A Generalized Kinetic Model for Heterogeneous Gas-Solid Reactions
Xu, Zhijie; Sun, Xin; Khaleel, Mohammad A.
2012-08-15
We present a generalized kinetic model for gas-solid heterogeneous reactions taking place at the interface between two phases. The model studies the reaction kinetics by taking into account the reactions at the interface, as well as the transport process within the product layer. The standard unreacted shrinking core model relies on the assumption of quasi-static diffusion that results in a steady-state concentration profile of gas reactant in the product layer. By relaxing this assumption and resolving the entire problem, general solutions can be obtained for reaction kinetics, including the reaction front velocity and the conversion (volume fraction of reacted solid). The unreacted shrinking core model is shown to be accurate and in agreement with the generalized model for slow reaction (or fast diffusion), low concentration of gas reactant, and small solid size. Otherwise, a generalized kinetic model should be used.
Solids flow mapping in gas-solid risers
NASA Astrophysics Data System (ADS)
Bhusarapu, Satish Babu
Gas-solid risers are extensively used in many industrial processes for gas-solid reactions (e.g. coal combustion and gasification) and for solid catalyzed gas phase reactions (e.g. fluid catalytic cracking, butane oxidation to maleic anhydride). Ab initio prediction of the complex multiphase fluid dynamics in risers is not yet possible, which makes reactor modeling difficult. In particular, quantification of solids flow and mixing is important. Almost all the experimental techniques used to characterize solids flow lead to appreciable errors in measured variables in large scale, high mass flux systems. In addition, none of the experimental techniques provide all the relevant data required to develop a satisfactory solids flow model. In this study, non-invasive Computer Automated Radioactive Particle Tracking (CARPT) is employed to visualize and quantify the solids dynamics and mixing in the gas-solid riser of a Circulating Fluidized Bed (CFB). A single radioactive tracer particle is monitored during its multiple visits to the riser and with an assumption of ergodicity, the following flow parameters are estimated: (a) Overall solids mass flux in the CFB loop. (b) Solids residence time distribution in the riser and down-comer. (c) Lagrangian and Eulerian solids velocity fields in a fully-developed section of the riser. This includes velocity fluctuations and components of the diffusivity tensor. The existing CARPT technique is extended to large scale systems. A new algorithm, based on a cross-correlation search, is developed for position rendition from CARPT data. Two dimensional solids holdup profiles are estimated using gamma-ray computed tomography. The image quality from the tomography data is improved by implementing an alternating minimization algorithm. This work establishes for the first time a reliable database for local solids dynamic quantities such as time-averaged velocities, Reynolds stresses, eddy diffusivities and turbulent kinetic energy. In addition
A new model for gas/solid pipe flow
Wu, Bangxian; Chang, S.L.; Lottes, S.A.; Petrick, M.
1995-12-31
A new model of particle turbulent dispersion in vertical gas/solid pipe flow is presented in this paper. The essence of the model is to pay more attention to the active and discrete behavior of particles in the dispersion process in non-homogeneous turbulent vertical pipe flows using two-fluid approaches. In the new model, a non-gradient type of diffusion term is included in the expression of radial particle dispersion flux; the transport equation for particle turbulent kinetic energy (PTKE) is developed and solved for its distribution; the effect of intra-particle collision is considered for the generation and dissipation of PTKE; turbulence modulation due to particle presence is taken into account. Preliminary numerical results based on this new model are also presented in this paper.
Open-source MFIX-DEM software for gas-solids flows: Part I verification studies
Garg, Rahul; Galvin, Janine; Li, Tingwen; Pannala, Sreekanth
2012-01-01
With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using a Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas solids flows can accelerate the research in computational gas solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas solids flows.
DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS
The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...
FORCE2: A multidimensional flow program for gas solids flow theory guide
Burge, S.W.
1991-05-01
This report describes the theory and structure of the FORCE2 flow program. The manual describes the governing model equations, solution procedure and their implementation in the computer program. FORCE2 is an extension of an existing B&V multidimensional, two-phase flow program. FORCE2 was developed for application to fluid beds by flow implementing a gas-solids modeling technology derived, in part, during a joint government -- industry research program, ``Erosion of FBC Heat Transfer Tubes,`` coordinated by Argonne National Laboratory. The development of FORCE2 was sponsored by ASEA-Babcock, an industry participant in this program. This manual is the principal documentation for the program theory and organization. Program usage and post-processing of code predictions with the FORCE2 post-processor are described in a companion report, FORCE2 -- A Multidimensional Flow Program for Fluid Beds, User`s Guide. This manual is segmented into sections to facilitate its usage. In section 2.0, the mass and momentum conservation principles, the basis for the code, are presented. In section 3.0, the constitutive relations used in modeling gas-solids hydrodynamics are given. The finite-difference model equations are derived in section 4.0 and the solution procedures described in sections 5.0 and 6.0. Finally, the implementation of the model equations and solution procedure in FORCE2 is described in section 7.0.
Fictitious domain method for fully resolved reacting gas-solid flow simulation
NASA Astrophysics Data System (ADS)
Zhang, Longhui; Liu, Kai; You, Changfu
2015-10-01
Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.
A study of pneumatic conveying of gas-solid flow for industrial application
NASA Astrophysics Data System (ADS)
Al-Khateeb, Khalid A. S.; Tasnim, Rumana; Khan, Sheroz; Mohammod, Musse; Arshad, Atika; Shobaki, Mohammed M.; Haider, Samnan; Saquib, Nazmus; Rahman, Tawfilur
2013-12-01
The complicated nature of gas-solids' physical properties have challenged the researchers over past decades who have led their efforts in developing its' flow sensing and measurement methods. The term 'gas-solid flow' signifies dilute- or dense-phase flow with a very little concentration of solids. For conducting such flow measurement, generally velocity profile and volumetric concentration of the flow particles being conveyed are needed to be measured. An important application of gas-solid flow has taken root in the form of biomass flow in pneumatic conveying systems, and its' online measurement has proven to be an exigent research pursuit. Additionally the other applications have been explored in power plants, food, chemical and automobiles industries as well. This paper aims at exploring the evolution of flow measurement methods along with a brief explanation on existing fundamental sensing techniques. Furthermore, the most recent patents developed for such measurements in pneumatic conveying pipelines are scrutinized along with their concomitant pros and cons.
Measurements of solid concentration in a downward vertical gas-solid flow
Schiewe, T.; Wirth, K.E.; Molerus, O.; Tuzla, K.; Sharma, A.K.; Chen, J.C.
1999-05-01
New results from experiments performed in a 15-cm-diameter downflow fast-fluidized bed are presented. Tests were conducted at room temperature and near atmospheric pressure, with 125-{micro}m glass beads. Superficial gas velocities range from 0 to 6.6 m/s. Two different measurement techniques--gamma-absorption tomography and capacitance sensing--were applied to the gas-solids flow in the downer tube. The average local solid fractions from both measurement techniques are compared for various operating conditions of the gas-solid flow. In general, good agreement was obtained between the solid concentration measurements from both measurement techniques. It is demonstrated that combined use of both measurement techniques offers the best change to get time-average information about the concentration distribution over the whole cross section.
Open-source MFIX-DEM software for gas-solids flows: Part II Validation studies
Li, Tingwen; Garg, Rahul; Galvin, Janine; Pannala, Sreekanth
2012-01-01
With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the National Energy Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.
Particle-wave duality and coherent instability control in dense gas-solid flows.
Li, J.; Liu, Y. Y.; Decision and Information Sciences
2008-02-01
The collective effect of transport behaviors in a multibody system can either drastically enhance or deteriorate system performance depending on the nature of the internal interactions (i.e., constructive or deconstructive) and the structure established. For most powder processes, flow instability leads to poor performance. Control strategies have been attempted previously, but with limited success. The ability to drive such a system that is far from equilibrium into its 'ordered' state by tuning the interactions can effectively reduce internal energy dissipation, which may lead to a technological breakthrough. By using a hybrid dynamics simulation and multiphase flow experiments, we will first elucidate two fundamental mechanisms underlying flow instabilities in a dense gas-solid flow: nonlinear drag and collisional dissipation. Then we clarify how gas-fluidized particles exhibit 'particle-wave' duality (e.g., exhibit standing waves in a thin layer of granular bed that are driven by superimposed oscillating air, when the exciting frequencies of the oscillating air match the system's natural frequency). On this basis, we show experimentally that dense gas-fluidized granules can be synchronized into 'ordered' structures by developing an adaptively exciting fluid wave. The introduction of an additional fluid wave enables the flow structures to be fine-tuned. Our method results in remarkably improved fluidization: highly expanded particulate beds with significantly suppressed gas bubble formation (for coarse particles) and channel formation (for ultra-fine powders), as has always prevailed in conventional dense gas-particle systems. By applying our methodology to several systems that are normally difficult to fluidize, we achieve unprecedented, well-controlled suspension of solids in gas flow. A scientific understanding of complex, dense gas-solid flows should enable the dispersion of solids in the gas flow to be controlled effectively. This work contributes to the
A Model for Solid-Solid drag in Bidisperse Gas-solid Flows
NASA Astrophysics Data System (ADS)
Murphy, Eric; Subramaniam, Shankar
2014-11-01
Computational models for gas-solid mixtures often require closures for interphase momentum and energy transfer. One of the most important interactions for polydisperse systems is a so-called solid-solid drag, i.e. the momentum transfer between different particulate phases traveling at different mean velocities. Modeling of these, and additional terms has been a focus of the granular physics community for nearly three decades and is no easy task. Flows of bidisperse particles are often high Mach number, Ma >> 1. As a result, many theories developed for low Mach number applications using the Chapman-Enskog (CE) theory are not strictly applicable. Still, many other analytic moment methods did not properly couple granular temperature and slip between particulate phases. We have developed a moment theory for the slip and temperature evolution employing the pseudo-Liouville operator technique, which correctly accounts for the coupling between phasic slip and temperatures. The theory is compared with other existing moment models for solid-solid drag. It is found that the drag model is a weighted sum of terms arising in both (CE) and existing moment theories. Additionally, new phase specific temperature evolution terms are obtained that shed light on phenomena such as non-equipartition of energy in bidisperse granular gases. Lastly, we explore some of the segregation behavior implied by the model for homogeneous gas-solid flows with bidisperse particles. This work was supported through DOE award number DE-FE0007260 and NSF Grants CMMI 0927660 and CBET 1134500.
Prediction of turbulent gas-solids flow in curved ducts using the Eulerian-Lagrangian method
NASA Astrophysics Data System (ADS)
Naik, S.; Bryden, I. G.
1999-10-01
The flow of particulate two-phase flow mixtures occur in several components of solid fuel combustion systems, such as the pressurised fluidised bed combustors (PFBC) and suspension-fired coal boilers. A detailed understanding of the mixture characteristics in the conveying component can aid in refining and optimising its design. In this study, the flow of an isothermal, dilute two-phase particulate mixture has been examined in a high curvature duct, which can be representative of that transporting the gas-solid mixture from the hot clean-up section to the gas turbine combustor in a PFBC plant. The numerical study has been approached by utilising the Eulerian-Lagrangian methodology for describing the characteristics of the fluid and particulate phases. By assuming that the mixture is dilute and the particles are spherical, the governing particle momentum equations have been solved with appropriately prescribed boundary conditions. Turbulence effects on the particle dispersion were represented by a statistical model that accounts for both the turbulent eddy lifetime and the particle transit time scales. For the turbulent flow condition examined it was observed that mixtures with small particle diameters had low interphase slip velocities and low impaction probability with the pipe walls. Increasing the particle diameters (>50 m) resulted in higher interphase slip velocities and, as expected, their impaction probability with the pipe walls was significantly increased. The particle dispersion is significant for the smaller sizes, whereas the larger particles are relatively insensitive to the gas turbulence. The main particle impaction region, and locations most prone to erosion damage, is estimated to be within an outer duct length of two to six times the duct diameter, when the duct radius of curvature to the duct diameter ratio is equal to unity. Copyright
High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow
Li, Tingwen
2011-05-01
High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to the different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.
Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)
Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie
2005-06-04
Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at
Venturi design for metering solids flow in gas-solids suspentions
Crowe, C T
1981-01-01
Objective is to study the use of the venturi to meter gas-solids at larger particle size the modifying the inlet geometry and using a laser-light attenuation system at the venturi throat. Three tasks are reported: (1) study of influence of venturi approach angle on meter sensitivity to solids loading; (2) use of a quasi one-dimensional numerical model to optimize the inlet geometry for limestone transport to a fluidized bed; and (3) study adequacy of annular venturi and a gas-solids flowmeter. (DLC)
FORCE2: A multidimensional flow program for gas solids flow user`s guide
Burge, S.W.
1991-05-01
This report describes the FORCE2 flow program input, output, and the graphical post-processor. The manual describes the steps for creating the model, executing the programs and processing the results into graphical form. The FORCE2 post-processor was developed as an interactive program written in FORTRAN-77. It uses the Graphical Kernel System (GKS) graphics standard recently adopted by International Organization for Standardization, ISO, and American National Standards Institute, ANSI, and, therefore, can be used with many terminals. The post-processor vas written with Calcomp subroutine calls and is compatible with Tektkonix terminals and Calcomp and Nicolet pen plotters. B&W has been developing the FORCE2 code as a general-purpose tool for flow analysis of B&W equipment. The version of FORCE2 described in this manual was developed under the sponsorship of ASEA-Babcock as part of their participation in the joint R&D venture, ``Erosion of FBC Heat Transfer Tubes,`` and is applicable to the analyses of bubbling fluid beds. This manual is the principal documentation for program usage and is segmented into several sections to facilitate usage. In Section 2.0 the program is described, including assumptions, capabilities, limitations and uses, program status and location, related programs and program hardware and software requirements. Section 3.0 is a quick user`s reference guide for preparing input, executing FORCE2, and using the post-processor. Section 4.0 is a detailed description of the FORCE2 input. In Section 5.0, FORCE2 output is summarized. Section 6.0 contains a sample application, and Section 7.0 is a detailed reference guide.
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang
2016-09-01
The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.
NASA Astrophysics Data System (ADS)
Jurewicz, J. T.
Papers are presented on deposition and resuspension of gas-borne particles in recirculating turbulent flows, particle dispersion in decaying isotropic homogeneous turbulence, turbulent dispersion of droplets for air flow in a pipe, a comparison between Lagrangian and Eulerian model approaches to turbulent particle dispersion, and the effect of turbulent electrohydrodynamics on electrostatic precipitator efficiency. Also considered are errors due to turbidity in particle sizing using laser Doppler velocimetry, particle motion in a fluidically oscillating jet, high pressure steam/water jet measurements using a portable particle sizing laser Doppler system, the effect of particle shape on pressure drop in a turbulent gas/solid suspension, and the experimental study of gas solid flows in pneumatic conveying. Other topics include entropy production and pressure loss in gas-solid flows, a computational study of turbulent gas-particle flow in a Venturi, a numerical analysis of confined recirculating gas-solid turbulent flows, nozzle and free jet flows of gas particle mixtures, and particle separation in pulsed airflow. Papers are also presented on sampling of solid particles in clouds, particle motion near the inlet of a sampling probe, the effects of slot injection on blade erosion in direct coal-fueled gas turbines, bed diameter effects and incipient slugging in gas fluidized beds, and sedimentation of air fluidized fine graphite particles by methanol vapor.
Cartesian grid simulations of gas-solids flow systems with complex geometry
Dietiker, Jean-Francois; Li, Tingwen; Garg, Rahul; Shahnam, Mehrdad
2013-02-01
Complex geometries encountered in many applications of gas–solids flow need special treatment in most legacy multiphase flow solvers with Cartesian numerical grid. This paper briefly outlines the implementation of a cut cell technique in the open-source multiphase flow solver—MFIX for accurate representation of complex geometries. Specifically, applications of the Cartesian cut cell method to different gas–solids fluidization systems including a small scale bubbling fluidized bed with submerged tube bundle and a complete pilot-scale circulating fluidized bed will be presented. In addition to qualitative predictions on the general flow behaviors inside each system, quantitative comparison with the available experimental data will be presented. Furthermore, some results on extending the current cut-cell technique to Lagrangian–Eulerian simulations will be presented.
A CFD study of gas-solid jet in a CFB riser flow
Li, Tingwen; Guenther, Chris
2012-03-01
Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.
Open-source MFIX-DEM software for gas-solids flows: Part 1 - Verification studies
Garg, Rahul; Galvin, Janine; Li, Tingwen; Pannala, Sreekanth
2012-04-01
With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas–solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using a Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas–solids flows can accelerate the research in computational gas–solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas–solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas–solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas–solids flows.
Open Source MFIX-DEM Software for Gas-Solids Flows: Part 1 - Verification Studies
Garg, Rahul; Galvin, Janine; Li, Tingwen; Pannala, Sreekanth
2012-04-01
With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas–solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using a Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas–solids flows can accelerate the research in computational gas–solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas–solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas–solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas–solids flows.
A novel ECT-EST combined method for gas-solids flow pattern and charge distribution visualization
NASA Astrophysics Data System (ADS)
Zhou, B.; Zhang, J. Y.
2013-07-01
A non-invasive measurement method of visualizing the flow pattern and charge distribution of gas-solids two-phase flow has been studied and verified using gravity-dropping and pneumatic conveyance rigs with pulverized coal as solids. It has been proven that the permittivity distribution acquired from an electrical capacitance tomography (ECT) system can be used to improve the accuracy in establishing charge sensitivity field of an electrostatic tomography (EST) system, and to reduce the uncertainty of charge distribution reconstruction. The experimental results show that, under the given experimental conditions for the gravity-dropping system, charge density increases with particles' concentration, whilst in the pneumatic conveyance system, charge density decreases in the area where the particles' concentration is higher, and the total charge intensity decreases with the increase of the concentration of pulverized coal in the pipe. The method proposed in this paper is potentially important in pneumatic processes for charge distribution measurement and safe operations. It is envisaged that with further development, this technique can provide information for investigation into the mechanism of inter-particle force on electrostatic attraction and repulsion.
A Study of the Influence of Numerical Diffusion on Gas-Solid Flow Predictions in Fluidized Beds
NASA Astrophysics Data System (ADS)
Ghandriz, Ronak; Sheikhi, Reza
2015-11-01
In this work, an investigation is made of the influence of numerical diffusion on the accuracy of gas-solid flow predictions in fluidized beds. This is an important issue particularly in bubbling fluidized beds since numerical error greatly affects the dynamics of bubbles and their associated mixing process. A bed of coal (classified as Geldart A) is considered which becomes fluidized as the velocity of nitrogen stream into the reactor is gradually increased. The fluidization process is simulated using various numerical schemes as well as grid resolutions. Simulations involve Eulerian-Eulerian two-phase flow modeling approach and results are compared with experimental data. It is shown that higher order schemes equipped with flux limiter give favorable prediction of bubble and particle dynamics and hence, the mixing process within the reactor. The excessive numerical diffusion associated with lower order schemes results in unrealistic prediction of bubble shapes and bed height. Comparison is also made of computational efficiency of various schemes. It is shown that the Monotonized Central scheme with down wind factor results in the shortest simulation time because of its efficient parallelization on distributed memory platforms.
The characteristics of gas-solid flow and wall heat transfer in a fluidized bed reactor
NASA Astrophysics Data System (ADS)
Choi, Hang Seok; Meier, Dietrich
2012-09-01
Numerical study using computational fluid dynamics has been carried out to investigate the heat transfer characteristics of a laboratory fluidized bed reactor. The fluidized bed reactor of vTI (Johann Heinrich von Thünen-Institute)-Institute of Wood Technology and Wood Biology is modeled. For the simulation of multiphase flow and thermal fields, an Eulerian-Eulerian approach is applied. The flow and thermal characteristics of the reactor are fully investigated for the wide range of superficial gas velocities and two different particle diameters. In particular, the contributions of the gas bubble and emulsion phase flows on the wall heat transfer are scrutinized. From the predicted results, it is fully elucidated that particular near-wall bubble motions mainly govern the wall heat transfer.
Fine-grid simulations of gas-solids flow in a circulating fluidized bed
Benyahia, S.
2012-01-01
This research note demonstrates that more accurate predictions of a two-fluid model for the riser section of a circulating fluidized bed are obtained as the grid size is equally refined along all the directions of the gas-particle flow. However, two-fluid simulations of large-scale fluidized beds with such a fine mesh are currently computationally prohibitive. Alternatively,subgrid models can significantly reduce the simulation time of multiphase flow by using coarse mesh, whereas maintaining a high level of accuracy.
Open-Source MFIX-DEM Software for Gas-Solids Flows: Part II - Validation Studies
Li, Tingwen
2012-04-01
With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the National Energy Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas–solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.
GAS-SOLID TWO-PHASE FLOW IN A TRIPLE BIFURCATION LUNG AIRWAY MODEL
Laminar oscillatory flow as well as micron-particle transport and wall deposition in a triple bifurcation airway model have been simulated using a validated finite-volume code with user-enhanced programs. Three realistic breathing patterns, i.e., resting, light, acitvity and mod...
In Situ Control of Gas Flow by Modification of Gas-Solid Interactions
NASA Astrophysics Data System (ADS)
Seo, Dongjin; Ducker, William A.
2013-10-01
The boundary condition for gas flow at the solid-gas interface can be altered by in situ control of the state of a thin film adsorbed to the solid. A monolayer of ocatadecyltrichlorosilane (OTS) reversibly undergoes a meltinglike transition. When the temperature of an OTS-coated particle and plate is moved through the range of OTS “melting” temperatures, there is a change in the lubrication force between the particle and plate in 1 atm of nitrogen gas. This change is interpreted in terms of a change in the flow of gas mediated by the slip length and tangential momentum accommodation coefficient (TMAC). There is a minimum in slip length (290 nm) at 18°C, which corresponds to a maximum in TMAC (0.44). The slip length increases to 590 nm at 40°C which corresponds to a TMAC of 0.25. We attribute the decrease in TMAC with increasing temperature to a decrease in roughness of the monolayer on melting, which allows a higher fraction of specular gas reflections, thereby conserving tangential gas momentum. The importance of this work is that it demonstrates the ability to control gas flow simply by altering the interface for fixed geometry and gas properties.
Unsteady Euler/Lagrange simulation of a confined bluff-body gas-solid turbulent flow
NASA Astrophysics Data System (ADS)
Chrigui, Mouldi; Hidouri, Ammar; Sadiki, Amsini; Janicka, Johannes
2013-10-01
An unsteady Euler-Lagrangian approach is adopted to predict the gaseous carrier and disperse phases flow dynamics. The turbulence is captured using two different methods, i.e. the unsteady Reynolds averaging based numerical simulation (URANS) and the large eddy simulation (LES). In the latter one, the dynamic Smagorinsky approach is used to model the sub-grid scale stresses. The time-dependent solid particle and gas phase flow properties of a confined bluff-body turbulent flow including two-way coupling effects are evaluated through comparisons with experimental data. The configuration under study features an important recirculation zone and has a mass loading of 22%. So, collision effects are not considered while tracking the disperse phase that consists of glass beads. A thermodynamically consistent turbulence modulation approach is applied for the determination of the source terms that account for the effect of particles on the turbulence level of the carrier phase. Within the URANS technique the dispersion of particles is captured by the Markov sequence approach; this model is modified by integrating a drift factor term while modeling the pressure gradient. A particular emphasis is put on the disperse phase feedback on the carrier phase and coupling procedure within each Eulerian time step along with an unsteady coupling of both codes, the (Eulerian) FASTEST3D and the (Lagrangian) LAG3D codes. Quantitative results of the disperse phase properties as well as those of the carrier phase are presented at different positions around the recirculation zone. The numerical results using both, the LES and/or the URANS delivered comparable results that agree reasonably with experimental data. However, a slight advantage of LES over URANS could be observed.
Experimental Study on Gas-Solid Flow Charcteristics in a CFB Riser Of 54M in Height
NASA Astrophysics Data System (ADS)
Hu, N.; Yang, H. R.; Zhang, H.; Zhang, R. Q.; Cao, J. N.; Liu, Q.; Lu, J. F.; Yue, G. X.
Understanding the height effect on the gas-solid flow characteristics in a CFB riser is important as more and more large capacity CFB boilers are used and to be developed. In this study, a cold CFB test rig with a riser of 240mm in LD. and 38m and 54m in height was built. The influences of operating conditions, such as solid inventory and fluidizing gas velocity, on the axial voidage profile along the riser were assessed. When the gas velocity exceeds the transport velocity, the S-shaped profile of voidage in the riser was established. At the same time, the voidage in top-dilute section reached the saturation carrying capacity, and the solids circulation rate did not vary with the height of the riser nor the solids inventory. It was also found the critical solids inventory for the saturation carrying capacity increases as the riser height increases. When the height was changed from 38m to 54m, the critical solids inventory increased about 25% from about 40kg to about 50kg, and pressure drop in the furnace also increased about 25%.
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping
2015-11-01
The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.
The kinetics of mercury chlorination (with HC1) were studied using a flow reactor system with an on-line Hg analyzer and spciation sampling using a set of impingers. Kinetic parameters, such as reaction order (a), activation energy (Eu) and the overall rate constant (k') were es...
Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.
2007-04-01
The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser
Weiguo Pan; Zuohe Chi; Yongjing Liao
1997-07-01
This article reported pressure drop characteristics and methods for calculating friction factors {lambda} 0 and {lambda}{sub {mu}} for gas and gas-solids flows, respectively, in straight horizontal pipes are summarized advantages seed. The and disadvantages of calculating friction factor {lambda}{sub {mu}} through dimensional analysis in comparison with model simulation are analyzed. It is pointed out that model simulation is more suitable to engineering use than dimensional analysis. According to experimental results of dilute gas-coal powder flow in straight horizontal pipes of the coal pulverization system in a power plant; an empirical formula and a theoretical formula for calculating friction factor {lambda}{sub {mu}} in straight horizontal pipes transporting dilute coal powder are obtained.
Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa
2015-03-20
The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics.
Cheng, Cheng; Zhang, Xiaobing
2013-05-01
In conventional models for two-phase reactive flow of interior ballistic, the dynamic collision phenomenon of particles is neglected or empirically simplified. However, the particle collision between particles may play an important role in dilute two-phase flow because the distribution of particles is extremely nonuniform. The collision force may be one of the key factors to influence the particle movement. This paper presents the CFD-DEM approach for simulation of interior ballistic two-phase flow considering the dynamic collision process. The gas phase is treated as a Eulerian continuum and described by a computational fluid dynamic method (CFD). The solid phase is modeled by discrete element method (DEM) using a soft sphere approach for the particle collision dynamic. The model takes into account grain combustion, particle-particle collisions, particle-wall collisions, interphase drag and heat transfer between gas and solid phases. The continuous gas phase equations are discretized in finite volume form and solved by the AUSM+-up scheme with the higher order accurate reconstruction method. Translational and rotational motions of discrete particles are solved by explicit time integrations. The direct mapping contact detection algorithm is used. The multigrid method is applied in the void fraction calculation, the contact detection procedure, and CFD solving procedure. Several verification tests demonstrate the accuracy and reliability of this approach. The simulation of an experimental igniter device in open air shows good agreement between the model and experimental measurements. This paper has implications for improving the ability to capture the complex physics phenomena of two-phase flow during the interior ballistic cycle and to predict dynamic collision phenomena at the individual particle scale.
NASA Astrophysics Data System (ADS)
Kou, Mingyin; Wu, Shengli; Du, Kaiping; Shen, Wei; Ma, Xiaodong; Chen, Mao; Zhao, Baojun
2015-02-01
The COREX shaft furnace is of great importance to the whole C-3000 process. There are many problems with the operation of the COREX shaft furnace, especially with gas and burden distribution, that have as yet been little studied. The present work establishes a three-dimensional quarter model. After validation by operating data in Baosteel, the model is used to investigate the gas utilization rate and the metallization rate of the COREX shaft furnace. The parameters, including the reducing gas flow, the volume fraction of gas phase, and the multilayered burden, are systematically investigated. The results show that the reducing gas flow has a great influence on the gas utilization rate and the metallization rate, while the volume fraction of gas phase has a more significant effect on the metallization rate than on the gas utilization rate. In order to obtain a higher metallization rate, the reducing gas flow needs to be adjusted step by step and the volume fraction of gas phase needs to be increased. In addition, ore and coke need to be discharged separately in order to increase the solid metallization rate.
Inazu, Koji; Kobayashi, Takaaki; Hisamatsu, Yoshiharu
1996-12-31
Nitration of two polycyclic aromatic hydrocarbons (PAHs), fluoranthene (FL) and chrysene (CH), adsorbed on airborne particulate matter, standard environmental samples, and eight kinds of inorganic particulate matter were carried out under photo irradiation or non irradiation in the presence of nitrogen dioxide to assess the feasibility of atmospheric nitroarene formation from these arenes. Both a closed circulation and a flow system at atmospheric pressure were employed. In the case of FL, degradation rate and yield of total nitrated products were accelerated by photo irradiation on any support by a factor of more than five and more than eight, respectively. The presence of oxygen in the reaction atmosphere also promoted them by a factor of at least four and six, respectively. Under the air containing 10 ppm of nitrogen dioxide, degradation of both of the PAHs on all the support obeyed first-order reaction with respect to their concentration. The shortest half life was observed on ZnO and the longest one was observed on soda feldspar which is one of the standard rock minerals. It was ascertained that these differences in the reactivity of PAHs were due to the chemical composition of them according to the results of the reactions on various types of Al{sub 2}O{sub 3}. The yield and distribution of isomeric nitrated products also strongly depended on the chemical composition of support. On the other hand 2-nitroFL and 6-nitroCH were still the most abundant nitrated product under photo irradiation for most of support. The maximum yield of 2-nitroFL and 6-nitroCH were 6.4% on MgO and 27.8% on Al{sub 2}O{sub 3}, respectively. Since such a considerable formation of these two nitroarenes each of which is one of the most abundant nitroarenes detected in the airborne particles was observed, this heterogeneous nitration can be regarded as an important pathway in atmospheric nitroarene formation.
Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui
2014-09-30
A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a
NASA Astrophysics Data System (ADS)
Dastane, Rajiv
The dispersion of a gas tracer was used to indicate the effectiveness of the mixing process of an injected flow of solids into the dense bed region of NETL's cold flow CFB riser in three distinctly different fluidization regimes. NETL's cold flow test facility mimics commercial scale transport reactors with side entry of solids into the vertical riser. Pure CO2 was used as the tracer gas and was introduced continuously into the injected flow of solids and it was assumed to essentially remain in the injected flow stream. The tracer gas would be released from the injected flow stream as the as the flow stream begins to disintegrate. As the stream loses its identity the remaining tracer gas would be released. The tracer gas distribution was measured using inline IR CO2 detectors across the cross-sectional area of the riser at four different elevations, two near the injection point and two further downstream. Due to the high solids hold up and high reactant concentrations, a significant portion of the reaction can take place in the dense bed region. The effectiveness of a Transport Reactor depends on its ability to adequately mix the incoming flows of reactants: fuel, sorbent and air. These reactants have to be dispersed across the reactor's cross-sectional area by the different mixing mechanisms. A good description of the flow behavior is also essential in developing and validating predictor reactor models as well as in developing crucial gas and solids mixing relationships that will can be incorporated and validated for CFD codes (MFIX). In addition there are several operational variables (independent variables) that influence this mixing behavior. Multivariable analysis of variance (MANOVA) model were developed for the NETL cold flow CFB riser based on the dispersion data. The mixing process as a function of the operating parameters is empirically proposed outlining the independent variables (operating and system parameters) which significantly influenced the
Heterogeneity and Flow in the Deep Earth
NASA Astrophysics Data System (ADS)
Cottaar, Sanne
Over the past half century, study of deep regions in the Earth has revealed them to be complex and dynamic. Much of our knowledge comes from seismological data, and ultimately these observations need to be linked to results from geodynamics and mineral physics in order to make inferences about compositional heterogeneities and flow. One example of a strongly-heterogeneous region is the lower thermal boundary layer of the mantle, i.e. the layer of several hundred kilometers thickness above the core-mantle boundary, commonly referred to as D″. This region appears to be characterized by two large provinces of distinctive slow shear velocities, 4000-5000 km across, one beneath the Pacific and one beneath Africa. Surrounding these regions, seismic velocities are faster, and often interpreted as corresponding to a graveyard of slabs. A recently discovered phase transition from perovskite to postperovskite may also occur in this depth range and has been associated with an intermittently observed seismic discontinuity at the top of D″. This study adds to the seismological evidence for complexities both in isotropic seismic velocities as well as in anisotropic velocities and how those can be linked to flow of material. We map a distinctive small "pile" of slow shear velocity beneath Russia through direct waveform evidence. This "pile" is less than 1000 km across, and thus much smaller than the Pacific and African provinces. Its height is several hundreds of kilometers and its velocity reduction suggests it is composed of the same material as the large provinces of slow shear velocity. Beneath Hawaii, at the northern edge of the Pacific province, we find an extended thin zone of ultra-low velocities. This is the first time the three-dimensional extent of such a zone is constrained with some accuracy. The constraints on its morphology come from the presence of strong postcursors to shear waves diffracted along the core-mantle boundary, delayed by 30 to 50 seconds with
Real-Time Monitoring of Heterogeneous Catalysis with Mass Spectrometry
ERIC Educational Resources Information Center
Young, Mark A.
2009-01-01
Heterogeneous, gas-solid processes constitute an important class of catalytic reactions that play a key role in a variety of applications, such as industrial processing and environmental controls. Heterogeneous catalytic chemistry can be demonstrated in a simple heated flow reactor containing a fragment of the catalytic converter from a vehicular…
Experimental gas-solid vertical transport
NASA Astrophysics Data System (ADS)
Luo, Kuo Ming
1987-05-01
Gas-solid transport in dilute and dense phase conveying is studied. A new experimental system for vertical pneumatic conveying incorporates a screw feeder for dilute transport and an L-valve for dense flow. For measuring solid volume fractions a novel method using an x-ray densitometer was developed. The pressure in the system was measured using a strip chart recorder (SCR) and a manometer. The solids flux was estimated by collecting the particles from the system for a known time. The porosity and pressure drop data in the fully developed region were translated into drag coefficients and friction factors. The drag coefficients are in reasonable agreement with literature values. The friction factors with the wall were sometimes negative, reflecting downward flow, as observed in two-dimensional studies. Four available hydrodynamic models for vertical pneumatic conveying were used to predict the porosity and the pressure for the experimental conditions. Experimental data for porosity and pressure agree well with theoretical predictions. However, the predictions from the relative velocity model were in the best agreement for pressure drop values.
Electrostatic interactions in gas-solid chromatography.
NASA Technical Reports Server (NTRS)
Benson, S. W.; King, J., Jr.
1966-01-01
Electrostatic theory of physical adsorption applied to gas-solid chromatography, discussing chromatographic inseparability of argon and oxygen at room temperature, prediction of elution order of many gases, etc
Heterogeneous scalable framework for multiphase flows.
Morris, Karla Vanessa
2013-09-01
Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computer platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.
Temporal Heterogeneity in Apoptosis Determined by Imaging Flow Cytometry.
Vorobjev, Ivan A; Barteneva, Natasha S
2016-01-01
Apoptotic process is highly heterogeneous, and a long-standing question is how many parameters define time and reversibility of the apoptotic response at a population and single-cell levels. Cell death analysis applications have greatly expanded since the introduction of flow cytometry. Classical approach for evaluation of apoptosis is en masse analysis of cells treated with different stimuli, but these methods cannot demonstrate heterogeneity in the population. Single-cell heterogeneity is now usually assessed by multicolor fluorescence microscopy; however obtaining reasonable statistics is time consuming and laborious. Therefore we combined flow cytometry, imaging flow cytometry, and fluorescent microscopy to characterize at a single-cell and population level sequence of apoptotic events induced by a variety of treatments (Vorobjev, Barteneva, J Histochem Cytochem 63:494-510, 2015). We show that simultaneous use of membrane potential dye TMRE, caspases 3/7 sensor, Annexin V and nuclear staining along with morphological parameters demonstrate heterogeneity of the whole process and is a valuable method for quantitative study of the apoptosis execution. Imaging flow cytometry allowed us to analyze correlation between TMRE, caspases 3/7, and Annexin V staining and morphological characteristics providing valuable information on the process of apoptotic execution. Importantly, comparisons of different data sets obtained by three methods allowed us to achieve temporal resolution of the whole process superior to that had been obtained by only one method. PMID:27460249
Temporal Heterogeneity in Apoptosis Determined by Imaging Flow Cytometry.
Vorobjev, Ivan A; Barteneva, Natasha S
2016-01-01
Apoptotic process is highly heterogeneous, and a long-standing question is how many parameters define time and reversibility of the apoptotic response at a population and single-cell levels. Cell death analysis applications have greatly expanded since the introduction of flow cytometry. Classical approach for evaluation of apoptosis is en masse analysis of cells treated with different stimuli, but these methods cannot demonstrate heterogeneity in the population. Single-cell heterogeneity is now usually assessed by multicolor fluorescence microscopy; however obtaining reasonable statistics is time consuming and laborious. Therefore we combined flow cytometry, imaging flow cytometry, and fluorescent microscopy to characterize at a single-cell and population level sequence of apoptotic events induced by a variety of treatments (Vorobjev, Barteneva, J Histochem Cytochem 63:494-510, 2015). We show that simultaneous use of membrane potential dye TMRE, caspases 3/7 sensor, Annexin V and nuclear staining along with morphological parameters demonstrate heterogeneity of the whole process and is a valuable method for quantitative study of the apoptosis execution. Imaging flow cytometry allowed us to analyze correlation between TMRE, caspases 3/7, and Annexin V staining and morphological characteristics providing valuable information on the process of apoptotic execution. Importantly, comparisons of different data sets obtained by three methods allowed us to achieve temporal resolution of the whole process superior to that had been obtained by only one method.
Exciton induced photodesorption in rare gas solids
NASA Astrophysics Data System (ADS)
Hirayama, Takato; Arakawa, Ichiro
2006-08-01
This paper reviews our progress on the desorption induced by electronic transitions (DIET) in rare gas solids by selective excitation of valence excitons. Observation of metastable atoms desorbed by excitonic excitation gives us direct information on the exciton-induced desorption processes in rare gas solids. The validity of three desorption mechanisms, cavity ejection, excimer dissociation, and internal sputtering, is demonstrated by systematic measurements of kinetic energies and angular distributions of desorbed particles. The absolute yield of total and partial desorption was measured, which can lead us to the quantitative understanding of exciton-induced desorption processes.
Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear.
Martoïa, F; Perge, C; Dumont, P J J; Orgéas, L; Fardin, M A; Manneville, S; Belgacem, M N
2015-06-28
The rheology of NFC suspensions that exhibited different microstructures and colloidal stability, namely TEMPO and enzymatic NFC suspensions, was investigated at the macro and mesoscales using a transparent Couette rheometer combined with optical observations and ultrasonic speckle velocimetry (USV). Both NFC suspensions showed a complex rheology, which was typical of yield stress, non-linear and thixotropic fluids. Hysteresis loops and erratic evolutions of the macroscale shear stress were also observed, thereby suggesting important mesostructural changes and/or inhomogeneous flow conditions. The in situ optical observations revealed drastic mesostructural changes for the enzymatic NFC suspensions, whereas the TEMPO NFC suspensions did not exhibit mesoscale heterogeneities. However, for both suspensions, USV measurements showed that the flow was heterogeneous and exhibited complex situations with the coexistence of multiple flow bands, wall slippage and possibly multidimensional effects. Using USV measurements, we also showed that the fluidization of these suspensions could presumably be attributed to a progressive and spatially heterogeneous transition from a solid-like to a liquid-like behavior. As the shear rate was increased, the multiple coexisting shear bands progressively enlarged and nearly completely spanned over the rheometer gap, whereas the plug-like flow bands were eroded.
Effects of incomplete mixing on chemical reactions under flow heterogeneities.
NASA Astrophysics Data System (ADS)
Perez, Lazaro; Hidalgo, Juan J.; Dentz, Marco
2016-04-01
Evaluation of the mixing process in aquifers is of primary importance when assessing attenuation of pollutants. In aquifers different hydraulic and chemical properties can increase mixing and spreading of the transported species. Mixing processes control biogeochemical transformations such as precipitation/dissolution reactions or degradation reactions that are fast compared to mass transfer processes. Reactions are local phenomena that fluctuate at the pore scale, but predictions are often made at much larger scales. However, aquifer heterogeities are found at all scales and generates flow heterogeneities which creates complex concentration distributions that enhances mixing. In order to assess the impact of spatial flow heterogeneities at pore scale we study concentration profiles, gradients and reaction rates using a random walk particle tracking (RWPT) method and kernel density estimators to reconstruct concentrations and gradients in two setups. First, we focus on a irreversible bimolecular reaction A+B → C under homogeneous flow to distinguish phenomena of incomplete mixing of reactants from finite-size sampling effects. Second, we analise a fast reversible bimolecular chemical reaction A+B rightleftharpoons C in a laminar Poiseuille flow reactor to determine the difference between local and global reaction rates caused by the incomplete mixing under flow heterogeneities. Simulation results for the first setup differ from the analytical solution of the continuum scale advection-dispersion-reaction equation studied by Gramling et al. (2002), which results in an overstimation quantity of reaction product (C). In the second setup, results show that actual reaction rates are bigger than the obtained from artificially mixing the system by averaging the concentration vertically. - LITERATURE Gramling, C. M.,Harvey, C. F., Meigs, and L. C., (2002). Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci
Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo
2016-04-01
Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across
Scaling of flow and transport behavior in heterogeneous groundwater systems
NASA Astrophysics Data System (ADS)
Scheibe, Timothy; Yabusaki, Steven
1998-11-01
Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on
Numerical simulation on the reduction of flow heterogeneity in the biofilter media
NASA Astrophysics Data System (ADS)
Yan, Weiwei; Liu, Xingli; Wu, Jie; Wei, Yikun; Xu, Peng
2016-02-01
The biofilters are the ideal solutions for the biological treatment of air pollutants. However, there exists strong flow heterogeneity in porous media that degrades the removal efficiency of biofilters. Thus, the effects of Darcy number, Reynolds number and porosity of porous media on the reduction of flow heterogeneity in three biofilter models were numerically studied by the lattice Boltzmann method. The simulation results lead to three conclusions: (1) The Darcy number has dominant influence on the flow heterogeneity in the biofilters. The reduction of flow heterogeneity can be realized by designing a comparatively low Darcy number. (2) The Reynolds number has obvious effect on the flow heterogeneity in the biofilters. However, the reduction of flow heterogeneity cannot be effectively established by regulating the Reynolds number. (3) The property of porous media greatly influences the flow heterogeneity in the biofilters. The present results are helpful for the optimized design of practical biofilter models.
Flow heterogeneity following global no-flow ischemia in isolated rabbit heart
Marshall, Robert C.; Powers-Risius, Patricia; Reutter, Bryan W.; Schustz, Amy M.; Kuo, Chaincy; Huesman, Michelle K.; Huesman, Ronald H.
2003-02-01
The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion following 60 min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five non-ischemic controls. Although variable in the post-ischemic hearts, flow heterogeneity was increased relative to pre-ischemia for the whole LV (0.92 plus or minus 0.41 vs. 0.37 plus or minus 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium (Epi) considered separately (endo: 1.28 plus or minus 0.74 vs. 0.30 plus or minus 0.09; epi: 0.69 plus or minus 0.22 vs. 0.38 plus or minus 0.08; P < 0.05 for both comparisons) during early reperfusion. There were also segments with abnormally reduced reflow. The number of segments with abnormally reduced reflow increased as flow heterogeneity increased. Abnormally reduced reflow indicates that regional ischemia can persist despite restoration of normal global flow. In addition, the relationship between regional and global flow is altered and venous outflow is derived from regions with continued perfusion and not the whole LV. These observations emphasize the need to quantify regional reflow during reperfusion following sustained no-flow ischemia in the isolated rabbit heart.
Small scale flow processes in aqueous heterogeneous porous media
Rashidi, M.; Dickenson, E.
1996-04-01
Small scale flow processes in aqueous heterogeneous porous systems have been studied experimentally via novel nonintrusive fluorescence imaging techniques. The techniques involve 3D visualization and quantification of flow fields within a refractive index-matched transparent porous column. The refractive index-matching yields a transparent porous medium, free from any scattering and refraction at the solid-liquid interfaces, as a result allowing direct optical probing at any point within the porous system. By illuminating the porous regions within the column with a planar sheet of laser beam, flow processes through the porous medium can be observed microscopically, and qualitative and quantitative in-pore transport information can be obtained at a good resolution and a good accuracy. A CCD camera is used to record the fluorescent images at every vertical plane location while sweeping back and forth across the column. These digitized flow images are then analyzed and accumulated over a 3D volume within the column. Series of flow experiments in aqueous, refractive index-matched, porous systems packed with natural mineral particles have been performed successfully in these laboratories.
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
Modeling flow in a pressure-sensitive, heterogeneous medium
Vasco, Donald W.; Minkoff, Susan E.
2009-06-01
Using an asymptotic methodology, including an expansion in inverse powers of {radical}{omega}, where {omega} is the frequency, we derive a solution for flow in a medium with pressure dependent properties. The solution is valid for a heterogeneous medium with smoothly varying properties. That is, the scale length of the heterogeneity must be significantly larger then the scale length over which the pressure increases from it initial value to its peak value. The resulting asymptotic expression is similar in form to the solution for pressure in a medium in which the flow properties are not functions of pressure. Both the expression for pseudo-phase, which is related to the 'travel time' of the transient pressure disturbance, and the expression for pressure amplitude contain modifications due to the pressure dependence of the medium. We apply the method to synthetic and observed pressure variations in a deforming medium. In the synthetic test we model one-dimensional propagation in a pressure-dependent medium. Comparisons with both an analytic self-similar solution and the results of a numerical simulation indicate general agreement. Furthermore, we are able to match pressure variations observed during a pulse test at the Coaraze Laboratory site in France.
Ambient Flow and Heterogeneity in Multi-Aquifer Wells
NASA Astrophysics Data System (ADS)
Hart, D. J.; Gotkowitz, M. B.; Luczaj, J. A.
2009-12-01
Multi-aquifers wells, those wells that are open to more than one aquifer, have the potential to allow large quantities of flow between aquifers. Observed rates and direction of intra-borehole flow are often complex, reflecting the heterogeneity of the aquifers and variation of farfield heads. Spinner flow logs collected from several multi-aquifer wells in southern and eastern Wisconsin indicate the importance of flows through these wells in groundwater flow systems. The Paleozoic geology of Wisconsin, composed of more-or-less flat-lying sandstones, dolomites, and shales, gives rise to layered aquifer-aquitard systems where multi-aquifer wells are relatively common. A comparison of the flows in three multi-aquifer wells that cross the Wisconsin’s Paleozoic units showed heterogeniety in aquifers commonly thought to be homogeneous. Variation of the intra-borehole flow in a well gives an indication of heterogeneity and farfield heads in the aquifers. In the first example, the system was relatively simple, consisting of an aquitard (Eau Claire shale) between an upper aquifer (Wonewoc sandstone) and a lower aquifer (Mt Simon sandstone). Heads in the upper aquifer are higher than those in the lower aquifer. In this well, flows gradually increased with depth in the upper aquifer, remained constant in the aquitard, and then gradually decreased with depth in the lower aquifer. The gradual changes indicate relatively homogenous upper and lower aquifers. In the second example, the system also consisted of an aquitard (Tunnel City Group) between an upper aquifer (Sinnipee dolomite and the St. Peter sandstone) and a lower aquifer (Elk Mound Ground). As in the first example, heads in the upper aquifer are greater than those in the lower sandstone aquifer. In contrast to the first example, there were abrupt changes in intra-borehole flow in the upper aquifer, sometimes of more than 180 liters/minute over an interval of less than a meter. Caliper and television logging showed
Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs
Bassingthwaighte, James B.; Raymond, Gary M.; Butterworth, Erik; Alessio, Adam; Caldwell, James H.
