An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulakhe, D.; Rodriguez, A.; Wilde, M.
2008-03-01
Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual datamore » system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.« less
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices
Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B.
2018-01-01
Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support. PMID:29629431
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices.
Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B
2017-06-01
Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support.
The Semantic Retrieval of Spatial Data Service Based on Ontology in SIG
NASA Astrophysics Data System (ADS)
Sun, S.; Liu, D.; Li, G.; Yu, W.
2011-08-01
The research of SIG (Spatial Information Grid) mainly solves the problem of how to connect different computing resources, so that users can use all the resources in the Grid transparently and seamlessly. In SIG, spatial data service is described in some kinds of specifications, which use different meta-information of each kind of services. This kind of standardization cannot resolve the problem of semantic heterogeneity, which may limit user to obtain the required resources. This paper tries to solve two kinds of semantic heterogeneities (name heterogeneity and structure heterogeneity) in spatial data service retrieval based on ontology, and also, based on the hierarchical subsumption relationship among concept in ontology, the query words can be extended and more resource can be matched and found for user. These applications of ontology in spatial data resource retrieval can help to improve the capability of keyword matching, and find more related resources.
Transformation of OODT CAS to Perform Larger Tasks
NASA Technical Reports Server (NTRS)
Mattmann, Chris; Freeborn, Dana; Crichton, Daniel; Hughes, John; Ramirez, Paul; Hardman, Sean; Woollard, David; Kelly, Sean
2008-01-01
A computer program denoted OODT CAS has been transformed to enable performance of larger tasks that involve greatly increased data volumes and increasingly intensive processing of data on heterogeneous, geographically dispersed computers. Prior to the transformation, OODT CAS (also alternatively denoted, simply, 'CAS') [wherein 'OODT' signifies 'Object-Oriented Data Technology' and 'CAS' signifies 'Catalog and Archive Service'] was a proven software component used to manage scientific data from spaceflight missions. In the transformation, CAS was split into two separate components representing its canonical capabilities: file management and workflow management. In addition, CAS was augmented by addition of a resource-management component. This third component enables CAS to manage heterogeneous computing by use of diverse resources, including high-performance clusters of computers, commodity computing hardware, and grid computing infrastructures. CAS is now more easily maintainable, evolvable, and reusable. These components can be used separately or, taking advantage of synergies, can be used together. Other elements of the transformation included addition of a separate Web presentation layer that supports distribution of data products via Really Simple Syndication (RSS) feeds, and provision for full Resource Description Framework (RDF) exports of metadata.
NASA Astrophysics Data System (ADS)
Yue, S. S.; Wen, Y. N.; Lv, G. N.; Hu, D.
2013-10-01
In recent years, the increasing development of cloud computing technologies laid critical foundation for efficiently solving complicated geographic issues. However, it is still difficult to realize the cooperative operation of massive heterogeneous geographical models. Traditional cloud architecture is apt to provide centralized solution to end users, while all the required resources are often offered by large enterprises or special agencies. Thus, it's a closed framework from the perspective of resource utilization. Solving comprehensive geographic issues requires integrating multifarious heterogeneous geographical models and data. In this case, an open computing platform is in need, with which the model owners can package and deploy their models into cloud conveniently, while model users can search, access and utilize those models with cloud facility. Based on this concept, the open cloud service strategies for the sharing of heterogeneous geographic analysis models is studied in this article. The key technology: unified cloud interface strategy, sharing platform based on cloud service, and computing platform based on cloud service are discussed in detail, and related experiments are conducted for further verification.
Tools and Techniques for Measuring and Improving Grid Performance
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Frumkin, M.; Smith, W.; VanderWijngaart, R.; Wong, P.; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation provides information on NASA's geographically dispersed computing resources, and the various methods by which the disparate technologies are integrated within a nationwide computational grid. Many large-scale science and engineering projects are accomplished through the interaction of people, heterogeneous computing resources, information systems and instruments at different locations. The overall goal is to facilitate the routine interactions of these resources to reduce the time spent in design cycles, particularly for NASA's mission critical projects. The IPG (Information Power Grid) seeks to implement NASA's diverse computing resources in a fashion similar to the way in which electric power is made available.
Dynamic Transfers Of Tasks Among Computers
NASA Technical Reports Server (NTRS)
Liu, Howard T.; Silvester, John A.
1989-01-01
Allocation scheme gives jobs to idle computers. Ideal resource-sharing algorithm should have following characteristics: Dynamics, decentralized, and heterogeneous. Proposed enhanced receiver-initiated dynamic algorithm (ERIDA) for resource sharing fulfills all above criteria. Provides method balancing workload among hosts, resulting in improvement in response time and throughput performance of total system. Adjusts dynamically to traffic load of each station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderam, Vaidy S.
2007-01-09
The Harness project has developed novel software frameworks for the execution of high-end simulations in a fault-tolerant manner on distributed resources. The H2O subsystem comprises the kernel of the Harness framework, and controls the key functions of resource management across multiple administrative domains, especially issues of access and allocation. It is based on a “pluggable” architecture that enables the aggregated use of distributed heterogeneous resources for high performance computing. The major contributions of the Harness II project result in significantly enhancing the overall computational productivity of high-end scientific applications by enabling robust, failure-resilient computations on cooperatively pooled resource collections.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
An Architecture for Cross-Cloud System Management
NASA Astrophysics Data System (ADS)
Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad
The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.
Habitat heterogeneity hypothesis and edge effects in model metacommunities.
Hamm, Michaela; Drossel, Barbara
2017-08-07
Spatial heterogeneity is an inherent property of any living environment and is expected to favour biodiversity due to a broader niche space. Furthermore, edges between different habitats can provide additional possibilities for species coexistence. Using computer simulations, this study examines metacommunities consisting of several trophic levels in heterogeneous environments in order to explore the above hypotheses on a community level. We model heterogeneous landscapes by using two different sized resource pools and evaluate the combined effect of dispersal and heterogeneity on local and regional species diversity. This diversity is obtained by running population dynamics and evaluating the robustness (i.e., the fraction of surviving species). The main results for regional robustness are in agreement with the habitat heterogeneity hypothesis, as the largest robustness is found in heterogeneous systems with intermediate dispersal rates. This robustness is larger than in homogeneous systems with the same total amount of resources. We study the edge effect by arranging the two types of resources in two homogeneous blocks. Different edge responses in diversity are observed, depending on dispersal strength. Local robustness is highest for edge habitats that contain the smaller amount of resource in combination with intermediate dispersal. The results show that dispersal is relevant to correctly identify edge responses on community level. Copyright © 2017 Elsevier Ltd. All rights reserved.
HeNCE: A Heterogeneous Network Computing Environment
Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...
1994-01-01
Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less
Pilots 2.0: DIRAC pilots for all the skies
NASA Astrophysics Data System (ADS)
Stagni, F.; Tsaregorodtsev, A.; McNab, A.; Luzzi, C.
2015-12-01
In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be sent, as a script to be run, or it can be fetched from a remote location. A pilot 2.0 can run on every computing resource, e.g.: on CREAM Computing elements, on DIRAC Computing elements, on Virtual Machines as part of the contextualization script, or IAAC resources, provided that these machines are properly configured, hiding all the details of the Worker Nodes (WNs) infrastructure. Pilots 2.0 can be generated server and client side. Pilots 2.0 are the “pilots to fly in all the skies”, aiming at easy use of computing power, in whatever form it is presented. Another aim is the unification and simplification of the monitoring infrastructure for all kinds of computing resources, by using pilots as a network of distributed sensors coordinated by a central resource monitoring system. Pilots 2.0 have been developed using the command pattern. VOs using DIRAC can tune pilots 2.0 as they need, and extend or replace each and every pilot command in an easy way. In this paper we describe how Pilots 2.0 work with distributed and heterogeneous resources providing the necessary abstraction to deal with different kind of computing resources.
An Overview of MSHN: The Management System for Heterogeneous Networks
1999-04-01
An Overview of MSHN: The Management System for Heterogeneous Networks Debra A. Hensgen†, Taylor Kidd†, David St. John§, Matthew C . Schnaidt†, Howard...ABSTRACT UU 18. NUMBER OF PAGES 15 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE...Alhusaini, V. K. Prasanna, and C . S. Raghavendra, “A unified resource scheduling framework for heterogeneous computing environments,” Proc. 8th IEEE
WebGIS based on semantic grid model and web services
NASA Astrophysics Data System (ADS)
Zhang, WangFei; Yue, CaiRong; Gao, JianGuo
2009-10-01
As the combination point of the network technology and GIS technology, WebGIS has got the fast development in recent years. With the restriction of Web and the characteristics of GIS, traditional WebGIS has some prominent problems existing in development. For example, it can't accomplish the interoperability of heterogeneous spatial databases; it can't accomplish the data access of cross-platform. With the appearance of Web Service and Grid technology, there appeared great change in field of WebGIS. Web Service provided an interface which can give information of different site the ability of data sharing and inter communication. The goal of Grid technology was to make the internet to a large and super computer, with this computer we can efficiently implement the overall sharing of computing resources, storage resource, data resource, information resource, knowledge resources and experts resources. But to WebGIS, we only implement the physically connection of data and information and these is far from the enough. Because of the different understanding of the world, following different professional regulations, different policies and different habits, the experts in different field will get different end when they observed the same geographic phenomenon and the semantic heterogeneity produced. Since these there are large differences to the same concept in different field. If we use the WebGIS without considering of the semantic heterogeneity, we will answer the questions users proposed wrongly or we can't answer the questions users proposed. To solve this problem, this paper put forward and experienced an effective method of combing semantic grid and Web Services technology to develop WebGIS. In this paper, we studied the method to construct ontology and the method to combine Grid technology and Web Services and with the detailed analysis of computing characteristics and application model in the distribution of data, we designed the WebGIS query system driven by ontology based on Grid technology and Web Services.
CoreTSAR: Core Task-Size Adapting Runtime
Scogland, Thomas R. W.; Feng, Wu-chun; Rountree, Barry; ...
2014-10-27
Heterogeneity continues to increase at all levels of computing, with the rise of accelerators such as GPUs, FPGAs, and other co-processors into everything from desktops to supercomputers. As a consequence, efficiently managing such disparate resources has become increasingly complex. CoreTSAR seeks to reduce this complexity by adaptively worksharing parallel-loop regions across compute resources without requiring any transformation of the code within the loop. Lastly, our results show performance improvements of up to three-fold over a current state-of-the-art heterogeneous task scheduler as well as linear performance scaling from a single GPU to four GPUs for many codes. In addition, CoreTSAR demonstratesmore » a robust ability to adapt to both a variety of workloads and underlying system configurations.« less
Data Center Consolidation: A Step towards Infrastructure Clouds
NASA Astrophysics Data System (ADS)
Winter, Markus
Application service providers face enormous challenges and rising costs in managing and operating a growing number of heterogeneous system and computing landscapes. Limitations of traditional computing environments force IT decision-makers to reorganize computing resources within the data center, as continuous growth leads to an inefficient utilization of the underlying hardware infrastructure. This paper discusses a way for infrastructure providers to improve data center operations based on the findings of a case study on resource utilization of very large business applications and presents an outlook beyond server consolidation endeavors, transforming corporate data centers into compute clouds.
SCEAPI: A unified Restful Web API for High-Performance Computing
NASA Astrophysics Data System (ADS)
Rongqiang, Cao; Haili, Xiao; Shasha, Lu; Yining, Zhao; Xiaoning, Wang; Xuebin, Chi
2017-10-01
The development of scientific computing is increasingly moving to collaborative web and mobile applications. All these applications need high-quality programming interface for accessing heterogeneous computing resources consisting of clusters, grid computing or cloud computing. In this paper, we introduce our high-performance computing environment that integrates computing resources from 16 HPC centers across China. Then we present a bundle of web services called SCEAPI and describe how it can be used to access HPC resources with HTTP or HTTPs protocols. We discuss SCEAPI from several aspects including architecture, implementation and security, and address specific challenges in designing compatible interfaces and protecting sensitive data. We describe the functions of SCEAPI including authentication, file transfer and job management for creating, submitting and monitoring, and how to use SCEAPI in an easy-to-use way. Finally, we discuss how to exploit more HPC resources quickly for the ATLAS experiment by implementing the custom ARC compute element based on SCEAPI, and our work shows that SCEAPI is an easy-to-use and effective solution to extend opportunistic HPC resources.
Application-oriented integrated control center (AICC) for heterogeneous optical networks
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Zhang, Jie; Cao, Xuping; Wang, Dajiang; Wu, Koubo; Cai, Yinxiang; Gu, Wanyi
2011-12-01
Various broad bandwidth services have being swallowing the bandwidth resource of optical networks, such as the data center application and cloud computation. There are still some challenges for future optical networks although the available bandwidth is increasing with the development of transmission technologies. The relationship between upper application layer and lower network resource layer is necessary to be researched further. In order to improve the efficiency of network resources and capability of service provisioning, heterogeneous optical networks resource can be abstracted as unified Application Programming Interfaces (APIs) which can be open to various upper applications through Application-oriented Integrated Control Center (AICC) proposed in the paper. A novel Openflow-based unified control architecture is proposed for the optimization of cross layer resources. Numeric results show good performance of AICC through simulation experiments.
Flexible services for the support of research.
Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John
2013-01-28
Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.
NeuroManager: a workflow analysis based simulation management engine for computational neuroscience
Stockton, David B.; Santamaria, Fidel
2015-01-01
We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175
NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.
Stockton, David B; Santamaria, Fidel
2015-01-01
We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.
Autonomic Management of Application Workflows on Hybrid Computing Infrastructure
Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...
2011-01-01
In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less
Constructing Scientific Applications from Heterogeneous Resources
NASA Technical Reports Server (NTRS)
Schichting, Richard D.
1995-01-01
A new model for high-performance scientific applications in which such applications are implemented as heterogeneous distributed programs or, equivalently, meta-computations, is investigated. The specific focus of this grant was a collaborative effort with researchers at NASA and the University of Toledo to test and improve Schooner, a software interconnection system, and to explore the benefits of increased user interaction with existing scientific applications.
OCCAM: a flexible, multi-purpose and extendable HPC cluster
NASA Astrophysics Data System (ADS)
Aldinucci, M.; Bagnasco, S.; Lusso, S.; Pasteris, P.; Rabellino, S.; Vallero, S.
2017-10-01
The Open Computing Cluster for Advanced data Manipulation (OCCAM) is a multipurpose flexible HPC cluster designed and operated by a collaboration between the University of Torino and the Sezione di Torino of the Istituto Nazionale di Fisica Nucleare. It is aimed at providing a flexible, reconfigurable and extendable infrastructure to cater to a wide range of different scientific computing use cases, including ones from solid-state chemistry, high-energy physics, computer science, big data analytics, computational biology, genomics and many others. Furthermore, it will serve as a platform for R&D activities on computational technologies themselves, with topics ranging from GPU acceleration to Cloud Computing technologies. A heterogeneous and reconfigurable system like this poses a number of challenges related to the frequency at which heterogeneous hardware resources might change their availability and shareability status, which in turn affect methods and means to allocate, manage, optimize, bill, monitor VMs, containers, virtual farms, jobs, interactive bare-metal sessions, etc. This work describes some of the use cases that prompted the design and construction of the HPC cluster, its architecture and resource provisioning model, along with a first characterization of its performance by some synthetic benchmark tools and a few realistic use-case tests.
NASA Astrophysics Data System (ADS)
Sapra, Karan; Gupta, Saurabh; Atchley, Scott; Anantharaj, Valentine; Miller, Ross; Vazhkudai, Sudharshan
2016-04-01
Efficient resource utilization is critical for improved end-to-end computing and workflow of scientific applications. Heterogeneous node architectures, such as the GPU-enabled Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), present us with further challenges. In many HPC applications on Titan, the accelerators are the primary compute engines while the CPUs orchestrate the offloading of work onto the accelerators, and moving the output back to the main memory. On the other hand, applications that do not exploit GPUs, the CPU usage is dominant while the GPUs idle. We utilized Heterogenous Functional Partitioning (HFP) runtime framework that can optimize usage of resources on a compute node to expedite an application's end-to-end workflow. This approach is different from existing techniques for in-situ analyses in that it provides a framework for on-the-fly analysis on-node by dynamically exploiting under-utilized resources therein. We have implemented in the Community Earth System Model (CESM) a new concurrent diagnostic processing capability enabled by the HFP framework. Various single variate statistics, such as means and distributions, are computed in-situ by launching HFP tasks on the GPU via the node local HFP daemon. Since our current configuration of CESM does not use GPU resources heavily, we can move these tasks to GPU using the HFP framework. Each rank running the atmospheric model in CESM pushes the variables of of interest via HFP function calls to the HFP daemon. This node local daemon is responsible for receiving the data from main program and launching the designated analytics tasks on the GPU. We have implemented these analytics tasks in C and use OpenACC directives to enable GPU acceleration. This methodology is also advantageous while executing GPU-enabled configurations of CESM when the CPUs will be idle during portions of the runtime. In our implementation results, we demonstrate that it is more efficient to use HFP framework to offload the tasks to GPUs instead of doing it in the main application. We observe increased resource utilization and overall productivity in this approach by using HFP framework for end-to-end workflow.
Overview of the LINCS architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J.G.; Watson, R.W.
1982-01-13
Computing at the Lawrence Livermore National Laboratory (LLNL) has evolved over the past 15 years with a computer network based resource sharing environment. The increasing use of low cost and high performance micro, mini and midi computers and commercially available local networking systems will accelerate this trend. Further, even the large scale computer systems, on which much of the LLNL scientific computing depends, are evolving into multiprocessor systems. It is our belief that the most cost effective use of this environment will depend on the development of application systems structured into cooperating concurrent program modules (processes) distributed appropriately over differentmore » nodes of the environment. A node is defined as one or more processors with a local (shared) high speed memory. Given the latter view, the environment can be characterized as consisting of: multiple nodes communicating over noisy channels with arbitrary delays and throughput, heterogenous base resources and information encodings, no single administration controlling all resources, distributed system state, and no uniform time base. The system design problem is - how to turn the heterogeneous base hardware/firmware/software resources of this environment into a coherent set of resources that facilitate development of cost effective, reliable, and human engineered applications. We believe the answer lies in developing a layered, communication oriented distributed system architecture; layered and modular to support ease of understanding, reconfiguration, extensibility, and hiding of implementation or nonessential local details; communication oriented because that is a central feature of the environment. The Livermore Interactive Network Communication System (LINCS) is a hierarchical architecture designed to meet the above needs. While having characteristics in common with other architectures, it differs in several respects.« less
ERIC Educational Resources Information Center
Reyes Alamo, Jose M.
2010-01-01
The Service Oriented Computing (SOC) paradigm, defines services as software artifacts whose implementations are separated from their specifications. Application developers rely on services to simplify the design, reduce the development time and cost. Within the SOC paradigm, different Service Oriented Architectures (SOAs) have been developed.…
Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing.
Gallicchio, Emilio; Xia, Junchao; Flynn, William F; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M
2015-11-01
Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.
Utility functions and resource management in an oversubscribed heterogeneous computing environment
Khemka, Bhavesh; Friese, Ryan; Briceno, Luis Diego; ...
2014-09-26
We model an oversubscribed heterogeneous computing system where tasks arrive dynamically and a scheduler maps the tasks to machines for execution. The environment and workloads are based on those being investigated by the Extreme Scale Systems Center at Oak Ridge National Laboratory. Utility functions that are designed based on specifications from the system owner and users are used to create a metric for the performance of resource allocation heuristics. Each task has a time-varying utility (importance) that the enterprise will earn based on when the task successfully completes execution. We design multiple heuristics, which include a technique to drop lowmore » utility-earning tasks, to maximize the total utility that can be earned by completing tasks. The heuristics are evaluated using simulation experiments with two levels of oversubscription. The results show the benefit of having fast heuristics that account for the importance of a task and the heterogeneity of the environment when making allocation decisions in an oversubscribed environment. Furthermore, the ability to drop low utility-earning tasks allow the heuristics to tolerate the high oversubscription as well as earn significant utility.« less
Workflow Management Systems for Molecular Dynamics on Leadership Computers
NASA Astrophysics Data System (ADS)
Wells, Jack; Panitkin, Sergey; Oleynik, Danila; Jha, Shantenu
Molecular Dynamics (MD) simulations play an important role in a range of disciplines from Material Science to Biophysical systems and account for a large fraction of cycles consumed on computing resources. Increasingly science problems require the successful execution of ''many'' MD simulations as opposed to a single MD simulation. There is a need to provide scalable and flexible approaches to the execution of the workload. We present preliminary results on the Titan computer at the Oak Ridge Leadership Computing Facility that demonstrate a general capability to manage workload execution agnostic of a specific MD simulation kernel or execution pattern, and in a manner that integrates disparate grid-based and supercomputing resources. Our results build upon our extensive experience of distributed workload management in the high-energy physics ATLAS project using PanDA (Production and Distributed Analysis System), coupled with recent conceptual advances in our understanding of workload management on heterogeneous resources. We will discuss how we will generalize these initial capabilities towards a more production level service on DOE leadership resources. This research is sponsored by US DOE/ASCR and used resources of the OLCF computing facility.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
Deelman, E.; Callaghan, S.; Field, E.; Francoeur, H.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T.H.; Kesselman, C.; Maechling, P.; Mehringer, J.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.
2006-01-01
This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid. ?? 2006 IEEE.
Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)
2002-01-01
The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.
Solving global shallow water equations on heterogeneous supercomputers
Fu, Haohuan; Gan, Lin; Yang, Chao; Xue, Wei; Wang, Lanning; Wang, Xinliang; Huang, Xiaomeng; Yang, Guangwen
2017-01-01
The scientific demand for more accurate modeling of the climate system calls for more computing power to support higher resolutions, inclusion of more component models, more complicated physics schemes, and larger ensembles. As the recent improvements in computing power mostly come from the increasing number of nodes in a system and the integration of heterogeneous accelerators, how to scale the computing problems onto more nodes and various kinds of accelerators has become a challenge for the model development. This paper describes our efforts on developing a highly scalable framework for performing global atmospheric modeling on heterogeneous supercomputers equipped with various accelerators, such as GPU (Graphic Processing Unit), MIC (Many Integrated Core), and FPGA (Field Programmable Gate Arrays) cards. We propose a generalized partition scheme of the problem domain, so as to keep a balanced utilization of both CPU resources and accelerator resources. With optimizations on both computing and memory access patterns, we manage to achieve around 8 to 20 times speedup when comparing one hybrid GPU or MIC node with one CPU node with 12 cores. Using a customized FPGA-based data-flow engines, we see the potential to gain another 5 to 8 times improvement on performance. On heterogeneous supercomputers, such as Tianhe-1A and Tianhe-2, our framework is capable of achieving ideally linear scaling efficiency, and sustained double-precision performances of 581 Tflops on Tianhe-1A (using 3750 nodes) and 3.74 Pflops on Tianhe-2 (using 8644 nodes). Our study also provides an evaluation on the programming paradigm of various accelerator architectures (GPU, MIC, FPGA) for performing global atmospheric simulation, to form a picture about both the potential performance benefits and the programming efforts involved. PMID:28282428
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
NASA Astrophysics Data System (ADS)
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten
2017-11-01
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.
NASA Astrophysics Data System (ADS)
Barreiro, F. H.; Borodin, M.; De, K.; Golubkov, D.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Padolski, S.; Wenaus, T.; ATLAS Collaboration
2017-10-01
The second generation of the ATLAS Production System called ProdSys2 is a distributed workload manager that runs daily hundreds of thousands of jobs, from dozens of different ATLAS specific workflows, across more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criteria, such as input and output size, memory requirements and CPU consumption, with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteer-computers. The system dynamically assigns a group of jobs (task) to a group of geographically distributed computing resources. Dynamic assignment and resources utilization is one of the major features of the system, it didn’t exist in the earliest versions of the production system where Grid resources topology was predefined using national or/and geographical pattern. Production System has a sophisticated job fault-recovery mechanism, which efficiently allows to run multi-Terabyte tasks without human intervention. We have implemented “train” model and open-ended production which allow to submit tasks automatically as soon as new set of data is available and to chain physics groups data processing and analysis with central production by the experiment. We present an overview of the ATLAS Production System and its major components features and architecture: task definition, web user interface and monitoring. We describe the important design decisions and lessons learned from an operational experience during the first year of LHC Run2. We also report the performance of the designed system and how various workflows, such as data (re)processing, Monte-Carlo and physics group production, users analysis, are scheduled and executed within one production system on heterogeneous computing resources.
GANGA: A tool for computational-task management and easy access to Grid resources
NASA Astrophysics Data System (ADS)
Mościcki, J. T.; Brochu, F.; Ebke, J.; Egede, U.; Elmsheuser, J.; Harrison, K.; Jones, R. W. L.; Lee, H. C.; Liko, D.; Maier, A.; Muraru, A.; Patrick, G. N.; Pajchel, K.; Reece, W.; Samset, B. H.; Slater, M. W.; Soroko, A.; Tan, C. L.; van der Ster, D. C.; Williams, M.
2009-11-01
In this paper, we present the computational task-management tool GANGA, which allows for the specification, submission, bookkeeping and post-processing of computational tasks on a wide set of distributed resources. GANGA has been developed to solve a problem increasingly common in scientific projects, which is that researchers must regularly switch between different processing systems, each with its own command set, to complete their computational tasks. GANGA provides a homogeneous environment for processing data on heterogeneous resources. We give examples from High Energy Physics, demonstrating how an analysis can be developed on a local system and then transparently moved to a Grid system for processing of all available data. GANGA has an API that can be used via an interactive interface, in scripts, or through a GUI. Specific knowledge about types of tasks or computational resources is provided at run-time through a plugin system, making new developments easy to integrate. We give an overview of the GANGA architecture, give examples of current use, and demonstrate how GANGA can be used in many different areas of science. Catalogue identifier: AEEN_v1_0 Program summary URL:
Lima, Jakelyne; Cerdeira, Louise Teixeira; Bol, Erick; Schneider, Maria Paula Cruz; Silva, Artur; Azevedo, Vasco; Abelém, Antônio Jorge Gomes
2012-01-01
Improvements in genome sequencing techniques have resulted in generation of huge volumes of data. As a consequence of this progress, the genome assembly stage demands even more computational power, since the incoming sequence files contain large amounts of data. To speed up the process, it is often necessary to distribute the workload among a group of machines. However, this requires hardware and software solutions specially configured for this purpose. Grid computing try to simplify this process of aggregate resources, but do not always offer the best performance possible due to heterogeneity and decentralized management of its resources. Thus, it is necessary to develop software that takes into account these peculiarities. In order to achieve this purpose, we developed an algorithm aimed to optimize the functionality of de novo assembly software ABySS in order to optimize its operation in grids. We run ABySS with and without the algorithm we developed in the grid simulator SimGrid. Tests showed that our algorithm is viable, flexible, and scalable even on a heterogeneous environment, which improved the genome assembly time in computational grids without changing its quality. PMID:22461785
NASA's Information Power Grid: Large Scale Distributed Computing and Data Management
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)
2001-01-01
Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.
Job Superscheduler Architecture and Performance in Computational Grid Environments
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak
2003-01-01
Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.
Dynamic resource allocation scheme for distributed heterogeneous computer systems
NASA Technical Reports Server (NTRS)
Liu, Howard T. (Inventor); Silvester, John A. (Inventor)
1991-01-01
This invention relates to a resource allocation in computer systems, and more particularly, to a method and associated apparatus for shortening response time and improving efficiency of a heterogeneous distributed networked computer system by reallocating the jobs queued up for busy nodes to idle, or less-busy nodes. In accordance with the algorithm (SIDA for short), the load-sharing is initiated by the server device in a manner such that extra overhead in not imposed on the system during heavily-loaded conditions. The algorithm employed in the present invention uses a dual-mode, server-initiated approach. Jobs are transferred from heavily burdened nodes (i.e., over a high threshold limit) to low burdened nodes at the initiation of the receiving node when: (1) a job finishes at a node which is burdened below a pre-established threshold level, or (2) a node is idle for a period of time as established by a wakeup timer at the node. The invention uses a combination of the local queue length and the local service rate ratio at each node as the workload indicator.
Self managing experiment resources
NASA Astrophysics Data System (ADS)
Stagni, F.; Ubeda, M.; Tsaregorodtsev, A.; Romanovskiy, V.; Roiser, S.; Charpentier, P.; Graciani, R.
2014-06-01
Within this paper we present an autonomic Computing resources management system, used by LHCb for assessing the status of their Grid resources. Virtual Organizations Grids include heterogeneous resources. For example, LHC experiments very often use resources not provided by WLCG, and Cloud Computing resources will soon provide a non-negligible fraction of their computing power. The lack of standards and procedures across experiments and sites generated the appearance of multiple information systems, monitoring tools, ticket portals, etc... which nowadays coexist and represent a very precious source of information for running HEP experiments Computing systems as well as sites. These two facts lead to many particular solutions for a general problem: managing the experiment resources. In this paper we present how LHCb, via the DIRAC interware, addressed such issues. With a renewed Central Information Schema hosting all resources metadata and a Status System (Resource Status System) delivering real time information, the system controls the resources topology, independently of the resource types. The Resource Status System applies data mining techniques against all possible information sources available and assesses the status changes, that are then propagated to the topology description. Obviously, giving full control to such an automated system is not risk-free. Therefore, in order to minimise the probability of misbehavior, a battery of tests has been developed in order to certify the correctness of its assessments. We will demonstrate the performance and efficiency of such a system in terms of cost reduction and reliability.
NASA Astrophysics Data System (ADS)
Deng, Liang; Bai, Hanli; Wang, Fang; Xu, Qingxin
2016-06-01
CPU/GPU computing allows scientists to tremendously accelerate their numerical codes. In this paper, we port and optimize a double precision alternating direction implicit (ADI) solver for three-dimensional compressible Navier-Stokes equations from our in-house Computational Fluid Dynamics (CFD) software on heterogeneous platform. First, we implement a full GPU version of the ADI solver to remove a lot of redundant data transfers between CPU and GPU, and then design two fine-grain schemes, namely “one-thread-one-point” and “one-thread-one-line”, to maximize the performance. Second, we present a dual-level parallelization scheme using the CPU/GPU collaborative model to exploit the computational resources of both multi-core CPUs and many-core GPUs within the heterogeneous platform. Finally, considering the fact that memory on a single node becomes inadequate when the simulation size grows, we present a tri-level hybrid programming pattern MPI-OpenMP-CUDA that merges fine-grain parallelism using OpenMP and CUDA threads with coarse-grain parallelism using MPI for inter-node communication. We also propose a strategy to overlap the computation with communication using the advanced features of CUDA and MPI programming. We obtain speedups of 6.0 for the ADI solver on one Tesla M2050 GPU in contrast to two Xeon X5670 CPUs. Scalability tests show that our implementation can offer significant performance improvement on heterogeneous platform.
Consolidating WLCG topology and configuration in the Computing Resource Information Catalogue
Alandes, Maria; Andreeva, Julia; Anisenkov, Alexey; ...
2017-10-01
Here, the Worldwide LHC Computing Grid infrastructure links about 200 participating computing centres affiliated with several partner projects. It is built by integrating heterogeneous computer and storage resources in diverse data centres all over the world and provides CPU and storage capacity to the LHC experiments to perform data processing and physics analysis. In order to be used by the experiments, these distributed resources should be well described, which implies easy service discovery and detailed description of service configuration. Currently this information is scattered over multiple generic information sources like GOCDB, OIM, BDII and experiment-specific information systems. Such a modelmore » does not allow to validate topology and configuration information easily. Moreover, information in various sources is not always consistent. Finally, the evolution of computing technologies introduces new challenges. Experiments are more and more relying on opportunistic resources, which by their nature are more dynamic and should also be well described in the WLCG information system. This contribution describes the new WLCG configuration service CRIC (Computing Resource Information Catalogue) which collects information from various information providers, performs validation and provides a consistent set of UIs and APIs to the LHC VOs for service discovery and usage configuration. The main requirements for CRIC are simplicity, agility and robustness. CRIC should be able to be quickly adapted to new types of computing resources, new information sources, and allow for new data structures to be implemented easily following the evolution of the computing models and operations of the experiments.« less
Consolidating WLCG topology and configuration in the Computing Resource Information Catalogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alandes, Maria; Andreeva, Julia; Anisenkov, Alexey
Here, the Worldwide LHC Computing Grid infrastructure links about 200 participating computing centres affiliated with several partner projects. It is built by integrating heterogeneous computer and storage resources in diverse data centres all over the world and provides CPU and storage capacity to the LHC experiments to perform data processing and physics analysis. In order to be used by the experiments, these distributed resources should be well described, which implies easy service discovery and detailed description of service configuration. Currently this information is scattered over multiple generic information sources like GOCDB, OIM, BDII and experiment-specific information systems. Such a modelmore » does not allow to validate topology and configuration information easily. Moreover, information in various sources is not always consistent. Finally, the evolution of computing technologies introduces new challenges. Experiments are more and more relying on opportunistic resources, which by their nature are more dynamic and should also be well described in the WLCG information system. This contribution describes the new WLCG configuration service CRIC (Computing Resource Information Catalogue) which collects information from various information providers, performs validation and provides a consistent set of UIs and APIs to the LHC VOs for service discovery and usage configuration. The main requirements for CRIC are simplicity, agility and robustness. CRIC should be able to be quickly adapted to new types of computing resources, new information sources, and allow for new data structures to be implemented easily following the evolution of the computing models and operations of the experiments.« less
Consolidating WLCG topology and configuration in the Computing Resource Information Catalogue
NASA Astrophysics Data System (ADS)
Alandes, Maria; Andreeva, Julia; Anisenkov, Alexey; Bagliesi, Giuseppe; Belforte, Stephano; Campana, Simone; Dimou, Maria; Flix, Jose; Forti, Alessandra; di Girolamo, A.; Karavakis, Edward; Lammel, Stephan; Litmaath, Maarten; Sciaba, Andrea; Valassi, Andrea
2017-10-01
The Worldwide LHC Computing Grid infrastructure links about 200 participating computing centres affiliated with several partner projects. It is built by integrating heterogeneous computer and storage resources in diverse data centres all over the world and provides CPU and storage capacity to the LHC experiments to perform data processing and physics analysis. In order to be used by the experiments, these distributed resources should be well described, which implies easy service discovery and detailed description of service configuration. Currently this information is scattered over multiple generic information sources like GOCDB, OIM, BDII and experiment-specific information systems. Such a model does not allow to validate topology and configuration information easily. Moreover, information in various sources is not always consistent. Finally, the evolution of computing technologies introduces new challenges. Experiments are more and more relying on opportunistic resources, which by their nature are more dynamic and should also be well described in the WLCG information system. This contribution describes the new WLCG configuration service CRIC (Computing Resource Information Catalogue) which collects information from various information providers, performs validation and provides a consistent set of UIs and APIs to the LHC VOs for service discovery and usage configuration. The main requirements for CRIC are simplicity, agility and robustness. CRIC should be able to be quickly adapted to new types of computing resources, new information sources, and allow for new data structures to be implemented easily following the evolution of the computing models and operations of the experiments.
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; ...
2017-11-27
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less
A world-wide databridge supported by a commercial cloud provider
NASA Astrophysics Data System (ADS)
Tat Cheung, Kwong; Field, Laurence; Furano, Fabrizio
2017-10-01
Volunteer computing has the potential to provide significant additional computing capacity for the LHC experiments. One of the challenges with exploiting volunteer computing is to support a global community of volunteers that provides heterogeneous resources. However, high energy physics applications require more data input and output than the CPU intensive applications that are typically used by other volunteer computing projects. While the so-called databridge has already been successfully proposed as a method to span the untrusted and trusted domains of volunteer computing and Grid computing respective, globally transferring data between potentially poor-performing residential networks and CERN could be unreliable, leading to wasted resources usage. The expectation is that by placing a storage endpoint that is part of a wider, flexible geographical databridge deployment closer to the volunteers, the transfer success rate and the overall performance can be improved. This contribution investigates the provision of a globally distributed databridge implemented upon a commercial cloud provider.
Law of Large Numbers: The Theory, Applications and Technology-Based Education
ERIC Educational Resources Information Center
Dinov, Ivo D.; Christou, Nicolas; Gould, Robert
2009-01-01
Modern approaches for technology-based blended education utilize a variety of recently developed novel pedagogical, computational and network resources. Such attempts employ technology to deliver integrated, dynamically-linked, interactive-content and heterogeneous learning environments, which may improve student comprehension and information…
Dedicated heterogeneous node scheduling including backfill scheduling
Wood, Robert R [Livermore, CA; Eckert, Philip D [Livermore, CA; Hommes, Gregg [Pleasanton, CA
2006-07-25
A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.
Genetic Advances in Autism: Heterogeneity and Convergence on Shared Pathways
Bill, Brent R.; Geschwind, Daniel H.
2009-01-01
The autism spectrum disorders (ASD) are a heterogeneous set of developmental disorders characterized at their core by deficits in social interaction and communication. Current psychiatric nosology groups this broad set of disorders with strong genetic liability and multiple etiologies into the same diagnostic category. This heterogeneity has challenged genetic analyses. But shared patient resources, genomic technologies, more refined phenotypes, and novel computational approaches have begun to yield dividends in defining the genetic mechanisms at work. Over the last five years, a large number of autism susceptibility loci have emerged, redefining our notion of autism’s etiologies, and reframing how we think about ASD. PMID:19477629
NASA Astrophysics Data System (ADS)
Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III
2018-04-01
NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.
Sort-Mid tasks scheduling algorithm in grid computing.
Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M
2015-11-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
Sort-Mid tasks scheduling algorithm in grid computing
Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.
2014-01-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937
Grid commerce, market-driven G-negotiation, and Grid resource management.
Sim, Kwang Mong
2006-12-01
Although the management of resources is essential for realizing a computational grid, providing an efficient resource allocation mechanism is a complex undertaking. Since Grid providers and consumers may be independent bodies, negotiation among them is necessary. The contribution of this paper is showing that market-driven agents (MDAs) are appropriate tools for Grid resource negotiation. MDAs are e-negotiation agents designed with the flexibility of: 1) making adjustable amounts of concession taking into account market rivalry, outside options, and time preferences and 2) relaxing bargaining terms in the face of intense pressure. A heterogeneous testbed consisting of several types of e-negotiation agents to simulate a Grid computing environment was developed. It compares the performance of MDAs against other e-negotiation agents (e.g., Kasbah) in a Grid-commerce environment. Empirical results show that MDAs generally achieve: 1) higher budget efficiencies in many market situations than other e-negotiation agents in the testbed and 2) higher success rates in acquiring Grid resources under high Grid loadings.
