrophysics Data System (ADS)
Pritt, Mark D.
1995-11-01
We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.
Dynamic Distributed Cooperative Control of Multiple Heterogeneous Resources
2012-10-01
of the UAVs to maximize the total sensor footprint over the region of interest. The algorithm utilized to solve this problem was based on sampling a...and moving obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an algorithm to keep moving UAVs equally spaced...Planning Algorithms , Cambridge University Press, 2006. 11. Ma, C. S. and Miller, R. H., “Mixed integer linear programming trajectory generation for
Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
Kim, Deokho; Park, Karam; Ro, Won W.
2011-01-01
While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053
Sebastiano, Vittorio; Zhen, Hanson Hui; Haddad, Bahareh; Bashkirova, Elizaveta; Melo, Sandra P.; Wang, Pei; Leung, Thomas L.; Siprashvili, Zurab; Tichy, Andrea; Li, Jiang; Ameen, Mohammed; Hawkins, John; Lee, Susie; Li, Lingjie; Schwertschkow, Aaron; Bauer, Gerhard; Lisowski, Leszek; Kay, Mark A.; Kim, Seung K.; Lane, Alfred T.; Wernig, Marius; Oro, Anthony E.
2015-01-01
Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen owing to mutations in the gene COL7A1 and suffer severe blistering and chronic wounds that ultimately lead to infection and development of lethal squamous cell carcinoma. The discovery of induced pluripotent stem cells (iPSCs) and the ability to edit the genome bring the possibility to provide definitive genetic therapy through corrected autologous tissues. We generated patient-derived COL7A1-corrected epithelial keratinocyte sheets for autologous grafting. We demonstrate the utility of sequential reprogramming and adenovirus-associated viral genome editing to generate corrected iPSC banks. iPSC-derived keratinocytes were produced with minimal heterogeneity, and these cells secreted wild-type type VII collagen, resulting in stratified epidermis in vitro in organotypic cultures and in vivo in mice. Sequencing of corrected cell lines before tissue formation revealed heterogeneity of cancer-predisposing mutations, allowing us to select COL7A1-corrected banks with minimal mutational burden for downstream epidermis production. Our results provide a clinical platform to use iPSCs in the treatment of debilitating genodermatoses, such as RDEB. PMID:25429056
ERIC Educational Resources Information Center
d'Uva, Teresa Bago; Lindeboom, Maarten; O'Donnell, Owen; van Doorslaer, Eddy
2011-01-01
We propose tests of the two assumptions under which anchoring vignettes identify heterogeneity in reporting of categorical evaluations. Systematic variation in the perceived difference between any two vignette states is sufficient to reject "vignette equivalence." "Response consistency"--the respondent uses the same response…
Simulating an underwater vehicle self-correcting guidance system with Simulink
NASA Astrophysics Data System (ADS)
Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe
2008-09-01
Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.
Ocean observations with EOS/MODIS: Algorithm development and post launch studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1995-01-01
An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm was carried out. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. The development of a multi-layer Monte Carlo radiative transfer code that includes polarization by molecular and aerosol scattering and wind-induced sea surface roughness has been completed. Comparison tests with an existing two-layer successive order of scattering code suggests that both codes are capable of producing top-of-atmosphere radiances with errors usually less than 0.1 percent. An initial set of simulations to study the effects of ignoring the polarization of the the ocean-atmosphere light field, in both the development of the atmospheric correction algorithm and the generation of the lookup tables used for operation of the algorithm, have been completed. An algorithm was developed that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of the atmospheric aerosol under clear sky conditions over the ocean, for aerosol optical thicknesses as large as 2. The algorithm is capable of retrievals with such large optical thicknesses because all significant orders of multiple scattering are included.
Spatio-temporal colour correction of strongly degraded movies
NASA Astrophysics Data System (ADS)
Islam, A. B. M. Tariqul; Farup, Ivar
2011-01-01
The archives of motion pictures represent an important part of precious cultural heritage. Unfortunately, these cinematography collections are vulnerable to different distortions such as colour fading which is beyond the capability of photochemical restoration process. Spatial colour algorithms-Retinex and ACE provide helpful tool in restoring strongly degraded colour films but, there are some challenges associated with these algorithms. We present an automatic colour correction technique for digital colour restoration of strongly degraded movie material. The method is based upon the existing STRESS algorithm. In order to cope with the problem of highly correlated colour channels, we implemented a preprocessing step in which saturation enhancement is performed in a PCA space. Spatial colour algorithms tend to emphasize all details in the images, including dust and scratches. Surprisingly, we found that the presence of these defects does not affect the behaviour of the colour correction algorithm. Although the STRESS algorithm is already in itself more efficient than traditional spatial colour algorithms, it is still computationally expensive. To speed it up further, we went beyond the spatial domain of the frames and extended the algorithm to the temporal domain. This way, we were able to achieve an 80 percent reduction of the computational time compared to processing every single frame individually. We performed two user experiments and found that the visual quality of the resulting frames was significantly better than with existing methods. Thus, our method outperforms the existing ones in terms of both visual quality and computational efficiency.
Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.
Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C
2015-01-01
Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Pre-correction of distorted Bessel-Gauss beams without wavefront detection
NASA Astrophysics Data System (ADS)
Fu, Shiyao; Wang, Tonglu; Zhang, Zheyuan; Zhai, Yanwang; Gao, Chunqing
2017-12-01
By utilizing the property of the phase's rapid solution of the Gerchberg-Saxton algorithm, we experimentally demonstrate a scheme to correct distorted Bessel-Gauss beams resulting from inhomogeneous media as weak turbulent atmosphere with good performance. A probe Gaussian beam is employed and propagates coaxially with the Bessel-Gauss modes through the turbulence. No wavefront sensor but a matrix detector is used to capture the probe Gaussian beams, and then, the correction phase mask is computed through inputting such probe beam into the Gerchberg-Saxton algorithm. The experimental results indicate that both single and multiplexed BG beams can be corrected well, in terms of the improvement in mode purity and the mitigation of interchannel cross talk.
An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction
Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo
2018-01-01
The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods. PMID:29342857
An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction.
Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo
2018-01-13
The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods.
Scene-based nonuniformity correction technique for infrared focal-plane arrays.
Liu, Yong-Jin; Zhu, Hong; Zhao, Yi-Gong
2009-04-20
A scene-based nonuniformity correction algorithm is presented to compensate for the gain and bias nonuniformity in infrared focal-plane array sensors, which can be separated into three parts. First, an interframe-prediction method is used to estimate the true scene, since nonuniformity correction is a typical blind-estimation problem and both scene values and detector parameters are unavailable. Second, the estimated scene, along with its corresponding observed data obtained by detectors, is employed to update the gain and the bias by means of a line-fitting technique. Finally, with these nonuniformity parameters, the compensated output of each detector is obtained by computing a very simple formula. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of every module is demonstrated with simulated and real infrared image sequences. Experimental results indicate that the proposed algorithm exhibits a superior correction effect.
Prediction-Correction Algorithms for Time-Varying Constrained Optimization
Simonetto, Andrea; Dall'Anese, Emiliano
2017-07-26
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne
Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less
Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction
NASA Astrophysics Data System (ADS)
Fukushima, H.; Toratani, M.
1997-07-01
The paper first exhibits the influence of the Asian dust aerosol (KOSA) on a coastal zone color scanner (CZCS) image which records erroneously low or negative satellite-derived water-leaving radiance especially in a shorter wavelength region. This suggests the presence of spectrally dependent absorption which was disregarded in the past atmospheric correction algorithms. On the basis of the analysis of the scene, a semiempirical optical model of the Asian dust aerosol that relates aerosol single scattering albedo (ωA) to the spectral ratio of aerosol optical thickness between 550 nm and 670 nm is developed. Then, as a modification to a standard CZCS atmospheric correction algorithm (NASA standard algorithm), a scheme which estimates pixel-wise aerosol optical thickness, and in turn ωA, is proposed. The assumption of constant normalized water-leaving radiance at 550 nm is adopted together with a model of aerosol scattering phase function. The scheme is combined to the standard algorithm, performing atmospheric correction just the same as the standard version with a fixed Angstrom coefficient except in the case where the presence of Asian dust aerosol is detected by the lowered satellite-derived Angstrom exponent. Some of the model parameter values are determined so that the scheme does not produce any spatial discontinuity with the standard scheme. The algorithm was tested against the Japanese Asian dust CZCS scene with parameter values of the spectral dependency of ωA, first statistically determined and second optimized for selected pixels. Analysis suggests that the parameter values depend on the assumed Angstrom coefficient for standard algorithm, at the same time defining the spatial extent of the area to apply the Asian dust scheme. The algorithm was also tested for a Saharan dust scene, showing the relevance of the scheme but with different parameter setting. Finally, the algorithm was applied to a data set of 25 CZCS scenes to produce a monthly composite of pigment concentration for April 1981. Through these analyses, the modified algorithm is considered robust in the sense that it operates most compatibly with the standard algorithm yet performs adaptively in response to the magnitude of the dust effect.
An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks
Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling
2015-01-01
A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-01-01
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-12-04
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.
Ye, Huimin; Chen, Elizabeth S.