2010-01-01
Large-scale models accounting for the processes supporting metabolism and function in an organ or tissue with a marked heterogeneity of flows and metabolic rates are computationally complex and tedious to compute. Their use in the analysis of data from positron emission tomography (PET) and magnetic resonance imaging (MRI) requires model reduction since the data are composed of concentration–time curves from hundreds of regions of interest (ROI) within the organ. Within each ROI, one must account for blood flow, intracapillary gradients in concentrations, transmembrane transport, and intracellular reactions. Using modular design, we configured a whole organ model, GENTEX, to allow adaptive usage for multiple reacting molecular species while omitting computation of unused components. The temporal and spatial resolution and the number of species are adaptable and the numerical accuracy and computational speed is adjustable during optimization runs, which increases accuracy and spatial resolution as convergence approaches. An application to the interpretation of PET image sequences after intravenous injection of 13NH3 provides functional image maps of regional myocardial blood flows. PMID:20201893
Heterogeneity of salivary gland tumors studied by flow cytometry.
Tytor, M; Gemryd, P; Wingren, S; Grenko, R T; Lundgren, J; Lundquist, P G; Nordenskjöld, B
1993-01-01
Intratumor DNA heterogeneity was investigated by flow cytometric analysis of multiple samples taken from different sites of 8 benign and 16 malignant primarily resected salivary gland tumors. All benign tumors had diploid DNA content. The overall incidence of DNA diploidy in 16 malignant cases examined was 50%. Intratumor differences in DNA ploidy were observed in four malignant tumors (25%); 2 of these 4 heterogeneous tumors contained both aneuploid and diploid cell clones. The remaining 12 tumors showed a homogeneous DNA content in the different specimens; 8 were diploid, 3 aneuploid, and 1 was polypoid. The DNA nondiploid tumors were clinically more advanced than the DNA diploid ones (p < 0.01). The tumor proliferation rate (fraction of cells in S-phase) was higher in DNA nondiploid samples than in diploid ones (p < 0.01). The DNA nondiploid tumors seemed to recur more often than DNA diploid ones did. The data emphasize the usefulness of DNA measurements for the characterization of malignant salivary gland tumors but also the importance of adequate sampling in assessing their DNA ploidy.
A discrete model for compressible flows in heterogeneous media
Le Metayer, O.; Massol, A.; Hank, S.
2011-04-01
This work deals with the building of a discrete model able to describe and to predict the evolution of complex gas flows in heterogeneous media. In many physical applications, large scales numerical simulation is no longer possible because of a lack of computing resources. Indeed the medium topology may be complex due to the presence of many obstacles (walls, pipes, equipments, geometric singularities etc.). Aircraft powerplant compartments are examples where topology is complex due to the presence of pipes, ducts, coolers and other equipment. Other important examples are gas explosions and large scale dispersion of hazardous materials in urban places, cities or underground involving obstacles such as buildings and various infrastructures. In all cases efficient safety responses are required. Then a new discrete model is built and solved in reasonable execution times for large cells volumes including such obstacles. Quantitative comparisons between experimental and numerical results are shown for different significant test cases, showing excellent agreement.
On fluid flow in a heterogeneous medium under nonisothermal conditions
D.W., Vasco
2010-11-01
An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances.
Uncertainty quantification for flow in highly heterogeneous porous media
Tartakovsky, D. M.; Xiu, D.
2004-01-01
Natural porous media are highly heterogeneous and characterized by parameters that are often uncertain due to the lack of sufficient data. This uncertainty (randomness) occurs on a multiplicity of scales. We focus on geologic formations with the two dominant scales of uncertainty: a large-scale uncertainty in the spatial arrangement of geologic facies and a small-scale uncertainty in the parameters within each facies. We propose an approach that combines random domain decompositions (RDD) and polynomial chaos expansions (PCE) to account for the large- and small-scales of uncertainty, respectively. We present a general framework and use a one-dimensional flow example to demonstrate that our combined approach provides robust, non-perturbative approximations for the statistics of the system states.
Transmissivity and head covariances for flow in highly heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Dagan, G.; Fiori, A.; Janković, I.
2004-07-01
Spatially variable transmissivity T of aquifers is modeled as random. Analysis of field data [Water Resour. Res. 21 (1985) 563] indicate that the logtransmissivity Y= ln T is normal and its covariance can be characterized by three parameters: the variance σYc2 and the integral scale IY of correlated residuals and a nugget σYn2, representing variability of small support. The equation of flow is stochastic and the head H is also random. The head-logtransmissivity cross-covariance CHY and the head variogram ΓH can be used conveniently to solve the direct and inverse problems. These covariances are derived for an unbounded domain and for mean uniform flow of constant head gradient - J. Under these conditions, analytical expressions were determined in the past by first-order approximation in σYc2, pertinent to weak heterogeneity. The aim of the present study is to derive CHY and ΓH for highly heterogeneous aquifers of total variance σY2≤4. This goal is achieved by adopting a multi-indicator model of the aquifer consisting of circular inclusions of radius R and of normal logtransmissivity of variance σY2, submerged in a matrix of effective transmissivity TG (geometric mean). The system is characterized by σY2, the integral scale IY=8 R/(3π) and the volume fraction of inclusions n, which are simply related to the aquifer parameters σYc2, σYn2 and IY. The flow problem is solved numerically at high accuracy by the analytic element method. The medium is modeled by 50,000 inclusions and parameters values are σY2=0.1, 1, 2, 4 and n=0.4, 0.65, 0.9. Analytical solutions are derived by the effective medium approximation (EMA), in which each inclusion is regarded as submerged in a medium of effective transmissivity, and by first-order approximation (FAO in σY2). Comparison between the numerical and analytical solutions shows that CYH is overestimated by FOA and is in agreement with the EMA. The head variogram is in agreement with EMA for n≤0.65, but underestimated
Rybolt, Thomas R; Janeksela, Vanessa E; Hooper, Dana N; Thomas, Howard E; Carrington, Nathan A; Williamson, Eric J
2004-04-01
Gas-solid chromatography was used to obtain values of the second gas-solid virial coefficient, B2s, in the temperature range from 343 to 493 K for seven adsorbate gases: methane, ethane, propane, chloromethane, chlorodifluoromethane, dimethyl ether, and sulfur hexafluoride. Carboxen-1000, a 1200 m2/g carbon molecular sieve (Supelco Inc.), was used as the adsorbent. These data were combined with earlier work to make a combined data set of 36 different adsorbate gases variously interacting with from one to four different carbon surfaces. All B2s values were extrapolated to 403 K to create a set of 65 different gas-solid B2s values at a fixed temperature. The B2s value for a given gas-solid system can be converted to a chromatographic retention time at any desired flow rate and can be converted to the amount of gas adsorbed at any pressure in the low-coverage, Henry's law region. Beginning with a theoretical equation for the second gas-solid virial coefficient, various quantitative structure retention relations (QSRR) were developed and used to correlate the B2s values for different gas adsorbates with different carbon surfaces. Two calculated adsorbate molecular parameters (molar refractivity and connectivity index), when combined with two adsorbent parameters (surface area and a surface energy contribution to the gas-solid interaction), provided an effective correlation (r2 = 0.952) of the 65 different B2s values. The two surface parameters provided a simple yet useful representation of the structure and energy of the carbon surfaces and thus our correlations considered variation in both the adsorbate gas and the adsorbent solid.
A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions
Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.
2012-01-01
Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713
Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations
Li, Tingwen; Benyahia, Sofiane
2013-10-01
Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.
ADAPTIVE-GRID SIMULATION OF GROUNDWATER FLOW IN HETEROGENEOUS AQUIFERS. (R825689C068)
The prediction of contaminant transport in porous media requires the computation of the flow velocity. This work presents a methodology for high-accuracy computation of flow in a heterogeneous isotropic formation, employing a dual-flow formulation and adaptive...
Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review
NASA Astrophysics Data System (ADS)
Sun, Jingyuan; Yan, Yong
2016-11-01
Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas-solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed.
Spatial heterogeneity of local blood flow and metabolite content in dog hearts
Franzen, D.; Conway, R.S.; Zhang, H.; Sonnenblick, E.H.; Eng, C. )
1988-02-01
Spatial variation (heterogeneity) of myocardial blood flow was studied under basal conditions in relation to four biochemical markers: creatine kinase (CK), lactate dehydrogenase (LDH), ATP, and glycogen. A total of 508 individual 0.5-g samples from the left ventricular free wall was studied in 12 dogs. Myocardial blood flow was measured by radioactive microspheres injected via a pigtail catheter into the left ventricle during light sedation; following thoracotomy, a second set of microspheres was injected via a catheter into the left atrium. In 27-54 samples/heart, myocardial blood flow, CK, LDH, protein, ATP, and glycogen were determined, permitting a direct correspondence between local blood flow and metabolic markers in each sample and an assessment of the spatial heterogeneity of flow and metabolite content. The coefficient of variation, which defines the extent of spatial heterogeneity, averaged 20% for closed-chest flow measurement, 19% for open-chest flow measurement, 22% for CK, 17% for LDH, 15% for protein, 8% for ATP, and 18% for glycogen. The correlation between local blood flow and the studied metabolities can only explain a minor portion of the spatial heterogeneity of myocardial blood flow. Although a physiological link between blood flow and metabolite content for small regions of the heart is demonstrated, the true local variability of blood flow may be modulated predominantly by other factors.
Nelson, R.W.
1990-11-01
Groundwater theory that applies to only homogeneous systems is often too restricted to adequately solve actual groundwater pollution problems. For adequate solutions, the more general theory for heterogeneous porous systems is needed. However, the present dynamic and kinematic descriptions in heterogeneous materials have evolved largely from the restricted and less general homogeneous theory. These descriptions are inadequate because they fail to account for all the energy dissipation in the system. The basic distinguishing dynamic feature of heterogeneous flow theory from the less general homogeneous-based theory is the macroscopic rotational flow component. Specifically, existence of rotational flow components and their independence from the translational flow components are the necessary and sufficient conditions that completely differentiate between the complex lamellar heterogeneous flow theory and the simpler lamellar flow of homogeneous theory. This paper proposes a more general dynamic form of the flow equation to include the added rotational dissipation that is missing from the present Darcian description of flow in heterogeneous media. 31 refs.
Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine
NASA Astrophysics Data System (ADS)
Wang, Kang; Zhang, Renduo
2011-01-01
SummaryThe objectives of this study were to examine applicability of the iodine-starch method to visualize heterogenous soil water flow and to investigate relationships between soil water heterogeneity and macropore structure vs. measurement scale as well as hydraulic boundaries. The food-grade dye pigment Brilliant Blue FCF dye and iodine-starch staining patterns were used to visualize soil macropore and soil water flow patterns, respectively. Totally 10 infiltration experiments were performed in the field, among which three were used to examine the iodine-starch method and seven were for various boundary conditions (i.e., the different initial ponding depths on the soil surface) and measurement scales (i.e., the soil surface areas covered initially by the tracer solutions). The cluster analysis method was used to distinguish preferential flow regions, while information measures were applied to quantify heterogeneity information content and complexity of macropores and flow systems. Results showed that the iodine-starch method was applicable to visualize soil water flow. Heterogeneous soil water flow contained more heterogeneity information than soil macropores. With a low infiltration amount, flow patterns were similar to the macropore patterns and controlled mainly by the macropores. As the infiltration amount increased, flow patterns were influenced by both macropores and boundary conditions. As the measurement scales increased, the preferential regions were more developed.
Homogeneous-Heterogeneous Reactions in Peristaltic Flow with Convective Conditions
Hayat, Tasawar; Tanveer, Anum; Yasmin, Humaira; Alsaedi, Ahmed
2014-01-01
This article addresses the effects of homogeneous-heterogeneous reactions in peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical modelling and analysis have been carried out in the presence of Hall current. The channel walls satisfy the more realistic convective conditions. The governing partial differential equations along with long wavelength and low Reynolds number considerations are solved. The results of temperature and heat transfer coefficient are analyzed for various parameters of interest. PMID:25460608
The stationary flow in a heterogeneous compliant vessel network
NASA Astrophysics Data System (ADS)
Filoche, Marcel; Florens, Magali
2011-09-01
We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.
On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.
2016-10-01
A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.
On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.
2016-05-01
A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Nella Mollema, Pauline
2016-04-01
Surface outcrops provide natural analogs for aquifers and they offer an opportunity to study the geometry of geologic heterogeneities in three dimensions over a range of scales. We show photographs, maps, quantitative field data of rock fractures and sedimentary features in outcrops exposed in a unique collection of many different settings. These include small-scale sedimentary structures, carbonate nodules, faults, and other fractures as documented in outcrops of porous sandstone (Utah, USA and Italy), tight sandstones (Bolivia), dolomite (Northern Italy), and carbonates (Central Italy). We simulate the geometries observed in outcrops with simple conceptual and numerical models of flow to show how important it is to recognize the appropriate attributes for the description and the process responsible for the formation of geologic heterogeneities. For example, knowing the type of structural heterogeneities (fault, joint, compaction band, stylolite, and vein) and their development mechanics helps to predict the distribution and preferential orientation of these features within an aquifer. This knowledge is particularly important for modeling of fluid flow where geophysical or borehole data are lacking. Geologic heterogeneities of sedimentary, structural or diagenetic (chemical) nature influence the fluid flow properties in many aquifers and reservoirs at scales varying over several orders of magnitude and with a spatial variability ranging from mm to tens of meters. Heterogeneities may enhance or degrade porosity and permeability, they impart anisotropy to permeability and dispersion and affect mass transport-related processes in groundwater. Furthermore, aquifer heterogeneities control aquifer continuity and compartmentalization. In fractured aquifers, geologic and diagenetic heterogeneities may affect connectivity, aperture of the flow channels or the distribution of permeability buffers, barriers and seals. Also variations in layer thickness and lithology within a
Reducing Spatial Heterogeneity of MALDI Samples with Marangoni Flows During Sample Preparation
NASA Astrophysics Data System (ADS)
Lai, Yin-Hung; Cai, Yi-Hong; Lee, Hsun; Ou, Yu-Meng; Hsiao, Chih-Hao; Tsao, Chien-Wei; Chang, Huan-Tsung; Wang, Yi-Sheng
2016-08-01
This work demonstrates a method to prepare homogeneous distributions of analytes to improve data reproducibility in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Natural-air drying processes normally result in unwanted heterogeneous spatial distributions of analytes in MALDI crystals and make quantitative analysis difficult. This study demonstrates that inducing Marangoni flows within drying droplets can significantly reduce the heterogeneity problem. The Marangoni flows are accelerated by changing substrate temperatures to create temperature gradients across droplets. Such hydrodynamic flows are analyzed semi-empirically. Using imaging mass spectrometry, changes of heterogeneity of molecules with the change of substrate temperature during drying processes are demonstrated. The observed heterogeneities of the biomolecules reduce as predicted Marangoni velocities increase. In comparison to conventional methods, drying droplets on a 5 °C substrate while keeping the surroundings at ambient conditions typically reduces the heterogeneity of biomolecular ions by 65%-80%. The observation suggests that decreasing substrate temperature during droplet drying processes is a simple and effective means to reduce analyte heterogeneity for quantitative applications.
Reducing Spatial Heterogeneity of MALDI Samples with Marangoni Flows During Sample Preparation.
Lai, Yin-Hung; Cai, Yi-Hong; Lee, Hsun; Ou, Yu-Meng; Hsiao, Chih-Hao; Tsao, Chien-Wei; Chang, Huan-Tsung; Wang, Yi-Sheng
2016-08-01
This work demonstrates a method to prepare homogeneous distributions of analytes to improve data reproducibility in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Natural-air drying processes normally result in unwanted heterogeneous spatial distributions of analytes in MALDI crystals and make quantitative analysis difficult. This study demonstrates that inducing Marangoni flows within drying droplets can significantly reduce the heterogeneity problem. The Marangoni flows are accelerated by changing substrate temperatures to create temperature gradients across droplets. Such hydrodynamic flows are analyzed semi-empirically. Using imaging mass spectrometry, changes of heterogeneity of molecules with the change of substrate temperature during drying processes are demonstrated. The observed heterogeneities of the biomolecules reduce as predicted Marangoni velocities increase. In comparison to conventional methods, drying droplets on a 5 °C substrate while keeping the surroundings at ambient conditions typically reduces the heterogeneity of biomolecular ions by 65%-80%. The observation suggests that decreasing substrate temperature during droplet drying processes is a simple and effective means to reduce analyte heterogeneity for quantitative applications. Graphical Abstract ᅟ. PMID:27126469
Study of gas-liquid flow in model porous media for heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Francois, Marie; Bodiguel, Hugues; Guillot, Pierre; Laboratory of the Future Team
2015-11-01
Heterogeneous catalysis of chemical reactions involving a gas and a liquid phase is usually achieved in fixed bed reactors. Four hydrodynamic regimes have been observed. They depend on the total flow rate and the ratio between liquid and gas flow rate. Flow properties in these regimes influence transfer rates. Rather few attempts to access local characterization have been proposed yet, though these seem to be necessary to better describe the physical mechanisms involved. In this work, we propose to mimic slices of reactor by using two-dimensional porous media. We have developed a two-dimensional system that is transparent to allow the direct observation of the flow and the phase distribution. While varying the total flow rate and the gas/liquid flow rate ratio, we observe two hydrodynamic regimes: at low flow rate, the gaseous phase is continuous (trickle flow), while it is discontinuous at higher flow rate (pulsed flow). Thanks to some image analysis techniques, we are able to quantify the local apparent liquid saturation in the system. Its fluctuations in time are characteristic of the transition between the two regimes: at low liquid flow rates, they are negligible since the liquid/gas interface is fixed, whereas at higher flow rates we observe an alternation between liquid and gas. This transition between trickle to pulsed flow is in relative good agreement with the existing state of art. However, we report in the pulsed regime important flow heterogeneities at the scale of a few pores. These heterogeneities are likely to have a strong influence on mass transfers. We acknowledge the support of Solvay.
Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū
2015-04-01
Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.
NASA Astrophysics Data System (ADS)
Louwyck, Andy; Vandenbohede, Alexander; Bakker, Mark; Lebbe, Luc
2014-08-01
A procedure is outlined to simulate axisymmetric groundwater flow in radially heterogeneous and layered aquifer systems using the unmodified version of MODFLOW. The procedure is straightforward, as it only requires correction of some of the input parameters. In contrast to other MODFLOW procedures to simulate axisymmetric flow, no restrictions are imposed on the type of flow, the discretization of radial distance, or the parameter values. Hence, the method can deal with both confined and unconfined flow, wellbore storage, and axisymmetric aquifer inhomogeneities including effects of finite-thickness skin and gravel pack. Several test cases are presented, which compare the calculated results with existing analytical solutions, the analytic element solver TTim, and the axisymmetric, finite-difference model MAxSym. It is concluded that the MODFLOW procedure is capable of simulating accurately axisymmetric flow in radially heterogeneous multi-aquifer systems.
Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domains
NASA Astrophysics Data System (ADS)
Das, D. B.; Hanspal, N. S.; Nassehi, V.
2005-09-01
The existence of a free-flow domain (e.g. a liquid layer) adjacent to a porous medium is a common occurrence in many environmental and petroleum engineering problems. The porous media may often contain various forms of heterogeneity, e.g. layers, fractures, micro-scale lenses, etc. These heterogeneities affect the pressure distribution within the porous domain. This may influence the hydrodynamic conditions at the free-porous domain interface and, hence, the combined flow behaviour. Under steady-state conditions, the heterogeneities are known to have negligible effects on the coupled flow behaviour. However, the significance of the heterogeneity effects on coupled free and porous flow under transient conditions is not certain. In this study, numerical simulations have been carried out to investigate the effects of heterogeneous (layered) porous media on the hydrodynamics conditions in determining the behaviour of combined free and porous regimes. Heterogeneity in the porous media is introduced by defining a domain composed of two layers of porous media with different values of intrinsic permeability. The coupling of the governing equations of motion in free and porous domains has been achieved through the well-known Beavers and Joseph interfacial condition. Of special interest in this work are porous domains with flow-through ends. They represent the general class of problems where large physical domains are truncated to smaller sections for ease of mathematical analysis. However, this causes a practical difficulty in modelling such systems. This is because the information on flow behaviour, i.e. boundary conditions at the truncated sections, is usually not available. Use of artificial boundary conditions to solve these problems effectively implies the imposition of conditions that do not necessarily match with the solutions required for the interior of the domain. This difficulty is resolved in this study by employing stress-free boundary conditions at the open
Apaydin, Osman G.; Bertin, Henri; Castanier, Louis M.; Kovscek, Anthony R.
1999-08-09
Foam is used to reduce the high mobility of gas-drive fluids and improve the contact between oil and these injected fluids. We require a better understanding of the effect of surfactant concentration on foam flow in porous media. Besides this, the literature on foam flow and transport in heterogeneous systems is sparse although the field situation is primarily heterogeneous and multidimensional. In this study, foam flow experiments were conducted first in homogeneous sand packs to investigate the effect of surfactant concentration on foam flow and then a heterogeneous experimental setup was prepared to observe heterogeneity and multidimensional flow effects on foam propagation. The homogeneous core experiments were conducted in a cylindrical aluminum core holder that was packed with a uniform Ottawa sand. Sand permeability is about 7.0 Darcy. The experiments were interpreted in terms of evolution of in-situ water saturation as a function of time by the usage of CT scanner, cumulative water, and pressure drop across the core. At very low surfactant concentration, no significant benefit was observed. But when stable foam generation started sweep efficiency (water recovery), breakthrough time, and pressure drop increased as surfactant concentration increased.
Hydraulic head applications of flow logs in the study of heterogeneous aquifers
Paillet, Frederick L.
2001-01-01
Permeability profiles derived from high-resolution flow logs in heterogeneous aquifers provide a limited sample of the most permeable beds or fractures determining the hydraulic properties of those aquifers. This paper demonstrates that flow logs can also be used to infer the large-scale properties of aquifers surrounding boreholes. The analysis is based on the interpretation of the hydraulic head values estimated from the flow log analysis. Pairs of quasi-steady flow profiles obtained under ambient conditions and while either pumping or injecting are used to estimate the hydraulic head in each water-producing zone. Although the analysis yields localized estimates of transmissivity for a few water-producing zones, the hydraulic head estimates apply to the farfield aquifers to which these zones are connected. The hydraulic head data are combined with information from other sources to identify the large-scale structure of heterogeneous aquifers. More complicated cross-borehole flow experiments are used to characterize the pattern of connection between large-scale aquifer units inferred from the hydraulic head estimates. The interpretation of hydraulic heads in situ under steady and transient conditions is illustrated by several case studies, including an example with heterogeneous permeable beds in an unconsolidated aquifer, and four examples with heterogeneous distributions of bedding planes and/or fractures in bedrock aquifers.
Method for improved gas-solids separation
Kusik, C.L.; He, B.X.
1990-11-13
Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.
Method for improved gas-solids separation
Kusik, Charles L.; He, Bo X.
1990-01-01
Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.
A Multidimensional Eulerian Model for Simulating Gas-Solids Flow
1993-12-13
FORCE2 is a fundamentally based three-dimensional numerical model for simulating fluid-bed hydrodynamics for a wide range of fluid beds, from laboratory to plant scale. It is based upon the ''two-fluid'' modeling approach and includes surface permeabilities, volume porosities, and distributed resistances.
Heat transfer coefficients of dilute flowing gas-solids suspensions
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Heat transfer coefficients of air-glass, argon-glass, and argon-aluminum suspensions were measured in horizontal and vertical tubes. The glass, 21.6 and 36.0 micron diameter particles, was suspended at gas Reynolds numbers between 11,000 and 21,000 and loading ratios between 0 and 2.5. The presence of particles generally reduced the heat transfer coefficient. The circulation of aluminum powder in the 0.870 inch diameter closed loop system produced tenacious deposits on protuberances into the stream. In the vertical test section, the Nusselt number reduction was attributed to viscous sublayer thickening; in the horizontal test section to particle deposition.
Non-Newtonian fluid flow over a heterogeneously slippery surface
NASA Astrophysics Data System (ADS)
Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.
2015-11-01
The no-slip boundary condition does not always hold. In the past, we have investigated the influence of effective wall slip on interfacial transport for a bubble mattress - a superhydrophobic surface consisting of an array of transverse gas-filled grooves. We proved experimentally that the amount of effective wall slip depends on the bubble protrusion angle and the surface porosity (Karatay et al., PNAS 110, 2013), and predicted that mass transport can be enhanced significantly (Haase et al., Soft Matter 9, 2013). Both studies involve the flow of water. In practise, however, many liquids encountered are non-Newtonian, like blood and polymer solutions. This raises some interesting questions. How does interfacial transport depend on the rheological properties of the liquid? Does the time-scale of the experiment matter? A bubble mattress is a suitable platform to investigate this, due to local variations in shear rate. We predict that for shear-thinning liquids, compared to water, the amount of wall slip can be enhanced considerably, although this depends on the applied flow rate. Experiments are performed to proof this behaviour. Simulations are used to assess what will happen when the characteristic time-scale of the system matches the relaxation time of the visco-elastic liquid. R.G.H.L. acknowledges the European Research Council for the ERC starting grant 307342-TRAM.
Sott, Kristin; Gebäck, Tobias; Pihl, Maria; Lorén, Niklas; Hermansson, Anne-Marie; Heintz, Alexei; Rasmuson, Anders
2013-05-15
A methodology for studying flow in heterogeneous soft microstructures has been developed. The methodology includes: (1) model fractal or random heterogeneous microstructures fabricated in PDMS and characterised using CLSM; (2) μPIV measurements; (3) Lattice-Boltzmann simulations of flow. It has been found that the flow behaviour in these model materials is highly dependent on pore size as well as on the connectivity and occurrence of dead ends. The experimental flow results show good agreement with predictions from the Lattice-Boltzmann modelling. These simulations were performed in geometries constructed from 3D CLSM images of the actual PDMS structures. Given these results, mass transport behaviour may be predicted for even more complex structures, like gels or composite material in, e.g., food or biomaterials. This is a step in the direction towards predictive science with regards to tailoring soft biomaterials for specific mass transport properties. PMID:23489610
A disaggregation theory for predicting concentration gradient distributions in heterogeneous flows
NASA Astrophysics Data System (ADS)
Le Borgne, Tanguy; Huck, Peter; Dentz, Marco; Villermaux, Emmanuel
2016-04-01
Many transport processes occurring in fluid flows depend on concentration gradients, including a wide range of chemical reactions, such as mixing-driven precipitation, and biological processes, such as chemotaxis. A general framework for predicting the distribution of concentration gradients in heterogeneous flow fields is proposed based on a disaggregation theory. The evolution of concentration fields under the combined action of heterogeneous advection and diffusion is quantified from the analysis of the development and aggregation of elementary lamellar structures, which naturally form under the stretching action of flow fields. Therefore spatial correlations in concentrations can be estimated based on the understanding of the lamellae aggregation process that determine the concentration levels at neighboring spatial locations. Using this principle we quantify the temporal evolution of the concentration gradient Probability Density Functions in heterogeneous Darcy fields for arbitrary Peclet numbers. This approach is shown to provide accurate predictions of concentration gradient distributions for a range of flow systems, including turbulent flows and low Reynolds number porous media flows, for confined and dispersing mixtures.
River-aquifer interactions, geologic heterogeneity, and low-flow management
Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E.
2006-01-01
Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year. Copyright ?? 2006 The Author(s).
Correlation velocities in heterogeneous bidirectional cellular automata traffic flow
NASA Astrophysics Data System (ADS)
Lakouari, N.; Bentaleb, K.; Ez-Zahraouy, H.; Benyoussef, A.
2015-12-01
Traffic flow behavior and velocity correlation in a bidirectional two lanes road are studied using Cellular Automata (CA) model within a mixture of fast and slow vehicles. The behaviors of the Inter-lane and Intra-lane Velocity Correlation Coefficients (V.C.C.) due to the interactions between vehicles in the same lane and the opposite lane as a function of the density are investigated. It is shown that high densities in one lane lead to large cluster in the second one, which decreases the Intra-lane velocity correlations and thereby form clusters in the opposite lane. Moreover, we have found that there is a critical density over which the Inter-lane V.C.C. occurs, but below which no Inter-lane V.C.C. happens. The spatiotemporal diagrams correspond to those regions are derived numerically. Furthermore, the effect of the overtaking probability in one lane on the Intra-lane V.C.C. in the other lane is also investigated. It is shown that the decrease of the overtaking probability in one lane decreases slightly the Intra-lane V.C.C. at intermediate density regimes in the other lane, which improves the current, as well as the Inter-lane V.C.C. decreases.
Transport phenomena of reactive fluid flow in heterogeneous combustion processes.
NASA Technical Reports Server (NTRS)
Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.
1972-01-01
A previously developed computer program was used to model two transient hybrid combustion processes involving tubes of solid Plexiglas. In the first study, representing combustion of a hybrid rocket, the oxidizing gas was oxygen, and calculations were continued sufficiently long to obtain steady-state values. Systematic variations were made in reaction rate constant, mass flow rate, and pressure, alternatively using constant and temperature dependent regression rate models for the fuel surface. Consistent results were obtained, as is evidenced by the values for the mass function of the reaction product and the flame temperature, for which plots are supplied. In the second study, fire initiation in a duct was studied, with an air mixture as the oxidizing gas. It was demonstrated that a satisfactory flame spread mechanism could be reproduced on the computer. In both of the above applications, the general, transient, two-dimensional conservation equations were represented, together with chemical reactions, solid-fuel interface conditions, and heat conduction in the solid fuel.
NASA Astrophysics Data System (ADS)
Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy
2016-04-01
The understanding of the fate of pollutants in the vadose zone is a prerequisite to manage soil and groundwater quality. Water infiltrates into the soil and carries a large amount of pollutants (heavy metals, organic compounds, etc.). The quality of groundwater depends on the capability of soils to remove pollutants while water infiltrates. The capability of soils to remove pollutants depends not only on their geochemical properties and affinity with pollutants but also on the quality of the contact between the reactive particles of the soil and pollutants. In such a context, preferential flows are the worst scenario since they prevent pollutants from reaching large parts of the soil including reactive zones that could serve for pollutant removal. The negative effects of preferential flow have already been pointed out by several studies. In this paper, we investigate numerically the effect of the establishment of preferential flow in a numerical section (13.5m long and 2.5m deep) that mimics a strongly heterogeneous deposit. The modelled deposit is made of several lithofacies with contrasting hydraulic properties. The numerical study proves that this strong contrast in hydraulic properties triggers the establishment of preferential flow (capillary barriers and funneled flow). Preferential flow develops mainly for low initial water contents and low fluxes imposed at the soil surface. The impact of these flows on solute transfer is also investigated as a function of solute reactivity and affinity to soil sorption sites. Modeled results clearly show that solute transport is greatly impacted by flow heterogeneity. Funneled flows have the same impacts as water fractionation into mobile and immobile transfer with a fast transport of solutes by preferential flow and solute diffusion to zones where the flow is slower. Such a pattern greatly impacts retention and reduces the access of pollutants into large parts of the soil. Retention is thus greatly reduced at the section
Heterogeneous voice flows-oriented call admission control in IEEE 802.11e WLANs
NASA Astrophysics Data System (ADS)
Wu, Qi-lin; Huang, Zhen-jin; Wang, Shi-yi
2014-04-01
Considering the circumstance of heterogeneous voice flows, first, by applying Markov chain, this paper proposes an unsaturated analytical model for the IEEE 802.11e EDCA protocol, which considers the condition of non-ideal transmission channel and the character of the occurrence of backoff countdown at the beginning of time slot in EDCA protocol. Furthermore, according to the proposed model, the media access delay and throughput of a flow are analysed, and the flow-oriented call admission control (CAC) scheme is proposed. Finally, the simulation results are shown to confirm that the proposed CAC scheme can guarantee the requirements of throughput and delay of voice flows, and can admit more voice flows to improve the utilisation efficiency of network resources by choosing the appropriate values of the minimum contention window or the appropriate varieties of voice flows.
Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media
NASA Astrophysics Data System (ADS)
Pereira, Gerald G.
2016-06-01
The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations.
NASA Astrophysics Data System (ADS)
Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong
2016-08-01
This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.
Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields
Xu, Zhijie; Meakin, Paul
2013-10-01
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5] for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.
Influences of topography and subsurface heterogeneity on lateral subsurface flow in unsaturated zone
NASA Astrophysics Data System (ADS)
Kim, J.; Mohanty, B.
2014-12-01
Lateral subsurface flow plays a significant role in redistributing soil water which has a direct effect on biological, chemical, and geomorphologic processes in root zone. However, most of the land surface models (LSMs) are neglecting the horizontal exchanges of water at the grid or subgrid scales, focusing only on the vertical exchanges of entities including water as one-dimensional process. Topography and hydrologic properties are the main controls on the vertical and lateral subsurface flow in heterogeneous land surface. Thus, in this study, we designed three cases to consider the lateral subsurface flow in unsaturated zone using a land surface model (Community Land Model, CLM): Case 1 is to consider only surface topography for the entire soil column, Case 2 is to consider surface topography in upper soil layers and heterogeneous soil hydraulic properties between the soil columns (using uniform anisotropy for lateral hydraulic conductivity) in lower soil layers, and Case 3 is also to consider surface topography and heterogeneous soil hydraulic properties but using spatially distributed anisotropy derived from hydrologic connectivity which can be created by physical controls (e.g., soil type, vegetation cover) at a watershed scale. The results of this study indicated that all of the cases improved the subsurface flow in unsaturated zone compared to the results of original model, especially representing the best performance in the case 3. Hence, this approach could characterize the spatially distributed patterns of subsurface flow and improve a simulation of the hydrologic cycle.
Bortolini, Olga; Cavazzini, Alberto; Giovannini, Pier Paolo; Greco, Roberto; Marchetti, Nicola; Massi, Alessandro; Pasti, Luisa
2013-06-10
The heterogeneous proline-catalyzed aldol reaction was investigated under continuous-flow conditions by means of a packed-bed microreactor. Reaction-progress kinetic analysis (RPKA) was used in combination with nonlinear chromatography for the interpretation, under synthetically relevant conditions, of important mechanistic aspects of the heterogeneous catalytic process at a molecular level. The information gathered by RPKA and nonlinear chromatography proved to be highly complementary and allowed for the assessment of optimal operating variables. In particular, the determination of the rate-determining step was pivotal for optimizing the feed composition. On the other hand, the competitive product inhibition was responsible for the unexpected decrease in the reaction yield following an apparently obvious variation in the feed composition. The study was facilitated by a suitable 2D instrumental arrangement for simultaneous flow reaction and online flow-injection analysis. PMID:23589216
Simulation of heterogeneous flow and the problem of application of the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Tsymbal, V. P.; Sechenov, P. A.; Olennikov, A. A.; Padalko, A. G.
2016-09-01
The article describes a dissipative structure - gravity separator in the jet-emulsion reactor. The simulation model is based on “first principles” and the Monte Carlo method of statistical tests. Dispersed particles of the charge and reaction products, their possible transformations and variants of interactions are treated as the first level. The core of this model is the process flow of the condensed particles in the vertical gas flow. Taking into account the experience of simulation and the presented considerations the concept of turbulent viscosity for heterogeneous flow is defined, the task and the direction of further investigations are defined.
Continuous flow Sonogashira C-C coupling using a heterogeneous palladium-copper dual reactor.
Tan, Li-Min; Sem, Zhi-Yu; Chong, Wei-Yuan; Liu, Xiaoqian; Hendra; Kwan, Wei Lek; Lee, Chi-Lik Ken
2013-01-01
We report the development of a heterogeneous catalyst system on continuous flow chemistry. A palladium (Pd) coated tubular reactor was placed in line with copper (Cu) tubing using a continuous flow platform, and a Sonogashira C-C coupling reaction was used to evaluate the performance. The reactions were favorably carried out in the Cu reactor, catalyzed by the traces of leached Pd from the Pd reactor. The leached Pd and Cu were trapped with a metal scavaging resin at the back-end of the continuous flow system, affording a genuine approach toward green chemistry. PMID:23248977
Three-dimensional modelling of water flow through a heterogeneous vadose zone
NASA Astrophysics Data System (ADS)
Angulo-Jaramillo, R.; Cazalets, H.; Goutaland, D.; Winiarski, T.; Delolme, C.
2007-12-01
Stormwater infiltration basins have become a common alternative practice to traditional stormwater pipe networks in urban areas. They are often built in permeable subsurface soils, such as alluvial deposits. These sedimentary deposits are highly heterogeneous which generate preferential flow paths that may cause non- uniform transport of contaminants at great depths. Thus, the hypothesis of using homogeneous deposit cannot be considered valid at the scale of infiltration basin. Therefore, it is required a fine scale three-dimensional numerical simulations of fluid flow and solute transport to understand how subsurface heterogeneities affect fluid flow and contaminant transfer. The aim of our study is to improve the understanding of the water flow mechanisms occurring at the lithofacies scale in the heterogeneous vadose zone of infiltration basin. The studied basin, located in the eastern suburbs of Lyon (France), is built in quaternary glaciofluvial deposits. Results from previous studies show that the glaciofluvial deposit is composed of 4 main lithofacies: sands, bimodal sandy gravels, heterometric sandy gravels, and openframework gravels. These lithofacies are organized in braided river deposits architecture. Ground-Penetrating Radar was assessed to characterize the structural units of the studied deposits. Hydraulic properties of each lithofacies were characterized on analogous modern glaciofluvial lithofacies, leading to the definition of hydrofacies. Geophysical measurements (Ground-Penetrating Radar and Electrical Resistivity) performed on a limited zone of the basin was interpreted to define a lithofacies distribution. Hydrofacies properties were used to build a three- dimensional hydrostratigraphic model of the glaciofluvial deposit. This model was implemented in the finite element program Hydrus3D. The results show that openframework gravels cause capillary barrier effects leading to funneled flows, i.e. non- vertical water flows along lithofacies
Predictive modelling of flow in a two-dimensional intermediate-scale, heterogeneous porous media
Barth, G.R.; Hill, M.C.; Illangasekare, T.H.; Rajaram, H.
2000-01-01
To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic
Hyporheic exchange in heterogeneous streambeds under losing and gaining flow conditions
NASA Astrophysics Data System (ADS)
Arnon, S.; Fox, A.; Laube, G.; Schmidt, C.; Fleckenstein, J. H.
2015-12-01
Recent studies have shown that stream-groundwater interactions (gaining or losing flow conditions) have a major impact on hyporheic exchange fluxes. However, the physical complexity of natural streams has limited our ability to study these types of interactions systematically in the field, and to evaluate their importance to biogeochemical processes and nutrient cycling. In this work we were able to quantify the effect of losing and gaining fluxes on hyporheic exchange in heterogeneous streambeds by combining experiments in a laboratory flume and modeling. Tracer experiments were conducted for measuring hyporheic exchange with using a dye and NaCl under various combinations of overlying water velocities and losing or gaining fluxes. The goal of the modeling was to extent and to supplement the hydraulic conditions covered by the flume experiments with a wide range of scenarios. In the model, the surface water domain was represented by a CFD model which generates the head distribution. Subsurface flow and transport is simulated in 3D using MIN3P. The flume experiments revealed that hyporheic exchange fluxes under losing and gaining flow conditions were similar, and became smaller in a comparable manner when the losing or gaining flux increases. Heterogeneity had little effect on hyporheic exchange under gaining flow conditions due to the compaction of the hyporheic zone. However, local hydraulic conductivity led to preferential flow paths of stream water under neutral conditions (strong horizontal flow component) and losing conditions (strong vertical flow component). Preferential flow paths were also evident under gaining conditions but affected mainly the upwelling groundwater. The model was set up to resemble the conditions in the flume, and reproduced the flume data very well. The propagation of dye fronts as observed in the flume is currently implemented into the model. The combination of experimental and modeling results enable us to systematically study the
NASA Astrophysics Data System (ADS)
Caballero-Miranda, C. I.; Alva-Valdivia, L. M.; González-Rangel, J. A.; Gogitchaishvili, A.; Urrutia-Fucugauchi, J.; Kontny, A.
2016-02-01
The within-flow vertical variation of anisotropy of the magnetic susceptibility (AMS) of three basaltic flow profiles from the Xitle volcano were investigated in relation to the lava flow-induced shear strain. Rock magnetic properties and opaque microscopy studies have shown that the magnetic mineralogy is dominated by Ti-poor magnetite with subtle vertical variations in grain size distribution: PSD grains dominate in a thin bottommost zone, and from base to top from PSD-MD to PSD-SD grains are found. The vertical variation of AMS principal direction patterns permitted identification of two to three main lava zones, some subdivided into subzones. The lower zone is very similar in all profiles with the magnetic foliation dipping toward the flow source, whereas the upper zone has magnetic foliation dipping toward the flow direction or alternates between dipping against and toward the flow direction. The K1 (maximum AMS axis) directions tend to be mostly parallel to the flow direction in both zones. The middle zone shows AMS axes diverging among profiles. We present heterogeneous strain ellipse distribution models for different flow velocities assuming similar viscosity to explain the AMS directions and related parameters of each zone. Irregular vertical foliations and transverse to flow lineation of a few samples at the bottommost and topmost part of profiles suggest SD inverse fabric, levels of intense friction, or degassing effects in AMS orientations.
Quantitative prediction of clustering instabilities in gas-solid homogeneous cooling systems
NASA Astrophysics Data System (ADS)
Hrenya, Christine; Mitrano, Peter; Li, Xiaoqi; Yin, Xiaolong
2014-11-01
Dynamic particle clusters are widely documented in gas-solid flow systems, including gasification units for coal or biomass, gravity-driven flow over an array of tubes, pneumatic transport lines, etc. Continuum descriptions based on kinetic theory have been known for over a decade to qualitatively predict the presence of such clustering instabilities. The quantitative ability of such continuum descriptions is relatively unexplored, however, and remains unclear given the low-Knudsen assumption upon which the descriptions are based. In particular, the concentration gradient is relatively large across the boundary between the cluster and the surrounding dilute region, which is counter to the small-gradient assumption inherent in the low-Knudsen-number expansion. In this work, we use direct numerical simulations (DNS) of a gas-solid homogeneous cooling system to determine the critical system size needed for the clustering instability to develop. We then compare the results to the same quantity predicted by a continuum description based on kinetic theory. The agreement is quite good over a wide range of parameters. This finding is reminiscent of molecular fluids, namely the ability of the Navier-Stokes equations to predict well outside the expected range of Knudsen numbers.
Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system.
Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min
2012-08-01
Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests.
Davey, H M; Kell, D B
1996-01-01
The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359
Revisiting low-fidelity two-fluid models for gas-solids transport
NASA Astrophysics Data System (ADS)
Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus
2016-08-01
Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
NASA Astrophysics Data System (ADS)
Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy
2015-04-01
Large cities are mostly situated in areas close to water resources in order to meet the water needs of their populations. Alluvial soils harbor large aquifers that are used to supply water, the Rhone-Alpes region being a good illustration. However, the increase of soil sealing has led to the development of best management practices such as infiltration basins which are aimed at infiltrating stormwater in order to reduce the amount of water collected and treated in usual systems. Yet, these infiltration basins are mainly settled over highly permeable geologic formations so as to ensure water infiltration and a proper functioning of these infiltration basins. Most of these formations are strongly heterogeneous, since they are made of different materials with contrasting sedimentological properties (e.g. particle size distribution) and transfer properties. This paper addresses flow modeling during the infiltration phase in the vadose zone underneath infiltration basins settled over a strongly heterogeneous glaciofluvial deposit. In particular, we want to pinpoint numerically the worst conditions with regards to preferential flow, in terms of initial hydric conditions (initial water contents) and imposed flow rates. For this purpose, a numerical study is proposed on the basis of previous studies offering a sedimentological description of the subsoil with the detail of its architecture and a precise description of the different lithofacies and their hydraulic properties. Considering this, we worked on a section (13.5m long and 2.5m high) for which a complete sedimentological and hydraulic description had already been performed. Water infiltration was modeled for different initial and boundary conditions (mostly the values of the flux imposed at surface). At first, different numerical tests and adjustments have been made including mesh optimization with regards to both accuracy and computation time. Following these tests, the "tight" mesh has been validated since it
NASA Astrophysics Data System (ADS)
Lewis, A. J.; Druhan, J. L.; Maher, K.
2013-12-01
A comprehensive understanding of how fluids flow through physically heterogeneous porous media is essential to the prediction of contaminant mobility and resource sustainability in groundwater systems. Although many analytical and numerical methods exist to quantify the effects of physical heterogeneity on permeability and reactivity, to date, very few studies have attempted to physically design a known type of heterogeneity within a system, observe the effects on reactive transport, and compare those results to numerical models. We have designed and implemented an experimental procedure to address the effects of physical heterogeneity on tracer propagation by building several cylindrical columns with different known geometries of variable permeability. In these fabricated systems we observe the effects of each permeability distribution on solute transport and reactivity. The experimental data are compared against simulated tracer breakthroughs from the reactive transport code Crunchflow, using analytical solutions for effective permeability based on the geometry of the column pack. We employ chemically homogeneous sand of two distinct grain size distributions to construct 10 cm diameter x 30 cm length cylindrical columns. The sand we use is ultra-high purity, nonreactive crystalline silica (SiO2). The coarse grain sand has a particle size distribution between 0.149-0.297 mm diameter and the fine grain between 0.074-0.149 mm diameter. A reference column consisting of a homogeneous pack of the coarse grain sand is contrasted with two columns utilizing both grain sizes. One column is constructed of an inner core of fine grain sand surrounded by an outer annulus of coarse grain sand, and a second is built with one hemisphere of fine grain and one hemisphere of coarse grand sand. The volumes of coarse and fine grain sand used in both heterogeneous columns are equal, and the porosity of the sands are 44% for the coarse grain and 42% for the fine grain. When packed into
Field-scale experiments of unsaturated flow and solute transport in a heterogeneous porous medium
NASA Astrophysics Data System (ADS)
Nichol, Craig; Smith, Leslie; Beckie, Roger
2005-05-01
A multiyear flow and conservative tracer test has been carried out in unsaturated mine waste rock to examine the physical mechanisms by which water moves through this coarse, heterogeneous, granular material. The experimental system has a footprint of 8 m × 8 m, is 5 m high, and is built on a contiguous grid of 16 zero-tension lysimeters. A chloride tracer was applied during a single rainfall event. Subsequently, the system has been subject to both natural and applied rainfall events in which no further tracer was added. Water flow and tracer transport is monitored using in situ measurements of moisture content, matric suction, and soil water solution samplers. Results demonstrate for transient infiltration conditions the influence and interaction of matrix flow in a heterogeneous granular matrix, preferential flow in macropores, and noncapillary pathways. Tracer migration through preferential flow paths dominates the initial and peak breakthrough concentrations. Point measurements of tracer concentration from in situ solution samplers yield a relatively poor indication of the flux-averaged transport of mass that is recorded at the base of the experiment, in addition to overestimating the stored mass and underestimating residence time.