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
Grid and Cloud for Developing Countries
NASA Astrophysics Data System (ADS)
Petitdidier, Monique
2014-05-01
The European Grid e-infrastructure has shown the capacity to connect geographically distributed heterogeneous compute resources in a secure way taking advantages of a robust and fast REN (Research and Education Network). In many countries like in Africa the first step has been to implement a REN and regional organizations like Ubuntunet, WACREN or ASREN to coordinate the development, improvement of the network and its interconnection. The Internet connections are still exploding in those countries. The second step has been to fill up compute needs of the scientists. Even if many of them have their own multi-core or not laptops for more and more applications it is not enough because they have to face intensive computing due to the large amount of data to be processed and/or complex codes. So far one solution has been to go abroad in Europe or in America to run large applications or not to participate to international communities. The Grid is very attractive to connect geographically-distributed heterogeneous resources, aggregate new ones and create new sites on the REN with a secure access. All the users have the same servicers even if they have no resources in their institute. With faster and more robust internet they will be able to take advantage of the European Grid. There are different initiatives to provide resources and training like UNESCO/HP Brain Gain initiative, EUMEDGrid, ..Nowadays Cloud becomes very attractive and they start to be developed in some countries. In this talk challenges for those countries to implement such e-infrastructures, to develop in parallel scientific and technical research and education in the new technologies will be presented illustrated by examples.
AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble.
Abdul-Wahid, Badi'; Feng, Haoyun; Rajan, Dinesh; Costaouec, Ronan; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A
2014-10-27
A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy.
AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble
2015-01-01
A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy. PMID:25207854
Application-Level Interoperability Across Grids and Clouds
NASA Astrophysics Data System (ADS)
Jha, Shantenu; Luckow, Andre; Merzky, Andre; Erdely, Miklos; Sehgal, Saurabh
Application-level interoperability is defined as the ability of an application to utilize multiple distributed heterogeneous resources. Such interoperability is becoming increasingly important with increasing volumes of data, multiple sources of data as well as resource types. The primary aim of this chapter is to understand different ways in which application-level interoperability can be provided across distributed infrastructure. We achieve this by (i) using the canonical wordcount application, based on an enhanced version of MapReduce that scales-out across clusters, clouds, and HPC resources, (ii) establishing how SAGA enables the execution of wordcount application using MapReduce and other programming models such as Sphere concurrently, and (iii) demonstrating the scale-out of ensemble-based biomolecular simulations across multiple resources. We show user-level control of the relative placement of compute and data and also provide simple performance measures and analysis of SAGA-MapReduce when using multiple, different, heterogeneous infrastructures concurrently for the same problem instance. Finally, we discuss Azure and some of the system-level abstractions that it provides and show how it is used to support ensemble-based biomolecular simulations.
A data colocation grid framework for big data medical image processing: backend design
NASA Astrophysics Data System (ADS)
Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.
2018-03-01
When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop and HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.
A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design.
Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A
2018-03-01
When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.
A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design
Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.
2018-01-01
When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework’s performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available. PMID:29887668
NASA Astrophysics Data System (ADS)
Stagni, F.; McNab, A.; Luzzi, C.; Krzemien, W.; Consortium, DIRAC
2017-10-01
In the last few years, new types of computing models, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are in the form of opportunistic ones. Most but not all of these new infrastructures are based on virtualization techniques. In addition, some of them, present opportunities for multi-processor computing slots to the users. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to provide the transparent, uniform interface has become essential. The transparent access to the underlying resources is realized by implementing the pilot model. DIRAC’s newest generation of generic pilots (the so-called Pilots 2.0) are the “pilots for all the skies”, and have been successfully released in production more than a year ago. They use a plugin mechanism that makes them easily adaptable. Pilots 2.0 have been used for fetching and running jobs on every type of resource, being it a Worker Node (WN) behind a CREAM/ARC/HTCondor/DIRAC Computing element, a Virtual Machine running on IaaC infrastructures like Vac or BOINC, on IaaS cloud resources managed by Vcycle, the LHCb High Level Trigger farm nodes, and any type of opportunistic computing resource. Make a machine a “Pilot Machine”, and all diversities between them will disappear. This contribution describes how pilots are made suitable for different resources, and the recent steps taken towards a fully unified framework, including monitoring. Also, the cases of multi-processor computing slots either on real or virtual machines, with the whole node or a partition of it, is discussed.
A market-based optimization approach to sensor and resource management
NASA Astrophysics Data System (ADS)
Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.
2006-05-01
Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.
Modeling Endovascular Coils as Heterogeneous Porous Media
NASA Astrophysics Data System (ADS)
Yadollahi Farsani, H.; Herrmann, M.; Chong, B.; Frakes, D.
2016-12-01
Minimally invasive surgeries are the stat-of-the-art treatments for many pathologies. Treating brain aneurysms is no exception; invasive neurovascular clipping is no longer the only option and endovascular coiling has introduced itself as the most common treatment. Coiling isolates the aneurysm from blood circulation by promoting thrombosis within the aneurysm. One approach to studying intra-aneurysmal hemodynamics consists of virtually deploying finite element coil models and then performing computational fluid dynamics. However, this approach is often computationally expensive and requires extensive resources to perform. The porous medium approach has been considered as an alternative to the conventional coil modeling approach because it lessens the complexities of computational fluid dynamics simulations by reducing the number of mesh elements needed to discretize the domain. There have been a limited number of attempts at treating the endovascular coils as homogeneous porous media. However, the heterogeneity associated with coil configurations requires a more accurately defined porous medium in which the porosity and permeability change throughout the domain. We implemented this approach by introducing a lattice of sample volumes and utilizing techniques available in the field of interactive computer graphics. We observed that the introduction of the heterogeneity assumption was associated with significant changes in simulated aneurysmal flow velocities as compared to the homogeneous assumption case. Moreover, as the sample volume size was decreased, the flow velocities approached an asymptotical value, showing the importance of the sample volume size selection. These results demonstrate that the homogeneous assumption for porous media that are inherently heterogeneous can lead to considerable errors. Additionally, this modeling approach allowed us to simulate post-treatment flows without considering the explicit geometry of a deployed endovascular coil mass, greatly simplifying computation.
CROPPER: a metagene creator resource for cross-platform and cross-species compendium studies.
Paananen, Jussi; Storvik, Markus; Wong, Garry
2006-09-22
Current genomic research methods provide researchers with enormous amounts of data. Combining data from different high-throughput research technologies commonly available in biological databases can lead to novel findings and increase research efficiency. However, combining data from different heterogeneous sources is often a very arduous task. These sources can be different microarray technology platforms, genomic databases, or experiments performed on various species. Our aim was to develop a software program that could facilitate the combining of data from heterogeneous sources, and thus allow researchers to perform genomic cross-platform/cross-species studies and to use existing experimental data for compendium studies. We have developed a web-based software resource, called CROPPER that uses the latest genomic information concerning different data identifiers and orthologous genes from the Ensembl database. CROPPER can be used to combine genomic data from different heterogeneous sources, allowing researchers to perform cross-platform/cross-species compendium studies without the need for complex computational tools or the requirement of setting up one's own in-house database. We also present an example of a simple cross-platform/cross-species compendium study based on publicly available Parkinson's disease data derived from different sources. CROPPER is a user-friendly and freely available web-based software resource that can be successfully used for cross-species/cross-platform compendium studies.
Cyberinfrastructure for End-to-End Environmental Explorations
NASA Astrophysics Data System (ADS)
Merwade, V.; Kumar, S.; Song, C.; Zhao, L.; Govindaraju, R.; Niyogi, D.
2007-12-01
The design and implementation of a cyberinfrastructure for End-to-End Environmental Exploration (C4E4) is presented. The C4E4 framework addresses the need for an integrated data/computation platform for studying broad environmental impacts by combining heterogeneous data resources with state-of-the-art modeling and visualization tools. With Purdue being a TeraGrid Resource Provider, C4E4 builds on top of the Purdue TeraGrid data management system and Grid resources, and integrates them through a service-oriented workflow system. It allows researchers to construct environmental workflows for data discovery, access, transformation, modeling, and visualization. Using the C4E4 framework, we have implemented an end-to-end SWAT simulation and analysis workflow that connects our TeraGrid data and computation resources. It enables researchers to conduct comprehensive studies on the impact of land management practices in the St. Joseph watershed using data from various sources in hydrologic, atmospheric, agricultural, and other related disciplines.
XML-based approaches for the integration of heterogeneous bio-molecular data.
Mesiti, Marco; Jiménez-Ruiz, Ernesto; Sanz, Ismael; Berlanga-Llavori, Rafael; Perlasca, Paolo; Valentini, Giorgio; Manset, David
2009-10-15
The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources.
Heterogeneous game resource distributions promote cooperation in spatial prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Cui, Guang-Hai; Wang, Zhen; Yang, Yan-Cun; Tian, Sheng-Wen; Yue, Jun
2018-01-01
In social networks, individual abilities to establish interactions are always heterogeneous and independent of the number of topological neighbors. We here study the influence of heterogeneous distributions of abilities on the evolution of individual cooperation in the spatial prisoner's dilemma game. First, we introduced a prisoner's dilemma game, taking into account individual heterogeneous abilities to establish games, which are determined by the owned game resources. Second, we studied three types of game resource distributions that follow the power-law property. Simulation results show that the heterogeneous distribution of individual game resources can promote cooperation effectively, and the heterogeneous level of resource distributions has a positive influence on the maintenance of cooperation. Extensive analysis shows that cooperators with large resource capacities can foster cooperator clusters around themselves. Furthermore, when the temptation to defect is high, cooperator clusters in which the central pure cooperators have larger game resource capacities are more stable than other cooperator clusters.
Optimization of over-provisioned clouds
NASA Astrophysics Data System (ADS)
Balashov, N.; Baranov, A.; Korenkov, V.
2016-09-01
The functioning of modern applications in cloud-centers is characterized by a huge variety of computational workloads generated. This causes uneven workload distribution and as a result leads to ineffective utilization of cloud-centers' hardware. The proposed article addresses the possible ways to solve this issue and demonstrates that it is a matter of necessity to optimize cloud-centers' hardware utilization. As one of the possible ways to solve the problem of the inefficient resource utilization in heterogeneous cloud-environments an algorithm of dynamic re-allocation of virtual resources is suggested.
Nürnberger, Fabian; Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health.
Implementing Parquet equations using HPX
NASA Astrophysics Data System (ADS)
Kellar, Samuel; Wagle, Bibek; Yang, Shuxiang; Tam, Ka-Ming; Kaiser, Hartmut; Moreno, Juana; Jarrell, Mark
A new C++ runtime system (HPX) enables simulations of complex systems to run more efficiently on parallel and heterogeneous systems. This increased efficiency allows for solutions to larger simulations of the parquet approximation for a system with impurities. The relevancy of the parquet equations depends upon the ability to solve systems which require long runs and large amounts of memory. These limitations, in addition to numerical complications arising from stability of the solutions, necessitate running on large distributed systems. As the computational resources trend towards the exascale and the limitations arising from computational resources vanish efficiency of large scale simulations becomes a focus. HPX facilitates efficient simulations through intelligent overlapping of computation and communication. Simulations such as the parquet equations which require the transfer of large amounts of data should benefit from HPX implementations. Supported by the the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC
NASA Astrophysics Data System (ADS)
Barreiro Megino, Fernando; Caballero Bejar, Jose; De, Kaushik; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Petrosyan, Artem; Wenaus, Torre
2016-02-01
After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.
Community-driven computational biology with Debian Linux.
Möller, Steffen; Krabbenhöft, Hajo Nils; Tille, Andreas; Paleino, David; Williams, Alan; Wolstencroft, Katy; Goble, Carole; Holland, Richard; Belhachemi, Dominique; Plessy, Charles
2010-12-21
The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers.
Trust Model to Enhance Security and Interoperability of Cloud Environment
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Ping, Lingdi
Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.
An Experimental Framework for Executing Applications in Dynamic Grid Environments
NASA Technical Reports Server (NTRS)
Huedo, Eduardo; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The Grid opens up opportunities for resource-starved scientists and engineers to harness highly distributed computing resources. A number of Grid middleware projects are currently available to support the simultaneous exploitation of heterogeneous resources distributed in different administrative domains. However, efficient job submission and management continue being far from accessible to ordinary scientists and engineers due to the dynamic and complex nature of the Grid. This report describes a new Globus framework that allows an easier and more efficient execution of jobs in a 'submit and forget' fashion. Adaptation to dynamic Grid conditions is achieved by supporting automatic application migration following performance degradation, 'better' resource discovery, requirement change, owner decision or remote resource failure. The report also includes experimental results of the behavior of our framework on the TRGP testbed.
Using Computing and Data Grids for Large-Scale Science and Engineering
NASA Technical Reports Server (NTRS)
Johnston, William E.
2001-01-01
We use the term "Grid" to refer to a software system that provides uniform and location independent access to geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. These emerging data and computing Grids promise to provide a highly capable and scalable environment for addressing large-scale science problems. We describe the requirements for science Grids, the resulting services and architecture of NASA's Information Power Grid (IPG) and DOE's Science Grid, and some of the scaling issues that have come up in their implementation.
NASA Technical Reports Server (NTRS)
Stroupe, Ashley W.; Okon, Avi; Robinson, Matthew; Huntsberger, Terry; Aghazarian, Hrand; Baumgartner, Eric
2004-01-01
Robotic Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous acquisition, transport, and precision mating of components in construction tasks. RCC minimizes resources constrained in a space environment such as computation, power, communication and, sensing. A behavior-based architecture provides adaptability and robustness despite low computational requirements. RCC successfully performs several construction related tasks in an emulated outdoor environment despite high levels of uncertainty in motions and sensing. Quantitative results are provided for formation keeping in component transport, precision instrument placement, and construction tasks.
Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health. PMID:28603677
Application-oriented offloading in heterogeneous networks for mobile cloud computing
NASA Astrophysics Data System (ADS)
Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.
2018-04-01
Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.
NASA Astrophysics Data System (ADS)
Leidi, Tiziano; Scocchi, Giulio; Grossi, Loris; Pusterla, Simone; D'Angelo, Claudio; Thiran, Jean-Philippe; Ortona, Alberto
2012-11-01
In recent decades, finite element (FE) techniques have been extensively used for predicting effective properties of random heterogeneous materials. In the case of very complex microstructures, the choice of numerical methods for the solution of this problem can offer some advantages over classical analytical approaches, and it allows the use of digital images obtained from real material samples (e.g., using computed tomography). On the other hand, having a large number of elements is often necessary for properly describing complex microstructures, ultimately leading to extremely time-consuming computations and high memory requirements. With the final objective of reducing these limitations, we improved an existing freely available FE code for the computation of effective conductivity (electrical and thermal) of microstructure digital models. To allow execution on hardware combining multi-core CPUs and a GPU, we first translated the original algorithm from Fortran to C, and we subdivided it into software components. Then, we enhanced the C version of the algorithm for parallel processing with heterogeneous processors. With the goal of maximizing the obtained performances and limiting resource consumption, we utilized a software architecture based on stream processing, event-driven scheduling, and dynamic load balancing. The parallel processing version of the algorithm has been validated using a simple microstructure consisting of a single sphere located at the centre of a cubic box, yielding consistent results. Finally, the code was used for the calculation of the effective thermal conductivity of a digital model of a real sample (a ceramic foam obtained using X-ray computed tomography). On a computer equipped with dual hexa-core Intel Xeon X5670 processors and an NVIDIA Tesla C2050, the parallel application version features near to linear speed-up progression when using only the CPU cores. It executes more than 20 times faster when additionally using the GPU.
Development and implementation of a PACS network and resource manager
NASA Astrophysics Data System (ADS)
Stewart, Brent K.; Taira, Ricky K.; Dwyer, Samuel J., III; Huang, H. K.
1992-07-01
Clinical acceptance of PACS is predicated upon maximum uptime. Upon component failure, detection, diagnosis, reconfiguration and repair must occur immediately. Our current PACS network is large, heterogeneous, complex and wide-spread geographically. The overwhelming number of network devices, computers and software processes involved in a departmental or inter-institutional PACS makes development of tools for network and resource management critical. The authors have developed and implemented a comprehensive solution (PACS Network-Resource Manager) using the OSI Network Management Framework with network element agents that respond to queries and commands for network management stations. Managed resources include: communication protocol layers for Ethernet, FDDI and UltraNet; network devices; computer and operating system resources; and application, database and network services. The Network-Resource Manager is currently being used for warning, fault, security violation and configuration modification event notification. Analysis, automation and control applications have been added so that PACS resources can be dynamically reconfigured and so that users are notified when active involvement is required. Custom data and error logging have been implemented that allow statistics for each PACS subsystem to be charted for performance data. The Network-Resource Manager allows our departmental PACS system to be monitored continuously and thoroughly, with a minimal amount of personal involvement and time.
Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers
NASA Technical Reports Server (NTRS)
Tumer, K.; Lawson, J.
2003-01-01
Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.
Resource heterogeneity can facilitate cooperation.
Kun, Ádám; Dieckmann, Ulf
2013-01-01
Although social structure is known to promote cooperation, by locally exposing selfish agents to their own deeds, studies to date assumed that all agents have access to the same level of resources. This is clearly unrealistic. Here we find that cooperation can be maintained when some agents have access to more resources than others. Cooperation can then emerge even in populations in which the temptation to defect is so strong that players would act fully selfishly if their resources were distributed uniformly. Resource heterogeneity can thus be crucial for the emergence and maintenance of cooperation. We also show that resource heterogeneity can hinder cooperation once the temptation to defect is significantly lowered. In all cases, the level of cooperation can be maximized by managing resource heterogeneity.
Next generation communications satellites: multiple access and network studies
NASA Technical Reports Server (NTRS)
Meadows, H. E.; Schwartz, M.; Stern, T. E.; Ganguly, S.; Kraimeche, B.; Matsuo, K.; Gopal, I.
1982-01-01
Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed.
Applications of the pipeline environment for visual informatics and genomics computations
2011-01-01
Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102
Benkner, Siegfried; Arbona, Antonio; Berti, Guntram; Chiarini, Alessandro; Dunlop, Robert; Engelbrecht, Gerhard; Frangi, Alejandro F; Friedrich, Christoph M; Hanser, Susanne; Hasselmeyer, Peer; Hose, Rod D; Iavindrasana, Jimison; Köhler, Martin; Iacono, Luigi Lo; Lonsdale, Guy; Meyer, Rodolphe; Moore, Bob; Rajasekaran, Hariharan; Summers, Paul E; Wöhrer, Alexander; Wood, Steven
2010-11-01
The increasing volume of data describing human disease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the @neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system's architecture is generic enough that it could be adapted to the treatment of other diseases. Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers clinicians the tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medical researchers gain access to a critical mass of aneurysm related data due to the system's ability to federate distributed information sources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access and work on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand for performing computationally intensive simulations for treatment planning and research.
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-01-01
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms. PMID:27399699
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-07-05
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.
NASA Astrophysics Data System (ADS)
O'Malley, D.; Le, E. B.; Vesselinov, V. V.
2015-12-01
We present a fast, scalable, and highly-implementable stochastic inverse method for characterization of aquifer heterogeneity. The method utilizes recent advances in randomized matrix algebra and exploits the structure of the Quasi-Linear Geostatistical Approach (QLGA), without requiring a structured grid like Fast-Fourier Transform (FFT) methods. The QLGA framework is a more stable version of Gauss-Newton iterates for a large number of unknown model parameters, but provides unbiased estimates. The methods are matrix-free and do not require derivatives or adjoints, and are thus ideal for complex models and black-box implementation. We also incorporate randomized least-square solvers and data-reduction methods, which speed up computation and simulate missing data points. The new inverse methodology is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. Inversion results based on series of synthetic problems with steady-state and transient calibration data are presented.
Orchestrating Distributed Resource Ensembles for Petascale Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldin, Ilya; Mandal, Anirban; Ruth, Paul
2014-04-24
Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstractmore » API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.« less
Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka
2014-11-15
The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Moslehi, M.; de Barros, F.; Rajagopal, R.
2014-12-01
Hydrogeological models that represent flow and transport in subsurface domains are usually large-scale with excessive computational complexity and uncertain characteristics. Uncertainty quantification for predicting flow and transport in heterogeneous formations often entails utilizing a numerical Monte Carlo framework, which repeatedly simulates the model according to a random field representing hydrogeological characteristics of the field. The physical resolution (e.g. grid resolution associated with the physical space) for the simulation is customarily chosen based on recommendations in the literature, independent of the number of Monte Carlo realizations. This practice may lead to either excessive computational burden or inaccurate solutions. We propose an optimization-based methodology that considers the trade-off between the following conflicting objectives: time associated with computational costs, statistical convergence of the model predictions and physical errors corresponding to numerical grid resolution. In this research, we optimally allocate computational resources by developing a modeling framework for the overall error based on a joint statistical and numerical analysis and optimizing the error model subject to a given computational constraint. The derived expression for the overall error explicitly takes into account the joint dependence between the discretization error of the physical space and the statistical error associated with Monte Carlo realizations. The accuracy of the proposed framework is verified in this study by applying it to several computationally extensive examples. Having this framework at hand aims hydrogeologists to achieve the optimum physical and statistical resolutions to minimize the error with a given computational budget. Moreover, the influence of the available computational resources and the geometric properties of the contaminant source zone on the optimum resolutions are investigated. We conclude that the computational cost associated with optimal allocation can be substantially reduced compared with prevalent recommendations in the literature.
Role of the ATLAS Grid Information System (AGIS) in Distributed Data Analysis and Simulation
NASA Astrophysics Data System (ADS)
Anisenkov, A. V.
2018-03-01
In modern high-energy physics experiments, particular attention is paid to the global integration of information and computing resources into a unified system for efficient storage and processing of experimental data. Annually, the ATLAS experiment performed at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) produces tens of petabytes raw data from the recording electronics and several petabytes of data from the simulation system. For processing and storage of such super-large volumes of data, the computing model of the ATLAS experiment is based on heterogeneous geographically distributed computing environment, which includes the worldwide LHC computing grid (WLCG) infrastructure and is able to meet the requirements of the experiment for processing huge data sets and provide a high degree of their accessibility (hundreds of petabytes). The paper considers the ATLAS grid information system (AGIS) used by the ATLAS collaboration to describe the topology and resources of the computing infrastructure, to configure and connect the high-level software systems of computer centers, to describe and store all possible parameters, control, configuration, and other auxiliary information required for the effective operation of the ATLAS distributed computing applications and services. The role of the AGIS system in the development of a unified description of the computing resources provided by grid sites, supercomputer centers, and cloud computing into a consistent information model for the ATLAS experiment is outlined. This approach has allowed the collaboration to extend the computing capabilities of the WLCG project and integrate the supercomputers and cloud computing platforms into the software components of the production and distributed analysis workload management system (PanDA, ATLAS).
Community-driven computational biology with Debian Linux
2010-01-01
Background The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. Results The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Conclusions Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers. PMID:21210984
Reproductive consequences of farmland heterogeneity in little owls (Athene noctua).
Michel, Vanja T; Naef-Daenzer, Beat; Keil, Herbert; Grüebler, Martin U
2017-04-01
The amount of high-quality habitat patches, their distribution, and the resource accessibility therein play a key role in regulating habitat effects on reproductive success. Heterogeneous habitats offer non-substitutable resources (e.g. nest sites and food) and substitutable resources (e.g. different types of food) in close proximity, thereby facilitating landscape complementation and supplementation. However, it remains poorly understood how spatial resource separation in homogeneous agricultural landscapes affects reproductive success. To fill this gap, we investigated the relationships between farmland heterogeneity and little owl (Athene noctua) reproductive success, including potential indirect effects of the heterogeneity-dependent home-range size on reproduction. Little owl home-ranges were related to field heterogeneity in summer and to structural heterogeneity in winter. Clutch size was correlated with the amount of food-rich habitat close to the nest irrespective of female home-range size, suggesting importance of landscape complementation. Nestling survival was positively correlated with male home-range size, suggesting importance of landscape supplementation. At the same time, fledgling condition was negatively correlated with male home-range size. We conclude that decreasing farmland heterogeneity constrains population productivity by two processes: increasing separation of food resources from nest or roost sites results in low landscape complementation, and reduction of alternative food resources limits landscape supplementation. Our results suggest that structural heterogeneity affects landscape complementation, whereas the heterogeneity and management of farmland fields affect landscape supplementation. Thus, to what extent a reduction of the heterogeneity within agricultural landscapes results in species-specific habitat degradation depends on the ecological processes (i.e. landscape complementation or supplementation) which are affected.
Efficient Use of Distributed Systems for Scientific Applications
NASA Technical Reports Server (NTRS)
Taylor, Valerie; Chen, Jian; Canfield, Thomas; Richard, Jacques
2000-01-01
Distributed computing has been regarded as the future of high performance computing. Nationwide high speed networks such as vBNS are becoming widely available to interconnect high-speed computers, virtual environments, scientific instruments and large data sets. One of the major issues to be addressed with distributed systems is the development of computational tools that facilitate the efficient execution of parallel applications on such systems. These tools must exploit the heterogeneous resources (networks and compute nodes) in distributed systems. This paper presents a tool, called PART, which addresses this issue for mesh partitioning. PART takes advantage of the following heterogeneous system features: (1) processor speed; (2) number of processors; (3) local network performance; and (4) wide area network performance. Further, different finite element applications under consideration may have different computational complexities, different communication patterns, and different element types, which also must be taken into consideration when partitioning. PART uses parallel simulated annealing to partition the domain, taking into consideration network and processor heterogeneity. The results of using PART for an explicit finite element application executing on two IBM SPs (located at Argonne National Laboratory and the San Diego Supercomputer Center) indicate an increase in efficiency by up to 36% as compared to METIS, a widely used mesh partitioning tool. The input to METIS was modified to take into consideration heterogeneous processor performance; METIS does not take into consideration heterogeneous networks. The execution times for these applications were reduced by up to 30% as compared to METIS. These results are given in Figure 1 for four irregular meshes with number of elements ranging from 30,269 elements for the Barth5 mesh to 11,451 elements for the Barth4 mesh. Future work with PART entails using the tool with an integrated application requiring distributed systems. In particular this application, illustrated in the document entails an integration of finite element and fluid dynamic simulations to address the cooling of turbine blades of a gas turbine engine design. It is not uncommon to encounter high-temperature, film-cooled turbine airfoils with 1,000,000s of degrees of freedom. This results because of the complexity of the various components of the airfoils, requiring fine-grain meshing for accuracy. Additional information is contained in the original.
Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.
Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng
2014-10-01
Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.
Coordinating the Design and Management of Heterogeneous Datacenter Resources
ERIC Educational Resources Information Center
Guevara, Marisabel
2014-01-01
Heterogeneous design presents an opportunity to improve energy efficiency but raises a challenge in management. Whereas prior work separates the two, we coordinate heterogeneous design and management. We present a market-based resource allocation mechanism that navigates the performance and power trade-offs of heterogeneous architectures. Given…
Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures
2017-10-04
Report: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures The views, opinions and/or findings contained in this...Chapel Hill Title: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures Report Term: 0-Other Email: dm...algorithms for scientific and geometric computing by exploiting the power and performance efficiency of heterogeneous shared memory architectures . These
NASA Astrophysics Data System (ADS)
Myre, Joseph M.
Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.
A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv
In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
Improving Design Efficiency for Large-Scale Heterogeneous Circuits
NASA Astrophysics Data System (ADS)
Gregerson, Anthony
Despite increases in logic density, many Big Data applications must still be partitioned across multiple computing devices in order to meet their strict performance requirements. Among the most demanding of these applications is high-energy physics (HEP), which uses complex computing systems consisting of thousands of FPGAs and ASICs to process the sensor data created by experiments at particles accelerators such as the Large Hadron Collider (LHC). Designing such computing systems is challenging due to the scale of the systems, the exceptionally high-throughput and low-latency performance constraints that necessitate application-specific hardware implementations, the requirement that algorithms are efficiently partitioned across many devices, and the possible need to update the implemented algorithms during the lifetime of the system. In this work, we describe our research to develop flexible architectures for implementing such large-scale circuits on FPGAs. In particular, this work is motivated by (but not limited in scope to) high-energy physics algorithms for the Compact Muon Solenoid (CMS) experiment at the LHC. To make efficient use of logic resources in multi-FPGA systems, we introduce Multi-Personality Partitioning, a novel form of the graph partitioning problem, and present partitioning algorithms that can significantly improve resource utilization on heterogeneous devices while also reducing inter-chip connections. To reduce the high communication costs of Big Data applications, we also introduce Information-Aware Partitioning, a partitioning method that analyzes the data content of application-specific circuits, characterizes their entropy, and selects circuit partitions that enable efficient compression of data between chips. We employ our information-aware partitioning method to improve the performance of the hardware validation platform for evaluating new algorithms for the CMS experiment. Together, these research efforts help to improve the efficiency and decrease the cost of the developing large-scale, heterogeneous circuits needed to enable large-scale application in high-energy physics and other important areas.
NASA Technical Reports Server (NTRS)
Sanz, J.; Pischel, K.; Hubler, D.
1992-01-01
An application for parallel computation on a combined cluster of powerful workstations and supercomputers was developed. A Parallel Virtual Machine (PVM) is used as message passage language on a macro-tasking parallelization of the Aerodynamic Inverse Design and Analysis for a Full Engine computer code. The heterogeneous nature of the cluster is perfectly handled by the controlling host machine. Communication is established via Ethernet with the TCP/IP protocol over an open network. A reasonable overhead is imposed for internode communication, rendering an efficient utilization of the engaged processors. Perhaps one of the most interesting features of the system is its versatile nature, that permits the usage of the computational resources available that are experiencing less use at a given point in time.
Modeling Political Populations with Bacteria
NASA Astrophysics Data System (ADS)
Cleveland, Chris; Liao, David
2011-03-01
Results from lattice-based simulations of micro-environments with heterogeneous nutrient resources reveal that competition between wild-type and GASP rpoS819 strains of E. Coli offers mutual benefit, particularly in nutrient deprived regions. Our computational model spatially maps bacteria populations and energy sources onto a set of 3D lattices that collectively resemble the topology of North America. By implementing Wright-Fishcer re- production into a probabilistic leap-frog scheme, we observe populations of wild-type and GASP rpoS819 cells compete for resources and, yet, aid each other's long term survival. The connection to how spatial political ideologies map in a similar way is discussed.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
Efforts continue in the development of a computer program for looking at the coupling of finite dimensioned source fields with a laterally heterogeneous Earth. An algorithm for calculating a time-varying reference field using ground-based magnetic observatory data is also under development as part of the production of noise-free estimates of global electromagnetic response functions using Magsat data.
NASA Astrophysics Data System (ADS)
Elag, M.; Kumar, P.
2014-12-01
Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation and preservation of long-tail data during its life-cycle; (ii) BrownDog, which enhances the machine interpretability of large unstructured and uncurated data; and (iii) CSDMS (Community Surface Dynamics Modeling System), which "componentizes" models by providing plug-and-play environment for models integration.
Parikh, Priti P; Minning, Todd A; Nguyen, Vinh; Lalithsena, Sarasi; Asiaee, Amir H; Sahoo, Satya S; Doshi, Prashant; Tarleton, Rick; Sheth, Amit P
2012-01-01
Research on the biology of parasites requires a sophisticated and integrated computational platform to query and analyze large volumes of data, representing both unpublished (internal) and public (external) data sources. Effective analysis of an integrated data resource using knowledge discovery tools would significantly aid biologists in conducting their research, for example, through identifying various intervention targets in parasites and in deciding the future direction of ongoing as well as planned projects. A key challenge in achieving this objective is the heterogeneity between the internal lab data, usually stored as flat files, Excel spreadsheets or custom-built databases, and the external databases. Reconciling the different forms of heterogeneity and effectively integrating data from disparate sources is a nontrivial task for biologists and requires a dedicated informatics infrastructure. Thus, we developed an integrated environment using Semantic Web technologies that may provide biologists the tools for managing and analyzing their data, without the need for acquiring in-depth computer science knowledge. We developed a semantic problem-solving environment (SPSE) that uses ontologies to integrate internal lab data with external resources in a Parasite Knowledge Base (PKB), which has the ability to query across these resources in a unified manner. The SPSE includes Web Ontology Language (OWL)-based ontologies, experimental data with its provenance information represented using the Resource Description Format (RDF), and a visual querying tool, Cuebee, that features integrated use of Web services. We demonstrate the use and benefit of SPSE using example queries for identifying gene knockout targets of Trypanosoma cruzi for vaccine development. Answers to these queries involve looking up multiple sources of data, linking them together and presenting the results. The SPSE facilitates parasitologists in leveraging the growing, but disparate, parasite data resources by offering an integrative platform that utilizes Semantic Web techniques, while keeping their workload increase minimal.
BIOZON: a system for unification, management and analysis of heterogeneous biological data.
Birkland, Aaron; Yona, Golan
2006-02-15
Integration of heterogeneous data types is a challenging problem, especially in biology, where the number of databases and data types increase rapidly. Amongst the problems that one has to face are integrity, consistency, redundancy, connectivity, expressiveness and updatability. Here we present a system (Biozon) that addresses these problems, and offers biologists a new knowledge resource to navigate through and explore. Biozon unifies multiple biological databases consisting of a variety of data types (such as DNA sequences, proteins, interactions and cellular pathways). It is fundamentally different from previous efforts as it uses a single extensive and tightly connected graph schema wrapped with hierarchical ontology of documents and relations. Beyond warehousing existing data, Biozon computes and stores novel derived data, such as similarity relationships and functional predictions. The integration of similarity data allows propagation of knowledge through inference and fuzzy searches. Sophisticated methods of query that span multiple data types were implemented and first-of-a-kind biological ranking systems were explored and integrated. The Biozon system is an extensive knowledge resource of heterogeneous biological data. Currently, it holds more than 100 million biological documents and 6.5 billion relations between them. The database is accessible through an advanced web interface that supports complex queries, "fuzzy" searches, data materialization and more, online at http://biozon.org.
NASA Astrophysics Data System (ADS)
Khan, Akhtar Nawaz
2017-11-01
Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.
A Resource Service Model in the Industrial IoT System Based on Transparent Computing.
Li, Weimin; Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang
2018-03-26
The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system.
A Resource Service Model in the Industrial IoT System Based on Transparent Computing
Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang
2018-01-01
The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system. PMID:29587450
A survey of CPU-GPU heterogeneous computing techniques
Mittal, Sparsh; Vetter, Jeffrey S.
2015-07-04
As both CPU and GPU become employed in a wide range of applications, it has been acknowledged that both of these processing units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this paper, we survey heterogeneous computing techniques (HCTs) such as workload-partitioning which enable utilizing both CPU and GPU to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler and applicationmore » level. Further, we review both discrete and fused CPU-GPU systems; and discuss benchmark suites designed for evaluating heterogeneous computing systems (HCSs). Furthermore, we believe that this paper will provide insights into working and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance.« less
A survey of CPU-GPU heterogeneous computing techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S.
As both CPU and GPU become employed in a wide range of applications, it has been acknowledged that both of these processing units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this paper, we survey heterogeneous computing techniques (HCTs) such as workload-partitioning which enable utilizing both CPU and GPU to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler and applicationmore » level. Further, we review both discrete and fused CPU-GPU systems; and discuss benchmark suites designed for evaluating heterogeneous computing systems (HCSs). Furthermore, we believe that this paper will provide insights into working and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance.« less
Earth Science Data Grid System
NASA Astrophysics Data System (ADS)
Chi, Y.; Yang, R.; Kafatos, M.
2004-05-01
The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.
Federated data storage system prototype for LHC experiments and data intensive science
NASA Astrophysics Data System (ADS)
Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Ryabinkin, E.; Zarochentsev, A.
2017-10-01
Rapid increase of data volume from the experiments running at the Large Hadron Collider (LHC) prompted physics computing community to evaluate new data handling and processing solutions. Russian grid sites and universities’ clusters scattered over a large area aim at the task of uniting their resources for future productive work, at the same time giving an opportunity to support large physics collaborations. In our project we address the fundamental problem of designing a computing architecture to integrate distributed storage resources for LHC experiments and other data-intensive science applications and to provide access to data from heterogeneous computing facilities. Studies include development and implementation of federated data storage prototype for Worldwide LHC Computing Grid (WLCG) centres of different levels and University clusters within one National Cloud. The prototype is based on computing resources located in Moscow, Dubna, Saint Petersburg, Gatchina and Geneva. This project intends to implement a federated distributed storage for all kind of operations such as read/write/transfer and access via WAN from Grid centres, university clusters, supercomputers, academic and commercial clouds. The efficiency and performance of the system are demonstrated using synthetic and experiment-specific tests including real data processing and analysis workflows from ATLAS and ALICE experiments, as well as compute-intensive bioinformatics applications (PALEOMIX) running on supercomputers. We present topology and architecture of the designed system, report performance and statistics for different access patterns and show how federated data storage can be used efficiently by physicists and biologists. We also describe how sharing data on a widely distributed storage system can lead to a new computing model and reformations of computing style, for instance how bioinformatics program running on supercomputers can read/write data from the federated storage.
Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems
Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.
2014-01-01
The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545
He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-04-17
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.
LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices
Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-01-01
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices. PMID:29673171
The future of PanDA in ATLAS distributed computing
NASA Astrophysics Data System (ADS)
De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.
2015-12-01
Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.
Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing
NASA Astrophysics Data System (ADS)
Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.
2015-05-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. We will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing
Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng
2015-01-01
Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA’s CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream. Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels. PMID:26566545
Methodologies and systems for heterogeneous concurrent computing
NASA Technical Reports Server (NTRS)
Sunderam, V. S.
1994-01-01
Heterogeneous concurrent computing is gaining increasing acceptance as an alternative or complementary paradigm to multiprocessor-based parallel processing as well as to conventional supercomputing. While algorithmic and programming aspects of heterogeneous concurrent computing are similar to their parallel processing counterparts, system issues, partitioning and scheduling, and performance aspects are significantly different. In this paper, we discuss critical design and implementation issues in heterogeneous concurrent computing, and describe techniques for enhancing its effectiveness. In particular, we highlight the system level infrastructures that are required, aspects of parallel algorithm development that most affect performance, system capabilities and limitations, and tools and methodologies for effective computing in heterogeneous networked environments. We also present recent developments and experiences in the context of the PVM system and comment on ongoing and future work.
Kepper, Nick; Ettig, Ramona; Dickmann, Frank; Stehr, Rene; Grosveld, Frank G; Wedemann, Gero; Knoch, Tobias A
2010-01-01
Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we-can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency.
IPAD products and implications for the future
NASA Technical Reports Server (NTRS)
Miller, R. E., Jr.
1980-01-01
The betterment of productivity through the improvement of product quality and the reduction of cost is addressed. Productivity improvement is sought through (1) reduction of required resources, (2) improved ask results through the management of such saved resources, (3) reduced downstream costs through manufacturing-oriented engineering, and (4) lowered risks in the making of product design decisions. The IPAD products are both hardware architecture and software distributed over a number of heterogeneous computers in this architecture. These IPAD products are described in terms of capability and engineering usefulness. The future implications of state-of-the-art IPAD hardware and software architectures are discussed in terms of their impact on the functions and on structures of organizations concerned with creating products.