2011-01-01
In order to support the increasing need to share electronic health data for research purposes, various methods have been proposed for privacy preservation including k-anonymity. Many k-anonymity models provide the same level of anoymization regardless of practical need, which may decrease the utility of the dataset for a particular research study. In this study, we explore extensions to the k-anonymity algorithm that aim to satisfy the heterogeneous needs of different researchers while preserving privacy as well as utility of the dataset. The proposed algorithm, Attribute Utility Motivated k-anonymization (AUM), involves analyzing the characteristics of attributes and utilizing them to minimize information loss during the anonymization process. Through comparison with two existing algorithms, Mondrian and Incognito, preliminary results indicate that AUM may preserve more information from original datasets thus providing higher quality results with lower distortion. PMID:22195223
A new algorithm to create balanced teams promoting more diversity
NASA Astrophysics Data System (ADS)
Dias, Teresa Galvão; Borges, José
2017-11-01
The problem of assigning students to teams can be described as maximising their profiles diversity within teams while minimising the differences among teams. This problem is commonly known as the maximally diverse grouping problem and it is usually formulated as maximising the sum of the pairwise distances among students within teams. We propose an alternative algorithm in which the within group heterogeneity is measured by the attributes' variance instead of by the sum of distances between group members. The proposed algorithm is evaluated by means of two real data sets and the results suggest that it induces better solutions according to two independent evaluation criteria, the Davies-Bouldin index and the number of dominated teams. In conclusion, the results show that it is more adequate to use the attributes' variance to measure the heterogeneity of profiles within the teams and the homogeneity among teams.
A new phase correction method in NMR imaging based on autocorrelation and histogram analysis.
Ahn, C B; Cho, Z H
1987-01-01
A new statistical approach to phase correction in NMR imaging is proposed. The proposed scheme consists of first-and zero-order phase corrections each by the inverse multiplication of estimated phase error. The first-order error is estimated by the phase of autocorrelation calculated from the complex valued phase distorted image while the zero-order correction factor is extracted from the histogram of phase distribution of the first-order corrected image. Since all the correction procedures are performed on the spatial domain after completion of data acquisition, no prior adjustments or additional measurements are required. The algorithm can be applicable to most of the phase-involved NMR imaging techniques including inversion recovery imaging, quadrature modulated imaging, spectroscopic imaging, and flow imaging, etc. Some experimental results with inversion recovery imaging as well as quadrature spectroscopic imaging are shown to demonstrate the usefulness of the algorithm.
3D segmentations of neuronal nuclei from confocal microscope image stacks
LaTorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; DeFelipe, Javier
2013-01-01
In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario—the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei. PMID:24409123
3D segmentations of neuronal nuclei from confocal microscope image stacks.
Latorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; Defelipe, Javier
2013-01-01
In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario-the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.
NASA Astrophysics Data System (ADS)
Ciany, Charles M.; Zurawski, William; Kerfoot, Ian
2001-10-01
The performance of Computer Aided Detection/Computer Aided Classification (CAD/CAC) Fusion algorithms on side-scan sonar images was evaluated using data taken at the Navy's's Fleet Battle Exercise-Hotel held in Panama City, Florida, in August 2000. A 2-of-3 binary fusion algorithm is shown to provide robust performance. The algorithm accepts the classification decisions and associated contact locations form three different CAD/CAC algorithms, clusters the contacts based on Euclidian distance, and then declares a valid target when a clustered contact is declared by at least 2 of the 3 individual algorithms. This simple binary fusion provided a 96 percent probability of correct classification at a false alarm rate of 0.14 false alarms per image per side. The performance represented a 3.8:1 reduction in false alarms over the best performing single CAD/CAC algorithm, with no loss in probability of correct classification.
Correcting Satellite Image Derived Surface Model for Atmospheric Effects
NASA Technical Reports Server (NTRS)
Emery, William; Baldwin, Daniel
1998-01-01
This project was a continuation of the project entitled "Resolution Earth Surface Features from Repeat Moderate Resolution Satellite Imagery". In the previous study, a Bayesian Maximum Posterior Estimate (BMPE) algorithm was used to obtain a composite series of repeat imagery from the Advanced Very High Resolution Radiometer (AVHRR). The spatial resolution of the resulting composite was significantly greater than the 1 km resolution of the individual AVHRR images. The BMPE algorithm utilized a simple, no-atmosphere geometrical model for the short-wave radiation budget at the Earth's surface. A necessary assumption of the algorithm is that all non geometrical parameters remain static over the compositing period. This assumption is of course violated by temporal variations in both the surface albedo and the atmospheric medium. The effect of the albedo variations is expected to be minimal since the variations are on a fairly long time scale compared to the compositing period, however, the atmospheric variability occurs on a relatively short time scale and can be expected to cause significant errors in the surface reconstruction. The current project proposed to incorporate an atmospheric correction into the BMPE algorithm for the purpose of investigating the effects of a variable atmosphere on the surface reconstructions. Once the atmospheric effects were determined, the investigation could be extended to include corrections various cloud effects, including short wave radiation through thin cirrus clouds. The original proposal was written for a three year project, funded one year at a time. The first year of the project focused on developing an understanding of atmospheric corrections and choosing an appropriate correction model. Several models were considered and the list was narrowed to the two best suited. These were the 5S and 6S shortwave radiation models developed at NASA/GODDARD and tested extensively with data from the AVHRR instrument. Although the 6S model was a successor to the 5S and slightly more advanced, the 5S was selected because outputs from the individual components comprising the short-wave radiation budget were more easily separated. The separation was necessary since both the 5S and 6S did not include geometrical corrections for terrain, a fundamental constituent of the BMPE algorithm. The 5S correction code was incorporated into the BMPE algorithm and many sensitivity studies were performed.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H; Elias, Jeff; Pauly, Kim Butts
2016-09-01
In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. The simulated skull efficiency using individual-specific heterogeneous models predicts well (R(2) = 0.84) the experimental energy efficiency. This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H.; Elias, Jeff; Pauly, Kim Butts
2016-01-01
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R2 = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible. PMID:27587047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni,
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen humanmore » subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.« less
Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer
NASA Astrophysics Data System (ADS)
Yang, J.; Li, J.; Chen, L.; Price, R.; McNeeley, S.; Qin, L.; Wang, L.; Xiong, W.; Ma, C.-M.
2005-03-01
The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (Dmin), the dose received by 98% of the target volume (D98), dose at the isocentre (Diso), mean target dose (Dmean) and the maximum critical structure dose (Dmax) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.
NASA Astrophysics Data System (ADS)
Kim, Juhye; Nam, Haewon; Lee, Rena
2015-07-01
CT (computed tomography) images, metal materials such as tooth supplements or surgical clips can cause metal artifact and degrade image quality. In severe cases, this may lead to misdiagnosis. In this research, we developed a new MAR (metal artifact reduction) algorithm by using an edge preserving filter and the MATLAB program (Mathworks, version R2012a). The proposed algorithm consists of 6 steps: image reconstruction from projection data, metal segmentation, forward projection, interpolation, applied edge preserving smoothing filter, and new image reconstruction. For an evaluation of the proposed algorithm, we obtained both numerical simulation data and data for a Rando phantom. In the numerical simulation data, four metal regions were added into the Shepp Logan phantom for metal artifacts. The projection data of the metal-inserted Rando phantom were obtained by using a prototype CBCT scanner manufactured by medical engineering and medical physics (MEMP) laboratory research group in medical science at Ewha Womans University. After these had been adopted the proposed algorithm was performed, and the result were compared with the original image (with metal artifact without correction) and with a corrected image based on linear interpolation. Both visual and quantitative evaluations were done. Compared with the original image with metal artifacts and with the image corrected by using linear interpolation, both the numerical and the experimental phantom data demonstrated that the proposed algorithm reduced the metal artifact. In conclusion, the evaluation in this research showed that the proposed algorithm outperformed the interpolation based MAR algorithm. If an optimization and a stability evaluation of the proposed algorithm can be performed, the developed algorithm is expected to be an effective tool for eliminating metal artifacts even in commercial CT systems.
Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-01-01
In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait. PMID:29168742
Zhu, Yaguang; Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-11-23
Abstract : In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait.
Automatic red eye correction and its quality metric
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Rychagov, Michael N.; Kang, KiMin; Kim, Sang Ho
2008-01-01
The red eye artifacts are troublesome defect of amateur photos. Correction of red eyes during printing without user intervention and making photos more pleasant for an observer are important tasks. The novel efficient technique of automatic correction of red eyes aimed for photo printers is proposed. This algorithm is independent from face orientation and capable to detect paired red eyes as well as single red eyes. The approach is based on application of 3D tables with typicalness levels for red eyes and human skin tones and directional edge detection filters for processing of redness image. Machine learning is applied for feature selection. For classification of red eye regions a cascade of classifiers including Gentle AdaBoost committee from Classification and Regression Trees (CART) is applied. Retouching stage includes desaturation, darkening and blending with initial image. Several versions of approach implementation using trade-off between detection and correction quality, processing time, memory volume are possible. The numeric quality criterion of automatic red eye correction is proposed. This quality metric is constructed by applying Analytic Hierarchy Process (AHP) for consumer opinions about correction outcomes. Proposed numeric metric helped to choose algorithm parameters via optimization procedure. Experimental results demonstrate high accuracy and efficiency of the proposed algorithm in comparison with existing solutions.
NASA Astrophysics Data System (ADS)
Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.
In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with aggregated ground measurements which showed a very good correlation of 0.96 in all four spectral bands (i.e. green, red, NIR and SWIR). In order to quantify the accuracy of the proposed method in the estimation of the surface reflectance, the root mean square error (RMSE) associated to the proposed method was evaluated. The analysis of the ground measured versus retrieved AWiFS reflectance yielded smaller RMSE values in case of all four spectral bands. EOS TERRA/AQUA MODIS derived AOD exhibited very good correlation of 0.92 and the data sets provides an effective means for carrying out atmospheric corrections in an operational way. Keywords: Atmospheric correction, 6S code, MODIS, Spectroradiometer, Sun-Photometer
Network-level accident-mapping: Distance based pattern matching using artificial neural network.