Winter, C.L. . E-mail: lwinter@ucar.edu; Guadagnini, A.; Nychka, D.; Tartakovsky, D.M.
2006-09-01
A multivariate Analysis of Variance (ANOVA) is used to measure the relative sensitivity of groundwater flow to two factors that indicate different dimensions of aquifer heterogeneity. An aquifer is modeled as the union of disjoint volumes, or blocks, composed of different materials with different hydraulic conductivities. The factors are correlation between the hydraulic conductivities of the different materials and the contrast between mean conductivities in the different materials. The precise values of aquifer properties are usually uncertain because they are only sparsely sampled, yet are highly heterogeneous. Hence, the spatial distribution of blocks and the distribution of materials in blocks are uncertain and are modeled as stochastic processes. The ANOVA is performed on a large sample of Monte Carlo simulations of a simple model flow system composed of two materials distributed within three disjoint blocks. Our key finding is that simulated flow is much more sensitive to the contrast between mean conductivities of the blocks than it is to the intensity of correlation, although both factors are statistically significant. The methodology of the experiment - ANOVA performed on Monte Carlo simulations of a multi-material flow system - constitutes the basis of additional studies of more complicated interactions between factors that define flow and transport in aquifers with uncertain properties.
Paillet, Frederick L.
1998-01-01
A numerical model of flow in the vicinity of a borehole is used to analyze flowmeter data obtained with high-resolution flowmeters. The model is designed to (1) precisely compute flow in a borehole, (2) approximate the effects of flow in surrounding aquifers on the measured borehole flow, (3) allow for an arbitrary number (N) of entry/exit points connected to M < N far-field aquifers, and (4) be consistent with the practical limitations of flowmeter measurements such as limits of resolution, typical measurement error, and finite measurement periods. The model is used in three modes: (1) a quasi-steady pumping mode where there is no ambient flow, (2) a steady flow mode where ambient differences in far-field water levels drive flow between fracture zones in the borehole, and (3) a cross-borehole test mode where pumping in an adjacent borehole drives flow in the observation borehole. The model gives estimates of transmissivity for any number of fractures in steady or quasi-steady flow experiments that agree with straddle-packer test data. Field examples show how these cross-borehole-type curves can be used to estimate the storage coefficient of fractures and bedding planes and to determine whether fractures intersecting a borehole at different locations are hydraulically connected in the surrounding rock mass.
Keska, Jerry K.; Hincapie, Juan; Jones, Richard
2011-02-15
In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena into multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)
Malmström, Maria E; Destouni, Georgia; Martinet, Philippe
2004-05-01
Many environmental problems require assessment of extensive reaction systems within natural subsurface flow systems exhibiting large physical and biogeochemical heterogeneity. We present an approach to couple stochastic advective-reactive modeling of physical solute transport (LaSAR) with the geochemical model PHREEQC for modeling solute concentrations in systems with variable flow velocity and multicomponent reactions. PHREEQC allows for general and flexible quantification of a multitude of linear and nonlinear geochemical processes, while LaSAR efficiently handles field-scale solute spreading in stochastic heterogeneous flow fields. The combined LaSAR-PHREEQC approach requires very modest computational efforts, thereby allowing a large number of reactive transport problems to be readily assessed and facilitating handling of quantifiable uncertainty in environmental model applications. Computational efficiency and explicit handling of field-scale dispersion without introduction of excessive fluid mixing that may impair model results are general advantages of the LaSAR compared with alternative solute transport modeling approaches. The LaSAR-PHREEQC approach is restricted to steady or unidirectional flow fields, and our specific application examples are limited to homogeneous reaction systems without local or transverse dispersion-diffusion, although these are not general methodological limitations. As a comprehensive application example, we simulate the spreading of acid mine drainage in a groundwater focusing on Zn2+ and including relevant, major-component geochemistry. Model results show that Zn2+ may be substantially attenuated by both sorption and precipitation, with flow heterogeneity greatly affecting expected solute concentrations downstream of the mine waste deposit in both cases. PMID:15180064
Fluidization onset and expansion of gas-solid fluidized beds
Jones, O.C.; Shin, T.S.
1984-08-01
A simple, mass conservation-based, kinematic model is presented for accurately predicting both the onset of fluidization and the degree of (limit of) bed expansion in bubbling gas-solid fluidized beds. The model is consistant with inception correlations exisiting in the literature. Since the method has a sound physical basis, it might be expected to provide scaling between laboratory-scale fluidized beds and large-scale systems. This scaling ability, however, remains to be demonstrated as does the application to pressurized systems and where the terminal Reynolds numbers exceed 1000, (Archimedes numbers over about 3.2 x 10/sup 5/).
NASA Astrophysics Data System (ADS)
Wehrer, M.; Skowronski, J.; Binley, A. M.; Slater, L. D.
2013-12-01
Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous - or preferential - flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we applied systematically varied input flow boundary conditions, resembling natural precipitation events. We simultaneously measured the breakthrough of a conservative tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct ground-truthing of soil moisture and pore fluid resistivity changes estimated noninvasively using ERT. We were able to image both the advancing infiltration front and the advancing tracer front using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long term displacement of the solute front was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential flow fraction was observed to be independent of precipitation rate. This suggests the presence of a fingering process
Field Characterization of Small-scale Preferential Flow Paths in a Highly Heterogeneous Aquifer
NASA Astrophysics Data System (ADS)
Wilson, C. S.; Tick, G. R.; Liu, G.; Zheng, C.
2006-12-01
A field study was conducted at the MADE site in Columbus, Mississippi to characterize small-scale preferential flow networks in a highly heterogeneous aquifer. The objective of the study was to quantify preferential flow path geometry, distribution, connectivity, and scale in unprecedented detail. A single well was installed at the test site, and a fluorescent dye tracer (FCF-Blue) was injected into the screened interval of the well. Soil cores arranged within a square grid (spaced 0.5-m apart) surrounding the injection were frozen immediately upon extraction and analyzed thereafter in the laboratory. Each soil core length was digitally imaged and then subsequently sectioned into approximately 1-cm x 5-cm segments and imaged again for qualitative purposes. Each segment was subjected to a quantitative grain size analysis to obtain centimeter- scale resolution for each core. Aqueous dye solution was extracted from each 1-cm thick segment and quantified for dye-tracer concentration. The qualitative and quantitative results are used to obtain a detailed three-dimensional construction of the small-scale preferential flow paths and lithologic model of the test site. The high resolution characterization of the test site provides a valuable dataset for testing the validity of the dual-domain mass transfer (DDMT) model for predicting solute transport in highly heterogeneous aquifers with interconnected flow pathways.
NASA Astrophysics Data System (ADS)
Hamed, Ali M.; Ranjan, Prateek; Sadowski, Matthew J.; Nepf, Heidi M.; Chamorro, Leonardo P.
2015-11-01
An experimental investigation of the flow within and above model canopies was carried out to determine the effect of canopy height heterogeneity on the structure and spatial distribution of the turbulence. Two 800 mm long models with 20% blockage were placed in a 2.5 m long refractive-index-matching channel. The first model (base case) is constituted of equal height (h) square bar elements arranged in a staggered configuration. The other model bars had two heights (h +1/3h and h-1/3h) alternated every two rows. Particle image velocimetry was used to map the flow field at three locations spanning the length of the canopy under three confinement ratios H/h =2, 3, and 4, where H is the free surface height. The experiments were performed at Reynolds number ReH = 6800 , 10200, and 13600. Refractive index matching renders the canopy invisible and grants full optical access allowing the flow field within the canopy to be measured by PIV. Turbulence statistics complemented with POD, quadrant analysis, and LES decomposition reveal the distinctive effect of the height heterogeneity on the shear layer that forms on top of the canopy, and on the free flow over the canopies.
Stuglik, Michał T; Babik, Wiesław
2016-07-01
The role of gene flow in species formation is a major unresolved issue in speciation biology. Progress in this area requires information on the long-term patterns of gene flow between diverging species. Here, we used thousands of single-nucleotide polymorphisms derived from transcriptome resequencing and a method modeling the joint frequency spectrum of these polymorphisms to reconstruct patterns of historical gene flow between two Lissotriton newts: L. vulgaris (Lv) and L. montandoni (Lm). We tested several models of divergence including complete isolation and various scenarios of historical gene flow. The model of secondary contact received the highest support. According to this model, the species split from their common ancestor ca. 5.5 million years (MY) ago, evolved in isolation for ca. 2 MY, and have been exchanging genes for the last 3.5 MY Demographic changes have been inferred in both species, with the current effective population size of ca. 0.7 million in Lv and 0.2 million in Lm. The postdivergence gene flow resulted in two-directional introgression which affected the genomes of both species, but was more pronounced from Lv to Lm. Interestingly, we found evidence for genomic heterogeneity of interspecific gene flow. This study demonstrates the complexity of long-term gene flow between distinct but incompletely reproductively isolated taxa which divergence was initiated millions of years ago. PMID:27386093
Relationship of core-scale heterogeneity with non-Darcy flow coefficients
Al-Rumhy, M.H.; Kalam, M.Z.
1996-06-01
An experimental research program to investigate the effects of liquid saturations upon non-Darcy flow coefficients is presented. the presence of a wetting phase fluid plays an important role in high velocity flow of a gas well, producing condensate or water, and in propped fractures containing liquid saturations. This study initially examines the errors commonly encountered but ignored in evaluating the permeabilities and the coefficient of inertial resistance during the flow of gases through porous media. Experimental techniques, such as constant overburden pressure, changing overburden pressure, forward flow, and backpressure flow, are applied to optimize and obtain accurate evaluations of Klinkenberg parameters and inertial resistance coefficients for a selection of Omani reservoir cores. Gas-slippage factor significantly influences the derived viscous and inertial coefficients from high-velocity gas flow data. An increasing wetting phase saturation increases the non-Darcy coefficient up to thirty-fold. Analysis of the experimental data revealed that unique relationships exist between the non-Darcy flow coefficients and the equivalent liquid permeability, porosity, and liquid saturation. Heterogeneity of the core as mapped by pore-scale measurements provide an insight into the mechanism for such a large increase in the non-Darcy coefficients.
Stuglik, Michał T; Babik, Wiesław
2016-07-01
The role of gene flow in species formation is a major unresolved issue in speciation biology. Progress in this area requires information on the long-term patterns of gene flow between diverging species. Here, we used thousands of single-nucleotide polymorphisms derived from transcriptome resequencing and a method modeling the joint frequency spectrum of these polymorphisms to reconstruct patterns of historical gene flow between two Lissotriton newts: L. vulgaris (Lv) and L. montandoni (Lm). We tested several models of divergence including complete isolation and various scenarios of historical gene flow. The model of secondary contact received the highest support. According to this model, the species split from their common ancestor ca. 5.5 million years (MY) ago, evolved in isolation for ca. 2 MY, and have been exchanging genes for the last 3.5 MY Demographic changes have been inferred in both species, with the current effective population size of ca. 0.7 million in Lv and 0.2 million in Lm. The postdivergence gene flow resulted in two-directional introgression which affected the genomes of both species, but was more pronounced from Lv to Lm. Interestingly, we found evidence for genomic heterogeneity of interspecific gene flow. This study demonstrates the complexity of long-term gene flow between distinct but incompletely reproductively isolated taxa which divergence was initiated millions of years ago.
NASA Astrophysics Data System (ADS)
Ague, J. J.
2004-12-01
Fluids are generally expected to be driven upward in the deep parts of orogens, but permeability heterogeneity and anisotropy must also be considered to properly interpret fluid infiltration and kinetic reaction histories preserved in the rock record. This paper focuses on new 2-D models of Darcian fluid flow incorporating permeability contrasts between rock units, the permeability tensor, and reactive fluid sources (e.g., dehydration). Factor of ten contrasts between the minimum and maximum permeability values in anisotropic rocks can strongly divert flow, but contrasts of as little as a factor of two still influence flow behavior. The first example considers fluid flow in subduction zone mélange, Syros, Greece. Geochemical evidence suggests that the interiors of meta-mafic blocks of oceanic crust in the mélange underwent limited fluid-rock reaction, despite extensive dehydration and decarbonation of the subduction complex. Modeling shows that if the blocks have lower permeability than the surrounding serpentine-rich matrix, then flow is diverted around the blocks resulting in little infiltration except at block margins, consistent with field relations. In this way, the subducted oceanic crust could preserve little evidence of fluid infiltration, even though considerable flow occurred through the mélange. The largest fluid fluxes are concentrated in matrix where blocks are in close proximity, and this effect increases as the anisotropy of the matrix increases. The lack of fluid infiltration into blocks could account for the observed limited metamorphism and strong kinetic overstepping of reactions that in some cases allowed preservation of ocean-floor mineral assemblages even at blueschist-eclogite facies conditions. The second example examines fluid flow through a folded sequence in which the direction of maximum permeability is parallel to the folded layering, and is based on field relations of Barrovian metamorphic sequences in CT, USA, and Scotland. As the
Willans, S.M.; McCarthy, I.D. )
1991-03-01
The distribution of tibial blood flow was measured by injecting approximately (600-1000) x 10(3) 15 mu microspheres, labelled with either tin-113 (113Sn) or cobalt-57 (57Co) into femoral arteries of five mature greyhounds. The diaphyseal cortex, stripped of periosteum and devoid of marrow, was sawn into 40 pieces (10 transverse sections x 4 anatomical quarters/section). Relative deposition densities of the 113Sn microspheres in 40 pieces of cortex were found. These values, together with their associated masses, proved, from a statistical point of view, that flow rate heterogeneity was substantial in the diaphysis. In particular, for the diaphyseal cortex, distribution of relative deposition densities (flow rates) in six bones was found to be positively-skewed with a relative dispersion ((SD/mean) x 100) of approximately 40%.
Impact of Cattaneo-Christov Heat Flux in Jeffrey Fluid Flow with Homogeneous-Heterogeneous Reactions
Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed
2016-01-01
Two-dimensional stretched flow of Jeffrey fluid in view of Cattaneo-Christov heat flux is addressed. Effects of homogeneous-heterogeneous reactions are also considered. Suitable transformations are used to form ordinary differential equations. Convergent series solutions are computed. Impact of significant parameters on the velocity, temperature, concentration and skin friction coefficient is addressed. Analysis of thermal relaxation is made. The obtained results show that ratio of relaxation to retardation times and Deborah number have inverse relation for velocity profile. Temperature distribution has decreasing behavior for Prandtl number and thermal relaxation time. Also concentration decreases for larger values of strength of homogeneous reaction parameter while it increases for strength of heterogeneous reaction parameter. PMID:26859675
Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed
2016-01-01
Two-dimensional stretched flow of Jeffrey fluid in view of Cattaneo-Christov heat flux is addressed. Effects of homogeneous-heterogeneous reactions are also considered. Suitable transformations are used to form ordinary differential equations. Convergent series solutions are computed. Impact of significant parameters on the velocity, temperature, concentration and skin friction coefficient is addressed. Analysis of thermal relaxation is made. The obtained results show that ratio of relaxation to retardation times and Deborah number have inverse relation for velocity profile. Temperature distribution has decreasing behavior for Prandtl number and thermal relaxation time. Also concentration decreases for larger values of strength of homogeneous reaction parameter while it increases for strength of heterogeneous reaction parameter. PMID:26859675
Unravelling textural heterogeneity in obsidian: Shear-induced outgassing in the Rocche Rosse flow
NASA Astrophysics Data System (ADS)
Shields, J. K.; Mader, H. M.; Caricchi, L.; Tuffen, H.; Mueller, S.; Pistone, M.; Baumgartner, L.
2016-01-01
Obsidian flow emplacement is a complex and understudied aspect of silicic volcanism. Of particular importance is the question of how highly viscous magma can lose sufficient gas in order to erupt effusively as a lava flow. Using an array of methods we study the extreme textural heterogeneity of the Rocche Rosse obsidian flow in Lipari, a 2 km long, 100 m thick, ~ 800 year old lava flow, with respect to outgassing and emplacement mechanisms. 2D and 3D vesicle analyses and density measurements are used to classify the lava into four textural types: 'glassy' obsidian (< 15% vesicles), 'pumiceous' lava (> 40% vesicles), high aspect ratio, 'shear banded' lava (20-40% vesicles) and low aspect ratio, 'frothy' obsidian with 30-60% vesicles. Textural heterogeneity is observed on all scales (m to μm) and occurs as the result of strongly localised strain. Magnetic fabric, described by oblate and prolate susceptibility ellipsoids, records high and variable degrees of shearing throughout the flow. Total water contents are derived using both thermogravimetry and infrared spectroscopy to quantify primary (magmatic) and secondary (meteoric) water. Glass water contents are between 0.08-0.25 wt.%. Water analysis also reveals an increase in water content from glassy obsidian bands towards 'frothy' bands of 0.06-0.08 wt.%, reflecting preferential vesiculation of higher water bands and an extreme sensitivity of obsidian degassing to water content. We present an outgassing model that reconciles textural, volatile and magnetic data to indicate that obsidian is generated from multiple shear-induced outgassing cycles, whereby vesicular magma outgasses and densifies through bubble collapse and fracture healing to form obsidian, which then re-vesiculates to produce 'dry' vesicular magma. Repetition of this cycle throughout magma ascent results in the low water contents of the Rocche Rosse lavas and the final stage in the degassing cycle determines final lava porosity. Heterogeneities in
NASA Astrophysics Data System (ADS)
Rubin, K. H.; Smith, M. C.; Bergmanis, E. C.; Perfit, M. R.; Sinton, J. M.; Batiza, R.
2001-06-01
Compositional heterogeneity in mid-ocean ridge (MOR) lava flows is a powerful yet presently under-utilized volcanological and petrological tracer. Here, it is demonstrated that variations in pre- and syn-eruptive magmatic conditions throughout the global ridge system can be constrained with intra-flow compositional heterogeneity among 10 discrete MOR flows. Geographical distribution of chemical heterogeneity within flows is also used along with mapped physical features to help decipher the range of conditions that apply to seafloor eruptions (i.e. inferred vent locations and whether there were single or multiple eruptive episodes). Although low-pressure equilibrium fractional crystallization can account for much of the observed intra-flow compositional heterogeneity, some cases require multiple parent magmas and/or more complex crystallization conditions. Globally, the extent of within-flow compositional heterogeneity is well correlated (positively) with estimated erupted volume for flows from the northern East Pacific Rise (EPR), and the Mid Atlantic, Juan de Fuca and Gorda Ridges; however, some lavas from the superfast spreading southern EPR fall below this trend. Compositional heterogeneity is also inversely correlated with spreading rate. The more homogeneous compositions of lavas from faster spreading ridges likely reflect the relative thermal stability and longevity of sub-ridge crustal magma bodies, and possibly higher eruption frequencies. By contrast, greater compositional heterogeneity in lavas at slower spreading rates probably results from low thermal stability of the crust (due to diminished magma supply and greater hydrothermal cooling). Finally, the within-flow compositional variations observed here imply that caution must be exercised when interpreting MOR basalt data on samples where individual flows have not been mapped because chemical variations between lava samples may not necessarily record the history of spatially and temporally distinct
NASA Astrophysics Data System (ADS)
Arora, B.; Wainwright, H. M.; Spycher, N.
2013-12-01
This study aims at understanding key hydrogeochemical processes dictating pH behavior and U transport at the Savannah River Site (SRS) F-Area, South Carolina, with particular focus on the impact of chemical and physical heterogeneities. Acidic waste solutions containing low level radioactivity from numerous isotopes were discharged to a series of unlined seepage basins at the F-Area, from 1955 through 1989, which resulted in a nearly 1 km long acidic uranium plume. Reactive facies is a new approach that spatially characterizes linked flow and geochemical properties over large domains, where it is typically challenging to obtain parameters with sufficient resolution for reactive transport modeling. This approach - based on the hypothesis that we can identify geological units that have unique distributions of reactive transport properties - allows us to integrate various types of datasets (e.g., historical data, laboratory analysis, crosshole and surface geophysics) for estimating heterogeneous reactive transport parameters. At the SRS F-Area, data mining and iteration with laboratory analysis identified two reactive facies coincident with the depositional facies, which have distinct distributions of reactive transport properties: %fines, permeability, and Al:Fe ratio (proxy for kaolinite:geothite ratio). The reactive facies over the plume-scale domain was estimated based on measured data (foot-by-foot core analysis, cone penetrometer, crosshole seismic and surface seismic data) and integrated using the Bayesian framework. In parallel, a numerical reactive transport model was developed including saturated and unsaturated flow, and complex geochemical processes such as U(VI) and H+ adsorption (surface complexation) onto sediments and dissolution and precipitation of Al and Fe minerals. By combining the developed reactive transport model with the estimated spatial distribution of reactive transport parameters, we perform stochastic simulations of U and pH plume
Seasonal invasion dynamics in a spatially heterogeneous river with fluctuating flows.
Jin, Yu; Hilker, Frank M; Steffler, Peter M; Lewis, Mark A
2014-07-01
A key problem in environmental flow assessment is the explicit linking of the flow regime with ecological dynamics. We present a hybrid modeling approach to couple hydrodynamic and biological processes, focusing on the combined impact of spatial heterogeneity and temporal variability on population dynamics. Studying periodically alternating pool-riffle rivers that are subjected to seasonally varying flows, we obtain an invasion ratchet mechanism. We analyze the ratchet process for a caricature model and a hybrid physical-biological model. The water depth and current are derived from a hydrodynamic equation for variable stream bed water flows and these quantities feed into a reaction-diffusion-advection model that governs population dynamics of a river species. We establish the existence of spreading speeds and the invasion ratchet phenomenon, using a mixture of mathematical approximations and numerical computations. Finally, we illustrate the invasion ratchet phenomenon in a spatially two-dimensional hydraulic simulation model of a meandering river structure. Our hybrid modeling approach strengthens the ecological component of stream hydraulics and allows us to gain a mechanistic understanding as to how flow patterns affect population survival.
Sentjabrskaja, T.; Chaudhuri, P.; Hermes, M.; Poon, W. C. K.; Horbach, J.; Egelhaaf, S. U.; Laurati, M.
2015-01-01
Mechanical properties are of central importance to materials sciences, in particular if they depend on external stimuli. Here we investigate the rheological response of amorphous solids, namely colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we establish a quantitative link between the macroscopic creep response and the microscopic single-particle dynamics. We observe dynamical heterogeneities, namely regions of enhanced mobility, which remain localized in the creep regime, but grow for applied stresses leading to steady flow. These different behaviors are also reflected in the average particle dynamics, quantified by the mean squared displacement of the individual particles, and the fraction of active regions. Both microscopic quantities are found to be proportional to the macroscopic strain, despite the non-equilibrium and non-linear conditions during creep and the transient regime prior to steady flow. PMID:26153523
NASA Astrophysics Data System (ADS)
Nagao, Junji; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy Dong
2010-08-01
Shock tubes are devices in which the state of a gas is changed suddenly from one uniform state to another by the passage of shock and expansion waves. In the theory of ideal shock tube flow, it is customarily assumed that the unsteady expansion and shock waves generated by diaphragm rupture are a perfectly centered plane wave. However, such waves are generally not centered, or may not even by plane in practice. In the present research, the time-dependent behavior of homogeneous and heterogeneous condensation of moist air in the shock tube is investigated by using a computational fluid dynamics work. Further, the numerical and experimental studies were carried out in order to investigate the effect of the diaphragm rupture process on the flow characteristics of expansion and shock waves generated near the diaphragm.
Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu
2014-10-11
This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.
Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity.
Aubert, Julien; Amit, Hagay; Hulot, Gauthier; Olson, Peter
2008-08-01
Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate. PMID:18685706
Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.
Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric
2013-01-01
In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.
Compositional heterogeneity of the Sugarloaf melilite nephelinite flow, Honolulu Volcanics, Hawai'i
NASA Astrophysics Data System (ADS)
Clague, David A.; Frey, Frederick A.; Garcia, Michael O.; Huang, Shichun; McWilliams, Michael; Beeson, Melvin H.
2016-07-01
The Sugarloaf flow is a melilite nephelinite erupted from the Tantalus rift during rejuvenated-stage volcanism on O'ahu, the Honolulu Volcanics. The flow ponded in Mānoa Valley forming a ∼15 m thick flow which was cored and sampled in a quarry. Nepheline from a pegmatoid segregation in the flow yielded a 40Ar-39Ar age of 76 ka. This age, combined with others, indicates that the Tantalus rift eruptions are some of the youngest on O'ahu. Honolulu Volcanics erupt on average about every 35-40 ka indicating that future eruptions are possible. We evaluated the compositional variability of 19 samples from the flow, including 14 from the core. Twelve samples are representative of the bulk flow, four are dark- or light-colored variants, one is a heavy rare earth element (REE)-enriched pegmatoid, and two visually resemble the bulk flow, but have chemical characteristics of the dark and light variants. Our objective was to determine intraflow heterogeneity in mineralogy and composition. Variable abundances of Na2O, K2O, Sr, Ba, Rb, Pb and U in the flow were caused by post-eruptive mobility in a vapor phase, most likely during or soon after flow emplacement, and heterogeneous deposition of secondary calcite and zeolites. Relative to fine-grained samples, a pegmatoid vein that crosscuts the flow is enriched in incompatible trace elements except Sr and TiO2. Element mobility after eruption introduced scatter in trace element ratios including light-REE/heavy-REE, and all ratios involving mobile elements K, Rb, Ba, Sr, Pb, and U. Lavas from some of the 37 Honolulu Volcanics vents have crosscutting REE patterns in a primitive mantle-normalized plot. Such patterns have been interpreted to reflect variable amounts of residual garnet during partial melting. Previous studies of lavas from different vents concluded that garnet, phlogopite, amphibole, and Fe-Ti oxides were residual phases of the partial melting processes that created the Honolulu Volcanics (Clague and Frey, 1982; Yang
Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.
NASA Astrophysics Data System (ADS)
Nakamura, Masato R.; Castaldi, Marco J.; Themelis, Nickolas J.
2008-11-01
Flow, mixing, and size segregation of heterogeneous granular particles are intriguing phenomena. In order to characterize the behavior of heterogeneous particle, a two-dimensional stochastic model of particle flow and mixing within the packed bed on a traveling grate was developed. The model was calibrated and validated by means of a physical model of the reverse acting grate, using tracer particles ranging from 6 -- 22 cm in diameter. It was found that the motion of the traveling grate, whose speed ranged from 15 to 90 reciprocations/hr, increases the mean residence time of small and medium particles by 69% and 8%, respectively, while decreasing the mean residence time of large particles by 19%. This is because of size segregation known as the Brazil Nut Effect. When the ratio of particle diameter to the height of moving bar, d/h, increases from 0.46 to 1.69, the mixing diffusion coefficient, De at 60/hr., decreases from 96 to 38.4. This indicates that the height of the moving bars should be greater than the diameter of targeted particles.
Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883
Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883
Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths
Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.
2011-01-01
This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.
Inference of permeability heterogeneity from joint inversion of transient flow and temperature data
NASA Astrophysics Data System (ADS)
Zhang, Zhishuai; Jafarpour, Behnam; Li, Lianlin
2014-06-01
Characterization of the rock permeability distribution in compartmentalized deep aquifers, enhanced geothermal systems, and hydrocarbon reservoirs is important for predicting the flow and transport behavior in these formations. Reliable prediction of the fluid flow and transport processes can, in turn, lead to effective development of the subsurface energy and environmental resources. In deep formations where thermal gradients are significant, the transient temperature data can provide valuable information about the permeability distribution with depth and about the vertical fluid displacement. This paper examines the importance of temperature data in resolving the distribution of permeability with depth by jointly, and individually, integrating the transient temperature and flow data. We demonstrate that when estimating permeability distributions in deep geothermal reservoirs, incorporating temperature data can increase the resolution of the permeability distribution profile with depth. To illustrate the importance of temperature measurements, we adopt a coupled transient heat and fluid flow as a forward model to predict the heat and fluid transport in a geothermal reservoir and develop an adjoint model for efficient computation of the gradient information for model calibration. We perform a series of numerical experiments for integration of flow and pressure data alone, temperature data alone, and flow and pressure jointly with temperature data. In each case, we apply the maximum A-posteriori (MAP) method and the randomized maximum likelihood (RML) method for inversion and uncertainty quantification. Analysis of the sensitivity of temperature and production data to heterogeneous permeability distributions reveals that the temperature of fluid, even when measured at the surface, is sensitive to the permeability distribution in the vertical extent of the reservoir. Hence, temperature measurements can be augmented with flow-related data to enhance the resolution of
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the first of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, Various aspects of the modelling effort are examined. In particular, the need to save on core memory causes one to use only specific realizations that have certain initial characteristics; in effect, these transport simulations are conditioned by these characteristics. Also, the need to independently estimate length Scales for the generated fields is discussed. The statistical uniformity of the flow field is investigated by plotting the variance of the seepage velocity for vector components in the x, y, and z directions. Finally, specific features of the velocity field itself are illuminated in this first paper. In particular, these data give one the opportunity to investigate the effective hydraulic conductivity in a flow field which is approximately statistically uniform; comparisons are made with first- and second-order perturbation analyses. The mean cloud velocity is examined to ascertain whether it is identical to the mean seepage velocity of the model. Finally, the variance in the cloud centroid velocity is examined for the effect of source size and differing strengths of local transverse dispersion.
A note on well boundary condition for flow through heterogeneous formations
NASA Astrophysics Data System (ADS)
Indelman, Peter; Dagan, Gedeon
2004-03-01
In modeling flow toward wells it is mathematically convenient to replace the well by a singularity line along its axis. In the case of homogeneous aquifers, confined flow, and fully penetrating wells the strength of the sources is constant, and the common condition of constant head on the well is satisfied exactly. It also leads to constant flux on the well envelope. In the case of aquifers of spatially variable conductivity the constant head boundary condition can be satisfied accurately, if the well radius is much smaller than the log conductivity horizontal integral scale, by selecting a variable source strength that is proportional to the local conductivity along the well [, 1996; , 1998; , 2003a, 2003b]. In this case the equivalent conductivity tends to the arithmetic mean near the well. It changes with distance, approaching from above the effective conductivity in uniform horizontal mean flow far from the well. Selecting inadvertently a constant source strength violates the condition of constant well head. The equivalent conductivity tends to the harmonic mean near the well and approaches from below the effective one in uniform mean flow. The equivalent conductivity is derived for both types of sources for stratified formations as well as for aquifers of a three-dimensional heterogeneous structure. The implications on interpretation of head measurements by the two models is illustrated by a few examples.
A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Meyer, Daniel W.; Jenny, Patrick; Tchelepi, Hamdi A.
2010-12-01
The probability density function (PDF) of the local concentration of a contaminant, or tracer, is an important component of risk assessment in applications that involve flow in heterogeneous subsurface formations. In this paper, a novel joint velocity-concentration PDF method for tracer flow in highly heterogeneous porous media is introduced. The PDF formalism accounts for advective transport, pore-scale dispersion (PSD), and molecular diffusion. Low-order approximations (LOAs), which are usually obtained using a perturbation expansion, typically lead to Gaussian one-point velocity PDFs. Moreover, LOAs provide reasonable approximations for small log conductivity variances (i.e., σY2 < 1). For large σY2, however, the one-point velocity PDFs deviate significantly from the Gaussian distribution as demonstrated convincingly by several Monte Carlo (MC) simulation studies. Furthermore, the Lagrangian velocity statistics exhibit complex correlations that span a wide range of scales, including long-range correlations due to the formation of preferential flow paths. Both non-Gaussian PDFs and complex long-range correlations are accurately represented using Markovian velocity processes (MVPs) in the proposed joint PDF method. LOA methods can be generalized to some extent by presuming a certain shape for the concentration PDF (e.g., a β PDF fully characterized by the concentration mean and variance). The joint velocity-concentration PDF method proposed here does not require any closure assumptions on the shape of the marginal concentration PDF. The Eulerian joint PDF transport equation is solved numerically using a computationally efficient particle-based approach. The PDF method is validated with high-resolution MC reference data from Caroni and Fiorotto (2005) for saturated transport in velocity fields, which are stationary in space and time, for domains with σY2 = 0.05, 1, and 2 and Péclet numbers ranging from 100 to 10,000. PSD is modeled using constant anisotropic
NASA Astrophysics Data System (ADS)
Zheng, Fei; Gao, Yanwei; Sun, Yuanyuan; Shi, Xiaoqing; Xu, Hongxia; Wu, Jichun
2015-12-01
Understanding the migration of dense non-aqueous phase liquids (DNAPLs) in complex subsurface systems is important for evaluating contamination source zones and designing remediation schemes after spill events. Six sandbox experiments were performed to explore the individual effect of flow velocity, and the combined effect of flow velocity and layered lenses on a DNAPL (PCE) migration in porous media. DNAPL saturation was measured using a light transmission system, and saturation distribution was quantified by spatial moments. The experimental results show that large flow velocity significantly promotes lateral and vertical migration of the low-viscosity DNAPL, while when layered lenses exist, the infiltration rate decreases and horizontal spread increases. Migration processes were numerically simulated, and the modelling results tested against experimental results. Furthermore, migration of DNAPLs with different viscosities was simulated to explore the combined effects of flow velocity and geological heterogeneity. Simulation results show that enhanced heterogeneity makes low-viscosity DNAPLs migrate along preferential pathways, resulting in irregular DNAPL morphology. Layered lenses combined with heterogeneity complicate the effect of flow velocity on the migration of low-viscosity DNAPLs by changing percolation paths. Results also demonstrate that flow velocity exhibits relatively little influence on the migration of medium/high-viscosity DNAPLs, which is predominantly controlled by viscosity and heterogeneity. Enhanced heterogeneity has a larger effect on migration behavior. Findings indicate that the migration paths and position of the source zone could change significantly, due to the combined effect of groundwater flow velocity and geological heterogeneity; thus, comprehensive hydrogeological investigation is needed to characterize the source zone.
Evaluation of a Heterogeneity Preserving Inversion Method for Subsurface Unsaturated Flow
NASA Astrophysics Data System (ADS)
Zhang, Y.; Schaap, M. G.; Neuman, S. P.; Guadagnini, A.; Riva, M.
2013-12-01
Natural recharge to groundwater in semi-arid regions is driven by unsaturated flow through an often deep vadose zone. Understanding and modeling such flow requires knowledge of the subsurface heterogeneity of hydraulic properties. It is expensive and labor intensive to measure such properties, making it necessary to rely on other sources of information. Pedotransfer functions (PTFs) constitute cheap and viable tools to estimate hydraulic properties from soil or sediment texture. Due to the predominantly empirical nature of PTFs and the fact that PTFs are often based on data derived from small laboratory samples, biased estimates of hydraulic parameters may be produced that would likely bias modeled field scale deep vadose zone flow. In this work, an inversion framework that treats the subsurface as a composite medium formed by different zones, each associated with spatially heterogeneous hydraulic parameters, is developed to allow (a) preserving the details of the subsurface heterogeneous nature and (b) assuring consistency among hydraulic parameters associated with different regions of the domain. The approach is demonstrated through a field application, which considers the Maricopa site near Phoenix, Arizona. The study site is a 50x50 meter and 15 meter deep vadose zone at which a 28-day constant-rate infiltration experiment was conducted in 2001. Moisture content at the site was measured daily with neutron thermalization at 400 locations during the infiltration period, and at irregular intervals 100 and 200 days prior and after infiltration, respectively. A PTF based on the Rosetta model is applied on the basis of measured spatial distributions of textural and bulk density data to provide initial estimates of the three-dimensional structure of hydraulic properties. Simple linear functions are defined that transform the PTF estimates of soil hydraulic properties values into hydraulic parameters that minimize the objective functions for the domain, while zonation
Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method
NASA Astrophysics Data System (ADS)
Qiao, W.
2015-12-01
The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the
Streamline Simulation of a Two-Phase Flow in Heterogeneous and Anisotropic Porous Media
NASA Astrophysics Data System (ADS)
Cervantes, D.; Salazar, A.; de la Cruz, L.
2013-05-01
The Streamline Simulation (SLS) have been in the literature since 1934, see [1], and is now accepted as an effective and complementary technology to more traditional flow modeling approaches. SLS is particularly effective in the numerical solution of geologically complex and heterogeneous systems, where the flow is defined mainly by permeability, porosity, and fault distributions of the rock, and fluid mobility. In order to apply the SLS technique to multiphase flow, we need to rewrite the governing equations of N-phases flow in terms of one pressure equation and N-1 saturation equations. Once we have this formulation, the steps on the SLS technique are: (1) Solve the pressure equation on a mesh of the whole domain and calculate the velocity field; (2) Using the velocity field, construct the three-dimensional streamlines; (3) Recast the mass conservation equations along the streamlines in terms of a new variable called time-of- flight (TOF); (4) Solve the 1D transport equations along the streamlines. When gravity and capillary are present, we account for these effects using operator-splitting technique. In the step (4), we commonly need an interpolation of the pressure field from the mesh to the streamlines. Also, some times a periodic updating of streamlines is required, and in this case the field variables calculated on the streamlines, need to be interpolated to the mesh. In this work we present an implementation of the SLS technique for solving an incompressible and immiscible two-phase flow, where capillary pressure and gravity are neglected. We solve the pressure equation using the finite volume method (FVM). The transport equations on the 1D streamlines are in this case hyperbolic, and we apply FVM in combination with upwinding techniques, in order to obtain stable numerical solutions. The interpolation of the variables from the mesh to the streamlines, and vice versa, is done using Radial Basis Functions. We study several interpolation kernels to reduce the
Generalized gas-solid adsorption modeling: Single-component equilibria
Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.
2015-01-07
Over the last several decades, modeling of gas–solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Tóth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can be further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg–Marquardt’s algorithm to handle the non-linear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set of
Generalized gas-solid adsorption modeling: Single-component equilibria
Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.
2015-01-07
Over the last several decades, modeling of gas–solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Tóth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can bemore » further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg–Marquardt’s algorithm to handle the non-linear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set
NASA Astrophysics Data System (ADS)
Jiao, Jianying; Zhang, Ye
2014-06-01
An inverse method based on local approximate solutions (LAS inverse method) is proposed to invert transient flows in heterogeneous aquifers. Unlike the objective-function-based inversion techniques, the method does not require forward simulations to assess measurement-to-model misfits; thus the knowledge of aquifer initial conditions (IC) and boundary conditions (BC) is not required. Instead, the method employs a set of local approximate solutions of flow to impose continuity of hydraulic head and Darcy fluxes throughout space and time. Given sufficient (but limited) measurements, it yields well-posed systems of nonlinear equations that can be solved efficiently with optimization. Solution of the inversion includes parameters (hydraulic conductivities, specific storage coefficients) and flow field including the unknown IC and BC. Given error-free measurements, the estimated conductivities and specific storages are accurate within 10% of the true values. When increasing measurement errors are imposed, the estimated parameters become less accurate, but the inverse solution is still stable, i.e., parameter, IC, and BC estimation remains bounded. For a problem where parameter variation is unknown, highly parameterized inversion can reveal the underlying parameter structure, whereas equivalent conductivity and average storage coefficient can also be estimated. Because of the physically-based constraints placed in inversion, the number of measurements does not need to exceed the number of parameters for the inverse method to succeed.
NASA Astrophysics Data System (ADS)
Wörman, Anders; Kronnäs, Veronika
2005-01-01
A model framework is developed for nitrogen transformations in a constructed wetland by combining both hydraulics and chemical transformation of nitrogen species. The nitrogen concentration of the effluent water is represented in terms of a convolution between the probability density function of the hydraulic residence times and a chemical transformation function describing the rate of mass-removal of total nitrogen with time in the water as a first-order reaction. Closed-form solutions to the treatment efficiency is derived and related to the nitrogen reduction in wetland Alhagen in Nynäshamn, Sweden. Further, the model coefficients are explored by numerical simulations and expressed in terms of heterogeneity of the flow resistance, i.e. in vegetation, and the aspect ratio of the wetland. Heterogeneity in vegetation contributes to increasing the variance of the water residence time and this increases the effluent concentration of nitrogen. Based on the theory and the data from Alhagen, the residence time probability density function for water can have a significant influence on the treatment, and particularly the aspect ratio markedly affects the active water volume and the treatment efficiency.
Modelling heterogeneous flow in the vadoze zone underneath a stormwater infiltration basin
NASA Astrophysics Data System (ADS)
Winiarski, T.; Lassabatere, L.; Angulo-Jaramillo, R.; Goutaland, D.
2011-12-01
Infiltration basins are part of the best management practices. They are aimed at infiltrating stormwater to prevent additional collection and treatment through rainwater systems. In the suburbs of Lyon (France), many of these infiltration basins were built over fluvio-glacial deposit. These basins have been the subject of research programs on vadose zone flow and fate of pollutants. This study focuses on the impact of the heterogeneity of the fluvio-glacial deposit on both flow pattern and solute transfer. A proper geological and sedimentological description is first proposed to characterize the efficient water transfer properties of the fluvio-glacial deposit at the work scale (1 ha). The local geological and sedimentological architecture of the deposit and its lithofacies were investigated locally through trenches using both particle size analysis and sedimentological approach. This information was extended to the whole work by combining several geophysical techniques, i.e. GPR, electric resistivity and seismic refraction tomography. Then water infiltration experiments were performed on each lithofacies to derive the hydrodynamic properties through BEST algorithm (Beerkan estimation of Soil Transfer properties), leading to the corresponding hydrofacies. In addition, soil-column experiments were performed to estimate hydrodispersive parameters (tracer injection) and the geochemical properties of lithofacies (injection of model pollutants). All these data were implemented into Hydrus to model flow and solute transfer through a 2D soil profile with a precise description of the hydrofacies at the basin scale (flow domain 14x2 m2). The results are highly relevant because they emphasize different types of preferential flow due to either the presence of capillary barriers, drainage layers or pipe flow, which may be responsible for the enhancement of pollutant transfer. In particular, they show that sand lenses may play an important role whereas unconnected gravels may
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2016-09-01
This work describes an investigation of the spatial statistical structure of specific discharge field and solute transport process of a nonreactive solute at the field scale through a heterogeneous deformable porous medium. The flow field is driven by a vertical gradient in the excess pore water pressure induced by a step increase in load applied on the upper part of a finite-thickness aquifer. The non-stationary spectral representation is adopted to characterize the spatial covariance of the specific discharge field necessary for the development of the solute particle trajectory statistics using the Lagrangian formalism. We show that the statistics of the specific discharge and particle trajectory derived herein are non-stationary and functions of the coefficient of soil compressibility, μ. The effect of μ on the relative variation of specific discharge and the solute particle trajectory statistics are analyzed upon evaluating our expressions.
An improved multi-value cellular automata model for heterogeneous bicycle traffic flow
NASA Astrophysics Data System (ADS)
Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai
2015-10-01
This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model.
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Krevor, S.
2015-12-01
We provide a comprehensive experimental study of steady state, drainage relative permeability curves with CO2-brine and N2-deionized water, on a single Bentheimer sandstone core with a simple two-layer heterogeneity. We demonstrate that, if measured in the viscous limit, relative permeability is invariant with changing reservoir conditions, and is consistent with the continuum-scale multiphase flow theory for water wet systems. Furthermore, we show that under capillary limited conditions, the CO2-brine system is very sensitive to heterogeneity in capillary pressure, and by performing core floods under capillary limited conditions, we produce effective relative permeability curves that are flow rate and fluid parameter dependent. We suggest that the major uncertainty in past observations of CO2-brine relative permeability curves is due to the interaction of CO2 flow with pore space heterogeneity under capillary limited conditions and is not due to the effects of changing reservoir conditions. We show that the appropriate conditions for measuring intrinsic or effective relative permeability curves can be selected simply by scaling the driving force for flow by a quantification of capillary heterogeneity. Measuring one or two effective curves on a core with capillary heterogeneity that is representative of the reservoir will be sufficient for reservoir simulation.
The recovering of the contaminant release history in heterogeneous and partially known flow field
NASA Astrophysics Data System (ADS)
Zanini, A.; Cupola, F.; Tanda, M. G.
2015-12-01
The recovering of the release history of a pollutant in an aquifer is a subject that obtains the researchers attention since 1990 because the knowledge of the pollutant discharge history can be a useful tool to share, among the responsible parties, the costs of the remediation actions. The methods developed are based on the perfect knowledge of the flow field where the pollutant event has occurred. But very often this perfect knowledge is only an unattainable hope: few boreholes and pumping tests are usually available and realizing new ones can lead to unacceptable costs. An evaluation of the reliability of the results obtained with the procedures for the recovering of the release history in heterogeneous and partially known flow field can be a very useful subject under the point of view of researchers and the practitioners. In fact the different methods can be more or less sensitive to the problem or give information that includes or not an uncertainty evaluation; moreover it can be possible to quantify the adequate amount of the site characterization actions. In this work we deal with a geostatistically based approach that in the past we have successfully applied on a perfect-known transmissivity field. The objective of the actual study is to investigate the importance of the knowledge of the hydraulic conductivity field and to identifying the minimum information required for recovering an acceptable release history. At this aim we built a numerical model of a 2-D confined aquifer with rectangular shape characterized by a heterogeneous hydraulic conductivity field. We estimate the conductivity field through a kriging interpolation starting from values sampled on a regular grids of different density and on that partially known field we estimate the pollutant release history. The results show that the reliability of the recovered release history, of course, increases with the density of the grid but meaningful indications can be obtained also with not very detailed
Three-dimensional steady state flow to a well in a randomly heterogeneous bounded aquifer
NASA Astrophysics Data System (ADS)
Guadagnini, Alberto; Riva, Monica; Neuman, Shlomo P.