Heterogeneous Distributed Computing for Computational Aerosciences
NASA Technical Reports Server (NTRS)
Sunderam, Vaidy S.
1998-01-01
The research supported under this award focuses on heterogeneous distributed computing for high-performance applications, with particular emphasis on computational aerosciences. The overall goal of this project was to and investigate issues in, and develop solutions to, efficient execution of computational aeroscience codes in heterogeneous concurrent computing environments. In particular, we worked in the context of the PVM[1] system and, subsequent to detailed conversion efforts and performance benchmarking, devising novel techniques to increase the efficacy of heterogeneous networked environments for computational aerosciences. Our work has been based upon the NAS Parallel Benchmark suite, but has also recently expanded in scope to include the NAS I/O benchmarks as specified in the NHT-1 document. In this report we summarize our research accomplishments under the auspices of the grant.
Towards a Unified Architecture for Data-Intensive Seismology in VERCE
NASA Astrophysics Data System (ADS)
Klampanos, I.; Spinuso, A.; Trani, L.; Krause, A.; Garcia, C. R.; Atkinson, M.
2013-12-01
Modern seismology involves managing, storing and processing large datasets, typically geographically distributed across organisations. Performing computational experiments using these data generates more data, which in turn have to be managed, further analysed and frequently be made available within or outside the scientific community. As part of the EU-funded project VERCE (http://verce.eu), we research and develop a number of use-cases, interfacing technologies to satisfy the data-intensive requirements of modern seismology. Our solution seeks to support: (1) familiar programming environments to develop and execute experiments, in particular via Python/ObsPy, (2) a unified view of heterogeneous computing resources, public or private, through the adoption of workflows, (3) monitoring the experiments and validating the data products at varying granularities, via a comprehensive provenance system, (4) reproducibility of experiments and consistency in collaboration, via a shared registry of processing units and contextual metadata (computing resources, data, etc.) Here, we provide a brief account of these components and their roles in the proposed architecture. Our design integrates heterogeneous distributed systems, while allowing researchers to retain current practices and control data handling and execution via higher-level abstractions. At the core of our solution lies the workflow language Dispel. While Dispel can be used to express workflows at fine detail, it may also be used as part of meta- or job-submission workflows. User interaction can be provided through a visual editor or through custom applications on top of parameterisable workflows, which is the approach VERCE follows. According to our design, the scientist may use versions of Dispel/workflow processing elements offered by the VERCE library or override them introducing custom scientific code, using ObsPy. This approach has the advantage that, while the scientist uses a familiar tool, the resulting workflow can be executed on a number of underlying stream-processing engines, such as STORM or OGSA-DAI, transparently. While making efficient use of arbitrarily distributed resources and large data-sets is of priority, such processing requires adequate provenance tracking and monitoring. Hiding computation and orchestration details via a workflow system, allows us to embed provenance harvesting where appropriate without impeding the user's regular working patterns. Our provenance model is based on the W3C PROV standard and can provide information of varying granularity regarding execution, systems and data consumption/production. A video demonstrating a prototype provenance exploration tool can be found at http://bit.ly/15t0Fz0. Keeping experimental methodology and results open and accessible, as well as encouraging reproducibility and collaboration, is of central importance to modern science. As our users are expected to be based at different geographical locations, to have access to different computing resources and to employ customised scientific codes, the use of a shared registry of workflow components, implementations, data and computing resources is critical.
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K
2016-05-01
We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.
2005-06-01
virtualisation of distributed computing and data resources such as processing, network bandwidth, and storage capacity, to create a single system...and Simulation (M&S) will be integrated into this heterogeneous SOA. M&S functionality will be available in the form of operational M&S services. One...documents defining net centric warfare, the use of M&S functionality is a common theme. Alberts and Hayes give a good overview on net centric operations
Simulation of Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2002-01-01
To better utilize its vast collection of heterogeneous resources that are geographically distributed across the United States, NASA is constructing a computational grid called the Information Power Grid (IPG). This paper describes various tools and techniques that we are developing to measure and improve the performance of a broad class of NASA applications when run on the IPG. In particular, we are investigating the areas of grid benchmarking, grid monitoring, user-level application scheduling, and decentralized system-level scheduling.
NASA Astrophysics Data System (ADS)
Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut
2017-04-01
Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high-level scientific workflow middleware enables reproducibility of results more convenient and also provides a reusable and portable workflow template that can be deployed across different computing infrastructures. Acknowledgements This work was kindly supported by NordForsk as part of the Nordic Center of Excellence (NCoE) eSTICC (eScience Tools for Investigating Climate Change at High Northern Latitudes) and the Top-level Research Initiative NCoE SVALI (Stability and Variation of Arctic Land Ice).
Earth Science Data Grid System
NASA Astrophysics Data System (ADS)
Chi, Y.; Yang, R.; Kafatos, M.
2004-12-01
The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.
1995-01-01
Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.
OpenCL-based vicinity computation for 3D multiresolution mesh compression
NASA Astrophysics Data System (ADS)
Hachicha, Soumaya; Elkefi, Akram; Ben Amar, Chokri
2017-03-01
3D multiresolution mesh compression systems are still widely addressed in many domains. These systems are more and more requiring volumetric data to be processed in real-time. Therefore, the performance is becoming constrained by material resources usage and an overall reduction in the computational time. In this paper, our contribution entirely lies on computing, in real-time, triangles neighborhood of 3D progressive meshes for a robust compression algorithm based on the scan-based wavelet transform(WT) technique. The originality of this latter algorithm is to compute the WT with minimum memory usage by processing data as they are acquired. However, with large data, this technique is considered poor in term of computational complexity. For that, this work exploits the GPU to accelerate the computation using OpenCL as a heterogeneous programming language. Experiments demonstrate that, aside from the portability across various platforms and the flexibility guaranteed by the OpenCL-based implementation, this method can improve performance gain in speedup factor of 5 compared to the sequential CPU implementation.
Integration of a neuroimaging processing pipeline into a pan-canadian computing grid
NASA Astrophysics Data System (ADS)
Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.
2012-02-01
The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.
Heterogeneity in Health Care Computing Environments
Sengupta, Soumitra
1989-01-01
This paper discusses issues of heterogeneity in computer systems, networks, databases, and presentation techniques, and the problems it creates in developing integrated medical information systems. The need for institutional, comprehensive goals are emphasized. Using the Columbia-Presbyterian Medical Center's computing environment as the case study, various steps to solve the heterogeneity problem are presented.
Grid Computing and Collaboration Technology in Support of Fusion Energy Sciences
NASA Astrophysics Data System (ADS)
Schissel, D. P.
2004-11-01
The SciDAC Initiative is creating a computational grid designed to advance scientific understanding in fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling, and allowing more efficient use of experimental facilities. The philosophy is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as easy to use network available services. Access to services is stressed rather than portability. Services share the same basic security infrastructure so that stakeholders can control their own resources and helps ensure fair use of resources. The collaborative control room is being developed using the open-source Access Grid software that enables secure group-to-group collaboration with capabilities beyond teleconferencing including application sharing and control. The ability to effectively integrate off-site scientists into a dynamic control room will be critical to the success of future international projects like ITER. Grid computing, the secure integration of computer systems over high-speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. The first grid computational service deployed was the transport code TRANSP and included tools for run preparation, submission, monitoring and management. This approach saves user sites from the laborious effort of maintaining a complex code while at the same time reducing the burden on developers by avoiding the support of a large number of heterogeneous installations. This tutorial will present the philosophy behind an advanced collaborative environment, give specific examples, and discuss its usage beyond FES.
Karanovic, Marinko; Muffels, Christopher T.; Tonkin, Matthew J.; Hunt, Randall J.
2012-01-01
Models of environmental systems have become increasingly complex, incorporating increasingly large numbers of parameters in an effort to represent physical processes on a scale approaching that at which they occur in nature. Consequently, the inverse problem of parameter estimation (specifically, model calibration) and subsequent uncertainty analysis have become increasingly computation-intensive endeavors. Fortunately, advances in computing have made computational power equivalent to that of dozens to hundreds of desktop computers accessible through a variety of alternate means: modelers have various possibilities, ranging from traditional Local Area Networks (LANs) to cloud computing. Commonly used parameter estimation software is well suited to take advantage of the availability of such increased computing power. Unfortunately, logistical issues become increasingly important as an increasing number and variety of computers are brought to bear on the inverse problem. To facilitate efficient access to disparate computer resources, the PESTCommander program documented herein has been developed to provide a Graphical User Interface (GUI) that facilitates the management of model files ("file management") and remote launching and termination of "slave" computers across a distributed network of computers ("run management"). In version 1.0 described here, PESTCommander can access and ascertain resources across traditional Windows LANs: however, the architecture of PESTCommander has been developed with the intent that future releases will be able to access computing resources (1) via trusted domains established in Wide Area Networks (WANs) in multiple remote locations and (2) via heterogeneous networks of Windows- and Unix-based operating systems. The design of PESTCommander also makes it suitable for extension to other computational resources, such as those that are available via cloud computing. Version 1.0 of PESTCommander was developed primarily to work with the parameter estimation software PEST; the discussion presented in this report focuses on the use of the PESTCommander together with Parallel PEST. However, PESTCommander can be used with a wide variety of programs and models that require management, distribution, and cleanup of files before or after model execution. In addition to its use with the Parallel PEST program suite, discussion is also included in this report regarding the use of PESTCommander with the Global Run Manager GENIE, which was developed simultaneously with PESTCommander.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah
2009-12-01
In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less
Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood
Sebastian Seibold; Claus Bassler; Roland Brandl; Boris Buche; Alexander Szallies; Simon Thorn; Michael D. Ulyshen; Jorg Muller; Christopher Baraloto
2016-01-01
1. Resource availability and habitat heterogeneity are principle drivers of biodiversity, but their individual roles often remain unclear since both factors are usually correlated. The biodiversity of species dependent on dead wood could be driven by either resource availability represented by dead-wood amount or habitat heterogeneity characterized by dead-wood...
Costs of cloud computing for a biometry department. A case study.
Knaus, J; Hieke, S; Binder, H; Schwarzer, G
2013-01-01
"Cloud" computing providers, such as the Amazon Web Services (AWS), offer stable and scalable computational resources based on hardware virtualization, with short, usually hourly, billing periods. The idea of pay-as-you-use seems appealing for biometry research units which have only limited access to university or corporate data center resources or grids. This case study compares the costs of an existing heterogeneous on-site hardware pool in a Medical Biometry and Statistics department to a comparable AWS offer. The "total cost of ownership", including all direct costs, is determined for the on-site hardware, and hourly prices are derived, based on actual system utilization during the year 2011. Indirect costs, which are difficult to quantify are not included in this comparison, but nevertheless some rough guidance from our experience is given. To indicate the scale of costs for a methodological research project, a simulation study of a permutation-based statistical approach is performed using AWS and on-site hardware. In the presented case, with a system utilization of 25-30 percent and 3-5-year amortization, on-site hardware can result in smaller costs, compared to hourly rental in the cloud dependent on the instance chosen. Renting cloud instances with sufficient main memory is a deciding factor in this comparison. Costs for on-site hardware may vary, depending on the specific infrastructure at a research unit, but have only moderate impact on the overall comparison and subsequent decision for obtaining affordable scientific computing resources. Overall utilization has a much stronger impact as it determines the actual computing hours needed per year. Taking this into ac count, cloud computing might still be a viable option for projects with limited maturity, or as a supplement for short peaks in demand.
A framework supporting the development of a Grid portal for analysis based on ROI.
Ichikawa, K; Date, S; Kaishima, T; Shimojo, S
2005-01-01
In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements. We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance. The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment. The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.
CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.
Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan
2017-06-24
The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https://github.com/wangvsa/CMSA .
Resources monitoring and automatic management system for multi-VO distributed computing system
NASA Astrophysics Data System (ADS)
Chen, J.; Pelevanyuk, I.; Sun, Y.; Zhemchugov, A.; Yan, T.; Zhao, X. H.; Zhang, X. M.
2017-10-01
Multi-VO supports based on DIRAC have been set up to provide workload and data management for several high energy experiments in IHEP. To monitor and manage the heterogeneous resources which belong to different Virtual Organizations in a uniform way, a resources monitoring and automatic management system based on Resource Status System(RSS) of DIRAC has been presented in this paper. The system is composed of three parts: information collection, status decision and automatic control, and information display. The information collection includes active and passive way of gathering status from different sources and stores them in databases. The status decision and automatic control is used to evaluate the resources status and take control actions on resources automatically through some pre-defined policies and actions. The monitoring information is displayed on a web portal. Both the real-time information and historical information can be obtained from the web portal. All the implementations are based on DIRAC framework. The information and control including sites, policies, web portal for different VOs can be well defined and distinguished within DIRAC user and group management infrastructure.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill
2000-01-01
We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3) Coupling large-scale computing and data systems to scientific and engineering instruments (e.g., realtime interaction with experiments through real-time data analysis and interpretation presented to the experimentalist in ways that allow direct interaction with the experiment (instead of just with instrument control); (5) Highly interactive, augmented reality and virtual reality remote collaborations (e.g., Ames / Boeing Remote Help Desk providing field maintenance use of coupled video and NDI to a remote, on-line airframe structures expert who uses this data to index into detailed design databases, and returns 3D internal aircraft geometry to the field); (5) Single computational problems too large for any single system (e.g. the rotocraft reference calculation). Grids also have the potential to provide pools of resources that could be called on in extraordinary / rapid response situations (such as disaster response) because they can provide common interfaces and access mechanisms, standardized management, and uniform user authentication and authorization, for large collections of distributed resources (whether or not they normally function in concert). IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: the scientist / design engineer whose primary interest is problem solving (e.g. determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user is the tool designer: the computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. The results of the analysis of the needs of these two types of users provides a broad set of requirements that gives rise to a general set of required capabilities. The IPG project is intended to address all of these requirements. In some cases the required computing technology exists, and in some cases it must be researched and developed. The project is using available technology to provide a prototype set of capabilities in a persistent distributed computing testbed. Beyond this, there are required capabilities that are not immediately available, and whose development spans the range from near-term engineering development (one to two years) to much longer term R&D (three to six years). Additional information is contained in the original.
Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Chun-Yi
By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitivemore » or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.« less
A global distributed storage architecture
NASA Technical Reports Server (NTRS)
Lionikis, Nemo M.; Shields, Michael F.
1996-01-01
NSA architects and planners have come to realize that to gain the maximum benefit from, and keep pace with, emerging technologies, we must move to a radically different computing architecture. The compute complex of the future will be a distributed heterogeneous environment, where, to a much greater extent than today, network-based services are invoked to obtain resources. Among the rewards of implementing the services-based view are that it insulates the user from much of the complexity of our multi-platform, networked, computer and storage environment and hides its diverse underlying implementation details. In this paper, we will describe one of the fundamental services being built in our envisioned infrastructure; a global, distributed archive with near-real-time access characteristics. Our approach for adapting mass storage services to this infrastructure will become clear as the service is discussed.
WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers
NASA Astrophysics Data System (ADS)
Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.
2014-06-01
The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.
NASA Astrophysics Data System (ADS)
Shi, X.
2015-12-01
As NSF indicated - "Theory and experimentation have for centuries been regarded as two fundamental pillars of science. It is now widely recognized that computational and data-enabled science forms a critical third pillar." Geocomputation is the third pillar of GIScience and geosciences. With the exponential growth of geodata, the challenge of scalable and high performance computing for big data analytics become urgent because many research activities are constrained by the inability of software or tool that even could not complete the computation process. Heterogeneous geodata integration and analytics obviously magnify the complexity and operational time frame. Many large-scale geospatial problems may be not processable at all if the computer system does not have sufficient memory or computational power. Emerging computer architectures, such as Intel's Many Integrated Core (MIC) Architecture and Graphics Processing Unit (GPU), and advanced computing technologies provide promising solutions to employ massive parallelism and hardware resources to achieve scalability and high performance for data intensive computing over large spatiotemporal and social media data. Exploring novel algorithms and deploying the solutions in massively parallel computing environment to achieve the capability for scalable data processing and analytics over large-scale, complex, and heterogeneous geodata with consistent quality and high-performance has been the central theme of our research team in the Department of Geosciences at the University of Arkansas (UARK). New multi-core architectures combined with application accelerators hold the promise to achieve scalability and high performance by exploiting task and data levels of parallelism that are not supported by the conventional computing systems. Such a parallel or distributed computing environment is particularly suitable for large-scale geocomputation over big data as proved by our prior works, while the potential of such advanced infrastructure remains unexplored in this domain. Within this presentation, our prior and on-going initiatives will be summarized to exemplify how we exploit multicore CPUs, GPUs, and MICs, and clusters of CPUs, GPUs and MICs, to accelerate geocomputation in different applications.
clubber: removing the bioinformatics bottleneck in big data analyses.
Miller, Maximilian; Zhu, Chengsheng; Bromberg, Yana
2017-06-13
With the advent of modern day high-throughput technologies, the bottleneck in biological discovery has shifted from the cost of doing experiments to that of analyzing results. clubber is our automated cluster-load balancing system developed for optimizing these "big data" analyses. Its plug-and-play framework encourages re-use of existing solutions for bioinformatics problems. clubber's goals are to reduce computation times and to facilitate use of cluster computing. The first goal is achieved by automating the balance of parallel submissions across available high performance computing (HPC) resources. Notably, the latter can be added on demand, including cloud-based resources, and/or featuring heterogeneous environments. The second goal of making HPCs user-friendly is facilitated by an interactive web interface and a RESTful API, allowing for job monitoring and result retrieval. We used clubber to speed up our pipeline for annotating molecular functionality of metagenomes. Here, we analyzed the Deepwater Horizon oil-spill study data to quantitatively show that the beach sands have not yet entirely recovered. Further, our analysis of the CAMI-challenge data revealed that microbiome taxonomic shifts do not necessarily correlate with functional shifts. These examples (21 metagenomes processed in 172 min) clearly illustrate the importance of clubber in the everyday computational biology environment.
clubber: removing the bioinformatics bottleneck in big data analyses
Miller, Maximilian; Zhu, Chengsheng; Bromberg, Yana
2018-01-01
With the advent of modern day high-throughput technologies, the bottleneck in biological discovery has shifted from the cost of doing experiments to that of analyzing results. clubber is our automated cluster-load balancing system developed for optimizing these “big data” analyses. Its plug-and-play framework encourages re-use of existing solutions for bioinformatics problems. clubber’s goals are to reduce computation times and to facilitate use of cluster computing. The first goal is achieved by automating the balance of parallel submissions across available high performance computing (HPC) resources. Notably, the latter can be added on demand, including cloud-based resources, and/or featuring heterogeneous environments. The second goal of making HPCs user-friendly is facilitated by an interactive web interface and a RESTful API, allowing for job monitoring and result retrieval. We used clubber to speed up our pipeline for annotating molecular functionality of metagenomes. Here, we analyzed the Deepwater Horizon oil-spill study data to quantitatively show that the beach sands have not yet entirely recovered. Further, our analysis of the CAMI-challenge data revealed that microbiome taxonomic shifts do not necessarily correlate with functional shifts. These examples (21 metagenomes processed in 172 min) clearly illustrate the importance of clubber in the everyday computational biology environment. PMID:28609295
Yan, Xianghe; Peng, Yun; Meng, Jianghong; Ruzante, Juliana; Fratamico, Pina M; Huang, Lihan; Juneja, Vijay; Needleman, David S
2011-01-01
Several factors have hindered effective use of information and resources related to food safety due to inconsistency among semantically heterogeneous data resources, lack of knowledge on profiling of food-borne pathogens, and knowledge gaps among research communities, government risk assessors/managers, and end-users of the information. This paper discusses technical aspects in the establishment of a comprehensive food safety information system consisting of the following steps: (a) computational collection and compiling publicly available information, including published pathogen genomic, proteomic, and metabolomic data; (b) development of ontology libraries on food-borne pathogens and design automatic algorithms with formal inference and fuzzy and probabilistic reasoning to address the consistency and accuracy of distributed information resources (e.g., PulseNet, FoodNet, OutbreakNet, PubMed, NCBI, EMBL, and other online genetic databases and information); (c) integration of collected pathogen profiling data, Foodrisk.org ( http://www.foodrisk.org ), PMP, Combase, and other relevant information into a user-friendly, searchable, "homogeneous" information system available to scientists in academia, the food industry, and government agencies; and (d) development of a computational model in semantic web for greater adaptability and robustness.
NASA Astrophysics Data System (ADS)
Peckham, S. D.
2017-12-01
Standardized, deep descriptions of digital resources (e.g. data sets, computational models, software tools and publications) make it possible to develop user-friendly software systems that assist scientists with the discovery and appropriate use of these resources. Semantic metadata makes it possible for machines to take actions on behalf of humans, such as automatically identifying the resources needed to solve a given problem, retrieving them and then automatically connecting them (despite their heterogeneity) into a functioning workflow. Standardized model metadata also helps model users to understand the important details that underpin computational models and to compare the capabilities of different models. These details include simplifying assumptions on the physics, governing equations and the numerical methods used to solve them, discretization of space (the grid) and time (the time-stepping scheme), state variables (input or output), model configuration parameters. This kind of metadata provides a "deep description" of a computational model that goes well beyond other types of metadata (e.g. author, purpose, scientific domain, programming language, digital rights, provenance, execution) and captures the science that underpins a model. A carefully constructed, unambiguous and rules-based schema to address this problem, called the Geoscience Standard Names ontology will be presented that utilizes Semantic Web best practices and technologies. It has also been designed to work across science domains and to be readable by both humans and machines.
Average is Boring: How Similarity Kills a Meme's Success
NASA Astrophysics Data System (ADS)
Coscia, Michele
2014-09-01
Every day we are exposed to different ideas, or memes, competing with each other for our attention. Previous research explained popularity and persistence heterogeneity of memes by assuming them in competition for limited attention resources, distributed in a heterogeneous social network. Little has been said about what characteristics make a specific meme more likely to be successful. We propose a similarity-based explanation: memes with higher similarity to other memes have a significant disadvantage in their potential popularity. We employ a meme similarity measure based on semantic text analysis and computer vision to prove that a meme is more likely to be successful and to thrive if its characteristics make it unique. Our results show that indeed successful memes are located in the periphery of the meme similarity space and that our similarity measure is a promising predictor of a meme success.
Average is boring: how similarity kills a meme's success.
Coscia, Michele
2014-09-26
Every day we are exposed to different ideas, or memes, competing with each other for our attention. Previous research explained popularity and persistence heterogeneity of memes by assuming them in competition for limited attention resources, distributed in a heterogeneous social network. Little has been said about what characteristics make a specific meme more likely to be successful. We propose a similarity-based explanation: memes with higher similarity to other memes have a significant disadvantage in their potential popularity. We employ a meme similarity measure based on semantic text analysis and computer vision to prove that a meme is more likely to be successful and to thrive if its characteristics make it unique. Our results show that indeed successful memes are located in the periphery of the meme similarity space and that our similarity measure is a promising predictor of a meme success.
Grid infrastructure for automatic processing of SAR data for flood applications
NASA Astrophysics Data System (ADS)
Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii
2010-05-01
More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be executed by different resources of the Grid system. The resulting geospatial services are available in various OGC standards such as KML and WMS. Currently, the Grid infrastructure integrates the resources of several geographically distributed organizations, in particular: Space Research Institute NASU-NSAU (Ukraine) with deployed computational and storage nodes based on Globus Toolkit 4 (htpp://www.globus.org) and gLite 3 (http://glite.web.cern.ch) middleware, access to geospatial data and a Grid portal; Institute of Cybernetics of NASU (Ukraine) with deployed computational and storage nodes (SCIT-1/2/3 clusters) based on Globus Toolkit 4 middleware and access to computational resources (approximately 500 processors); Center of Earth Observation and Digital Earth Chinese Academy of Sciences (CEODE-CAS, China) with deployed computational nodes based on Globus Toolkit 4 middleware and access to geospatial data (approximately 16 processors). We are currently adding new geospatial services based on optical satellite data, namely MODIS. This work is carried out jointly with the CEODE-CAS. Using workflow patterns that were developed for SAR data processing we are building new workflows for optical data processing.
Real-time video streaming in mobile cloud over heterogeneous wireless networks
NASA Astrophysics Data System (ADS)
Abdallah-Saleh, Saleh; Wang, Qi; Grecos, Christos
2012-06-01
Recently, the concept of Mobile Cloud Computing (MCC) has been proposed to offload the resource requirements in computational capabilities, storage and security from mobile devices into the cloud. Internet video applications such as real-time streaming are expected to be ubiquitously deployed and supported over the cloud for mobile users, who typically encounter a range of wireless networks of diverse radio access technologies during their roaming. However, real-time video streaming for mobile cloud users across heterogeneous wireless networks presents multiple challenges. The network-layer quality of service (QoS) provision to support high-quality mobile video delivery in this demanding scenario remains an open research question, and this in turn affects the application-level visual quality and impedes mobile users' perceived quality of experience (QoE). In this paper, we devise a framework to support real-time video streaming in this new mobile video networking paradigm and evaluate the performance of the proposed framework empirically through a lab-based yet realistic testing platform. One particular issue we focus on is the effect of users' mobility on the QoS of video streaming over the cloud. We design and implement a hybrid platform comprising of a test-bed and an emulator, on which our concept of mobile cloud computing, video streaming and heterogeneous wireless networks are implemented and integrated to allow the testing of our framework. As representative heterogeneous wireless networks, the popular WLAN (Wi-Fi) and MAN (WiMAX) networks are incorporated in order to evaluate effects of handovers between these different radio access technologies. The H.264/AVC (Advanced Video Coding) standard is employed for real-time video streaming from a server to mobile users (client nodes) in the networks. Mobility support is introduced to enable continuous streaming experience for a mobile user across the heterogeneous wireless network. Real-time video stream packets are captured for analytical purposes on the mobile user node. Experimental results are obtained and analysed. Future work is identified towards further improvement of the current design and implementation. With this new mobile video networking concept and paradigm implemented and evaluated, results and observations obtained from this study would form the basis of a more in-depth, comprehensive understanding of various challenges and opportunities in supporting high-quality real-time video streaming in mobile cloud over heterogeneous wireless networks.
Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing
Klimentov, A.; Buncic, P.; De, K.; ...
2015-05-22
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. Finally, we will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.« less
Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimentov, A.; Buncic, P.; De, K.
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. Finally, we will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.« less
A Virtual Science Data Environment for Carbon Dioxide Observations
NASA Astrophysics Data System (ADS)
Verma, R.; Goodale, C. E.; Hart, A. F.; Law, E.; Crichton, D. J.; Mattmann, C. A.; Gunson, M. R.; Braverman, A. J.; Nguyen, H. M.; Eldering, A.; Castano, R.; Osterman, G. B.
2011-12-01
Climate science data are often distributed cross-institutionally and made available using heterogeneous interfaces. With respect to observational carbon-dioxide (CO2) records, these data span across national as well as international institutions and are typically distributed using a variety of data standards. Such an arrangement can yield challenges from a research perspective, as users often need to independently aggregate datasets as well as address the issue of data quality. To tackle this dispersion and heterogeneity of data, we have developed the CO2 Virtual Science Data Environment - a comprehensive approach to virtually integrating CO2 data and metadata from multiple missions and providing a suite of computational services that facilitate analysis, comparison, and transformation of that data. The Virtual Science Environment provides climate scientists with a unified web-based destination for discovering relevant observational data in context, and supports a growing range of online tools and services for analyzing and transforming the available data to suit individual research needs. It includes web-based tools to geographically and interactively search for CO2 observations collected from multiple airborne, space, as well as terrestrial platforms. Moreover, the data analysis services it provides over the Internet, including offering techniques such as bias estimation and spatial re-gridding, move computation closer to the data and reduce the complexity of performing these operations repeatedly and at scale. The key to enabling these services, as well as consolidating the disparate data into a unified resource, has been to focus on leveraging metadata descriptors as the foundation of our data environment. This metadata-centric architecture, which leverages the Dublin Core standard, forgoes the need to replicate remote datasets locally. Instead, the system relies upon an extensive, metadata-rich virtual data catalog allowing on-demand browsing and retrieval of CO2 records from multiple missions. In other words, key metadata information about remote CO2 records is stored locally while the data itself is preserved at its respective archive of origin. This strategy has been made possible by our method of encapsulating the heterogeneous sources of data using a common set of web-based services, including services provided by Jet Propulsion Laboratory's Climate Data Exchange (CDX). Furthermore, this strategy has enabled us to scale across missions, and to provide access to a broad array of CO2 observational data. Coupled with on-demand computational services and an intuitive web-portal interface, the CO2 Virtual Science Data Environment effectively transforms heterogeneous CO2 records from multiple sources into a unified resource for scientific discovery.
Carrying capacity in a heterogeneous environment with habitat connectivity.
Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David
2017-09-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.
Carrying capacity in a heterogeneous environment with habitat connectivity
Zhang, Bo; Kula, Alex; Mack, Keenan M.L.; Zhai, Lu; Ryce, Arrix L.; Ni, Wei-Ming; DeAngelis, Donald L.; Van Dyken, J. David
2017-01-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments.
Costa - Introduction to 2015 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, James E.
In parallel with Sandia National Laboratories having two major locations (NM and CA), along with a number of smaller facilities across the nation, so too is the distribution of scientific, engineering and computing resources. As a part of Sandia’s Institutional Computing Program, CA site-based Sandia computer scientists and engineers have been providing mission and research staff with local CA resident expertise on computing options while also focusing on two growing high performance computing research problems. The first is how to increase system resilience to failure, as machines grow larger, more complex and heterogeneous. The second is how to ensure thatmore » computer hardware and configurations are optimized for specialized data analytical mission needs within the overall Sandia computing environment, including the HPC subenvironment. All of these activities support the larger Sandia effort in accelerating development and integration of high performance computing into national security missions. Sandia continues to both promote national R&D objectives, including the recent Presidential Executive Order establishing the National Strategic Computing Initiative and work to ensure that the full range of computing services and capabilities are available for all mission responsibilities, from national security to energy to homeland defense.« less
The Integration of CloudStack and OCCI/OpenNebula with DIRAC
NASA Astrophysics Data System (ADS)
Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan
2012-12-01
The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)
2000-01-01
The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.
NASA Astrophysics Data System (ADS)
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
Optimal estimation and scheduling in aquifer management using the rapid feedback control method
NASA Astrophysics Data System (ADS)
Ghorbanidehno, Hojat; Kokkinaki, Amalia; Kitanidis, Peter K.; Darve, Eric
2017-12-01
Management of water resources systems often involves a large number of parameters, as in the case of large, spatially heterogeneous aquifers, and a large number of "noisy" observations, as in the case of pressure observation in wells. Optimizing the operation of such systems requires both searching among many possible solutions and utilizing new information as it becomes available. However, the computational cost of this task increases rapidly with the size of the problem to the extent that textbook optimization methods are practically impossible to apply. In this paper, we present a new computationally efficient technique as a practical alternative for optimally operating large-scale dynamical systems. The proposed method, which we term Rapid Feedback Controller (RFC), provides a practical approach for combined monitoring, parameter estimation, uncertainty quantification, and optimal control for linear and nonlinear systems with a quadratic cost function. For illustration, we consider the case of a weakly nonlinear uncertain dynamical system with a quadratic objective function, specifically a two-dimensional heterogeneous aquifer management problem. To validate our method, we compare our results with the linear quadratic Gaussian (LQG) method, which is the basic approach for feedback control. We show that the computational cost of the RFC scales only linearly with the number of unknowns, a great improvement compared to the basic LQG control with a computational cost that scales quadratically. We demonstrate that the RFC method can obtain the optimal control values at a greatly reduced computational cost compared to the conventional LQG algorithm with small and controllable losses in the accuracy of the state and parameter estimation.
Seismic signal processing on heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Fichtner, Andreas
2015-04-01
The processing of seismic signals - including the correlation of massive ambient noise data sets - represents an important part of a wide range of seismological applications. It is characterized by large data volumes as well as high computational input/output intensity. Development of efficient approaches towards seismic signal processing on emerging high performance computing systems is therefore essential. Heterogeneous supercomputing systems introduced in the recent years provide numerous computing nodes interconnected via high throughput networks, every node containing a mix of processing elements of different architectures, like several sequential processor cores and one or a few graphical processing units (GPU) serving as accelerators. A typical representative of such computing systems is "Piz Daint", a supercomputer of the Cray XC 30 family operated by the Swiss National Supercomputing Center (CSCS), which we used in this research. Heterogeneous supercomputers provide an opportunity for manifold application performance increase and are more energy-efficient, however they have much higher hardware complexity and are therefore much more difficult to program. The programming effort may be substantially reduced by the introduction of modular libraries of software components that can be reused for a wide class of seismology applications. The ultimate goal of this research is design of a prototype for such library suitable for implementing various seismic signal processing applications on heterogeneous systems. As a representative use case we have chosen an ambient noise correlation application. Ambient noise interferometry has developed into one of the most powerful tools to image and monitor the Earth's interior. Future applications will require the extraction of increasingly small details from noise recordings. To meet this demand, more advanced correlation techniques combined with very large data volumes are needed. This poses new computational problems that require dedicated HPC solutions. The chosen application is using a wide range of common signal processing methods, which include various IIR filter designs, amplitude and phase correlation, computing the analytic signal, and discrete Fourier transforms. Furthermore, various processing methods specific for seismology, like rotation of seismic traces, are used. Efficient implementation of all these methods on the GPU-accelerated systems represents several challenges. In particular, it requires a careful distribution of work between the sequential processors and accelerators. Furthermore, since the application is designed to process very large volumes of data, special attention had to be paid to the efficient use of the available memory and networking hardware resources in order to reduce intensity of data input and output. In our contribution we will explain the software architecture as well as principal engineering decisions used to address these challenges. We will also describe the programming model based on C++ and CUDA that we used to develop the software. Finally, we will demonstrate performance improvements achieved by using the heterogeneous computing architecture. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID d26.
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.
Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L.; Moya, Jose M.; Risco-Martín, José L.
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time. PMID:23112621
Object-based media and stream-based computing
NASA Astrophysics Data System (ADS)
Bove, V. Michael, Jr.
1998-03-01
Object-based media refers to the representation of audiovisual information as a collection of objects - the result of scene-analysis algorithms - and a script describing how they are to be rendered for display. Such multimedia presentations can adapt to viewing circumstances as well as to viewer preferences and behavior, and can provide a richer link between content creator and consumer. With faster networks and processors, such ideas become applicable to live interpersonal communications as well, creating a more natural and productive alternative to traditional videoconferencing. In this paper is outlined an example of object-based media algorithms and applications developed by my group, and present new hardware architectures and software methods that we have developed to enable meeting the computational requirements of object- based and other advanced media representations. In particular we describe stream-based processing, which enables automatic run-time parallelization of multidimensional signal processing tasks even given heterogenous computational resources.
Ubiquitous green computing techniques for high demand applications in Smart environments.
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Tao, Yuan; Liu, Juan
2005-01-01
The Internet has already deflated our world of working and living into a very small scope, thus bringing out the concept of Earth Village, in which people could communicate and co-work though thousands' miles far away from each other. This paper describes a prototype, which is just like an Earth Lab for bioinformatics, based on Web services framework to build up a network architecture for bioinformatics research and for world wide biologists to easily implement enormous, complex processes, and effectively share and access computing resources and data, regardless of how heterogeneous the format of the data is and how decentralized and distributed these resources are around the world. A diminutive and simplified example scenario is given out to realize the prototype after that.
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.
2018-07-01
Quantifying the uncertainty in solute mass discharge at an environmentally sensitive location is key to assess the risks due to groundwater contamination. Solute mass fluxes are strongly affected by the spatial variability of hydrogeological properties as well as release conditions at the source zone. This paper provides a methodological framework to investigate the interaction between the ubiquitous heterogeneity of the hydraulic conductivity and the mass release rate at the source zone on the uncertainty of mass discharge. Through the use of perturbation theory, we derive analytical and semi-analytical expressions for the statistics of the solute mass discharge at a control plane in a three-dimensional aquifer while accounting for the solute mass release rates at the source. The derived solutions are limited to aquifers displaying low-to-mild heterogeneity. Results illustrate the significance of the source zone mass release rate in controlling the mass discharge uncertainty. The relative importance of the mass release rate on the mean solute discharge depends on the distance between the source and the control plane. On the other hand, we find that the solute release rate at the source zone has a strong impact on the variance of the mass discharge. Within a risk context, we also compute the peak mean discharge as a function of the parameters governing the spatial heterogeneity of the hydraulic conductivity field and mass release rates at the source zone. The proposed physically-based framework is application-oriented, computationally efficient and capable of propagating uncertainty from different parameters onto risk metrics. Furthermore, it can be used for preliminary screening purposes to guide site managers to perform system-level sensitivity analysis and better allocate resources.
Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2015-01-01
We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.
Average is Boring: How Similarity Kills a Meme's Success
Coscia, Michele
2014-01-01
Every day we are exposed to different ideas, or memes, competing with each other for our attention. Previous research explained popularity and persistence heterogeneity of memes by assuming them in competition for limited attention resources, distributed in a heterogeneous social network. Little has been said about what characteristics make a specific meme more likely to be successful. We propose a similarity-based explanation: memes with higher similarity to other memes have a significant disadvantage in their potential popularity. We employ a meme similarity measure based on semantic text analysis and computer vision to prove that a meme is more likely to be successful and to thrive if its characteristics make it unique. Our results show that indeed successful memes are located in the periphery of the meme similarity space and that our similarity measure is a promising predictor of a meme success. PMID:25257730
Temporal behavior of a solute cloud in a fractal heterogeneous porous medium at different scales
NASA Astrophysics Data System (ADS)
Ross, Katharina; Attinger, Sabine
2010-05-01
Water pollution is still a very real problem and the need for efficient models for flow and solute transport in heterogeneous porous or fractured media is evident. In our study we focus on solute transport in heterogeneous fractured media. In heterogeneous fractured media the shape of the pores and fractures in the subsurface might be modeled as a fractal network or a heterogeneous structure with infinite correlation length. To derive explicit results for larger scale or effective transport parameters in such structures is the aim of this work. To describe flow and transport we investigate the temporal behavior of transport coefficients of solute movement through a spatially heterogeneous medium. It is necessary to distinguish between two fundamentally different quantities characterizing the solute dispersion: The effective dispersion coefficient Deff(t) represents the physical (observable) dispersion in one given realization of the medium. It is conceptually different from the mathematically simpler ensemble dispersion coefficient Dens(t) which characterizes the (abstract) dispersion with respect to the set of all possible realizations of the medium. In the framework of a stochastic approach DENTZ ET AL. (2000 I[2] & II[3]) derive explicit expressions for the temporal behavior of the center-of-mass velocity and the dispersion of the concentration distribution, using a second order perturbation expansion. In their model the authors assume a finite correlation length of the heterogeneities and use a GAUSSIAN correlation function. In a first step, we model the fractured medium as a heterogeneous porous medium with infinite correlation length and neglect single fractures. ZHAN & WHEATCRAFT (1996[4]) analyze the macrodispersivity tensor in fractal porous media using a non-integer exponent which consists of the HURST coefficient and the fractal dimension D. To avoid this non-integer exponent for numerical reasons we extend the study of DENTZ ET AL. (2000 I[2] & II[3]) and derive explicit expressions for the center-of-mass velocity and the longitudinal dispersion coefficient for isotropic and anisotropic media as well as for point-like (where the extent of the source distribution is small compared to the correlation lengths of the heterogeneities) and spatially extended injections. Our results clearly show that the difference between Deff and Dens persists for all times. In other words, ensemble mixing and effective mixing coefficients do not approach the same asymptotic limit. The center-of-mass fluctuations between different flow paths for a plume traveling through the medium never become irrelevant and ergodicity breaks down in such media. Our ongoing work concerns the investigation of the transversal dispersion coefficient and the extension of the upscaling method coarse graining[1] to heterogeneous fractal porous media with embedded single fractures. References [1]ATTINGER, S. (2003): Generalized coarse graining procedures for flow in porous media, Computational Geosciences, 7 (4), pp. 253-273. [2]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point-like injection, Water Resources Research, 36 (12), pp. 3591-3604. [3]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 2. Spatially extended injection, Water Resources Research, 36 (12), pp. 3605-3614. [4]ZHAN, H. and S. W. WHEATCRAFT (1996): Macrodispersivity tensor for nonreactive solute transport in isotropic and anisotropic fractal porous media: Analytical solutions, Water Resources Research, 32 (12), pp. 3461-3474.