Deka, Lipika; Quddus, Mohammed
2014-04-01
The objective of an accident-mapping algorithm is to snap traffic accidents onto the correct road segments. Assigning accidents onto the correct segments facilitate to robustly carry out some key analyses in accident research including the identification of accident hot-spots, network-level risk mapping and segment-level accident risk modelling. Existing risk mapping algorithms have some severe limitations: (i) they are not easily 'transferable' as the algorithms are specific to given accident datasets; (ii) they do not perform well in all road-network environments such as in areas of dense road network; and (iii) the methods used do not perform well in addressing inaccuracies inherent in and type of road environment. The purpose of this paper is to develop a new accident mapping algorithm based on the common variables observed in most accident databases (e.g. road name and type, direction of vehicle movement before the accident and recorded accident location). The challenges here are to: (i) develop a method that takes into account uncertainties inherent to the recorded traffic accident data and the underlying digital road network data, (ii) accurately determine the type and proportion of inaccuracies, and (iii) develop a robust algorithm that can be adapted for any accident set and road network of varying complexity. In order to overcome these challenges, a distance based pattern-matching approach is used to identify the correct road segment. This is based on vectors containing feature values that are common in the accident data and the network data. Since each feature does not contribute equally towards the identification of the correct road segments, an ANN approach using the single-layer perceptron is used to assist in "learning" the relative importance of each feature in the distance calculation and hence the correct link identification. The performance of the developed algorithm was evaluated based on a reference accident dataset from the UK confirming that the accuracy is much better than other methods. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Wang, Menghua; Shi, Wei; Jiang, Lide
2012-01-16
A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.
NASA Astrophysics Data System (ADS)
Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong
2017-10-01
Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.
DNA-based watermarks using the DNA-Crypt algorithm.
Heider, Dominik; Barnekow, Angelika
2007-05-29
The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.
DNA-based watermarks using the DNA-Crypt algorithm
Heider, Dominik; Barnekow, Angelika
2007-01-01
Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434
NASA Astrophysics Data System (ADS)
Klise, K. A.; Weissmann, G. S.; McKenna, S. A.; Tidwell, V. C.; Frechette, J. D.; Wawrzyniec, T. F.
2007-12-01
Solute plumes are believed to disperse in a non-Fickian manner due to small-scale heterogeneity and variable velocities that create preferential pathways. In order to accurately predict dispersion in naturally complex geologic media, the connection between heterogeneity and dispersion must be better understood. Since aquifer properties can not be measured at every location, it is common to simulate small-scale heterogeneity with random field generators based on a two-point covariance (e.g., through use of sequential simulation algorithms). While these random fields can produce preferential flow pathways, it is unknown how well the results simulate solute dispersion through natural heterogeneous media. To evaluate the influence that complex heterogeneity has on dispersion, we utilize high-resolution terrestrial lidar to identify and model lithofacies from outcrop for application in particle tracking solute transport simulations using RWHet. The lidar scan data are used to produce a lab (meter) scale two-dimensional model that captures 2-8 mm scale natural heterogeneity. Numerical simulations utilize various methods to populate the outcrop structure captured by the lidar-based image with reasonable hydraulic conductivity values. The particle tracking simulations result in residence time distributions used to evaluate the nature of dispersion through complex media. Particle tracking simulations through conductivity fields produced from the lidar images are then compared to particle tracking simulations through hydraulic conductivity fields produced from sequential simulation algorithms. Based on this comparison, the study aims to quantify the difference in dispersion when using realistic and simplified representations of aquifer heterogeneity. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Meyer, Michael; Kalender, Willi A.; Kyriakou, Yiannis
2010-01-01
Scattered radiation is a major source of artifacts in flat detector computed tomography (FDCT) due to the increased irradiated volumes. We propose a fast projection-based algorithm for correction of scatter artifacts. The presented algorithm combines a convolution method to determine the spatial distribution of the scatter intensity distribution with an object-size-dependent scaling of the scatter intensity distributions using a priori information generated by Monte Carlo simulations. A projection-based (PBSE) and an image-based (IBSE) strategy for size estimation of the scanned object are presented. Both strategies provide good correction and comparable results; the faster PBSE strategy is recommended. Even with such a fast and simple algorithm that in the PBSE variant does not rely on reconstructed volumes or scatter measurements, it is possible to provide a reasonable scatter correction even for truncated scans. For both simulations and measurements, scatter artifacts were significantly reduced and the algorithm showed stable behavior in the z-direction. For simulated voxelized head, hip and thorax phantoms, a figure of merit Q of 0.82, 0.76 and 0.77 was reached, respectively (Q = 0 for uncorrected, Q = 1 for ideal). For a water phantom with 15 cm diameter, for example, a cupping reduction from 10.8% down to 2.1% was achieved. The performance of the correction method has limitations in the case of measurements using non-ideal detectors, intensity calibration, etc. An iterative approach to overcome most of these limitations was proposed. This approach is based on root finding of a cupping metric and may be useful for other scatter correction methods as well. By this optimization, cupping of the measured water phantom was further reduced down to 0.9%. The algorithm was evaluated on a commercial system including truncated and non-homogeneous clinically relevant objects.
Szmacinski, Henryk; Toshchakov, Vladimir; Lakowicz, Joseph R.
2014-01-01
Abstract. Protein-protein interactions in cells are often studied using fluorescence resonance energy transfer (FRET) phenomenon by fluorescence lifetime imaging microscopy (FLIM). Here, we demonstrate approaches to the quantitative analysis of FRET in cell population in a case complicated by a highly heterogeneous donor expression, multiexponential donor lifetime, large contribution of cell autofluorescence, and significant presence of unquenched donor molecules that do not interact with the acceptor due to low affinity of donor-acceptor binding. We applied a multifrequency phasor plot to visualize FRET FLIM data, developed a method for lifetime background correction, and performed a detailed time-resolved analysis using a biexponential model. These approaches were applied to study the interaction between the Toll Interleukin-1 receptor (TIR) domain of Toll-like receptor 4 (TLR4) and the decoy peptide 4BB. TLR4 was fused to Cerulean fluorescent protein (Cer) and 4BB peptide was labeled with Bodipy TMRX (BTX). Phasor displays for multifrequency FLIM data are presented. The analytical procedure for lifetime background correction is described and the effect of correction on FLIM data is demonstrated. The absolute FRET efficiency was determined based on the phasor plot display and multifrequency FLIM data analysis. The binding affinity between TLR4-Cer (donor) and decoy peptide 4BB-BTX (acceptor) was estimated in a heterogeneous HeLa cell population. PMID:24770662
Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination
NASA Technical Reports Server (NTRS)
Ryne, Mark S.; Wang, Tseng-Chan
1991-01-01
An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.
Reconstructive surgery for patellofemoral joint incongruency.
Neumann, M V; Stalder, M; Schuster, A J
2016-03-01
A retrospective analysis of a heterogeneous patient cohort was performed to determine the outcome and eligibility of a combined trochleaplasty and soft tissue-balancing technique for repair of patellofemoral joint disorders. A strict surgical treatment algorithm including trochleaplasty and reconstruction of the medial patellofemoral ligament and vastus medialis oblique muscle was implemented to restore the patellofemoral joint. A heterogeneous patient cohort including 46 consecutively treated symptomatic knees was reviewed. The median follow-up period was 4.7 years (range 24-109 months). No patellar redislocation occurred post-operatively, and the median Kujala score improved from 62 (9-96) to 88 (47-100) points (p < 0.001) at follow-up. Radiological signs of trochlear dysplasia were corrected, and both patellar height and trochlear depth were significantly restored after surgery. In total, 16% of affected patients with pre-existing patellofemoral degenerative changes showed progression of osteoarthrosis according to the Kellgren and Lawrence classification. The surgical combination of trochleaplasty and reconstruction of the medial patellofemoral ligament and vastus medialis oblique muscle offers excellent clinical and radiological results. The overall results of the present study showed significant improvement of the Kujala score in patients with Dejour grades C and D dysplasia. These results outline the clinical relevance of trochleaplasty with additional soft tissue balancing as an effective joint-preserving method with satisfying results in patients with pre-existing degenerative changes. IV.
Coello, Christopher; Willoch, Frode; Selnes, Per; Gjerstad, Leif; Fladby, Tormod; Skretting, Arne
2013-05-15
A voxel-based algorithm to correct for partial volume effect in PET brain volumes is presented. This method (named LoReAn) is based on MRI based segmentation of anatomical regions and accurate measurements of the effective point spread function of the PET imaging process. The objective is to correct for the spill-out of activity from high-uptake anatomical structures (e.g. grey matter) into low-uptake anatomical structures (e.g. white matter) in order to quantify physiological uptake in the white matter. The new algorithm is presented and validated against the state of the art region-based geometric transfer matrix (GTM) method with synthetic and clinical data. Using synthetic data, both bias and coefficient of variation were improved in the white matter region using LoReAn compared to GTM. An increased number of anatomical regions doesn't affect the bias (<5%) and misregistration affects equally LoReAn and GTM algorithms. The LoReAn algorithm appears to be a simple and promising voxel-based algorithm for studying metabolism in white matter regions. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, Yiyang; Jin, Weiqi; Li, Shuo; Zhang, Xu; Zhu, Jin
2017-01-01
Cooled infrared detector arrays always suffer from undesired ripple residual nonuniformity (RNU) in sky scene observations. The ripple residual nonuniformity seriously affects the imaging quality, especially for small target detection. It is difficult to eliminate it using the calibration-based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified temporal high-pass nonuniformity correction algorithm using fuzzy scene classification. The fuzzy scene classification is designed to control the correction threshold so that the algorithm can remove ripple RNU without degrading the scene details. We test the algorithm on a real infrared sequence by comparing it to several well-established methods. The result shows that the algorithm has obvious advantages compared with the tested methods in terms of detail conservation and convergence speed for ripple RNU correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA), which has two advantages: (1) low resources consumption; and (2) small hardware delay (less than 10 image rows). It has been successfully applied in an actual system. PMID:28481320
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Comiso, Josefino C.; Fraser, Robert S.; Firestone, James K.; Schieber, Brian D.; Yeh, Eueng-Nan; Arrigo, Kevin R.; Sullivan, Cornelius W.