2003-03-01
We consider flow in a confined aquifer of uniform thickness due to a well of zero radius that fully penetrates the aquifer and discharges at a constant rate. If the lateral extent of the aquifer is infinite, a steady state flow regime never develops. It is, however, well known that if the aquifer is additionally uniform, a quasi-steady state region extends from the well out to a cylindrical surface whose radius expands as the square root of time. On the expanding surface, head is uniform and time invariant. Inside this surface, head at any time is described by a steady state solution. A rigorous analysis of the analogous situation in a randomly heterogeneous aquifer would require the solution of a three-dimensional transient stochastic flow problem in an aquifer of infinite lateral extent. Here we take a different approach by developing a three-dimensional steady solution for mean flow to a well in a randomly heterogeneous aquifer with a cylindrical prescribed head boundary. In analogy to the uniform case we expect our solution to approximate a quasi-steady state region whose radius is initially small in comparison to the horizontal correlation scale of log conductivity but grows with time to become eventually much larger. We treat log conductivity as a statistically homogeneous random field characterized by a Gaussian spatial covariance function that may have different horizontal and vertical correlation scales. Our solution consists of analytical expressions for the ensemble mean and variance of head in the aquifer to second order in the standard deviation of log conductivity. It is based on recursive approximations of exact nonlocal moment equations that are free of distributional assumptions and so apply to both Gaussian and non-Gaussian log conductivity fields. The analytical solution is supported by numerical Monte Carlo simulations. It clarifies the manner in which relationships between the horizontal and vertical scales of the quasi-steady state region and
STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004
Pollard, David; Aydin, Atilla
2005-02-22
Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical
An Improved Discrete-Time Model for Heterogeneous High-Speed Train Traffic Flow
NASA Astrophysics Data System (ADS)
Xu, Yan; Jia, Bin; Li, Ming-Hua; Li, Xin-Gang
2016-03-01
This paper aims to present a simulation model for heterogeneous high-speed train traffic flow based on an improved discrete-time model (IDTM). In the proposed simulation model, four train control strategies, including departing strategy, traveling strategy, braking strategy, overtaking strategy, are well defined to optimize train movements. Based on the proposed simulation model, some characteristics of train traffic flow are investigated. Numerical results indicate that the departure time intervals, the station dwell time, the section length, and the ratio of fast trains have different influence on traffic capacity and train average velocity. The results can provide some theoretical support for the strategy making of railway departments. Supported by the National Basic Research Program of China under Grant No. 2012CB725400, the National Natural Science Foundation of China under Grant No. 71222101, the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2014ZT16, and the Fundamental Research Funds for the Central Universities No. 2015YJS088, Beijing Jiaotong University
NASA Astrophysics Data System (ADS)
He, Xinguang; Ren, Li
2009-07-01
SummaryIn this paper we present an adaptive multiscale finite element method for solving the unsaturated water flow problems in heterogeneous porous media spanning over many scales. The main purpose is to design a numerical method which is capable of adaptively capturing the large-scale behavior of the solution on a coarse-scale mesh without resolving all the small-scale details at each time step. This is accomplished by constructing the multiscale base functions that are adapted to the time change of the unsaturated hydraulic conductivity field. The key idea of our method is to use a criterion based on the temporal variation of the hydraulic conductivity field to determine when and where to update our multiscale base functions. As a consequence, these base functions are able to dynamically account for the spatio-temporal variability in the equation coefficients. We described the principle for constructing such a method in detail and gave an algorithm for implementing it. Numerical experiments were carried out for the unsaturated water flow equation with randomly generated lognormal hydraulic parameters to demonstrate the efficiency and accuracy of the proposed method. The results show that throughout the adaptive simulation, only a very small fraction of the multiscale base functions needs to be recomputed, and the level of accuracy of the adaptive method is higher than that of the multiscale finite element technique in which the base functions are not updated with the time change of the hydraulic conductivity.
On Raviart-Thomas and VMS formulations for flow in heterogeneous materials.
Turner, Daniel Zack
2010-11-01
It is well known that the continuous Galerkin method (in its standard form) is not locally conservative, yet many stabilized methods are constructed by augmenting the standard Galerkin weak form. In particular, the Variational Multiscale (VMS) method has achieved popularity for combating numerical instabilities that arise for mixed formulations that do not otherwise satisfy the LBB condition. Among alternative methods that satisfy local and global conservation, many employ Raviart-Thomas function spaces. The lowest order Raviart-Thomas finite element formulation (RT0) consists of evaluating fluxes over the midpoint of element edges and constant pressures within the element. Although the RT0 element poses many advantages, it has only been shown viable for triangular or tetrahedral elements (quadrilateral variants of this method do not pass the patch test). In the context of heterogenous materials, both of these methods have been used to model the mixed form of the Darcy equation. This work aims, in a comparative fashion, to evaluate the strengths and weaknesses of either approach for modeling Darcy flow for problems with highly varying material permeabilities and predominantly open flow boundary conditions. Such problems include carbon sequestration and enhanced oil recovery simulations for which the far-field boundary is typically described with some type of pressure boundary condition. We intend to show the degree to which the VMS formulation violates local mass conservation for these types of problems and compare the performance of the VMS and RT0 methods at boundaries between disparate permeabilities.
NASA Astrophysics Data System (ADS)
Angulo-Jaramillo, R.; Bien, L.; Hehn, V.; Winiarski, T.
2011-12-01
Colloidal particles transport through vadose zone can contribute to fast transport of contaminants into groundwater. The objective is to study the preferential flow and transport of colloids in heterogeneous unsaturated soil subjected to high organic matter entry. A physically based model is developed based on a large laboratory lysimeter than usual laboratory column experiments. LUGH-Lysimeter for Unsaturated Groundwater Hydrodynamics- is used to embed a soil monolith (1.6 m3) made of different cross-bedded lithological types with contrasting hydraulic properties. The filling material is a carbonated graded sand and gravel from the fluvioglacial vadose zone of the east of Lyon (France). Materials are 3D arranged on contrasting textured lithofacies analogous to the sedimentary lithology of a fluvioglacial cross-bedded deposit. Tracer (Br 1E-2M) and colloid solutions were injected in a pulse mode using a rainfall simulator. Colloid solution is Chlamydomonas reinhardtii at 3.2E+6 units/mL concentration. These unicellular algae can be considered as spherical particles from 6 to 10 μm in diam. Their resistance and doubling time of cell growth are greater than the transfer time in the lysimeter. Algae moving into the porous medium do not immediately reproduce, and then the population size remains constant. During this period, called the lag phase (1 to 2 days), the cells are metabolically active and increase only in cell size. Tensiometers, TDR and electric resistivity enable measurements of the parameters related to flow, solute and colloid transfer. Eluted solutions are sampled by 15 separated fraction collectors, leading to independent breakthrough curves. Eluted colloid concentration is measured by spectrofluorometry. The model approach combines Richards equation, coupled to a convective-dispersive equation with a source/sink term for particle transport and mobilization. Macroscopic particle attachment/detachment from pores is assumed to follow first-order kinetics
Darcy flow in heterogeneous porous media: relevance at sedimentary basin scale
NASA Astrophysics Data System (ADS)
Souche, Alban; Dabrowski, Marcin; Krotkiewski, Marcin
2010-05-01
Understanding heat transfer mechanisms in sedimentary rocks is important for recovering thermal history of sedimentary basins. Fluid flow may play a significant role by advecting heat within porous rocks of the basin. In extensional continental setting associated with stretching and thinning of the lithosphere, geothermal gradient below sedimentary basins may rise and contribute to the onset of thermal convection. Such process can be approximated by Darcy flow through porous media where thermal expansion introduces a gravitational instability between lighter hot fluids at the bottom and denser cold fluids at the top of the basin. However, the convection in such setting is inhibited by closing of the porosity with depth, which leads to limited amount of heat carrying fluids and a reduced permeability. We address this problem numerically by modeling Darcy's equations. To assess the accuracy of the pressure and velocity field in media with strongly varying permeability we compared two different numerical methods, 1) the standard finite element formulation with different order of elements (quadratic-pressure and linear-temperature) and 2) the mixed finite element formulation. An additional challenge in this study is to treat carefully the advection by choosing an appropriate numerical scheme. We used the method of characteristics with different flow integration, the Euler's and the 4th order Runge-Kutta's scheme, to avoid artificial diffusion that may significantly pollute the numerical solution. Results obtained for a homogeneous porous medium correspond to the analytical solution of the scaling between the Nusselt and Rayleigh numbers. We apply the tested model to investigate numerically the pattern of convection in heterogeneous porous rocks. We analyze the first-order characteristics and the limits of the convection in sedimentary basins under such conditions.
Heterogeneous Heat Flow and Groundwater Effects on East Antarctic Ice Sheet Dynamics
NASA Astrophysics Data System (ADS)
Gooch, B. T.; Soderlund, K. M.; Young, D. A.; Blankenship, D. D.
2015-12-01
We present the results numerical models describing the potential contributions groundwater and heterogeneous heat sources might have on ice dynamics. A two-phase, 1D hydrothermal model demonstrates the importance of groundwater flow in heat flux advection near the ice-bed interface. Typical, conservative vertical groundwater volume fluxes on the order of +/- 1-10 mm/yr can alter vertical heat flux by +/- 50-500 mW/m2 that could produce considerable volumes of meltwater depending on basin geometry and geothermal heat production. A 1D hydromechanical model demonstrates that during ice advance groundwater is mainly recharged into saturated sedimentary aquifers and during retreat groundwater discharges into the ice-bed interface, potentially contributing to subglacial water budgets on the order of 0.1-1 mm/yr during ice retreat. A map of most-likely elevated heat production provinces, estimated sedimentary basin depths, and radar-derived bed roughness are compared together to delineate areas of greatest potential to ice sheet instability in East Antarctica. Finally, a 2D numerical model of crustal fluid and heat flow typical to recently estimated sedimentary basins under the East Antarctic Ice Sheet is coupled to a 2.5D Full Stokes ice sheet model (with simple basal hydrology) to test for the sensitivity of hydrodynamic processes on ice sheet dynamics. Preliminary results show that the enhanced fluid flow can dramatically alter the basal heating of the ice and its temperature profile, as well as, the sliding rate, which heavily alter ice dynamics.
NASA Astrophysics Data System (ADS)
Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi
2016-09-01
This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.
Barth, G.R.; Hill, M.C.; Illangasekare, T.H.; Rajaram, H.
2001-01-01
As a first step toward understanding the role of sedimentary structures in flow and transport through porous media, this work deterministically examines how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values of simple, artificial structures in an intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiment. Results were judged based on how well simulations using measured values of hydraulic conductivities matched measured hydraulic heads, net flow, and transport through the tank. Discrepancies were investigated using sensitivity analysis and nonlinear regression estimates of the in situ hydraulic conductivity that produce the best fit to measured hydraulic heads and net flow. Permeameter and column experiments produced laboratory measurements of hydraulic conductivity for each of the sands used in the intermediate-scale experiments. Despite explicit numerical representation of the heterogeneity the laboratory-measured values underestimated net flow by 12-14% and were distinctly smaller than the regression-estimated values. The significance of differences in measured hydraulic conductivity values was investigated by comparing variability of transport predictions using the different measurement methods to that produced by different realizations of the heterogeneous distribution. Results indicate that the variations in measured hydraulic conductivity were more important to transport than variations between realizations of the heterogeneous distribution of hydraulic conductivity.
Analysis of the Impact of Soil Heterogeneity on the Spatial Variation of Unsaturated Flow
NASA Astrophysics Data System (ADS)
Patterson, Matthew; Gimenez, Daniel; Kerry, Ruth; Goovaerts, Pierre
2016-04-01
Modelling infiltration into soils with deterministic models requires knowledge of the hydraulic properties of that soil. Informing a model with these properties is complex because of the spatial heterogeneity of hydraulic properties that naturally occurs in all soils . The objective of this work was to analyze the effects that contrasting synthetic heterogeneities have on spatial outflows using a three-dimensional numerical model. An undisturbed soil column of 32 cm diameter and 50 cm height was used in an outflow experiment in the laboratory, where outflow was collected from the bottom of the column in 145 spatially-varied outflow cells and the column was subjected to multiple inflow rates. After the completion of the experiment, 30 sub-cores of 8 cm diameter and 5 cm height were extracted from the column and used to measure hydraulic properties and texture through a combination of pressure plate extractor, automated evaporation method, and a dewpoint potentiometer. The spatial heterogeneity of the soil in the column was represented by a Local Indicator of Spatial Autocorrelation (LISA - Local Moran's I) clustering algorithm, which used both texture and Electrical Resistivity Tomography data to identify significant clusters of points with high (HH) and low (LL) values and values that were not part of a significant cluster (NS). Each cluster was also assigned a numerical index based on LISA. Effective hydraulic properties were assigned to the HH and LL clusters and NS points based on the location of the 30 sub-cores and their average hydraulic properties. Resistivity data were used with omni-directional variograms with ranges of 5 and 15 cm and a nugget of 0.25 to conditionally simulate 50 realizations of 3-D data based on each variogram. The LISA algorithm was then used to detect significant clusters in these data and classify them as HH, LL or NS. Importing the resulting 100 sets of synthetic clusters and their corresponding effective hydraulic properties into
Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles
Choudhuri, Ahsan
2013-06-30
One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed
NASA Astrophysics Data System (ADS)
Jankovic, I.
2002-05-01
can be used to infer the effective conductivity of the medium. As many as 100,000 inhomogeneities are placed inside the domain for 2D simulations. Simulations in 3D were limited to 50,000 inclusions. A large number of simulations was conducted on a massively parallel supercomputer cluster at the Center for Computational Research, University at Buffalo. Simulations range from mildly heterogeneous formations to highly heterogeneous formations (variance of the logarithm of conductivity equal to 10) and from sparsely populated systems to systems where inhomogeneities cover 95% of the volume. Particles are released and tracked inside the core of constant mean velocity. Following the particle tracking, various medium, flow, and transport statistics are computed. These include: spatial moments of particle positions, probability density function of hydraulic conductivity and each component of velocity, their two-point covariance function in the direction of flow and normal to it, covariance of Lagrangean velocities, and probability density function of travel times to various break-through locations. Following the analytic nature of the flow solution, all the results are presented in dimensionless forms. For example, the dispersion coefficients are made dimensionless with respect to the mean velocity and size of inhomogeneities. Detailed results will be presented and compared to well known first-order results and the results that are based on simple approximate transport solutions of Aldo Fiori.
NASA Astrophysics Data System (ADS)
Buczko, U.; Gerke, H. H.; Hangen, E.; Hüttl, R. F.
2003-04-01
Water balances of forest sites are often estimated using 1-dimensional numerical models and tensiometer data from different depths. The magnitude of groundwater recharge calculated in such a way in most cases cannot be verified experimentally. In heterogeneous soils, water flows are spatially highly variable. The objective of this contribution is to compare the flow and deep percolation within a reclaimed mine soil which was calculated with a 1D numerical model, with seepage water collected, spatially-resolved, in-situ. Further, it is aimed at improving the methodology for calculating water balances and element budgets on heterogeneous mine soils, using 2D models with spatial variability. At the study site “Bärenbrück” near Cottbus, a lignitic mine soil afforested in 1982 with Pinus nigra, the components of the water balance were simulated with a 1D numerical model (SOIL/COUP) for a period from May 1995 to September 2001, using meteorological data and measured water tensions in soil depths 15, 60, and 100 cm. At the same site, soil water percolates were extracted continually in-situ at a soil depth of 110 cm from June 2000 until September 2001 within the framework of a cell-lysimeter study. 2D simulations were performed with the numerical model HYDRUS-2D, using evapotranspiration data obtained with the 1D-model. In the balance period between 4/96 and 3/99, the simulated deep percolation ranges between 30.4 and 35.2 mm per year, whereas during the dryer years 6/1999 5/2000 and 6/2000 5/2001 it amounts to 6.6 mm and 1.5 mm, respectively. The average deep percolation based on the in-situ suction plate data during the same period was 11 mm for the period 6/1999 5/2000 and 24.3 mm for 6/2000 5/2001, although spatially highly variable. Consequently, for the period 6/2000 5/2001, groundwater recharge based on measured in-situ data is by one order of magnitude higher than those simulated with the 1D model. The 2D numerical simulations are used to explain this
Thermal maps of gases in heterogeneous reactions
NASA Astrophysics Data System (ADS)
Jarenwattananon, Nanette N.; Glöggler, Stefan; Otto, Trenton; Melkonian, Arek; Morris, William; Burt, Scott R.; Yaghi, Omar M.; Bouchard, Louis-S.
2013-10-01
More than 85 per cent of all chemical industry products are made using catalysts, the overwhelming majority of which are heterogeneous catalysts that function at the gas-solid interface. Consequently, much effort is invested in optimizing the design of catalytic reactors, usually by modelling the coupling between heat transfer, fluid dynamics and surface reaction kinetics. The complexity involved requires a calibration of model approximations against experimental observations, with temperature maps being particularly valuable because temperature control is often essential for optimal operation and because temperature gradients contain information about the energetics of a reaction. However, it is challenging to probe the behaviour of a gas inside a reactor without disturbing its flow, particularly when trying also to map the physical parameters and gradients that dictate heat and mass flow and catalytic efficiency. Although optical techniques and sensors have been used for that purpose, the former perform poorly in opaque media and the latter perturb the flow. NMR thermometry can measure temperature non-invasively, but traditional approaches applied to gases produce signals that depend only weakly on temperature are rapidly attenuated by diffusion or require contrast agents that may interfere with reactions. Here we present a new NMR thermometry technique that circumvents these problems by exploiting the inverse relationship between NMR linewidths and temperature caused by motional averaging in a weak magnetic field gradient. We demonstrate the concept by non-invasively mapping gas temperatures during the hydrogenation of propylene in reactors packed with metal nanoparticles and metal-organic framework catalysts, with measurement errors of less than four per cent of the absolute temperature. These results establish our technique as a non-invasive tool for locating hot and cold spots in catalyst-packed gas-solid reactors, with unprecedented capabilities for testing
Thermal maps of gases in heterogeneous reactions.
Jarenwattananon, Nanette N; Glöggler, Stefan; Otto, Trenton; Melkonian, Arek; Morris, William; Burt, Scott R; Yaghi, Omar M; Bouchard, Louis-S
2013-10-24
More than 85 per cent of all chemical industry products are made using catalysts, the overwhelming majority of which are heterogeneous catalysts that function at the gas-solid interface. Consequently, much effort is invested in optimizing the design of catalytic reactors, usually by modelling the coupling between heat transfer, fluid dynamics and surface reaction kinetics. The complexity involved requires a calibration of model approximations against experimental observations, with temperature maps being particularly valuable because temperature control is often essential for optimal operation and because temperature gradients contain information about the energetics of a reaction. However, it is challenging to probe the behaviour of a gas inside a reactor without disturbing its flow, particularly when trying also to map the physical parameters and gradients that dictate heat and mass flow and catalytic efficiency. Although optical techniques and sensors have been used for that purpose, the former perform poorly in opaque media and the latter perturb the flow. NMR thermometry can measure temperature non-invasively, but traditional approaches applied to gases produce signals that depend only weakly on temperature are rapidly attenuated by diffusion or require contrast agents that may interfere with reactions. Here we present a new NMR thermometry technique that circumvents these problems by exploiting the inverse relationship between NMR linewidths and temperature caused by motional averaging in a weak magnetic field gradient. We demonstrate the concept by non-invasively mapping gas temperatures during the hydrogenation of propylene in reactors packed with metal nanoparticles and metal-organic framework catalysts, with measurement errors of less than four per cent of the absolute temperature. These results establish our technique as a non-invasive tool for locating hot and cold spots in catalyst-packed gas-solid reactors, with unprecedented capabilities for testing
NASA Astrophysics Data System (ADS)
Yadav, B. K.; Tomar, J.; Harter, T.
2014-12-01
We investigate nitrate movement from non-point sources in deep, heterogeneous vadose zones, using multi-dimensional variably saturated flow and transport simulations. We hypothesize that porous media heterogeneity causes saturation variability that leads to preferential flow systems such that a significant portion of the vadose zone does not significantly contribute to flow. We solve Richards' equation and the advection-dispersion equation to simulate soil moisture and nitrate transport regimes in plot-scale experiments conducted in the San Joaquin Valley, California. We compare equilibrium against non-equilibrium (dual-porosity) approaches. In the equilibrium approach we consider each soil layer to have unique hydraulic properties as a whole, while in the dual-porosity approach we assume that large fractions of the porous flow domain are immobile. However we consider exchange of water and solute between mobile and immobile zone using the appropriate mass transfer terms. The results indicate that flow and transport in a nearly 16 m deep stratified vadose zone comprised of eight layers of unconsolidated alluvium experiences highly non-uniform, localized preferential flow and transport patterns leading to accelerated nitrate transfer. The equilibrium approach largely under-predicted the leaching of nitrate to groundwater while the dual-porosity approach showed higher rates of nitrate leaching, consistent with field observations. The dual-porosity approach slightly over-predicted nitrogen storage in the vadose zone, which may be the result of limited matrix flow or denitrification not accounted for in the model. Results of this study may be helpful to better predict fertilizer and pesticide retention times in deep vadose zone, prior to recharge into the groundwater flow system. Keywords: Nitrate, Preferential flow, Heterogeneous vadose zone, Dual-porosity approach
Heterogeneities of in- and out-flows in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Millot, Claude
2014-01-01
mix; thus, accurately predicting the outflow characteristics in the Atlantic Ocean appears almost impossible. Herein, we first propose a fully objective description of the AWs and MWs during two GIBEX campaigns. Where the AWs and the MWs do not markedly mix, they are defined in terms of density and temperature ranges. Where a MW mixes with one of the AWs down to the bottom, the mixing line characteristics allow for that MW to be followed from one section to one downstream and for the validation of our concept: while superimposed east of the Strait, the MWs come to be juxtaposed within the Strait before becoming superimposed again. We also analysed additional CTD time series collected by the University of Malaga on the south and north sides of the southern sill of Espartel. We demonstrate the following: (a) even though the MWs at the sill (E) and on the south side (ES) were roughly the same, the densest ones out-flowed at ES, i.e., at depths shallower than at E, (b) the MWs on the north side (EN) were very different from those at E and each mixed with different AWs, and (c) using the mixing lines computed from each time series, the data recorded at E and ES allow for the retrieval, with good accuracy, of those recorded at Camarinal (C), which is not the case for the data recorded at EN. Finally we emphasise how different the AWs' heterogeneities are from the MWs' heterogeneities. The inflow is sucked into the Mediterranean Sea, due to the water budget (E-P) deficit there, and it can be composed of any type of AW present west of the Strait at any time and any specific location. The outflow is a product of the Mediterranean Sea, which is like a machine producing a series of MWs that first circulate as alongslope density currents before entering the Strait in a specific order and at specific locations. Consequently, we attempt to schematise the AWs-MWs mixing processes and our understanding of the outflow dynamics. Notwithstanding the difficulty of the working conditions
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Imtiaz, Maria; Alsaedi, Ahmed
2015-12-01
This paper addresses the steady three-dimensional boundary layer flow of viscous nanofluid. The flow is caused by a permeable stretching surface with second order velocity slip and homogeneous-heterogeneous reactions. Water is treated as base fluid and copper as nanoparticle. An incompressible fluid fills the porous space. The fluid is electrically conducting in the presence of an applied magnetic field. A system of ordinary differential equations is obtained by using suitable transformations. Convergent series solutions are derived. Impact of various pertinent parameters on the velocity, concentration and skin friction coefficient is discussed. Analysis of the obtained results shows that the flow field is influenced appreciably by the presence of velocity slip parameters. Also concentration distribution decreases for larger values of strength of homogeneous reaction parameter while it increases for strength of heterogeneous reaction parameter.
A theory for modeling ground-water flow in heterogeneous media
Cooley, Richard L.
2004-01-01
Construction of a ground-water model for a field area is not a straightforward process. Data are virtually never complete or detailed enough to allow substitution into the model equations and direct computation of the results of interest. Formal model calibration through optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal with this problem and provide for quantitative evaluation and uncertainty analysis of the model. However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the solution of the model equations with respect to some of the model (or hydrogeologic) input variables (termed in this report system characteristics) and 2) detailed and generally unknown spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is developed in this report to address these problems. The theory allows construction and analysis of a ground-water model of flow (and, by extension, transport) in heterogeneous media using a small number of lumped or smoothed system characteristics (termed parameters). The theory fully addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed to be effective values. The ground-water flow system is assumed to be adequately characterized by a set of spatially and temporally distributed discrete values, ?, of the system characteristics. This set contains both small-scale variability that cannot be described in a model and large-scale variability that can. The spatial and temporal variability in ? are accounted for by imagining ? to be generated by a stochastic process wherein ? is normally distributed, although normality is not essential. Because ? has too large a dimension to be estimated using the data normally available, for modeling purposes ? is replaced by a smoothed or lumped approximation y?. (where y is a
Analysis of convergent flow tracer tests in a heterogeneous sandy box with connected gravel channels
NASA Astrophysics Data System (ADS)
Molinari, Antonio; Pedretti, D.; Fallico, C.
2015-07-01
We analyzed the behavior of convergent flow tracer tests performed in a 3-D heterogeneous sandbox in presence of connected gravel channels under laboratory-controlled conditions. We focused on the evaluation of connectivity metrics based on characteristic times calculated from experimental breakthrough curves (BTCs), and the selection of upscaling model parameters related to connectivity. A conservative compound was injected from several piezometers in the box, and depth-integrated BTCs were measured at the central pumping well. Results show that transport was largely affected by the presence of gravel channels, which generate anomalous transport behavior such as BTC tailing and double peaks. Connectivity indicators based on BTC peak times provided better information about the presence of connected gravel channels in the box. One of these indicators, β, was defined as the relative temporal separation of the BTCs peaks from the BTCs centers of mass. The mathematical equivalence between β and the capacity coefficient adopted in mass transfer-based formulations suggests how connectivity metrics could be directly embedded in mass transfer formulations. This finding is in line with previous theoretical studies and was corroborated by reproducing a few representative experimental BTCs using a 1-D semianalytical bimodal solution embedding a mass transfer term. Model results show a good agreement with experimental BTCs when the capacity coefficient was constrained by measured β. Models that do not embed adequate connectivity metrics or do not adequately reproduce connectivity showed poor matching with observed BTCs.
Criaud, Annie, Fouassier, Philippe; Fouillac, Christian; Brach, Michel
1988-01-01
Three geothermal wells tapping the Dogger aquifer were studied in detail for their variations in chemical composition with time or conditions of exploitation. Analytical improvements for the determination of Cl, SO{sub 4}, Ca, Mg, Na and K make it possible to detect variations respectively of 0.15, 0.8, 0.6, 1.8, 1.8 and 1.4 %. Despite the fact that the natural flow may be important in some parts of the basin aquifer, we conclude that this factor is not responsible for the small variations noticed in mineralization within the one year survey period. The results concerning reactive and nonreactive species are best explained if a vertical heterogeneity of the chemistry of the fluid is assumed. A number of calcareous sub-layers, already demonstrated by geological studies, contribute to varying degrees to the production of the hot water. The changes in pumping rates, which are fixed according to external requirements, play a major role in the hydrodynamic and chemical disequilibrium of the wells. The consequences for the geothermal exploitations are emphasized.
NASA Astrophysics Data System (ADS)
Lachhab, A.
2015-12-01
The study site is located at the Center for Environmental Education and Research (CEER) at Susquehanna University. Electrical Resistivity and Seismic Refraction Tomography (ERT and SRT), as well as several pumping tests were performed to identify zones of heterogeneities and hydrogeophysical characteristics of a shallow unconfined aquifer. The combination of these methods was selected to study the local geology and the subsurface preferential pathways of groundwater flow. 22 Dipole-Dipole ERT transects with 56 electrodes each and 11 SRT transects with 24 geophones each were performed. Drilling logs of 5 observation wells located within the site were also used. All drilling logs showed clearly the heterogeneity of the aquifer when compared to each other. The combination of ERT and SRT indicated that a potential zone of preferential flow is present within the aquifer and can be accurately identified based on the approach adopted in this study. The drilling logs served to specifically identify the soil and the geological formations making the heterogeneity of the aquifer. 3D ERT and SRT block diagrams were generated to connect all formations shown in the 2D tomography profiles to visualize the pathways of preferential flow and non-conductive formations. While ERT has proven to show saturated areas of the subsurface, SRT was more effective in identifying the bedrock-soil discontinuity and other near surface formations contributing to the local heterogeneity.
Heterogeneous atmospheric chemistry
NASA Technical Reports Server (NTRS)
Schryer, D. R.
1982-01-01
The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.
Rame, M.
1990-01-01
Flows in highly heterogeneous porous media arise in a variety of processes including enhanced oil recovery, in situ bioremediation of underground contaminants, transport in underground aquifers and transport through biological membranes. The common denominator of these processes is the transport (and possibly reaction) of a multi-component fluid in several phases. A new numerical methodology for the analysis of flows in heterogeneous porous media is presented. Cases of miscible and immiscible displacement are simulated to investigate the influence of the local heterogeneities on the flow paths. This numerical scheme allows for a fine description of the flowing medium and the concentration and saturation distributions thus generated show low numerical dispersion. If the size of the area of interest is a square of a thousand feet per side, geological information on the porous medium can be incorporated to a length scale of about one to two feet. The technique here introduced, Operator Splitting on Multiple Grids, solves the elliptic operators by a higher-order finite-element technique on a coarse grid that proves efficient and accurate in incorporating different scales of heterogeneities. This coarse solution is interpolated to a fine grid by a splines-under-tension technique. The equations for the conservation of species are solved on this fine grid (of approximately half a million cells) by a finite-difference technique yielding numerical dispersions of less than ten feet. Cases presented herein involve a single phase miscible flow, and liquid-phase immiscible displacements. Cases are presented for model distributions of physical properties and for porosity and permeability data taken from a real reservoir. Techniques for the extension of the methods to compressible flow situations and compositional simulations are discussed.
Deussen, A; Flesche, C W; Lauer, T; Sonntag, M; Schrader, J
1996-07-01
The effects of adrenergic stimulation on local myocardial blood flow in the left ventricle were studied in 13 anaesthetized Beagle dogs using the tracer microsphere technique. Adrenergic stimulation was induced by intravenous infusion of orciprenaline (1-2 microg kg-1 min-1) over 15 min or by electrical stimulation of the left ansa subclavia (10 Hz, 1 ms, 4-8 V) over 5 min. Local myocardial blood flow was analysed in 256 samples with an average (+/-SD) mass of 318+/-49 mg from the left ventricular myocardium using a standardized dissection procedure. Orciprenaline increased the average myocardial blood flow from 0.85+/-0.18 to 1.73+/-0.27 ml min-1 g-1, while oxygen consumption and the pressure-rate product increased by 129 and 119% respectively. The coefficients of variation of local myocardial blood flow, a measure of spatial blood flow heterogeneity, were 0.21 and 0.18 under control and orciprenaline respectively. Except for a slight transmural gradient (endomyocardium/epimyocardium flow ratio 1.19) myocardial blood flow did not exhibit significant spatial gradients. Stimulation with orciprenaline increased the average blood flow in all regions of the left ventricle by comparable extents. However, local blood flow during orciprenaline was significantly lower in samples from regions which had a lower blood flow under resting control conditions. A significant positive relationship was obtained between local myocardial blood flow under resting conditions and orciprenaline (r=0.45+/-0.18). Moreover, after recovery from orciprenaline stimulation (i.e. 40-112 min after the end of orciprenaline infusion) local myocardial blood flow exhibited a high degree of correlation with local flow before orciprenaline (r=0.71+/-0.08). Comparable results were obtained with electrical stimulation of the left ansa subclavia. For the comparison stimulation vs. control, the correlation coefficient of local blood flow was 0.52+/-0.04 and for recovery vs. control 0.77+/-0.06. From these
Zhou, L; Qu, Z G; Ding, T; Miao, J Y
2016-04-01
The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems. PMID:27176384
NASA Astrophysics Data System (ADS)
Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.
2016-04-01
The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.
NASA Astrophysics Data System (ADS)
Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.
2015-12-01
Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular “color” LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6× as compared to multi-core CPU solution and 1.8× compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
NASA Astrophysics Data System (ADS)
Dogan Diker, Mine
Aquifers are the primary sources of clean drinking water. Pollution in aquifers is one of the most challenging and important environmental problems. It is not only extremely complex to map but also difficult to remediate. Flow and transport of water and pollutants in porous media requires detailed characterization of the properties of the media. The main property which controls the flow and transport is hydraulic conductivity (K), which can be defined as the ability of the media to let the water flow through. Intensive studies to map the distribution of hydraulic conductivity are necessary to model the plume migration. Conventional in-situ aquifer characterization techniques are invasive and lack the necessary high resolution. Therefore, novel methods are required to improve the methods to monitor and simulate the flow and transport through aquifers. This study introduces a combination of novel techniques to provide the necessary information related to porous media. The proposed method was tested at a highly heterogeneous site called the Macro Dispersion Experiment (MADE) site in Mississippi. The MADE site is a very well studied site where several large scale tracer tests were conducted in the 1980s and 1990s. The tracers used for these tests were monitored using more than 300 multi-level sampler (MLS) wells. Concentration measurements showed that the majority of the mass stayed near the injection area, whereas minute concentrations were measured further down-gradient. This behavior is significantly different from the simulations created using models based on the Advection-Dispersion Equation (ADE). This behavior and the inability to explain this using most models has led to a major debate in the hydrologic science community. The hypothesis of this study is that the ADE based models can reproduce simulations of the measured transport when the models are parameterized with sufficient high-resolution hydraulic conductivity data. Two novel high resolution
Development of a novel heterogeneous flow reactor -- Soot formation and nanoparticle catalysis
NASA Astrophysics Data System (ADS)
Camacho, Joaquin
numerical analysis of the gas-phase chemistry for butanol and butane indicates the fuel structure effect is largely exhibited in the relative importance of C2 versus C3 intermediate species formed during the initial stage of fuel breakdown. Oxidation kinetics of soot are typically measured with carbon black or well aged soot as substrates. The soot surface is also assumed to be graphitic in theoretical soot oxidation rate calculations. However, recent experimental and theoretical studies show that nascent soot can have structures and surface composition drastically different from mature, graphitized soot. In the current study, oxidation of nascent soot by O2 was observed at T= 950 and 1000K for oxygen concentrations ranging from 1000 to 7800 ppm in a laminar aerosol flow reactor at ambient pressure. Oxidation behavior of primary particles (Dp < 20 nm) of nascent soot from a premixed BSS ethylene flame was observed by tracking the shift in the particle size distribution function (PSDF) under a given residence time. The measured rate of the surface reaction ranges from 1x106 -- 3x10 6 g/cm2s for nascent soot. The rate of oxidation observed at the given conditions is an order of magnitude faster than predicted by the classical Nagle Strickland-Constable (NSC) correlations derived from graphite oxidation. Heterogeneous surface reaction rates are highly sensitive to the surface composition. Thus the faster rate of surface reaction by the nascent soot observed currently suggests that the surface composition of nascent soot is more reactive than the conventional graphite surface. Catalytic activity in reacting flow laden with suspended nanoparticle catalyst is measured in a novel aerosol flow reactor. Similar to conventional gas phase kinetics, heterogeneous reactions are the product of collisions between the particle surface and surrounding gas. However, particles below 10 nm in diameter are in a transition region where collisions do not always result in perfectly elastic
Anode materials for sour natural gas solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Danilovic, Nemanja
Novel anode catalysts have been developed for sour natural gas solid oxide fuel cell (SOFC) applications. Sour natural gas comprises light hydrocarbons, and typically also contains H2S. An alternative fuel SOFC that operates directly on sour natural gas would reduce the overall cost of plant construction and operation for fuel cell power generation. The anode for such a fuel cell must have good catalytic and electrocatalytic activity for hydrocarbon conversion, sulfur-tolerance, resistance to coking, and good electronic and ionic conductivity. The catalytic activity and stability of ABO3 (A= La, Ce and/or Sr, B=Cr and one or more of Ti, V, Cr, Fe, Mn, or Co) perovskites as SOFC anode materials depends on both A and B, and are modified by substituents. The materials have been prepared by both solid state and wet-chemical methods. The physical and chemical characteristics of the materials have been fully characterized using electron microscopy, XRD, calorimetry, dilatometry, particle size and area, using XPS and TGA-DSC-MS. Electrochemical performance was determined using potentiodynamic and potentiostatic cell testing, electrochemical impedance analysis, and conductivity measurements. Neither Ce0.9Sr0.1VO3 nor Ce0.9 Sr0.1Cr0.5V0.5O3 was an active anode for oxidation of H2 and CH4 fuels. However, active catalysts comprising Ce0:9Sr0:1V(O,S)3 and Ce0.9Sr 0.1Cr0.5V0.5(O,S)3 were formed when small concentrations of H2S were present in the fuels. The oxysulfides formed in-situ were very active for conversion of H2S. The maximum performance improved from 50 mW cm-2 to 85 mW cm -2 in 0.5% H2S/CH4 at 850°C with partial substitution of V by Cr in Ce0.9Sr0.1V(O,S)3. Selective conversion of H2S offers potential for sweetening of sour gas without affecting the hydrocarbons. Perovskites La0.75Sr0.25Cr0.5X 0.5O3--delta, (henceforth referred to as LSCX, X=Ti, Mn, Fe, Co) are active for conversion of H2, CH4 and 0.5% H2S/CH4. The order of activity in the different fuels depends on
Heterogeneities of in- and out-flows in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Millot, Claude
2014-01-01
mix; thus, accurately predicting the outflow characteristics in the Atlantic Ocean appears almost impossible. Herein, we first propose a fully objective description of the AWs and MWs during two GIBEX campaigns. Where the AWs and the MWs do not markedly mix, they are defined in terms of density and temperature ranges. Where a MW mixes with one of the AWs down to the bottom, the mixing line characteristics allow for that MW to be followed from one section to one downstream and for the validation of our concept: while superimposed east of the Strait, the MWs come to be juxtaposed within the Strait before becoming superimposed again. We also analysed additional CTD time series collected by the University of Malaga on the south and north sides of the southern sill of Espartel. We demonstrate the following: (a) even though the MWs at the sill (E) and on the south side (ES) were roughly the same, the densest ones out-flowed at ES, i.e., at depths shallower than at E, (b) the MWs on the north side (EN) were very different from those at E and each mixed with different AWs, and (c) using the mixing lines computed from each time series, the data recorded at E and ES allow for the retrieval, with good accuracy, of those recorded at Camarinal (C), which is not the case for the data recorded at EN. Finally we emphasise how different the AWs' heterogeneities are from the MWs' heterogeneities. The inflow is sucked into the Mediterranean Sea, due to the water budget (E-P) deficit there, and it can be composed of any type of AW present west of the Strait at any time and any specific location. The outflow is a product of the Mediterranean Sea, which is like a machine producing a series of MWs that first circulate as alongslope density currents before entering the Strait in a specific order and at specific locations. Consequently, we attempt to schematise the AWs-MWs mixing processes and our understanding of the outflow dynamics. Notwithstanding the difficulty of the working conditions
Porous flow of liquid water in Enceladus rock core driven by heterogeneous tidal heating
NASA Astrophysics Data System (ADS)
Choblet, Gael; Tobie, Gabriel; Behounkova, Marie; Cadek, Ondrej
2016-10-01
Surface heat flux estimates in excess of 15 GW (e.g. Howett et al., 2016) raise the question of the origin of Enceladus' heat production. While strong heating by tidal dissipation is probably the only viable source, whether the maximum production occurs in the outer ice shell or, deeper, in the ocean or in the rock core, is however unclear. While the analysis of measurements by the Cassini mission (gravity and topography data, observed libration), seems to favor an extremely thin shell at Enceladus South Pole (a few kms only, cf. Thomas et al., 2016, Cadek et al., 2016), the distribution of heat sources remains a major issue in the light of the evolutionary trend that led to this present-day physical state of the moon.Here, we build up on a recent evaluation of tidal deformation in a porous rock core saturated with liquid water indicating that, owing to its unconsolidated state, plausible core rheologies could lead to significant heat production there (typically 20 GW, Tobie et al., in prep.). We describe porous flow in a 3D spherical model following the work of Travis and Schubert (2015). Compaction of the rock matrix is neglected. Water characteristics (density and viscosity), and the bulk thermal conductivity of the porous core are temperature-dependent and the effect of non-water compounds can be considered. Tidal heating is introduced as a heterogeneous heat source with a pattern inferred from numerical models of the tidal response. Our analysis focuses particularly on the heat flux pattern at the ocean/core interface where water is advected in/out of the porous medium.
Simmons, C T; Fenstemaker, T R; Sharp, J M
2001-11-01
In certain hydrogeological situations, fluid density variations occur because of changes in the solute or colloidal concentration, temperature, and pressure of the groundwater. These include seawater intrusion, high-level radioactive waste disposal, groundwater contamination, and geothermal energy production. When the density of the invading fluid is greater than that of the ambient one, density-driven free convection can lead to transport of heat and solutes over larger spatial scales and significantly shorter time scales than compared with diffusion alone. Beginning with the work of Lord Rayleigh in 1916, thermal and solute instabilities in homogeneous media have been studied in detail for almost a century. Recently, these theoretical and experimental studies have been applied in the study of groundwater phenomena, where the assumptions of homogeneity and isotropy rarely, if ever, apply. The critical role that heterogeneity plays in the onset as well as the growth and/or decay of convective motion is discussed by way of a review of pertinent literature and numerical simulations performed using a variable-density flow and solute transport numerical code. Different styles of heterogeneity are considered and range from continuously "trending" heterogeneity (sinusoidal and stochastic permeability distributions) to discretely fractured geologic media. Results indicate that both the onset of instabilities and their subsequent growth and decay are intimately related to the structure and variance of the permeability field. While disordered heterogeneity tends to dissipate convection through dispersive mixing, an ordered heterogeneity (e.g., sets of vertical fractures) allows instabilities to propagate at modest combinations of fracture aperture and separation distances. Despite a clearer understanding of the processes that control the onset and propagation of instabilities, resultant plume patterns and their migration rates and pathways do not appear amenable to
Berd, D; Herlyn, M; Koprowski, H; Mastrangelo, M J
1989-12-01
We used flow cytometry to measure the expression of human melanoma antigens on cell suspensions dissociated from metastatic masses. The objective was to study the heterogeneity between tumor samples from different patients and between different tumors excised from a single patient. Fifty-three metastases excised from 34 melanoma patients were analyzed with a panel of nine murine monoclonal antibodies (MOABs). Melanoma cells were stained by an indirect fluorescent method and analyzed on a Coulter EPICS C flow cytometer after gating to exclude tumor-infiltrating leukocytes and dead cells. The most consistently and most strongly expressed antigen was the high-molecular-weight proteoglycan (detected by the MOAB 9.2.27), which was expressed on 95% of the melanoma specimens and by a high proportion of cells within each specimen (mean +/- SE, 79.2 +/- 5.5). However, strong expression of this antigen was limited to melanoma cells that had been dissociated mechanically and was markedly diminished by exposure to collagenase. Culture of collagenase-dissociated tumor cells for 24 to 48 h resulted in reexpression of the antigen. The expression of other melanoma-associated antigens was not affected by collagenase treatment, but for these antigens there was more variability between cells from an individual tumor and between tumors from different patients. The percentage of enzyme-dissociated tumors considered positive for MOAB binding (defined as at least 10% of cells positive) and the mean +/- SE of the percentage of positive cells within a tumor were as follows: MOAB ME-9-61 (antigen, p97) = 84% + (41.2 +/- 5.4%); MOAB ME-20.4 (antigen, nerve growth factor receptor) = 40% + (18.7 +/- 5.1%); MOAB ME-24 (antigen, ganglioside GD3) = 84% + (50.8 +/- 4.8%); MOAB ME-311 (antigen, ganglioside 9-O-acetyl-GD3) = 76% + (42.5 +/- 5.1%); MOAB ME-361 (antigen, mainly ganglioside GD2) = 3% + (1.9 +/- 0.8%); MOAB 3F8 (antigen, ganglioside GD2) = 36% (10.5 +/- 3.8%); MOAB 14G2a (antigen
Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W
2015-05-26
Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors.
Skowerski, Krzysztof; Czarnocki, Stefan J; Knapkiewicz, Paweł
2014-02-01
A tube-in-tube reactor was successfully applied in homo- and heterogeneous olefin metathesis reactions under continuous flow mode. It was shown that the efficient removal of ethylene facilitated by connection of the reactor with a vacuum pump significantly improves the outcome of metathesis reactions. The beneficial aspects of this approach are most apparent in reactions performed at low concentration, such as macrocyclization reactions. The established system allows achievement of both improved yield and selectivity, and is ideal for industrial applications.
The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation
NASA Astrophysics Data System (ADS)
Muljadi, Bagus P.; Blunt, Martin J.; Raeini, Ali Q.; Bijeljic, Branko
2016-09-01
The effect of pore-scale heterogeneity on non-Darcy flow behaviour is investigated by means of direct flow simulations on 3-D images of a beadpack, Bentheimer sandstone and Estaillades carbonate. The critical Reynolds number indicating the cessation of the creeping Darcy flow regime in Estaillades carbonate is two orders of magnitude smaller than in Bentheimer sandstone, and is three orders of magnitude smaller than in the beadpack. It is inferred from the examination of flow field features that the emergence of steady eddies in pore space of Estaillades at elevated fluid velocities accounts for the early transition away from the Darcy flow regime. The non-Darcy coefficient β, the onset of non-Darcy flow, and the Darcy permeability for all samples are obtained and compared to available experimental data demonstrating the predictive capability of our approach. X-ray imaging along with direct pore-scale simulation of flow provides a viable alternative to experiments and empirical correlations for predicting non-Darcy flow parameters such as the β factor, and the onset of non-Darcy flow.
NASA Astrophysics Data System (ADS)
Benson, S. M.; Hingerl, F.; Pini, R.
2013-12-01
New imaging techniques and approaches are providing unparalleled insight into the influence of sub-core scale heterogeneities on single and multiphase flows. Quantification of sub core-scale porosity, permeability, and even capillary pressure curves at a spatial scale of about 1-10 cubic millimeters is now possible. This scale provides a critical link in the continuum of spatial scales needed to link pore-scale processes to core-scale and field scale flow and transport. Data from such studies can be used to directly test the veracity of models for flow and transport in heterogeneous rocks, provide data for multi-stage upscaling, and reveal insights about physical/chemical processes heretofore neglected. Here we present data from three emerging techniques capable of imaging and quantifying transport properties and phenomena at the sub-core scale: magnetic resonance imaging (MRI); positron emission tomography (PET); and X-Ray CT scanning. Direct imaging of spatially resolved fluid velocities and porosity is possible with MRI (Romanenko et al., 2012). These data can be inverted to provide permeability and porosity maps at a spatial scale of ~10 cubic millimeter. PET imaging can be used to track movement of a radioactive tracer through a rock and simultaneously measure effluent tracer concentrations at a similar resolution (Boutchko et al., 2012). X-ray CT scanning of multiphase flow experiments can be used to measure capillary pressure curves and through scaling relationships, to calculate permeability at a scale of about 1 cubic millimeters(Krause et al., 2011; Pini et al., 2013). Strengths and shortcomings of these techniques are discussed--along with the benefits of combining them. Together these techniques provide a new platform from which to probe more deeply the ubiquitous influence of heterogeneity on subsurface flow and transport processes, and ultimately improve predictions of subsurface transport. Boutchk et al., 2012. Imaging and modeling of flow in porous
Redden, G.D.; Fujita, Y.; Scheibe, T.D.; Tartakovsky, A.M.; Smith, R.W.; Reddy, M.M.; Kelly, S.D.