On salesmen and tourists: Two-step optimization in deterministic foragers
NASA Astrophysics Data System (ADS)
Maya, Miguel; Miramontes, Octavio; Boyer, Denis
2017-02-01
We explore a two-step optimization problem in random environments, the so-called restaurant-coffee shop problem, where a walker aims at visiting the nearest and better restaurant in an area and then move to the nearest and better coffee-shop. This is an extension of the Tourist Problem, a one-step optimization dynamics that can be viewed as a deterministic walk in a random medium. A certain amount of heterogeneity in the values of the resources to be visited causes the emergence of power-laws distributions for the steps performed by the walker, similarly to a Lévy flight. The fluctuations of the step lengths tend to decrease as a consequence of multiple-step planning, thus reducing the foraging uncertainty. We find that the first and second steps of each planned movement play very different roles in heterogeneous environments. The two-step process improves only slightly the foraging efficiency compared to the one-step optimization, at a much higher computational cost. We discuss the implications of these findings for animal and human mobility, in particular in relation to the computational effort that informed agents should deploy to solve search problems.
A characterization of workflow management systems for extreme-scale applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia
We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less
A characterization of workflow management systems for extreme-scale applications
Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia; ...
2017-02-16
We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less
NASA Astrophysics Data System (ADS)
Barfuss, Wolfram; Donges, Jonathan F.; Wiedermann, Marc; Lucht, Wolfgang
2017-04-01
Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social-ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models.
NASA Astrophysics Data System (ADS)
Suzuki, K.; Takayama, T.; Fujii, T.
2016-12-01
We will present possible heterogeneity of pore-water salinity within methane hydrate reservoir of Daini-Atsumi knoll, on the basis of Logging-while-drilling (LWD) data and several kind of wire-line logging dataset. The LWD and the wire-line logging had been carried out during 2012 to 2013, before/after the first offshore gas-production-test from marine-methane-hydrate reservoir at Daini-Atsumi Knoll along the northeast Nankai trough. Several data from the logging, especially data from the reservoir saturation tool; RST, gave us some possible interpretation for heterogeneity distribution of chlorinity within the methane-hydrate reservoir. The computed pore-water chlorinity could be interpreted as condense of chlorinity at gas-hydrate formation. This year, we drilled several number of wells at Daini-Atsumi Knoll, again for next gas production test, and we have also found out possibility of chlorinity heterogeneity from LWD data of Neutron-capture cross section; i.e. Sigma. The distribution of chlorinity within gas-hydrate reservoir may help our understanding of gas hydrate-crystallization and/or dissociation in turbidite reservoir at Daini-Atsumi Knoll. This research is conducted as a part of the Research Consortium for Methane Hydrate Resource in Japan (MH21 Research consortium).
Federated data storage and management infrastructure
NASA Astrophysics Data System (ADS)
Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.
2016-10-01
The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.
Genomic Prediction Accounting for Residual Heteroskedasticity
Ou, Zhining; Tempelman, Robert J.; Steibel, Juan P.; Ernst, Catherine W.; Bates, Ronald O.; Bello, Nora M.
2015-01-01
Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. PMID:26564950
Simplified Distributed Computing
NASA Astrophysics Data System (ADS)
Li, G. G.
2006-05-01
The distributed computing runs from high performance parallel computing, GRID computing, to an environment where idle CPU cycles and storage space of numerous networked systems are harnessed to work together through the Internet. In this work we focus on building an easy and affordable solution for computationally intensive problems in scientific applications based on existing technology and hardware resources. This system consists of a series of controllers. When a job request is detected by a monitor or initialized by an end user, the job manager launches the specific job handler for this job. The job handler pre-processes the job, partitions the job into relative independent tasks, and distributes the tasks into the processing queue. The task handler picks up the related tasks, processes the tasks, and puts the results back into the processing queue. The job handler also monitors and examines the tasks and the results, and assembles the task results into the overall solution for the job request when all tasks are finished for each job. A resource manager configures and monitors all participating notes. A distributed agent is deployed on all participating notes to manage the software download and report the status. The processing queue is the key to the success of this distributed system. We use BEA's Weblogic JMS queue in our implementation. It guarantees the message delivery and has the message priority and re-try features so that the tasks never get lost. The entire system is built on the J2EE technology and it can be deployed on heterogeneous platforms. It can handle algorithms and applications developed in any languages on any platforms. J2EE adaptors are provided to manage and communicate the existing applications to the system so that the applications and algorithms running on Unix, Linux and Windows can all work together. This system is easy and fast to develop based on the industry's well-adopted technology. It is highly scalable and heterogeneous. It is an open system and any number and type of machines can join the system to provide the computational power. This asynchronous message-based system can achieve second of response time. For efficiency, communications between distributed tasks are often done at the start and end of the tasks but intermediate status of the tasks can also be provided.
A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU
NASA Astrophysics Data System (ADS)
Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha
2018-03-01
Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.
NASA Astrophysics Data System (ADS)
Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Hong, Yang; Zuo, Depeng; Ren, Minglei; Lei, Tianjie; Liang, Ke
2018-01-01
Hydrological model calibration has been a hot issue for decades. The shuffled complex evolution method developed at the University of Arizona (SCE-UA) has been proved to be an effective and robust optimization approach. However, its computational efficiency deteriorates significantly when the amount of hydrometeorological data increases. In recent years, the rise of heterogeneous parallel computing has brought hope for the acceleration of hydrological model calibration. This study proposed a parallel SCE-UA method and applied it to the calibration of a watershed rainfall-runoff model, the Xinanjiang model. The parallel method was implemented on heterogeneous computing systems using OpenMP and CUDA. Performance testing and sensitivity analysis were carried out to verify its correctness and efficiency. Comparison results indicated that heterogeneous parallel computing-accelerated SCE-UA converged much more quickly than the original serial version and possessed satisfactory accuracy and stability for the task of fast hydrological model calibration.
PanDA for ATLAS distributed computing in the next decade
NASA Astrophysics Data System (ADS)
Barreiro Megino, F. H.; De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Padolski, S.; Panitkin, S.; Wenaus, T.; ATLAS Collaboration
2017-10-01
The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider (LHC) data processing scale. Heterogeneous resources used by the ATLAS experiment are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, dozens of scientific applications are supported, while data processing requires more than a few billion hours of computing usage per year. PanDA performed very well over the last decade including the LHC Run 1 data taking period. However, it was decided to upgrade the whole system concurrently with the LHC’s first long shutdown in order to cope with rapidly changing computing infrastructure. After two years of reengineering efforts, PanDA has embedded capabilities for fully dynamic and flexible workload management. The static batch job paradigm was discarded in favor of a more automated and scalable model. Workloads are dynamically tailored for optimal usage of resources, with the brokerage taking network traffic and forecasts into account. Computing resources are partitioned based on dynamic knowledge of their status and characteristics. The pilot has been re-factored around a plugin structure for easier development and deployment. Bookkeeping is handled with both coarse and fine granularities for efficient utilization of pledged or opportunistic resources. An in-house security mechanism authenticates the pilot and data management services in off-grid environments such as volunteer computing and private local clusters. The PanDA monitor has been extensively optimized for performance and extended with analytics to provide aggregated summaries of the system as well as drill-down to operational details. There are as well many other challenges planned or recently implemented, and adoption by non-LHC experiments such as bioinformatics groups successfully running Paleomix (microbial genome and metagenomes) payload on supercomputers. In this paper we will focus on the new and planned features that are most important to the next decade of distributed computing workload management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Ryan; Khemka, Bhavesh; Maciejewski, Anthony A
Rising costs of energy consumption and an ongoing effort for increases in computing performance are leading to a significant need for energy-efficient computing. Before systems such as supercomputers, servers, and datacenters can begin operating in an energy-efficient manner, the energy consumption and performance characteristics of the system must be analyzed. In this paper, we provide an analysis framework that will allow a system administrator to investigate the tradeoffs between system energy consumption and utility earned by a system (as a measure of system performance). We model these trade-offs as a bi-objective resource allocation problem. We use a popular multi-objective geneticmore » algorithm to construct Pareto fronts to illustrate how different resource allocations can cause a system to consume significantly different amounts of energy and earn different amounts of utility. We demonstrate our analysis framework using real data collected from online benchmarks, and further provide a method to create larger data sets that exhibit similar heterogeneity characteristics to real data sets. This analysis framework can provide system administrators with insight to make intelligent scheduling decisions based on the energy and utility needs of their systems.« less
Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi
2011-11-01
Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Heterogeneous concurrent computing with exportable services
NASA Technical Reports Server (NTRS)
Sunderam, Vaidy
1995-01-01
Heterogeneous concurrent computing, based on the traditional process-oriented model, is approaching its functionality and performance limits. An alternative paradigm, based on the concept of services, supporting data driven computation, and built on a lightweight process infrastructure, is proposed to enhance the functional capabilities and the operational efficiency of heterogeneous network-based concurrent computing. TPVM is an experimental prototype system supporting exportable services, thread-based computation, and remote memory operations that is built as an extension of and an enhancement to the PVM concurrent computing system. TPVM offers a significantly different computing paradigm for network-based computing, while maintaining a close resemblance to the conventional PVM model in the interest of compatibility and ease of transition Preliminary experiences have demonstrated that the TPVM framework presents a natural yet powerful concurrent programming interface, while being capable of delivering performance improvements of upto thirty percent.
Simple, efficient allocation of modelling runs on heterogeneous clusters with MPI
Donato, David I.
2017-01-01
In scientific modelling and computation, the choice of an appropriate method for allocating tasks for parallel processing depends on the computational setting and on the nature of the computation. The allocation of independent but similar computational tasks, such as modelling runs or Monte Carlo trials, among the nodes of a heterogeneous computational cluster is a special case that has not been specifically evaluated previously. A simulation study shows that a method of on-demand (that is, worker-initiated) pulling from a bag of tasks in this case leads to reliably short makespans for computational jobs despite heterogeneity both within and between cluster nodes. A simple reference implementation in the C programming language with the Message Passing Interface (MPI) is provided.
Homogeneous v. Heterogeneous: Is Tracking a Barrier to Equity?
ERIC Educational Resources Information Center
Polansky, Harvey B.
1995-01-01
Tracking has contributed considerably to the basic inequality of funding among American schools. To move to a heterogenous environment, districts must understand the concept of resource and program equity, commit to a planning process that allocates time and resources, provide ongoing inservice, downplay standardized test results, and phase-in…
NASA Astrophysics Data System (ADS)
Darema, F.
2016-12-01
InfoSymbiotics/DDDAS embodies the power of Dynamic Data Driven Applications Systems (DDDAS), a concept whereby an executing application model is dynamically integrated, in a feed-back loop, with the real-time data-acquisition and control components, as well as other data sources of the application system. Advanced capabilities can be created through such new computational approaches in modeling and simulations, and in instrumentation methods, and include: enhancing the accuracy of the application model; speeding-up the computation to allow faster and more comprehensive models of a system, and create decision support systems with the accuracy of full-scale simulations; in addition, the notion of controlling instrumentation processes by the executing application results in more efficient management of application-data and addresses challenges of how to architect and dynamically manage large sets of heterogeneous sensors and controllers, an advance over the static and ad-hoc ways of today - with DDDAS these sets of resources can be managed adaptively and in optimized ways. Large-Scale-Dynamic-Data encompasses the next wave of Big Data, and namely dynamic data arising from ubiquitous sensing and control in engineered, natural, and societal systems, through multitudes of heterogeneous sensors and controllers instrumenting these systems, and where opportunities and challenges at these "large-scales" relate not only to data size but the heterogeneity in data, data collection modalities, fidelities, and timescales, ranging from real-time data to archival data. In tandem with this important dimension of dynamic data, there is an extended view of Big Computing, which includes the collective computing by networked assemblies of multitudes of sensors and controllers, this range from the high-end to the real-time seamlessly integrated and unified, and comprising the Large-Scale-Big-Computing. InfoSymbiotics/DDDAS engenders transformative impact in many application domains, ranging from the nano-scale to the terra-scale and to the extra-terra-scale. The talk will address opportunities for new capabilities together with corresponding research challenges, with illustrative examples from several application areas including environmental sciences, geosciences, and space sciences.
Demand Response Resource Quantification with Detailed Building Energy Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine; Horsey, Henry; Merket, Noel
Demand response is a broad suite of technologies that enables changes in electrical load operations in support of power system reliability and efficiency. Although demand response is not a new concept, there is new appetite for comprehensively evaluating its technical potential in the context of renewable energy integration. The complexity of demand response makes this task difficult -- we present new methods for capturing the heterogeneity of potential responses from buildings, their time-varying nature, and metrics such as thermal comfort that help quantify likely acceptability of specific demand response actions. Computed with an automated software framework, the methods are scalable.
Confronting the Paradox of Enrichment to the Metacommunity Perspective
Hauzy, Céline; Nadin, Grégoire; Canard, Elsa; Gounand, Isabelle; Mouquet, Nicolas; Ebenman, Bo
2013-01-01
Resource enrichment can potentially destabilize predator-prey dynamics. This phenomenon historically referred as the "paradox of enrichment" has mostly been explored in spatially homogenous environments. However, many predator-prey communities exchange organisms within spatially heterogeneous networks called metacommunities. This heterogeneity can result from uneven distribution of resources among communities and thus can lead to the spreading of local enrichment within metacommunities. Here, we adapted the original Rosenzweig-MacArthur predator-prey model, built to study the paradox of enrichment, to investigate the effect of regional enrichment and of its spatial distribution on predator-prey dynamics in metacommunities. We found that the potential for destabilization was depending on the connectivity among communities and the spatial distribution of enrichment. In one hand, we found that at low dispersal regional enrichment led to the destabilization of predator-prey dynamics. This destabilizing effect was more pronounced when the enrichment was uneven among communities. In the other hand, we found that high dispersal could stabilize the predator-prey dynamics when the enrichment was spatially heterogeneous. Our results illustrate that the destabilizing effect of enrichment can be dampened when the spatial scale of resource enrichment is lower than that of organismss movements (heterogeneous enrichment). From a conservation perspective, our results illustrate that spatial heterogeneity could decrease the regional extinction risk of species involved in specialized trophic interactions. From the perspective of biological control, our results show that the heterogeneous distribution of pest resource could favor or dampen outbreaks of pests and of their natural enemies, depending on the spatial scale of heterogeneity. PMID:24358242
Law of Large Numbers: the Theory, Applications and Technology-based Education
Dinov, Ivo D.; Christou, Nicolas; Gould, Robert
2011-01-01
Modern approaches for technology-based blended education utilize a variety of recently developed novel pedagogical, computational and network resources. Such attempts employ technology to deliver integrated, dynamically-linked, interactive-content and heterogeneous learning environments, which may improve student comprehension and information retention. In this paper, we describe one such innovative effort of using technological tools to expose students in probability and statistics courses to the theory, practice and usability of the Law of Large Numbers (LLN). We base our approach on integrating pedagogical instruments with the computational libraries developed by the Statistics Online Computational Resource (www.SOCR.ucla.edu). To achieve this merger we designed a new interactive Java applet and a corresponding demonstration activity that illustrate the concept and the applications of the LLN. The LLN applet and activity have common goals – to provide graphical representation of the LLN principle, build lasting student intuition and present the common misconceptions about the law of large numbers. Both the SOCR LLN applet and activity are freely available online to the community to test, validate and extend (Applet: http://socr.ucla.edu/htmls/exp/Coin_Toss_LLN_Experiment.html, and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LLN). PMID:21603584
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
Applying Utility Functions to Adaptation Planning for Home Automation Applications
NASA Astrophysics Data System (ADS)
Bratskas, Pyrros; Paspallis, Nearchos; Kakousis, Konstantinos; Papadopoulos, George A.
A pervasive computing environment typically comprises multiple embedded devices that may interact together and with mobile users. These users are part of the environment, and they experience it through a variety of devices embedded in the environment. This perception involves technologies which may be heterogeneous, pervasive, and dynamic. Due to the highly dynamic properties of such environments, the software systems running on them have to face problems such as user mobility, service failures, or resource and goal changes which may happen in an unpredictable manner. To cope with these problems, such systems must be autonomous and self-managed. In this chapter we deal with a special kind of a ubiquitous environment, a smart home environment, and introduce a user-preference-based model for adaptation planning. The model, which dynamically forms a set of configuration plans for resources, reasons automatically and autonomously, based on utility functions, on which plan is likely to best achieve the user's goals with respect to resource availability and user needs.
Jackson, Rebecca D; Best, Thomas M; Borlawsky, Tara B; Lai, Albert M; James, Stephen; Gurcan, Metin N
2012-01-01
The conduct of clinical and translational research regularly involves the use of a variety of heterogeneous and large-scale data resources. Scalable methods for the integrative analysis of such resources, particularly when attempting to leverage computable domain knowledge in order to generate actionable hypotheses in a high-throughput manner, remain an open area of research. In this report, we describe both a generalizable design pattern for such integrative knowledge-anchored hypothesis discovery operations and our experience in applying that design pattern in the experimental context of a set of driving research questions related to the publicly available Osteoarthritis Initiative data repository. We believe that this ‘test bed’ project and the lessons learned during its execution are both generalizable and representative of common clinical and translational research paradigms. PMID:22647689
NASA Astrophysics Data System (ADS)
Zhu, J.; Winter, C. L.; Wang, Z.
2015-08-01
Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River Basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow-paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW simulation environment, and the PEST tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop log-normally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow-paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.
UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.
Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L
2012-03-01
The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv
In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less
NASA Astrophysics Data System (ADS)
Ferreira da Silva, R.; Filgueira, R.; Deelman, E.; Atkinson, M.
2016-12-01
We present Asterism, an open source data-intensive framework, which combines the Pegasus and dispel4py workflow systems. Asterism aims to simplify the effort required to develop data-intensive applications that run across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment systems; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. Asterism's key element is to leverage the strengths of each workflow system: dispel4py allows developing scientific applications locally and then automatically parallelize and scale them on a wide range of HPC infrastructures with no changes to the application's code; Pegasus orchestrates the distributed execution of applications while providing portability, automated data management, recovery, debugging, and monitoring, without users needing to worry about the particulars of the target execution systems. Asterism leverages the level of abstractions provided by each workflow system to describe hybrid workflows where no information about the underlying infrastructure is required beforehand. The feasibility of Asterism has been evaluated using the seismic ambient noise cross-correlation application, a common data-intensive analysis pattern used by many seismologists. The application preprocesses (Phase1) and cross-correlates (Phase2) traces from several seismic stations. The Asterism workflow is implemented as a Pegasus workflow composed of two tasks (Phase1 and Phase2), where each phase represents a dispel4py workflow. Pegasus tasks describe the in/output data at a logical level, the data dependency between tasks, and the e-Infrastructures and the execution engine to run each dispel4py workflow. We have instantiated the workflow using data from 1000 stations from the IRIS services, and run it across two heterogeneous resources described as Docker containers: MPI (Container2) and Storm (Container3) clusters (Figure 1). Each dispel4py workflow is mapped to a particular execution engine, and data transfers between resources are automatically handled by Pegasus. Asterism is freely available online at http://github.com/dispel4py/pegasus_dispel4py.
Integrative Functional Genomics for Systems Genetics in GeneWeaver.org.
Bubier, Jason A; Langston, Michael A; Baker, Erich J; Chesler, Elissa J
2017-01-01
The abundance of existing functional genomics studies permits an integrative approach to interpreting and resolving the results of diverse systems genetics studies. However, a major challenge lies in assembling and harmonizing heterogeneous data sets across species for facile comparison to the positional candidate genes and coexpression networks that come from systems genetic studies. GeneWeaver is an online database and suite of tools at www.geneweaver.org that allows for fast aggregation and analysis of gene set-centric data. GeneWeaver contains curated experimental data together with resource-level data such as GO annotations, MP annotations, and KEGG pathways, along with persistent stores of user entered data sets. These can be entered directly into GeneWeaver or transferred from widely used resources such as GeneNetwork.org. Data are analyzed using statistical tools and advanced graph algorithms to discover new relations, prioritize candidate genes, and generate function hypotheses. Here we use GeneWeaver to find genes common to multiple gene sets, prioritize candidate genes from a quantitative trait locus, and characterize a set of differentially expressed genes. Coupling a large multispecies repository curated and empirical functional genomics data to fast computational tools allows for the rapid integrative analysis of heterogeneous data for interpreting and extrapolating systems genetics results.
Thomas, D.L.; Johnson, D.; Griffith, B.
2006-01-01
Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from 76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection procedure indicated that there is substantial heterogeneity among cow-calf pairs with respect to selection of the landscape attributes. In the second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a Bayesian hierarchical discrete-choice model for resource selection can provide managers with 2 components of population-level inference: average population selection and variability of selection. Both components are necessary to make sound management decisions based on animal selection.
Atuo, Fidelis Akunke; O'Connell, Timothy John
2017-08-01
Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.
Su, Min; Boots, Mike
2017-03-07
Understanding the drivers of parasite evolution and in particular disease virulence remains a major focus of evolutionary theory. Here, we examine the role of resource quality and in particular spatial environmental heterogeneity in the distribution of these resources on the evolution of virulence. There may be direct effects of resources on host susceptibility and pathogenicity alongside effects on reproduction that indirectly impact host-parasite population dynamics. Therefore, we assume that high resource quality may lead to both increased host reproduction and/or increased disease resistance. In completely mixed populations there is no effect of resource quality on the outcome of disease evolution. However, when there are local interactions higher resource quality generally selects for higher virulence/transmission for both linear and saturating transmission-virulence trade-off assumptions. The exception is that in castrators (i.e., infected hosts have no reproduction), higher virulence is selected for both low and high resource qualities at mixed local and global infection. Heterogeneity in the distribution of environment resources only has an effect on the outcome in castrators where random distributions generally select for higher virulence. Overall, our results further underline the importance of considering spatial structure in order to understand evolutionary processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
State-of-the-art in Heterogeneous Computing
Brodtkorb, Andre R.; Dyken, Christopher; Hagen, Trond R.; ...
2010-01-01
Node level heterogeneous architectures have become attractive during the last decade for several reasons: compared to traditional symmetric CPUs, they offer high peak performance and are energy and/or cost efficient. With the increase of fine-grained parallelism in high-performance computing, as well as the introduction of parallelism in workstations, there is an acute need for a good overview and understanding of these architectures. We give an overview of the state-of-the-art in heterogeneous computing, focusing on three commonly found architectures: the Cell Broadband Engine Architecture, graphics processing units (GPUs), and field programmable gate arrays (FPGAs). We present a review of hardware, availablemore » software tools, and an overview of state-of-the-art techniques and algorithms. Furthermore, we present a qualitative and quantitative comparison of the architectures, and give our view on the future of heterogeneous computing.« less
Random sphere packing model of heterogeneous propellants
NASA Astrophysics Data System (ADS)
Kochevets, Sergei Victorovich
It is well recognized that combustion of heterogeneous propellants is strongly dependent on the propellant morphology. Recent developments in computing systems make it possible to start three-dimensional modeling of heterogeneous propellant combustion. A key component of such large scale computations is a realistic model of industrial propellants which retains the true morphology---a goal never achieved before. The research presented develops the Random Sphere Packing Model of heterogeneous propellants and generates numerical samples of actual industrial propellants. This is done by developing a sphere packing algorithm which randomly packs a large number of spheres with a polydisperse size distribution within a rectangular domain. First, the packing code is developed, optimized for performance, and parallelized using the OpenMP shared memory architecture. Second, the morphology and packing fraction of two simple cases of unimodal and bimodal packs are investigated computationally and analytically. It is shown that both the Loose Random Packing and Dense Random Packing limits are not well defined and the growth rate of the spheres is identified as the key parameter controlling the efficiency of the packing. For a properly chosen growth rate, computational results are found to be in excellent agreement with experimental data. Third, two strategies are developed to define numerical samples of polydisperse heterogeneous propellants: the Deterministic Strategy and the Random Selection Strategy. Using these strategies, numerical samples of industrial propellants are generated. The packing fraction is investigated and it is shown that the experimental values of the packing fraction can be achieved computationally. It is strongly believed that this Random Sphere Packing Model of propellants is a major step forward in the realistic computational modeling of heterogeneous propellant of combustion. In addition, a method of analysis of the morphology of heterogeneous propellants is developed which uses the concept of multi-point correlation functions. A set of intrinsic length scales of local density fluctuations in random heterogeneous propellants is identified by performing a Monte-Carlo study of the correlation functions. This method of analysis shows great promise for understanding the origins of the combustion instability of heterogeneous propellants, and is believed to become a valuable tool for the development of safe and reliable rocket engines.
Genomic Prediction Accounting for Residual Heteroskedasticity.
Ou, Zhining; Tempelman, Robert J; Steibel, Juan P; Ernst, Catherine W; Bates, Ronald O; Bello, Nora M
2015-11-12
Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. Copyright © 2016 Ou et al.
NASA Astrophysics Data System (ADS)
Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.
2016-12-01
Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.
Decaf: Decoupled Dataflows for In Situ High-Performance Workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreher, M.; Peterka, T.
Decaf is a dataflow system for the parallel communication of coupled tasks in an HPC workflow. The dataflow can perform arbitrary data transformations ranging from simply forwarding data to complex data redistribution. Decaf does this by allowing the user to allocate resources and execute custom code in the dataflow. All communication through the dataflow is efficient parallel message passing over MPI. The runtime for calling tasks is entirely message-driven; Decaf executes a task when all messages for the task have been received. Such a messagedriven runtime allows cyclic task dependencies in the workflow graph, for example, to enact computational steeringmore » based on the result of downstream tasks. Decaf includes a simple Python API for describing the workflow graph. This allows Decaf to stand alone as a complete workflow system, but Decaf can also be used as the dataflow layer by one or more other workflow systems to form a heterogeneous task-based computing environment. In one experiment, we couple a molecular dynamics code with a visualization tool using the FlowVR and Damaris workflow systems and Decaf for the dataflow. In another experiment, we test the coupling of a cosmology code with Voronoi tessellation and density estimation codes using MPI for the simulation, the DIY programming model for the two analysis codes, and Decaf for the dataflow. Such workflows consisting of heterogeneous software infrastructures exist because components are developed separately with different programming models and runtimes, and this is the first time that such heterogeneous coupling of diverse components was demonstrated in situ on HPC systems.« less
Reply to Efford on ‘Integrating resource selection information with spatial capture-recapture’
Royle, Andy; Chandler, Richard; Sun, Catherine C.; Fuller, Angela K.
2014-01-01
3. A key point of Royle et al. (Methods in Ecology and Evolution, 2013, 4) was that active resource selection induces heterogeneity in encounter probability which, if unaccounted for, should bias estimates of population size or density. The models of Royle et al. (Methods in Ecology and Evolution, 2013, 4) and Efford (Methods in Ecology and Evolution, 2014, 000, 000) merely amount to alternative models of resource selection, and hence varying amounts of heterogeneity in encounter probability.
Moving Object Detection in Heterogeneous Conditions in Embedded Systems.
Garbo, Alessandro; Quer, Stefano
2017-07-01
This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates.
Moving Object Detection in Heterogeneous Conditions in Embedded Systems
Garbo, Alessandro
2017-01-01
This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates. PMID:28671582
NASA Astrophysics Data System (ADS)
Elag, M.; Kumar, P.
2016-12-01
Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic heterogeneity, (ii) an introduction of new paradigm for reusing existing and new standards as well as tools and models without the need of their implementation in the Cyberinfrastructures of water-related disciplines, and (iii) an investigation of a methodology by which distributed models can be coupled in a workflow using the GS services.
Graded meshes in bio-thermal problems with transmission-line modeling method.
Milan, Hugo F M; Carvalho, Carlos A T; Maia, Alex S C; Gebremedhin, Kifle G
2014-10-01
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Folding Proteins at 500 ns/hour with Work Queue.
Abdul-Wahid, Badi'; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A
2012-10-01
Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour.
Folding Proteins at 500 ns/hour with Work Queue
Abdul-Wahid, Badi’; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A.
2014-01-01
Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour. PMID:25540799
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radtke, M.A.
This paper will chronicle the activity at Wisconsin Public Service Corporation (WPSC) that resulted in the complete migration of a traditional, late 1970`s vintage, Energy Management System (EMS). The new environment includes networked microcomputers, minicomputers, and the corporate mainframe, and provides on-line access to employees outside the energy control center and some WPSC customers. In the late 1980`s, WPSC was forecasting an EMS computer upgrade or replacement to address both capacity and technology needs. Reasoning that access to diverse computing resources would best position the company to accommodate the uncertain needs of the energy industry in the 90`s, WPSC chosemore » to investigate an in-place migration to a network of computers, able to support heterogeneous hardware and operating systems. The system was developed in a modular fashion, with individual modules being deployed as soon as they were completed. The functional and technical specification was continuously enhanced as operating experience was gained from each operational module. With the migration off the original EMS computers complete, the networked system called DEMAXX (Distributed Energy Management Architecture with eXtensive eXpandability) has exceeded expectations in the areas of: cost, performance, flexibility, and reliability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radtke, M.A.
This paper will chronicle the activity at Wisconsin Public Service Corporation (WPSC) that resulted in the complete migration of a traditional, late 1970`s vintage, Energy management System (EMS). The new environment includes networked microcomputers, minicomputers, and the corporate mainframe, and provides on-line access to employees outside the energy control center and some WPSC customers. In the late 1980`s, WPSC was forecasting an EMS computer upgrade or replacement to address both capacity and technology needs. Reasoning that access to diverse computing resources would best position the company to accommodate the uncertain needs of the energy industry in the 90`s, WPSC chosemore » to investigate an in-place migration to a network of computers, able to support heterogeneous hardware and operating systems. The system was developed in a modular fashion, with individual modules being deployed as soon as they were completed. The functional and technical specification was continuously enhanced as operating experience was gained from each operational module. With the migration of the original EMS computers complete, the networked system called DEMAXX (Distributed Energy Management Architecture with eXtensive eXpandability) has exceeded expectations in the areas of: cost, performance, flexibility, and reliability.« less
Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures
Zavodszky, Maria I.
2017-01-01
Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747
Simulating Mass Removal of Groundwater Contaminant Plumes with Complex and Simple Models
NASA Astrophysics Data System (ADS)
Lopez, J.; Guo, Z.; Fogg, G. E.
2016-12-01
Chlorinated solvents used in industrial, commercial, and other applications continue to pose significant threats to human health through contamination of groundwater resources. A recent National Research Council report concludes that it is unlikely that remediation of these complex sites will be achieved in a time frame of 50-100 years under current methods and standards (NRC, 2013). Pump and treat has been a common strategy at many sites to contain and treat groundwater contamination. In these sites, extensive retention of contaminant mass in low-permeability materials (tailing) has been observed after years or decades of pumping. Although transport models can be built that contain enough of the complex, 3D heterogeneity to simulate the tailing and long cleanup times, this is seldom done because of the large data and computational burdens. Hence, useful, reliable models to simulate various cleanup strategies are rare. The purpose of this study is to explore other potential ways to simulate the mass-removal processes with shorter time and less cost but still produce robust results by capturing effects of the heterogeneity and long-term retention of mass. A site containing a trichloroethylene groundwater plume was selected as the study area. The plume is located within alluvial sediments in the Tucson Basin. A fully heterogeneous domain is generated first and MODFLOW is used to simulate the flow field. Contaminant transport is simulated using both MT3D and RWHet for the fully heterogeneous model. Other approaches, including dual-domain mass transfer and heterogeneous chemical reactions, are manipulated to simulate the mass removal in a less heterogeneous, or homogeneous, domain and results are compared to the results obtained from complex models. The capability of these simpler models to simulate remediation processes, especially capture the late-time tailing, are examined.
Octree-based Global Earthquake Simulations
NASA Astrophysics Data System (ADS)
Ramirez-Guzman, L.; Juarez, A.; Bielak, J.; Salazar Monroy, E. F.
2017-12-01
Seismological research has motivated recent efforts to construct more accurate three-dimensional (3D) velocity models of the Earth, perform global simulations of wave propagation to validate models, and also to study the interaction of seismic fields with 3D structures. However, traditional methods for seismogram computation at global scales are limited by computational resources, relying primarily on traditional methods such as normal mode summation or two-dimensional numerical methods. We present an octree-based mesh finite element implementation to perform global earthquake simulations with 3D models using topography and bathymetry with a staircase approximation, as modeled by the Carnegie Mellon Finite Element Toolchain Hercules (Tu et al., 2006). To verify the implementation, we compared the synthetic seismograms computed in a spherical earth against waveforms calculated using normal mode summation for the Preliminary Earth Model (PREM) for a point source representation of the 2014 Mw 7.3 Papanoa, Mexico earthquake. We considered a 3 km-thick ocean layer for stations with predominantly oceanic paths. Eigen frequencies and eigen functions were computed for toroidal, radial, and spherical oscillations in the first 20 branches. Simulations are valid at frequencies up to 0.05 Hz. Matching among the waveforms computed by both approaches, especially for long period surface waves, is excellent. Additionally, we modeled the Mw 9.0 Tohoku-Oki earthquake using the USGS finite fault inversion. Topography and bathymetry from ETOPO1 are included in a mesh with more than 3 billion elements; constrained by the computational resources available. We compared estimated velocity and GPS synthetics against observations at regional and teleseismic stations of the Global Seismological Network and discuss the differences among observations and synthetics, revealing that heterogeneity, particularly in the crust, needs to be considered.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
NASA Astrophysics Data System (ADS)
Yang, Z. L.; Cao, J.; Hu, K.; Gui, Z. P.; Wu, H. Y.; You, L.
2016-06-01
Efficient online discovering and applying geospatial information resources (GIRs) is critical in Earth Science domain as while for cross-disciplinary applications. However, to achieve it is challenging due to the heterogeneity, complexity and privacy of online GIRs. In this article, GeoSquare, a collaborative online geospatial information sharing and geoprocessing platform, was developed to tackle this problem. Specifically, (1) GIRs registration and multi-view query functions allow users to publish and discover GIRs more effectively. (2) Online geoprocessing and real-time execution status checking help users process data and conduct analysis without pre-installation of cumbersome professional tools on their own machines. (3) A service chain orchestration function enables domain experts to contribute and share their domain knowledge with community members through workflow modeling. (4) User inventory management allows registered users to collect and manage their own GIRs, monitor their execution status, and track their own geoprocessing histories. Besides, to enhance the flexibility and capacity of GeoSquare, distributed storage and cloud computing technologies are employed. To support interactive teaching and training, GeoSquare adopts the rich internet application (RIA) technology to create user-friendly graphical user interface (GUI). Results show that GeoSquare can integrate and foster collaboration between dispersed GIRs, computing resources and people. Subsequently, educators and researchers can share and exchange resources in an efficient and harmonious way.
Semantic integration of data on transcriptional regulation
Baitaluk, Michael; Ponomarenko, Julia
2010-01-01
Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517
Semantic integration of data on transcriptional regulation.
Baitaluk, Michael; Ponomarenko, Julia
2010-07-01
Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a 'one-stop shop' experience for users seeking information essential for deciphering and modeling gene regulatory networks. IntegromeDB, a semantic graph-based 'deep-web' data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org baitaluk@sdsc.edu Supplementary data are available at Bioinformatics online.
RAIN: RNA–protein Association and Interaction Networks
Junge, Alexander; Refsgaard, Jan C.; Garde, Christian; Pan, Xiaoyong; Santos, Alberto; Alkan, Ferhat; Anthon, Christian; von Mering, Christian; Workman, Christopher T.; Jensen, Lars Juhl; Gorodkin, Jan
2017-01-01
Protein association networks can be inferred from a range of resources including experimental data, literature mining and computational predictions. These types of evidence are emerging for non-coding RNAs (ncRNAs) as well. However, integration of ncRNAs into protein association networks is challenging due to data heterogeneity. Here, we present a database of ncRNA–RNA and ncRNA–protein interactions and its integration with the STRING database of protein–protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data, interaction predictions and automatic literature mining. RAIN uses an integrative scoring scheme to assign a confidence score to each interaction. We demonstrate that RAIN outperforms the underlying microRNA-target predictions in inferring ncRNA interactions. RAIN can be operated through an easily accessible web interface and all interaction data can be downloaded. Database URL: http://rth.dk/resources/rain PMID:28077569
Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density
NASA Astrophysics Data System (ADS)
Hohl, A.; Delmelle, E. M.; Tang, W.
2015-07-01
Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkata, Manjunath Gorentla; Aderholdt, William F
The pre-exascale systems are expected to have a significant amount of hierarchical and heterogeneous on-node memory, and this trend of system architecture in extreme-scale systems is expected to continue into the exascale era. along with hierarchical-heterogeneous memory, the system typically has a high-performing network ad a compute accelerator. This system architecture is not only effective for running traditional High Performance Computing (HPC) applications (Big-Compute), but also for running data-intensive HPC applications and Big-Data applications. As a consequence, there is a growing desire to have a single system serve the needs of both Big-Compute and Big-Data applications. Though the system architecturemore » supports the convergence of the Big-Compute and Big-Data, the programming models and software layer have yet to evolve to support either hierarchical-heterogeneous memory systems or the convergence. A programming abstraction to address this problem. The programming abstraction is implemented as a software library and runs on pre-exascale and exascale systems supporting current and emerging system architecture. Using distributed data-structures as a central concept, it provides (1) a simple, usable, and portable abstraction for hierarchical-heterogeneous memory and (2) a unified programming abstraction for Big-Compute and Big-Data applications.« less
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
Computerized resources in language therapy with children of the autistic spectrum.