1994-01-01
Although the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Calibration and Validation Program relies on the scientific community for the collection of bio-optical and atmospheric correction data as well as for algorithm development, it does have the responsibility for evaluating and comparing the algorithms and for ensuring that the algorithms are properly implemented within the SeaWiFS Data Processing System. This report consists of a series of sensitivity and algorithm (bio-optical, atmospheric correction, and quality control) studies based on Coastal Zone Color Scanner (CZCS) and historical ancillary data undertaken to assist in the development of SeaWiFS specific applications needed for the proper execution of that responsibility. The topics presented are as follows: (1) CZCS bio-optical algorithm comparison, (2) SeaWiFS ozone data analysis study, (3) SeaWiFS pressure and oxygen absorption study, (4) pixel-by-pixel pressure and ozone correction study for ocean color imagery, (5) CZCS overlapping scenes study, (6) a comparison of CZCS and in situ pigment concentrations in the Southern Ocean, (7) the generation of ancillary data climatologies, (8) CZCS sensor ringing mask comparison, and (9) sun glint flag sensitivity study.
Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott
2016-03-10
In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.
NASA Astrophysics Data System (ADS)
Lei, H.; Lu, Z.; Vesselinov, V. V.; Ye, M.
2017-12-01
Simultaneous identification of both the zonation structure of aquifer heterogeneity and the hydrogeological parameters associated with these zones is challenging, especially for complex subsurface heterogeneity fields. In this study, a new approach, based on the combination of the level set method and a parallel genetic algorithm is proposed. Starting with an initial guess for the zonation field (including both zonation structure and the hydraulic properties of each zone), the level set method ensures that material interfaces are evolved through the inverse process such that the total residual between the simulated and observed state variables (hydraulic head) always decreases, which means that the inversion result depends on the initial guess field and the minimization process might fail if it encounters a local minimum. To find the global minimum, the genetic algorithm (GA) is utilized to explore the parameters that define initial guess fields, and the minimal total residual corresponding to each initial guess field is considered as the fitness function value in the GA. Due to the expensive evaluation of the fitness function, a parallel GA is adapted in combination with a simulated annealing algorithm. The new approach has been applied to several synthetic cases in both steady-state and transient flow fields, including a case with real flow conditions at the chromium contaminant site at the Los Alamos National Laboratory. The results show that this approach is capable of identifying the arbitrary zonation structures of aquifer heterogeneity and the hydrogeological parameters associated with these zones effectively.
Operational Planning for Multiple Heterogeneous Unmanned Aerial Vehicles in Three Dimensions
2009-06-01
human input in the planning process. Two solution methods are presented: (1) a mixed-integer program, and (2) an algorithm that utilizes a metaheuristic ...and (2) an algorithm that utilizes a metaheuristic to generate composite variables for a linear program, called the Composite Operations Planning...that represent a path and an associated type of UAV. The reformulation is incorporated into an algorithm that uses a metaheuristic to generate the
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altube, Patricia; Bech, Joan; Argemí, Oriol
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
Altube, Patricia; Bech, Joan; Argemí, Oriol; ...
2017-07-18
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
Gogoshin, Grigoriy; Boerwinkle, Eric
2017-01-01
Abstract Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology—type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types—single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc. PMID:27681505
Gogoshin, Grigoriy; Boerwinkle, Eric; Rodin, Andrei S
2017-04-01
Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology-type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types-single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc.
A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.
Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar
2017-03-01
The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The whole space three-dimensional magnetotelluric inversion algorithm with static shift correction
NASA Astrophysics Data System (ADS)
Zhang, K.
2016-12-01
Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results.The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm. The verification and application example of 3D inversion algorithm is shown in Figure 1. From the comparison of figure 1, the inversion model can reflect all the abnormal bodies and terrain clearly regardless of what type of data (impedance/tipper/impedance and tipper). And the resolution of the bodies' boundary can be improved by using tipper data. The algorithm is very effective for terrain inversion. So it is very useful for the study of continental shelf with continuous exploration of land, marine and underground.The three-dimensional electrical model of the ore zone reflects the basic information of stratum, rock and structure. Although it cannot indicate the ore body position directly, the important clues are provided for prospecting work by the delineation of diorite pluton uplift range. The test results show that, the high quality of the data processing and efficient inversion method for electromagnetic method is an important guarantee for porphyry ore.
Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing
NASA Technical Reports Server (NTRS)
Kishonio, D.; Heyman, J. S.
1985-01-01
A numerical algorithm is described that enables the correction of energy shadowing during the ultrasonic testing of bulk materials. In the conventional method, an ultrasonic transducer transmits sound waves into a material that is immersed in water so that discontinuities such as defects can be revealed when the waves are reflected and then detected and displayed graphically. Since a defect that lies behind another defect is shadowed in that it receives less energy, the conventional method has a major drawback. The algorithm normalizes the energy of the incoming wave by measuring the energy of the waves reflected off the water/air interface. The algorithm is fast and simple enough to be adopted for real time applications in industry. Images of material defects with the shadowing corrections permit more quantitative interpretation of the material state.
Improved Algorithm For Finite-Field Normal-Basis Multipliers
NASA Technical Reports Server (NTRS)
Wang, C. C.
1989-01-01
Improved algorithm reduces complexity of calculations that must precede design of Massey-Omura finite-field normal-basis multipliers, used in error-correcting-code equipment and cryptographic devices. Algorithm represents an extension of development reported in "Algorithm To Design Finite-Field Normal-Basis Multipliers" (NPO-17109), NASA Tech Briefs, Vol. 12, No. 5, page 82.
NASA Technical Reports Server (NTRS)
Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver
2012-01-01
Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.
Gálvez, Sergio; Ferusic, Adis; Esteban, Francisco J; Hernández, Pilar; Caballero, Juan A; Dorado, Gabriel
2016-10-01
The Smith-Waterman algorithm has a great sensitivity when used for biological sequence-database searches, but at the expense of high computing-power requirements. To overcome this problem, there are implementations in literature that exploit the different hardware-architectures available in a standard PC, such as GPU, CPU, and coprocessors. We introduce an application that splits the original database-search problem into smaller parts, resolves each of them by executing the most efficient implementations of the Smith-Waterman algorithms in different hardware architectures, and finally unifies the generated results. Using non-overlapping hardware allows simultaneous execution, and up to 2.58-fold performance gain, when compared with any other algorithm to search sequence databases. Even the performance of the popular BLAST heuristic is exceeded in 78% of the tests. The application has been tested with standard hardware: Intel i7-4820K CPU, Intel Xeon Phi 31S1P coprocessors, and nVidia GeForce GTX 960 graphics cards. An important increase in performance has been obtained in a wide range of situations, effectively exploiting the available hardware.
Optimisation of reconstruction--reprojection-based motion correction for cardiac SPECT.
Kangasmaa, Tuija S; Sohlberg, Antti O
2014-07-01
Cardiac motion is a challenging cause of image artefacts in myocardial perfusion SPECT. A wide range of motion correction methods have been developed over the years, and so far automatic algorithms based on the reconstruction--reprojection principle have proved to be the most effective. However, these methods have not been fully optimised in terms of their free parameters and implementational details. Two slightly different implementations of reconstruction--reprojection-based motion correction techniques were optimised for effective, good-quality motion correction and then compared with each other. The first of these methods (Method 1) was the traditional reconstruction-reprojection motion correction algorithm, where the motion correction is done in projection space, whereas the second algorithm (Method 2) performed motion correction in reconstruction space. The parameters that were optimised include the type of cost function (squared difference, normalised cross-correlation and mutual information) that was used to compare measured and reprojected projections, and the number of iterations needed. The methods were tested with motion-corrupt projection datasets, which were generated by adding three different types of motion (lateral shift, vertical shift and vertical creep) to motion-free cardiac perfusion SPECT studies. Method 2 performed slightly better overall than Method 1, but the difference between the two implementations was small. The execution time for Method 2 was much longer than for Method 1, which limits its clinical usefulness. The mutual information cost function gave clearly the best results for all three motion sets for both correction methods. Three iterations were sufficient for a good quality correction using Method 1. The traditional reconstruction--reprojection-based method with three update iterations and mutual information cost function is a good option for motion correction in clinical myocardial perfusion SPECT.
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-07-14
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-01-01
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974
Migration of dispersive GPR data
Powers, M.H.; Oden, C.P.; ,
2004-01-01
Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.
Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.
2010-01-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503
Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W
2009-10-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.
Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm.
Hardie, Russell C; Baxley, Frank; Brys, Brandon; Hytla, Patrick
2009-08-17
In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that the proposed method significantly reduces ghosting artifacts, but has a slightly longer convergence time. (c) 2009 Optical Society of America
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee
2013-01-01
Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee
2013-12-01
Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.
Nelson, Jon P
2014-01-01
Precise estimates of price elasticities are important for alcohol tax policy. Using meta-analysis, this paper corrects average beer elasticities for heterogeneity, dependence, and publication selection bias. A sample of 191 estimates is obtained from 114 primary studies. Simple and weighted means are reported. Dependence is addressed by restricting number of estimates per study, author-restricted samples, and author-specific variables. Publication bias is addressed using funnel graph, trim-and-fill, and Egger's intercept model. Heterogeneity and selection bias are examined jointly in meta-regressions containing moderator variables for econometric methodology, primary data, and precision of estimates. Results for fixed- and random-effects regressions are reported. Country-specific effects and sample time periods are unimportant, but several methodology variables help explain the dispersion of estimates. In models that correct for selection bias and heterogeneity, the average beer price elasticity is about -0.20, which is less elastic by 50% compared to values commonly used in alcohol tax policy simulations. Copyright © 2013 Elsevier B.V. All rights reserved.