2006-04-05
This project is aimed at understanding how contaminant transport in heterogeneous porous media is impacted by precipitation and dissolution events through chemical interactions with precipitates and as a consequence of coupling between precipitation and flow. We hypothesize that precipitation/coprecipitation, encapsulation, isolation from flow and alteration of reactive surfaces will contribute to altering contaminant mobility during precipitation events, and that predicting the release of contaminants during precipitate dissolution requires an understanding of how precipitates are distributed and how contaminants are released from the different compartments over time. Using calcium carbonate as a model system, physical experiments and modeling at the pore-scale and continuum-scale will be used to improve the conceptual approach to predicting the impact of flow-precipitation coupling on solute migration. Column and 2-dimensional intermediate-scale experiments with constructed physical and chemical heterogeneities will be used to investigate the movement of fluids and reactive solutes during different types of mixing events that lead to calcium carbonate supersaturation and precipitation. Smoothed particle hydrodynamic modeling will be used to simulate pore-scale mixing and precipitation in heterogeneous porous media and estimate continuum-scale parameters. Continuum-scale modeling will be used to test conceptual models and associated effective parameters that simulate the macroscopic behavior of the experimental domains.
NASA Astrophysics Data System (ADS)
Bulicek, M. C.; Metge, D. W.; Mohanty, S. K.; Harvey, R. W.; Ryan, J. N.
2013-12-01
Intermittent flows of rainwater frequently mobilize pathogenic microbes attached to subsurface soils, thereby causing groundwater contamination. The potential of intermittent rainfall to mobilize diverse pathogens (e.g., size, shape, taxa) remains understudied for heterogeneous soil systems. This study investigates the combined effects of microbe size and shape, intermittent flow, and soil physical heterogeneity on the transport, retention and mobilization of microbes through an intact, fractured shale saprolite core. Microbes, including MS-2 bacteriophage (~26 nm), Pseudomonas stutzeri bacteria (~1 μm), and Cryptosporidium parvum oocysts (3.6 μm), and 0.5 μm fluorescent microspheres (FMS), preceded by a bromide tracer, were applied to the core to obtain breakthrough. After breakthrough, the core was subjected to intermittent rainfalls to mobilize the attached microbes and FMS. Water samples were collected using 19 spatially-arranged outlet ports at the core base to resolve the effect of soil physical heterogeneity. Water infiltrated through only eight of 19 total sampling ports, which indicated water partially bypassed soil matrices and infiltrated through macropores. Bromide recovery was less than 100%, which indicated diffusion of bromide into the soil matrix. Macropores and the soil matrix dominated flow were characterized based on the cumulative bromide recovery within individual sampling ports. Thus, lower recovery was attributed to increased matrix diffusion and higher recovery indicated the presence of macropores. Intermittent flow mobilized previously sequestered microbes and FMS; however, mobilization varied with the size of microbes/FMS and sampling ports. Greater mobilization occurred through macropores compared to soil matrices. Mobilization of larger, spherical C. parvum oocysts was greater than that of the smaller, spherical MS-2 bacteriophage and the rod-shaped P. stutzeri bacteria during intermittent flow. This suggested shear forces mobilize
Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K
2014-01-15
The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [(15)O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min(-1); old men: 25.1 ± 15.4 ml min(-1); age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min(-1) (100 g)(-1)) than the younger (8.6 ± 3.6 ml min(-1) (100 g)(-1)) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia.
Gas sampling system for reactive gas-solid mixtures
Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.
1989-01-01
An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.
Gas sampling system for reactive gas-solid mixtures
Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.
1990-01-01
An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.
NASA Astrophysics Data System (ADS)
Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco
2016-05-01
We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.
Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang
2010-08-10
The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.
NASA Astrophysics Data System (ADS)
Zech, Alraune; Zehner, Björn; Kolditz, Olaf; Attinger, Sabine
2016-04-01
Ground water flow systems of the Thuringian Basin are studied by analyzing the fluid dynamics at this real world example of a shallow sedimentary basin. The impact of the permeability distribution and density differences on the flow velocity pattern, the salt concentration, and the temperature distribution is quantified by means of transient coupled simulations of fluid flow, heat, and mass transport processes. Simulations are performed with different permeabilities in the sedimentary layering and heterogeneous permeability distributions as well as with a non-constant fluid density. Three characteristic numbers are useful to describe the effects of permeability on the development of flow systems and subsurface transport: the relation of permeability between aquiclude and aquifer, the variance, and the correlation length of the log-normal permeability distribution. Density dependent flow due to concentration gradients is of minor importance for the distribution of the flow systems, but can lead to increased mixing dissolution of salt. Thermal convection is in general not present. The dominant driver of groundwater flow is the topography in combination with the permeability distribution. The results obtained for the Thuringian Basin give general insights into the dynamics of a small sedimentary basin due to the representative character of the basin structure as well as the transferability of the settings to other small sedimentary basins.
NASA Astrophysics Data System (ADS)
Parker, L. B.; Yarwood, R. R.; Kraft, E. L.; Selker, J. S.
2003-12-01
Gaseous flow dynamics in unsaturated media were examined with respect to microbial colonization, liquid flow rates, and textural heterogeneities. A light transmission chamber consisting of two glass sheets mounted in an aluminum frame in front of a light bank was packed with translucent quartz sand and brought to unsaturated conditions. To visualize gas transport, carbon dioxide was introduced to the chamber at varying rates in combination with different liquid flow rates and textural inclusions. A methyl red pH indicator solution was used in conjunction with a liquid-cooled camera to monitor carbon dioxide concentrations and infer transport dynamics throughout the system. To explore whether gas-phase nutrients would stimulate microbial growth, acetate and ammonia vapors were pumped through a chamber inoculated with Pseudomonas fluorescens HK44. Naphthalene vapor pulses were used to induce bioluminescence, allowing imaging of responsive colonies.
NASA Astrophysics Data System (ADS)
Russo, David
2016-04-01
Detailed numerical analyses of flow and transport were used to investigate the effect of spatially connected features on the transport in three-dimensional (3-D), spatially heterogeneous, combined vadose zone-groundwater flow systems. Formations with spatially connected fine- and coarse-textured features (SCFT- and SCCT-formations, respectively), representing the10th and the 90th percentiles of the distributions of the formation's hydraulic parameters, respectively, were considered here. Results of the analyses suggest that in steady-state flow, when the unsaturated zone of the combined flow domains is relatively wet, as compared with a Multivariate-Gaussian (MG) formation, spatially connected features may reduce the solute first arrival time, particularly in the SCCT-formation, and may enhance the spreading of the solute breakthrough, particularly in the SCFT-formation. The effect of the spatially connected features on the hydrological response, however, decreases as the unsaturated zone becomes drier. The latter result stems from the decrease in the fraction of the water-filled, pore-space occupied by the connected structures, with decreasing water content. The latter finding also explains the result that the response of more realistic, combined flow systems, whose unsaturated zone is associated with transient flow and relatively low, intermittent water contents, is essentially independent of the spatially connected features of the formations, regardless of their soil texture.
A new approach to flow simulation in highly heterogeneous porous media
Rame, M.; Killough, J.E. )
1992-09-01
In this paper, applications are presented for a new numerical method - operator splittings on multiple grids (OSMG) - devised for simulations in heterogeneous porous media. A coarse-grid, finite-element pressure solver is interfaced with a fine-grid timestepping scheme. The CPU time for the pressure solver is greatly reduced and concentration fronts have minimal numerical dispersion.
NASA Astrophysics Data System (ADS)
Gjetvaj, Filip; Russian, Anna; Gouze, Philippe; Dentz, Marco
2015-10-01
Both flow field heterogeneity and mass transfer between mobile and immobile domains have been studied separately for explaining observed anomalous transport. Here we investigate non-Fickian transport using high-resolution 3-D X-ray microtomographic images of Berea sandstone containing microporous cement with pore size below the setup resolution. Transport is computed for a set of representative elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coefficient is calculated from the measured local porosity using a phenomenological model that includes a porosity threshold (ϕθ) below which diffusion is null and the exponent n that characterizes tortuosity-porosity power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and mobile-immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ϕθ, due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligible. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose a continuous time random walk upscaled model where the transition time is the sum of independently distributed random variables characterized by specific distributions. It allows modeling a 1-D equivalent macroscopic transport honoring both the control of the flow field heterogeneity and the multirate mass transfer between mobile and immobile domains.
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
Skowerski, Krzysztof; Czarnocki, Stefan J; Knapkiewicz, Paweł
2014-02-01
A tube-in-tube reactor was successfully applied in homo- and heterogeneous olefin metathesis reactions under continuous flow mode. It was shown that the efficient removal of ethylene facilitated by connection of the reactor with a vacuum pump significantly improves the outcome of metathesis reactions. The beneficial aspects of this approach are most apparent in reactions performed at low concentration, such as macrocyclization reactions. The established system allows achievement of both improved yield and selectivity, and is ideal for industrial applications. PMID:24167003
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2015-12-01
A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel
Adsorption energies for a nanoporous carbon from gas-solid chromatography and molecular mechanics.
Rybolt, Thomas R; Ziegler, Katherine A; Thomas, Howard E; Boyd, Jennifer L; Ridgeway, Mark E
2006-04-01
Gas-solid chromatography was used to obtain second gas-solid virial coefficients, B2s, in the temperature range 342-613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N2 BET surface area of 995 m2/g. The temperature dependence of B2s was used to determine experimental values of the gas-solid interaction energy, E*, for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas-solid interaction energy, E*(cal), for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E*(cal), were compared and correlated to the experimental E* values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E*(cal) and E* values was provided by a 0.50 nm nanoporous model using MM2 parameters.
Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.
ERIC Educational Resources Information Center
Paspek, Stephen C.; And Others
1980-01-01
Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)
Heterogeneous physical and chemical processes in a rarefied-gas flow in channels
NASA Astrophysics Data System (ADS)
Rebrov, A. K.; Yudin, I. B.
2016-05-01
A flow with physical and chemical reactions on hot surfaces is investigated. On the basis of physical experiments, determining the hydrogen-dissociation degree in rarefied gas and calculation of the flow by the method of direct simulation Monte Carlo (DSMC), it is possible to specify certain unknown constants of interaction of molecules and atoms with a tungsten surface. By the example of the hydrogen flow in a hightemperature tungsten cylindrical channel, the role of dissociation, sorption, and recombination processes is shown in a wide range of flow regimes from free-molecular to continuum.
Celik, I.; Zhang, G.Q.
1992-08-01
It is reported on development, testing and verification of engineering models for predicting the pressure drop, the solids flow rate, and the downcoming gas flow rate through an L-valve for a given aeration flow rate. The models are, in particular, applicable for studying the one-dimensional gas-solids motion through the return loop of a circulating fluidized bed. A literature review is presented in a comparative manner. One-dimensional transient equations governing the dense two-phase flows are derived. Those equations are then used to deduce relevant characteristic dimensionless parameters. Experimental data from literature have been analyzed and empirical correlations are suggested. A calculation procedure is proposed for predicting relevant gas and solid flow parameters. The model is based on integrated conservation equations for mass and momentum for both phases. Some experiments of our own have been performed and the data have been analyzed. The model is calibrated against experimental data.
Kabala, Z.J.; Milly, P.C.D. )
1990-04-01
Sensitivity analysis is one of the tools available for analyzing the effects of parameter uncertainty and soil heterogeneity on the transport of moisture in the unsaturated similar porous media. Direct differentiation of the discretized Richards equation with respect to parameters defining spatial variability leads to linear systems of equations for elementary sensitivities that are readily solved in conjunction with the original equation. These elementary sensitivities can be easily transformed into approximations of functional sensitivities and into sensitivities of boundary fluxes. A numerical implementation of this technique in one space dimension yields results that are consistent with exact analytical solutions and with numerical perturbation calculations. The effects of a given heterogeneity can be modeled adequately provided that the maximum relative change of the scale factor from one grid to the next not exceed a number on the order of unity.
Luxmoore, R.J.; Tharp, M.L.
1993-03-01
Compacted soil barriers constructed at landfill sites have some degree of heterogeneity in hydraulic properties that may lead to a decline in barrier integrity and performance. A computer modeling study of the water dynamics of compacted soil barriers for a mesic site in eastem Tennessee was undertaken to identify possible situations that could lead to barrier failure. A water dynamics model for soil-plant systems (UTM) was applied to three landful construction scenarios, and varying degrees of heterogeneity of hydraulic properties for the cap and liner were introduced with a scaling procedure. Simulations were conducted for three annual contrasting rainfall conditions, and sensitivity analysis and Monte Carlo methods were used in the investigation.
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic- conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non- Gaussian behavior of the mean cloud, are reported on as well.
Müller, Florian Jenny, Patrick Meyer, Daniel W.
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared to MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.
Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy
2015-11-01
Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. PMID:26292776
Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy
2015-11-01
Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process.
NASA Astrophysics Data System (ADS)
Marc, V.; Garel, E.; Debieche, T. H.; Krzeminska, D. M.; Bogaard, T. A.; Malet, J. P.
2009-04-01
Among the difficulties usually encountered in catchment hydrology, the study of local scale hydrological processes comes up against the critical point of scaling up the information to proper scale in term of risk or resources management. In highly heterogeneous media, the major impact of preferential flow makes the question still trickier since the problem of measurements is to be added to the areal extrapolation. One of the most suitable methods to elaborate hydrological conceptual scheme at hillslope or catchment scale is water tracing (both environmental and artificial). In the framework of the GACH2C and ECOUPREF projects, environmental and artificial tracers, both isotopes and solutes, were used to clarify infiltration and groundwater recharge processes on different black marl unstable hillslopes of southern French Alps. The investigation was carried out at different time steps (from event to long term scale) and from local to catchment scale. Long term isotopic monitoring showed that mean residence time of groundwater was quite short (around a year). However, local isotopic and hydrochemical anomalies suggested that part of groundwater recharge could be due to areas outside the watershed. At local scale, artificial rainfall experiments were carried out in summers 2007 and 2008 and in autumn 2007 using bromide and chloride as tracers. Despite the impervious nature of the marl material, initial results showed how efficient was the role of areal heterogeneity (fissures system, matrix-blocks contacts) on the rapid percolation of water to the water table. Experimental investigations in different soil surface contexts made it possible to propose a first attempt of macropore flow typology and assess the impact of initial and forcing conditions on the preferential flow generation. The analysis of these data provides a description of the main flow mechanisms in the marl material. This advancement in hydrological process understanding helps in better understanding the
Ferchaud, Anne-Laure; Hansen, Michael M
2016-01-01
Heterogeneous genomic divergence between populations may reflect selection, but should also be seen in conjunction with gene flow and drift, particularly population bottlenecks. Marine and freshwater three-spine stickleback (Gasterosteus aculeatus) populations often exhibit different lateral armour plate morphs. Moreover, strikingly parallel genomic footprints across different marine-freshwater population pairs are interpreted as parallel evolution and gene reuse. Nevertheless, in some geographic regions like the North Sea and Baltic Sea, different patterns are observed. Freshwater populations in coastal regions are often dominated by marine morphs, suggesting that gene flow overwhelms selection, and genomic parallelism may also be less pronounced. We used RAD sequencing for analysing 28 888 SNPs in two marine and seven freshwater populations in Denmark, Europe. Freshwater populations represented a variety of environments: river populations accessible to gene flow from marine sticklebacks and large and small isolated lakes with and without fish predators. Sticklebacks in an accessible river environment showed minimal morphological and genomewide divergence from marine populations, supporting the hypothesis of gene flow overriding selection. Allele frequency spectra suggested bottlenecks in all freshwater populations, and particularly two small lake populations. However, genomic footprints ascribed to selection could nevertheless be identified. No genomic regions were consistent freshwater-marine outliers, and parallelism was much lower than in other comparable studies. Two genomic regions previously described to be under divergent selection in freshwater and marine populations were outliers between different freshwater populations. We ascribe these patterns to stronger environmental heterogeneity among freshwater populations in our study as compared to most other studies, although the demographic history involving bottlenecks should also be considered in the
NASA Astrophysics Data System (ADS)
Carranza-Diaz, O.; Brovelli, A.; Rossi, L.; Barry, D. A.
2009-04-01
Horizontal, subsurface flow constructed wetlands are wastewater treatment devices. The influent polluted water flows through a porous substrate where the contaminants are removed, for example by microbial oxidation, surface adsorption and mineral precipitation. These systems are widely used with varying degrees of success to treat municipal and agricultural contaminated waters and remove the organic carbon and nutrient load. Constructed wetlands are an appealing and promising technology, because they (i) are potentially very efficient in removing the pollutants, (ii) require only a small external energy input and (iii) require low maintenance. However, practical experience has shown that the observed purification rate is highly variable and is often much smaller than expected. One of the numerous reasons proposed to explain the variable efficiency of constructed wetlands is the existence of highly conductive zones within the porous substrate, which produce a dramatic reduction of the hydraulic residence time and therefore directly decreases the overall water purification rate. This work aims to understand quantitatively the relationship between the spatial variability in the hydraulic properties of the substrate and the effective residence time in constructed wetlands. We conducted two suites of stochastic numerical simulations, modelling the transport of a conservative tracer in a three-dimensional simulated constructed wetland in one case, and the microbial oxidation of a carbon source in the other. Within each group of simulations, different hydraulic conductivity fields were tested. These were based on a log-normal, spatially correlated random field (with exponential spatial correlation). The amount of heterogeneity was varied by changing the variance correlation length in the three directions. For each set of parameters, different realizations are considered to deduce both the expected residence time for a certain amount of heterogeneity, and its range of
Algorithms and a short description of the D1_Flow program for numerical modeling of one-dimensional steady-state flow in horizontally heterogeneous aquifers with uneven sloping bases are presented. The algorithms are based on the Dupuit-Forchheimer approximations. The program per...
A priori models for predicting drag reduction for flow over heterogeneous slip boundaries
NASA Astrophysics Data System (ADS)
Heck, Margaret; Papavassiliou, Dimitrios
2015-11-01
Slip at fluid-fluid/fluid-solid interfaces is a subject of interest for many engineering applications, ranging from porous materials to biomedical devices to separation processes. Despite remarkable effort to include the effects of surface topology and various flow and physical properties in models describing fluid slip, the mathematical description of flow over mixed slip boundaries is still under investigation. Using similarity theory, which is based on the generalized homogeneity of physical laws governing most systems and takes advantage of similarity in the spatial distribution of characteristics of motion, the equivalent slip velocity is shown to be a function of the geometry of a microfluidic system. The results are used to predict the slip velocity for flow over surfaces with periodically repeating no-slip/free-shear boundaries in the shape of rectangles for 16%-50% solid fractions. The equivalent slip velocity for flow over rectangular boundaries can then be related to the those for flow over surfaces with square and circular no-slip boundaries using characteristic length ratios. The models developed using this apporach can be directly used to estimate the slip velocity for flow over various free-shear/no-slip boundaries for Couette, laminar flow conditions.
NASA Astrophysics Data System (ADS)
Juez, C.; Ferrer-Boix, C.; Murillo, J.; Hassan, M. A.; García-Navarro, P.
2016-01-01
In order to study the morphological evolution of river beds composed of heterogeneous material, the interaction among the different grain sizes must be taken into account. In this paper, these equations are combined with the two-dimensional shallow water equations to describe the flow field. The resulting system of equations can be solved in two ways: (i) in a coupled way, solving flow and sediment equations simultaneously at a given time-step or (ii) in an uncoupled manner by first solving the flow field and using the magnitudes obtained at each time-step to update the channel morphology (bed and surface composition). The coupled strategy is preferable when dealing with strong and quick interactions between the flow field, the bed evolution and the different particle sizes present on the bed surface. A number of numerical difficulties arise from solving the fully coupled system of equations. These problems are reduced by means of a weakly-coupled strategy to numerically estimate the wave celerities containing the information of the bed and the grain sizes present on the bed. Hence, a two-dimensional numerical scheme able to simulate in a self-stable way the unsteady morphological evolution of channels formed by cohesionless grain size mixtures is presented. The coupling technique is simplified without decreasing the number of waves involved in the numerical scheme but by simplifying their definitions. The numerical results are satisfactorily tested with synthetic cases and against experimental data.
Discontinuous approximation of viscous two-phase flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Bürger, Raimund; Kumar, Sarvesh; Sudarshan Kumar, Kenettinkara; Ruiz-Baier, Ricardo
2016-09-01
Runge-Kutta Discontinuous Galerkin (RKDG) and Discontinuous Finite Volume Element (DFVE) methods are applied to a coupled flow-transport problem describing the immiscible displacement of a viscous incompressible fluid in a non-homogeneous porous medium. The model problem consists of nonlinear pressure-velocity equations (assuming Brinkman flow) coupled to a nonlinear hyperbolic equation governing the mass balance (saturation equation). The mass conservation properties inherent to finite volume-based methods motivate a DFVE scheme for the approximation of the Brinkman flow in combination with a RKDG method for the spatio-temporal discretization of the saturation equation. The stability of the uncoupled schemes for the flow and for the saturation equations is analyzed, and several numerical experiments illustrate the robustness of the numerical method.
NASA Astrophysics Data System (ADS)
Illman, Walter A.; Hughson, Debra L.
2005-06-01
Unsaturated flow through fractured rocks is a concern in the siting and performance of waste disposal facilities such as the proposed geological repository at Yucca Mountain, Nevada. We simulated a small two-dimensional cross-section of welded volcanic tuff, representative of Yucca Mountain stratigraphy, using spatially correlated, randomly heterogeneous fracture permeability fields and homogeneous matrix permeability continua representing various degrees of welding. Ten realizations each of fracture permeability fields for four different variances ( σ2=0.5, 1.0, 1.5, and 2.0) were generated by the direct Fourier transform method (Robin, M.J.L., Gutjahr, A.L., Sudicky, E.A., Wilson, J.L., 1993. Cross-correlated random field generation with the direct Fourier transform method, Water Resour. Res. 29(7)2385-2398) independently for the welded Tiva Canyon Tuff (TCw), the non-welded Paintbrush Tuff (PTn), and the welded Topopah Spring Tuff (TSw), the latter being the proposed primary repository horizon. Numerical simulations were run for steady state flow at three different uniform water flux boundary conditions. Boundary conditions along the sides were impermeable and the base was open to gas and liquid flow. Numerical simulations were performed using the dual-continuum, two-phase flow simulator METRA, which represents matrix and fractures as dual overlapping continua, where liquid flux between continua can be restricted by a uniform factor. Fracture-matrix interaction was modeled as being less restricted in the PTn as compared to the TCw/TSw. Heterogeneous fracture permeability fields generated strong preferential flow in the TCw/TSw fracture continuum and significant preferential flow in the uniformly permeable, PTn matrix continuum. Flow focusing led to a local increase in saturation, which in turn increased relative permeability to water along the preferential pathways, causing water to flow faster. The development of the preferential pathways reduced the wetted
NASA Astrophysics Data System (ADS)
Rajaram, Harihar; Pandey, Sachin
2016-04-01
Numerous previous laboratory and field observations and inferences of weathering rates suggest significant scale dependence (laboratory rates >> field rates) and time dependence (rates appear to decrease progressively with time of exposure). Preferential flow induced by heterogeneity, manifest as permeability variations, macropores, or discrete fractures, has been suggested as one class of extrinsic mechanisms responsible for the observed scale and time dependence. Additional intrinsic mechanisms proposed include the decrease in reactive surface area with weathering. In this research, we present a quantitative evaluation of the influence of heterogeneity and preferential flow on weathering rates using high-resolution reactive transport modeling. We employ PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processors and provides a robust framework for simulating the complex weathering patterns resulting from preferential flow. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPF). The behavior in these simulations was compared to that in homogeneous permeability fields. The simulations reproduce to some extent the scale and time dependence of weathering rates, although the modeled scale and time dependence are less pronounced than indicated by observations. The simulations in DFNs indicated a systematic time-dependence related to the formation of diffusion-controlled weathering fronts that propagate into matrix blocks. However, the decline of system-averaged weathering rates does not follow a 1/sqrt(time) dependence characteristic of diffusion, due to network scale effects and depletion of matrix blocks. The behavior in CRPF was akin to that in homogeneous permeability fields with enhanced dispersion, with a time-dependence that reflects the advective sweeping of the weathering front from the simulation domain. Our results suggest that structured
A stochastic mixed finite element heterogeneous multiscale method for flow in porous media
Ma Xiang; Zabaras, Nicholas
2011-06-01
A computational methodology is developed to efficiently perform uncertainty quantification for fluid transport in porous media in the presence of both stochastic permeability and multiple scales. In order to capture the small scale heterogeneity, a new mixed multiscale finite element method is developed within the framework of the heterogeneous multiscale method (HMM) in the spatial domain. This new method ensures both local and global mass conservation. Starting from a specified covariance function, the stochastic log-permeability is discretized in the stochastic space using a truncated Karhunen-Loeve expansion with several random variables. Due to the small correlation length of the covariance function, this often results in a high stochastic dimensionality. Therefore, a newly developed adaptive high dimensional stochastic model representation technique (HDMR) is used in the stochastic space. This results in a set of low stochastic dimensional subproblems which are efficiently solved using the adaptive sparse grid collocation method (ASGC). Numerical examples are presented for both deterministic and stochastic permeability to show the accuracy and efficiency of the developed stochastic multiscale method.
NASA Astrophysics Data System (ADS)
de Rooij, G. H.; Hogervorst, F. A.; Bloem, E.; Stagnitti, F.; Cirpka, O. A.
2007-12-01
Water flow and solute transport in soils are invariably affected by heterogeneity and often by preferential flow, both typically occurring within 1 square meter. Paradoxically, we need to understand flow and transport at this small scale to quantify them at the field and regional scales. This paradox arises from the geometry of soils: the scale in the direction of the flow is orders of magnitude smaller than the scales perpendicular to it. We present a coherent package of experimental and theoretical tools to observe and analyze small-scale variations (within 0.1- 1 square meter) of water and solute fluxes. Multicompartment samplers can measure small-scale water and solute movement in space and time, particularly in temperate climates. The latest generation of samplers allows repeated extraction of percolate samples in situ under controlled suction to minimize disturbance of the unsaturated flow field. After discussing the general principle of such samplers, a method will be presented to estimate the required total sampling area of a sampler from the degree of flow convergence in a soil. In recent years, we improved our ability to analyze the data produced by multicompartment samplers. The spatial solute distribution curve as the spatial equivalent of the travel time distribution was parameterized and physically interpreted. Both distributions were unified in the leaching surface, which has tremendous potential for detailed interpretation and model evaluation. Multicompartment samplers can also help identify the nature of the solute transport process. Recently, we expanded the theory of solute dilution to make it applicable to multicompartment sampler data. We will demonstrate how dilution theory can be used to determine the predominance of a convective-dispersive or a stochastic-convective transport regime during a tracer experiment.
NASA Astrophysics Data System (ADS)
Solazzi, Santiago G.; Rubino, J. Germán; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus
2016-11-01
Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically layered media to rocks containing fractures and highly irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall
NASA Astrophysics Data System (ADS)
Solazzi, Santiago G.; Rubino, J. Germán; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus
2016-08-01
Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically-layered media to rocks containing fractures and highly-irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall
Tartakovsky, Alexandre M.; Redden, George D.; Yoshiko Fujita; Scheibe, Tim; Smith, Robert; Reddy, Michael; Kelly, Shelly
2006-06-01
Reactive mixing fronts can occur at large scales, e.g. when chemical amendments are injected in wells, or at small scales (pore-scales) when reactive intermediates are being generated in situ at grain boundaries, cell surfaces and adjacent to biofilms. The product of the reactions such as mineral precipitates, biofilms or filtered colloids modifies permeability leading to the complex coupling between flow and reactions and precipitation. The objectives are to determine how precipitates are distributed within large and small scale mixing fronts, how permeability and flow is modified by precipitation, how the mobility of a representative contaminant, strontium, is affected by the precipitation of carbonates, and how subsequent dissolution of the carbonates result in mobilization of Sr and increased flow. The desired outcomes of the project are to help develop methods leading to sequestration of metal contaminants, and to determine how macroscopic field-scale modeling can be applied to predict the outcome of remediation activities.
Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media
Cooley, R.L.; Christensen, S.
2006-01-01
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is
Vogiatzis, Ioannis; Habazettl, Helmut; Louvaris, Zafeiris; Andrianopoulos, Vasileios; Wagner, Harrieth; Zakynthinos, Spyros; Wagner, Peter D
2015-03-15
Heterogeneity in the distribution of both blood flow (Q̇) and O2 consumption (V̇O2) has not been assessed by near-infrared spectroscopy in exercising normal human muscle. We used near-infrared spectroscopy to measure the regional distribution of Q̇ and V̇O2 in six trained cyclists at rest and during constant-load exercise (unloaded pedaling, 20%, 50%, and 80% of peak Watts) in both normoxia and hypoxia (inspired O2 fraction = 0.12). Over six optodes over the upper, middle, and lower vastus lateralis, we recorded 1) indocyanine green dye inflow after intravenous injection to measure Q̇; and 2) fractional tissue O2 saturation (StiO2) to estimate local V̇O2-to-Q̇ ratios (V̇o2/Q̇). Varying both exercise intensity and inspired O2 fraction provided a (directly measured) femoral venous O2 saturation range from about 10 to 70%, and a correspondingly wide range in StiO2. Mean Q̇-weighted StiO2 over the six optodes related linearly to femoral venous O2 saturation in each subject. We used this relationship to compute local muscle venous blood O2 saturation from StiO2 recorded at each optode, from which local V̇O2/Q̇ could be calculated by the Fick principle. Multiplying regional V̇O2/Q̇ by Q̇ yielded the corresponding local V̇O2. While six optodes along only in one muscle may not fully capture the extent of heterogeneity, relative dispersion of both Q̇ and V̇O2 was ∼0.4 under all conditions, while that for V̇O2/Q̇ was minimal (only ∼0.1), indicating in fit young subjects 1) a strong capacity to regulate Q̇ according to regional metabolic need; and 2) a likely minimal impact of heterogeneity on muscle O2 availability.
Kinetics study of heterogeneous reactions of ozone with erucic acid using an ATR-IR flow reactor.
Leng, Chunbo; Hiltner, Joseph; Pham, Hai; Kelley, Judas; Mach, Mindy; Zhang, Yunhong; Liu, Yong
2014-03-01
The ozone initiated heterogeneous oxidation of erucic acid (EA) thin film was investigated using a flow system combined with attenuated total reflection infrared spectroscopy (ATR-IR) over wide ranges of ozone concentrations (0.25-60 ppm), thin film thickness (0.1-1.0 μm), temperatures (263-298 K), and relative humidities (0-80% RH) for the first time. Pseudo-first-order rate constants, kapp, and overall reactive uptake coefficients, γ, were obtained through changes in the absorbance of C[double bond, length as m-dash]O stretching bands at 1695 cm(-1), which is assigned to the carbonyl group in carboxylic acid. Results showed that the reaction followed the Langmuir-Hinshelwood mechanism and kapp was largely dominated by surface reaction over bulk phase reaction. In addition, both the kapp and the γ values showed very strong temperature dependences (∼two orders of magnitude) over the temperature range; in contrast, they only slightly increased with increasing RH values from 0-80%. According to the kapp values as a function of temperature, the activation energy for the heterogeneous reaction was estimated to be 80.6 kJ mol(-1). Our results have suggested that heterogeneous reactions between ozone and unsaturated solid surfaces likely have a substantially greater temperature dependence than liquid ones. Moreover, the hygroscopic properties of EA thin films before and after exposure to ozone were also studied by measurement of water uptake. Based on the hygroscopicity data, the insignificant RH effect on reaction kinetics was probably due to the relatively weak water uptake by the unreacted and reacted EA thin films.
NASA Astrophysics Data System (ADS)
Hangen, E.; Gerke, H. H.; Schaaf, W.; Hüttl, R. F.
2003-04-01
Flow and transport processes in forest-reclaimed lignitic mine soils are required to quantify water and element budgets, which are important for long-term predictions of restored ecosystem stability and development of mining area water quality. Soil water pressure head and solute concentration measurements using tensiometers and suction cups showed strong spatial heterogeneity possibly indicating preferential flow effects. Properties and spatial structures of the mostly sandy mine soils and transport processes, however, have not sufficiently been known for detailed assessments. The objective of this study was to quantitatively analyse flow paths and measure amount and spatial distribtion of leaching. Water and element fluxes were studied at a reclaimed mine spoil site, which was afforested in 1982 with Pinus nigra. At a 3.3 m2 plot, the total percolating water was collected in 110 cm soil depth by 45 squared suction cells of 27 cm edge length each. A multi-tracer solution containing deuterium, bromide, and terbuthylazine was applied evenly at the plot surface and imposed to natural infiltration. Leaching was measured for a period of about 2 years. One third of the cells never delivered any drainage water while few cells had large drainage rates which in one case even exceeded local infiltration rates. About 71 % of the drainage was through 9 % of the area. The spatial distribution of the leached bromide tracer did not always correspond with that of drainage. Relative concentrations of bromide and deuterium were similar. Terbuthylazine was observed only sporadically during the first drainage period and at relatively small concentrations just above the analytical detection limit. Leaching patterns of the sorptive herbicide indicate only relatively small nonequilibrium-type preferential flow. Sediment structures, water repellent regions, and tree root distributions seem to be important for funneling and flow path formation.
The influence of streambed heterogeneity on hyporheic flow in gravelly rivers.
Zhou, YaoQuan; Ritzi, Robert W; Soltanian, Mohamad Reza; Dominic, David F
2014-01-01
Deposits of open-framework gravel occurring in gravelly streambeds can exert a significant influence on hyporheic flow. The influence was quantified using a numerical model of the hyporheic zone. The model included open-framework gravel stratasets represented with commonly observed characteristics including a volume fraction of about one-third of the streambed sediment, a hydraulic conductivity two orders of magnitude greater than other strata present, and a spatial connectivity forming preferential-flow pathways. The influence of open-framework gravel stratasets on hyporheic flow was much greater than the influence of the channel morphology including meanders, point bars, dunes, and ripples. Seventy percent of the total hyporheic exchange occurred across 30% of the channel boundary at locations of open-framework gravel stratasets. The maximum local interfacial flux rates occurred at these locations, and were orders of magnitude greater than those at other locations. The local flux rates varied by six orders of magnitude over the channel boundary. The composite flow rate through the model with open-framework gravel stratsets was an order of magnitude greater than that through an equivalent but homogeneous model.
ERIC Educational Resources Information Center
Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa
2016-01-01
In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…
Glöckner, Steffen; Tran, Duc N; Ingham, Richard J; Fenner, Sabine; Wilson, Zoe E; Battilocchio, Claudio; Ley, Steven V
2015-01-01
A rapid flow synthesis of oxazolines and their oxidation to the corresponding oxazoles is reported. The oxazolines are prepared at room temperature in a stereospecific manner, with inversion of stereochemistry, from β-hydroxy amides using Deoxo-Fluor®. The corresponding oxazoles can then be obtained via a packed reactor containing commercial manganese dioxide.
Technology Transfer Automated Retrieval System (TEKTRAN)
Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color polymorphisms, and shows evidence of genetic structuring among regional populations. We test whether this structure is evidence for discrete gene flow barriers tha...
Pressure dependence of the melting temperature of solids - Rare-gas solids
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1991-01-01
A method presented by Schlosser et al. (1989) for analyzing the pressure dependence of experimental melting-temperature data is applied to rare-gas solids. The plots of the logarithm of the reduced melting temperature vs that of the reduced pressure are straight lines in the absence of phase transitions. The plots of the reduced melting temperatures for Ar, Kr, and Xe are shown to be approximately straight lines.
NASA Astrophysics Data System (ADS)
Abushaikha, Ahmad S.; Blunt, Martin J.; Gosselin, Olivier R.; Pain, Christopher C.; Jackson, Matthew D.
2015-10-01
We present a new control volume finite element method that improves the modelling of multi-phase fluid flow in highly heterogeneous and fractured reservoirs, called the Interface Control Volume Finite Element (ICVFE) method. The method drastically decreases the smearing effects in other CVFE methods, while being mass conservative and numerically consistent. The pressure is computed at the interfaces of elements, and the control volumes are constructed around them, instead of at the elements' vertices. This assures that a control volume straddles, at most, two elements, which decreases the fluid smearing between neighbouring elements when large variations in their material properties are present. Lowest order Raviart-Thomas vectorial basis functions are used for the pressure calculation and first-order Courant basis functions are used to compute fluxes. The method is a combination of Mixed Hybrid Finite Element (MHFE) and CVFE methods. Its accuracy and convergence are tested using three dimensional tetrahedron elements to represent heterogeneous reservoirs. Our new approach is shown to be more accurate than current CVFE methods.
Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed
2016-01-01
This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457
Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed
2016-01-01
This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457
NASA Astrophysics Data System (ADS)
Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu
2015-04-01
The dynamic of suspended sediments in highly turbulent and concentrated flow is an important issue to better predict the sediment propagation along mountain rivers. In such extreme environments, the spatial and temporal variability of hydraulic and sediment parameters are difficult to measure: the flow velocity and the suspended sediment concentration (SSC) could be high (respectively several m/s and g/l) and rapidly variable. Simple methods are commonly used to estimate water discharge and mean or punctual SSC. But no method has been used successfully in a mountain river to estimate during a whole event the spatial distribution of flow velocity and SSC, as well as sediment parameters like grain size or settling velocity into a river cross section. This leads to these two questions: in such conditions, can we calculate sediment fluxes with one sediment concentration measurement? How can we explain the spatial heterogeneity of sediment characteristics? In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. Especially, several measurements are usually done during the flushing of the dams located on the upper part of the river. During the flushing event of June 2014, we instrumented the gauging station located just upstream the confluence between the Isere and the Arc River, at the outlet of the Arc River watershed. ADCP measurements have been performed to estimate the spatial distribution of the flow velocity (up to 3 m/s), and turbidimeters and automatic samplers have been used to estimate the spatial distribution of the SSC into the cross section (up to 6 g/l). These samples have been directly analyzed
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Gibbs, J. A.
2015-06-01
An analytical solution of the Boussinesq equations for the motion of a viscous stably stratified fluid driven by a surface thermal forcing with large horizontal gradients (step changes) is obtained. This analytical solution is one of the few available for wall-bounded buoyancy-driven flows. The solution can be used to verify that computer codes for Boussinesq fluid system simulations are free of errors in formulation of wall boundary conditions and to evaluate the relative performances of competing numerical algorithms. Because the solution pertains to flows driven by a surface thermal forcing, one of its main applications may be for testing the no-slip, impermeable wall boundary conditions for the pressure Poisson equation. Examples of such tests are presented.
Ababou, R.
1991-08-01
This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.
Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution.
Decruppe, J P; Greffier, O; Manneville, S; Lerouge, S
2006-06-01
We present and discuss the results of pointwise velocity measurements performed on a viscoelastic micellar solution made of cetyltrimethylammonium bromide and sodium salicylate in water, respectively, at the concentrations of 50 and 100 mmol. The sample is contained in a Couette device and subjected to flow in the strain controlled mode. This particular solution shows shear banding and, in a narrow range of shear rates at the right end of the stress plateau, apparent shear thickening occurs. Time-dependent recordings of the shear stress in this range reveal that the flow has become unstable and that large sustained oscillations of the shear stress and of the first normal stresses difference emerge and grow in the flow. Local pointwise velocity measurements clearly reveal a velocity profile typical of shear banding when the imposed shear rate belongs to the plateau, but also important wall slip in the entire range of velocity gradients investigated. In the oscillations regime, the velocity is recorded as a function of time at a fixed point close to the rotor of the Couette device. The time-dependent velocity profile reveals random fluctuations but, from time to time, sharp decreases much larger than the standard deviation are observed. An attempt is made to correlate these strong variations with the stress oscillations and a correlation coefficient r is computed. However, the small value found for the coefficient r does not allow us to draw a final conclusion as concerns the correlation between stress oscillations and velocity fast decreases.
Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport
NASA Astrophysics Data System (ADS)
Kitanidis, Peter K.
2015-08-01
When Water Resources Research was launched in 1965, heterogeneity, uncertainty, and scale issues in subsurface hydrology were in the backburner. Only about 10 years later, under the stimulus of dealing with solute transport problems, these problems received attention. The stochastic approach brought tools to deal both with problems of upscaling, also known as homogenization and coarse-graining, and uncertainty quantification. Effective conductivity and effective dispersion, also known as macrodispersion, coefficients in statistically homogeneous formations were extensively studied. Mixing, in its role of affecting reaction rates, started receiving attention. While in the dispersion problem emphasis was on Fickian representations, more sophisticated models have also been studied. Uncertainty quantification in the inverse problem has also made progress and geostatistical ideas, as well as ideas originating in signal processing, influenced how we approach problems of inference like interpolation and inverse modeling. My view is that we should emphasize information aspects, i.e., the collection of more and better data, their correct assimilation, the quantification of uncertainty associated with predictions, and the selection of designs or policies that accurately reflect what we actually know and thus manage risk. Progress in this department has been hampered by ingrained ideas, inadequate training, and inadequate resources. Research in problems of upscaling will continue to shed new light and provide better tools to deal with onerous problems. At the same time, no cure is more universally potent than using a more refined grid. Finally, although research is active, the diffusion of research results to education and practice has been slow.
NASA Astrophysics Data System (ADS)
Sanan, Patrick; May, Dave; Schenk, Olaf; Rupp, Karl
2016-04-01
Scalable solvers for mantle convection and lithospheric dynamics with highly heterogeneous viscosity structure typically require the use of a multigrid method. To leverage new hybrid CPU-accelerator architectures on leadership compute clusters, multigrid hierarchies which can reduce communication and use high available arithmetic intensity are at a premium, motivating more aggressive coarsening schemes and smoothers. We present results of a comparative study of two competitive GPU-enabled subdomain smoothers within an additive Schwarz method. Chebyshev-Jacobi smoothing has been shown to be an effective smoother, and its nature as a low-communication method built from basic linear algebra routines allows its use on a wide range of devices with current libraries. ILU smoothing is also of interest and is known to provide robust smoothing in some cases, but has traditionally been difficult to use in a fine-grained parallel environment. However, a recently-introduced variant by Chow and Patel allows for incomplete factorizations to be computed and applied in these environments, hence allowing us to study them as well. We use and extend the pTatin3D, PETSc, and ViennaCL libraries to integrate promising methods into a realistic application framework.
NASA Astrophysics Data System (ADS)
RamReddy, Chetteti; Pradeepa, Teegala
2016-05-01
Based on the nonlinear variation of density with temperature (NDT) in the buoyancy term, the mixed convection flow along a vertical plate of a micropolar fluid saturated porous medium is considered. In addition, the effect of homogeneous-heterogeneous reaction and convective boundary condition has been taken into account. Using lie scaling group transformations, the similarity representation is attained for the system of partial differential equations, prior to being solved by a spectral quasilinearization method. The results show that in the presence of aiding and opposing flow situations, both the species concentration and mass transfer rate decreases when the strength of homogeneous and heterogeneous reaction parameters are enhanced.
NASA Astrophysics Data System (ADS)
Abkar, M.; Porté-Agel, F.
2012-04-01
Predicting the spatial distribution of surface fluxes over heterogeneous terrains remains a basic challenge in hydrology and the atmospheric sciences. The complexity of such flow, makes it difficult to obtain all the needed information through field experiments alone, and often necessitates high-resolution eddy-resolving numerical tools such as large-eddy simulation (LES). One of the outstanding issues that affect LES performance is the treatment of the surface boundary conditions. Monin-Obukhov similarity (MOS) theory has provided the most common boundary condition formulations for LES of ABL flows. Despite the fact that MOS theory was proposed for homogeneous flat surfaces and applies strictly only to mean quantities, in LES it is used in a wide range of conditions, (including over heterogeneous surfaces and over topography) to compute the fluctuating surface fluxes. Recently, Chamorro and Porté-Agel (2009 and 2010) used wind velocity and surface shear stress data collected in a wind-tunnel experiment and showed direct application of MOS theory over heterogeneous surfaces causes large errors which affect both the average value as well as higher order statistics of the predicted surface shear stress. In this study, Large-eddy simulations are performed to evaluate the performance of the surface boundary condition downwind of a rough-to-smooth surface transition. Two types of boundary conditions are tested: (i) the standard formulation based on local application of Monin-Obukhov similarity (MOS) theory, and (ii) a new model based on a modification of the recently proposed model of Chamorro and Porte-Agel (2009). The new model assumes that the wind velocity downwind of a rough-to-smooth transition can be estimated as a weighted average of two logarithmic profiles. The first log law is recovered above the internal boundary layer height and corresponds to the upwind velocity profile. The second log law is adjusted to the downwind aerodynamic roughness and it is
NASA Astrophysics Data System (ADS)
Webster, Peter J.; Chang, Hai-Ru
1998-01-01
It is noted that wave propagation in the atmosphere and error propagation in numerical models appear to have preferred geographical loci. However, these paths appear to be more associated with the low frequency background state of the atmosphere than the location of the wave source. Theoretical and numerical models are used to determine the control the basic state has on wave propagation both between the extratropica and the tropics (and vice versa) and within the tropics. Basic states with horizontal and vertical shear as well as longitudinal stretching deformation are studied. It is shown that strong horizontal shear embedded in equatorial easterlies confines modes close to the equator. Weak shear in westerly tropical flow allows modes to project into the extratropics. That is, the degree of equatorial trapping is diminished. Negative stretching deformation acts to trap modes longitudinally so that the western sides of the westerly ducts are accumulation regions. Negative vertical shear inhibits vertical propagation while positive shear enhances propagation. It is concluded that the basic state is the determining factor in the observed patterns of waves and the locations of errors in numerical weather prediction and climate models. Of particular interest are the westerly duct regions of the eastern Pacific Ocean and the Atlantic Ocean. These regions appear to act as wave attractors for both equatorially trapped modes and extratropical modes propagating towards the equator and also are regions of enhanced vertical propagation.
NASA Astrophysics Data System (ADS)
Büsing, Henrik
2014-05-01
The geological sequestration of CO2 is considered as one option to mitigate anthropogenic effects on climate change. To describe the behavior of CO2 underground we consider mass balance equations for the two phases, CO2 and brine, which include the dissolution of CO2 into the brine phase and of H2O into the gas phase (c.f. [1]). After discretization in time with the implicit Euler method and in space with the Box method (c.f. [2]), we end up with a nonlinear system of equations. Newton's method is used to solve these systems, where the required Jacobians are obtained by automatic differentiation (AD) (c.f. [3]). In contrast to approximate Jacobians via finite differences, AD gives exact Jacobians through a source code transformation. These exact Jacobians have the advantage that no additional errors are introduced by the derivative computation. In consequence, fewer Newton iterations are needed and a performance increase during derivative computation can be observed (c.f. [4]). During the initial stage of a CO2 sequestration scenario the movement of the CO2 plume is driven by advective and buoyancy forces. After injection is finished solubility and density driven flow become dominant. We examine the performance of different iterative solvers and preconditioners for these two stages. To this end, we consider standard ILU preconditioning with BiCGStab as iterative solver, as well as GMRES, and algebraic and geometric multigrid methods. Our test example considers, on the one hand, a homogeneous permeability distribution and, on the other hand, a heterogeneous one. In the latter case we sample a heterogeneous porosity field from a Gaussian distribution and, subsequently, derive the corresponding permeabilities after [5]. Finally, we examine to which extent the amount of dissolved CO2 depends on the heterogeneities in the reservoir. References [1] Spycher, N., Pruess, K., & Ennis-King, J., 2003. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and
Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow
NASA Astrophysics Data System (ADS)
Bian, Xin; Deng, Mingge; Tang, Yu-Hang; Karniadakis, George Em
2016-03-01
We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997), 10.1142/S0129183197000837], the relaxation dynamics [O'Connell and Thompson, Phys. Rev. E 52, R5792 (1995), 10.1103/PhysRevE.52.R5792], the least constraint dynamics [Nie et al., J. Fluid Mech. 500, 55 (2004), 10.1017/S0022112003007225; Werder et al., J. Comput. Phys. 205, 373 (2005), 10.1016/j.jcp.2004.11.019], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000), 10.1209/epl/i2000-00434-8], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations.
Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow.
Bian, Xin; Deng, Mingge; Tang, Yu-Hang; Karniadakis, George Em
2016-03-01
We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997)], the relaxation dynamics [O’Connell and Thompson, Phys. Rev. E 52, R5792 (1995)], the least constraint dynamics [Nie et al.,J. Fluid Mech. 500, 55 (2004); Werder et al., J. Comput. Phys. 205, 373 (2005)], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000)], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations. PMID:27078489
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Gibbs, J. A.
2015-03-01
An analytical solution of the Boussinesq equations for the motion of a viscous stably stratified fluid driven by a surface thermal forcing with large horizontal gradients (step changes) is obtained. The solution can be used to verify that computer codes for Boussinesq fluid system simulations are free of errors in formulation of wall boundary conditions, and to evaluate the relative performances of competing numerical algorithms. Because the solution pertains to flows driven by a surface thermal forcing, one of its main applications may be for testing the no-slip, impermeable wall boundary conditions for the pressure Poisson equation. Examples of such tests are presented.
Analysis of unit mobility ratio well-to-well tracer flow to determine reservoir heterogeneity
Abbaszadeh-Dehghani, M.
1983-02-01
This study has been performed in 2 related sections. In the first section, exact analytic equations have been derived to define breakthrough curves for different developed flooding patterns for unit mobility ratio. The breakthrough curves have been correlated into a single curve. Because of this correlation, it is concluded that the breakthrough curve for any other repeating pattern should also lie near this same correlating curve. An analytic definition of breakthrough curves for a developed 5-spot at various mobility ratios also is included. Flow of a tracer slug in various developed patterns is discussed. In each system, an expression was derived to define the concentration of tracer in a streamtube. A computer program based on a nonlinear optimization technique was developed which analyzes a tracer breakthrough profile from a stratified reservoir. A 5-spot field example which has been decomposed into several layers is shown to illustrate the use of the research.
Stability analysis of non-inertial thin film flow over a heterogeneously heated porous substrate
NASA Astrophysics Data System (ADS)
Kumawat, Tara Chand; Tiwari, Naveen
2016-02-01
The dynamics and linear stability of a gravity drive thin film flowing over non-uniformly heated porous substrate are studied. A governing equation for the evolution of film-thickness is derived within the lubrication approximation. Darcy-Brinkman equation is used to model flow in the porous medium along with a tangential stress-jump condition at the interface of the porous layer and the fluid film. A temperature profile is imposed at the solid wall to model an embedded heater beneath the porous layer. At the upstream edge of the heater, an opposing thermocapillary stress at the liquid-air interface leads to the formation of a thermocapillary ridge. The ridge becomes unstable beyond a critical Marangoni number leading to the formation of rivulets that are periodic in the spanwise direction. Increase in the values of parameters such as Darcy number, stress jump coefficient, and porosity is shown to have stabilizing effect on the film dynamics. The critical Marangoni number is shown to increase monotonically with Darcy number for various values of porosity. At large values of stress-jump coefficient, a non-monotonic variation in critical Marangoni number versus Darcy number is shown. A correlation is developed numerically for the ratio of critical Marangoni number at large Darcy number to that for a non-porous substrate as a function of porosity and thickness of the porous substrate. A transient growth analysis is carried out followed by non-linear stability analysis. The non-modal growth is found to be negligible thus indicating that the eigenvalues are physically determinant.
Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures
Sampath, Rahul S; Veerapaneni, Shravan; Biros, George; Zorin, Denis; Vuduc, Richard; Vetter, Jeffrey S; Moon, Logan; Malhotra, Dhairya; Shringarpure, Aashay; Rahimian, Abtin; Lashuk, Ilya; Chandramowlishwaran, Aparna
2010-01-01
We present a fast, petaflop-scalable algorithm for Stokesian particulate flows. Our goal is the direct simulation of blood, which we model as a mixture of a Stokesian fluid (plasma) and red blood cells (RBCs). Directly simulating blood is a challenging multiscale, multiphysics problem. We report simulations with up to 260 million deformable RBCs. The largest simulation amounts to 90 billion unknowns in space. In terms of the number of cells, we improve the state-of-the art by several orders of magnitude: the previous largest simulation, at the same physical fidelity as ours, resolved the flow of O(1,000-10,000) RBCs. Our approach has three distinct characteristics: (1) we faithfully represent the physics of RBCs by using nonlinear solid mechanics to capture the deformations of each cell; (2) we accurately resolve the long-range, N-body, hydrodynamic interactions between RBCs (which are caused by the surrounding plasma); and (3) we allow for highly non-uniform spatial distributions of RBCs. The new method has been implemented in the software library MOBO (for 'Moving Boundaries'). We designed MOBO to support parallelism at all levels, including inter-node distributed memory parallelism, intra-node shared memory parallelism, data parallelism (vectorization), and fine-grained multithreading for GPUs. We have implemented and optimized the majority of the computation kernels on both Intel/AMD x86 and NVidia's Tesla/Fermi platforms for single and double floating point precision. Overall, the code has scaled on 256 CPU-GPUs on the Teragrid's Lincoln cluster and on 200,000 AMD cores of the Oak Ridge National Laboratory's Jaguar PF system. In our largest simulation, we have achieved 0.7 Petaflops/s of sustained performance on Jaguar.
Prediction of horizontal gas-solid flows under different gravitational fields
NASA Astrophysics Data System (ADS)
Laín, Santiago; Sommerfeld, Martin
2014-11-01
In this paper the performance of horizontal pneumatic conveying under different gravity environments is evaluated. An Euler-Lagrange approach validated versus ground experiments is employed to predict the relevant particle variables such as particle mass flux, mean conveying and fluctuating velocities in terrestrial, lunar and micro-gravity conditions. Gravity reduced computations predict a reduction in the global particle-wall collision frequency. Also, in the case of low wall roughness and small particle mass loading, reduction of gravity acceleration implies an increase of particle-wall collision frequency with the upper wall of the channel affecting greatly the particle mass flux profile. In the case of high wall roughness and/or high particle-to-fluid mass loading (i.e., around 1.0) particle conveying characteristics are similar in the three gravity conditions evaluated. This is due to the fact that both, wall roughness and inter-particle collisions reduce gravitational settling. However, the influence of gravity on the additional pressure loss along the channel due to the conveying of the particles is much reduced.
NASA Astrophysics Data System (ADS)
Rubino, J. G.; Holliger, K.
2010-12-01
suitable upscaling procedure. This computational procedure emulates a corresponding pertinent laboratory experiment, in which a representative, mesoscopic-scale rock sample is subjected to a time-harmonic compressibility test. The thus observed complex volume change of the probed sample then allows for estimating the equivalent complex plane-wave modulus, which in turn yields the corresponding effective phase velocity and quality factor as functions of frequency. We apply this approach to a range of canonical models of porous media characterized by realistic, highly heterogeneous distributions of the hydraulic and/or elastic properties as well as varying levels of saturation. In particular, we also compare the results of spatially continuous variations of the medium and fluid properties with equivalent binary parameter distributions. Interestingly, preliminary results provide evidence to suggest that for most heterogeneous porous media characterized by spatially continuous variations of the hydraulic and/or elastic properties, the contribution of wave-induced mesoscopic fluid flow effects to the velocity dispersion and attenuation of seismic waves is likely to be of subordinate importance.
Srinivasan, Vivek J; Yu, Esther; Radhakrishnan, Harsha; Can, Anil; Climov, Mihail; Leahy, Conor; Ayata, Cenk; Eikermann-Haerter, Katharina
2015-01-01
Although microvascular dysfunction accompanies cognitive decline in aging, vascular dementia, and Alzheimer's disease, tools to study microvasculature longitudinally in vivo are lacking. Here, we use Doppler optical coherence tomography (OCT) and angiography for noninvasive, longitudinal imaging of mice with chronic cerebral hypoperfusion for up to 1 month. In particular, we optimized the OCT angiography method to selectively image red blood cell (RBC)-perfused capillaries, leading to a novel way of assessing capillary supply heterogeneity in vivo. After bilateral common carotid artery stenosis (BCAS), cortical blood flow measured by Doppler OCT dropped to half of baseline throughout the imaged tissue acutely. Microscopic imaging of the capillary bed with OCT angiography further revealed local heterogeneities in cortical flow supply during hypoperfusion. The number of RBC-perfused capillaries decreased, leading to increased oxygen diffusion distances in the days immediately after BCAS. Linear regression showed that RBC-perfused capillary density declined by 0.3% for a drop in flow of 1 mL/100 g per minute, and decreases in RBC-perfused capillary density as high as 25% were observed. Taken together, these results demonstrate the existence of local supply heterogeneity at the capillary level even at nonischemic global flow levels, and demonstrate a novel imaging method to assess this heterogeneity. PMID:26243708
8 color, 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity.
Roederer, M; De Rosa, S; Gerstein, R; Anderson, M; Bigos, M; Stovel, R; Nozaki, T; Parks, D; Herzenberg, L; Herzenberg, L
1997-12-01
We developed the chemistry, instrumentation, and software technologies needed to measure, simultaneously and independently, eight different fluorescent molecules on individual cells. Conjugation of these fluorochromes to monoclonal antibodies is straightforward; all immunofluorescence staining is accomplished with direct stains only. We built a hybrid flow cytometer with eight fluorescence detectors and two light scatter channels, with excitation provided by three spatially separated laser beams emitting at 407 nm, 488 nm, and 595 nm. The fluorescence compensation required to make the data orthogonal is of sufficient complexity that it cannot be performed manually; thus, we use software to compensate the data post hoc, based on data collected from singly stained compensation control samples. In this report, we evaluate the 8 color staining technology. Of the seven fluorochromes other than fluorescein, six have a useful brightness at least as great as fluorescein. Three of the fluorochromes (phycoerythrin, allophycocyanin, and the Cy5 resonance energy tandem of phycoerythrin) are considerably brighter than fluorescein and are useful for detecting antigens expressed at low levels. Finally, we show the power and utility of the 8 color, 10-parameter technology using staining experiments on both human and murine immune systems.
Efficient Geostatistical Inversion under Transient Flow Conditions in Heterogeneous Porous Media
NASA Astrophysics Data System (ADS)
Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf
2014-05-01
The assessment of hydraulic aquifer parameters is important for the evaluation of anthropogenic impacts on groundwater resources. The distribution of these parameters determines flow paths and solute travel times and is therefore critical for the successful design and deployment of remediation schemes at contaminated sites. Direct measurement of these properties is not possible, making indirect observations through dependent quantities and parameter estimation a necessity. The geostatistical approach characterizes these hydraulic parameters without predetermined zonation. The parameter fields are treated as stochastic processes, optionally incorporating a priori information in the probability distribution. Maximizing the likelihood of the parameters with regard to the given observations yields a parameter estimate with high spatial resolution. This approach naturally leads to nonlinear least squares optimization problems, namely objective functions of the form L(Y ) = 1(Y ')TQ -Y1YY ' + 1[F(Y) - z]T Q-z1z [F(Y )- z], 2 2 where Y are the parameters, Y ' their deviations from the a priori estimate, QY Y their covariance matrix, z the measurements, Qzz their covariance matrix and F the forward model mapping parameters to observations. In theory, this objective function may be minimized using standard gradient-based techniques like Gauss-Newton. Due to the typically high number of parameters, however, this is not practical. Let nY be the number of parameters and nz the number of observations. Then QY Y and its inverse are both dense nY ×nY matrices, and the sensitivity matrix Hz := δz/δY is a nz ×nY matrix that has to be assembled using forward or adjoint model runs. Specialized schemes have been developed to reduce the dimensionality of the problem and avoid the high cost of handling products with QY Y -1. This enables efficient inversion in the case of a moderate number of observations as encountered in stationary inversion, where the cost of assembling Hz is in
Analysis of unit mobility ratio well-to-well tracer flow to determine reservoir heterogeneity
Abbaszadeh-Dehghani, M.
1982-01-01
This study was carried out in two related sections. In the first section, exact analytic equations were derived to define breakthrough curves (displacing fluid cut versus pore volumes injected, or area swept versus pore volume injected) for different developed flooding patterns for unit mobility ratio. The breakthrough curves were correlated into a single curve. Because of this correlation, it was concluded that the breakthrough curve for any other repeating pattern should also lie near this same correlating curve. The first section also includes an analytical definition of breakthrough curves for a developed five-spot at various mobility ratios. In the derivations, it was assumed that the streamlines were independent of mobility ratio. The results of the analysis showed that the breakthrough areal sweep efficiencies at various mobility ratios were nearly independent of mobility ratios, while the post-breakthrough performance differed for each mobility ratio. The second part discusses flow of a tracer slug in various developed patterns. In each system, an expression was derived to define the concentration of tracer in a streamtube. These expressions integrated over all the streamlines produced a set of equations describing tracer production curves from homogeneous patterns. The study shows that the effluent tracer concentration depends upon the pattern geometry and size, and the dispersion constant of the formation. A computer program based on a non-linear optimization technique was developed which analyzes a tracer breakthrough profile from a stratified reservoir. The program computes porosity-thickness and fractional permeability-thickness for each layer. The algorithm utilizes the equations of a developed five-spot pattern and the parameters obtained in correlating the tracer production curves.
Analysis of unit mobility ratio well-to-well tracer flow to determine reservoir heterogeneity
Abbaszadeh-Dehghani, M.; Brigham, W.E.
1983-02-01
This study has been carried out in two related sections. In the first section, exact analytic equations have been derived to define breakthrough curves for different developed flooding well patterns for unit mobility ratio. The first section also includes an extension of an analytical definition of pattern breakthrough curves for mobility ratio other than one. The second part discusses flow of a tracer slug in various patterns. In each system, the longitudinal mixing of the tracer slug in a general streamtube of the pattern has been formulated mathematically. A line integral along a streamtube was derived which represents the length of the mixed zone. When this line integral was substituted into the mixing equation, an expression for the concentration of tracer at any location within a streamtube resulted. The study shows that the effluent tracer concentration depends upon the pattern geometry and size, and the dispersion constant of the formation. Tracer production curves for the different patterns considered have also been correlated into a set of curves depending on a/..cap alpha.., (a = distance between like wells, ..cap alpha.. = dispersion constant). The correlation was achieved by deriving two sets of correction factors, one for tracer peak concentration, and another for a/..cap alpha.. ratio. As a result of this correlation, a tracer response from any repeated homogeneous pattern can be estimated from the response of an equivalent five-spot system by utilizing the correction factors. A computer program based on a non-linear optimization technique was developed which decomposes a detected tracer breakthrough profile from a multilayered system into responses from individual layers. The algorithm utilizes the equations of the five-spot pattern in conjunction with the developed correction factors. A five-spot field example which has been successfully decomposed into several layers is shown to illustrate the use of this research. 42 figures, 15 tables.
Charge partitioning at gas-solid interfaces: humidity causes electricity buildup on metals.
Ducati, Telma R D; Simões, Luís H; Galembeck, Fernando
2010-09-01
Isolated metals within Faraday cages spontaneously acquire charge at relative humidity above 50%: aluminum and chrome-plated brass become negative, stainless steel is rendered positive, and copper remains almost neutral. Isolated metal charging within shielded and grounded containers confirms that the atmosphere is an electric charge reservoir where OH(-) and H(+) ions transfer to gas-solid interfaces, producing net current. The electricity buildup dependence on humidity, or hygroelectricity, acts simultaneously but in opposition to the well-known charge dissipation due to the increase in surface conductance of solids under high humidity. Acknowledging this dual role of humidity improves the reproducibility of electrostatic experiments.
McKenna, Sean Andrew; Yoon, Hongkyu; Hart, David Blaine
2010-12-01
Heterogeneity plays an important role in groundwater flow and contaminant transport in natural systems. Since it is impossible to directly measure spatial variability of hydraulic conductivity, predictions of solute transport based on mathematical models are always uncertain. While in most cases groundwater flow and tracer transport problems are investigated in two-dimensional (2D) systems, it is important to study more realistic and well-controlled 3D systems to fully evaluate inverse parameter estimation techniques and evaluate uncertainty in the resulting estimates. We used tracer concentration breakthrough curves (BTCs) obtained from a magnetic resonance imaging (MRI) technique in a small flow cell (14 x 8 x 8 cm) that was packed with a known pattern of five different sands (i.e., zones) having cm-scale variability. In contrast to typical inversion systems with head, conductivity and concentration measurements at limited points, the MRI data included BTCs measured at a voxel scale ({approx}0.2 cm in each dimension) over 13 x 8 x 8 cm with a well controlled boundary condition, but did not have direct measurements of head and conductivity. Hydraulic conductivity and porosity were conceptualized as spatial random fields and estimated using pilot points along layers of the 3D medium. The steady state water flow and solute transport were solved using MODFLOW and MODPATH. The inversion problem was solved with a nonlinear parameter estimation package - PEST. Two approaches to parameterization of the spatial fields are evaluated: (1) The detailed zone information was used as prior information to constrain the spatial impact of the pilot points and reduce the number of parameters; and (2) highly parameterized inversion at cm scale (e.g., 1664 parameters) using singular value decomposition (SVD) methodology to significantly reduce the run-time demands. Both results will be compared to measured BTCs. With MRI, it is easy to change the averaging scale of the observed
Ababou, R.; Bagtzoglou, A.C.
1993-06-01
This report documents BIGFLOW 1.1, a numerical code for simulating flow in variably saturated heterogeneous geologic media. It contains the underlying mathematical and numerical models, test problems, benchmarks, and applications of the BIGFLOW code. The BIGFLOW software package is composed of a simulation and an interactive data processing code (DATAFLOW). The simulation code solves linear and nonlinear porous media flow equations based on Darcy`s law, appropriately generalized to account for 3D, deterministic, or random heterogeneity. A modified Picard Scheme is used for linearizing unsaturated flow equations, and preconditioned iterative methods are used for solving the resulting matrix systems. The data processor (DATAFLOW) allows interactive data entry, manipulation, and analysis of 3D datasets. The report contains analyses of computational performance carried out using Cray-2 and Cray-Y/MP8 supercomputers. Benchmark tests include comparisons with other independently developed codes, such as PORFLOW and CMVSFS, and with analytical or semi-analytical solutions.
NASA Astrophysics Data System (ADS)
Pflieger, M.; Goriaux, M.; Temime-Roussel, B.; Gligorovski, S.; Monod, A.; Wortham, H.
2009-03-01
There is currently a need for reliable experimental procedures to follow the heterogeneous processing simulating the atmospheric conditions. This work offers an alternative experimental device to study the behaviour of semi-volatile organic compounds (SVOC) that presumably exhibit extremely slow reactivity (e.g. pesticides) towards the atmospheric oxidants such as ozone and OH. Naphthalene was chosen as a test compound since it was widely studied in the past and hence represents a good reference. Prior to ozone exposure, the gaseous naphthalene was adsorbed via gas-solid equilibrium on silica and XAD-4 particles. Then, the heterogeneous reaction of ozone with adsorbed naphthalene was investigated in specially designed flow tube reactors. After the reaction, the remaining naphthalene (adsorbed on particles surface) was extracted, filtered and analyzed by Gas Chromatography-Flame Ionization Detector (GC-FID). Thus, the kinetics results were obtained following the consumption of naphthalene. Using this procedure, the rate constants of heterogeneous ozonolysis of naphthalene (kO3 silica=2.26 (±0.09)×10-17 cm3 molec-1 s-1 and kO3 XAD-4=4.29 (±1.06)×10-19 cm3 molec-1 s-1) were determined for silica and XAD-4 particles, at 25°C and relative humidity <0.7%. The results show that the nature of the particles significantly affects the kinetics and that heterogeneous ozonolysis of naphthalene is faster than its homogeneous ozonolysis in the gas phase.
NASA Astrophysics Data System (ADS)
Merino-Martín, L.; Moreno-de las Heras, M.; Pérez-Domingo, S.; Espigares, T.; Nicolau, J. M.
2012-05-01
Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope) in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover). Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil) to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata). Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index): when overland flow increases at the slope scale hydrological diversity diminishes.
NASA Astrophysics Data System (ADS)
Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.
2015-12-01
We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.
Schindler, Thomas H.; Facta, Alvaro D.; Prior, John O.; Cadenas, Jerson; Zhang, Xiao-Li; Li, Yanjie; Sayre, James; Goldin, Jonathan
2016-01-01
Purpose To determine the relationship between carotid intima–media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM). Methods In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with 13N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation. Results There was neither a relationship between carotid IMT and CAC (r=0.10, p=0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r=−0.18, p=0.25 and r=0.10, p=0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44±18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69±0.24 vs. 0.74±0.23 and 1.82±0.50 vs. 1.95±0.51 ml/g/min; p≤0.05, respectively) and also during CPT in DM but less pronounced (0.81±0.24 vs. 0.83±0.23 ml/g/min; p=ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r=−0.36, p≤0.014; r=−0.46, p≤0.007; and r=−0.33, p≤0.041, respectively). Conclusions The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall. PMID:18704406
NASA Astrophysics Data System (ADS)
Merino-Martín, L.; Moreno-de Las Heras, M.; Pérez-Domingo, S.; Espigares, T.; Nicolau, J. M.
2011-11-01
Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment sinks and source patches are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted a field research to study the hydrological role of patches and slopes along an overland flow gradient in three reclaimed slopes coming from mining reclamation in a Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated to seven vegetation patches (characterized by plant community types and cover). Two types of sink patches were identified: shrub Genista scorpius patches could be considered as a "deep sink", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil) to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata). Finally, we identified the volume of overland flow routing along the slope as a controlling major factor of hydrological diversity: when overland flow increases at the slope scale hydrological diversity diminishes.
Rybolt, T.R.; Epperson, M.T.; Weaver, H.W.; Thomas, H.E.; Clare, S.E.; Manning, B.M.; McClung, J.T.
1995-07-01
Gas-solid chromatography was used to determine the Henry`s law second gas-solid virial coefficients within the temperature range of 314--615 K for ethane, propane, butane, isobutane, pentane, hexane, heptane, chloromethane, dichloromethane, trichloromethane, tetrachloromethane, trichlorofluoromethane (Freon 11), chlorodifluoromethane (Freon 22), dichlorodifluoromethane (Freon 12), methyl ether, ethyl ether, and sulfur hexafluoride with Carbopack B, a microporous carbon adsorbent. The temperature dependence of the second gas-solid virial coefficients of these adsorbates was used in conjunction with analyses based on a graphical method, a single-surface numeric integration method, a single-surface analytic expression method, and a two-surface analytic expression method to determine the gas-solid interaction energies and other parameters. The interaction energies were correlated with a ratio of the critical temperature divided by the square root of the critical pressure. The four methods were compared in their abilities to successfully calculate second gas-solid virial coefficient values.
Rehmat, A.; Saxena, S.C.; Land, R.H.
1980-09-01
A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.
Batch separation of shredded bulky waste by gas-solid fluidized bed at laboratory scale.
Sekito, Tomoo; Tanaka, Nobutoshi; Matsuto, Toshihiko
2006-01-01
A gas-solid fluidized bed separator using various bed materials was used to separate shredded municipal bulky waste (SBW). Using 290 microm glass beads as the bed material, the apparent density of the fluidized bed was 1.5 g/cm(3) and the SBW could be separated into combustibles such as wood, paper and plastics and incombustibles such as metals and glass. The overall efficiency (Newton's efficiency) of the separation was calculated to be 0.93. In order to obtain high efficiency, the superficial velocity must be adjusted so that the fluidized bed is agitated moderately and at the same time there is no weak fluidized region. Using a mixture of particles of nylon shot and 68 microm glass beads, the apparent density of the fluidized mixture bed could be varied between 0.63 and 0.99 g/cm(3) by changing the mixing ratio of the two materials. In the case of a mixing ratio of 20% for glass beads, an apparent density of 0.65 g/cm(3) was produced, in which wood and paper components were recovered while plastics remained in the bed to give a final overall efficiency of 0.88.
Origin of melting point depression for rare gas solids confined in carbon pores
NASA Astrophysics Data System (ADS)
Morishige, Kunimitsu; Kataoka, Takaaki
2015-07-01
To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ˜0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.
Kinetics of thermochemical gas-solid reactions important in the Venus sulfur cycle
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.
1988-01-01
The thermochemical net reaction CaCO3 + SO2 yields CaSO4 + CO is predicted to be an important sink for incorporation of SO2 into the Venus crust. The reaction rate law was established to understand the dependence of rate on experimental variables such as temperature and partial pressure of SO2, CO2, and O2. The experimental approach was a variant of the thermogravimetric method often employed to study the kinetics of thermochemical gas-solid reactions. Clear calcite crystals were heated at constant temperature in SO2-bearing gas streams for varying time periods. Reaction rate was determined by three independent methods. A weighted linear least squares fit to all rate data yielded a rate equation. Based on the Venera 13, 14 and Vega 2 observations of CaO content of the Venus atmosphere, SO2 at the calculated rate would be removed from the Venus atmosphere in about 1,900,00 years. The most plausible endogenic source of the sulfur needed to replenish atmospheric SO2 is volcanism. The annual amount of erupted material needed for the replenishment depends on sulfur content; three ratios are used to calculate rates ranging from 0.4 to 11 cu km/year. This geochemically derived volcanism rate can be used to test if geophysically derived rates are correct. The work also suggests that Venus is less volcanically active than the Earth.
Origin of melting point depression for rare gas solids confined in carbon pores.
Morishige, Kunimitsu; Kataoka, Takaaki
2015-07-21
To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point. PMID:26203042
Characteristics of grid zone heat transfer in a gas-solid fluidized bed
Ho, T.C.; Wang, R.C.; Hopper, J.R.
1987-05-01
The grid zone in a gas-solid fluidized bed reactor has been observed to play a critical role in governing the reactor performance, particularly in shallow and large beds with fast reactions. However, despite its importance the grid zone behavior is far from completely understood, due mainly to its complexity and the few efforts to study it. One of the important aspects on the grid zone behavior is the heat transfer between the bed and immersed horizontal tubes. Although this subject has been under intensive study in the bubbling zone and freeboard area, no systematic work has been performed in the grid zone. Others examined the phenomenon and concluded that the existing heat transfer correlations for the bubbling zone give erroneous results when applied to the grid zone, especially at high velocities. The finding is expected since the two zones are significantly different in their hydrodynamic characteristics. An example of a process involving grid zone heat transfer is the shallow fluidized bed heat exchanger. The exchanger is operated at an extremely low bed height (6-10 cm) with horizontal fin tubes in the grid region. The authors reported a higher than expected heat transfer rate (compared to the bubbling bed heat transfer rate).
Venus volcanism: Rate estimates from laboratory studies of sulfur gas-solid reactions
NASA Technical Reports Server (NTRS)
Ehlers, K.; Fegley, B., Jr.; Prinn, R. G.
1989-01-01
Thermochemical reactions between sulfur-bearing gases in the atmosphere of Venus and calcium-, iron-, magnesium-, and sulfur-bearing minerals on the surface of Venus are an integral part of a hypothesized cycle of thermochemical and photochemical reactions responsible for the maintenance of the global sulfuric acid cloud cover on Venus. SO2 is continually removed from the Venus atmosphere by reaction with calcium bearing minerals on the planet's surface. The rate of volcanism required to balance SO2 depletion by reactions with calcium bearing minerals on the Venus surface can therefore be deduced from a knowledge of the relevant gas-solid reaction rates combined with reasonable assumptions about the sulfur content of the erupted material (gas + magma). A laboratory program was carried out to measure the rates of reaction between SO2 and possible crustal minerals on Venus. The reaction of CaCO3(calcite) + SO2 yields CaSO4 (anhydrite) + CO was studied. Brief results are given.
Origin of melting point depression for rare gas solids confined in carbon pores.
Morishige, Kunimitsu; Kataoka, Takaaki
2015-07-21
To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.
Origin of melting point depression for rare gas solids confined in carbon pores
Morishige, Kunimitsu Kataoka, Takaaki
2015-07-21
To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.
Dodd, Ian C; Egea, Gregorio; Davies, William J
2008-01-01
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.
Dodd, Ian C.; Egea, Gregorio; Davies, William J.
2008-01-01
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. ‘Two root-one shoot’ grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Ψsoil) during PRD. Although Ψsoil of the irrigated pot determined the threshold Ψsoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Ψsoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Ψsoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed. PMID:18940933
Seaman, S.; Dyar, D; Marinkovic, N
2009-01-01
This study focuses on the origin of flow-banded rhyolites that consist of compositionally similar darker and lighter flow bands of contrasting texture and color. Infrared radiation was used to obtain Fourier transform infrared (FTIR) spectra from which water concentrations were calculated, and to map variations in water concentrations across zones of spherulites and glass from the 23 million year old Sycamore Canyon lava flow of southern Arizona. Lighter-colored, thicker flow bands consist of gray glass, fine-grained quartz, and large (1.0 to 1.5 mm) spherulites. Darker-colored, thinner flow bands consist of orange glass and smaller (0.1 to 0.2 mm) spherulites. The centers of both large and small spherulites are occupied by either (1) a quartz or sanidine crystal, (2) a granophyric intergrowth, or (3) a vesicle. Mapping of water concentration (dominantly OH- in glass and OH- and H2O in sanidine crystals) illustrates fluctuating water availability during quenching of the host melt. Textures of large spherulites in the lighter (gray) bands in some cases indicate complex quenching histories that suggest that local water concentration controlled the generation of glass versus crystals. Small spherulites in darker (orange) bands have only one generation of radiating crystal growth. Both the glass surrounding spherulites, and the crystals in the spherulites contain more water in the gray flow bands than in the orange flow bands. Flow banding in the Sycamore Canyon lava flow may have originated by the stretching of a magma that contained pre-existing zones (vesicles or proto-vesicles) of contrasting water concentration, as the magma flowed in the conduit and on the surface. Variation in the original water concentration in the alternating layers is interpreted to have resulted in differences in undercooling textures in spherulites in the lighter compared to the darker flow bands.
NASA Astrophysics Data System (ADS)
Seaman, Sheila J.; Dyar, M. Darby; Marinkovic, Nebojsa
2009-06-01
This study focuses on the origin of flow-banded rhyolites that consist of compositionally similar darker and lighter flow bands of contrasting texture and color. Infrared radiation was used to obtain Fourier transform infrared (FTIR) spectra from which water concentrations were calculated, and to map variations in water concentrations across zones of spherulites and glass from the ~ 23 million year old Sycamore Canyon lava flow of southern Arizona. Lighter-colored, thicker flow bands consist of gray glass, fine-grained quartz, and large (1.0 to 1.5 mm) spherulites. Darker-colored, thinner flow bands consist of orange glass and smaller (0.1 to 0.2 mm) spherulites. The centers of both large and small spherulites are occupied by either (1) a quartz or sanidine crystal, (2) a granophyric intergrowth, or (3) a vesicle. Mapping of water concentration (dominantly OH - in glass and OH - and H 2O in sanidine crystals) illustrates fluctuating water availability during quenching of the host melt. Textures of large spherulites in the lighter (gray) bands in some cases indicate complex quenching histories that suggest that local water concentration controlled the generation of glass versus crystals. Small spherulites in darker (orange) bands have only one generation of radiating crystal growth. Both the glass surrounding spherulites, and the crystals in the spherulites contain more water in the gray flow bands than in the orange flow bands. Flow banding in the Sycamore Canyon lava flow may have originated by the stretching of a magma that contained pre-existing zones (vesicles or proto-vesicles) of contrasting water concentration, as the magma flowed in the conduit and on the surface. Variation in the original water concentration in the alternating layers is interpreted to have resulted in differences in undercooling textures in spherulites in the lighter compared to the darker flow bands.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
Hydrocarbon selectivity model for gas-solid Fischer-Tropsch synthesis on precipitated iron catalysts
Laan, G.P. van der; Beenackers, A.A.C.M.
1999-04-01
The kinetics of the gas-solid Fischer-Tropsch (FT) synthesis over a commercial Fe-Cu-K-SiO{sub 2} catalyst was studied in a continuous spinning basket reactor. Experimental conditions were varied as follows: reactor pressure of 0.8--3.2 MPa, H{sub 2}/CO feed ratio = 0.5--2.0, and a space velocity of 0.5--2.0 {times} 10{sup {minus}3} Nm{sup 3}/kg{sub cat} s at a constant temperature of 523 K. A new product distribution model for linear hydrocarbons is proposed. Deviations from conventional Anderson-Schulz-Flory distribution can be quantitatively described with an {alpha}-olefin readsorption product distribution model. The experimentally observed relatively high yield of methane, relatively low yield of ethene, and both the exponential decrease of the olefin-to-paraffin ratio and the change of the chain growth parameter with chain length can all be predicted from this new model. It combines a mechanistic model of olefin readsorption with kinetics of chain growth and termination on the same catalytic sites. The hydrocarbon formation is based on the surface carbide mechanism by CH{sub 2} insertion. The olefin readsorption rate depends on the chain length because of increasing physisorption strength on the catalyst surface and increasing solubility in FT wax with increasing chain length. Interfacial concentrations of reactive olefins near the gas-wax and wax-catalyst surface are used in the kinetic model. With optimization of three parameters per experimental product distribution, the olefin readsorption product distribution model proved to predict product selectivities accurately over the entire range of experimental conditions. The relative deviations are 10.1% and 9.1% for the selectivity to paraffins and olefins with n < 11, respectively.
NASA Astrophysics Data System (ADS)
Takehiro, Shin-ichi
2015-04-01
We investigate the influence of surface displacement on fluid motions induced by horizontally heterogeneous Joule heating in the inner core. The difference between the governing equations and those of Takehiro (2011) is the boundary conditions at the inner core boundary (ICB). The temperature disturbance at the ICB coincides with the melting temperature, which varies depending on the surface displacement. The normal component of stress equalizes with the buoyancy induced by the surface displacement. The toroidal magnetic field and surface displacement with the horizontal structure of Y20 spherical harmonics is given. The flow fields are calculated numerically for various amplitudes of surface displacement with the expected values of the parameters of the core. Further, by considering the heat balance at the ICB, the surface displacement amplitude is related to the turbulent velocity amplitude in the outer core, near the ICB. The results show that when the turbulent velocity is on the order of 10-1 -10-2 m/s, the flow and stress fields are similar to those of Takehiro (2011), where the surface displacement vanishes. As the amplitude of the turbulent velocity decreases, the amplitude of the surface displacement increases, and counter flows from the polar to equatorial regions emerge around the ICB, while flow in the inner regions is directed from the equatorial to polar regions, and the non-zero radial component of velocity at the ICB remains. When the turbulent velocity is on the order of 10-4 -10-5 m/s, the radial component of velocity at the ICB vanishes, the surface counter flows become stronger than the flow in the inner region, and the amplitude of the stress field near the ICB dominates the inner region, which might be unsuitable for explaining the elastic anisotropy in the inner core.
Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D
2014-09-25
Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed. PMID:25188692
Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D
2014-09-25
Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.
Mechetner, E B; Sedmak, D D; Barth, R F
1991-09-01
The expression of a human erythroid cell surface antigen recognized by monoclonal antibody (mAB) HAE9 has been studied on peripheral blood reticulocytes by one- and two-color flow cytometry. Total reticulocyte count was determined using Thiazole Orange (TO) and flow cytometry. In normal individuals, 4.56% of reticulocytes were stained by FITC-labeled mAB HAE9. The correlation between reticulocyte percentage by TO and HAE9 staining was 0.828 (P less than 0.0001) in patients with hematocrits less than 0.25. A HAE9-positive reticulocyte percentage of 6-44% was observed when analyzed by two-color flow cytometry with TO and mAB HAE9. These findings, in conjunction with previous studies, suggest that mAB HAE9 recognizes an early, less differentiated population of peripheral blood reticulocytes. Enumeration of immature reticulocytes may be of clinical utility.
NASA Astrophysics Data System (ADS)
Leslie, S. R.; Mahan, K. H.; Regan, S.; Williams, M. L.
2011-12-01
Deep crustal strike-slip shear zones play a fundamental role in lower crustal flow. Although commonly modeled in two-dimensions, regional considerations suggest that large-scale crustal flow is a heterogeneous, three-dimensional process. The Athabasca granulite terrane, western Canadian Shield, exposes a large region of high-pressure tectonite (>20,000 km2) that provides a natural example of ancient lower crustal flow and an analog for similar processes active today in other regions. Regional heterogeneous deformation permits preservation of Neoarchean deformation fabrics and metamorphic textures. The Cora Lake shear zone (CLsz) is a NW-dipping km-scale mylonite to ultramylonite zone that forms a discrete tectonic discontinuity between two rheologically distinct Neoarchean lower-crustal domains. Northwest of the CLsz, the domain is primarily underlain by ~2.6 Ga felsic to mafic metaplutonic gneisses and interlayered ~2.55 Ga felsic granulite. Lithologies here preserve Neoarchean granulite-facies metamorphism coupled with partial melting and synkinematic melt-enhanced ESE-directed subhorizontal flow at ~0.9 GPa (~30 km paleodepths). Southeast of the CLsz, the Chipman domain is underlain by ~3.2 Ga metatonalite gneiss, an extensive ~1.9 Ga mafic dike swarm, and generally minor ~2.55 Ga mafic and felsic granulite. In contrast to the northwest, lithologies of the western Chipman domain document higher pressures at ~1.3 GPa (~40 km paleodepths) synchronous with development of a gently dipping Neoarchean gneissic fabric. Strong, anhydrous Chipman domain lithologies and melt-weakened lithologies to the northwest are juxtaposed by sinistral to sinistral-normal oblique shear along the CLsz, consistent with higher pressures (deeper paleodepths) documented in the footwall Chipman domain. A notable and pervasive feature along strike of the CLsz in the western Chipman domain is the marked increase in abundance of m-scale layers of mafic and felsic granulite westward with
NASA Astrophysics Data System (ADS)
Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram
2013-04-01
Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water
Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; Huang, Hai; Redden, George
2015-12-17
Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous and high permeability inclusion experiments, BaSO_{4} precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO_{4} precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.
Zhou, Quanlin; Birkholzer, Jens T.; Javandel, Iraj; Jordan, Preston D.
2004-01-14
A calibrated groundwater flow model for a contaminated site can provide substantial information for assessing and improving hydraulic measures implemented for remediation. A three-dimensional transient groundwater flow model was developed for a contaminated mountainous site, at which interim corrective measures were initiated to limit further spreading of contaminants. This flow model accounts for complex geologic units that vary considerably in thickness, slope, and hydrogeologic properties, as well as large seasonal fluctuations of the groundwater table and flow rates. Other significant factors are local recharge from leaking underground storm drains and recharge from steep uphill areas. The zonation method was employed to account for the clustering of high and low hydraulic conductivities measured in a geologic unit. A composite model was used to represent the bulk effect of thin layers of relatively high hydraulic conductivity found within bedrock of otherwise low conductivity. The inverse simulator ITOUGH2 was used to calibrate the model for the distribution of rock properties. The model was initially calibrated using data collected between 1994 and 1996. To check the validity of the model, it was subsequently applied to predicting groundwater level fluctuation and groundwater flux between 1996 and 1998. Comparison of simulated and measured data demonstrated that the model is capable of predicting the complex flow reasonably well. Advective transport was approximated using pathways of particles originating from source areas of the plumes. The advective transport approximation was in good agreement with the trend of contaminant plumes observed over the years. The validated model was then refined to focus on a subsection of the large system. The refined model was subsequently used to assess the efficiency of hydraulic measures implemented for remediation.
NASA Astrophysics Data System (ADS)
Tang, Mingjin; Camp, Jules; Cox, Tony; Kalberer, Markus; McGregor, James; Rkiouak, Laylla; Ward, Andy; Watson, Matt; Pope, Francis
2014-05-01
The heterogeneous reaction of SiO2 with N2O5 was investigated at room temperature and different relative humidities (RH). The uptake coefficient of N2O5 onto airborne sub-micrometre SiO2 particles, γ(N2O5), was measured using an atmospheric-pressure aerosol flow tube. γ(N2O5) was measured to be (4.8±0.4)×10-3 at 7% RH and (3.5±0.5)×10-3 at 40%, probably suggesting a slightly negative dependence on RH. In contrast, Raman spectroscopy measurements of the singles particles during the exposure to N2O5 show that the amount of nitrate formed on the particles increases with RH, and that nitrate formed on the particles can be entirely removed when the RH is reduced to 0%. The results suggest that nitric acid formed in the heterogeneous hydrolysis of N2O5 on the SiO2 surface can partition in both the gas phase and particulate phase, and the RH determines the partitioning. The atmospheric implications for photochemistry and aerosol aging processes will also be discussed.
NASA Astrophysics Data System (ADS)
Hernlund, J.; McNamara, A. K.; Labrosse, S.; Tackley, P. J.
2005-12-01
We use three-dimensional spherical shell mantle convection models (McNamara, 2005) with plate motion history over the past several hundred million years as a surface boundary condition to study the predicted distribution of post-perovskite in Earth's lowermost mantle, both with and without large-scale chemical heterogeneity. Chemical heterogeneity in the form of "super-piles" induces a strongly bimodal pattern of temperatures in the D" region, and predicts a distribution of post-perovskite that is in good agreement with seismic observations of a discontinuity on top of D". In these cases, post-perovskite is confined to cooler regions associated with downwellings and large scale mantle circulation, whereas the chemically dense piles are hot because they reside just above the core-mantle boundary (CMB) and do not participate in the larger scale mantle circulation. By varying the parameters defining the post-perovskite phase boundary, and applying the double-crossing model of Hernlund et al. (2005), an upper bound for the CMB heat flow can be more confidently estimated. However, significant trade-offs still exist with respect to other uncertain physical parameters, especially thermal conductivity. Our preferred model also predicts that a D" discontinuity should be present beneath Antarctica, a region that has thus far eluded the necessary seismic coverage.
Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.
2008-01-01
Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.
Lin, Guang; Tartakovsky, Alexandre M.
2009-05-01
In this study, a probabilistic collocation method (PCM) on sparse grids was used to solve stochastic equations describing flow and transport in three-dimensional in saturated, randomly heterogeneous porous media. Karhunen-Lo\\`{e}ve (KL) decomposition was used to represent the three-dimensional log hydraulic conductivity $Y=\\ln K_s$. The hydraulic head $h$ and average pore-velocity $\\bf v$ were obtained by solving the three-dimensional continuity equation coupled with Darcy's law with random hydraulic conductivity field. The concentration was computed by solving a three-dimensional stochastic advection-dispersion equation with stochastic average pore-velocity $\\bf v$ computed from Darcy's law. PCM is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using the sparse grid points, PCM can handle a random process with large number of random dimensions, with relatively lower computational cost, compared to full tensor products. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM. By comparing the MC and PCM results for mean and standard deviation of concentration, it is evident that the PCM approach is computational more efficient than Monte Carlo simulations. Unlike the conventional moment-equation approach, there is no limitation on the amplitude of random perturbation in PCM. Furthermore, PCM on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances.
Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst
2015-01-01
Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869
Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; Huang, Hai; Redden, George
2015-12-17
Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous andmore » high permeability inclusion experiments, BaSO4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.« less
d'Alessio, M. A.; Williams, C.F.; Burgmann, R.
2006-01-01
Heat flow measurements along much of the San Andreas fault (SAF) constrain the apparent coefficient of friction (??app) of the fault to 0.2 should be detectable even with the sparse existing observations, implying that ??app for the creeping section is as low as the surrounding SAF. Because the creeping section does not slip in large earthquakes, the mechanism controlling its weakness is not related to dynamic processes resulting from high slip rate earthquake ruptures. Copyright 2006 by the American Geophysical Union.
Saiers, James; Ryan, Joseph
2005-06-01
Our research is guided by an EMSP objective to improve conceptual and predictive models of contaminant movement in vadose-zone environments. As described in the report National Roadmap for Vadose-Zone Science and Technology [DOE, 2001], soil-water colloids are capable of adsorbing contaminants, such as radionuclides and metals, and facilitating their migration through the vadose zone and towards groundwater reservoirs. Our research centers on advancing understanding of this phenomenon. In particular, we are combining mathematical modeling with laboratory experimentation at pore and column scales to (1) elucidate the effects of porewater-flow transients on colloid mobilization in unsaturated porous media; (2) explore the sensitivity of colloid deposition rates to changes in porewater chemistry and colloid mineralogy; (3) develop mathematical models appropriate for simulating colloid mobilization, transport, and deposition under both steady-flow and transient-flow conditions; (4) identify mechanisms that govern mineral-colloid mobilization and deposition in unsaturated porous media; (5) quantify the effects of mineral-grain geometry and surface roughness on colloid-filtration rates; and (6) evaluate the influences of colloids on the transport of strontium and cesium (i.e., DOE-contaminants-of-concern) through soils and sediments.
NASA Astrophysics Data System (ADS)
Phillips, S. P.; Green, C. T.; Zamora, C.
2006-05-01
Multi-scale models of ground-water flow were developed as part of a study of the transport and fate of agricultural chemicals by the National Water-Quality Assessment (NAWQA) Program of the US Geological Survey. Agricultural chemicals of interest included forms of nitrogen and selected pesticides A three- dimensional local-scale model (17 square km) surrounds a well-instrumented, 1-km transect near the Merced River within a principally agricultural land-use setting. This model is nested within a regional-scale model (2,700 square km) of northeastern San Joaquin Valley, California, which provides hydrologically reasonable boundary conditions for the local model. Boundary fluxes were passed from the regional to local model using a hydraulic-conductivity-weighted distribution. The heterogeneity of aquifer materials was incorporated explicitly into the regional and local models. Three-dimensional kriging was used to interpolate sediment texture data from about 3,500 drillers' logs in the regional model area. The resulting distribution of sediment texture was used to estimate hydraulic parameters for each cell in the 16-layer regional model. A subset of these data was used to generate multiple transition-probability-based realizations of hydrofacies distributions for the 110-layer local model. Explicit depiction of heterogeneity in hydraulic conductivity and porosity in the local model incorporates macro-scale hydrodynamic dispersion into the flow model, allowing more direct comparison of particle-tracking results to tracer-derived estimates of ground-water age. Water levels measured in multi-depth wells along the 1-km transect were used to calibrate the local model (median error 0.12 m). Two-dimensional heat-flow models calibrated using continuous multi-depth temperature data from below the bed of the Merced River suggest an annual range of ground-water inflow of about 0-2.4 cm/d for water year 2005. This estimate compares reasonably well to the 4 cm/d simulated in the
Tian, Sicong; Jiang, Jianguo
2012-12-18
Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.
NASA Astrophysics Data System (ADS)
Solís, Hugo; Clark, Neville; Azofeifa, Daniel; Avendano, E.