Fernandes, Fernanda Dreux Miranda; Santos, Thaís Helena Ferreira; Amato, Cibelle Albuquerque de la Higuera; Molini-Avejonas, Daniela Regina
2010-01-01
The use of computerized technology in language therapy with children of the autistic spectrum. To assess the interference of using computers and specific programs during language therapy in the functional communicative profile and socio-cognitive performance of children of the autistic spectrum. 23 children with ages ranging between 3 and 12 years were individually video recorded prior to and after a set of 10 regular language therapy sessions (i.e. a total of two video samples per subject) using computerized games according to the child's choice. The following expressions were used by the therapists to describe the children's performance during the use of computers: more attentive, more communicative initiatives, more eye contact, more interactive, more verbalizations, more attention and more action requests. Qualitative and quantitative progresses were identified, although without statistical significance. Those progresses were observed after a time period that is smaller than the usually applied to this kind of comparison and it seems to be a promising result. More controlled associations and comparisons were not possible due to the groups' heterogeneity and therefore more consistent conclusions are not possible. It was clear that the subjects presented different reactions to the use of computerized resources during language therapy.
Armstrong, Jonathan B.; Schindler, Daniel E.; Ruff, Casey P.; Brooks, Gabriel T.; Bentley, Kale E.; Torgersen, Christian E.
2013-01-01
Vertical heterogeneity in the physical characteristics of lakes and oceans is ecologically salient and exploited by a wide range of taxa through diel vertical migration to enhance their growth and survival. Whether analogous behaviors exploit horizontal habitat heterogeneity in streams is largely unknown. We investigated fish movement behavior at daily timescales to explore how individuals integrated across spatial variation in food abundance and water temperature. Juvenile coho salmon made feeding forays into cold habitats with abundant food, and then moved long distances (350–1300 m) to warmer habitats that accelerated their metabolism and increased their assimilative capacity. This behavioral thermoregulation enabled fish to mitigate trade-offs between trophic and thermal resources by exploiting thermal heterogeneity. Fish that exploited thermal heterogeneity grew at substantially faster rates than did individuals that assumed other behaviors. Our results provide empirical support for the importance of thermal diversity in lotic systems, and emphasize the importance of considering interactions between animal behavior and habitat heterogeneity when managing and restoring ecosystems.
Wang, Yong-Jian; Müller-Schärer, Heinz; van Kleunen, Mark; Cai, Ai-Ming; Zhang, Ping; Yan, Rong; Dong, Bi-Cheng; Yu, Fei-Hai
2017-12-01
What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world's worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage. We selected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas. Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives. Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Models@Home: distributed computing in bioinformatics using a screensaver based approach.
Krieger, Elmar; Vriend, Gert
2002-02-01
Due to the steadily growing computational demands in bioinformatics and related scientific disciplines, one is forced to make optimal use of the available resources. A straightforward solution is to build a network of idle computers and let each of them work on a small piece of a scientific challenge, as done by Seti@Home (http://setiathome.berkeley.edu), the world's largest distributed computing project. We developed a generally applicable distributed computing solution that uses a screensaver system similar to Seti@Home. The software exploits the coarse-grained nature of typical bioinformatics projects. Three major considerations for the design were: (1) often, many different programs are needed, while the time is lacking to parallelize them. Models@Home can run any program in parallel without modifications to the source code; (2) in contrast to the Seti project, bioinformatics applications are normally more sensitive to lost jobs. Models@Home therefore includes stringent control over job scheduling; (3) to allow use in heterogeneous environments, Linux and Windows based workstations can be combined with dedicated PCs to build a homogeneous cluster. We present three practical applications of Models@Home, running the modeling programs WHAT IF and YASARA on 30 PCs: force field parameterization, molecular dynamics docking, and database maintenance.
Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms
Chen, Jun; Sprouffske, Kathleen; Huang, Qihong; Maley, Carlo C.
2011-01-01
Background Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. Methods and Findings We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. Conclusions We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis. PMID:21556134
Sihong Chen; Jing Qin; Xing Ji; Baiying Lei; Tianfu Wang; Dong Ni; Jie-Zhi Cheng
2017-03-01
The gap between the computational and semantic features is the one of major factors that bottlenecks the computer-aided diagnosis (CAD) performance from clinical usage. To bridge this gap, we exploit three multi-task learning (MTL) schemes to leverage heterogeneous computational features derived from deep learning models of stacked denoising autoencoder (SDAE) and convolutional neural network (CNN), as well as hand-crafted Haar-like and HoG features, for the description of 9 semantic features for lung nodules in CT images. We regard that there may exist relations among the semantic features of "spiculation", "texture", "margin", etc., that can be explored with the MTL. The Lung Image Database Consortium (LIDC) data is adopted in this study for the rich annotation resources. The LIDC nodules were quantitatively scored w.r.t. 9 semantic features from 12 radiologists of several institutes in U.S.A. By treating each semantic feature as an individual task, the MTL schemes select and map the heterogeneous computational features toward the radiologists' ratings with cross validation evaluation schemes on the randomly selected 2400 nodules from the LIDC dataset. The experimental results suggest that the predicted semantic scores from the three MTL schemes are closer to the radiologists' ratings than the scores from single-task LASSO and elastic net regression methods. The proposed semantic attribute scoring scheme may provide richer quantitative assessments of nodules for better support of diagnostic decision and management. Meanwhile, the capability of the automatic association of medical image contents with the clinical semantic terms by our method may also assist the development of medical search engine.
UBioLab: a web-laboratory for ubiquitous in-silico experiments.
Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo
2012-07-09
The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.
The HARNESS Workbench: Unified and Adaptive Access to Diverse HPC Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderam, Vaidy S.
2012-03-20
The primary goal of the Harness WorkBench (HWB) project is to investigate innovative software environments that will help enhance the overall productivity of applications science on diverse HPC platforms. Two complementary frameworks were designed: one, a virtualized command toolkit for application building, deployment, and execution, that provides a common view across diverse HPC systems, in particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified runtime environment that consolidates access to runtime services via an adaptive framework for execution-time and post processing activities. A prototype of the first was developed based on the concept ofmore » a 'system-call virtual machine' (SCVM), to enhance portability of the HPC application deployment process across heterogeneous high-end machines. The SCVM approach to portable builds is based on the insertion of toolkit-interpretable directives into original application build scripts. Modifications resulting from these directives preserve the semantics of the original build instruction flow. The execution of the build script is controlled by our toolkit that intercepts build script commands in a manner transparent to the end-user. We have applied this approach to a scientific production code (Gamess-US) on the Cray-XT5 machine. The second facet, termed Unibus, aims to facilitate provisioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To achieve that, Unibus proposes a Capability Model and mediators (resource drivers) to virtualize access to diverse resources, and soft and successive conditioning to enable automatic and user-transparent resource provisioning. A proof of concept implementation has demonstrated the viability of this approach on high end machines, grid systems and computing clouds.« less
An interactive web-based system using cloud for large-scale visual analytics
NASA Astrophysics Data System (ADS)
Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.
2015-03-01
Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.
Federated and Cloud Enabled Resources for Data Management and Utilization
NASA Astrophysics Data System (ADS)
Rankin, R.; Gordon, M.; Potter, R. G.; Satchwill, B.
2011-12-01
The emergence of cloud computing over the past three years has led to a paradigm shift in how data can be managed, processed and made accessible. Building on the federated data management system offered through the Canadian Space Science Data Portal (www.cssdp.ca), we demonstrate how heterogeneous and geographically distributed data sets and modeling tools have been integrated to form a virtual data center and computational modeling platform that has services for data processing and visualization embedded within it. We also discuss positive and negative experiences in utilizing Eucalyptus and OpenStack cloud applications, and job scheduling facilitated by Condor and Star Cluster. We summarize our findings by demonstrating use of these technologies in the Cloud Enabled Space Weather Data Assimilation and Modeling Platform CESWP (www.ceswp.ca), which is funded through Canarie's (canarie.ca) Network Enabled Platforms program in Canada.
Arcade: A Web-Java Based Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.
FAST: framework for heterogeneous medical image computing and visualization.
Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank
2015-11-01
Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.
Singer, Gabriel; Besemer, Katharina; Schmitt-Kopplin, Philippe; Hödl, Iris; Battin, Tom J.
2010-01-01
Background Evidence increasingly shows that stream ecosystems greatly contribute to global carbon fluxes. This involves a tight coupling between biofilms, the dominant form of microbial life in streams, and dissolved organic carbon (DOC), a very significant pool of organic carbon on Earth. Yet, the interactions between microbial biodiversity and the molecular diversity of resource use are poorly understood. Methodology/Principal Findings Using six 40-m-long streamside flumes, we created a gradient of streambed landscapes with increasing spatial flow heterogeneity to assess how physical heterogeneity, inherent to streams, affects biofilm diversity and DOC use. We determined bacterial biodiversity in all six landscapes using 16S-rRNA fingerprinting and measured carbon uptake from glucose and DOC experimentally injected to all six flumes. The diversity of DOC molecules removed from the water was determined from ultrahigh-resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS). Bacterial beta diversity, glucose and DOC uptake, and the molecular diversity of DOC use all increased with increasing flow heterogeneity. Causal modeling and path analyses of the experimental data revealed that the uptake of glucose was largely driven by physical processes related to flow heterogeneity, whereas biodiversity effects, such as complementarity, most likely contributed to the enhanced uptake of putatively recalcitrant DOC compounds in the streambeds with higher flow heterogeneity. Conclusions/Significance Our results suggest biophysical mechanisms, including hydrodynamics and microbial complementarity effects, through which physical heterogeneity induces changes of resource use and carbon fluxes in streams. These findings highlight the importance of fine-scale streambed heterogeneity for microbial biodiversity and ecosystem functioning in streams, where homogenization and loss of habitats increasingly reduce biodiversity. PMID:20376323
Documentary of MFENET, a national computer network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuttleworth, B.O.
1977-06-01
The national Magnetic Fusion Energy Computer Network (MFENET) is a newly operational star network of geographically separated heterogeneous hosts and a communications subnetwork of PDP-11 processors. Host processors interfaced to the subnetwork currently include a CDC 7600 at the Central Computer Center (CCC) and several DECsystem-10's at User Service Centers (USC's). The network was funded by a U.S. government agency (ERDA) to provide in an economical manner the needed computational resources to magnetic confinement fusion researchers. Phase I operation of MFENET distributed the processing power of the CDC 7600 among the USC's through the provision of file transport between anymore » two hosts and remote job entry to the 7600. Extending the capabilities of Phase I, MFENET Phase II provided interactive terminal access to the CDC 7600 from the USC's. A file management system is maintained at the CCC for all network users. The history and development of MFENET are discussed, with emphasis on the protocols used to link the host computers and the USC software. Comparisons are made of MFENET versus ARPANET (Advanced Research Projects Agency Computer Network) and DECNET (Digital Distributed Network Architecture). DECNET and MFENET host-to host, host-to-CCP, and link protocols are discussed in detail. The USC--CCP interface is described briefly. 43 figures, 2 tables.« less
Gundale, Michael J; Metlen, Kerry L; Fiedler, Carl E; DeLuca, Thomas H
2006-04-01
The resource heterogeneity hypothesis (RHH) is frequently cited in the ecological literature as an important mechanism for maintaining species diversity. The RHH has rarely been evaluated in the context of restoration ecology in which a commonly cited goal is to restore diversity. In this study we focused on the spatial heterogeneity of total inorganic nitrogen (TIN) following restoration treatments in a ponderosa pine (Pinus ponderosa)/Douglas-fir (Pseudotsuga menziesii) forest in western Montana, USA. Our objective was to evaluate relationships between understory species richness and TIN heterogeneity following mechanical thinning (thin-only), prescribed burning (burn-only), and mechanical thinning with prescribed burning (thin/burn) to discern the ecological and management implications of these restoration approaches. We employed a randomized block design, with three 9-ha replicates of each treatment and an untreated control. Within each treatment, we randomly established a 20 x 50 m (1000 m2) plot in which we measured species richness across the entire plot and in 12 1-m(2) quadrats randomly placed within each larger plot. Additionally, we measured TIN from a grid consisting of 112 soil samples (0-5 cm) in each plot and computed standard deviations as a measure of heterogeneity. We found a correlation between the net increase in species richness and the TIN standard deviations one and two years following restoration treatments, supporting RHH. Using nonmetric multidimensional scaling ordination and chi-squared analysis, we found that high and low TIN quadrats contained different understory communities in 2003 and 2004, further supporting RHH. A comparison of restoration treatments demonstrated that thin/burn and burn-only treatments created higher N heterogeneity relative to the control. We also found that within prescribed burn treatments, TIN heterogeneity was positively correlated with fine-fuel consumption, a variable reflecting burn severity. These findings may lead to more informed restoration decisions that consider treatment effects on understory diversity in ponderosa pine/Douglas-fir ecosystems.
A Linked Dataset of Medical Educational Resources
ERIC Educational Resources Information Center
Dietze, Stefan; Taibi, Davide; Yu, Hong Qing; Dovrolis, Nikolas
2015-01-01
Reusable educational resources became increasingly important for enhancing learning and teaching experiences, particularly in the medical domain where resources are particularly expensive to produce. While interoperability across educational resources metadata repositories is yet limited to the heterogeneity of metadata standards and interface…
NASA Astrophysics Data System (ADS)
Zhu, J.; Winter, C. L.; Wang, Z.
2015-11-01
Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.
[Tumor Data Interacted System Design Based on Grid Platform].
Liu, Ying; Cao, Jiaji; Zhang, Haowei; Zhang, Ke
2016-06-01
In order to satisfy demands of massive and heterogeneous tumor clinical data processing and the multi-center collaborative diagnosis and treatment for tumor diseases,a Tumor Data Interacted System(TDIS)was established based on grid platform,so that an implementing virtualization platform of tumor diagnosis service was realized,sharing tumor information in real time and carrying on standardized management.The system adopts Globus Toolkit 4.0tools to build the open grid service framework and encapsulats data resources based on Web Services Resource Framework(WSRF).The system uses the middleware technology to provide unified access interface for heterogeneous data interaction,which could optimize interactive process with virtualized service to query and call tumor information resources flexibly.For massive amounts of heterogeneous tumor data,the federated stored and multiple authorized mode is selected as security services mechanism,real-time monitoring and balancing load.The system can cooperatively manage multi-center heterogeneous tumor data to realize the tumor patient data query,sharing and analysis,and compare and match resources in typical clinical database or clinical information database in other service node,thus it can assist doctors in consulting similar case and making up multidisciplinary treatment plan for tumors.Consequently,the system can improve efficiency of diagnosis and treatment for tumor,and promote the development of collaborative tumor diagnosis model.
Use of handheld computers in clinical practice: a systematic review.
Mickan, Sharon; Atherton, Helen; Roberts, Nia Wyn; Heneghan, Carl; Tilson, Julie K
2014-07-06
Many healthcare professionals use smartphones and tablets to inform patient care. Contemporary research suggests that handheld computers may support aspects of clinical diagnosis and management. This systematic review was designed to synthesise high quality evidence to answer the question; Does healthcare professionals' use of handheld computers improve their access to information and support clinical decision making at the point of care? A detailed search was conducted using Cochrane, MEDLINE, EMBASE, PsycINFO, Science and Social Science Citation Indices since 2001. Interventions promoting healthcare professionals seeking information or making clinical decisions using handheld computers were included. Classroom learning and the use of laptop computers were excluded. Two authors independently selected studies, assessed quality using the Cochrane Risk of Bias tool and extracted data. High levels of data heterogeneity negated statistical synthesis. Instead, evidence for effectiveness was summarised narratively, according to each study's aim for assessing the impact of handheld computer use. We included seven randomised trials investigating medical or nursing staffs' use of Personal Digital Assistants. Effectiveness was demonstrated across three distinct functions that emerged from the data: accessing information for clinical knowledge, adherence to guidelines and diagnostic decision making. When healthcare professionals used handheld computers to access clinical information, their knowledge improved significantly more than peers who used paper resources. When clinical guideline recommendations were presented on handheld computers, clinicians made significantly safer prescribing decisions and adhered more closely to recommendations than peers using paper resources. Finally, healthcare professionals made significantly more appropriate diagnostic decisions using clinical decision making tools on handheld computers compared to colleagues who did not have access to these tools. For these clinical decisions, the numbers need to test/screen were all less than 11. Healthcare professionals' use of handheld computers may improve their information seeking, adherence to guidelines and clinical decision making. Handheld computers can provide real time access to and analysis of clinical information. The integration of clinical decision support systems within handheld computers offers clinicians the highest level of synthesised evidence at the point of care. Future research is needed to replicate these early results and to identify beneficial clinical outcomes.
Use of handheld computers in clinical practice: a systematic review
2014-01-01
Background Many healthcare professionals use smartphones and tablets to inform patient care. Contemporary research suggests that handheld computers may support aspects of clinical diagnosis and management. This systematic review was designed to synthesise high quality evidence to answer the question; Does healthcare professionals’ use of handheld computers improve their access to information and support clinical decision making at the point of care? Methods A detailed search was conducted using Cochrane, MEDLINE, EMBASE, PsycINFO, Science and Social Science Citation Indices since 2001. Interventions promoting healthcare professionals seeking information or making clinical decisions using handheld computers were included. Classroom learning and the use of laptop computers were excluded. Two authors independently selected studies, assessed quality using the Cochrane Risk of Bias tool and extracted data. High levels of data heterogeneity negated statistical synthesis. Instead, evidence for effectiveness was summarised narratively, according to each study’s aim for assessing the impact of handheld computer use. Results We included seven randomised trials investigating medical or nursing staffs’ use of Personal Digital Assistants. Effectiveness was demonstrated across three distinct functions that emerged from the data: accessing information for clinical knowledge, adherence to guidelines and diagnostic decision making. When healthcare professionals used handheld computers to access clinical information, their knowledge improved significantly more than peers who used paper resources. When clinical guideline recommendations were presented on handheld computers, clinicians made significantly safer prescribing decisions and adhered more closely to recommendations than peers using paper resources. Finally, healthcare professionals made significantly more appropriate diagnostic decisions using clinical decision making tools on handheld computers compared to colleagues who did not have access to these tools. For these clinical decisions, the numbers need to test/screen were all less than 11. Conclusion Healthcare professionals’ use of handheld computers may improve their information seeking, adherence to guidelines and clinical decision making. Handheld computers can provide real time access to and analysis of clinical information. The integration of clinical decision support systems within handheld computers offers clinicians the highest level of synthesised evidence at the point of care. Future research is needed to replicate these early results and to identify beneficial clinical outcomes. PMID:24998515
ADAPTIVE-GRID SIMULATION OF GROUNDWATER FLOW IN HETEROGENEOUS AQUIFERS. (R825689C068)
The prediction of contaminant transport in porous media requires the computation of the flow velocity. This work presents a methodology for high-accuracy computation of flow in a heterogeneous isotropic formation, employing a dual-flow formulation and adaptive...
NASA Astrophysics Data System (ADS)
Fang, Y.; Hou, J.; Engel, D.; Lin, G.; Yin, J.; Han, B.; Fang, Z.; Fountoulakis, V.
2011-12-01
In this study, we introduce an uncertainty quantification (UQ) software framework for carbon sequestration, with the focus of studying being the effect of spatial heterogeneity of reservoir properties on CO2 migration. We use a sequential Gaussian method (SGSIM) to generate realizations of permeability fields with various spatial statistical attributes. To deal with the computational difficulties, we integrate the following ideas/approaches: 1) firstly, we use three different sampling approaches (probabilistic collocation, quasi-Monte Carlo, and adaptive sampling approaches) to reduce the required forward calculations while trying to explore the parameter space and quantify the input uncertainty; 2) secondly, we use eSTOMP as the forward modeling simulator. eSTOMP is implemented using the Global Arrays toolkit (GA) that is based on one-sided inter-processor communication and supports a shared memory programming style on distributed memory platforms. It provides highly-scalable performance. It uses a data model to partition most of the large scale data structures into a relatively small number of distinct classes. The lower level simulator infrastructure (e.g. meshing support, associated data structures, and data mapping to processors) is separated from the higher level physics and chemistry algorithmic routines using a grid component interface; and 3) besides the faster model and more efficient algorithms to speed up the forward calculation, we built an adaptive system infrastructure to select the best possible data transfer mechanisms, to optimally allocate system resources to improve performance, and to integrate software packages and data for composing carbon sequestration simulation, computation, analysis, estimation and visualization. We will demonstrate the framework with a given CO2 injection scenario in a heterogeneous sandstone reservoir.
Maintenance of ventricular fibrillation in heterogeneous ventricle.
Arevalo, Hamenegild J; Trayanova, Natalia A
2006-01-01
Although ventricular fibrillation (VF) is the prevalent cause of sudden cardiac death, the mechanisms that underlie VF remain elusive. One possible explanation is that VF is driven by a single robust rotor that is the source of wavefronts that break-up due to functional heterogeneities. Previous 2D computer simulations have proposed that a heterogeneity in background potassium current (IK1) can serve as the substrate for the formation of mother rotor activity. This study incorporates IK1 heterogeneity between the left and right ventricle in a realistic 3D rabbit ventricle model to examine its effects on the organization of VF. Computer simulations show that the IK1 heterogeneity contributes to the initiation and maintenance of VF by providing regions of different refractoriness which serves as sites of wave break and rotor formation. A single rotor that drives the fibrillatory activity in the ventricle is not found in this study. Instead, multiple sites of reentry are recorded throughout the ventricle. Calculation of dominant frequencies for each myocardial node yields no significant difference between the dominant frequency of the LV and the RV. The 3D computer simulations suggest that IK1 spatial heterogeneity alone can not lead to the formation of a stable rotor.
Discovering Tradeoffs, Vulnerabilities, and Dependencies within Water Resources Systems
NASA Astrophysics Data System (ADS)
Reed, P. M.
2015-12-01
There is a growing recognition and interest in using emerging computational tools for discovering the tradeoffs that emerge across complex combinations infrastructure options, adaptive operations, and sign posts. As a field concerned with "deep uncertainties", it is logically consistent to include a more direct acknowledgement that our choices for dealing with computationally demanding simulations, advanced search algorithms, and sensitivity analysis tools are themselves subject to failures that could adversely bias our understanding of how systems' vulnerabilities change with proposed actions. Balancing simplicity versus complexity in our computational frameworks is nontrivial given that we are often exploring high impact irreversible decisions. It is not always clear that accepted models even encompass important failure modes. Moreover as they become more complex and computationally demanding the benefits and consequences of simplifications are often untested. This presentation discusses our efforts to address these challenges through our "many-objective robust decision making" (MORDM) framework for the design and management water resources systems. The MORDM framework has four core components: (1) elicited problem conception and formulation, (2) parallel many-objective search, (3) interactive visual analytics, and (4) negotiated selection of robust alternatives. Problem conception and formulation is the process of abstracting a practical design problem into a mathematical representation. We build on the emerging work in visual analytics to exploit interactive visualization of both the design space and the objective space in multiple heterogeneous linked views that permit exploration and discovery. Many-objective search produces tradeoff solutions from potentially competing problem formulations that can each consider up to ten conflicting objectives based on current computational search capabilities. Negotiated design selection uses interactive visualization, reformulation, and optimization to discover desirable designs for implementation. Multi-city urban water supply portfolio planning will be used to illustrate the MORDM framework.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
NASA Astrophysics Data System (ADS)
Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H.
2018-04-01
Climate change is nowadays widely considered to have major effects on groundwater resources. Climatic projections suggest a global increase in evaporation and higher frequency of strong rainfall events especially in Mediterranean context. Since evaporation is synonym of low recharge conditions whereas strong rainfall events are more favourable to recharge in heterogeneous subsurface contexts, a lack of knowledge remains then on the real ongoing and future drinking groundwater supply availability at aquifers scale. Due to low recharge potential and high inter-annual climate variability, this issue is strategic for the Mediterranean hydrosystems. This is especially the case for coastal aquifers because they are exposed to seawater intrusion, sea-level rise and overpumping risks. In this context, recharge processes and rates were investigated in a Mediterranean coastal aquifer with subsurface heterogeneity located in Southern Corsica (France). Aquifer recharge rates from combining ten physical and chemical methods were computed. In addition, hydrochemical and isotopic investigations were carried out through a monthly two years monitoring combining major ions and stable isotopes of water in rain, runoff and groundwater. Diffuse, focused, lateral mountain system and irrigation recharge processes were identified and characterized. A predominant focused recharge conditioned by subsurface heterogeneity is evidenced in agreement with variable but highly favourable recharge rates. The fast water transfer from the surface to the aquifer implied by this recharge process suggests less evaporation, which means higher groundwater renewal and availability in such Mediterranean coastal aquifers.
Intelligent resource discovery using ontology-based resource profiles
NASA Technical Reports Server (NTRS)
Hughes, J. Steven; Crichton, Dan; Kelly, Sean; Crichton, Jerry; Tran, Thuy
2004-01-01
Successful resource discovery across heterogeneous repositories is strongly dependent on the semantic and syntactic homogeneity of the associated resource descriptions. Ideally, resource descriptions are easily extracted from pre-existing standardized sources, expressed using standard syntactic and semantic structures, and managed and accessed within a distributed, flexible, and scaleable software framework.
Health care information infrastructure: what will it be and how will we get there?
NASA Astrophysics Data System (ADS)
Kun, Luis G.
1996-02-01
During the first Health Care Technology Policy [HCTPI conference last year, during Health Care Reform, four major issues were brought up in regards to the underway efforts to develop a Computer Based Patient Record (CBPR)I the National Information Infrastructure (NIl) as part of the High Performance Computers & Communications (HPCC), and the so-called "Patient Card" . More specifically it was explained how a national information system will greatly affect the way health care delivery is provided to the United States public and reduce its costs. These four issues were: Constructing a National Information Infrastructure (NIl); Building a Computer Based Patient Record System; Bringing the collective resources of our National Laboratories to bear in developing and implementing the NIl and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; Utilizing Government (e.g. DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs and accelerate technology transfer to address health care issues. During the second HCTP conference, in mid 1 995, a section of this meeting entitled: "Health Care Technology Assets of the Federal Government" addressed benefits of the technology transfer which should occur for maximizing already developed resources. Also a section entitled:"Transfer and Utilization of Government Technology Assets to the Private Sector", looked at both Health Care and non-Health Care related technologies since many areas such as Information Technologies (i.e. imaging, communications, archival I retrieval, systems integration, information display, multimedia, heterogeneous data bases, etc.) already exist and are part of our National Labs and/or other federal agencies, i.e. ARPA. These technologies although they are not labeled under "Health Care" programs they could provide enormous value to address technical needs. An additional issue deals with both the technical (hardware, software) and human expertise that resides within these labs and their possible role in creating cost effective solutions.
NASA Astrophysics Data System (ADS)
Kun, Luis G.
1995-10-01
During the first Health Care Technology Policy conference last year, during health care reform, four major issues were brought up in regards to the efforts underway to develop a computer based patient record (CBPR), the National Information Infrastructure (NII) as part of the high performance computers and communications (HPCC), and the so-called 'patient card.' More specifically it was explained how a national information system will greatly affect the way health care delivery is provided to the United States public and reduce its costs. These four issues were: (1) Constructing a national information infrastructure (NII); (2) Building a computer based patient record system; (3) Bringing the collective resources of our national laboratories to bear in developing and implementing the NII and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; (4) Utilizing government (e.g., DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs, and accelerate technology transfer to address health care issues. This year a section of this conference entitled: 'Health Care Technology Assets of the Federal Government' addresses benefits of the technology transfer which should occur for maximizing already developed resources. This section entitled: 'Transfer and Utilization of Government Technology Assets to the Private Sector,' will look at both health care and non-health care related technologies since many areas such as information technologies (i.e. imaging, communications, archival/retrieval, systems integration, information display, multimedia, heterogeneous data bases, etc.) already exist and are part of our national labs and/or other federal agencies, i.e., ARPA. These technologies although they are not labeled under health care programs they could provide enormous value to address technical needs. An additional issue deals with both the technical (hardware, software) and human expertise that resides within these labs and their possible role in creating cost effective solutions.
Blast2GO goes grid: developing a grid-enabled prototype for functional genomics analysis.
Aparicio, G; Götz, S; Conesa, A; Segrelles, D; Blanquer, I; García, J M; Hernandez, V; Robles, M; Talon, M
2006-01-01
The vast amount in complexity of data generated in Genomic Research implies that new dedicated and powerful computational tools need to be developed to meet their analysis requirements. Blast2GO (B2G) is a bioinformatics tool for Gene Ontology-based DNA or protein sequence annotation and function-based data mining. The application has been developed with the aim of affering an easy-to-use tool for functional genomics research. Typical B2G users are middle size genomics labs carrying out sequencing, ETS and microarray projects, handling datasets up to several thousand sequences. In the current version of B2G. The power and analytical potential of both annotation and function data-mining is somehow restricted to the computational power behind each particular installation. In order to be able to offer the possibility of an enhanced computational capacity within this bioinformatics application, a Grid component is being developed. A prototype has been conceived for the particular problem of speeding up the Blast searches to obtain fast results for large datasets. Many efforts have been done in the literature concerning the speeding up of Blast searches, but few of them deal with the use of large heterogeneous production Grid Infrastructures. These are the infrastructures that could reach the largest number of resources and the best load balancing for data access. The Grid Service under development will analyse requests based on the number of sequences, splitting them accordingly to the available resources. Lower-level computation will be performed through MPIBLAST. The software architecture is based on the WSRF standard.
Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.
2016-01-01
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161
Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J
2016-04-07
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.
Resources available for autism research in the big data era: a systematic review
Milne, Elizabeth
2017-01-01
Recently, there has been a move encouraged by many stakeholders towards generating big, open data in many areas of research. One area where big, open data is particularly valuable is in research relating to complex heterogeneous disorders such as Autism Spectrum Disorder (ASD). The inconsistencies of findings and the great heterogeneity of ASD necessitate the use of big and open data to tackle important challenges such as understanding and defining the heterogeneity and potential subtypes of ASD. To this end, a number of initiatives have been established that aim to develop big and/or open data resources for autism research. In order to provide a useful data reference for autism researchers, a systematic search for ASD data resources was conducted using the Scopus database, the Google search engine, and the pages on ‘recommended repositories’ by key journals, and the findings were translated into a comprehensive list focused on ASD data. The aim of this review is to systematically search for all available ASD data resources providing the following data types: phenotypic, neuroimaging, human brain connectivity matrices, human brain statistical maps, biospecimens, and ASD participant recruitment. A total of 33 resources were found containing different types of data from varying numbers of participants. Description of the data available from each data resource, and links to each resource is provided. Moreover, key implications are addressed and underrepresented areas of data are identified. PMID:28097074
When drug discovery meets web search: Learning to Rank for ligand-based virtual screening.
Zhang, Wei; Ji, Lijuan; Chen, Yanan; Tang, Kailin; Wang, Haiping; Zhu, Ruixin; Jia, Wei; Cao, Zhiwei; Liu, Qi
2015-01-01
The rapid increase in the emergence of novel chemical substances presents a substantial demands for more sophisticated computational methodologies for drug discovery. In this study, the idea of Learning to Rank in web search was presented in drug virtual screening, which has the following unique capabilities of 1). Applicable of identifying compounds on novel targets when there is not enough training data available for these targets, and 2). Integration of heterogeneous data when compound affinities are measured in different platforms. A standard pipeline was designed to carry out Learning to Rank in virtual screening. Six Learning to Rank algorithms were investigated based on two public datasets collected from Binding Database and the newly-published Community Structure-Activity Resource benchmark dataset. The results have demonstrated that Learning to rank is an efficient computational strategy for drug virtual screening, particularly due to its novel use in cross-target virtual screening and heterogeneous data integration. To the best of our knowledge, we have introduced here the first application of Learning to Rank in virtual screening. The experiment workflow and algorithm assessment designed in this study will provide a standard protocol for other similar studies. All the datasets as well as the implementations of Learning to Rank algorithms are available at http://www.tongji.edu.cn/~qiliu/lor_vs.html. Graphical AbstractThe analogy between web search and ligand-based drug discovery.
Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.
2013-01-01
The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276
Managing a tier-2 computer centre with a private cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara
2014-06-01
In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.
MultiPhyl: a high-throughput phylogenomics webserver using distributed computing
Keane, Thomas M.; Naughton, Thomas J.; McInerney, James O.
2007-01-01
With the number of fully sequenced genomes increasing steadily, there is greater interest in performing large-scale phylogenomic analyses from large numbers of individual gene families. Maximum likelihood (ML) has been shown repeatedly to be one of the most accurate methods for phylogenetic construction. Recently, there have been a number of algorithmic improvements in maximum-likelihood-based tree search methods. However, it can still take a long time to analyse the evolutionary history of many gene families using a single computer. Distributed computing refers to a method of combining the computing power of multiple computers in order to perform some larger overall calculation. In this article, we present the first high-throughput implementation of a distributed phylogenetics platform, MultiPhyl, capable of using the idle computational resources of many heterogeneous non-dedicated machines to form a phylogenetics supercomputer. MultiPhyl allows a user to upload hundreds or thousands of amino acid or nucleotide alignments simultaneously and perform computationally intensive tasks such as model selection, tree searching and bootstrapping of each of the alignments using many desktop machines. The program implements a set of 88 amino acid models and 56 nucleotide maximum likelihood models and a variety of statistical methods for choosing between alternative models. A MultiPhyl webserver is available for public use at: http://www.cs.nuim.ie/distributed/multiphyl.php. PMID:17553837
Movement ecology: size-specific behavioral response of an invasive snail to food availability.
Snider, Sunny B; Gilliam, James F
2008-07-01
Immigration, emigration, migration, and redistribution describe processes that involve movement of individuals. These movements are an essential part of contemporary ecological models, and understanding how movement is affected by biotic and abiotic factors is important for effectively modeling ecological processes that depend on movement. We asked how phenotypic heterogeneity (body size) and environmental heterogeneity (food resource level) affect the movement behavior of an aquatic snail (Tarebia granifera), and whether including these phenotypic and environmental effects improves advection-diffusion models of movement. We postulated various elaborations of the basic advection diffusion model as a priori working hypotheses. To test our hypotheses we measured individual snail movements in experimental streams at high- and low-food resource treatments. Using these experimental movement data, we examined the dependency of model selection on resource level and body size using Akaike's Information Criterion (AIC). At low resources, large individuals moved faster than small individuals, producing a platykurtic movement distribution; including size dependency in the model improved model performance. In stark contrast, at high resources, individuals moved upstream together as a wave, and body size differences largely disappeared. The model selection exercise indicated that population heterogeneity is best described by the advection component of movement for this species, because the top-ranked model included size dependency in advection, but not diffusion. Also, all probable models included resource dependency. Thus population and environmental heterogeneities both influence individual movement behaviors and the population-level distribution kernels, and their interaction may drive variation in movement behaviors in terms of both advection rates and diffusion rates. A behaviorally informed modeling framework will integrate the sentient response of individuals in terms of movement and enhance our ability to accurately model ecological processes that depend on animal movement.
Measuring habitat heterogeneity reveals new insights into bird community composition.
Stirnemann, Ingrid A; Ikin, Karen; Gibbons, Philip; Blanchard, Wade; Lindenmayer, David B
2015-03-01
Fine-scale vegetation cover is a common variable used to explain animal occurrence, but we know less about the effects of fine-scale vegetation heterogeneity. Theoretically, fine-scale vegetation heterogeneity is an important driver of biodiversity because it captures the range of resources available in a given area. In this study we investigated how bird species richness and birds grouped by various ecological traits responded to vegetation cover and heterogeneity. We found that both fine-scale vegetation cover (of tall trees, medium-sized trees and shrubs) and heterogeneity (of tall trees, and shrubs) were important predictors of bird richness, but the direction of the response of bird richness to shrub heterogeneity differed between sites with different proportions of tall tree cover. For example, bird richness increased with shrub heterogeneity in sites with high levels of tall tree cover, but declined in sites with low levels of tall tree cover. Our findings indicated that an increase in vegetation heterogeneity will not always result in an increase in resources and niches, and associated higher species richness. We also found birds grouped by traits responded in a predictable way to vegetation heterogeneity. For example, we found small birds benefited from increased shrub heterogeneity supporting the textual discontinuity hypothesis and non-arboreal (ground or shrub) nesting species were associated with high vegetation cover (low heterogeneity). Our results indicated that focusing solely on increasing vegetation cover (e.g. through restoration) may be detrimental to particular animal groups. Findings from this investigation can help guide habitat management for different functional groups of birds.
Floral resource availability from groundcover promotes bee abundance in coffee agroecosystems.
Fisher, Kaleigh; Gonthier, David J; Ennis, Katherine K; Perfecto, Ivette
2017-09-01
Patterns of bee abundance and diversity across different spatial scales have received thorough research consideration. However, the impact of short- and long-term temporal resource availability on biodiversity has been less explored. This is highly relevant in tropical agricultural systems for pollinators, as many foraging periods of pollinators extend beyond flowering of any single crop species. In this study, we sought to understand how bee communities in tropical agroecosystems changed between seasons, and if short- and long-term floral resource availability influenced their diversity and abundance. We used a threshold analysis approach in order to explore this relationship at two time scales. This study took place in a region dominated by coffee agroecosystems in Southern Mexico. This was an ideal system because the landscape offers a range of coffee management regimes that maintain heterogeneity in floral resource availability spatially and temporally. We found that the bee community varies significantly between seasons. There were higher abundances of native social, solitary and managed honey bees during the dry season when coffee flowers. Additionally, we found that floral resources from groundcover, but not trees, were associated with bee abundance. Further, the temporal scale of the availability of these resources is important, whereby short-term floral resource availability appears particularly important in maintaining high bee abundance at sites with lower seasonal complementarity. We argue that in addition to spatial resource heterogeneity, temporal resource heterogeneity is critical in explaining bee community patterns, and should thus be considered to promote pollinator conservation. © 2017 by the Ecological Society of America.
Jin, Wenquan; Kim, DoHyeun
2018-05-26
The Internet of Things is comprised of heterogeneous devices, applications, and platforms using multiple communication technologies to connect the Internet for providing seamless services ubiquitously. With the requirement of developing Internet of Things products, many protocols, program libraries, frameworks, and standard specifications have been proposed. Therefore, providing a consistent interface to access services from those environments is difficult. Moreover, bridging the existing web services to sensor and actuator networks is also important for providing Internet of Things services in various industry domains. In this paper, an Internet of Things proxy is proposed that is based on virtual resources to bridge heterogeneous web services from the Internet to the Internet of Things network. The proxy enables clients to have transparent access to Internet of Things devices and web services in the network. The proxy is comprised of server and client to forward messages for different communication environments using the virtual resources which include the server for the message sender and the client for the message receiver. We design the proxy for the Open Connectivity Foundation network where the virtual resources are discovered by the clients as Open Connectivity Foundation resources. The virtual resources represent the resources which expose services in the Internet by web service providers. Although the services are provided by web service providers from the Internet, the client can access services using the consistent communication protocol in the Open Connectivity Foundation network. For discovering the resources to access services, the client also uses the consistent discovery interface to discover the Open Connectivity Foundation devices and virtual resources.