Kotrri, Gynter; Fusch, Gerhard; Kwan, Celia; Choi, Dasol; Choi, Arum; Al Kafi, Nisreen; Rochow, Niels; Fusch, Christoph
2016-02-26
Commercial infrared (IR) milk analyzers are being increasingly used in research settings for the macronutrient measurement of breast milk (BM) prior to its target fortification. These devices, however, may not provide reliable measurement if not properly calibrated. In the current study, we tested a correction algorithm for a Near-IR milk analyzer (Unity SpectraStar, Brookfield, CT, USA) for fat and protein measurements, and examined the effect of pasteurization on the IR matrix and the stability of fat, protein, and lactose. Measurement values generated through Near-IR analysis were compared against those obtained through chemical reference methods to test the correction algorithm for the Near-IR milk analyzer. Macronutrient levels were compared between unpasteurized and pasteurized milk samples to determine the effect of pasteurization on macronutrient stability. The correction algorithm generated for our device was found to be valid for unpasteurized and pasteurized BM. Pasteurization had no effect on the macronutrient levels and the IR matrix of BM. These results show that fat and protein content can be accurately measured and monitored for unpasteurized and pasteurized BM. Of additional importance is the implication that donated human milk, generally low in protein content, has the potential to be target fortified.
Kotrri, Gynter; Fusch, Gerhard; Kwan, Celia; Choi, Dasol; Choi, Arum; Al Kafi, Nisreen; Rochow, Niels; Fusch, Christoph
2016-01-01
Commercial infrared (IR) milk analyzers are being increasingly used in research settings for the macronutrient measurement of breast milk (BM) prior to its target fortification. These devices, however, may not provide reliable measurement if not properly calibrated. In the current study, we tested a correction algorithm for a Near-IR milk analyzer (Unity SpectraStar, Brookfield, CT, USA) for fat and protein measurements, and examined the effect of pasteurization on the IR matrix and the stability of fat, protein, and lactose. Measurement values generated through Near-IR analysis were compared against those obtained through chemical reference methods to test the correction algorithm for the Near-IR milk analyzer. Macronutrient levels were compared between unpasteurized and pasteurized milk samples to determine the effect of pasteurization on macronutrient stability. The correction algorithm generated for our device was found to be valid for unpasteurized and pasteurized BM. Pasteurization had no effect on the macronutrient levels and the IR matrix of BM. These results show that fat and protein content can be accurately measured and monitored for unpasteurized and pasteurized BM. Of additional importance is the implication that donated human milk, generally low in protein content, has the potential to be target fortified. PMID:26927169
SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less
Education-related inequity in healthcare with heterogeneous reporting of health
d’Uva, Teresa Bago; Lindeboom, Maarten; O’Donnell, Owen; van Doorslaer, Eddy
2011-01-01
Summary Reliance on self-rated health to proxy medical need can bias estimation of education-related inequity in healthcare utilization. We correct this bias both by instrumenting self-rated health with objective health indicators and by purging self-rated health of reporting heterogeneity that is identified from health vignettes. Using data on elderly Europeans, we find that instrumenting self-rated health shifts the distribution of visits to a doctor in the direction of inequality favouring the better educated. There is a further, and typically larger, shift in the same direction when correction is made for the tendency of the better educated to rate their health more negatively. PMID:21938140
NASA Technical Reports Server (NTRS)
Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)
2000-01-01
Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements
Histogram-driven cupping correction (HDCC) in CT
NASA Astrophysics Data System (ADS)
Kyriakou, Y.; Meyer, M.; Lapp, R.; Kalender, W. A.
2010-04-01
Typical cupping correction methods are pre-processing methods which require either pre-calibration measurements or simulations of standard objects to approximate and correct for beam hardening and scatter. Some of them require the knowledge of spectra, detector characteristics, etc. The aim of this work was to develop a practical histogram-driven cupping correction (HDCC) method to post-process the reconstructed images. We use a polynomial representation of the raw-data generated by forward projection of the reconstructed images; forward and backprojection are performed on graphics processing units (GPU). The coefficients of the polynomial are optimized using a simplex minimization of the joint entropy of the CT image and its gradient. The algorithm was evaluated using simulations and measurements of homogeneous and inhomogeneous phantoms. For the measurements a C-arm flat-detector CT (FD-CT) system with a 30×40 cm2 detector, a kilovoltage on board imager (radiation therapy simulator) and a micro-CT system were used. The algorithm reduced cupping artifacts both in simulations and measurements using a fourth-order polynomial and was in good agreement to the reference. The minimization algorithm required less than 70 iterations to adjust the coefficients only performing a linear combination of basis images, thus executing without time consuming operations. HDCC reduced cupping artifacts without the necessity of pre-calibration or other scan information enabling a retrospective improvement of CT image homogeneity. However, the method can work with other cupping correction algorithms or in a calibration manner, as well.
Shidahara, Miho; Thomas, Benjamin A; Okamura, Nobuyuki; Ibaraki, Masanobu; Matsubara, Keisuke; Oyama, Senri; Ishikawa, Yoichi; Watanuki, Shoichi; Iwata, Ren; Furumoto, Shozo; Tashiro, Manabu; Yanai, Kazuhiko; Gonda, Kohsuke; Watabe, Hiroshi
2017-08-01
To suppress partial volume effect (PVE) in brain PET, there have been many algorithms proposed. However, each methodology has different property due to its assumption and algorithms. Our aim of this study was to investigate the difference among partial volume correction (PVC) method for tau and amyloid PET study. We investigated two of the most commonly used PVC methods, Müller-Gärtner (MG) and geometric transfer matrix (GTM) and also other three methods for clinical tau and amyloid PET imaging. One healthy control (HC) and one Alzheimer's disease (AD) PET studies of both [ 18 F]THK5351 and [ 11 C]PIB were performed using a Eminence STARGATE scanner (Shimadzu Inc., Kyoto, Japan). All PET images were corrected for PVE by MG, GTM, Labbé (LABBE), Regional voxel-based (RBV), and Iterative Yang (IY) methods, with segmented or parcellated anatomical information processed by FreeSurfer, derived from individual MR images. PVC results of 5 algorithms were compared with the uncorrected data. In regions of high uptake of [ 18 F]THK5351 and [ 11 C]PIB, different PVCs demonstrated different SUVRs. The degree of difference between PVE uncorrected and corrected depends on not only PVC algorithm but also type of tracer and subject condition. Presented PVC methods are straight-forward to implement but the corrected images require careful interpretation as different methods result in different levels of recovery.
Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning
NASA Astrophysics Data System (ADS)
Evennou, Frédéric; Marx, François
2006-12-01
This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-cost inertial sensors have become available. Although they exhibit large errors, WiFi measurements can be used to correct the drift weakening the navigation based on this technology. On the other hand, INS sensors can interact with the WiFi positioning system as they provide high-accuracy real-time navigation. A structure based on a Kalman filter and a particle filter is proposed. It fuses the heterogeneous information coming from those two independent technologies. Finally, the benefits of the proposed architecture are evaluated and compared with the pure WiFi and INS positioning systems.
Graph-Based Semantic Web Service Composition for Healthcare Data Integration.
Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena
2017-01-01
Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.
Graph-Based Semantic Web Service Composition for Healthcare Data Integration
2017-01-01
Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egan, A; Laub, W
2014-06-15
Purpose: Several shortcomings of the current implementation of the analytic anisotropic algorithm (AAA) may lead to dose calculation errors in highly modulated treatments delivered to highly heterogeneous geometries. Here we introduce a set of dosimetric error predictors that can be applied to a clinical treatment plan and patient geometry in order to identify high risk plans. Once a problematic plan is identified, the treatment can be recalculated with more accurate algorithm in order to better assess its viability. Methods: Here we focus on three distinct sources dosimetric error in the AAA algorithm. First, due to a combination of discrepancies inmore » smallfield beam modeling as well as volume averaging effects, dose calculated through small MLC apertures can be underestimated, while that behind small MLC blocks can overestimated. Second, due the rectilinear scaling of the Monte Carlo generated pencil beam kernel, energy is not properly transported through heterogeneities near, but not impeding, the central axis of the beamlet. And third, AAA overestimates dose in regions very low density (< 0.2 g/cm{sup 3}). We have developed an algorithm to detect the location and magnitude of each scenario within the patient geometry, namely the field-size index (FSI), the heterogeneous scatter index (HSI), and the lowdensity index (LDI) respectively. Results: Error indices successfully identify deviations between AAA and Monte Carlo dose distributions in simple phantom geometries. Algorithms are currently implemented in the MATLAB computing environment and are able to run on a typical RapidArc head and neck geometry in less than an hour. Conclusion: Because these error indices successfully identify each type of error in contrived cases, with sufficient benchmarking, this method can be developed into a clinical tool that may be able to help estimate AAA dose calculation errors and when it might be advisable to use Monte Carlo calculations.« less
NASA Astrophysics Data System (ADS)
Bosch, Carl; Degirmenci, Soysal; Barlow, Jason; Mesika, Assaf; Politte, David G.; O'Sullivan, Joseph A.
2016-05-01
X-ray computed tomography reconstruction for medical, security and industrial applications has evolved through 40 years of experience with rotating gantry scanners using analytic reconstruction techniques such as filtered back projection (FBP). In parallel, research into statistical iterative reconstruction algorithms has evolved to apply to sparse view scanners in nuclear medicine, low data rate scanners in Positron Emission Tomography (PET) [5, 7, 10] and more recently to reduce exposure to ionizing radiation in conventional X-ray CT scanners. Multiple approaches to statistical iterative reconstruction have been developed based primarily on variations of expectation maximization (EM) algorithms. The primary benefit of EM algorithms is the guarantee of convergence that is maintained when iterative corrections are made within the limits of convergent algorithms. The primary disadvantage, however is that strict adherence to correction limits of convergent algorithms extends the number of iterations and ultimate timeline to complete a 3D volumetric reconstruction. Researchers have studied methods to accelerate convergence through more aggressive corrections [1], ordered subsets [1, 3, 4, 9] and spatially variant image updates. In this paper we describe the development of an AM reconstruction algorithm with accelerated convergence for use in a real-time explosive detection application for aviation security. By judiciously applying multiple acceleration techniques and advanced GPU processing architectures, we are able to perform 3D reconstruction of scanned passenger baggage at a rate of 75 slices per second. Analysis of the results on stream of commerce passenger bags demonstrates accelerated convergence by factors of 8 to 15, when comparing images from accelerated and strictly convergent algorithms.