2016-09-01
Titanium films were deposited on quartz, glass, polyamide and PET substrates in a high vacuum system at room temperature and their electrical resistance monitored in vacuo as a function of thickness. These measurements indicate that a low electrical resistance layer is formed in a gas-solid reaction during the condensation of the initial layers of Ti on glass and quartz substrates. Layers begin to show relative low electrical resistance at around 21 nm for glass and 9nm for quartz. Samples deposited on polyamide and PET do not show this low resistance feature.
NASA Technical Reports Server (NTRS)
Lauretta, Dante S.
2004-01-01
Recent studies of opaque minerals in primitive ordinary chondrites suggest that metal grains exposed at chondrule boundaries were corroded when volatile elements recondensed after the transient heating event responsible for chondrule formation. Metal grains at chondrule boundaries in the Bishunpur (LL3.1) chondrite are rimmed by troilite and fayalite. If these layers formed by gas solid reaction, then the composition of the corrosion products can provide information on the chondrule formation environment. Given the broad similarities among chondrules from different chondrite groups, similar scale layers should occur on chondrules in other primitive meteorite groups. Here I report on metal grains at chondrule boundaries in Vigarano (CV3).
NASA Astrophysics Data System (ADS)
Bickerton, Simon
Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold
Bolton, E.W.; Lasaga, A.C.; Rye, D.M.
1999-01-01
The kinetics of dissolution and precipitation is of central importance to understanding the long-term evolution of fluid flows in crustal environments, with implications for problems as diverse as nuclear waste disposal and crustal evolution. The authors examine the dynamics of such evolution for several geologically relevant permeability distributions (models for en-echelon cracks, an isolated sloping fractured zone, and two sloping high-permeability zones that are close enough together to interact). Although the focus is on a simple quartz matrix system, generic features emerge from this study that can aid in the broader goal of understanding the long-term feedback between flow and chemistry, where dissolution and precipitation is under kinetic control. Examples of thermal convection in a porous medium with spatially variable permeability reveal features of central importance to water-rock interaction. After a transient phase, an accelerated rate of change of porosity may be used with care to decrease computational time, as an alternative to the quasi-stationary state approximation (Lichtner, 1988). Kinetic effects produce features not expected by traditional assumptions made on the basis of equilibrium, for example, that cooling fluids are oversaturated and heating fluids are undersaturated with respect to silicic acid equilibrium. Indeed, the authors observe regions of downwelling oversaturated fluid experiencing heating and regions of upwelling, yet cooling, undersaturated fluid. When oscillatory convection is present, the amplitudes of oscillation generally increase with time in near-surface environments, whereas amplitudes tend to decrease over long times near the heated lower boundary. The authors examine the scaling behavior of characteristic length scales, of terms in the solute equation, and of the typical deviation from equilibrium, each as a function of the kinetic rate parameters.
Waldemar, G; Bruhn, P; Kristensen, M; Johnsen, A; Paulson, O B; Lassen, N A
1994-01-01
Regional cerebral blood flow (rCBF) was measured with high resolution brain dedicated single photon emission computer tomography (SPECT) and [99mTc]-d,l-hexamethyl-propylene-amine-oxime (HMPAO) in 25 patients with probable Alzheimer's disease and in 25 control subjects, selected according to rigorous inclusion and exclusion criteria. The aim was to analyse the topography of rCBF deficits in individual patients. In the group of patients with Alzheimer's disease as a whole, global CBF was reduced, but a factorial analysis of variance did not show disproportionate reduction of rCBF in any brain region. A parametric analysis of the rCBF data in individual patients was carried out with reference to normal values for internal rCBF ratios and to 13 different abnormal rCBF patterns. These theoretical patterns were predefined by showing significant hypoperfusion in at least one, or in any relevant combination of two, three, or four, of four major brain regions (a left and right frontal and a left and right posterior region). All patients with Alzheimer's disease and none of the control subjects had an abnormal rCBF pattern. Eleven of the 13 different patterns were seen in the patients. Frontal changes were seen in 19 (76%) of the patients, more often than previously reported. No single Alzheimer's disease pattern could be derived from our data. The number of regions with hypoperfusion, but not the presence of frontal changes, correlated significantly with the duration of disease. It is concluded that a clinical diagnosis of probable Alzheimer's disease is associated with heterogeneous patterns of rCBF deficits as measured with SPECT and [99mTc]-d,l-HMPAO. This heterogeneity may reflect different stages of the disease or cognitive subtypes and help explain published discrepancies concerning the topography of hypoperfusion in Alzheimer's disease. An analysis of individual rCBF data may add important information in the investigation of diseases with heterogeneous effects on
Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui
2013-07-17
This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity.
Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui
2013-01-01
This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745
NASA Astrophysics Data System (ADS)
Jódar, Jorge; Medina, Agustín; Carrera, Jesús
2011-11-01
Large amounts of gas can result from anaerobic corrosion of metals and from chemical and biological degradation of organic substances in underground repositories for radioactive waste. Gas generation may lead to the formation of a buoyant gas phase bubble (i.e. zone with increased gas saturation surrounded by water) and to the migration of radioactive gaseous species. In this situation, gaseous species migration is controlled by (1) advection, dispersion and diffusion within the gas bubble, and (2) dissolution in the water surrounding the gas bubble and diffusion of the dissolved species away from the interface. A number of gas tracer tests were performed in the framework of the GAs Migration (GAM) project to study the role played by dissolution/diffusion phenomena in gas transport. Tracers were selected to display a large range of solubility and diffusion coefficients, which should have led to significant chromatographic separation in the breakthrough curves (BTCs) of the tracers. However, measured BTCs displayed much smaller chromatographic separation than expected. These curves were interpreted using (1) a numerical model of multiphase flow and tracer transport in the fracture plane and diffusion into the immobile water, and (2) a simple two box model. Results showed that dissolution/diffusion into immobile water regions played a small role, and tailing appears to have been largely controlled by diffusion into dead gas volumes, such as boreholes.
Massara, S.; Schmitt, D.; Bretault, A.; Lemasson, D.; Darmet, G.; Verwaerde, D.; Struwe, D.; Pfrang, W.; Ponomarev, A.
2012-07-01
In the framework of a substantial improvement on FBR core safety connected to the development of a new Gen IV reactor type, heterogeneous core with innovative features are being carefully analyzed in France since 2009. At EDF R and D, the main goal is to understand whether a strong reduction of the Na-void worth - possibly attempting a negative value - allows a significant improvement of the core behavior during an unprotected loss of flow accident. Also, the physical behavior of such a core is of interest, before and beyond the (possible) onset of Na boiling. Hence, a cutting-edge heterogeneous design, featuring an annular shape, a Na-plena with a B{sub 4}C plate and a stepwise modulation of fissile core heights, was developed at EDF by means of the SDDS methodology, with a total Na-void worth of -1 $. The behavior of such a core during the primary phase of a severe accident, initiated by an unprotected loss of flow, is analyzed by means of the SAS-SFR code. This study is carried-out at KIT and EDF, in the framework of a scientific collaboration on innovative FBR severe accident analyses. The results show that the reduction of the Na-void worth is very effective, but is not sufficient alone to avoid Na-boiling and, hence, to prevent the core from entering into the primary phase of a severe accident. Nevertheless, the grace time up to boiling onset is greatly enhanced in comparison to a more traditional homogeneous core design, and only an extremely low fraction of the fuel (<0.1%) enters into melting at the end of this phase. A sensitivity analysis shows that, due to the inherent neutronic characteristics of such a core, the gagging scheme plays a major role on the core behavior: indeed, an improved 4-zones gagging scheme, associated with an enhanced control rod drive line expansion feed-back effect, finally prevents the core from entering into sodium boiling. This major conclusion highlights both the progress already accomplished and the need for more detailed
NASA Astrophysics Data System (ADS)
Kiptala, J. K.; Mul, M. L.; Mohamed, Y. A.; van der Zaag, P.
2014-06-01
Integrated water resources management is a combination of managing blue and green water resources. Often the main focus is on the blue water resources, as information on spatially distributed evaporative water use is not as readily available as the link to river flows. Physically based, spatially distributed models are often used to generate this kind of information. These models require enormous amounts of data, which can result in equifinality, making them less suitable for scenario analyses. Furthermore, hydrological models often focus on natural processes and fail to account for anthropogenic influences. This study presents a spatially distributed hydrological model that has been developed for a heterogeneous, highly utilized and data-scarce river basin in eastern Africa. Using an innovative approach, remote-sensing-derived evapotranspiration and soil moisture variables for 3 years were incorporated as input data into the Spatial Tools for River basin Environmental Analysis and Management (STREAM) model. To cater for the extensive irrigation water application, an additional blue water component (Qb) was incorporated in the STREAM model to quantify irrigation water use. To enhance model parameter identification and calibration, three hydrological landscapes (wetlands, hillslope and snowmelt) were identified using field data. The model was calibrated against discharge data from five gauging stations and showed good performance, especially in the simulation of low flows, where the Nash-Sutcliffe Efficiency of the natural logarithm (Ens_ln) of discharge were greater than 0.6 in both calibration and validation periods. At the outlet, the Ens_ln coefficient was even higher (0.90). During low flows, Qb consumed nearly 50% of the river flow in the basin. The Qb model result for irrigation was comparable to the field-based net irrigation estimates, with less than 20% difference. These results show the great potential of developing spatially distributed models that can
Optoelectronic technique for the characterization of high concentration gas-solid suspension.
Cutolo, A; Rendina, I; Arena, U; Marzocchella, A; Massimilla, L
1990-03-20
We describe a simple technique for measuring high (up to 0.16) time-averaged solids volumetric concentration in a two-phase flow. The technique is based on a properly modified version of the forward scattering of laser light. It is useful in a variety of practical configurations, and, in particular, it is instrumental in the diagnostics of particle flow in the free board of bubbling fluidized beds and in the circulating fluidized beds. A fallout of this work is the measurement of the extinction coefficient of the solid material tested.
NASA Astrophysics Data System (ADS)
Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc
2015-04-01
Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last
NASA Astrophysics Data System (ADS)
Kempka, Thomas; Class, Holger; Görke, Uwe-Jens; Norden, Ben; Kolditz, Olaf; Kühn, Michael; Walter, Lena; Wang, Wenqing; Zehner, Björn
2013-04-01
CO2 injection at the Ketzin pilot site located in Eastern Germany (Brandenburg) about 25 km west of Berlin is undertaken since June 2008 with a scheduled total amount of about 70,000 t CO2 to be injected into the saline aquifer represented by the Stuttgart Formation at a depth of 630 m to 650 m until the end of August 2013. The Stuttgart Formation is of fluvial origin determined by high-permeablity sandstone channels embedded in a floodplain facies of low permeability indicating a highly heterogeneous distribution of reservoir properties as facies distribution, porosity and permeability relevant for dynamic flow simulations. Following the dynamic modelling activities discussed by Kempka et al. (2010), a revised geological model allowed us to history match CO2 arrival times in the observation wells and reservoir pressure with a good agreement (Martens et al., 2012). Consequently, the validated reservoir model of the Stuttgart Formation at the Ketzin pilot site enabled us to predict the development of reservoir pressure and the CO2 plume migration in the storage formation by dynamic flow simulations. A benchmark study of industrial (ECLIPSE 100 as well as ECLIPSE 300 CO2STORE and GASWAT) and scientific dynamic flow simulations codes (TOUGH2-MP/ECO2N, OpenGeoSys and DuMuX) was initiated to address and compare the simulator capabilities considering a highly complex reservoir model. Hence, our dynamic flow simulations take into account different properties of the geological model such as significant variation of porosity and permeability in the Stuttgart Formation as well as structural geological features implemented in the geological model such as seven major faults located at the top of the Ketzin anticline. Integration of the geological model into reservoir models suitable for the different dynamic flow simulators applied demonstrated that a direct conversion of reservoir model discretization between Finite Volume and Finite Element flow simulators is not feasible
Poulsen, Nicklas N; Pedersen, Morten E; Østergaard, Jesper; Petersen, Nickolaj J; Nielsen, Christoffer T; Heegaard, Niels H H; Jensen, Henrik
2016-09-20
Detection of immune responses is important in the diagnosis of many diseases. For example, the detection of circulating autoantibodies against double-stranded DNA (dsDNA) is used in the diagnosis of Systemic Lupus Erythematosus (SLE). It is, however, difficult to reach satisfactory sensitivity, specificity, and accuracy with established assays. Also, existing methodologies for quantification of autoantibodies are challenging to transfer to a point-of-care setting. Here we present the use of flow-induced dispersion analysis (FIDA) for rapid (minutes) measurement of autoantibodies against dsDNA. The assay is based on Taylor dispersion analysis (TDA) and is fully automated with the use of standard capillary electrophoresis (CE) based equipment employing fluorescence detection. It is robust toward matrix effects as demonstrated by the direct analysis of samples composed of up to 85% plasma derived from human blood samples, and it allows for flexible exchange of the DNA sequences used to probe for the autoantibodies. Plasma samples from SLE positive patients were analyzed using the new FIDA methodology as well as by standard indirect immunofluorescence and solid-phase immunoassays. Interestingly, the patient antibodies bound DNA sequences with different affinities, suggesting pronounced heterogeneity among autoantibodies produced in SLE. The FIDA based methodology is a new approach for autoantibody detection and holds promise for being used for patient stratification and monitoring of disease activity. PMID:27571264
V. Yucel; D. G. Levitt
2001-11-01
Two low-level Radioactive Waste Management Sites (RWMSs), consisting of shallow land burial disposal units at the Nevada Test Site (NTS), are managed by Bechtel Nevada for the U.S. Department of Energy, National Nuclear Security Administration. The NTS has an arid climate with annual average precipitation of about 17 cm at the Area 3 RWMS and about 13 cm at the Area 5 RWMS. The vadose zone is about 490 m thick at the Area 3 RWMS, and about 235 m thick at the Area 5 RWMS. Numerous studies indicate that under current climatic conditions, there is generally no groundwater recharge at these sites. Groundwater recharge may occur at isolated locations surrounding the RWMSs, such as in large drainage washes. However, groundwater recharge scenarios (and radionuclide transport) at the RWMSs are modeled in support of Performance Assessment (PA) documents required for operation of each RWMS. Recharge scenarios include conditions of massive subsidence and flooding, and recharge resulting from deep infiltration through bare-soil waste covers. This paper summarizes the groundwater recharge scenarios and travel time estimates that have been conducted in support of the PAs, and examines the effects of soil hydraulic property heterogeneity on flow.
Stotler, R.L.; Frape, S.K.; El Mugammar, H.T.; Johnston, C.; Judd-Henrey, I.; Harvey, F.E.; Drimmie, R.; Jones, J.P.
2011-01-01
The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30 years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic "windows" cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows. ?? 2010 Springer-Verlag.
Explorations into thermodynamics analogies and critical points in reference to gas-solid transport
Mathur, M.P.; Wildman, D.; Tuba, S.T.; Klinzing, G.E.
1984-01-01
The use of analogies to explain transport processes is not new. The idea of borrowing concepts from thermodynamics and applying them to transport cases are also known. Experimental data from several investigators where the solid voidage has been determined experimentally have been analyzed to test the ability of a cubic van der Waals equation to represent the solid flow, gas flow and voidage. Using the van der Waals format phase diagrams have been constructed for a number of particulate systems which have been scrutinized. From this information the critical properties of the solids can be found. A generalized reduced properties plot has been constructed and has been shown to be unique in representing all the data. Exploration into the pressure drop domain has shown a relationship between the phase diagrams by an analytical approach. 9 references, 8 figures, 1 table.
Explorations into thermodynamic analogies and critical points in reference to gas-solid transport
Mathur, M.P.; Klinzing, G.E.; Tuba, S.T.; Wildman, D.J.
1984-01-01
The use of analogies to explain transport processes is not new, nor is the idea of borrowing concepts from thermodynamics and applying them to transport phenomena. Experimental data from several investigations, where the solid voidage has been determined experimentally, have been analyzed to test the ability of a cubi van der Waals equation to represent the solid flow, gas flow, and voidage. Using the van der Waals format, phase diagrams have been constructed for a number of particulate systems. From this information, the critical properties of the solids can be found. A generalized reduced-properties plot seems to correlate the existing data satisfactorily. The same approach is pursued to interpret the pressure drop data.
Explorations into thermodynamic analogies and critical points in reference to gas-solid transport
Mathur, M.P.; Wildman, D.J.; Tuba, S.T.; Klinzing, G.E.
1984-11-01
The use of analogies to explain transport processes is not new, nor is the idea of borrowing concepts from thermodynamics and applying them to transport phenomena. Experimental data from several investigations, where the solid voidage has been determined experimentally, have been analyzed to test the ability of a cubic van der Waals equation to represent the solid flow, gas flow, and voidage. Using the van der Waals format, phase diagrams have been constructed for a number of particulate systems. From this information, the critical properties of the solids can be found. A generalized reduced-properties plot seems to correlate the existing data satisfactorily. The same approach is pursued to interpret the pressure drop data. 10 refs., 8 figs.
NASA Astrophysics Data System (ADS)
Sudicky, E. A.; Illman, W. A.; Goltz, I. K.; Adams, J. J.; McLaren, R. G.
2010-01-01
The spatial variability of hydraulic conductivity in a shallow unconfined aquifer located at North Bay, Ontario, composed of glacial-lacustrine and glacial-fluvial sands, is examined in exceptional detail and characterized geostatistically. A total of 1878 permeameter measurements were performed at 0.05 m vertical intervals along cores taken from 20 boreholes along two intersecting transect lines. Simultaneous three-dimensional (3-D) fitting of Ln(K) variogram data to an exponential model yielded geostatistical parameters for the estimation of bulk hydraulic conductivity and solute dispersion parameters. The analysis revealed a Ln(K) variance equal to about 2.0 and 3-D anisotropy of the correlation structure of the heterogeneity (λ1, λ2, and λ3 equal to 17.19, 7.39, and 1.0 m, respectively). Effective values of the hydraulic conductivity tensor and the value of the longitudinal macrodispersivity were calculated using the theoretical expressions of Gelhar and Axness (1983). The magnitude of the longitudinal macrodispersivity is reasonably consistent with the observed degree of longitudinal dispersion of the landfill plume along the principal path of migration. Variably saturated 3-D flow modeling using the statistically derived effective hydraulic conductivity tensor allowed a reasonably close prediction of the measured water table and the observed heads at various depths in an array of piezometers. Concomitant transport modeling using the calculated longitudinal macrodispersivity reasonably predicted the extent and migration rates of the observed contaminant plume that was monitored using a network of multilevel samplers over a period of about 5 years. It was further demonstrated that the length of the plume is relatively insensitive to the value of the longitudinal macrodispersivity under the conditions of a steady flow in 3-D and constant source strength. This study demonstrates that the use of statistically derived parameters based on stochastic theories
A one-dimensional model for gas-solid heat transfer in pneumatic conveying
NASA Astrophysics Data System (ADS)
Smajstrla, Kody Wayne
A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.
Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface
NASA Astrophysics Data System (ADS)
Sharipov, Felix
2011-06-01
The present review is dedicated to the velocity slip and temperature jump coefficients applied to modeling of gas flows. Such coefficients are used when a moderate gas rarefaction must be taken into account. In this case, calculations of gas flows can be performed on the basis of continuum mechanics equations applying the velocity slip and temperature jump boundary conditions. Thus, the velocity slip and temperature jump coefficients have the same importance in gas dynamics as the transport coefficients such as viscosity, thermal conductivity, and diffusion coefficients. A critical analysis of theoretical and experimental data on the slip and jump coefficients available in the open literature is presented in an accessible form so that it can be easily understandable for nonspecialists in rarefied gas dynamics. The most reliable results are selected and tabulated. The results cover a single gas with the complete and noncomplete accommodation on a solid surface, gaseous mixtures, and polyatomic gases. Many examples of applications of the slip and jump boundary conditions are given. The review will be useful as a reference for mathematicians, physicists, and engineers dealing with flows of moderately rarefied gases.
Laser studies of chemical dynamics at the gas-solid interface. Progress report
Cavanagh, R.R.; King, D.S.
1985-10-14
The pathways and rates of energy transfer at surfaces remain some of the key unresolved issues for understanding chemical reactions occurring at this interface region. A dedicated experimental facility incorporating both sophisticated laser probes and modern surface diagnostics is being applied to the study of the thermal desorption of molecules chemisorbed on well-characterized surfaces. The thermal desorption process was chosen for initial study because thermally activated desorption, and its reverse, trapping, are key steps for the control of heterogeneous reactions. While it is frequently assumed that the desorbed species may be described in terms of equilibration with the substrate heat bath, there have been no previous direct tests of the validity of this assumption. In fact, our earlier measurements of NO thermally desorbed from Ru(001) indicated this not to be the case. In the past year we have taken a detailed look at the thermal desorption of NO from Pt(111). Emphasis was placed on trying to uncover the relative importance of adsorbate-surface versus adsorbate-adsorbate interactions. In addition, we have assembled a high vacuum test station to investigate the effects of rapid pulsed laser heating on an adsorbate covered surface (Pt foil).
Knochenmus, Lari A.; Robinson, James L.
1996-01-01
MODFLOW and MODPATH numerical models were used to generate areas of contribution to public supply wells for simulated hypothetical anisotropy and heterogeneous carbonate aquifer systems. The simulations incorporated, to varying degrees, the anisotropy and heterogeneity observed in a karst carbonate aquifer system. These include: isotropic and homogeneous single-layer system, doubly-porous single-layer system, and interconnected vertically and horizontally heterogeneous system. The study indicated that the distribution and nature of aquifer anisotropy and heterogeneity will affect the simulated size, shape, and orientation of areas of contribution in karst carbonate aquifer systems.
ERIC Educational Resources Information Center
Miranda, R.
1989-01-01
Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)
On the Superficial Gas Velocity in Deep Gas-Solid Fluidized Beds
Li, Tingwen; Grace, John; Shadle, Lawrence; Guenther, Chris
2011-11-15
The superficial gas velocity is one of the key parameters used to determine the flow hydrodynamics in gas–solids fluidized beds. However, the superficial velocity varies with height in practice, and there is no consistent basis for its specification. Different approaches to determine the superficial gas velocity in a deep gas–solids system are shown to cause difficulties in developing models and in comparing predictions with experimental results. In addition, the reference conditions for superficial gas velocity are important in modeling of deep gas–solids systems where there is a considerable pressure drop.
NASA Astrophysics Data System (ADS)
Ali, Neven Y.
The work focuses on implementing for the first time advanced non-invasive measurement techniques to evaluate the scale-up methodology of gas-solid spouted beds for hydrodynamics similarity that has been reported in the literature based on matching dimensionless groups and the new mechanistic scale up methodology that has been developed in our laboratory based on matching the radial profile of gas holdup since the gas dynamics dictate the hydrodynamics of the gas-solid spouted beds. These techniques are gamma-ray computed tomography (CT) to measure the cross-sectional distribution of the phases' holdups and their radial profiles along the bed height and radioactive particle tracking (RPT) to measure in three-dimension (3D) solids velocity and their turbulent parameters. The measured local parameters and the analysis of the results obtained in this work validate our new methodology of scale up of gas-solid spouted beds by comparing for the similarity the phases' holdups and the dimensionless solids velocities and their turbulent parameters that are non-dimensionalized using the minimum spouting superficial gas velocity. However, the scale-up methodology of gas-solid spouted beds that is based on matching dimensionless groups has not been validated for hydrodynamics similarity with respect to the local parameters such as phases' holdups and dimensionless solids velocities and their turbulent parameters. Unfortunately, this method was validated in the literature by only measuring the global parameters. Thus, this work confirms that validation of the scale-up methods of gas-solid spouted beds for hydrodynamics similarity should reside on measuring and analyzing the local hydrodynamics parameters.
Torsional rheometer for granular materials slurries and gas-solid mixtures and related methods
Rajagopal, Chandrika; Rajagopal, Kumbakonam R.; Yalamanchili, Rattaya C.
1997-01-01
A torsional rheometer apparatus for determining rheological properties of a specimen is provided. A stationary plate and a rotatable plate are in generally coaxial position and structured to receive a specimen therebetween. In one embodiment, at least one of the plates and preferably both have roughened specimen engaging surfaces to serve to reduce undesired slippage between the plate and the specimen. A motor is provided to rotate the rotatable plate and a transducer for monitoring forces applied to the stationary plate and generating output signals to a computer which determines the desired rheological properties are provided. In one embodiment, the roughened surfaces consist of projections extending toward the specimen. Where granular material is being evaluated, it is preferred that the roughness of the plate is generally equal to the average size of the granular material being processed. In another embodiment, an air-solid mixture is processed and the roughened portions are pore openings in the plates. Air flows through the region between the two pore containing plates to maintain the solid materials in suspension. In yet another embodiment, the base of the stationary plate is provided with a deformable capacitance sensor and associated electronic means.
Torsional rheometer for granular materials slurries and gas-solid mixtures and related methods
Rajagopal, C.; Rajagopal, K.R.; Yalamanchili, R.C.
1997-03-11
A torsional rheometer apparatus for determining rheological properties of a specimen is provided. A stationary plate and a rotatable plate are in generally coaxial position and structured to receive a specimen there between. In one embodiment, at least one of the plates and preferably both have roughened specimen engaging surfaces to serve to reduce undesired slippage between the plate and the specimen. A motor is provided to rotate the rotatable plate and a transducer for monitoring forces applied to the stationary plate and generating output signals to a computer which determines the desired rheological properties are provided. In one embodiment, the roughened surfaces consist of projections extending toward the specimen. Where granular material is being evaluated, it is preferred that the roughness of the plate is generally equal to the average size of the granular material being processed. In another embodiment, an air-solid mixture is processed and the roughened portions are pore openings in the plates. Air flows through the region between the two pore containing plates to maintain the solid materials in suspension. In yet another embodiment, the base of the stationary plate is provided with a deformable capacitance sensor and associated electronic means. 17 figs.
Efendiev, Yalchin; Datta-Gupta, Akhil; Jafarpour, Behnam; Mallick, Bani; Vassilevski, Panayot
2015-11-09
In this proposal, we have worked on Bayesian uncertainty quantification for predictions of fows in highly heterogeneous media. The research in this proposal is broad and includes: prior modeling for heterogeneous permeability fields; effective parametrization of heterogeneous spatial priors; efficient ensemble- level solution techniques; efficient multiscale approximation techniques; study of the regularity of complex posterior distribution and the error estimates due to parameter reduction; efficient sampling techniques; applications to multi-phase ow and transport. We list our publications below and describe some of our main research activities. Our multi-disciplinary team includes experts from the areas of multiscale modeling, multilevel solvers, Bayesian statistics, spatial permeability modeling, and the application domain.
Volatile organic compound adsorption in a gas-solid fluidized bed.
Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T
2004-01-01
Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas
Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley
2016-01-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944
Gas-solid reaction kinetics of ZnFe2O4 formation from 907 to 1100 °C.
Suetens, Thomas; Guo, Muxing; Van Acker, Karel; Blanpain, Bart
2015-05-21
The reaction kinetics of Zn vapor with Fe3O4 (magnetite) were studied from 907 to 1100 °C using a new experimental setup that only allows contact between the reactants through a gas-solid reaction. Hematite was used to create the reaction pellets. Because of the reducing atmosphere in the setup, a magnetite layer is formed on the outside of the pellet, which in turn reacts with the Zn vapor. After reaction, Zn concentration profiles were measured in the reacted magnetite layer using field-emission gun electron probe microanalysis. The reaction was confirmed to be diffusion-controlled. The effect of both volume and grain-boundary diffusion was observed in each experiment. The temperature dependence of both the volume and grain-boundary diffusion coefficients was obtained along with the activation energies of the diffusion coefficients. This study provides crucial information for the development of technologies that are dependent on the reaction. One example is the in-process separation technology for the separation of Zn vapor from electric arc furnace off-gas.
NASA Astrophysics Data System (ADS)
Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia
2016-07-01
We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume "filamentous" structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.
NASA Astrophysics Data System (ADS)
Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley
2016-07-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g-1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g-1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.
Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley
2016-01-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.
El-Naas, Muftah H; El Gamal, Maisa; Hameedi, Suhaib; Mohamed, Abdel-Mohsen O
2015-06-01
Mineral CO2 sequestration is a promising process for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline calcium-rich dust particles collected from bag filters of electric arc furnaces (EAF) for steel making were utilized as a viable raw material for mineral CO2 sequestration. The dust particles were pre-treated through hydration, drying and screening. The pre-treated particles were then subjected to direct gas-solid carbonation reaction in a fluidized-bed reactor. The carbonated products were characterized to determine the overall sequestration capacity and the mineralogical structures. Leaching tests were also performed to measure the extracted minerals from the carbonated dust and evaluate the carbonation process on dust stabilization. The experimental results indicated that CO2 could be sequestered using the pre-treated bag house dust. The maximum sequestration of CO2 was 0.657 kg/kg of dust, based on the total calcium content. The highest degree of carbonation achieved was 42.5% and the carbonation efficiency was 69% at room temperature.
Not Available
1984-04-04
The objetive of this work is to determine the changes in the particle structure of coal as it undergoes the carbon/carbon dioxide reaction (C + CO/sub 2/ ..-->.. 2CO). Char was produced by heating the coal at a rate of 25/sup 0/C/min to the reaction temperatures of 800/sup 0/C, 900/sup 0/C, 1000/sup 0/C and 1100/sup 0/C. The changes in surface area and effective diffusivity as a result of devolitization were determined. Changes in effective diffusivity and surface area as a function of conversion have been measured for reactions conducted at 800, 900, 1000 and 1100/sup 0/C for Wyodak coal char. The surface areas exhibit a maximum as a function of conversion in all cases. For the reaction at 1000/sup 0/C the maximum in surface area is greater than the maxima determined at all other reaction temperatures. Thermogravimetric rate data were obtained for five coal chars; Wyodak, Wilcox, Cimmeron, Illinois number 6 and Pittsburgh number 6 over the temperature range 800-1100/sup 0/C. All coal chars exhibit a maximum in reaction rate. Five different models for gas-solid reactions were evaluated. The Bhatia/Perlmutter model seems to best represent the data. 129 references, 67 figures, 37 tables.
Computational analysis for dry-ice sublimation assisted CO2 jet impingement flow
NASA Astrophysics Data System (ADS)
Kwak, Songmi; Lee, Jaeseon
2015-11-01
The flow and heat transfer characteristics of the novel gas-solid two-phase jet impingement are investigated computationally. When the high pressure carbon dioxide (CO2) flow passes through a nozzle or orifice, it experiences the sudden expansion and the rapid temperature drop occurred by Joule-Thomson effect. This temperature drop causes the lower bulk jet fluid temperature than the CO2 sublimation line, so dry-ice becomes formed. By using CO2 gas-solid mixture as a working fluid of jet impingement, it is expected the heat transfer enhancement can be achieved due to the low bulk temperature and the additional phase change latent heat. In this study, 2D CFD model is created to predict the cooling effect of gas-solid CO2 jet. The gas-solid CO2 flow is considered by Euler-Lagrangian approach of mixed phase and the additional heat transfer module is embedded to account for the sublimation phenomena of the solid state CO2. The jet flow and heat transfer performance of gas-solid CO2 jet is investigated by the variance of flow parameter like Reynolds number, solid phase concentration and jet geometries.
Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin
2013-12-01
Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry.
Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy
2015-09-01
Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.
Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy
2015-09-01
Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor. PMID:25940479
Rybolt; Logan; Milburn; Thomas; Waters
1999-12-01
Second gas-solid virial coefficients were determined at 403.5 +/- 0.5 K for 6 adsorbates, including butane, chloroform, trichlorofluoromethane (Freon 11), bromochloromethane, 1-chloro-2-methylpropane, and dibromodifluoromethane. For another 11 adsorbates, including dichlorodifluoromethane (Freon 12), chlorodifluoromethane (Freon 22), methyl chloride, methylene chloride, propane, n-pentane, n-hexane, carbon tetrachloride, 1,2-dichloropropane, butyl chloride, and cyclohexane, B(2s) was measured over a range of temperatures between 308 and 494 K. These values were found using gas-solid chromatography with Carbopack C (Supelco Inc.), a graphitized carbon black powder, as the adsorbent. We find that both the ln B(2s) values and the gas-solid interaction energies are effectively correlated with adsorbate-calculated molar refractivity, r(2) = 0.947 and r(2) = 0.964, respectively. Dipole moment alone provides a nearly random correlation of ln B(2s) and, if used with molar refractivity, gives r(2) = 0.970 for the 17 hydrocarbon and alkyl halide (halocarbon) adsorbates. A theoretical equation was developed that predicts a quantitative structure retention relationship (QSRR) used to correlate ln B(2s) values with molar refractivity. B(2s) values are directly proportional to the retention times of the adsorbates. Using one-surface and two-surface models, a calculation of the surface area of the Carbopack C for each of the 17 adsorbates provided a check on the consistency of the analysis as the adsorbate was varied. Copyright 1999 Academic Press.
Hao, Feng; Stoumpos, Constantinos C; Liu, Zhao; Chang, Robert P H; Kanatzidis, Mercouri G
2014-11-19
Depositing a pinhole-free perovskite film is of paramount importance to achieve high performance perovskite solar cells, especially in a heterojunction device format that is free of hole transport material (HTM). Here, we report that high-quality pinhole-free CH3NH3PbI3 perovskite film can be controllably deposited via a facile low-temperature (<150 °C) gas-solid crystallization process. The crystallite formation process was compared with respect to the conventional solution approach, in which the needle-shaped solvation intermediates (CH3NH3PbI3·DMF and CH3NH3PbI3·H2O) have been recognized as the main cause for the incomplete coverage of the resultant film. By avoiding these intermediates, the films crystallized at the gas-solid interface offer several beneficial features for device performance including high surface coverage, small surface roughness, as well as controllable grain size. Highly efficient HTM-free perovskite solar cells were constructed with these pinhole-free CH3NH3PbI3 films, exhibiting significant enhancement of the light harvesting in the long wavelength regime with respect to the conventional solution processed one. Overall, the gas-solid method yields devices with an impressive power conversion efficiency of 10.6% with high reproducibility displaying a negligible deviation of 0.1% for a total of 30 cells.
Quantum State-Resolved Reactive and Inelastic Scattering at Gas-Liquid and Gas-Solid Interfaces
NASA Astrophysics Data System (ADS)
Grütter, Monika; Nelson, Daniel J.; Nesbitt, David J.
2012-06-01
Quantum state-resolved reactive and inelastic scattering at gas-liquid and gas-solid interfaces has become a research field of considerable interest in recent years. The collision and reaction dynamics of internally cold gas beams from liquid or solid surfaces is governed by two main processes, impulsive scattering (IS), where the incident particles scatter in a few-collisions environment from the surface, and trapping-desorption (TD), where full equilibration to the surface temperature (T{TD}≈ T{s}) occurs prior to the particles' return to the gas phase. Impulsive scattering events, on the other hand, result in significant rotational, and to a lesser extent vibrational, excitation of the scattered molecules, which can be well-described by a Boltzmann-distribution at a temperature (T{IS}>>T{s}). The quantum-state resolved detection used here allows the disentanglement of the rotational, vibrational, and translational degrees of freedom of the scattered molecules. The two examples discussed are (i) reactive scattering of monoatomic fluorine from room-temperature ionic liquids (RTILs) and (ii) inelastic scattering of benzene from a heated (˜500 K) gold surface. In the former experiment, rovibrational states of the nascent HF beam are detected using direct infrared absorption spectroscopy, and in the latter, a resonace-enhanced multi-photon-ionization (REMPI) scheme is employed in combination with a velocity-map imaging (VMI) device, which allows the detection of different vibrational states of benzene excited during the scattering process. M. E. Saecker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson Science 252, 1421, 1991. A. M. Zolot, W. W. Harper, B. G. Perkins, P. J. Dagdigian and D. J. Nesbitt J. Chem. Phys 125, 021101, 2006. J. R. Roscioli and D. J. Nesbitt Faraday Disc. 150, 471, 2011.
Liu, Yong; Cain, Jeremy P.; Wang, Hai; Laskin, Alexander
2007-10-11
Heterogeneous reaction kinetics of gaseous nitric acid with deliquesced sodium chloride particles were investigated with a novel Particle-on-Substrate Stagnation Flow Reactor (PS-SFR) approach under conditions, including particle size, relative humidity and reaction time, directly relevant to the atmospheric chemistry of sea salt particles. Particles deposited onto an electron microscopy grid substrate were exposed to the reacting gas at atmospheric pressure and room temperature by impingement via a stagnation flow inside the reactor. The reactor design and choice of flow parameters were guided by computational fluid dynamics results to ensure uniformity of the diffusion flux to all particles undergoing reaction. The chloride depletion in the particles was followed by computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The validity of the current approach was examined first by conducting experiments with median dry particle diameter = 0.82 μm, 80% relative humidity, particle loading densities 4×104 ≤ Ns ≤ 7×106 cm–2 and free stream HNO3 concentrations 2, 7 and 22 ppb. Upon deliquescence the droplet diameter approximately doubles. The apparent, pseudo first-order rate constant determined in these experiments varied with particle loading and HNO3 concentration in a manner consistent with a diffusion-kinetic analysis reported earlier (Laskin, A.; Wang, H.; Robertson, W. H.; Cowin, J. P.; Ezell, M. J.; Finlayson-Pitts, B. J. J. Phys. Chem. A 2006, 110, 10619). The intrinsic, second-order rate constant was obtained as kII = 5.7×10–15 cm3molecule–1s–1 in the limit of zero particle loading and by assuming that the substrate is inert to HNO3. Under this loading condition the experimental, net reaction uptake coefficient was found to be γnet = 0.11 with an uncertainty factor of 3. Additional experiments examined the variations of HNO3 uptake on pure NaCl, a sea salt-like mixture of NaCl and MgCl2 (Mg
Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K; Brand, Andreas; Inglis, R Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank
2015-01-01
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with (15)N2 and (13)CO2 under in situ conditions with and without NH4 (+). Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation (15)N and (13)C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4 (+), but not in the presence of NH4 (+) as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a
NASA Astrophysics Data System (ADS)
Suliman, F.; Futsaether, C.; Oxaal, U.; Haugen, L. E.; Jenssen, P.
2006-09-01
Effects of the inlet and outlet position on flow patterns of saturated fluids in a horizontal subsurface-flow constructed wetland were investigated experimentally using a quasi two-dimensional flow cell representing a vertical cross-section in the longitudinal direction of the wetland. The filter medium consisted of glass beads that were either uniformly sized or a mixture of sizes with a distribution corresponding to wetland filter media. Flow through the filter bed was visualized by injecting dyed fluid into the water-saturated model. Next, breakthrough curves were obtained using chloride tracer. Flow through the homogeneous filter formed by uniformly sized beads displayed a clear density-driven component. Using mixed sizes, finer and coarser beads tended to separate into alternating and incomplete layers. Flow occurred preferentially along roughly horizontal high-conductivity paths of coarser filter material. Density-driven vertical flow was much slower than the horizontal flow. Nevertheless, appropriate positioning of the inlet and less importantly the outlet could to some extent mitigate the dominant effect of the medium stratification on the flow patterns. Using inlet-outlet configurations that forced the flow through larger portions of the filter bed by injecting into low-conductivity layers and opposing the gravity-driven flow increased the treatment efficiency.
Carbon-14 immobilization via the CO/sub 2/-Ba(OH)/sub 2/ hydrate gas-solid reaction
Haag, G.L.
1980-01-01
Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO/sub 2/-Ba(OH)/sub 2/ hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO/sub 3/, possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO/sub 2/) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH)/sub 2/.8H/sub 2/O flakes to remove CO/sub 2/ has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH)/sub 2/.8H/sub 2/O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH)/sub 2/.8H/sub 2/O to BaCO/sub 3/ and not from the hydration of the commercial Ba(OH)/sub 2/.8H/sub 2/O (i.e. Ba(OH)/sub 2/.7.50H/sub 2/O) to Ba(OH)/sub 2/.8H/sub 2/O.
Björnsson, O G; Kobayashi, K; Williamson, J R
1988-02-01
In the present studies, we demonstrate in buffer-perfused isolated working guinea pig hearts that indometacin reduces coronary flow rate in a dose-dependent manner (max 56.7 +/- 5.5%, SEM, n = 6, of control at 5 x 10(-6) mol/l of indometacin, P less than 0.01), and that this leads to a development of heterogeneous patterns of myocardial ischemia (elevated myocardial levels of reduced pyridine nucleotide, NADH) and depressed cardiac work (64.7 +/- 11.7%, SEM, of control at 5 x 10(-6) mol/l of indometacin, P less than 0.05). The effect of indometacin on coronary flow rate and consequently on myocardial tissue oxygenation was completely prevented by the preferential 5-lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) (1 x 10(-6) mol/l), or the sulfidopeptide leukotriene receptor antagonist FPL 55712 (2 x 10(-5) mol/l), indicating that the isolated working guinea pig heart, even when deprived of blood, is able to produce vasoactive sulfidopeptide leukotrienes at significant levels. At higher concentrations of indometacin (5 x 10(-5) mol/l, 1 x 10(-4) mol/l), coronary flow rate returned to initial levels while cardiac work became further depressed despite normoxic levels of NADH. These data support that indometacin also has a direct suppressive effect on the myocardium independent of its coronary vascular effect. This conclusion is supported by the observation that addition of sodium arachidonate (6 x 10(-5) mol/l) completely inhibited the vascular effect of indometacin, but not the depressive effect on the myocardium. The divalent cation ionophore A23187 (6 x 10(-6) mol/l) had a strong positive chronotropic effect on the heart and a biphasic effect on coronary flow rate. After a brief period of increased coronary flow rate, presumably due to coronary vasodilatation, the ionophore caused a sustained reduction in coronary flow, and this was accompanied by high myocardial levels of NADH fluorescence of characteristically heterogeneous pattern. This is presumably
Multiphase flow in wells and pipelines
Sharma, M.P. ); Rohatgi, U.S. )
1992-01-01
This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor.
NASA Astrophysics Data System (ADS)
Park, Sung Sil; Dyussekenov, Nurzhan; Sohn, H. Y.
2010-02-01
The top-blow injection technique of a gas-solid mixture through a circular lance is used in the Mitsubishi Continuous Smelting Process. One of the inherent problems associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than a circular jet was designed in the laboratory scale. With this new configuration, solid particles leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different than with the circular lance in which the solid particles leave the lance at the same high velocity as the gas. The results of cold model tests using an air-sand jet issuing from a circular lance and an annular lance into a water bath showed that the penetration of the annular jet is much less sensitive to the variations in particle feed rate as well as gas velocity than that of the circular jet. Correlation equations for the penetration depth for both circular and annular jets show agreement among the experimentally obtained values.
Pao-Chung Lin; Cheng-Wei Huang; Ching-Ta Hsiao; Hsisheng Teng
2008-04-15
Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO{sub 2} as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH){sub 2} precipitation was demonstrated. The extracted Mg(OH){sub 2} powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m{sup 2}/g. Under one atmosphere of 10 vol% CO{sub 2}/N{sub 2}, carbonation of the serpentine-derived Mg(OH){sub 2} to 26% of the stoichiometric limit was achieved at 325{sup o}C in 2 h; while carbonation of a commercially available Mg(OH){sub 2}, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m{sup 2}/g, reached only 9% of the stoichiometric limit. The amount of CO{sub 2} fixation was found to be inversely proportional to the crystal domain size of the Mg(OH){sub 2} specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain. 24 refs., 6 figs., 2 tabs.
A model for predicting laminar gas flow through micropassages
NASA Astrophysics Data System (ADS)
Li, Jun-Ming; Wang, Bu-Xuan; Peng, Xiao-Feng
1997-12-01
An theoretical investigation was conducted to detect the gas-solid interface effect on laminar flow characteristics for gas flowing through micropassages. In the wall-adjacent region, the change in viscosity of fluid vs the distance from the wall surface, as derived from the kinetic theory of gases result in significant influence on the flow characteristics in micropassages. A model was proposed to account for the wall effect. Analytical expressions for velocity profiles and pressure drop were derived, respectively, for laminar flow of gases in microtubes and in extremely narrow parallel plates. The Knudsen number, Kn, as a criterion, that the flow can be treated reasonably as flow in macrochannels, is discussed.
NASA Astrophysics Data System (ADS)
Lazarev, Y.; Petrov, P.; Tartakovsky, D. M.
2002-12-01
In this paper the problem of vacuum-incompressible fluid interface moving in a porous medium by treating conductivity of a medium as a random field with known statistics is considered. The flow is described by a combination of mass conservation and Darcy' law. The use of a coordinate system tied with the moving fluid allows reducing the problem to the well-explored class of problems with fixed boundaries and an effective conductivity tensor instead of the initial scalar conductivity. The hydraulic head is represented as a series in powers of effective conductivity fluctuations. The applied procedure is close to the perturbation theory procedure in the amplitude of the hydraulic conductivity fluctuations ˜ K when searching the solution with accuracy up to ˜ K2 . In both cases physical quantity variance is considered to be proportional to its reason: ˜ V = A ṡ ˜ K ( A is a linear operator). Yet unlike perturbation theory, where it is considered that A depends only on undisturbed flow parameters A = A(¯ K), in the approach being used A is considered to be dependent on averaged flow parameters A = A( ¯ K,< ˜ K2 > ). Equations of the mean hydraulic head and mean flux and expressions for respective variances as well are derived in the 2-D case. For 1-D flow the derived solution agrees with the exact one within terms of σ K2 -order at any free surface fluctuations. Within this approach the free surface moving, evolution in time of the mean hydraulic head spatial distribution, mean flux and relative correlation functions are described by the set of first-order partial differential equations. The conjugate gradient method with preconditioning is proposed to be used as the general method of equation numerical solving to find hydraulic head statistic moments. The problem matrix symmetry and its positive definiteness serve the foundation of the method applicability. RFLOW code has been elaborated to solve this set of equations numerically. Testing data of the
David Roelant; Seckin Gokaltun
2009-06-30
A circulating fluidized bed (CFB) built at FIU was used to study particle motion in the riser in order to simulate flow regimes in a cold gasifier. High speed imaging was used in order to capture the dynamics of the particles flowing in the riser. The imaging method used here is called the shadow sizing technique which allowed the determination of particle areas and trajectories at various flow rates in the riser. The solid volume fraction and particle velocities calculated using the images acquired during the experiments can be related to granular temperature in order to detect formations of clusters in the riser section of the CFB. The shadow sizing technique was observed to be an effective method in detecting dynamics of particles in motion and formation of clusters when supported with high-speed imaging.
NASA Astrophysics Data System (ADS)
Chang, J. S.; Sohn, H. Y.
2012-08-01
Top-blow injection of a gas-solid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas-solid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was
Symonds, R.B.; Reed, M.H.
1993-01-01
This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. Examples of gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mount St. Helens are shown. -from Authors
NASA Astrophysics Data System (ADS)
Shian, Samuel; Sandhage, Kenneth H.