Shale Gas Boom or Bust? Estimating US and Global Economically Recoverable Resources
NASA Astrophysics Data System (ADS)
Brecha, R. J.; Hilaire, J.; Bauer, N.
2014-12-01
One of the most disruptive energy system technological developments of the past few decades is the rapid expansion of shale gas production in the United States. Because the changes have been so rapid there are great uncertainties as to the impacts of shale production for medium- and long-term energy and climate change mitigation policies. A necessary starting point for incorporating shale resources into modeling efforts is to understand the size of the resource, how much is technically recoverable (TRR), and finally, how much is economically recoverable (ERR) at a given cost. To assess production costs of shale gas, we combine top-down data with detailed bottom-up information. Studies solely based on top-down approaches do not adequately account for the heterogeneity of shale gas deposits and are unlikely to appropriately estimate extraction costs. We design an expedient bottom-up method based on publicly available US data to compute the levelized costs of shale gas extraction. Our results indicate the existence of economically attractive areas but also reveal a dramatic cost increase as lower-quality reservoirs are exploited. Extrapolating results for the US to the global level, our best estimate suggests that, at a cost of 6 US$/GJ, only 39% of the technically recoverable resources reported in top-down studies should be considered economically recoverable. This estimate increases to about 77% when considering optimistic TRR and estimated ultimate recovery parameters but could be lower than 12% for more pessimistic parameters. The current lack of information on the heterogeneity of shale gas deposits as well as on the development of future production technologies leads to significant uncertainties regarding recovery rates and production costs. Much of this uncertainty may be inherent, but for energy system planning purposes, with or without climate change mitigation policies, it is crucial to recognize the full ranges of recoverable quantities and costs.
Dynamic electronic institutions in agent oriented cloud robotic systems.
Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice
2015-01-01
The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
Designing integrated computational biology pipelines visually.
Jamil, Hasan M
2013-01-01
The long-term cost of developing and maintaining a computational pipeline that depends upon data integration and sophisticated workflow logic is too high to even contemplate "what if" or ad hoc type queries. In this paper, we introduce a novel application building interface for computational biology research, called VizBuilder, by leveraging a recent query language called BioFlow for life sciences databases. Using VizBuilder, it is now possible to develop ad hoc complex computational biology applications at throw away costs. The underlying query language supports data integration and workflow construction almost transparently and fully automatically, using a best effort approach. Users express their application by drawing it with VizBuilder icons and connecting them in a meaningful way. Completed applications are compiled and translated as BioFlow queries for execution by the data management system LifeDB, for which VizBuilder serves as a front end. We discuss VizBuilder features and functionalities in the context of a real life application after we briefly introduce BioFlow. The architecture and design principles of VizBuilder are also discussed. Finally, we outline future extensions of VizBuilder. To our knowledge, VizBuilder is a unique system that allows visually designing computational biology pipelines involving distributed and heterogeneous resources in an ad hoc manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.; Yu, G.; Wang, K.
The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecturemore » achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)« less
Using RDF to Model the Structure and Process of Systems
NASA Astrophysics Data System (ADS)
Rodriguez, Marko A.; Watkins, Jennifer H.; Bollen, Johan; Gershenson, Carlos
Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 109 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.
Giant solitary fibrous tumor of the diaphragm: a case report and review of literature
Ge, Wei; Yu, De-Cai; Jiang, Chun-Ping; Ding, Yi-Tao
2014-01-01
A young gentleman presented with difficulty in breathing. Computed tomography (CT) scan showed a huge mass located between the heart and stomach, which might have rooted in the diaphragm. Magnetic resonance imaging (MRI) with enhanced three dimensional construction showed a lobulated, heterogeneous soft tissue mass with short T1 weighted imaging signal and flake long T2-weighted imaging (T2WI). Tumor-enhanced scanning demonstrated heterogeneous contrast enhancement. The preliminary diagnosis was intra-abdominal huge mass and considering sarcoma. Resection was conducted where the base of the tumor was located in the diaphragm oppressing the left liver lobe and heart. The base of the tumor, together with partial surrounding of the diaphragm, pericardium base, and the left lateral hepatic segment, was resected. The defect in the diaphragm and pericardium was repaired by patching, and thoracic close drainage and abdominal drainage were placed following the surgical operation. The pathological report showed giant solitary fibrous tumor (SFT). This case report may provide a reference resource for the diagnosis and treatment of SFT located in the diaphragm. PMID:25674285
System for Performing Single Query Searches of Heterogeneous and Dispersed Databases
NASA Technical Reports Server (NTRS)
Maluf, David A. (Inventor); Okimura, Takeshi (Inventor); Gurram, Mohana M. (Inventor); Tran, Vu Hoang (Inventor); Knight, Christopher D. (Inventor); Trinh, Anh Ngoc (Inventor)
2017-01-01
The present invention is a distributed computer system of heterogeneous databases joined in an information grid and configured with an Application Programming Interface hardware which includes a search engine component for performing user-structured queries on multiple heterogeneous databases in real time. This invention reduces overhead associated with the impedance mismatch that commonly occurs in heterogeneous database queries.
CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research
Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C.
2014-01-01
The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction. PMID:24904400
CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.
Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C
2014-01-01
The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith; ...
2017-11-06
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
Networking: an overview for leaders of academic medical centers.
Panko, W B; Erhardt-Domino, K; Pletcher, T; Wilson, W
1993-07-01
Organizations face a unique challenge over the next decade. When technology was expensive, it was arguably necessary to use an undifferentiated, or monolithic, model for computer-based solutions to problems. This has fundamentally changed. Technology is now so inexpensive that solutions are not limited by costs, but rather by how well the implementors understand the many different problem domains. Thus, academic medical centers are faced with successive waves in information technology use. First, there will be a wave of innovation, driven by the need for specialization in problem solving. This will be followed by consolidation of the best of the approaches into the core systems of the institution. The average level of heterogeneity (cost) will be higher, but the overall quality of the solutions (benefit) will also be higher. If one can develop a strategy for managing and creatively limiting the heterogeneity, the cost-benefit ratio will be much more favorable. While there may be other strategies that will do this, we support the use of a strategy centered on enterprise networking. This strategy emphasizes not simply technology but also the cultural and organizational changes that empower innovation--within a framework that makes it possible to simply implement interoperability and data sharing within nearly all solutions. The organizations that survive the coming period of change and external pressure will be those that do the best job of managing their resources. Information will continue to be one of the most important resources.(ABSTRACT TRUNCATED AT 250 WORDS)
A cross-domain communication resource scheduling method for grid-enabled communication networks
NASA Astrophysics Data System (ADS)
Zheng, Xiangquan; Wen, Xiang; Zhang, Yongding
2011-10-01
To support a wide range of different grid applications in environments where various heterogeneous communication networks coexist, it is important to enable advanced capabilities in on-demand and dynamical integration and efficient co-share with cross-domain heterogeneous communication resource, thus providing communication services which are impossible for single communication resource to afford. Based on plug-and-play co-share and soft integration with communication resource, Grid-enabled communication network is flexibly built up to provide on-demand communication services for gird applications with various requirements on quality of service. Based on the analysis of joint job and communication resource scheduling in grid-enabled communication networks (GECN), this paper presents a cross multi-domain communication resource cooperatively scheduling method and describes the main processes such as traffic requirement resolution for communication services, cross multi-domain negotiation on communication resource, on-demand communication resource scheduling, and so on. The presented method is to afford communication service capability to cross-domain traffic delivery in GECNs. Further research work towards validation and implement of the presented method is pointed out at last.
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2015-11-01
We have studied variation in structural inclination angle of coherent structures responding to a topography with abrupt spanwise heterogeneity. Recent results have shown that such a topography induces a turbulent secondary flow due to spanwise-wall normal heterogeneity of the Reynolds stresses (Anderson et al., 2015: J. Fluid Mech.). The presence of these spanwise alternating low and high momentum pathways (which are flanked by counter rotating, domain-scale vortices, Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.) are primarily due to the spanwise heterogeneity of the complex roughness under consideration. Results from the present research have been used to explore structural attributes of the hairpin packet paradigm in the presence of a turbulent secondary flow. Vortex visualization in the streamwise-wall normal plane above the crest (high drag) and trough (low drag) demonstrate variation in the inclination angle of coherent structures. The inclination angle of structures above the crest was approximately 45 degrees, much larger than the ``canonical'' value of 15 degrees. Thus, we present evidence that the hairpin packet concept is preserved - but modified - when a turbulent secondary flow is present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at Univ. of Texas.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi
NASA Astrophysics Data System (ADS)
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad
2015-05-01
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).
On the Use of CAD and Cartesian Methods for Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.
2004-01-01
The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.
NASA Astrophysics Data System (ADS)
Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati
2012-01-01
Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.
Tier-2 Optimisation for Computational Density/Diversity and Big Data
NASA Astrophysics Data System (ADS)
Fay, R. B.; Bland, J.
2014-06-01
As the number of cores on chip continues to trend upwards and new CPU architectures emerge, increasing CPU density and diversity presents multiple challenges to site administrators. These include scheduling for massively multi-core systems (potentially including Graphical Processing Units (GPU), integrated and dedicated) and Many Integrated Core (MIC)) to ensure a balanced throughput of jobs while preserving overall cluster throughput, as well as the increasing complexity of developing for these heterogeneous platforms, and the challenge in managing this more complex mix of resources. In addition, meeting data demands as both dataset sizes increase and as the rate of demand scales with increased computational power requires additional performance from the associated storage elements. In this report, we evaluate one emerging technology, Solid State Drive (SSD) caching for RAID controllers, with consideration to its potential to assist in meeting evolving demand. We also briefly consider the broader developing trends outlined above in order to identify issues that may develop and assess what actions should be taken in the immediate term to address those.
Accelerating a three-dimensional eco-hydrological cellular automaton on GPGPU with OpenCL
NASA Astrophysics Data System (ADS)
Senatore, Alfonso; D'Ambrosio, Donato; De Rango, Alessio; Rongo, Rocco; Spataro, William; Straface, Salvatore; Mendicino, Giuseppe
2016-10-01
This work presents an effective implementation of a numerical model for complete eco-hydrological Cellular Automata modeling on Graphical Processing Units (GPU) with OpenCL (Open Computing Language) for heterogeneous computation (i.e., on CPUs and/or GPUs). Different types of parallel implementations were carried out (e.g., use of fast local memory, loop unrolling, etc), showing increasing performance improvements in terms of speedup, adopting also some original optimizations strategies. Moreover, numerical analysis of results (i.e., comparison of CPU and GPU outcomes in terms of rounding errors) have proven to be satisfactory. Experiments were carried out on a workstation with two CPUs (Intel Xeon E5440 at 2.83GHz), one GPU AMD R9 280X and one GPU nVIDIA Tesla K20c. Results have been extremely positive, but further testing should be performed to assess the functionality of the adopted strategies on other complete models and their ability to fruitfully exploit parallel systems resources.
TomoMiner and TomoMinerCloud: A software platform for large-scale subtomogram structural analysis
Frazier, Zachary; Xu, Min; Alber, Frank
2017-01-01
SUMMARY Cryo-electron tomography (cryoET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryoET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in structure and composition of a complex in situ form or because particles are a mixture of different complexes. In this case subtomograms must be classified. However, classification of large numbers of subtomograms is a time-intensive task and often a limiting bottleneck. This paper introduces an open source software platform, TomoMiner, for large-scale subtomogram classification, template matching, subtomogram averaging, and alignment. Its scalable and robust parallel processing allows efficient classification of tens to hundreds of thousands of subtomograms. Additionally, TomoMiner provides a pre-configured TomoMinerCloud computing service permitting users without sufficient computing resources instant access to TomoMiners high-performance features. PMID:28552576
Controlling user access to electronic resources without password
Smith, Fred Hewitt
2015-06-16
Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes pre-determining an association of the restricted computer resource and computer-resource-proximal environmental information. Indicia of user-proximal environmental information are received from a user requesting access to the restricted computer resource. Received indicia of user-proximal environmental information are compared to associated computer-resource-proximal environmental information. User access to the restricted computer resource is selectively granted responsive to a favorable comparison in which the user-proximal environmental information is sufficiently similar to the computer-resource proximal environmental information. In at least some embodiments, the process further includes comparing user-supplied biometric measure and comparing it with a predetermined association of at least one biometric measure of an authorized user. Access to the restricted computer resource is granted in response to a favorable comparison.
Laboratory Computing Resource Center
Systems Computing and Data Resources Purchasing Resources Future Plans For Users Getting Started Using LCRC Software Best Practices and Policies Getting Help Support Laboratory Computing Resource Center Laboratory Computing Resource Center Latest Announcements See All April 27, 2018, Announcements, John Low
Multiresource allocation and scheduling for periodic soft real-time applications
NASA Astrophysics Data System (ADS)
Gopalan, Kartik; Chiueh, Tzi-cker
2001-12-01
Real-time applications that utilize multiple system resources, such as CPU, disks, and network links, require coordinated scheduling of these resources in order to meet their end-to-end performance requirements. Most state-of-the-art operating systems support independent resource allocation and deadline-driven scheduling but lack coordination among multiple heterogeneous resources. This paper describes the design and implementation of an Integrated Real-time Resource Scheduler (IRS) that performs coordinated allocation and scheduling of multiple heterogeneous resources on the same machine for periodic soft real-time application. The principal feature of IRS is a heuristic multi-resource allocation algorithm that reserves multiple resources for real-time applications in a manner that can maximize the number of applications admitted into the system in the long run. At run-time, a global scheduler dispatches the tasks of the soft real-time application to individual resource schedulers according to the precedence constraints between tasks. The individual resource schedulers, which could be any deadline based schedulers, can make scheduling decisions locally and yet collectively satisfy a real-time application's performance requirements. The tightness of overall timing guarantees is ultimately determined by the properties of individual resource schedulers. However, IRS maximizes overall system resource utilization efficiency by coordinating deadline assignment across multiple tasks in a soft real-time application.
Research on elastic resource management for multi-queue under cloud computing environment
NASA Astrophysics Data System (ADS)
CHENG, Zhenjing; LI, Haibo; HUANG, Qiulan; Cheng, Yaodong; CHEN, Gang
2017-10-01
As a new approach to manage computing resource, virtualization technology is more and more widely applied in the high-energy physics field. A virtual computing cluster based on Openstack was built at IHEP, using HTCondor as the job queue management system. In a traditional static cluster, a fixed number of virtual machines are pre-allocated to the job queue of different experiments. However this method cannot be well adapted to the volatility of computing resource requirements. To solve this problem, an elastic computing resource management system under cloud computing environment has been designed. This system performs unified management of virtual computing nodes on the basis of job queue in HTCondor based on dual resource thresholds as well as the quota service. A two-stage pool is designed to improve the efficiency of resource pool expansion. This paper will present several use cases of the elastic resource management system in IHEPCloud. The practical run shows virtual computing resource dynamically expanded or shrunk while computing requirements change. Additionally, the CPU utilization ratio of computing resource was significantly increased when compared with traditional resource management. The system also has good performance when there are multiple condor schedulers and multiple job queues.
Wood, Corlett W; Donald, Hannah M; Formica, Vincent A; Brodie, Edmund D
2013-01-01
In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure. PMID:23789061
NASA Astrophysics Data System (ADS)
Pruhs, Kirk
A particularly important emergent technology is heterogeneous processors (or cores), which many computer architects believe will be the dominant architectural design in the future. The main advantage of a heterogeneous architecture, relative to an architecture of identical processors, is that it allows for the inclusion of processors whose design is specialized for particular types of jobs, and for jobs to be assigned to a processor best suited for that job. Most notably, it is envisioned that these heterogeneous architectures will consist of a small number of high-power high-performance processors for critical jobs, and a larger number of lower-power lower-performance processors for less critical jobs. Naturally, the lower-power processors would be more energy efficient in terms of the computation performed per unit of energy expended, and would generate less heat per unit of computation. For a given area and power budget, heterogeneous designs can give significantly better performance for standard workloads. Moreover, even processors that were designed to be homogeneous, are increasingly likely to be heterogeneous at run time: the dominant underlying cause is the increasing variability in the fabrication process as the feature size is scaled down (although run time faults will also play a role). Since manufacturing yields would be unacceptably low if every processor/core was required to be perfect, and since there would be significant performance loss from derating the entire chip to the functioning of the least functional processor (which is what would be required in order to attain processor homogeneity), some processor heterogeneity seems inevitable in chips with many processors/cores.
Scout: high-performance heterogeneous computing made simple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice
2011-01-26
Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less
Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki
2014-12-01
As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.
Good coupling for the multiscale patch scheme on systems with microscale heterogeneity
NASA Astrophysics Data System (ADS)
Bunder, J. E.; Roberts, A. J.; Kevrekidis, I. G.
2017-05-01
Computational simulation of microscale detailed systems is frequently only feasible over spatial domains much smaller than the macroscale of interest. The 'equation-free' methodology couples many small patches of microscale computations across space to empower efficient computational simulation over macroscale domains of interest. Motivated by molecular or agent simulations, we analyse the performance of various coupling schemes for patches when the microscale is inherently 'rough'. As a canonical problem in this universality class, we systematically analyse the case of heterogeneous diffusion on a lattice. Computer algebra explores how the dynamics of coupled patches predict the large scale emergent macroscale dynamics of the computational scheme. We determine good design for the coupling of patches by comparing the macroscale predictions from patch dynamics with the emergent macroscale on the entire domain, thus minimising the computational error of the multiscale modelling. The minimal error on the macroscale is obtained when the coupling utilises averaging regions which are between a third and a half of the patch. Moreover, when the symmetry of the inter-patch coupling matches that of the underlying microscale structure, patch dynamics predicts the desired macroscale dynamics to any specified order of error. The results confirm that the patch scheme is useful for macroscale computational simulation of a range of systems with microscale heterogeneity.
Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...
2015-05-22
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less
The Requirements and Design of the Rapid Prototyping Capabilities System
NASA Astrophysics Data System (ADS)
Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.
2006-12-01
The Rapid Prototyping Capabilities (RPC) system will provide the capability to rapidly evaluate innovative methods of linking science observations. To this end, the RPC will provide the capability to integrate the software components and tools needed to evaluate the use of a wide variety of current and future NASA sensors, numerical models, and research results, model outputs, and knowledge, collectively referred to as "resources". It is assumed that the resources are geographically distributed, and thus RPC will provide the support for the location transparency of the resources. The RPC system requires providing support for: (1) discovery, semantic understanding, secure access and transport mechanisms for data products available from the known data provides; (2) data assimilation and geo- processing tools for all data transformations needed to match given data products to the model input requirements; (3) model management including catalogs of models and model metadata, and mechanisms for creation environments for model execution; and (4) tools for model output analysis and model benchmarking. The challenge involves developing a cyberinfrastructure for a coordinated aggregate of software, hardware and other technologies, necessary to facilitate RPC experiments, as well as human expertise to provide an integrated, "end-to-end" platform to support the RPC objectives. Such aggregation is to be achieved through a horizontal integration of loosely coupled services. The cyberinfrastructure comprises several software layers. At the bottom, the Grid fabric encompasses network protocols, optical networks, computational resources, storage devices, and sensors. At the top, applications use workload managers to coordinate their access to physical resources. Applications are not tightly bounded to a single physical resource. Instead, they bind dynamically to resources (i.e., they are provisioned) via a common grid infrastructure layer. For the RPC system, the cyberinfrastructure must support organizing computations (or "data transformations" in general) into complex workflows with resource discovery, automatic resource allocation, monitoring, preserving provenance as well as to aggregate heterogeneous, distributed data into knowledge databases. Such service orchestration is the responsibility of the "collective services" layer. For RPC, this layer will be based on Java Business Integration (JBI, [JSR-208]) specification which is a standards-based integration platform that combines messaging, web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications (plug-in components) across organizational boundaries. JBI concept is a new approach to integration that can provide the underpinnings for loosely coupled, highly distributed integration network that can scale beyond the limits of currently used hub-and-spoke brokers. This presentation discusses the requirements, design and early prototype of the NASA-sponsored RPC system under development at Mississippi State University, demonstrating the integration of data provisioning mechanisms, data transformation tools and computational models into a single interoperable system enabling rapid execution of RPC experiments.
Heterogeneous Systems for Information-Variable Environments (HIVE)
2017-05-01
ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information - Variable Environments (HIVE) by Amar...not return it to the originator. ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information ...Computational and Information Sciences Directorate, ARL Approved for public release; distribution is unlimited. ii REPORT
Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M
2016-01-01
Objective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan–Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Results: Kaplan–Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T1 weighted MR images of patients with GBM are predictors of survival. Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour. PMID:27319577
Molina, David; Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M
2016-07-04
The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T 1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan-Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Kaplan-Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Heterogeneity measures computed on the post-contrast pre-operative T 1 weighted MR images of patients with GBM are predictors of survival. Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour.
2014-01-01
Background As Family Medicine programs across Canada are transitioning into a competency-based curriculum, medical students and clinical teachers are increasingly incorporating tablet computers in their work and educational activities. The purpose of this pilot study was to identify how preceptors and residents use tablet computers to implement and adopt a new family medicine curriculum and to evaluate how they access applications (apps) through their tablet in an effort to support and enhance effective teaching and learning. Methods Residents and preceptors (n = 25) from the Family Medicine program working at the Pembroke Regional Hospital in Ontario, Canada, were given iPads and training on how to use the device in clinical teaching and learning activities and how to access the online curriculum. Data regarding the use and perceived contribution of the iPads were collected through surveys and focus groups. This mixed methods research used analysis of survey responses to support the selection of questions for focus groups. Results Reported results were categorized into: curriculum and assessment; ease of use; portability; apps and resources; and perceptions about the use of the iPad in teaching/learning setting. Most participants agreed on the importance of accessing curriculum resources through the iPad but recognized that these required enhancements to facilitate use. The iPad was considered to be more useful for activities involving output of information than for input. Participants’ responses regarding the ease of use of mobile technology were heterogeneous due to the diversity of computer proficiency across users. Residents had a slightly more favorable opinion regarding the iPad’s contribution to teaching/learning compared to preceptors. Conclusions iPad’s interface should be fully enhanced to allow easy access to online curriculum and its built-in resources. The differences in computer proficiency level among users should be reduced by sharing knowledge through workshops led by more skillful iPad users. To facilitate collection of information through the iPad, the design of electronic data-input forms should consider the participants’ reported negative perceptions towards typing data through mobile devices. Technology deployment projects should gather sufficient evidence from pilot studies in order to guide efforts to adapt resources and infrastructure to relevant needs of Family Medicine teachers and learners. PMID:25138307
Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239
Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.
Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N
2017-03-01
High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.
Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.
2016-01-01
High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692
Integration of Heterogeneous Bibliographic Information through Data Abstractions.
ERIC Educational Resources Information Center
Breazeal, Juliette Ow
This study examines the integration of heterogeneous bibliographic information resources from geographically distributed locations in an automated, unified, and controlled way using abstract data types called "classes" through the Message-Object Model defined in Smalltalk-80 software. The concept of achieving data consistency by…
Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds
NASA Astrophysics Data System (ADS)
Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni
2012-09-01
Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.
Liu, Gang; Neelamegham, Sriram
2015-01-01
The glycome constitutes the entire complement of free carbohydrates and glycoconjugates expressed on whole cells or tissues. ‘Systems Glycobiology’ is an emerging discipline that aims to quantitatively describe and analyse the glycome. Here, instead of developing a detailed understanding of single biochemical processes, a combination of computational and experimental tools are used to seek an integrated or ‘systems-level’ view. This can explain how multiple biochemical reactions and transport processes interact with each other to control glycome biosynthesis and function. Computational methods in this field commonly build in silico reaction network models to describe experimental data derived from structural studies that measure cell-surface glycan distribution. While considerable progress has been made, several challenges remain due to the complex and heterogeneous nature of this post-translational modification. First, for the in silico models to be standardized and shared among laboratories, it is necessary to integrate glycan structure information and glycosylation-related enzyme definitions into the mathematical models. Second, as glycoinformatics resources grow, it would be attractive to utilize ‘Big Data’ stored in these repositories for model construction and validation. Third, while the technology for profiling the glycome at the whole-cell level has been standardized, there is a need to integrate mass spectrometry derived site-specific glycosylation data into the models. The current review discusses progress that is being made to resolve the above bottlenecks. The focus is on how computational models can bridge the gap between ‘data’ generated in wet-laboratory studies with ‘knowledge’ that can enhance our understanding of the glycome. PMID:25871730
Uchida, Yuichiro; Masui, Toshihiko; Sato, Asahi; Nagai, Kazuyuki; Anazawa, Takayuki; Takaori, Kyoichi; Uemoto, Shinji
2018-03-27
Peripancreatic collections occur frequently after distal pancreatectomy. However, the sequelae of peripancreatic collections vary from case to case, and their clinical impact is uncertain. In this study, the correlations between CT findings of peripancreatic collections and complications after distal pancreatectomy were investigated. Ninety-six consecutive patients who had undergone distal pancreatectomy between 2010 and 2015 were retrospectively investigated. The extent and heterogeneity of peripancreatic collections and background clinicopathological characteristics were analyzed. The extent of peripancreatic collections was calculated based on three-dimensional computed tomography images, and the degree of heterogeneity of peripancreatic collections was assessed based on the standard deviation of their density on computed tomography. Of 85 patients who underwent postoperative computed tomography imaging, a peripancreatic collection was detected in 77 (91%). Patients with either a large extent or a high degree of heterogeneity of peripancreatic collection had a significantly higher rate of clinically relevant pancreatic fistula than those without (odds ratio 5.95, 95% confidence interval 2.12-19.72, p = 0.001; odds ratio 8.0, 95% confidence interval 2.87-24.19, p = 0.0001, respectively). A large and heterogeneous peripancreatic collection was significantly associated with postoperative complications, especially clinically relevant postoperative pancreatic fistula. A small and homogenous peripancreatic collection could be safely observed.
Robust mechanobiological behavior emerges in heterogeneous myosin systems.
Egan, Paul F; Moore, Jeffrey R; Ehrlicher, Allen J; Weitz, David A; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip
2017-09-26
Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.
Robust mechanobiological behavior emerges in heterogeneous myosin systems
NASA Astrophysics Data System (ADS)
Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip
2017-09-01
Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.
Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline
Dinov, Ivo; Lozev, Kamen; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Zamanyan, Alen; Chakrapani, Shruthi; Van Horn, John; Parker, D. Stott; Magsipoc, Rico; Leung, Kelvin; Gutman, Boris; Woods, Roger; Toga, Arthur
2010-01-01
Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu. PMID:20927408
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-07
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.
A study of computer graphics technology in application of communication resource management
NASA Astrophysics Data System (ADS)
Li, Jing; Zhou, Liang; Yang, Fei
2017-08-01
With the development of computer technology, computer graphics technology has been widely used. Especially, the success of object-oriented technology and multimedia technology promotes the development of graphics technology in the computer software system. Therefore, the computer graphics theory and application technology have become an important topic in the field of computer, while the computer graphics technology becomes more and more extensive in various fields of application. In recent years, with the development of social economy, especially the rapid development of information technology, the traditional way of communication resource management cannot effectively meet the needs of resource management. In this case, the current communication resource management is still using the original management tools and management methods, resource management equipment management and maintenance, which brought a lot of problems. It is very difficult for non-professionals to understand the equipment and the situation in communication resource management. Resource utilization is relatively low, and managers cannot quickly and accurately understand the resource conditions. Aimed at the above problems, this paper proposes to introduce computer graphics technology into the communication resource management. The introduction of computer graphics not only makes communication resource management more vivid, but also reduces the cost of resource management and improves work efficiency.
Scheduling Operations for Massive Heterogeneous Clusters
NASA Technical Reports Server (NTRS)
Humphrey, John; Spagnoli, Kyle
2013-01-01
High-performance computing (HPC) programming has become increasingly difficult with the advent of hybrid supercomputers consisting of multicore CPUs and accelerator boards such as the GPU. Manual tuning of software to achieve high performance on this type of machine has been performed by programmers. This is needlessly difficult and prone to being invalidated by new hardware, new software, or changes in the underlying code. A system was developed for task-based representation of programs, which when coupled with a scheduler and runtime system, allows for many benefits, including higher performance and utilization of computational resources, easier programming and porting, and adaptations of code during runtime. The system consists of a method of representing computer algorithms as a series of data-dependent tasks. The series forms a graph, which can be scheduled for execution on many nodes of a supercomputer efficiently by a computer algorithm. The schedule is executed by a dispatch component, which is tailored to understand all of the hardware types that may be available within the system. The scheduler is informed by a cluster mapping tool, which generates a topology of available resources and their strengths and communication costs. Software is decoupled from its hardware, which aids in porting to future architectures. A computer algorithm schedules all operations, which for systems of high complexity (i.e., most NASA codes), cannot be performed optimally by a human. The system aids in reducing repetitive code, such as communication code, and aids in the reduction of redundant code across projects. It adds new features to code automatically, such as recovering from a lost node or the ability to modify the code while running. In this project, the innovators at the time of this reporting intend to develop two distinct technologies that build upon each other and both of which serve as building blocks for more efficient HPC usage. First is the scheduling and dynamic execution framework, and the second is scalable linear algebra libraries that are built directly on the former.
Suzanne Boyden; Rebecca Montgomery; Peter B. Reich; Brian J. Palik
2012-01-01
Forest ecosystem processes depend on local interactions that are modified by the spatial pattern of trees and resources. Effects of resource supplies on processes such as regeneration are increasingly well understood, yet we have few tools to compare resource heterogeneity among forests that differ in structural complexity. We used a neighborhood approach to examine...
Statistical mechanics of competitive resource allocation using agent-based models
NASA Astrophysics Data System (ADS)
Chakraborti, Anirban; Challet, Damien; Chatterjee, Arnab; Marsili, Matteo; Zhang, Yi-Cheng; Chakrabarti, Bikas K.
2015-01-01
Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines.
Dalu, Tatenda; Wasserman, Ryan J.; Vink, Tim J. F.; Weyl, Olaf L. F.
2017-01-01
It is generally accepted that organisms that naturally exploit an ecosystem facilitate coexistence, at least partially, through resource partitioning. Resource availability is, however, highly variable in space and time and as such the extent of resource partitioning must be somewhat dependent on availability. Here we test aspects of resource partitioning at the inter- and intra-specific level, in relation to resource availability in an atypical aquatic environment using an isotope approach. Using closely related key organisms from an ephemeral pond, we test for differences in isotopic signatures between two species of copepod and between sexes within each species, in relation to heterogeneity of basal food resources over the course of the ponds hydroperiod. We show that basal food resource heterogeneity increases over time initially, and then decreases towards the end of the hydroperiod, reflective of the expected evolution of trophic complexity for these systems. Resource partitioning also varied between species and sexes, over the hydroperiod with intra- and inter-specific specialisation relating to resource availability. Intra-specific specialisation was particularly evident in the omnivorous copepod species. Our findings imply that trophic specialisation at both the intra- and inter-specific level is partly driven by basal food resource availability. PMID:28233858
Using multilevel models to quantify heterogeneity in resource selection
Wagner, Tyler; Diefenbach, Duane R.; Christensen, Sonja; Norton, Andrew S.
2011-01-01
Models of resource selection are being used increasingly to predict or model the effects of management actions rather than simply quantifying habitat selection. Multilevel, or hierarchical, models are an increasingly popular method to analyze animal resource selection because they impose a relatively weak stochastic constraint to model heterogeneity in habitat use and also account for unequal sample sizes among individuals. However, few studies have used multilevel models to model coefficients as a function of predictors that may influence habitat use at different scales or quantify differences in resource selection among groups. We used an example with white-tailed deer (Odocoileus virginianus) to illustrate how to model resource use as a function of distance to road that varies among deer by road density at the home range scale. We found that deer avoidance of roads decreased as road density increased. Also, we used multilevel models with sika deer (Cervus nippon) and white-tailed deer to examine whether resource selection differed between species. We failed to detect differences in resource use between these two species and showed how information-theoretic and graphical measures can be used to assess how resource use may have differed. Multilevel models can improve our understanding of how resource selection varies among individuals and provides an objective, quantifiable approach to assess differences or changes in resource selection.
A hydrological emulator for global applications - HE v1.0.0
NASA Astrophysics Data System (ADS)
Liu, Yaling; Hejazi, Mohamad; Li, Hongyi; Zhang, Xuesong; Leng, Guoyong
2018-03-01
While global hydrological models (GHMs) are very useful in exploring water resources and interactions between the Earth and human systems, their use often requires numerous model inputs, complex model calibration, and high computation costs. To overcome these challenges, we construct an efficient open-source and ready-to-use hydrological emulator (HE) that can mimic complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, we construct both a lumped and a distributed scheme of the HE based on the monthly abcd model to explore the tradeoff between computational cost and model fidelity. Model predictability and computational efficiency are evaluated in simulating global runoff from 1971 to 2010 with both the lumped and distributed schemes. The results are compared against the runoff product from the widely used Variable Infiltration Capacity (VIC) model. Our evaluation indicates that the lumped and distributed schemes present comparable results regarding annual total quantity, spatial pattern, and temporal variation of the major water fluxes (e.g., total runoff, evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the annual total runoff from either of these two schemes and the VIC is > 0.96), except for several cold (e.g., Arctic, interior Tibet), dry (e.g., North Africa) and mountainous (e.g., Argentina) regions. Compared against the monthly total runoff product from the VIC (aggregated from daily runoff), the global mean Kling-Gupta efficiencies are 0.75 and 0.79 for the lumped and distributed schemes, respectively, with the distributed scheme better capturing spatial heterogeneity. Notably, the computation efficiency of the lumped scheme is 2 orders of magnitude higher than the distributed one and 7 orders more efficient than the VIC model. A case study of uncertainty analysis for the world's 16 basins with top annual streamflow is conducted using 100 000 model simulations, and it demonstrates the lumped scheme's extraordinary advantage in computational efficiency. Our results suggest that the revised lumped abcd model can serve as an efficient and reasonable HE for complex GHMs and is suitable for broad practical use, and the distributed scheme is also an efficient alternative if spatial heterogeneity is of more interest.
A resource management architecture based on complex network theory in cloud computing federation
NASA Astrophysics Data System (ADS)
Zhang, Zehua; Zhang, Xuejie
2011-10-01
Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.
NASA Astrophysics Data System (ADS)
Hochstetler, D. L.; Kitanidis, P. K.
2009-12-01
Modeling the transport of reactive species is a computationally demanding problem, especially in complex subsurface media, where it is crucial to improve understanding of geochemical processes and the fate of groundwater contaminants. In most of these systems, reactions are inherently fast and actual rates of transformations are limited by the slower physical transport mechanisms. There have been efforts to reformulate multi-component reactive transport problems into systems that are simpler and less demanding to solve. These reformulations include defining conservative species and decoupling of reactive transport equations so that fewer of them must be solved, leaving mostly conservative equations for transport [e.g., De Simoni et al., 2005; De Simoni et al., 2007; Kräutle and Knabner, 2007; Molins et al., 2004]. Complex and computationally cumbersome numerical codes used to solve such problems have also caused De Simoni et al. [2005] to develop more manageable analytical solutions. Furthermore, this work evaluates reaction rates and has reaffirmed that the mixing rate,▽TuD▽u, where u is a solute concentration and D is the dispersion tensor, as defined by Kitanidis [1994], is an important and sometimes dominant factor in determining reaction rates. Thus, mixing of solutions is often reaction-limiting. We will present results from analytical and computational modeling of multi-component reactive-transport problems. The results have applications to dissolution of solid boundaries (e.g., calcite), dissolution of non-aqueous phase liquids (NAPLs) in separate phases, and mixing of saltwater and freshwater (e.g. saltwater intrusion in coastal carbonate aquifers). We quantify reaction rates, compare numerical and analytical results, and analyze under what circumstances which approach is most effective for a given problem. References: DeSimoni, M., et al. (2005), A procedure for the solution of multicomponent reactive transport problems, Water Resources Research, 41(W11410). DeSimoni, M., et al. (2007), A mixing ratios-based formulation for multicomponent reactive transport, Water Resources Research, 43(W07419). Kitanidis, P. (1994), The Concept of the Dilution Index, Water Resources Research, 30(7), 2011-2026. Kräutle, S., and P. Knabner (2007), A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions Water Resources Research, 43. Molins, S., et al. (2004), A formulation for decoupling components in reactive transport porblems, Water Resources Research, 40, 13.
Dunlop, R; Arbona, A; Rajasekaran, H; Lo Iacono, L; Fingberg, J; Summers, P; Benkner, S; Engelbrecht, G; Chiarini, A; Friedrich, C M; Moore, B; Bijlenga, P; Iavindrasana, J; Hose, R D; Frangi, A F
2008-01-01
This paper presents an overview of computerised decision support for clinical practice. The concept of computer-interpretable guidelines is introduced in the context of the @neurIST project, which aims at supporting the research and treatment of asymptomatic unruptured cerebral aneurysms by bringing together heterogeneous data, computing and complex processing services. The architecture is generic enough to adapt it to the treatment of other diseases beyond cerebral aneurysms. The paper reviews the generic requirements of the @neurIST system and presents the innovative work in distributing executable clinical guidelines.
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank
2014-01-01
In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
Ran, Xia; Cai, Wei-Jun; Huang, Xiu-Feng; Liu, Qi; Lu, Fan; Qu, Jia; Wu, Jinyu; Jin, Zi-Bing
2014-01-01
Inherited retinal degeneration (IRD), a leading cause of human blindness worldwide, is exceptionally heterogeneous with clinical heterogeneity and genetic variety. During the past decades, tremendous efforts have been made to explore the complex heterogeneity, and massive mutations have been identified in different genes underlying IRD with the significant advancement of sequencing technology. In this study, we developed a comprehensive database, 'RetinoGenetics', which contains informative knowledge about all known IRD-related genes and mutations for IRD. 'RetinoGenetics' currently contains 4270 mutations in 186 genes, with detailed information associated with 164 phenotypes from 934 publications and various types of functional annotations. Then extensive annotations were performed to each gene using various resources, including Gene Ontology, KEGG pathways, protein-protein interaction, mutational annotations and gene-disease network. Furthermore, by using the search functions, convenient browsing ways and intuitive graphical displays, 'RetinoGenetics' could serve as a valuable resource for unveiling the genetic basis of IRD. Taken together, 'RetinoGenetics' is an integrative, informative and updatable resource for IRD-related genetic predispositions. Database URL: http://www.retinogenetics.org/. © The Author(s) 2014. Published by Oxford University Press.