ERIC Educational Resources Information Center
Gerlach, Vernon S.; And Others
An algorithm is defined here as an unambiguous procedure which will always produce the correct result when applied to any problem of a given class of problems. This paper gives an extended discussion of the definition of an algorithm. It also explores in detail the elements of an algorithm, the representation of algorithms in standard prose, flow…
Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.
Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A
2018-02-01
A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.
Chen, Weitian; Sica, Christopher T; Meyer, Craig H
2008-11-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.
Evaluation metrics for bone segmentation in ultrasound
NASA Astrophysics Data System (ADS)
Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas
2015-03-01
Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzyżanowska, A.; Deptuch, G. W.; Maj, P.
This paper presents the detailed characterization of a single photon counting chip, named CHASE Jr., built in a CMOS 40-nm process, operating with synchrotron radiation. The chip utilizes an on-chip implementation of the C8P1 algorithm. The algorithm eliminates the charge sharing related uncertainties, namely, the dependence of the number of registered photons on the discriminator’s threshold, set for monochromatic irradiation, and errors in the assignment of an event to a certain pixel. The article presents a short description of the algorithm as well as the architecture of the CHASE Jr., chip. The analog and digital functionalities, allowing for proper operationmore » of the C8P1 algorithm are described, namely, an offset correction for two discriminators independently, two-stage gain correction, and different operation modes of the digital blocks. The results of tests of the C8P1 operation are presented for the chip bump bonded to a silicon sensor and exposed to the 3.5- μm -wide pencil beam of 8-keV photons of synchrotron radiation. It was studied how sensitive the algorithm performance is to the chip settings, as well as the uniformity of parameters of the analog front-end blocks. Presented results prove that the C8P1 algorithm enables counting all photons hitting the detector in between readout channels and retrieving the actual photon energy.« less
NASA Astrophysics Data System (ADS)
Oda, Hitoshi
2016-06-01
The aspherical structure of the Earth is described in terms of lateral heterogeneity and anisotropy of the P- and S-wave velocities, density heterogeneity, ellipticity and rotation of the Earth and undulation of the discontinuity interfaces of the seismic wave velocities. Its structure significantly influences the normal mode spectra of the Earth's free oscillation in the form of cross-coupling between toroidal and spheroidal multiplets and self-coupling between the singlets forming them. Thus, the aspherical structure must be conversely estimated from the free oscillation spectra influenced by the cross-coupling and self-coupling. In the present study, we improve a spectral fitting inversion algorithm which was developed in a previous study to retrieve the global structures of the isotropic and anisotropic velocities of the P and S waves from the free oscillation spectra. The main improvement is that the geographical distribution of the intensity of the S-wave azimuthal anisotropy is represented by a nonlinear combination of structure coefficients for the anisotropic velocity structure, whereas in the previous study it was expanded into a generalized spherical harmonic series. Consequently, the improved inversion algorithm reduces the number of unknown parameters that must be determined compared to the previous inversion algorithm and employs a one-step inversion method by which the structure coefficients for the isotropic and anisotropic velocities are directly estimated from the fee oscillation spectra. The applicability of the improved inversion is examined by several numerical experiments using synthetic spectral data, which are produced by supposing a variety of isotropic and anisotropic velocity structures, earthquake source parameters and station-event pairs. Furthermore, the robustness of the inversion algorithm is investigated with respect to the back-ground noise contaminating the spectral data as well as truncating the series expansions by finite terms to represent the three-dimensional velocity structures. As a result, it is shown that the improved inversion can estimate not only the isotropic and anisotropic velocity structures but also the depth extent of the anisotropic regions in the Earth. In particular, the cross-coupling modes are essential to correctly estimate the isotropic and anisotropic velocity structures from the normal mode spectra. In addition, we argue that the effect of the seismic anisotropy is not negligible when estimating only the isotropic velocity structure from the spheroidal mode spectra.
Armstrong, Joshua J; Zhu, Mu; Hirdes, John P; Stolee, Paul
2012-12-01
To examine the heterogeneity of home care clients who use rehabilitation services by using the K-means algorithm to identify previously unknown patterns of clinical characteristics. Observational study of secondary data. Home care system. Assessment information was collected on 150,253 home care clients using the provincially mandated Resident Assessment Instrument-Home Care (RAI-HC) data system. Not applicable. Assessment information from every long-stay (>60 d) home care client that entered the home care system between 2005 and 2008 and used rehabilitation services within 3 months of their initial assessment was analyzed. The K-means clustering algorithm was applied using 37 variables from the RAI-HC assessment. The K-means cluster analysis resulted in the identification of 7 relatively homogeneous subgroups that differed on characteristics such as age, sex, cognition, and functional impairment. Client profiles were created to illustrate the diversity of this geriatric population. The K-means algorithm provided a useful way to segment a heterogeneous rehabilitation client population into more homogeneous subgroups. This analysis provides an enhanced understanding of client characteristics and needs, and could enable more appropriate targeting of rehabilitation services for home care clients. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.
Rosales, Patricia; Marcos, Susana
2009-05-01
To implement geometrical and optical distortion correction methods for anterior segment Scheimpflug images obtained with a commercially available system (Pentacam, Oculus Optikgeräte GmbH). Ray tracing algorithms were implemented to obtain corrected ocular surface geometry from the original images captured by the Pentacam's CCD camera. As details of the optical layout were not fully provided by the manufacturer, an iterative procedure (based on imaging of calibrated spheres) was developed to estimate the camera lens specifications. The correction procedure was tested on Scheimpflug images of a physical water cell model eye (with polymethylmethacrylate cornea and a commercial IOL of known dimensions) and of a normal human eye previously measured with a corrected optical and geometrical distortion Scheimpflug camera (Topcon SL-45 [Topcon Medical Systems Inc] from the Vrije University, Amsterdam, Holland). Uncorrected Scheimpflug images show flatter surfaces and thinner lenses than in reality. The application of geometrical and optical distortion correction algorithms improves the accuracy of the estimated anterior lens radii of curvature by 30% to 40% and of the estimated posterior lens by 50% to 100%. The average error in the retrieved radii was 0.37 and 0.46 mm for the anterior and posterior lens radii of curvature, respectively, and 0.048 mm for lens thickness. The Pentacam Scheimpflug system can be used to obtain quantitative information on the geometry of the crystalline lens, provided that geometrical and optical distortion correction algorithms are applied, within the accuracy of state-of-the art phakometry and biometry. The techniques could improve with exact knowledge of the technical specifications of the instrument, improved edge detection algorithms, consideration of aspheric and non-rotationally symmetrical surfaces, and introduction of a crystalline gradient index.
NASA Astrophysics Data System (ADS)
Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.
2016-02-01
There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, track energy flow through ecosystems, and identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable the use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. Consequently, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. The coastal marine environment has special atmospheric correction needs due to error introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals to estimate chlorophyll (OC3) and phytoplankton functional type (PHYDOTax) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons in 2013 and 2014. These two periods are dominated by either diatom blooms or red tides. Results to be presented include chlorophyll and phytoplankton community structure and in-water validation data for these dates during the two seasons.
NASA Astrophysics Data System (ADS)
Garnero, Edward J.; Lay, Thorne
2003-11-01
The D″ region in the lowermost mantle beneath the Caribbean and Central America is investigated using shear waves from South American earthquakes recorded by seismic stations in North America. We present a large-scale, composite study of volumetric shear velocity heterogeneity, anisotropy, and the possible presence of a D″ discontinuity in the region. Our data set includes: 328 S( Sdiff)- SKS differential travel times, 300 ScS-S differential travel times, 125 S( Sdiff) and 120 ScS shear wave splitting measurements, and 297 seismograms inspected for Scd, the seismic phase refracted from a high-velocity D″ layer. Broadband digital data are augmented by high-quality digitized analog WWSSN data, providing extensive path coverage in our study area. In all, data from 61 events are utilized. In some cases, a given seismogram can be used for velocity heterogeneity, anisotropy, and discontinuity analyses. Significant mid-mantle structure, possibly associated with the ancient subducted Farallon slab, affects shear wave travel times and must be corrected for to prevent erroneous mapping of D″ shear velocity. All differential times are corrected for contributions from aspherical mantle structure above D″ using a high-resolution tomography model. Travel time analyses demonstrate the presence of pervasive high velocities in D″, with the highest velocities localized to a region beneath Central America, approximately 500-700 km in lateral dimension. Short wavelength variability overprints this general high-velocity background. Corrections are also made for lithospheric anisotropy beneath the receivers. Shear wave splitting analyses of the corrected waveforms reveal D″ anisotropy throughout the study area, with a general correlation with heterogeneity strength. Evidence for Scd arrivals is pervasive across the study area, consistent with earlier work, but there are a few localized regions (100-200 km) lacking clear Scd arrivals, which indicates heterogeneity in the thickness or velocity gradients of the high-velocity layer. While small-scale geographic patterns of heterogeneity, anisotropy, and discontinuity are present, the details appear complex, and require higher resolution array analyses to fully characterize the structure. Explanations for the high-shear wave speeds, anisotropy, and reflector associated with D″ beneath the Caribbean and Central America must be applicable over a lateral scale of roughly 1500 km 2, the dimension over which we observe coherent wavefield behavior in the region. A slab graveyard appears viable in this regard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail
Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; ...