A "Simple Query Interface" Adapter for the Discovery and Exchange of Learning Resources
ERIC Educational Resources Information Center
Massart, David
2006-01-01
Developed as part of CEN/ISSS Workshop on Learning Technology efforts to improve interoperability between learning resource repositories, the Simple Query Interface (SQI) is an Application Program Interface (API) for querying heterogeneous repositories of learning resource metadata. In the context of the ProLearn Network of Excellence, SQI is used…
Computing at DESY — current setup, trends and strategic directions
NASA Astrophysics Data System (ADS)
Ernst, Michael
1998-05-01
Since the HERA experiments H1 and ZEUS started data taking in '92, the computing environment at DESY has changed dramatically. Running a mainframe centred computing for more than 20 years, DESY switched to a heterogeneous, fully distributed computing environment within only about two years in almost every corner where computing has its applications. The computing strategy was highly influenced by the needs of the user community. The collaborations are usually limited by current technology and their ever increasing demands is the driving force for central computing to always move close to the technology edge. While DESY's central computing has a multidecade experience in running Central Data Recording/Central Data Processing for HEP experiments, the most challenging task today is to provide for clear and homogeneous concepts in the desktop area. Given that lowest level commodity hardware draws more and more attention, combined with the financial constraints we are facing already today, we quickly need concepts for integrated support of a versatile device which has the potential to move into basically any computing area in HEP. Though commercial solutions, especially addressing the PC management/support issues, are expected to come to market in the next 2-3 years, we need to provide for suitable solutions now. Buying PC's at DESY currently at a rate of about 30/month will otherwise absorb any available manpower in central computing and still will leave hundreds of unhappy people alone. Though certainly not the only region, the desktop issue is one of the most important one where we need HEP-wide collaboration to a large extent, and right now. Taking into account that there is traditionally no room for R&D at DESY, collaboration, meaning sharing experience and development resources within the HEP community, is a predominant factor for us.
Perpetuation of torsade de pointes in heterogeneous hearts: competing foci or re-entry?
Vandersickel, Nele; de Boer, Teun P; Vos, Marc A; Panfilov, Alexander V
2016-12-01
The underlying mechanism of torsade de pointes (TdP) remains of debate: perpetuation may be due to (1) focal activity or (2) re-entrant activity. The onset of TdP correlates with action potential heterogeneities in different regions of the heart. We studied the mechanism of perpetuation of TdP in silico using a 2D model of human cardiac tissue and an anatomically accurate model of the ventricles of the human heart. We found that the mechanism of perpetuation TdP depends on the degree of heterogeneity. If the degree of heterogeneity is large, focal activity alone can sustain a TdP, otherwise re-entrant activity emerges. This result can help to understand the relationship between the mechanisms of TdP and tissue properties and may help in developing new drugs against it. Torsade de pointes (TdP) can be the consequence of cardiac remodelling, drug effects or a combination of both. The mechanism underlying TdP is unclear, and may involve triggered focal activity or re-entry. Recent work by our group has indicated that both cases may exist, i.e. TdPs induced in the chronic atrioventricular block (CAVB) dog model may have a focal origin or are due to re-entry. Also it was found that heterogeneities might play an important role. In the current study we have used computational modelling to further investigate the mechanisms involved in TdP initiation and perpetuation, especially in the CAVB dog model, by the addition of heterogeneities with reduced repolarization reserve in comparison with the surrounding tissue. For this, the TNNP computer model was used for computations. We demonstrated in 2D and 3D simulations that ECGs with the typical TdP morphology can be caused by both multiple competing foci and re-entry circuits as a result of introduction of heterogeneities, depending on whether the heterogeneities have a large or a smaller reduced repolarization reserve in comparison with the surrounding tissue. Large heterogeneities can produce ectopic TdP, while smaller heterogeneities will produce re-entry-type TdP. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Spiking network simulation code for petascale computers.
Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz
2014-01-01
Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.
Spiking network simulation code for petascale computers
Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz
2014-01-01
Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682
A resource-sharing model based on a repeated game in fog computing.
Sun, Yan; Zhang, Nan
2017-03-01
With the rapid development of cloud computing techniques, the number of users is undergoing exponential growth. It is difficult for traditional data centers to perform many tasks in real time because of the limited bandwidth of resources. The concept of fog computing is proposed to support traditional cloud computing and to provide cloud services. In fog computing, the resource pool is composed of sporadic distributed resources that are more flexible and movable than a traditional data center. In this paper, we propose a fog computing structure and present a crowd-funding algorithm to integrate spare resources in the network. Furthermore, to encourage more resource owners to share their resources with the resource pool and to supervise the resource supporters as they actively perform their tasks, we propose an incentive mechanism in our algorithm. Simulation results show that our proposed incentive mechanism can effectively reduce the SLA violation rate and accelerate the completion of tasks.
NeuroElectro: a window to the world's neuron electrophysiology data
Tripathy, Shreejoy J.; Savitskaya, Judith; Burton, Shawn D.; Urban, Nathaniel N.; Gerkin, Richard C.
2014-01-01
The behavior of neural circuits is determined largely by the electrophysiological properties of the neurons they contain. Understanding the relationships of these properties requires the ability to first identify and catalog each property. However, information about such properties is largely locked away in decades of closed-access journal articles with heterogeneous conventions for reporting results, making it difficult to utilize the underlying data. We solve this problem through the NeuroElectro project: a Python library, RESTful API, and web application (at http://neuroelectro.org) for the extraction, visualization, and summarization of published data on neurons' electrophysiological properties. Information is organized both by neuron type (using neuron definitions provided by NeuroLex) and by electrophysiological property (using a newly developed ontology). We describe the techniques and challenges associated with the automated extraction of tabular electrophysiological data and methodological metadata from journal articles. We further discuss strategies for how to best combine, normalize and organize data across these heterogeneous sources. NeuroElectro is a valuable resource for experimental physiologists attempting to supplement their own data, for computational modelers looking to constrain their model parameters, and for theoreticians searching for undiscovered relationships among neurons and their properties. PMID:24808858
NASA Astrophysics Data System (ADS)
Falkner, Katrina; Vivian, Rebecca
2015-10-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.
Dinov, Ivo D; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H V; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D Stott; Toga, Arthur W
2008-05-28
The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu.
Integration of Multidisciplinary Sensory Data:
Miller, Perry L.; Nadkarni, Prakash; Singer, Michael; Marenco, Luis; Hines, Michael; Shepherd, Gordon
2001-01-01
The paper provides an overview of neuroinformatics research at Yale University being performed as part of the national Human Brain Project. This research is exploring the integration of multidisciplinary sensory data, using the olfactory system as a model domain. The neuroinformatics activities fall into three main areas: 1) building databases and related tools that support experimental olfactory research at Yale and can also serve as resources for the field as a whole, 2) using computer models (molecular models and neuronal models) to help understand data being collected experimentally and to help guide further laboratory experiments, 3) performing basic neuroinformatics research to develop new informatics technologies, including a flexible data model (EAV/CR, entity-attribute-value with classes and relationships) designed to facilitate the integration of diverse heterogeneous data within a single unifying framework. PMID:11141511
Agent-based simulation of a financial market
NASA Astrophysics Data System (ADS)
Raberto, Marco; Cincotti, Silvano; Focardi, Sergio M.; Marchesi, Michele
2001-10-01
This paper introduces an agent-based artificial financial market in which heterogeneous agents trade one single asset through a realistic trading mechanism for price formation. Agents are initially endowed with a finite amount of cash and a given finite portfolio of assets. There is no money-creation process; the total available cash is conserved in time. In each period, agents make random buy and sell decisions that are constrained by available resources, subject to clustering, and dependent on the volatility of previous periods. The model proposed herein is able to reproduce the leptokurtic shape of the probability density of log price returns and the clustering of volatility. Implemented using extreme programming and object-oriented technology, the simulator is a flexible computational experimental facility that can find applications in both academic and industrial research projects.
Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason
2010-01-01
Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.
Scuba: scalable kernel-based gene prioritization.
Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio
2018-01-25
The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .
Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms
NASA Astrophysics Data System (ADS)
Simmer, C.
2015-12-01
An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.
de Vargas Roditi, Laura; Claassen, Manfred
2015-08-01
Novel technological developments enable single cell population profiling with respect to their spatial and molecular setup. These include single cell sequencing, flow cytometry and multiparametric imaging approaches and open unprecedented possibilities to learn about the heterogeneity, dynamics and interplay of the different cell types which constitute tissues and multicellular organisms. Statistical and dynamic systems theory approaches have been applied to quantitatively describe a variety of cellular processes, such as transcription and cell signaling. Machine learning approaches have been developed to define cell types, their mutual relationships, and differentiation hierarchies shaping heterogeneous cell populations, yielding insights into topics such as, for example, immune cell differentiation and tumor cell type composition. This combination of experimental and computational advances has opened perspectives towards learning predictive multi-scale models of heterogeneous cell populations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Voecks, G. E.
1983-01-01
Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.
2003-01-01
The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.
THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS
Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel
2010-01-01
Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Provider-Independent Use of the Cloud
NASA Astrophysics Data System (ADS)
Harmer, Terence; Wright, Peter; Cunningham, Christina; Perrott, Ron
Utility computing offers researchers and businesses the potential of significant cost-savings, making it possible for them to match the cost of their computing and storage to their demand for such resources. A utility compute provider enables the purchase of compute infrastructures on-demand; when a user requires computing resources a provider will provision a resource for them and charge them only for their period of use of that resource. There has been a significant growth in the number of cloud computing resource providers and each has a different resource usage model, application process and application programming interface (API)-developing generic multi-resource provider applications is thus difficult and time consuming. We have developed an abstraction layer that provides a single resource usage model, user authentication model and API for compute providers that enables cloud-provider neutral applications to be developed. In this paper we outline the issues in using external resource providers, give examples of using a number of the most popular cloud providers and provide examples of developing provider neutral applications. In addition, we discuss the development of the API to create a generic provisioning model based on a common architecture for cloud computing providers.
dV/dt - Accelerating the Rate of Progress towards Extreme Scale Collaborative Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron
This report introduces publications that report the results of a project that aimed to design a computational framework that enables computational experimentation at scale while supporting the model of “submit locally, compute globally”. The project focuses on estimating application resource needs, finding the appropriate computing resources, acquiring those resources,deploying the applications and data on the resources, managing applications and resources during run.
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
Dinov, Ivo D.; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H. V.; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D. Stott; Toga, Arthur W.
2008-01-01
The advancement of the computational biology field hinges on progress in three fundamental directions – the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources–data, software tools and web-services. The iTools design, implementation and resource meta - data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu. PMID:18509477
TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling
NASA Astrophysics Data System (ADS)
Nelson, J.; Jones, N.; Ames, D. P.
2015-12-01
Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.
NASA Astrophysics Data System (ADS)
Boenisch, Holger; Froitzheim, Konrad
1999-12-01
The transfer of live media streams such as video and audio over the Internet is subject to several problems, static and dynamic by nature. Important quality of service (QoS) parameters do not only differ between various receivers depending on their network access, service provider, and nationality, the QoS is also variable in time. Moreover the installed receiver base is heterogeneous with respect to operating system, browser or client software, and browser version. We present a new concept for serving live media streams. It is not longer based on the current one-size-fits all paradigm, where the server offers just one stream. Our compresslet system takes the opposite approach: it builds media streams `to order' and `just in time'. Every client subscribing to a media stream uses a servlet loaded into the media server to generate a tailored data stream for his resources and constraints. The server is designed such that commonly used components for media streams are computed once. The compresslets use these prefabricated components, code additional data if necessary, and construct the data stream based on the dynamic available QoS and other client constraints. A client-specific encoding leads to resource- optimal presentation that is especially useful for the presentation of complex multimedia documents on a variety of output devices.
Smart Data Infrastructure: The Sixth Generation of Mediation for Data Science
NASA Astrophysics Data System (ADS)
Fox, P. A.
2014-12-01
In the emergent "fourth paradigm" (data-driven) science, the scientific method is enhanced by the integration of significant data sources into the practice of scientific research. To address Big Science, there are challenges in understanding the role of data in enabling researchers to attack not just disciplinary issues, but also the system-level, large-scale, and transdisciplinary global scientific challenges facing society.Recognizing that the volume of data is only one of many dimensions to be considered, there is a clear need for improved data infrastructures to mediate data and information exchange, which we contend will need to be powered by semantic technologies. One clear need is to provide computational approaches for researchers to discover appropriate data resources, rapidly integrate data collections from heterogeneously resources or multiple data sets, and inter-compare results to allow generation and validation of hypotheses. Another trend is toward automated tools that allow researchers to better find and reuse data that they currently don't know they need, let alone know how to find. Again semantic technologies will be required. Finally, to turn data analytics from "art to science", technical solutions are needed for cross-dataset validation, reproducibility studies on data-driven results, and the concomitant citation of data products allowing recognition for those who curate and share important data resources.
A systematic review of types and efficacy of online interventions for cancer patients.
McAlpine, Heidi; Joubert, Lynette; Martin-Sanchez, Fernando; Merolli, Mark; Drummond, Katharine J
2015-03-01
This review examines the evidence-based literature surrounding the use of online resources for adult cancer patients. The focus is online resources that connect patients with their healthcare clinician and with supportive and educational resources, their efficacy and the outcome measures used to assess them. The following databases were systematically searched for relevant literature: MEDLINE, PsychINFO, Cochrane Central Register of Controlled Trials, CINAHL, Inspec and Computers and Applied Science. Included were studies conducted in an outpatient setting, and reporting a measurable, clinically relevant outcome. Fourteen studies satisfied the inclusion criteria. The efficacy of online interventions was varied, with some demonstrating positive effects on quality of life and related measures, and two demonstrating poorer outcomes for intervention participants. The majority of interventions reported mixed results. Included interventions were too heterogeneous for meta-analysis. The overall benefit of online interventions for cancer patients is unclear. Although there is a plethora of interventions reported without analysis, current interventions demonstrate mixed efficacy of limited duration when rigorously evaluated. The efficacy of on-line interventions for cancer patients is unclear. All on-line interventions should be developed using the available evidence-base and rigorously evaluated to expand our understanding of this area. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.
SLA Negotiation for VO Formation
NASA Astrophysics Data System (ADS)
Paurobally, Shamimabi
Resource management systems are changing from localized resources and services towards virtual organizations (VOs) sharing millions of heterogeneous resources across multiple organizations and domains. The virtual organizations and usage models include a variety of owners and consumers with different usage, access policies, cost models, varying loads, requirements and availability. The stakeholders have private utility functions that must be satisfied and possibly maximized.
NASA Astrophysics Data System (ADS)
Garzoglio, Gabriele; Levshina, Tanya; Rynge, Mats; Sehgal, Chander; Slyz, Marko
2012-12-01
The Open Science Grid (OSG) supports a diverse community of new and existing users in adopting and making effective use of the Distributed High Throughput Computing (DHTC) model. The LHC user community has deep local support within the experiments. For other smaller communities and individual users the OSG provides consulting and technical services through the User Support area. We describe these sometimes successful and sometimes not so successful experiences and analyze lessons learned that are helping us improve our services. The services offered include forums to enable shared learning and mutual support, tutorials and documentation for new technology, and troubleshooting of problematic or systemic failure modes. For new communities and users, we bootstrap their use of the distributed high throughput computing technologies and resources available on the OSG by following a phased approach. We first adapt the application and run a small production campaign on a subset of “friendly” sites. Only then do we move the user to run full production campaigns across the many remote sites on the OSG, adding to the community resources up to hundreds of thousands of CPU hours per day. This scaling up generates new challenges - like no determinism in the time to job completion, and diverse errors due to the heterogeneity of the configurations and environments - so some attention is needed to get good results. We cover recent experiences with image simulation for the Large Synoptic Survey Telescope (LSST), small-file large volume data movement for the Dark Energy Survey (DES), civil engineering simulation with the Network for Earthquake Engineering Simulation (NEES), and accelerator modeling with the Electron Ion Collider group at BNL. We will categorize and analyze the use cases and describe how our processes are evolving based on lessons learned.
Elastic Cloud Computing Architecture and System for Heterogeneous Spatiotemporal Computing
NASA Astrophysics Data System (ADS)
Shi, X.
2017-10-01
Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.
Automated inverse computer modeling of borehole flow data in heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Sawdey, J. R.; Reeve, A. S.
2012-09-01
A computer model has been developed to simulate borehole flow in heterogeneous aquifers where the vertical distribution of permeability may vary significantly. In crystalline fractured aquifers, flow into or out of a borehole occurs at discrete locations of fracture intersection. Under these circumstances, flow simulations are defined by independent variables of transmissivity and far-field heads for each flow contributing fracture intersecting the borehole. The computer program, ADUCK (A Downhole Underwater Computational Kit), was developed to automatically calibrate model simulations to collected flowmeter data providing an inverse solution to fracture transmissivity and far-field head. ADUCK has been tested in variable borehole flow scenarios, and converges to reasonable solutions in each scenario. The computer program has been created using open-source software to make the ADUCK model widely available to anyone who could benefit from its utility.
High-performance computing on GPUs for resistivity logging of oil and gas wells
NASA Astrophysics Data System (ADS)
Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.
2017-10-01
We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.
Dual compile strategy for parallel heterogeneous execution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tyler Barratt; Perry, James Thomas
2012-06-01
The purpose of the Dual Compile Strategy is to increase our trust in the Compute Engine during its execution of instructions. This is accomplished by introducing a heterogeneous Monitor Engine that checks the execution of the Compute Engine. This leads to the production of a second and custom set of instructions designed for monitoring the execution of the Compute Engine at runtime. This use of multiple engines differs from redundancy in that one engine is working on the application while the other engine is monitoring and checking in parallel instead of both applications (and engines) performing the same work atmore » the same time.« less
Improving the Aircraft Design Process Using Web-Based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)
2000-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Improving the Aircraft Design Process Using Web-based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.
2003-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Analytical effective tensor for flow-through composites
Sviercoski, Rosangela De Fatima [Los Alamos, NM
2012-06-19
A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.
Couriot, Ophélie; Hewison, A J Mark; Saïd, Sonia; Cagnacci, Francesca; Chamaillé-Jammes, Simon; Linnell, John D C; Mysterud, Atle; Peters, Wibke; Urbano, Ferdinando; Heurich, Marco; Kjellander, Petter; Nicoloso, Sandro; Berger, Anne; Sustr, Pavel; Kroeschel, Max; Soennichsen, Leif; Sandfort, Robin; Gehr, Benedikt; Morellet, Nicolas
2018-05-01
Much research on large herbivore movement has focused on the annual scale to distinguish between resident and migratory tactics, commonly assuming that individuals are sedentary at the within-season scale. However, apparently sedentary animals may occupy a number of sub-seasonal functional home ranges (sfHR), particularly when the environment is spatially heterogeneous and/or temporally unpredictable. The roe deer (Capreolus capreolus) experiences sharply contrasting environmental conditions due to its widespread distribution, but appears markedly sedentary over much of its range. Using GPS monitoring from 15 populations across Europe, we evaluated the propensity of this large herbivore to be truly sedentary at the seasonal scale in relation to variation in environmental conditions. We studied movement using net square displacement to identify the possible use of sfHR. We expected that roe deer should be less sedentary within seasons in heterogeneous and unpredictable environments, while migratory individuals should be seasonally more sedentary than residents. Our analyses revealed that, across the 15 populations, all individuals adopted a multi-range tactic, occupying between two and nine sfHR during a given season. In addition, we showed that (i) the number of sfHR was only marginally influenced by variation in resource distribution, but decreased with increasing sfHR size; and (ii) the distance between sfHR increased with increasing heterogeneity and predictability in resource distribution, as well as with increasing sfHR size. We suggest that the multi-range tactic is likely widespread among large herbivores, allowing animals to track spatio-temporal variation in resource distribution and, thereby, to cope with changes in their local environment.
NASA Astrophysics Data System (ADS)
Tran, T.
With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.
Message Efficient Checkpointing and Rollback Recovery in Heterogeneous Mobile Networks
NASA Astrophysics Data System (ADS)
Jaggi, Parmeet Kaur; Singh, Awadhesh Kumar
2016-06-01
Heterogeneous networks provide an appealing way of expanding the computing capability of mobile networks by combining infrastructure-less mobile ad-hoc networks with the infrastructure-based cellular mobile networks. The nodes in such a network range from low-power nodes to macro base stations and thus, vary greatly in their capabilities such as computation power and battery power. The nodes are susceptible to different types of transient and permanent failures and therefore, the algorithms designed for such networks need to be fault-tolerant. The article presents a checkpointing algorithm for the rollback recovery of mobile hosts in a heterogeneous mobile network. Checkpointing is a well established approach to provide fault tolerance in static and cellular mobile distributed systems. However, the use of checkpointing for fault tolerance in a heterogeneous environment remains to be explored. The proposed protocol is based on the results of zigzag paths and zigzag cycles by Netzer-Xu. Considering the heterogeneity prevalent in the network, an uncoordinated checkpointing technique is employed. Yet, useless checkpoints are avoided without causing a high message overhead.
Integration of Panda Workload Management System with supercomputers
NASA Astrophysics Data System (ADS)
De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.
2016-09-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accomplishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility's infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.
RESTFul based heterogeneous Geoprocessing workflow interoperation for Sensor Web Service
NASA Astrophysics Data System (ADS)
Yang, Chao; Chen, Nengcheng; Di, Liping
2012-10-01
Advanced sensors on board satellites offer detailed Earth observations. A workflow is one approach for designing, implementing and constructing a flexible and live link between these sensors' resources and users. It can coordinate, organize and aggregate the distributed sensor Web services to meet the requirement of a complex Earth observation scenario. A RESTFul based workflow interoperation method is proposed to integrate heterogeneous workflows into an interoperable unit. The Atom protocols are applied to describe and manage workflow resources. The XML Process Definition Language (XPDL) and Business Process Execution Language (BPEL) workflow standards are applied to structure a workflow that accesses sensor information and one that processes it separately. Then, a scenario for nitrogen dioxide (NO2) from a volcanic eruption is used to investigate the feasibility of the proposed method. The RESTFul based workflows interoperation system can describe, publish, discover, access and coordinate heterogeneous Geoprocessing workflows.
GeoSearch: A lightweight broking middleware for geospatial resources discovery
NASA Astrophysics Data System (ADS)
Gui, Z.; Yang, C.; Liu, K.; Xia, J.
2012-12-01
With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value-added additional information (such as, service quality and user feedback), which conveys important decision supporting information, is missing. To address these issues, we prototyped a distributed search engine, GeoSearch, based on brokering middleware framework to search, integrate and visualize heterogeneous geospatial resources. Specifically, 1) A lightweight discover broker is developed to conduct distributed search. The broker retrieves metadata records for geospatial resources and additional information from dispersed services (portals and catalogues) and other systems on the fly. 2) A quality monitoring and evaluation broker (i.e., QoS Checker) is developed and integrated to provide quality information for geospatial web services. 3) The semantic assisted search and relevance evaluation functions are implemented by loosely interoperating with ESIP Testbed component. 4) Sophisticated information and data visualization functionalities and tools are assembled to improve user experience and assist resource selection.
Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes
Wood, Sossena; Krishnamurthy, Narayanan; Santini, Tales; Raval, Shailesh; Farhat, Nadim; Holmes, John Andy; Ibrahim, Tamer S.
2017-01-01
Objective The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications. Materials and methods An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource). The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created) and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner. Results Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla) and the scattering parameter (measured using a network analyzer) were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer. Conclusion The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI. PMID:28806768
The effect of material heterogeneities in long term multiscale seismic cycle simulations
NASA Astrophysics Data System (ADS)
Kyriakopoulos, C.; Richards-Dinger, K. B.; Dieterich, J. H.
2016-12-01
A fundamental part of the simulation of the earthquake cycles in large-scale multicycle earthquake simulators is the pre-computation of elastostatic Greens functions collected into the stiffness matrix (K). The stiffness matrices are typically based on the elastostatic solutions of Okada (1992), Gimbutas et al. (2012), or similar. While these analytic solutions are computationally very fast, they are limited to modeling a homogeneous isotropic half-space. It is thus unknown how such simulations may be affected by material heterogeneity characterizing the earth medium. We are currently working on the estimation of the effects of heterogeneous material properties in the earthquake simulator RSQSim (Richards-Dinger and Dieterich, 2012). In order to do that we are calculating elastostatic solutions in a heterogeneous medium using the Finite Element (FE) method instead of any of the analytical solutions. The investigated region is a 400 x 400 km area centered on the Anza zone in southern California. The fault system geometry is based on that of the UCERF3 deformation models in the area of interest, which we then implement in a finite element mesh using Trelis 15. The heterogeneous elastic structure is based on available tomographic data (seismic wavespeeds and density) for the region (SCEC CVM and Allam et al., 2014). For computation of the Greens functions we are using the open source FE code Defmod (https://bitbucket.org/stali/defmod/wiki/Home) to calculate the elastostatic solutions due to unit slip on each patch. Earthquake slip on the fault plane is implemented through linear constraint equations (Ali et al., 2014, Kyriakopoulos et al., 2013, Aagard et al, 2015) and more specifically with the use of Lagrange multipliers adjunction. The elementary responses are collected into the "heterogeneous" stiffness matrix Khet and used in RSQSim instead of the ones generated with Okada. Finally, we compare the RSQSim results based on the "heterogeneous" Khet with results from Khom (stiffness matrix generated from the same mesh as Khet but using homogeneous material properties). The estimation of the effect of heterogeneous material properties in the seismic cycles simulated by RSQSim is a needed experiment that will allow us to evaluate the impact of heterogeneities in earthquake simulators.
This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...
Prediction of monthly regional groundwater levels through hybrid soft-computing techniques
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng
2016-10-01
Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.
Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources
NASA Astrophysics Data System (ADS)
Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.
2011-12-01
Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.
Scalable and cost-effective NGS genotyping in the cloud.
Souilmi, Yassine; Lancaster, Alex K; Jung, Jae-Yoon; Rizzo, Ettore; Hawkins, Jared B; Powles, Ryan; Amzazi, Saaïd; Ghazal, Hassan; Tonellato, Peter J; Wall, Dennis P
2015-10-15
While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data can be accurately rendered to medically actionable reports within a time window of hours and at scales of economy in the 10's of dollars. We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow management system, to develop GenomeKey, an NGS whole genome analysis workflow. COSMOS implements complex workflows making optimal use of high-performance compute clusters. Here we show that the Amazon Web Service (AWS) implementation of GenomeKey via COSMOS provides a fast, scalable, and cost-effective analysis of both public benchmarking and large-scale heterogeneous clinical NGS datasets. Our systematic benchmarking reveals important new insights and considerations to produce clinical turn-around of whole genome analysis optimization and workflow management including strategic batching of individual genomes and efficient cluster resource configuration.
Statistics Online Computational Resource for Education
ERIC Educational Resources Information Center
Dinov, Ivo D.; Christou, Nicolas
2009-01-01
The Statistics Online Computational Resource (http://www.SOCR.ucla.edu) provides one of the largest collections of free Internet-based resources for probability and statistics education. SOCR develops, validates and disseminates two core types of materials--instructional resources and computational libraries. (Contains 2 figures.)
A Cyber-ITS Framework for Massive Traffic Data Analysis Using Cyber Infrastructure
Fontaine, Michael D.
2013-01-01
Traffic data is commonly collected from widely deployed sensors in urban areas. This brings up a new research topic, data-driven intelligent transportation systems (ITSs), which means to integrate heterogeneous traffic data from different kinds of sensors and apply it for ITS applications. This research, taking into consideration the significant increase in the amount of traffic data and the complexity of data analysis, focuses mainly on the challenge of solving data-intensive and computation-intensive problems. As a solution to the problems, this paper proposes a Cyber-ITS framework to perform data analysis on Cyber Infrastructure (CI), by nature parallel-computing hardware and software systems, in the context of ITS. The techniques of the framework include data representation, domain decomposition, resource allocation, and parallel processing. All these techniques are based on data-driven and application-oriented models and are organized as a component-and-workflow-based model in order to achieve technical interoperability and data reusability. A case study of the Cyber-ITS framework is presented later based on a traffic state estimation application that uses the fusion of massive Sydney Coordinated Adaptive Traffic System (SCATS) data and GPS data. The results prove that the Cyber-ITS-based implementation can achieve a high accuracy rate of traffic state estimation and provide a significant computational speedup for the data fusion by parallel computing. PMID:23766690
Mobile high-performance computing (HPC) for synthetic aperture radar signal processing
NASA Astrophysics Data System (ADS)
Misko, Joshua; Kim, Youngsoo; Qi, Chenchen; Sirkeci, Birsen
2018-04-01
The importance of mobile high-performance computing has emerged in numerous battlespace applications at the tactical edge in hostile environments. Energy efficient computing power is a key enabler for diverse areas ranging from real-time big data analytics and atmospheric science to network science. However, the design of tactical mobile data centers is dominated by power, thermal, and physical constraints. Presently, it is very unlikely to achieve required computing processing power by aggregating emerging heterogeneous many-core processing platforms consisting of CPU, Field Programmable Gate Arrays and Graphic Processor cores constrained by power and performance. To address these challenges, we performed a Synthetic Aperture Radar case study for Automatic Target Recognition (ATR) using Deep Neural Networks (DNNs). However, these DNN models are typically trained using GPUs with gigabytes of external memories and massively used 32-bit floating point operations. As a result, DNNs do not run efficiently on hardware appropriate for low power or mobile applications. To address this limitation, we proposed for compressing DNN models for ATR suited to deployment on resource constrained hardware. This proposed compression framework utilizes promising DNN compression techniques including pruning and weight quantization while also focusing on processor features common to modern low-power devices. Following this methodology as a guideline produced a DNN for ATR tuned to maximize classification throughput, minimize power consumption, and minimize memory footprint on a low-power device.
Integrating multiple scientific computing needs via a Private Cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.
2014-06-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
A Cyber-ITS framework for massive traffic data analysis using cyber infrastructure.
Xia, Yingjie; Hu, Jia; Fontaine, Michael D
2013-01-01
Traffic data is commonly collected from widely deployed sensors in urban areas. This brings up a new research topic, data-driven intelligent transportation systems (ITSs), which means to integrate heterogeneous traffic data from different kinds of sensors and apply it for ITS applications. This research, taking into consideration the significant increase in the amount of traffic data and the complexity of data analysis, focuses mainly on the challenge of solving data-intensive and computation-intensive problems. As a solution to the problems, this paper proposes a Cyber-ITS framework to perform data analysis on Cyber Infrastructure (CI), by nature parallel-computing hardware and software systems, in the context of ITS. The techniques of the framework include data representation, domain decomposition, resource allocation, and parallel processing. All these techniques are based on data-driven and application-oriented models and are organized as a component-and-workflow-based model in order to achieve technical interoperability and data reusability. A case study of the Cyber-ITS framework is presented later based on a traffic state estimation application that uses the fusion of massive Sydney Coordinated Adaptive Traffic System (SCATS) data and GPS data. The results prove that the Cyber-ITS-based implementation can achieve a high accuracy rate of traffic state estimation and provide a significant computational speedup for the data fusion by parallel computing.
Quantum Computing: Selected Internet Resources for Librarians, Researchers, and the Casually Curious
ERIC Educational Resources Information Center
Cirasella, Jill
2009-01-01
This article presents an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news. All of the quantum computing resources described in this article are freely available, English-language web sites that fall into one…
High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas
2017-04-01
Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
DIRAC in Large Particle Physics Experiments
NASA Astrophysics Data System (ADS)
Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC
2017-10-01
The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.
Ethical considerations in resource allocation in a cochlear implant program.
Westerberg, Brian D; Pijl, Sipke; McDonald, Michael
2008-04-01
To review processes of resource allocation and the ethical considerations relevant to the fair allocation of a limited number of cochlear implants to increasing numbers of potential recipients. Review of relevant considerations. Tertiary referral hospital. Editorial discussion of the ethical issues of resource allocation. Heterogeneity of audiometric thresholds, self-reported disability of hearing loss, age of the potential cochlear implant recipient, cost-effectiveness, access to resources, compliance with follow-up, social support available to the recipient, social consequences of hearing impairment, and other recipient-related factors. In a publicly funded health care system, there will always be a need for decision-making processes for allocation of finite fiscal resources. All candidates for cochlear implantation deserve fair consideration. However, they are a heterogeneous group in terms of needs and expected outcomes consisting of traditional and marginal candidates, with a wide range of benefit from acoustic amplification. We argue that implant programs should thoughtfully prioritize treatment on the basis of need and potential benefit. We reject queuing on the basis of "first-come, first-served" or on the basis of perceived social worth.
Real-Time Control of an Ensemble of Heterogeneous Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Bouman, Niek J.; Le Boudec, Jean-Yves
This paper focuses on the problem of controlling an ensemble of heterogeneous resources connected to an electrical grid at the same point of common coupling (PCC). The controller receives an aggregate power setpoint for the ensemble in real time and tracks this setpoint by issuing individual optimal setpoints to the resources. The resources can have continuous or discrete nature (e.g., heating systems consisting of a finite number of heaters that each can be either switched on or off) and/or can be highly uncertain (e.g., photovoltaic (PV) systems or residential loads). A naive approach would lead to a stochastic mixed-integer optimizationmore » problem to be solved at the controller at each time step, which might be infeasible in real time. Instead, we allow the controller to solve a continuous convex optimization problem and compensate for the errors at the resource level by using a variant of the well-known error diffusion algorithm. We give conditions guaranteeing that our algorithm tracks the power setpoint at the PCC on average while issuing optimal setpoints to individual resources. We illustrate the approach numerically by controlling a collection of batteries, PV systems, and discrete loads.« less
Coordinated Collaboration between Heterogeneous Distributed Energy Resources
Abdollahy, Shahin; Lavrova, Olga; Mammoli, Andrea
2014-01-01
A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building.more » Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.« less
On the evolution of specialization with a mechanistic underpinning in structured metapopulations.
Nurmi, Tuomas; Parvinen, Kalle
2008-03-01
We analyze the evolution of specialization in resource utilization in a discrete-time metapopulation model using the adaptive dynamics approach. The local dynamics in the metapopulation are based on the Beverton-Holt model with mechanistic underpinnings. The consumer faces a trade-off in the abilities to consume two resources that are spatially heterogeneously distributed to patches that are prone to local catastrophes. We explore the factors favoring the spread of generalist or specialist strategies. Increasing fecundity or decreasing catastrophe probability favors the spread of the generalist strategy and increasing environmental heterogeneity enlarges the parameter domain where the evolutionary branching is possible. When there are no catastrophes, increasing emigration diminishes the parameter domain where the evolutionary branching may occur. Otherwise, the effect of emigration on evolutionary dynamics is non-monotonous: both small and large values of emigration probability favor the spread of the specialist strategies whereas the parameter domain where evolutionary branching may occur is largest when the emigration probability has intermediate values. We compare how different forms of spatial heterogeneity and different models of local growth affect the evolutionary dynamics. We show that even small changes in the resource dynamics may have outstanding evolutionary effects to the consumers.
A uniform approach for programming distributed heterogeneous computing systems
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-01-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
Heterogeneous variances in multi-environment yield trials for corn hybrids
USDA-ARS?s Scientific Manuscript database
Recent developments in statistics and computing have enabled much greater levels of complexity in statistical models of multi-environment yield trial data. One particular feature of interest to breeders is simultaneously modeling heterogeneity of variances among environments and cultivars. Our obj...
A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper, we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is decentralized, scalable, and overlaps the node coordination time with that of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
A De-Centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is de-centralized, scalable, and overlaps the node coordination time of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
Ecological Consequences of Clonal Integration in Plants
Liu, Fenghong; Liu, Jian; Dong, Ming
2016-01-01
Clonal plants are widespread throughout the plant kingdom and dominate in diverse habitats. Spatiotemporal heterogeneity of environment is pervasive at multiple scales, even at scales relevant to individual plants. Clonal integration refers to resource translocation and information communication among the ramets of clonal plants. Due to clonal integration, clonal plant species possess a series of peculiar attributes: plasticity in response to local and non-local conditions, labor division with organ specialization for acquiring locally abundant resources, foraging behavior by selective placement of ramets in resource-rich microhabitats, and avoidance of intraclonal competition. Clonal integration has very profound ecological consequences for clonal plants. It allows them to efficiently cope with environmental heterogeneity, by alleviating local resource shortages, buffering environmental stresses and disturbances, influencing competitive ability, increasing invasiveness, and altering species composition and invasibility at the community level. In this paper, we present a comprehensive review of research on the ecological consequences of plant clonal integration based on a large body of literature. We also attempt to propose perspectives for future research. PMID:27446093
Grid Enabled Geospatial Catalogue Web Service
NASA Technical Reports Server (NTRS)
Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush
2004-01-01
Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.
Alderton, Simon; Noble, Jason; Schaten, Kathrin; Welburn, Susan C; Atkinson, Peter M
2015-01-01
In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.
Research on detecting heterogeneous fibre from cotton based on linear CCD camera
NASA Astrophysics Data System (ADS)
Zhang, Xian-bin; Cao, Bing; Zhang, Xin-peng; Shi, Wei
2009-07-01
The heterogeneous fibre in cotton make a great impact on production of cotton textile, it will have a bad effect on the quality of product, thereby affect economic benefits and market competitive ability of corporation. So the detecting and eliminating of heterogeneous fibre is particular important to improve machining technics of cotton, advance the quality of cotton textile and reduce production cost. There are favorable market value and future development for this technology. An optical detecting system obtains the widespread application. In this system, we use a linear CCD camera to scan the running cotton, then the video signals are put into computer and processed according to the difference of grayscale, if there is heterogeneous fibre in cotton, the computer will send an order to drive the gas nozzle to eliminate the heterogeneous fibre. In the paper, we adopt monochrome LED array as the new detecting light source, it's lamp flicker, stability of luminous intensity, lumens depreciation and useful life are all superior to fluorescence light. We analyse the reflection spectrum of cotton and various heterogeneous fibre first, then select appropriate frequency of the light source, we finally adopt violet LED array as the new detecting light source. The whole hardware structure and software design are introduced in this paper.
NASA Astrophysics Data System (ADS)
Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo
2016-02-01
Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.
Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo
2016-02-22
Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.
Resource consumption, sustainability, and cancer.
Kareva, Irina; Morin, Benjamin; Castillo-Chavez, Carlos
2015-02-01
Preserving a system's viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer-resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer-resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun
2004-04-01
This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Harold C.; Ibanez, Daniel Alejandro
This report documents the ASC/ATDM Kokkos deliverable "Production Portable Dy- namic Task DAG Capability." This capability enables applications to create and execute a dynamic task DAG ; a collection of heterogeneous computational tasks with a directed acyclic graph (DAG) of "execute after" dependencies where tasks and their dependencies are dynamically created and destroyed as tasks execute. The Kokkos task scheduler executes the dynamic task DAG on the target execution resource; e.g. a multicore CPU, a manycore CPU such as Intel's Knights Landing (KNL), or an NVIDIA GPU. Several major technical challenges had to be addressed during development of Kokkos' Taskmore » DAG capability: (1) portability to a GPU with it's simplified hardware and micro- runtime, (2) thread-scalable memory allocation and deallocation from a bounded pool of memory, (3) thread-scalable scheduler for dynamic task DAG, (4) usability by applications.« less
A development framework for distributed artificial intelligence
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1989-01-01
The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.
Schendel, Diana E; Bresnahan, Michaeline; Carter, Kim W; Francis, Richard W; Gissler, Mika; Grønborg, Therese K; Gross, Raz; Gunnes, Nina; Hornig, Mady; Hultman, Christina M; Langridge, Amanda; Lauritsen, Marlene B; Leonard, Helen; Parner, Erik T; Reichenberg, Abraham; Sandin, Sven; Sourander, Andre; Stoltenberg, Camilla; Suominen, Auli; Surén, Pål; Susser, Ezra
2013-11-01
The International Collaboration for Autism Registry Epidemiology (iCARE) is the first multinational research consortium (Australia, Denmark, Finland, Israel, Norway, Sweden, USA) to promote research in autism geographical and temporal heterogeneity, phenotype, family and life course patterns, and etiology. iCARE devised solutions to challenges in multinational collaboration concerning data access security, confidentiality and management. Data are obtained by integrating existing national or state-wide, population-based, individual-level data systems and undergo rigorous harmonization and quality control processes. Analyses are performed using database federation via a computational infrastructure with a secure, web-based, interface. iCARE provides a unique, unprecedented resource in autism research that will significantly enhance the ability to detect environmental and genetic contributions to the causes and life course of autism.
Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks
Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian
2014-01-01
In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631
Global detection of live virtual machine migration based on cellular neural networks.
Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian
2014-01-01
In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.
DeCourcy, Kelly; Hostnik, Eric T; Lorbach, Josh; Knoblaugh, Sue
2016-12-01
An adult leopard gecko ( Eublepharis macularius ) presented for lethargy, hyporexia, weight loss, decreased passage of waste, and a palpable caudal coelomic mass. Computed tomography showed a heterogeneous hyperattenuating (∼143 Hounsfield units) structure within the right caudal coelom. The distal colon-coprodeum lumen or urinary bladder was hypothesized as the most likely location for the heterogeneous structure. Medical support consisted of warm water and lubricant enema, as well as a heated environment. Medical intervention aided the passage of a plug comprised centrally of cholesterol and urates with peripheral stratified layers of fibrin, macrophages, heterophils, and bacteria. Within 24 hr, a follow-up computed tomography scan showed resolution of the pelvic canal plug.
Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Maksimova, E. V.
2018-05-01
The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.
NASA Astrophysics Data System (ADS)
Niño, Alfonso; Muñoz-Caro, Camelia; Reyes, Sebastián
2015-11-01
The last decade witnessed a great development of the structural and dynamic study of complex systems described as a network of elements. Therefore, systems can be described as a set of, possibly, heterogeneous entities or agents (the network nodes) interacting in, possibly, different ways (defining the network edges). In this context, it is of practical interest to model and handle not only static and homogeneous networks but also dynamic, heterogeneous ones. Depending on the size and type of the problem, these networks may require different computational approaches involving sequential, parallel or distributed systems with or without the use of disk-based data structures. In this work, we develop an Application Programming Interface (APINetworks) for the modeling and treatment of general networks in arbitrary computational environments. To minimize dependency between components, we decouple the network structure from its function using different packages for grouping sets of related tasks. The structural package, the one in charge of building and handling the network structure, is the core element of the system. In this work, we focus in this API structural component. We apply an object-oriented approach that makes use of inheritance and polymorphism. In this way, we can model static and dynamic networks with heterogeneous elements in the nodes and heterogeneous interactions in the edges. In addition, this approach permits a unified treatment of different computational environments. Tests performed on a C++11 version of the structural package show that, on current standard computers, the system can handle, in main memory, directed and undirected linear networks formed by tens of millions of nodes and edges. Our results compare favorably to those of existing tools.
A computational model was developed to simulate aquifer remediation by pump and treat for a confined, perfectly stratified aquifer. plit-operator finite element numerical technique was utilized to incorporate flow field heterogeneity and nonequilibrium sorption into a two-dimensi...
Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajic, H.L.; Ougouag, A.M.
1987-01-01
Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less
Sabne, Amit J.; Sakdhnagool, Putt; Lee, Seyong; ...
2015-07-13
Accelerator-based heterogeneous computing is gaining momentum in the high-performance computing arena. However, the increased complexity of heterogeneous architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle this problem. Although the abstraction provided by OpenACC offers productivity, it raises questions concerning both functional and performance portability. In this article, the authors propose HeteroIR, a high-level, architecture-independent intermediate representation, to map high-level programming models, such as OpenACC, to heterogeneous architectures. They present a compiler approach that translates OpenACC programs into HeteroIR and accelerator kernels to obtain OpenACC functional portability. They then evaluate the performance portability obtained bymore » OpenACC with their approach on 12 OpenACC programs on Nvidia CUDA, AMD GCN, and Intel Xeon Phi architectures. They study the effects of various compiler optimizations and OpenACC program settings on these architectures to provide insights into the achieved performance portability.« less
An approach for drag correction based on the local heterogeneity for gas-solid flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Wang, Limin; Rogers, William
2016-09-22
The drag models typically used for gas-solids interaction are mainly developed based on homogeneous systems of flow passing fixed particle assembly. It has been shown that the heterogeneous structures, i.e., clusters and bubbles in fluidized beds, need to be resolved to account for their effect in the numerical simulations. Since the heterogeneity is essentially captured through the local concentration gradient in the computational cells, this study proposes a simple approach to account for the non-uniformity of solids spatial distribution inside a computational cell and its effect on the interaction between gas and solid phases. Finally, to validate this approach, themore » predicted drag coefficient has been compared to the results from direct numerical simulations. In addition, the need to account for this type of heterogeneity is discussed for a periodic riser flow simulation with highly resolved numerical grids and the impact of the proposed correction for drag is demonstrated.« less
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
Zhang, Xu; You, Zhu-Hong; Huang, Yu-An; Yan, Gui-Ying
2016-01-01
Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models. PMID:27533456
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction.
Chen, Xing; Yan, Chenggang Clarence; Zhang, Xu; You, Zhu-Hong; Huang, Yu-An; Yan, Gui-Ying
2016-10-04
Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Ashley D.; Bernholdt, David E.; Bland, Arthur S.
Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatestmore » number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern California to date. The Titan system provides the largest extant heterogeneous architecture for computing and computational science. Usage is high, delivering on the promise of a system well-suited for capability simulations for science. This success is due in part to innovations in tracking and reporting the activity on the compute nodes, and using this information to further enable and optimize applications, extending and balancing workload across the entire node. The OLCF continues to invest in innovative processes, tools, and resources necessary to meet continuing user demand. The facility’s leadership in data analysis and workflows was featured at the Department of Energy (DOE) booth at SC15, for the second year in a row, highlighting work with researchers from the National Library of Medicine coupled with unique computational and data resources serving experimental and observational data across facilities. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. Building on the exemplary year of 2014, as shown by the 2014 Operational Assessment Report (OAR) review committee response in Appendix A, this OAR delineates the policies, procedures, and innovations implemented by the OLCF to continue delivering a multi-petaflop resource for cutting-edge research. This report covers CY 2015, which, unless otherwise specified, denotes January 1, 2015, through December 31, 2015.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase Qishi; Zhu, Michelle Mengxia
The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less
Density-based parallel skin lesion border detection with webCL
2015-01-01
Background Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Methods Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Results Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. Conclusions When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser. PMID:26423836
Density-based parallel skin lesion border detection with webCL.
Lemon, James; Kockara, Sinan; Halic, Tansel; Mete, Mutlu
2015-01-01
Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Wangda; McNeil, Andrew; Wetter, Michael
2013-05-23
Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach wasmore » evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.« less
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang
2015-06-01
This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.
Resource Aware Intelligent Network Services (RAINS) Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, Tom; Yang, Xi
The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyber infrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum ofmore » compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyber infrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate, maintain, and distribute MRML based resource descriptions. Once all of the resource topologies are absorbed by the RCE, a connected graph of the full distributed system topology is constructed, which forms the basis for computation and workflow processing. The RCE includes a Modular Computation Element (MCE) framework which allows for tailoring of the computation process to the specific set of resources under control, and the services desired. The input and output of an MCE are both model data based on MRS/MRML ontology and schema. Some of the RAINS project accomplishments include: Development of general and extensible multi-resource modeling framework; Design of a Resource Computation Engine (RCE) system which includes the following key capabilities; Absorb a variety of multi-resource model types and build integrated models; Novel architecture which uses model based communications across the full stack for all Flexible provision of abstract or intent based user facing interfaces; Workflow processing based on model descriptions; Release of the RCE as an open source software; Deployment of RCE in the University of Maryland/Mid-Atlantic Crossroad ScienceDMZ in prototype mode with a plan under way to transition to production; Deployment at the Argonne National Laboratory DTN Facility in prototype mode; Selection of RCE by the DOE SENSE (SDN for End-to-end Networked Science at the Exascale) project as the basis for their orchestration service.« less
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks. PMID:27359149
Optimization of tomographic reconstruction workflows on geographically distributed resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
NASA Astrophysics Data System (ADS)
Libera, A.; Henri, C.; de Barros, F.
2017-12-01
Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (Φ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on flow and solute transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs computational tools to investigate the joint effect of the spatial variabilities of K and Φ on the transport behavior of a solute plume. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological system, and compare the computational results from the joint K and Φ heterogeneous system with the results originating from the generally adopted constant porosity case. In our work, we assume that the heterogeneous porosity is positively correlated to hydraulic conductivity. We perform numerical Monte Carlo simulations of conservative and reactive contaminant transport in a 3D aquifer. Contaminant mass and plume arrival times at multiple control planes and/or pumping wells operating under different extraction rates are analyzed. We employ different probabilistic metrics to quantify the risk at the monitoring locations, e.g., increased lifetime cancer risk and exceedance of Maximum Contaminant Levels (MCLs), under multiple transport scenarios (i.e., different levels of heterogeneity, conservative or reactive solutes and different contaminant species). Results show that early and late arrival times of the solute mass at the selected sensitive locations (i.e. control planes/pumping wells) as well as risk metrics are strongly influenced by the spatial variability of the Φ field.
A heterogeneous hierarchical architecture for real-time computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skroch, D.A.; Fornaro, R.J.
The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.
NASA Astrophysics Data System (ADS)
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Real-time simulation of contact and cutting of heterogeneous soft-tissues.
Courtecuisse, Hadrien; Allard, Jérémie; Kerfriden, Pierre; Bordas, Stéphane P A; Cotin, Stéphane; Duriez, Christian
2014-02-01
This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and other topological changes. We provide an integrated methodology able to deal both with the ill-conditioning issues associated with material heterogeneities, contact boundary conditions which are one of the main sources of inaccuracies, and cutting which is one of the most challenging issues in interactive simulations. Our approach is based on an implicit time integration of a non-linear finite element model. To enable real-time computations, we propose a new preconditioning technique, based on an asynchronous update at low frequency. The preconditioner is not only used to improve the computation of the deformation of the tissues, but also to simulate the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also address the problem of cutting the heterogeneous structures and propose a method to update the preconditioner according to the topological modifications. Finally, we apply our approach to three challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic hepatectomy (iii) a brain tumor surgery. Copyright © 2013 Elsevier B.V. All rights reserved.
Enabling opportunistic resources for CMS Computing Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Dirk
With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less
Enabling opportunistic resources for CMS Computing Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Dick
With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize “opportunistic” resources — resources not owned by, or a priori configured for CMS — to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are usedmore » to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less
Enabling opportunistic resources for CMS Computing Operations
Hufnagel, Dirk
2015-12-23
With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less
A computational model was developed to simulate aquifer remediation by pump and treat for a confined, perfectly stratified aquifer. A split-operator finite element numerical technique was utilized to incorporate flow field heterogeneity and nonequilibrium sorption into a two-dime...
Resource Management in QoS-Aware Wireless Cellular Networks
ERIC Educational Resources Information Center
Zhang, Zhi
2011-01-01
Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
Using Mosix for Wide-Area Compuational Resources
Maddox, Brian G.
2004-01-01
One of the problems with using traditional Beowulf-type distributed processing clusters is that they require an investment in dedicated computer resources. These resources are usually needed in addition to pre-existing ones such as desktop computers and file servers. Mosix is a series of modifications to the Linux kernel that creates a virtual computer, featuring automatic load balancing by migrating processes from heavily loaded nodes to less used ones. An extension of the Beowulf concept is to run a Mosixenabled Linux kernel on a large number of computer resources in an organization. This configuration would provide a very large amount of computational resources based on pre-existing equipment. The advantage of this method is that it provides much more processing power than a traditional Beowulf cluster without the added costs of dedicating resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, K; Jha, S; Klimentov, A
2016-01-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full production for the ATLAS experiment since September 2015. We will present our current accomplishments with running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less
The agent-based spatial information semantic grid
NASA Astrophysics Data System (ADS)
Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren
2006-10-01
Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.
NASA Astrophysics Data System (ADS)
Bellavista, Paolo; Giannelli, Carlo
The availability of heterogeneous wireless interfaces and of growing computing resources on widespread portable devices pushes for enabling innovative deployment scenarios where mobile nodes dynamically self-organize to offer Internet connectivity to their peers via dynamically established multi-hop multi-path opportunities. We claim the suitability of novel, mobility-aware, and application-layer middleware based on lightweight evaluation indicators to support the complexity of that scenario, involving heterogeneous wireless technologies over differentiated and statically unpredictable execution environments. To validate these claims, we have implemented an innovative middleware that manages the durability/throughput-aware formation and selection of different multi-hop paths simultaneously. This paper specifically focuses on how our middleware effectively exploits Bluetooth for multi-hop multi-path networking, by pointing out the crucial role of i) compliance with standard solutions to favor rapid deployment over off-the-shelf equipment and ii) the reduction of the usual overhead associated with some expensive Bluetooth operations, e.g., device inquiry. In particular, the paper shows how it is possible, on the one hand, to extend JSR-82 to portably access monitoring indicators for lightweight mobility/throughput estimations and, on the other hand, to reduce the time needed to update the set of available Bluetooth-based connectivity opportunities via approximated and lightweight forms of discovery.
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure
NASA Astrophysics Data System (ADS)
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-01
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.
Computers and Cooperative Learning. Tech Use Guide: Using Computer Technology.
ERIC Educational Resources Information Center
Council for Exceptional Children, Reston, VA. Center for Special Education Technology.
This guide focuses on the use of computers and cooperative learning techniques in classrooms that include students with disabilities. The guide outlines the characteristics of cooperative learning such as goal interdependence, individual accountability, and heterogeneous groups, emphasizing the value of each group member. Several cooperative…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
2015-06-15
Purpose: Aim of this study was to analyze the modulating, broadening effect on the Bragg Peak due to heterogeneous geometries like multi-wire chambers in the beam path of a particle therapy beam line. The effect was described by a mathematical model which was implemented in the Monte-Carlo code FLUKA via user-routines, in order to reduce the computation time for the simulations. Methods: The depth dose curve of 80 MeV/u C12-ions in a water phantom was calculated using the Monte-Carlo code FLUKA (reference curve). The modulating effect on this dose distribution behind eleven mesh-like foils (periodicity ∼80 microns) occurring in amore » typical set of multi-wire and dose chambers was mathematically described by optimizing a normal distribution so that the reverence curve convoluted with this distribution equals the modulated dose curve. This distribution describes a displacement in water and was transferred in a probability distribution of the thickness of the eleven foils using the water equivalent thickness of the foil’s material. From this distribution the distribution of the thickness of one foil was determined inversely. In FLUKA the heterogeneous foils were replaced by homogeneous foils and a user-routine was programmed that varies the thickness of the homogeneous foils for each simulated particle using this distribution. Results: Using the mathematical model and user-routine in FLUKA the broadening effect could be reproduced exactly when replacing the heterogeneous foils by homogeneous ones. The computation time was reduced by 90 percent. Conclusion: In this study the broadening effect on the Bragg Peak due to heterogeneous structures was analyzed, described by a mathematical model and implemented in FLUKA via user-routines. Applying these routines the computing time was reduced by 90 percent. The developed tool can be used for any heterogeneous structure in the dimensions of microns to millimeters, in principle even for organic materials like lung tissue.« less
Contextuality as a Resource for Models of Quantum Computation with Qubits
NASA Astrophysics Data System (ADS)
Bermejo-Vega, Juan; Delfosse, Nicolas; Browne, Dan E.; Okay, Cihan; Raussendorf, Robert
2017-09-01
A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.
NASA Astrophysics Data System (ADS)
Antamoshkin, O. A.; Kilochitskaya, T. R.; Ontuzheva, G. A.; Stupina, A. A.; Tynchenko, V. S.
2018-05-01
This study reviews the problem of allocation of resources in the heterogeneous distributed information processing systems, which may be formalized in the form of a multicriterion multi-index problem with the linear constraints of the transport type. The algorithms for solution of this problem suggest a search for the entire set of Pareto-optimal solutions. For some classes of hierarchical systems, it is possible to significantly speed up the procedure of verification of a system of linear algebraic inequalities for consistency due to the reducibility of them to the stream models or the application of other solution schemes (for strongly connected structures) that take into account the specifics of the hierarchies under consideration.
A hydrological emulator for global applications – HE v1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaling; Hejazi, Mohamad; Li, Hongyi
While global hydrological models (GHMs) are very useful in exploring water resources and interactions between the Earth and human systems, their use often requires numerous model inputs, complex model calibration, and high computation costs. To overcome these challenges, we construct an efficient open-source and ready-to-use hydrological emulator (HE) that can mimic complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, we construct both a lumped and a distributed scheme of the HE based on the monthly abcd model to explore the tradeoff between computational cost and model fidelity. Model predictability and computational efficiency are evaluatedmore » in simulating global runoff from 1971 to 2010 with both the lumped and distributed schemes. The results are compared against the runoff product from the widely used Variable Infiltration Capacity (VIC) model. Our evaluation indicates that the lumped and distributed schemes present comparable results regarding annual total quantity, spatial pattern, and temporal variation of the major water fluxes (e.g., total runoff, evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the annual total runoff from either of these two schemes and the VIC is > 0.96), except for several cold (e.g., Arctic, interior Tibet), dry (e.g., North Africa) and mountainous (e.g., Argentina) regions. Compared against the monthly total runoff product from the VIC (aggregated from daily runoff), the global mean Kling–Gupta efficiencies are 0.75 and 0.79 for the lumped and distributed schemes, respectively, with the distributed scheme better capturing spatial heterogeneity. Notably, the computation efficiency of the lumped scheme is 2 orders of magnitude higher than the distributed one and 7 orders more efficient than the VIC model. A case study of uncertainty analysis for the world's 16 basins with top annual streamflow is conducted using 100 000 model simulations, and it demonstrates the lumped scheme's extraordinary advantage in computational efficiency. Lastly, our results suggest that the revised lumped abcd model can serve as an efficient and reasonable HE for complex GHMs and is suitable for broad practical use, and the distributed scheme is also an efficient alternative if spatial heterogeneity is of more interest.« less
Computing arrival times of firefighting resources for initial attack
Romain M. Mees
1978-01-01
Dispatching of firefighting resources requires instantaneous or precalculated decisions. A FORTRAN computer program has been developed that can provide a list of resources in order of computed arrival time for initial attack on a fire. The program requires an accurate description of the existing road system and a list of all resources available on a planning unit....
NASA Astrophysics Data System (ADS)
Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.
2016-10-01
The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.
Heterogeneous compute in computer vision: OpenCL in OpenCV
NASA Astrophysics Data System (ADS)
Gasparakis, Harris
2014-02-01
We explore the relevance of Heterogeneous System Architecture (HSA) in Computer Vision, both as a long term vision, and as a near term emerging reality via the recently ratified OpenCL 2.0 Khronos standard. After a brief review of OpenCL 1.2 and 2.0, including HSA features such as Shared Virtual Memory (SVM) and platform atomics, we identify what genres of Computer Vision workloads stand to benefit by leveraging those features, and we suggest a new mental framework that replaces GPU compute with hybrid HSA APU compute. As a case in point, we discuss, in some detail, popular object recognition algorithms (part-based models), emphasizing the interplay and concurrent collaboration between the GPU and CPU. We conclude by describing how OpenCL has been incorporated in OpenCV, a popular open source computer vision library, emphasizing recent work on the Transparent API, to appear in OpenCV 3.0, which unifies the native CPU and OpenCL execution paths under a single API, allowing the same code to execute either on CPU or on a OpenCL enabled device, without even recompiling.
NASA Astrophysics Data System (ADS)
Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.
2011-12-01
Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model at 704,000 grid blocks (140,800 grid blocks x 5 layers) in just 6 minutes. The capture fraction maps from the perturbation and adjoint methods agree closely. The results of this study indicate that the adjoint capture method and its associated computational efficiency will enable scientists and engineers facing water resource management decisions to evaluate the sensitivity and uncertainty of impacts to regional water resource systems as part of groundwater supply strategies. Bredehoeft, J.D., S.S. Papadopulos, and H.H. Cooper Jr, Groundwater: The water budget myth. In Scientific Basis of Water-Resources Management, ed. National Research Council (U.S.), Geophysical Study Committee, 51-57. Washington D.C.: National Academy Press, 1982. Clemo, Tom, MODFLOW-2005 Ground-Water Model-Users Guide to Adjoint State based Sensitivity Process (ADJ), BSU CGISS 07-01, Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, 2007. Leake, S.A., H.W. Reeves, and J.E. Dickinson, A New Capture Fraction Method to Map How Pumpage Affects Surface Water Flow, Ground Water, 48(5), 670-700, 2010.
Stutzman, Ryan J.; Fontaine, Joseph J
2015-01-01
Changes in temperature and seasonality resulting from climate change are heterogeneous, potentially altering important sources of natural selection acting on species phenology. Some species have apparently adapted to climate change but the ability of most species to adapt remains unknown. The life history strategies of migratory animals are dictated by seasonal factors, which makes these species particularly vulnerable to heterogeneous changes in climate and phenology. Here, we examine the phenology of migratory shorebirds, their habitats, and primary food resources, and we hypothesize how climate change may affect migrants through predicted changes in phenology. Daily abundance of shorebirds at stopover sites was correlated with local phenology and peaked immediately prior to peaks in invertebrate food resources. A close relationship between migrant and invertebrate phenology indicates that shorebirds may be vulnerable to changes in seasonality driven by climate change. It is possible that shifts in migrant and invertebrate phenology will be congruent in magnitude and direction, but because migration phenology is dependent on a suite of ecological factors, any response is likely to occur at a larger temporal scale and may lag behind the response of invertebrate food resources. The resulting lack of sufficient access to food at stopover habitats may cause migrants to extend migration and have cascading effects throughout their life cycle. If the heterogeneous nature of climate change results in uneven changes in phenology between migrants and their prey, it may threaten the long-term viability of migratory populations
NASA Astrophysics Data System (ADS)
Hyde, B. C.; Tait, K. T.; Nicklin, I.; Day, J. M. D.; Ash, R. D.; Moser, D. E.
2013-09-01
Sectioning of meteorites is usually done in an arbitrary manner. We used micro-computed tomography to view the interior of brachinite NWA 4872. A cut was then made through an area of interest. Heterogeneity and modal abundance are discussed.
Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
Kim, Deokho; Park, Karam; Ro, Won W.
2011-01-01
While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053
Distributed computations in a dynamic, heterogeneous Grid environment
NASA Astrophysics Data System (ADS)
Dramlitsch, Thomas
2003-06-01
In order to face the rapidly increasing need for computational resources of various scientific and engineering applications one has to think of new ways to make more efficient use of the worlds current computational resources. In this respect, the growing speed of wide area networks made a new kind of distributed computing possible: Metacomputing or (distributed) Grid computing. This is a rather new and uncharted field in computational science. The rapidly increasing speed of networks even outperforms the average increase of processor speed: Processor speeds double on average each 18 month whereas network bandwidths double every 9 months. Due to this development of local and wide area networks Grid computing will certainly play a key role in the future of parallel computing. This type of distributed computing, however, distinguishes from the traditional parallel computing in many ways since it has to deal with many problems not occurring in classical parallel computing. Those problems are for example heterogeneity, authentication and slow networks to mention only a few. Some of those problems, e.g. the allocation of distributed resources along with the providing of information about these resources to the application have been already attacked by the Globus software. Unfortunately, as far as we know, hardly any application or middle-ware software takes advantage of this information, since most parallelizing algorithms for finite differencing codes are implicitly designed for single supercomputer or cluster execution. We show that although it is possible to apply classical parallelizing algorithms in a Grid environment, in most cases the observed efficiency of the executed code is very poor. In this work we are closing this gap. In our thesis, we will - show that an execution of classical parallel codes in Grid environments is possible but very slow - analyze this situation of bad performance, nail down bottlenecks in communication, remove unnecessary overhead and other reasons for low performance - develop new and advanced algorithms for parallelisation that are aware of a Grid environment in order to generelize the traditional parallelization schemes - implement and test these new methods, replace and compare with the classical ones - introduce dynamic strategies that automatically adapt the running code to the nature of the underlying Grid environment. The higher the performance one can achieve for a single application by manual tuning for a Grid environment, the lower the chance that those changes are widely applicable to other programs. In our analysis as well as in our implementation we tried to keep the balance between high performance and generality. None of our changes directly affect code on the application level which makes our algorithms applicable to a whole class of real world applications. The implementation of our work is done within the Cactus framework using the Globus toolkit, since we think that these are the most reliable and advanced programming frameworks for supporting computations in Grid environments. On the other hand, however, we tried to be as general as possible, i.e. all methods and algorithms discussed in this thesis are independent of Cactus or Globus. Die immer dichtere und schnellere Vernetzung von Rechnern und Rechenzentren über Hochgeschwindigkeitsnetzwerke ermöglicht eine neue Art des wissenschaftlich verteilten Rechnens, bei der geographisch weit auseinanderliegende Rechenkapazitäten zu einer Gesamtheit zusammengefasst werden können. Dieser so entstehende virtuelle Superrechner, der selbst aus mehreren Grossrechnern besteht, kann dazu genutzt werden Probleme zu berechnen, für die die einzelnen Grossrechner zu klein sind. Die Probleme, die numerisch mit heutigen Rechenkapazitäten nicht lösbar sind, erstrecken sich durch sämtliche Gebiete der heutigen Wissenschaft, angefangen von Astrophysik, Molekülphysik, Bioinformatik, Meteorologie, bis hin zur Zahlentheorie und Fluiddynamik um nur einige Gebiete zu nennen. Je nach Art der Problemstellung und des Lösungsverfahrens gestalten sich solche "Meta-Berechnungen" mehr oder weniger schwierig. Allgemein kann man sagen, dass solche Berechnungen um so schwerer und auch um so uneffizienter werden, je mehr Kommunikation zwischen den einzelnen Prozessen (oder Prozessoren) herrscht. Dies ist dadurch begründet, dass die Bandbreiten bzw. Latenzzeiten zwischen zwei Prozessoren auf demselben Grossrechner oder Cluster um zwei bis vier Grössenordnungen höher bzw. niedriger liegen als zwischen Prozessoren, welche hunderte von Kilometern entfernt liegen. Dennoch bricht nunmehr eine Zeit an, in der es möglich ist Berechnungen auf solch virtuellen Supercomputern auch mit kommunikationsintensiven Programmen durchzuführen. Eine grosse Klasse von kommunikations- und berechnungsintensiven Programmen ist diejenige, die die Lösung von Differentialgleichungen mithilfe von finiten Differenzen zum Inhalt hat. Gerade diese Klasse von Programmen und deren Betrieb in einem virtuellen Superrechner wird in dieser vorliegenden Dissertation behandelt. Methoden zur effizienteren Durchführung von solch verteilten Berechnungen werden entwickelt, analysiert und implementiert. Der Schwerpunkt liegt darin vorhandene, klassische Parallelisierungsalgorithmen zu analysieren und so zu erweitern, dass sie vorhandene Informationen (z.B. verfügbar durch das Globus Toolkit) über Maschinen und Netzwerke zur effizienteren Parallelisierung nutzen. Soweit wir wissen werden solche Zusatzinformationen kaum in relevanten Programmen genutzt, da der Grossteil aller Parallelisierungsalgorithmen implizit für die Ausführung auf Grossrechnern oder Clustern entwickelt wurde.
ERIC Educational Resources Information Center
Falkner, Katrina; Vivian, Rebecca
2015-01-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
NASA Astrophysics Data System (ADS)
Gu, En-Guo
In this paper, we formulate a dynamical model of common fishery resource harvested by multiagents with heterogeneous strategy: profit maximizers and gradient learners. Special attention is paid to the problem of heterogeneity of strategic behaviors. We mainly study the existence and the local stability of non-negative equilibria for the model through mathematical analysis. We analyze local bifurcations and complex dynamics such as coexisting attractors by numerical simulations. We also study the local and global dynamics of the exclusive gradient learners as a special case of the model. We discover that when adjusting the speed to be slightly high, the increasing ratio of gradient learners may lead to instability of the fixed point and makes the system sink into complicated dynamics such as quasiperiodic or chaotic attractor. The results reveal that gradient learners with high adjusting speed may ultimately be more harmful to the sustainable use of fish stock than the profit maximizers.
Macho, Jorge Berzosa; Montón, Luis Gardeazabal; Rodriguez, Roberto Cortiñas
2017-08-01
The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices.
Montón, Luis Gardeazabal
2017-01-01
The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices. PMID:28763013
Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo
2016-01-01
Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries. PMID:26899876
Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca²⁺ wave dynamics.
Benninger, Richard K P; Hutchens, Troy; Head, W Steven; McCaughey, Michael J; Zhang, Min; Le Marchand, Sylvain J; Satin, Leslie S; Piston, David W
2014-12-02
Insulin is released from the islets of Langerhans in discrete pulses that are linked to synchronized oscillations of intracellular free calcium ([Ca(2+)]i). Associated with each synchronized oscillation is a propagating calcium wave mediated by Connexin36 (Cx36) gap junctions. A computational islet model predicted that waves emerge due to heterogeneity in β-cell function throughout the islet. To test this, we applied defined patterns of glucose stimulation across the islet using a microfluidic device and measured how these perturbations affect calcium wave propagation. We further investigated how gap junction coupling regulates spatiotemporal [Ca(2+)]i dynamics in the face of heterogeneous glucose stimulation. Calcium waves were found to originate in regions of the islet having elevated excitability, and this heterogeneity is an intrinsic property of islet β-cells. The extent of [Ca(2+)]i elevation across the islet in the presence of heterogeneity is gap-junction dependent, which reveals a glucose dependence of gap junction coupling. To better describe these observations, we had to modify the computational islet model to consider the electrochemical gradient between neighboring β-cells. These results reveal how the spatiotemporal [Ca(2+)]i dynamics of the islet depend on β-cell heterogeneity and cell-cell coupling, and are important for understanding the regulation of coordinated insulin release across the islet. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Operating Dedicated Data Centers - Is It Cost-Effective?
NASA Astrophysics Data System (ADS)
Ernst, M.; Hogue, R.; Hollowell, C.; Strecker-Kellog, W.; Wong, A.; Zaytsev, A.
2014-06-01
The advent of cloud computing centres such as Amazon's EC2 and Google's Computing Engine has elicited comparisons with dedicated computing clusters. Discussions on appropriate usage of cloud resources (both academic and commercial) and costs have ensued. This presentation discusses a detailed analysis of the costs of operating and maintaining the RACF (RHIC and ATLAS Computing Facility) compute cluster at Brookhaven National Lab and compares them with the cost of cloud computing resources under various usage scenarios. An extrapolation of likely future cost effectiveness of dedicated computing resources is also presented.
Data partitioning enables the use of standard SOAP Web Services in genome-scale workflows.
Sztromwasser, Pawel; Puntervoll, Pål; Petersen, Kjell
2011-07-26
Biological databases and computational biology tools are provided by research groups around the world, and made accessible on the Web. Combining these resources is a common practice in bioinformatics, but integration of heterogeneous and often distributed tools and datasets can be challenging. To date, this challenge has been commonly addressed in a pragmatic way, by tedious and error-prone scripting. Recently however a more reliable technique has been identified and proposed as the platform that would tie together bioinformatics resources, namely Web Services. In the last decade the Web Services have spread wide in bioinformatics, and earned the title of recommended technology. However, in the era of high-throughput experimentation, a major concern regarding Web Services is their ability to handle large-scale data traffic. We propose a stream-like communication pattern for standard SOAP Web Services, that enables efficient flow of large data traffic between a workflow orchestrator and Web Services. We evaluated the data-partitioning strategy by comparing it with typical communication patterns on an example pipeline for genomic sequence annotation. The results show that data-partitioning lowers resource demands of services and increases their throughput, which in consequence allows to execute in-silico experiments on genome-scale, using standard SOAP Web Services and workflows. As a proof-of-principle we annotated an RNA-seq dataset using a plain BPEL workflow engine.
NASA Astrophysics Data System (ADS)
Russo, T. A.; Devineni, N.; Lall, U.
2015-12-01
Lasting success of the Green Revolution in Punjab, India relies on continued availability of local water resources. Supplying primarily rice and wheat for the rest of India, Punjab supports crop irrigation with a canal system and groundwater, which is vastly over-exploited. The detailed data required to physically model future impacts on water supplies agricultural production is not readily available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements for an under-constrained mass balance model. Using measured values of historical precipitation, total canal water delivery, crop yield, and water table elevation, we present a method using a Markov chain Monte Carlo (MCMC) algorithm to solve for a distribution of values for each unknown parameter in a conceptual mass balance model. Due to heterogeneity across the state, and the resolution of input data, we estimate model parameters at the district-scale using spatial pooling. The resulting model is used to predict the impact of precipitation change scenarios on groundwater availability under multiple cropping options. Predicted groundwater declines vary across the state, suggesting that crop selection and water management strategies should be determined at a local scale. This computational method can be applied in data-scarce regions across the world, where water resource management is required to resolve competition between food security and available resources in a changing climate.
Computing the Envelope for Stepwise-Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2002-01-01
Computing tight resource-level bounds is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with nodes equal to the events and edges equal to the necessary predecessor links between events. A staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. Each stage has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible and promising for use in the inner loop of flexible-time scheduling algorithms.
Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method
NASA Astrophysics Data System (ADS)
Klimczak, Marek; Cecot, Witold
2018-01-01
We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.
Cooperation and heterogeneity of the autistic mind.
Yoshida, Wako; Dziobek, Isabel; Kliemann, Dorit; Heekeren, Hauke R; Friston, Karl J; Dolan, Ray J
2010-06-30
Individuals with autism spectrum conditions (ASCs) have a core difficulty in recursively inferring the intentions of others. The precise cognitive dysfunctions that determine the heterogeneity at the heart of this spectrum, however, remains unclear. Furthermore, it remains possible that impairment in social interaction is not a fundamental deficit but a reflection of deficits in distinct cognitive processes. To better understand heterogeneity within ASCs, we employed a game-theoretic approach to characterize unobservable computational processes implicit in social interactions. Using a social hunting game with autistic adults, we found that a selective difficulty representing the level of strategic sophistication of others, namely inferring others' mindreading strategy, specifically predicts symptom severity. In contrast, a reduced ability in iterative planning was predicted by overall intellectual level. Our findings provide the first quantitative approach that can reveal the underlying computational dysfunctions that generate the autistic "spectrum."
TheHiveDB image data management and analysis framework.
Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew
2014-01-06
The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative.
TheHiveDB image data management and analysis framework
Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew
2014-01-01
The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative. PMID:24432000
Matteson, K.C.; Grace, James B.; Minor, E.S.
2013-01-01
Although urban areas are often considered to have uniformly negative effects on biodiversity, cities are most accurately characterized as heterogeneous mosaics of buildings, streets, parks, and gardens that include both ‘good’ and ‘bad’ areas for wildlife. However, to date, few studies have evaluated how human impacts vary in direction and magnitude across a heterogeneous urban landscape. In this study, we assessed the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We visited both green spaces (e.g. parks, cemeteries) and heavily developed neighborhood blocks (e.g. with high or low density residential zoning) and used structural equation modeling (SEM) to evaluate the direct and indirect effects of median income, vegetation, and development intensity on floral resources and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly greater in green spaces than neighborhood blocks. The SEM results indicated that heavily-developed neighborhoods generally had fewer flower-visiting insects consistent with reductions in floral resources. However, some low-density residential neighborhoods maintained high levels of floral resources and flower-visiting insects. We found that the effects of surrounding vegetation on floral resources, and thus indirect effects on insects, varied considerably between green spaces and neighborhood blocks. Along neighborhood blocks, vegetation consisted of a mosaic of open gardens and sparsely distributed trees and had a positive indirect effect on flower-visiting insects. In contrast, vegetation in urban green spaces was associated with increased canopy cover and thus had a negative indirect effect on flower-visiting insects through reductions in floral resources. In both neighborhood blocks and green spaces, vegetation had a positive direct effect on flower-visiting insects independent of the influence of vegetation on floral resources. Our results demonstrate how inter-related components of an urban ecosystem can vary with respect to one another across a heterogeneous urban landscape, suggesting that it is inappropriate to generalize about urban systems as a whole without first addressing differences among component land use types.
Finite-fault source inversion using adjoint methods in 3D heterogeneous media
NASA Astrophysics Data System (ADS)
Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia
2018-04-01
Accounting for lateral heterogeneities in the 3D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3D heterogeneity in source inversion involves pre-computing 3D Green's functions, which requires a number of 3D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense datasets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3D heterogeneous velocity model. The velocity model comprises a uniform background and a 3D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3D velocity model are performed for two different station configurations, a dense and a sparse network with 1 km and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect, homogeneous velocity model. We find that, for velocity uncertainties that have standard deviation and correlation length typical of available 3D crustal models, the inverted sources can be severely contaminated by spurious features even if the station density is high. When data from thousand or more receivers is used in source inversions in 3D heterogeneous media, the computational cost of the method proposed in this work is at least two orders of magnitude lower than source inversion based on pre-computed Green's functions.
Finite-fault source inversion using adjoint methods in 3-D heterogeneous media
NASA Astrophysics Data System (ADS)
Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia
2018-07-01
Accounting for lateral heterogeneities in the 3-D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1-D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3-D heterogeneity in source inversion involves pre-computing 3-D Green's functions, which requires a number of 3-D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense data sets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3-D heterogeneous velocity model. The velocity model comprises a uniform background and a 3-D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3-D velocity model are performed for two different station configurations, a dense and a sparse network with 1 and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak-slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect, homogeneous velocity model. We find that, for velocity uncertainties that have standard deviation and correlation length typical of available 3-D crustal models, the inverted sources can be severely contaminated by spurious features even if the station density is high. When data from thousand or more receivers is used in source inversions in 3-D heterogeneous media, the computational cost of the method proposed in this work is at least two orders of magnitude lower than source inversion based on pre-computed Green's functions.