2017-11-27
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
A rapid algorithm for realistic human reaching and its use in a virtual reality system
NASA Technical Reports Server (NTRS)
Aldridge, Ann; Pandya, Abhilash; Goldsby, Michael; Maida, James
1994-01-01
The Graphics Analysis Facility (GRAF) at JSC has developed a rapid algorithm for computing realistic human reaching. The algorithm was applied to GRAF's anthropometrically correct human model and used in a 3D computer graphics system and a virtual reality system. The nature of the algorithm and its uses are discussed.
USDA-ARS?s Scientific Manuscript database
Bio-optical algorithms have been applied to monitor water quality in surface water systems. Empirical algorithms, such as Ritchie (2008), Gons (2008), and Gilerson (2010), have been applied to estimate the chlorophyll-a (chl-a) concentrations. However, the performance of each algorithm severely degr...
Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry
da Rosa, L.A.R.; Campos, L.T.; Alves, V.G.L.; Batista, D.V.S.; Facure, A.
2010-01-01
The purpose of this study is to investigate the influence of lung heterogeneity inside a soft tissue phantom on percentage depth dose (PDD). PDD curves were obtained experimentally using LiF:Mg,Ti (TLD‐100) thermoluminescent detectors and applying Eclipse treatment planning system algorithms Batho, modified Batho (M‐Batho or BMod), equivalent TAR (E‐TAR or EQTAR), and anisotropic analytical algorithm (AAA) for a 15 MV photon beam and field sizes of 1×1,2×2,5×5, and 10×10cm2. Monte Carlo simulations were performed using the DOSRZnrc user code of EGSnrc. The experimental results agree with Monte Carlo simulations for all irradiation field sizes. Comparisons with Monte Carlo calculations show that the AAA algorithm provides the best simulations of PDD curves for all field sizes investigated. However, even this algorithm cannot accurately predict PDD values in the lung for field sizes of 1×1 and 2×2cm2. An overdosage in the lung of about 40% and 20% is calculated by the AAA algorithm close to the interface soft tissue/lung for 1×1 and 2×2cm2 field sizes, respectively. It was demonstrated that differences of 100% between Monte Carlo results and the algorithms Batho, modified Batho, and equivalent TAR responses may exist inside the lung region for the 1×1cm2 field. PACS number: 87.55.kd
Multi-frame knowledge based text enhancement for mobile phone captured videos
NASA Astrophysics Data System (ADS)
Ozarslan, Suleyman; Eren, P. Erhan
2014-02-01
In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.
Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction
NASA Astrophysics Data System (ADS)
Zheng, Lintao; Shi, Hengliang; Gu, Ming
2017-07-01
The infrared traffic image acquired by the intelligent traffic surveillance equipment has low contrast, little hierarchical differences in perceptions of image and the blurred vision effect. Therefore, infrared traffic image enhancement, being an indispensable key step, is applied to nearly all infrared imaging based traffic engineering applications. In this paper, we propose an infrared traffic image enhancement algorithm that is based on dark channel prior and gamma correction. In existing research dark channel prior, known as a famous image dehazing method, here is used to do infrared image enhancement for the first time. Initially, in the proposed algorithm, the original degraded infrared traffic image is transformed with dark channel prior as the initial enhanced result. A further adjustment based on the gamma curve is needed because initial enhanced result has lower brightness. Comprehensive validation experiments reveal that the proposed algorithm outperforms the current state-of-the-art algorithms.
Formal verification of a fault tolerant clock synchronization algorithm
NASA Technical Reports Server (NTRS)
Rushby, John; Vonhenke, Frieder
1989-01-01
A formal specification and mechanically assisted verification of the interactive convergence clock synchronization algorithm of Lamport and Melliar-Smith is described. Several technical flaws in the analysis given by Lamport and Melliar-Smith were discovered, even though their presentation is unusally precise and detailed. It seems that these flaws were not detected by informal peer scrutiny. The flaws are discussed and a revised presentation of the analysis is given that not only corrects the flaws but is also more precise and easier to follow. Some of the corrections to the flaws require slight modifications to the original assumptions underlying the algorithm and to the constraints on its parameters, and thus change the external specifications of the algorithm. The formal analysis of the interactive convergence clock synchronization algorithm was performed using the Enhanced Hierarchical Development Methodology (EHDM) formal specification and verification environment. This application of EHDM provides a demonstration of some of the capabilities of the system.
Verification of Numerical Programs: From Real Numbers to Floating Point Numbers
NASA Technical Reports Server (NTRS)
Goodloe, Alwyn E.; Munoz, Cesar; Kirchner, Florent; Correnson, Loiec
2013-01-01
Numerical algorithms lie at the heart of many safety-critical aerospace systems. The complexity and hybrid nature of these systems often requires the use of interactive theorem provers to verify that these algorithms are logically correct. Usually, proofs involving numerical computations are conducted in the infinitely precise realm of the field of real numbers. However, numerical computations in these algorithms are often implemented using floating point numbers. The use of a finite representation of real numbers introduces uncertainties as to whether the properties veri ed in the theoretical setting hold in practice. This short paper describes work in progress aimed at addressing these concerns. Given a formally proven algorithm, written in the Program Verification System (PVS), the Frama-C suite of tools is used to identify sufficient conditions and verify that under such conditions the rounding errors arising in a C implementation of the algorithm do not affect its correctness. The technique is illustrated using an algorithm for detecting loss of separation among aircraft.
Wang, Lingling; Fu, Li
2018-01-01
In order to decrease the velocity sculling error under vibration environments, a new sculling error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate and specific force measurements as inputs is proposed in this paper. First, the sculling error formula in incremental velocity update is analytically derived in terms of the angular rate and specific force. Next, two-time scale perturbation models of the angular rate and specific force are constructed. The new sculling correction term is derived and a gravitational search optimization method is used to determine the parameters in the two-time scale perturbation models. Finally, the performance of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different from the conventional algorithms simulated in a pure sculling circumstance. A series of test results demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling correction performance during velocity update with the advantage of less computation load compared with conventional algorithms. PMID:29346323
Jahani, Sahar; Setarehdan, Seyed K; Boas, David A; Yücel, Meryem A
2018-01-01
Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.
Scene-based nonuniformity correction with video sequences and registration.
Hardie, R C; Hayat, M M; Armstrong, E; Yasuda, B
2000-03-10
We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity.
Simultaneous quaternion estimation (QUEST) and bias determination
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1989-01-01
Tests of a new method for the simultaneous estimation of spacecraft attitude and sensor biases, based on a quaternion estimation algorithm minimizing Wahba's loss function are presented. The new method is compared with a conventional batch least-squares differential correction algorithm. The estimates are based on data from strapdown gyros and star trackers, simulated with varying levels of Gaussian noise for both inertially-fixed and Earth-pointing reference attitudes. Both algorithms solve for the spacecraft attitude and the gyro drift rate biases. They converge to the same estimates at the same rate for inertially-fixed attitude, but the new algorithm converges more slowly than the differential correction for Earth-pointing attitude. The slower convergence of the new method for non-zero attitude rates is believed to be due to the use of an inadequate approximation for a partial derivative matrix. The new method requires about twice the computational effort of the differential correction. Improving the approximation for the partial derivative matrix in the new method is expected to improve its convergence at the cost of increased computational effort.
Bidirectional reflectance function in coastal waters: modeling and validation
NASA Astrophysics Data System (ADS)
Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir
2011-11-01
The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.
Land, P E; Haigh, J D
1997-12-20
In algorithms for the atmospheric correction of visible and near-IR satellite observations of the Earth's surface, it is generally assumed that the spectral variation of aerosol optical depth is characterized by an Angström power law or similar dependence. In an iterative fitting algorithm for atmospheric correction of ocean color imagery over case 2 waters, this assumption leads to an inability to retrieve the aerosol type and to the attribution to aerosol spectral variations of spectral effects actually caused by the water contents. An improvement to this algorithm is described in which the spectral variation of optical depth is calculated as a function of aerosol type and relative humidity, and an attempt is made to retrieve the relative humidity in addition to aerosol type. The aerosol is treated as a mixture of aerosol components (e.g., soot), rather than of aerosol types (e.g., urban). We demonstrate the improvement over the previous method by using simulated case 1 and case 2 sea-viewing wide field-of-view sensor data, although the retrieval of relative humidity was not successful.
Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey
2013-01-01
A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.
Pollitz, F.F.
2002-01-01
I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.
Optimization and real-time control for laser treatment of heterogeneous soft tissues.
Feng, Yusheng; Fuentes, David; Hawkins, Andrea; Bass, Jon M; Rylander, Marissa Nichole
2009-01-01
Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.
Genetic algorithm learning in a New Keynesian macroeconomic setup.
Hommes, Cars; Makarewicz, Tomasz; Massaro, Domenico; Smits, Tom
2017-01-01
In order to understand heterogeneous behavior amongst agents, empirical data from Learning-to-Forecast (LtF) experiments can be used to construct learning models. This paper follows up on Assenza et al. (2013) by using a Genetic Algorithms (GA) model to replicate the results from their LtF experiment. In this GA model, individuals optimize an adaptive, a trend following and an anchor coefficient in a population of general prediction heuristics. We replicate experimental treatments in a New-Keynesian environment with increasing complexity and use Monte Carlo simulations to investigate how well the model explains the experimental data. We find that the evolutionary learning model is able to replicate the three different types of behavior, i.e. convergence to steady state, stable oscillations and dampened oscillations in the treatments using one GA model. Heterogeneous behavior can thus be explained by an adaptive, anchor and trend extrapolating component and the GA model can be used to explain heterogeneous behavior in LtF experiments with different types of complexity.
Zou, Weiyao; Burns, Stephen A.
2012-01-01
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462
Automatic cortical segmentation in the developing brain.
Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Jo V
2007-01-01
The segmentation of neonatal cortex from magnetic resonance (MR) images is much more challenging than the segmentation of cortex in adults. The main reason is the inverted contrast between grey matter (GM) and white matter (WM) that occurs when myelination is incomplete. This causes mislabeled partial volume voxels, especially at the interface between GM and cerebrospinal fluid (CSF). We propose a fully automatic cortical segmentation algorithm, detecting these mislabeled voxels using a knowledge-based approach and correcting errors by adjusting local priors to favor the correct classification. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic EM scheme. The segmentation algorithm has been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. Quantitative comparison to the manual segmentation demonstrates good performance of the method (mean Dice similarity: 0.758 +/- 0.037 for GM and 0.794 +/- 0.078 for WM).
More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server
Ho, Qirong; Cipar, James; Cui, Henggang; Kim, Jin Kyu; Lee, Seunghak; Gibbons, Phillip B.; Gibson, Garth A.; Ganger, Gregory R.; Xing, Eric P.
2014-01-01
We propose a parameter server system for distributed ML, which follows a Stale Synchronous Parallel (SSP) model of computation that maximizes the time computational workers spend doing useful work on ML algorithms, while still providing correctness guarantees. The parameter server provides an easy-to-use shared interface for read/write access to an ML model’s values (parameters and variables), and the SSP model allows distributed workers to read older, stale versions of these values from a local cache, instead of waiting to get them from a central storage. This significantly increases the proportion of time workers spend computing, as opposed to waiting. Furthermore, the SSP model ensures ML algorithm correctness by limiting the maximum age of the stale values. We provide a proof of correctness under SSP, as well as empirical results demonstrating that the SSP model achieves faster algorithm convergence on several different ML problems, compared to fully-synchronous and asynchronous schemes. PMID:25400488
Zou, Weiyao; Burns, Stephen A
2012-03-20
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America
Ultra-high resolution computed tomography imaging
Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.
2002-01-01
A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.
A Formal Framework for the Analysis of Algorithms That Recover From Loss of Separation
NASA Technical Reports Server (NTRS)
Butler, RIcky W.; Munoz, Cesar A.
2008-01-01
We present a mathematical framework for the specification and verification of state-based conflict resolution algorithms that recover from loss of separation. In particular, we propose rigorous definitions of horizontal and vertical maneuver correctness that yield horizontal and vertical separation, respectively, in a bounded amount of time. We also provide sufficient conditions for independent correctness, i.e., separation under the assumption that only one aircraft maneuvers, and for implicitly coordinated correctness, i.e., separation under the assumption that both aircraft maneuver. An important benefit of this approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).
Optimal wavefront estimation of incoherent sources
NASA Astrophysics Data System (ADS)
Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler
2014-08-01
Direct imaging is in general necessary to characterize exoplanets and disks. A coronagraph is an instrument used to create a dim (high-contrast) region in a star's PSF where faint companions can be detected. All coronagraphic high-contrast imaging systems use one or more deformable mirrors (DMs) to correct quasi-static aberrations and recover contrast in the focal plane. Simulations show that existing wavefront control algorithms can correct for diffracted starlight in just a few iterations, but in practice tens or hundreds of control iterations are needed to achieve high contrast. The discrepancy largely arises from the fact that simulations have perfect knowledge of the wavefront and DM actuation. Thus, wavefront correction algorithms are currently limited by the quality and speed of wavefront estimates. Exposures in space will take orders of magnitude more time than any calculations, so a nonlinear estimation method that needs fewer images but more computational time would be advantageous. In addition, current wavefront correction routines seek only to reduce diffracted starlight. Here we present nonlinear estimation algorithms that include optimal estimation of sources incoherent with a star such as exoplanets and debris disks.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Dynamic Transfers Of Tasks Among Computers
NASA Technical Reports Server (NTRS)
Liu, Howard T.; Silvester, John A.
1989-01-01
Allocation scheme gives jobs to idle computers. Ideal resource-sharing algorithm should have following characteristics: Dynamics, decentralized, and heterogeneous. Proposed enhanced receiver-initiated dynamic algorithm (ERIDA) for resource sharing fulfills all above criteria. Provides method balancing workload among hosts, resulting in improvement in response time and throughput performance of total system. Adjusts dynamically to traffic load of each station.
Buhk, J-H; Groth, M; Sehner, S; Fiehler, J; Schmidt, N O; Grzyska, U
2013-09-01
To evaluate a novel algorithm for correcting beam hardening artifacts caused by metal implants in computed tomography performed on a C-arm angiography system equipped with a flat panel (FP-CT). 16 datasets of cerebral FP-CT acquisitions after coil embolization of brain aneurysms in the context of acute subarachnoid hemorrhage have been reconstructed by applying a soft tissue kernel with and without a novel reconstruction filter for metal artifact correction. Image reading was performed in multiplanar reformations (MPR) in average mode on a dedicated radiological workplace in comparison to the preinterventional native multisection CT (MS-CT) scan serving as the anatomic gold standard. Two independent radiologists performed image scoring following a defined scale in direct comparison of the image data with and without artifact correction. For statistical analysis, a random intercept model was calculated. The inter-rater agreement was very high (ICC = 86.3 %). The soft tissue image quality and visualization of the CSF spaces at the level of the implants was substantially improved. The additional metal artifact correction algorithm did not induce impairment of the subjective image quality in any other brain regions. Adding metal artifact correction to FP-CT in an acute postinterventional setting helps to visualize the close vicinity of the aneurysm at a generally consistent image quality. © Georg Thieme Verlag KG Stuttgart · New York.
Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm
NASA Astrophysics Data System (ADS)
Zawadzki, Robert J.; Leisser, Christoph; Leitgeb, Rainer; Pircher, Michael; Fercher, Adolf F.
2003-10-01
We built an optical coherence tomography (OCT) system with a rapid scanning optical delay (RSOD) line, which allows probing full axial eye length. The system produces Three-dimensional (3D) data sets that are used to generate 3D tomograms of the model eye. The raw tomographic data were processed by an algorithm, which is based on Snell"s law to correct the interface positions. The Zernike polynomials representation of the interfaces allows quantitative wave aberration measurements. 3D images of our results are presented to illustrate the capabilities of the system and the algorithm performance. The system allows us to measure intra-ocular distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.
We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser(FEL) simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multi-dimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.
A formally verified algorithm for interactive consistency under a hybrid fault model
NASA Technical Reports Server (NTRS)
Lincoln, Patrick; Rushby, John
1993-01-01
Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.
NASA Astrophysics Data System (ADS)
Woon, Y. L.; Heng, S. P.; Wong, J. H. D.; Ung, N. M.
2016-03-01
Inhomogeneity correction is recommended for accurate dose calculation in radiotherapy treatment planning since human body are highly inhomogeneous with the presence of bones and air cavities. However, each dose calculation algorithm has its own limitations. This study is to assess the accuracy of five algorithms that are currently implemented for treatment planning, including pencil beam convolution (PBC), superposition (SP), anisotropic analytical algorithm (AAA), Monte Carlo (MC) and Acuros XB (AXB). The calculated dose was compared with the measured dose using radiochromic film (Gafchromic EBT2) in inhomogeneous phantoms. In addition, the dosimetric impact of different algorithms on intensity modulated radiotherapy (IMRT) was studied for head and neck region. MC had the best agreement with the measured percentage depth dose (PDD) within the inhomogeneous region. This was followed by AXB, AAA, SP and PBC. For IMRT planning, MC algorithm is recommended for treatment planning in preference to PBC and SP. The MC and AXB algorithms were found to have better accuracy in terms of inhomogeneity correction and should be used for tumour volume within the proximity of inhomogeneous structures.
Full self-consistency in the Fermi-orbital self-interaction correction
NASA Astrophysics Data System (ADS)
Yang, Zeng-hui; Pederson, Mark R.; Perdew, John P.
2017-05-01
The Perdew-Zunger self-interaction correction cures many common problems associated with semilocal density functionals, but suffers from a size-extensivity problem when Kohn-Sham orbitals are used in the correction. Fermi-Löwdin-orbital self-interaction correction (FLOSIC) solves the size-extensivity problem, allowing its use in periodic systems and resulting in better accuracy in finite systems. Although the previously published FLOSIC algorithm Pederson et al., J. Chem. Phys. 140, 121103 (2014)., 10.1063/1.4869581 appears to work well in many cases, it is not fully self-consistent. This would be particularly problematic for systems where the occupied manifold is strongly changed by the correction. In this paper, we demonstrate a different algorithm for FLOSIC to achieve full self-consistency with only marginal increase of computational cost. The resulting total energies are found to be lower than previously reported non-self-consistent results.
Analysis and design of algorithm-based fault-tolerant systems
NASA Technical Reports Server (NTRS)
Nair, V. S. Sukumaran
1990-01-01
An important consideration in the design of high performance multiprocessor systems is to ensure the correctness of the results computed in the presence of transient and intermittent failures. Concurrent error detection and correction have been applied to such systems in order to achieve reliability. Algorithm Based Fault Tolerance (ABFT) was suggested as a cost-effective concurrent error detection scheme. The research was motivated by the complexity involved in the analysis and design of ABFT systems. To that end, a matrix-based model was developed and, based on that, algorithms for both the design and analysis of ABFT systems are formulated. These algorithms are less complex than the existing ones. In order to reduce the complexity further, a hierarchical approach is developed for the analysis of large systems.
Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Castano, Diego J.
1987-01-01
Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.
Spectral-Based Volume Sensor Prototype, Post-VS4 Test Series Algorithm Development
2009-04-30
Computer Pcorr Probabilty / Percentage of Correct Classification (# Correct / # Total) PD PhotoDiode Pd Probabilty / Percentage of Detection (# Correct...Detections / Total of Sources) Pfa Probabilty / Percentage of False Alarm (# FAs / Total # of Sources) SBVS Spectral-Based Volume Sensor SFA Smoke and