2009-11-01
An externally heated, x-ray transparent reaction chamber has been developed to enable the dynamic high temperature x-ray diffraction (HTXRD) analysis of a gas/solid [TiF4(g)/SiO2(s)] reaction involving a halide gas reactant formed at elevated temperatures (up to 350 °C) from a condensed source (TiF4 powder) sealed within the chamber. The reaction chamber possessed x-ray transparent windows comprised of a thin (13 μm) internal layer of Al foil and a thicker (125 μm) external Kapton film. After sealing the SiO2 specimens (diatom frustules or Stöber spheres) above TiF4 powder within the reaction chamber, the chamber was heated to a temperature in the range of 160-350 °C to allow for internal generation of TiF4(g). The TiF4(g) underwent a metathetic reaction with the SiO2 specimen to yield a TiOF2(s) product. HTXRD analysis, using Cu Kα x rays passed through the Kapton/Al windows of the chamber, was used to track the extent of SiO2 consumption and/or TiOF2 formation with time. The Al foil inner layer of the windows protected the Kapton film from chemical attack by TiF4(g), whereas the thicker, more transparent Kapton film provided the mechanical strength needed to contain this gas. By selecting an appropriate combination of x-ray transparent materials to endow such composite windows with the required thermal, chemical, and mechanical performance, this inexpensive reaction chamber design may be applied to the HTXRD analyses of a variety of gas/solid reactions.
Characterizing hydrogeologic heterogeneity using lithologic data
Flach, G.; Hamm, LL.L.; Harris, M.K.; Thayer, P.A.; Haselow, J.S.; Smits, A.D.
1997-06-13
Large-scale (>1 m) variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport. Incorporating realistic hydraulic conductivity heterogeneity into flow and transport models is paramount to accurate simulations, particularly for contaminant migration. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about site-scale heterogeneity, than other site characterization data. In this study, a technique for generating a heterogeneous, three- dimensional hydraulic conductivity field from sediment lithologic descriptions is presented. The approach involves creating a three-dimensional, fine-scale representation of mud (silt and clay) percentage using a stratified interpolation algorithm. Mud percentage is then translated into horizontal and vertical conductivity using direct correlations derived from measured data and inverse groundwater flow modeling. Lastly, the fine-scale conductivity fields are averaged to create a coarser grid for use in groundwater flow and transport modeling.
Meichtry, Jorge M; Levy, Ivana K; Mohamed, Hanan H; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I
2016-03-16
The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600 nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650 nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) .
Surface Structure of Kio (3) Grown By Heterogeneous Reaction of Ozone With Ki (001)
Brown, M.A.; Liu, Z.; Ashby, P.D.; Mehta, A.; Grimm, R.L.; Hemminger, J.C.
2009-05-12
The crystal structure of KIO{sub 3} grown by heterogeneous surface oxidation of KI (001) with ozone is reported. Under ambient reaction conditions (RH {approx}35%, room temperature) a thick layer of KIO{sub 3} grows at the gas-solid interface. Two doublets are present in the I(4d) X-ray photoelectron spectroscopy structure measurements, characteristic of unreacted KI (I{sup -}) from the substrate and the oxidized KIO{sub 3} (I{sup 5+}) reaction product. X-ray diffraction measurements confirm the presence at the interface of randomly oriented polycrystalline-triclinic KIO{sub 3} with an average particle diameter of 15 nm. KIO{sub 3} particle diameters determined from the X-ray diffraction peak widths are consistent with the results of atomic force microscopy. There is no X-ray powder diffraction evidence to suggest that the underlying KI substrate is altered in any manner during this heterogeneous interfacial reaction.
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
NASA Astrophysics Data System (ADS)
El-Geassy, A. A.; Seetheraman, S.
2016-03-01
Ammonium molybdate and ferrous oxalate were used for the synthesis of nano-structured Mo-Fe intermetallics. Co-precipitation technique was applied to produce Mo/Fe precursors containing 58/42, 72/28 and 30/70 mass% respectively. The different phases formed were identified by XRD. The macro- and microstructures were microscopically examined by Reflected Light Microscope (RLM) and Scanning Electron Microscope (SEM) coupled with Electron Dispersion Spectroscopy (EDS). TG-DTA-DSC technique was applied to follow up the behavior of precursors up to 900oC (10K/min.). Endothermic peaks were detected at 97.8, 196.9 and 392.7oC due to the decomposition reactions to produce MoO3 and Fe2O3. The exothermic peak resulted at 427.8oC is due to the solid state reaction between these oxides to form Fe2(MoO4)3. Precursors were isothermally reduced at 600-850oC in a flow of purified H2 and the O2-weight loss from the reduction reactions was continuously recorded as a function of time. The isothermal reduction behavior of precursors was investigated. The structures of reduced products and the different phases formed were investigated and correlated with the reduction conditions. At >60% reduction extents, Fe2(MoO4)3] phase was first reduced to Fe2MoO3O8 before the formation of FeMo, while FeMoO4 and MoO2 were reduced to FeMo and Mo. In precursors containing higher content of Fe2O3, FeMo, Fe3Mo and Fe phases were produced. The visual observation of reduced samples showed that the volume was gradually shrinking with rise in temperature up to 800oC and beyond which a measurable swelling was observed reaching about 170% at 900oC.
Abdallah, Batoul Y; Horne, Steven D; Stevens, Joshua B; Liu, Guo; Ying, Andrew Y; Vanderhyden, Barbara; Krawetz, Stephen A; Gorelick, Root; Heng, Henry HQ
2013-01-01
Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since “outliers” play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the “average” cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution. PMID:24091732
Sulfur Dioxide Capture by Heterogeneous Oxidation on Hydroxylated Manganese Dioxide.
Wu, Haodong; Cai, Weimin; Long, Mingce; Wang, Hairui; Wang, Zhiping; Chen, Chen; Hu, Xiaofang; Yu, Xiaojuan
2016-06-01
Here we demonstrate that sulfur dioxide (SO2) is efficiently captured via heterogeneous oxidation into sulfate on the surface of hydroxylated manganese dioxide (MnO2). Lab-scale activity tests in a fluidized bed reactor showed that the removal efficiency for a simulated flue gas containing 5000 mg·Nm(-3) SO2 could reach nearly 100% with a GHSV (gas hourly space velocity) of 10000 h(-1). The mechanism was investigated using a combination of experimental characterizations and theoretical calculations. It was found that formation of surface bound sulfate proceeds via association of SO2 with terminal hydroxyls. Both H2O and O2 are essential for the generation of reactive terminal hydroxyls, and the indirect role of O2 in heterogeneous SO2 oxidation at low temperature was also revealed. We propose that the high reactivity of terminal hydroxyls is attributed to the proper surface configuration of MnO2 to adsorb water with degenerate energies for associative and dissociative states, and maintain rapid proton dynamics. Viability analyses suggest that the desulfurization method that is based on such a direct oxidation reaction at the gas/solid interface represents a promising approach for SO2 capture. PMID:27123922
Gritti, Fabrice; Guiochon, Georges A
2006-03-01
The extension of the {Psi} function developed by Toth from equilibria taking place at gas-solid interfaces to those taking place at liquid-solid interfaces was investigated. The results were applied to conventional liquid-solid systems used in reversed-phase liquid chromatography (RPLC). The adsorbents in these systems are made of porous silica having a hydrophobic solid surface obtained by chemically bonding C{sub 18} alkyl chains to a porous silica gel then endcapping the surface with trimethylsilyl groups. The liquid is an aqueous solution of an organic solvent, most often methanol or acetonitrile. The probe compound used here is phenol. Adsorption data of phenol were measured using the dynamic frontal analysis (FA) method. The excess adsorption of the organic solvent was measured using the minor disturbance (MD) method. Activity coefficients in the bulk were estimated through the UNIFAC group contributions. The results show that the {Psi} function predicts 90% of the total free energy of immersion, {Delta}F, of the solid when the concentration of phenol is moderate (typically less than 10 g/L). At higher concentrations, the nonideal behavior of the bulk liquid phase becomes significant and it may contribute up to about 30% of {Delta}F. The high concentration of adsorbed molecules of phenol at the interface decreases the interfacial tension, {sigma}, by about 18 mN/m, independently of the structure of the adsorbed phase and of the nature of the organic solvent.
Evaporation from heterogeneous soil surfaces
NASA Astrophysics Data System (ADS)
Lehmann, P.; Or, D.
2009-04-01
Evaporation rate is a key process of water exchange between soil surfaces and atmosphere and is controlled by both atmospheric demand and soil hydraulic properties. Initially high evaporation rates are sustained by capillary-induced water flow from receding drying front to evaporating surface. In heterogeneous soils air invades preferentially coarse-textured regions whereas fine textured surface regions remain water saturated. We investigated experimentally and numerically effects of hydraulic coupling on drying rate of heterogeneous porous media. Laboratory experiments with vertical contrasts between fine (0.1-0.5 mm) and coarse sand (0.3-0.9 mm) showed that the period of high drying rate was extended compared to evaporation from homogeneous materials. Water flow from coarse material to supply water evaporated from fine textured surface was monitored by neutron radiography imaging. Due to the high hydraulic conductivity of the coarse material the viscous head loss could be neglected for flow distances analyzed in the experiments (< 600 mm). We proposed a model to explore effects of hydraulic coupling on evaporation for a wide range of soil textural classes at plot scale. When the drying front in the coarse reaches a certain characteristic depth (defined by the pore size distribution) no water evaporates from the coarse surface, yet, subsurface flow from coarse to the fine textured inclusion persists and feeds enhanced evaporation rate. Assuming energy input was not limiting, evaporation from the fine textured inclusion may increase to compensate reduction of evaporating surface. For loam or silt as inclusion in sandy material, water was extracted from regions with more than 10 m in distance before flow was limited by viscous effects. In case of clay inclusions the radius of water extraction was smaller due to enhanced viscous resistance. The findings of the numerical study can be applied as well to assess the effect of shrubs or compacted trafficked zones on the
Transmissivity of a heterogeneous formation
NASA Astrophysics Data System (ADS)
Dykaar, Bruce B.; Kitanidis, Peter K.
1993-04-01
The objective of this paper is to derive the transmissivity of an equivalent homogeneous medium having the same macroscopic flow behavior as the actual heterogeneous formation. We apply generalized Taylor-Ans moment analysis in order to determine the phenomenological coefficient of transmissivity for the case of saturated flow confined in a heterogeneous permeable formation with variable thickness. The generalized Taylor-Aris moment analysis yields a two-step procedure for determining the constant two-dimensional transmissivity tensor from the three-dimensional spatially variable conductivity tensor: solve a flow problem and then perform an integration. For the special case that the conductivity is locally isotropic and the impermeable confining surfaces are parallel, the equations governing transmissivity are discretized using a pseudospectral Fourier-Galerkin scheme. The resultant system of linear algebraic equations is solved efficiently, using preconditioned conjugate gradients, in order Nt In (Nt) operations, where Nt is the number of spatial discretization points. The numerical method is used in several examples to compute the transmissivity of lognormally distributed hydraulic conductivity, and the results are compared with the transmissivity found using the usual depth-averaging approach and another method suggested in the literature. The numerical results show that the averaging volume required to obtain an effective value of transmissivity is about 10 horizontal integral scales. When the flow field has a significant three-dimensional character, the standard method of finding transmissivities by depth averaging can lead to significant errors in the prediction of global scale flows. It is shown that depth averaging consistently overestimates transmissivities. An example illustrates how in the case of tilted strata, anisotropic transmissivities arise and how the degree of transmissivity anisotropy depends on the angle of the dip and the horizontal to
Phenotypically heterogeneous populations in spatially heterogeneous environments
NASA Astrophysics Data System (ADS)
Patra, Pintu; Klumpp, Stefan
2014-03-01
The spatial expansion of a population in a nonuniform environment may benefit from phenotypic heterogeneity with interconverting subpopulations using different survival strategies. We analyze the crossing of an antibiotic-containing environment by a bacterial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-tolerant persister cells. The dynamics of crossing is characterized by mean first arrival times and is found to be surprisingly complex. It displays three distinct regimes with different scaling behavior that can be understood based on an analytical approximation. Our results suggest that a phenotypically heterogeneous population has a fitness advantage in nonuniform environments and can spread more rapidly than a homogeneous population.
Tihansky, A.B.
2005-01-01
Chloride concentrations have been increasing over time in water from wells within and near the Eldridge-Wilde well field, near the coast in west-central Florida. Variable increases in chloride concentrations from well to well over time are the combined result of aquifer heterogeneity and ground-water pumping within the Upper Floridan aquifer. Deep mineralized water and saline water associated with the saltwater interface appear to move preferentially along flow zones of high transmissivity in response to ground-water withdrawals. The calcium-bicarbonate-type freshwater of the Upper Floridan aquifer within the study area is variably enriched with ions by mixing with introduced deep and saline ground water. The amount and variability of increases in chloride and sulfate concentrations at each well are related to well location, depth interval, and permeable intervals intercepted by the borehole. Zones of high transmissivity characterize the multilayered carbonate rocks of the Upper Floridan aquifer. Well-developed secondary porosity within the Tampa/Suwannee Limestones and the Avon Park Formation has created producing zones within the Upper Floridan aquifer. The highly transmissive sections of the Avon Park Formation generally are several orders of magnitude more permeable than the Tampa/Suwannee Limestones, but both are associated with increased ground-water flow. The Ocala Limestone is less permeable and is dominated by primary, intergranular porosity. Acoustic televiewer logging, caliper logs, and borehole flow logs (both electromagnetic and heat pulse) indicate that the Tampa/Suwannee Limestone units are dominated by porosity owing to dissolution between 200 and 300 feet below land surface, whereas the porosity of the Avon Park Formation is dominated by fractures that occur primarily from 600 to 750 feet below land surface and range in angle from horizontal to near vertical. Although the Ocala Limestone can act as a semiconfining unit between the Avon Park
Patterns of Emphysema Heterogeneity
Valipour, Arschang; Shah, Pallav L.; Gesierich, Wolfgang; Eberhardt, Ralf; Snell, Greg; Strange, Charlie; Barry, Robert; Gupta, Avina; Henne, Erik; Bandyopadhyay, Sourish; Raffy, Philippe; Yin, Youbing; Tschirren, Juerg; Herth, Felix J.F.
2016-01-01
Background Although lobar patterns of emphysema heterogeneity are indicative of optimal target sites for lung volume reduction (LVR) strategies, the presence of segmental, or sublobar, heterogeneity is often underappreciated. Objective The aim of this study was to understand lobar and segmental patterns of emphysema heterogeneity, which may more precisely indicate optimal target sites for LVR procedures. Methods Patterns of emphysema heterogeneity were evaluated in a representative cohort of 150 severe (GOLD stage III/IV) chronic obstructive pulmonary disease (COPD) patients from the COPDGene study. High-resolution computerized tomography analysis software was used to measure tissue destruction throughout the lungs to compute heterogeneity (≥ 15% difference in tissue destruction) between (inter-) and within (intra-) lobes for each patient. Emphysema tissue destruction was characterized segmentally to define patterns of heterogeneity. Results Segmental tissue destruction revealed interlobar heterogeneity in the left lung (57%) and right lung (52%). Intralobar heterogeneity was observed in at least one lobe of all patients. No patient presented true homogeneity at a segmental level. There was true homogeneity across both lungs in 3% of the cohort when defining heterogeneity as ≥ 30% difference in tissue destruction. Conclusion Many LVR technologies for treatment of emphysema have focused on interlobar heterogeneity and target an entire lobe per procedure. Our observations suggest that a high proportion of patients with emphysema are affected by interlobar as well as intralobar heterogeneity. These findings prompt the need for a segmental approach to LVR in the majority of patients to treat only the most diseased segments and preserve healthier ones. PMID:26430783
Seismoelectric effects due to mesoscopic heterogeneities
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Rubino, J. GermáN.; Carbajal, Marina Rosas; Linde, Niklas; Holliger, Klaus
2013-05-01
While the seismic effects of wave-induced fluid flow due to mesoscopic heterogeneities have been studied for several decades, the role played by these types of heterogeneities on seismoelectric phenomena is largely unexplored. To address this issue, we have developed a novel methodological framework which allows for the coupling of wave-induced fluid flow, as inferred through numerical oscillatory compressibility tests, with the pertinent seismoelectric conversion mechanisms. Simulating the corresponding response of a water-saturated sandstone sample containing mesoscopic fractures, we demonstrate for the first time that these kinds of heterogeneities can produce measurable seismoelectric signals under typical laboratory conditions. Given that this phenomenon is sensitive to key hydraulic and mechanical properties, we expect that the results of this pilot study will stimulate further exploration on this topic in several domains of the Earth, environmental, and engineering sciences.
Gay, Laura; Baker, Ann-Marie; Graham, Trevor A.
2016-01-01
The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment. PMID:26973786
Asymmetric reactions in continuous flow
Mak, Xiao Yin; Laurino, Paola
2009-01-01
Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913
Haag, G.L.
1983-09-01
The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.
Tofan-Lazar, Julia; Situm, Arthur; Al-Abadleh, Hind A
2013-10-10
Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. However, little is known about the role of surface water in the complexation of organic acid molecules to transition metals in multicomponent aerosol systems. We report herein results from real time DRIFTS experiments that show in situ complexation of catechol to Fe(III) under humid conditions. Catechol was schosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It was also detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative, and qualitative information about complexes in the bulk, and potential degradation products in the dark. Under dry conditions, DRIFTS spectra show that gas phase catechol adsorbs molecularly and is fully protonated on samples containing FeCl3 with no evidence of complexation to Fe(III). Upon increasing the relative humidity to a value below the deliquescence of FeCl3, surface water facilitates ionic mobility resulting in the formation of monodentate catechol-Fe complexes. These complexes are stable at the gas/solid interface and do not undergo any further degradation in the dark as shown from bulk UV-vis and HPLC experiments. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin films on buildings, and ocean surfaces containing transition metals are discussed.
Dispersivity in heterogeneous permeable media
Chesnut, D.A.
1994-01-01
When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. For continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the, clinical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects. of this behavior on radionuclide or other contaminant migration.
Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride
NASA Technical Reports Server (NTRS)
Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun
1994-01-01
The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.
Teaching Heterogeneous Classes.
ERIC Educational Resources Information Center
Millrood, Radislav
2002-01-01
Discusses an approach to teaching heterogeneous English-as-a-Second/Foreign-Language classes. Draws on classroom research data to describe the features of a success-building lesson context. (Author/VWL)
Heterogeneity and Scaling in Geologic Media
Gregory N. Boitnott; Gilles Y. Bussod; Paul N. Hagin; Stephen R. Brown
2005-04-18
The accurate characterization and remediation of contaminated subsurface environments requires the detailed knowledge of subsurface structures and flow paths. Enormous resources are invested in scoping and characterizing sites using core sampling, 3-D geophysical surveys, well tests, etc.... Unfortunately, much of the information acquired is lost to compromises and simplifications made in constructing numerical grids for the simulators used to predict flow and transport from the contaminated area to the accessible environment. In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. In the interest of computational efficiency, recognized heterogeneities are simplified, averaged out, or entirely ignored in spite of recent studies that recognize that: (1) Structural and lithologic heterogeneities exist on all scales in rocks. (2) Small heterogeneities influence, and can control the physical and chemical properties of rocks. In this work we propose a physically based approach for the description and treatment of heterogeneities, that highlights the use of laboratory equipment designed to measure the effect on physical properties of fine scale heterogeneities observed in rocks and soils. We then discuss the development of an integration methodology that uses these measurements to develop and upscale flow and transport models. Predictive simulations are 'calibrated' to the measured heterogeneity data, and subsequently upscaled in a way that is consistent with the transport physics and the efficient use of environmental geophysics. This methodology provides a more accurate interpretation and representation of the subsurface for both environmental engineering and remediation. We show through examples, (i) the important influence of even subtle heterogeneity in the interpreting of geophysical data, and (ii) how physically based upscaling can lead
Characterization of Paper Heterogeneity
NASA Astrophysics Data System (ADS)
Considine, John M.
Paper and paperboard are the most widely-used green materials in the world because they are renewable, recyclable, reusable, and compostable. Continued and expanded use of these materials and their potential use in new products requires a comprehensive understanding of the variability of their mechanical properties. This work develops new methods to characterize the mechanical properties of heterogeneous materials through a combination of techniques in experimental mechanics, materials science and numerical analysis. Current methods to analyze heterogeneous materials focus on crystalline materials or polymer-crystalline composites, where material boundaries are usually distinct. This work creates a methodology to analyze small, continuously-varying stiffness gradients in 100% polymer systems and is especially relevant to paper materials where factors influencing heterogeneity include local mass, fiber orientation, individual pulp fiber properties, local density, and drying restraint. A unique approach was used to understand the effect of heterogeneity on paper tensile strength. Additional variation was intentionally introduced, in the form of different size holes, and their effect on strength was measured. By modifying two strength criteria, an estimate of strength in the absence of heterogeneity was determined. In order to characterize stiffness heterogeneity, a novel load fixture was developed to excite full-field normal and shear strains for anisotropic stiffness determination. Surface strains were measured with digital image correlation and were analyzed with the VFM (Virtual Fields Method). This approach led to VFM-identified stiffnesses that were similar to values determined by conventional tests. The load fixture and VFM analyses were used to measure local stiffness and local stiffness variation on heterogeneous anisotropic materials. The approach was validated on simulated heterogeneous materials and was applied experimentally to three different paperboards
Distributional Scaling in Heterogeneous Aquifers
NASA Astrophysics Data System (ADS)
Polsinelli, J. F.
2015-12-01
An investigation is undertaken into the fractal scaling properties of the piezometric head in a heterogeneous unconfined aquifer. The governing equations for the unconfined flow are derived from conservation of mass and the Darcy law. The Dupuit approximation will be used to model the dynamics. The spatially varying nature of the tendency to conduct flow (e.g. the hydraulic conductivity) is represented as a stochastic process. Experimental studies in the literature have indicated that the conductivity belongs to a class of non-stationary stochastic fields, called H-ss fields. The uncertainty in the soil parameters is imparted onto the flow variables; in groundwater investigations the potentiometric head will be a random function. The structure of the head field will be analyzed with an emphasis on the scaling properties. The scaling scheme for the modeling equations and the simulation procedure for the saturated hydraulic conductivity process will be explained, then the method will be validated through numerical experimentation using the USGS Modflow-2005 software. The results of the numerical simulations demonstrate that the head will exhibit multi-fractal scaling if the hydraulic conductivity exhibits multi-fractal scaling and the differential equations for the groundwater equation satisfy a particular set of scale invariance conditions.
Impact of Aquifer Heterogeneities on Autotrophic Denitrification.
NASA Astrophysics Data System (ADS)
McCarthy, A.; Roques, C.; Selker, J. S.; Istok, J. D.; Pett-Ridge, J. C.
2015-12-01
Nitrate contamination in groundwater is a big challenge that will need to be addressed by hydrogeologists throughout the world. With a drinking water standard of 10mg/L of NO3-, innovative techniques will need to be pursued to ensure a decrease in drinking water nitrate concentration. At the pumping site scale, the influence and relationship between heterogeneous flow, mixing, and reactivity is not well understood. The purpose of this project is to incorporate both physical and chemical modeling techniques to better understand the effect of aquifer heterogeneities on autotrophic denitrification. We will investigate the link between heterogeneous hydraulic properties, transport, and the rate of autotrophic denitrification. Data collected in previous studies in laboratory experiments and pumping site scale experiments will be used to validate the models. The ultimate objective of this project is to develop a model in which such coupled processes are better understood resulting in best management practices of groundwater.
Shock Initiation of Heterogeneous Explosives
Reaugh, J E
2004-05-10
The fundamental picture that shock initiation in heterogeneous explosives is caused by the linking of hot spots formed at inhomogeneities was put forward by several researchers in the 1950's and 1960's, and more recently. Our work uses the computer hardware and software developed in the Advanced Simulation and Computing (ASC) program of the U.S. Department of Energy to explicitly include heterogeneities at the scale of the explosive grains and to calculate the consequences of realistic although approximate models of explosive behavior. Our simulations are performed with ALE-3D, a three-dimensional, elastic-plastic-hydrodynamic Arbitrary Lagrange-Euler finite-difference program, which includes chemical kinetics and heat transfer, and which is under development at this laboratory. We developed the parameter values for a reactive-flow model to describe the non-ideal detonation behavior of an HMX-based explosive from the results of grain-scale simulations. In doing so, we reduced the number of free parameters that are inferred from comparison with experiment to a single one - the characteristic defect dimension. We also performed simulations of the run to detonation in small volumes of explosive. These simulations illustrate the development of the reaction zone and the acceleration of the shock front as the flame fronts start from hot spots, grow, and interact behind the shock front. In this way, our grain-scale simulations can also connect to continuum experiments directly.
NASA Astrophysics Data System (ADS)
Kabalaa, Z. J.; Sposito, Garrison
1998-06-01
In this note, we demonstrate that statements made in a recent paper by Kavvas and Karakas (1996) (J. Hydrol., 179: 321-351), concerning the assumptions underlying the stochastic model of solute transport in spatially-heterogeneous aquifers developed by Kabala and Sposito (1991) (Water Resour. Res., 25: 341-350), are incorrect.
NASA Astrophysics Data System (ADS)
Pruhs, Kirk
A particularly important emergent technology is heterogeneous processors (or cores), which many computer architects believe will be the dominant architectural design in the future. The main advantage of a heterogeneous architecture, relative to an architecture of identical processors, is that it allows for the inclusion of processors whose design is specialized for particular types of jobs, and for jobs to be assigned to a processor best suited for that job. Most notably, it is envisioned that these heterogeneous architectures will consist of a small number of high-power high-performance processors for critical jobs, and a larger number of lower-power lower-performance processors for less critical jobs. Naturally, the lower-power processors would be more energy efficient in terms of the computation performed per unit of energy expended, and would generate less heat per unit of computation. For a given area and power budget, heterogeneous designs can give significantly better performance for standard workloads. Moreover, even processors that were designed to be homogeneous, are increasingly likely to be heterogeneous at run time: the dominant underlying cause is the increasing variability in the fabrication process as the feature size is scaled down (although run time faults will also play a role). Since manufacturing yields would be unacceptably low if every processor/core was required to be perfect, and since there would be significant performance loss from derating the entire chip to the functioning of the least functional processor (which is what would be required in order to attain processor homogeneity), some processor heterogeneity seems inevitable in chips with many processors/cores.
Simulation of water flow in terrestrial systems
2008-12-18
ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less
Comparing Assayed Surface Heterogeneity Under Low Versus Maximum Attachment Conditions
NASA Astrophysics Data System (ADS)
Rasmuson, J. A.
2014-12-01
It has long been suspected that nanoscale heterogeneity is responsible for colloid attachment to surfaces under conditions unfavorable to attachment. Recently, mechanistic colloid force and torque simulations have been applied to arrays of experimental data to back out nanoscale heterogeneity that is representative of the collector surface. These recent experiments were performed under flowing conditions with limited colloid attachment. This presentation explores whether surface heterogeneity backed out from experiments performed under conditions designed to maximize attachment (e.g., non-flowing followed by elution) yields a characteristic heterogeneity that can be reproduced on surfaces backed out under other conditions. The nature of attachment under flowing vs. non-flowing conditions differed for large (2.0 μm) relative to small (0.25 μm) colloids. For example, the maximum loading of small colloids was the same under flowing conditions versus non-flowing conditions followed by elution. The maximum loading of large colloids however was much lower under flowing conditions relative to non-flowing conditions followed by elution. This difference indicates a mechanism contributing to the attachment of large colloids that is not included in mechanistic force and torque balances. These possible mechanisms are reviewed and strategies to incorporate them are discussed. The reproducibility of attachments and their spatial distribution will also be examined.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Shlesinger, Michael F.
2012-01-01
We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).
Heterogeneous waste processing
Vanderberg, Laura A.; Sauer, Nancy N.; Brainard, James R.; Foreman, Trudi M.; Hanners, John L.
2000-01-01
A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.
NASA Astrophysics Data System (ADS)
Steinkamp, John A.
1984-09-01
Flow cytometry instrumentation developed from early efforts to count cells and particles in liquid suspension as they passed through a sensing device. Since the mid-1960's sophisticated instruments have been designed for analyzing cells based on various cytological, biochemical, and functional properties. These instruments have revolutionized automated cell analysis methods in that measurements are made at high speed, multiparameter data is correlated on each cell, statistical precision is high, and cells are separated in high purity from heterogeneous mixtures for identification and functional analysis. Advanced instruments capable of measuring cell volume, surface area, multicolor fluorescence, fluorescence polarization, light scatter within various angular regions, and axial light loss (extinction) at different wavelengths are being used in biomedical research for analyzing and sorting normal and abnormal cell populations. This article reviews the development of flow cytometers, the conceptual basis of flow measurements, and discusses some of the numerous applications of the technology in biology and medicine.
Scales of mantle heterogeneity
NASA Astrophysics Data System (ADS)
Moore, J. C.; Akber-Knutson, S.; Konter, J.; Kellogg, J.; Hart, S.; Kellogg, L. H.; Romanowicz, B.
2004-12-01
A long-standing question in mantle dynamics concerns the scale of heterogeneity in the mantle. Mantle convection tends to both destroy (through stirring) and create (through melt extraction and subduction) heterogeneity in bulk and trace element composition. Over time, these competing processes create variations in geochemical composition along mid-oceanic ridges and among oceanic islands, spanning a range of scales from extremely long wavelength (for example, the DUPAL anomaly) to very small scale (for example, variations amongst melt inclusions). While geochemical data and seismic observations can be used to constrain the length scales of mantle heterogeneity, dynamical mixing calculations can illustrate the processes and timescales involved in stirring and mixing. At the Summer 2004 CIDER workshop on Relating Geochemical and Seismological Heterogeneity in the Earth's Mantle, an interdisciplinary group evaluated scales of heterogeneity in the Earth's mantle using a combined analysis of geochemical data, seismological data and results of numerical models of mixing. We mined the PetDB database for isotopic data from glass and whole rock analyses for the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR), projecting them along the ridge length. We examined Sr isotope variability along the East Pacific rise by looking at the difference in Sr ratio between adjacent samples as a function of distance between the samples. The East Pacific Rise exhibits an overall bowl shape of normal MORB characteristics, with higher values in the higher latitudes (there is, however, an unfortunate gap in sampling, roughly 2000 km long). These background characteristics are punctuated with spikes in values at various locations, some, but not all of which are associated with off-axis volcanism. A Lomb-Scargle periodogram for unevenly spaced data was utilized to construct a power spectrum of the scale lengths of heterogeneity along both ridges. Using the same isotopic systems (Sr, Nd
Altering Emulsion Stability with Heterogeneous Surface Wettability
Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy
2016-01-01
Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703
Altering Emulsion Stability with Heterogeneous Surface Wettability
NASA Astrophysics Data System (ADS)
Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy
2016-06-01
Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.
Altering Emulsion Stability with Heterogeneous Surface Wettability.
Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G H; Chen, Haosheng; Tsai, Peichun Amy
2016-01-01
Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Gibert, N.; Redner, S.
2010-07-01
We introduce the heterogeneous voter model (HVM), in which each agent has its own intrinsic rate to change state, reflective of the heterogeneity of real people, and the partisan voter model (PVM), in which each agent has an innate and fixed preference for one of two possible opinion states. For the HVM, the time until consensus is reached is much longer than in the classic voter model. For the PVM in the mean-field limit, a population evolves to a preference-based state, where each agent tends to be aligned with its internal preference. For finite populations, discrete fluctuations ultimately lead to consensus being reached in a time that scales exponentially with population size.
Atmospheric Heterogeneous Stereochemistry
NASA Astrophysics Data System (ADS)
Stokes, G. Y.; Buchbinder, A. M.; Geiger, F. M.
2009-12-01
This paper addresses the timescale and mechanism of heterogeneous interactions of laboratory models of organic-coated mineral dust and ozone. We are particularly interested in investigating the role of stereochemistry in heterogeneous oxidation reactions involving chiral biogenic VOCs. Using the surface-specific nonlinear optical spectroscopy, sum frequency generation, we tracked terpene diastereomers during exposure to 10^11 to 10^13 molecules of ozone per cm^3 in 1 atm helium to model ozone-limited and ozone-rich tropospheric conditions. Our kinetic data indicate that the diastereomers which orient their reactive C=C double bonds towards the gas phase exhibit heterogeneous ozonolysis rate constants that are two times faster than diastereomers that orient their C=C double bonds away from the gas phase. Insofar as our laboratory model studies are representative of real world environments, our studies suggest that the propensity of aerosol particles coated with chiral semivolatile organic compounds to react with ozone may depend on stereochemistry. Implications of these results for chiral markers that would allow for source appointment of anthropogenic versus biogenic carbon emissions will be discussed.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Liu, Q.; Li, Y.
2012-03-01
Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with
MULTIGRID HOMOGENIZATION OF HETEROGENEOUS POROUS MEDIA
Dendy, J.E.; Moulton, J.D.
2000-10-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL); this report, however, reports on only two years research, since this project was terminated at the end of two years in response to the reduction in funding for the LDRD Program at LANL. The numerical simulation of flow through heterogeneous porous media has become a vital tool in forecasting reservoir performance, analyzing groundwater supply and predicting the subsurface flow of contaminants. Consequently, the computational efficiency and accuracy of these simulations is paramount. However, the parameters of the underlying mathematical models (e.g., permeability, conductivity) typically exhibit severe variations over a range of significantly different length scales. Thus the numerical treatment of these problems relies on a homogenization or upscaling procedure to define an approximate coarse-scale problem that adequately captures the influence of the fine-scale structure, with a resultant compromise between the competing objectives of computational efficiency and numerical accuracy. For homogenization in models of flow through heterogeneous porous media, We have developed new, efficient, numerical, multilevel methods, that offer a significant improvement in the compromise between accuracy and efficiency. We recently combined this approach with the work of Dvorak to compute bounded estimates of the homogenized permeability for such flows and demonstrated the effectiveness of this new algorithm with numerical examples.
Characterizing hydrogeologic heterogeneity using lithologic data
Flach, G.P.; Hamm, L.L.; Harris, M.K.; Thayer, P.A.; Haselow, J.S.; Smits, A.D.
1995-12-31
Large-scale (> 1 m) variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about site-scale heterogeneity, than other site characterization data. In this study, a technique for generating a heterogeneous, three-dimensional hydraulic conductivity field from sediment lithologic descriptions is presented. The approach involves creating a three-dimensional, fine-scale representation of mud (silt + clay) percentage using a stratified interpolation algorithm. Mud percentage is then translated into horizontal and vertical conductivity using direct correlations derived from measured data and inverse groundwater flow modeling. Lastly, the fine-scale conductivity fields are averaged to create a coarser grid for use in groundwater flow and transport modeling. The approach is demonstrated using a finite-element groundwater flow model of a Savannah River Site solid radioactive and hazardous waste burial ground. Hydrostratigraphic units in the area consist of fluvial, deltaic, and shallow marine sand, mud and calcareous sediment that exhibit abrupt facies changes over short distances.
Heterogeneous OH oxidation of organic aerosols
NASA Astrophysics Data System (ADS)
Smith, J.; Kroll, J.; Cappa, C.; Che, D.; Ahmed, M.; Leone, S.; Worsnop, D.; Wilson, K.
2008-12-01
The hydroxyl radical (OH) is the most important reactive species in both clean and polluted atmospheres, and therefore gas-phase OH chemistry has been extensively studied for decades. Due to this enormous effort the rates and mechanism of OH reactions with gas phase organics are relatively well understood. However, it unclear whether these well established gas-phase chemical mechanisms apply to the more complex heterogeneous reactions of OH radicals with organic aerosols (OA). Although recent studies have begun to examine OH oxidation of OA, numerous outstanding questions still remain regarding both the rate and chemical mechanism of these reactions. Here we present an in depth investigation of the heterogeneous oxidation of organic squalane particles by OH radicals. By combining a photochemical aerosol flow reactor with a high-resolution aerosol mass spectrometer (AMS), with both electron impact and vacuum ultraviolet photoionization, we investigate OH heterogeneous chemistry in unprecedented detail. Employing elemental composition measurements with detailed kinetics we have arrived at a simple oxidation model which accurately accounts for the evolution of squalane and its" oxidation products. In addition, by exploring a large range of OH concentrations we are able to directly measure the role of secondary particle-phase chain chemistry which can significantly accelerate the oxidation of OA in the atmosphere. Based on these measurements we have arrived at an explicit chemical mechanism for heterogeneous OH oxidation of OA which accurately accounts for our observations over a wide range of reaction conditions.
Determination of local values of gas and liquid mass flux in highly loaded two-phase flow
NASA Technical Reports Server (NTRS)
Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.
1974-01-01
A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.
Genetic Heterogeneity in Algerian Human Populations
Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David
2015-01-01
The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region. PMID:26402429
Genetic Heterogeneity in Algerian Human Populations.
Bekada, Asmahan; Arauna, Lara R; Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David
2015-01-01
The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region.
Dealing with spatial heterogeneity
NASA Astrophysics Data System (ADS)
Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.
2005-03-01
Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci
Dealing with spatial heterogeneity
NASA Astrophysics Data System (ADS)
Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.
2005-03-01
Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci
Intratumor Heterogeneity in Breast Cancer.
Beca, Francisco; Polyak, Kornelia
2016-01-01
Intratumor heterogeneity is the main obstacle to effective cancer treatment and personalized medicine. Both genetic and epigenetic sources of intratumor heterogeneity are well recognized and several technologies have been developed for their characterization. With the technological advances in recent years, investigators are now elucidating intratumor heterogeneity at the single cell level and in situ. However, translating the accumulated knowledge about intratumor heterogeneity to clinical practice has been slow. We are certain that better understanding of the composition and evolution of tumors during disease progression and treatment will improve cancer diagnosis and the design of therapies. Here we review some of the most important considerations related to intratumor heterogeneity. We discuss both genetic and epigenetic sources of intratumor heterogeneity and review experimental approaches that are commonly used to quantify it. We also discuss the impact of intratumor heterogeneity on cancer diagnosis and treatment and share our perspectives on the future of this field. PMID:26987535
Unravelling mononuclear phagocyte heterogeneity
Geissmann, Frédéric; Gordon, Siamon; Hume, David A.; Mowat, Allan M.; Randolph, Gwendalyn J.
2011-01-01
When Ralph Steinman and Zanvil Cohn first described dendritic cells (DCs) in 1973 it took many years to convince the immunology community that these cells were truly distinct from macrophages. Almost four decades later, the DC is regarded as the key initiator of adaptive immune responses; however, distinguishing DCs from macrophages still leads to confusion and debate in the field. Here, Nature Reviews Immunology asks five experts to discuss the issue of heterogeneity in the mononuclear phagocyte system and to give their opinion on the importance of defining these cells for future research. PMID:20467425
Integrating CLIPS applications into heterogeneous distributed systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1991-01-01
SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.
Scroll waves pinned to moving heterogeneities
NASA Astrophysics Data System (ADS)
Ke, Hua; Zhang, Zhihui; Steinbock, Oliver
2015-03-01
Three-dimensional excitable systems can self-organize vortex patterns that rotate around one-dimensional phase singularities called filaments. In experiments with the Belousov-Zhabotinsky reaction and numerical simulations, we pin these scroll waves to translating inert cylinders and demonstrate the controlled repositioning of their rotation centers. If the pinning site extends only along a portion of the filament, the phase singularity is stretched out along the trajectory of the heterogeneity, which effectively writes the singularity into the system. Its trailing end point follows the heterogeneity with a lower velocity. This velocity, its dependence on the placement of the anchor, and the shape of the filament are explained by a curvature flow model.
Micromechanical modeling of heterogeneous energetic materials
Baer, M.R.; Kipp, M.E.; Swol, F. van
1998-09-01
In this work, the mesoscale processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete HMX crystals. High resolution three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states having wavelengths of the order of several particle diameters. Localization of energy produces hot-spots due to shock focusing and plastic work near grain boundaries as material flows to interstitial regions. These numerical experiments demonstrate that hot-spots are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and reaction of shocked heterogeneous materials involves states distinctly different than single jump state descriptions.
Heterogeneous broadband network
NASA Astrophysics Data System (ADS)
Dittmann, Lars
1995-11-01
Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.
Tsai, Hung-Wei; Yaghoubi, Alireza; Chan, Tsung-Cheng; Wang, Chun-Chieh; Liu, Wei-Ting; Liao, Chien-Neng; Lu, Shih-Yuan; Chen, Lih-Juann; Chueh, Yu-Lun
2015-05-01
We herein report a gas-solid transformation mechanism for the surfactant-free synthesis of Te NWs at room temperature by electrolysis of bulk Bi2Te3 using H2Te gas. Te NWs, with an average diameter below 20 nm, grow along the [001] direction due to the unique spiral chains in the crystal structure and show an enhanced Raman scattering effect, a broad absorption band over the range of 350-750 nm and an emission band over the range of 400-700 nm in the photoluminescence spectrum. In terms of device applications, we demonstrate how Te NWs can be directly applied as a p-type dopant source in order to shift the Dirac point in ambipolar field effect graphene transistors. Finally, the favorable capacitive properties of Te NWs are established as supercapacitor electrodes with negligible internal resistance and excellent electrochemical reversibility and a specific capacitance of 24 F g(-1).
J. Helble; Clara Smith; David Miller
2009-08-31
The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.
Symonds, R.B. ); Reed, M.H. )
1993-10-01
This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. The programs interface with a thermo-chemical data base, GASTHERM, which contains coefficients for retrieval of the equilibrium constants from 25[degrees] to 1200[degrees]C. The programs and data base model dynamic chemical processes in 30- to 40-component volcanic-gas systems. The authors can model gas evaporation from magma, mixing of magmatic and hydrothermal gases, precipitation of minerals during pressure and temperature decrease, mixing of volcanic gas with air, and reaction of gases with wall rock. Examples are given of the gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mt. St. Helens in September 1981. The authors predict: (1) the amounts of trace elements volatilized from shallow magma, deep magma, and wall rock, and (2) the solids that precipitate from the gas upon cooling. The predictions are tested by comparing them with the measured trace-element concentrations in gases and the observed sublimate sequence. This leads to the following conclusions: (1) most of the trace elements in the Mt. St. Helens gases are volatilized from shallow magma as simple chlorides; (2) some elements (for example, Al, Ca) exist dominantly in rock aerosols, not gases, in the gas stream; (3) near-surface cooling of the gases triggers precipitation of oxides, sulfides, halides, tungstates, and native elements; and (4) equilibrium cooling of the gases to 100[degrees]C causes most trace elements, except for Hg, Sb, and Se, to precipitate from the gas. 94 refs., 30 figs., 7 tabs.
Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes
NASA Astrophysics Data System (ADS)
Yang, Hui; Tang, Ming; Gross, Thilo
2015-08-01
One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.
Disordered hyperuniform heterogeneous materials
NASA Astrophysics Data System (ADS)
Torquato, Salvatore
2016-10-01
Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space {{{R}}d} . Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be ‘multihyperuniform’. We then consider hyperuniformity for general two-phase media in {{{R}}d} . Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family of
Disordered hyperuniform heterogeneous materials.
Torquato, Salvatore
2016-10-19
Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space [Formula: see text]. Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be 'multihyperuniform'. We then consider hyperuniformity for general two-phase media in [Formula: see text]. Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family
Heterogeneity in Waardenburg syndrome.
Hageman, M J; Delleman, J W
1977-01-01
Heterogeneity of Waardenburg syndrome is demonstrated in a review of 1,285 patients from the literature and 34 previously unreported patients in five families in the Netherlands. The syndrome seems to consist of two genetically distinct entities that can be differentiated clinically: type I, Waardenburg syndrome with dystopia canthorum; and type II, Waardenburg syndrome without dystopia canthorum. Both types have an autosomal dominant mode of inheritance. The incidence of bilateral deafness in the two types of the syndrome was found in one-fourth with type I and about half of the patients with type II. This difference has important consequences for genetic counseling. Images Fig. 7 Fig. 8 Fig. 9 PMID:331943
Treatment of Organic Pollutants by Heterogeneous Photocatalysis
NASA Astrophysics Data System (ADS)
Feroz, S.; Jesil, A.
2012-08-01
An experimental investigation was carried out in the area of heterogeneous catalysis using TiO2 as a catalyst for the removal of the model organic compounds (benzoic acid and phenol) in three different photocatalytic reactors. Natural and artificial UV source of radiation were used and the performance of the reactors were studied in the present investigation. The extent of degradation/removal of the organic compounds was found by varying the initial concentration, flow rate, pipe diameter, TiO2 concentration and exposure time.
Multipartite entanglement in heterogeneous systems
NASA Astrophysics Data System (ADS)
Goyeneche, Dardo; Bielawski, Jakub; Życzkowski, Karol
2016-07-01
Heterogeneous bipartite quantum pure states, composed of two subsystems with a different number of levels, cannot have both reductions maximally mixed. In this work, we demonstrate the existence of a wide range of highly entangled states of heterogeneous multipartite systems consisting of N >2 parties such that every reduction to one and two parties is maximally mixed. Two constructions of generating genuinely multipartite maximally entangled states of heterogeneous systems for an arbitrary number of subsystems are presented. Such states are related to quantum error correction codes over mixed alphabets and mixed orthogonal arrays. Additionally, we show the advantages of considering heterogeneous systems in practical implementations of multipartite steering.
Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash
NASA Astrophysics Data System (ADS)
Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming
2014-04-01
In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.
Methods for characterizing the co-development of biofilm and habitat heterogeneity.
Li, Xiaobao; Song, Jisun L; Culotti, Alessandro; Zhang, Wei; Chopp, David L; Lu, Nanxi; Packman, Aaron I
2015-01-01
Biofilms are surface-attached microbial communities that have complex structures and produce significant spatial heterogeneities. Biofilm development is strongly regulated by the surrounding flow and nutritional environment. Biofilm growth also increases the heterogeneity of the local microenvironment by generating complex flow fields and solute transport patterns. To investigate the development of heterogeneity in biofilms and interactions between biofilms and their local micro-habitat, we grew mono-species biofilms of Pseudomonas aeruginosa and dual-species biofilms of P. aeruginosa and Escherichia coli under nutritional gradients in a microfluidic flow cell. We provide detailed protocols for creating nutrient gradients within the flow cell and for growing and visualizing biofilm development under these conditions. We also present protocols for a series of optical methods to quantify spatial patterns in biofilm structure, flow distributions over biofilms, and mass transport around and within biofilm colonies. These methods support comprehensive investigations of the co-development of biofilm and habitat heterogeneity.
Simulating ventilation distribution in heterogenous lung injury using a binary tree data structure.
Colletti, Ashley A; Amini, Reza; Kaczka, David W
2011-10-01
To determine the impact of mechanical heterogeneity on the distribution of regional flows and pressures in the injured lung, we developed an anatomic model of the canine lung comprised of an asymmetric branching airway network, which can be stored as binary tree data structure. The entire tree can be traversed using a recursive flow divider algorithm, allowing for efficient computation of acinar flow and pressure distributions in a mechanically heterogeneous lung. These distributions were found to be highly dependent on ventilation frequency and the heterogeneity of tissue elastances, reflecting the preferential distribution of ventilation to areas of lower regional impedance.
Bias of apparent tracer ages in heterogeneous environments.
McCallum, James L; Cook, Peter G; Simmons, Craig T; Werner, Adrian D
2014-01-01
The interpretation of apparent ages often assumes that a water sample is composed of a single age. In heterogeneous aquifers, apparent ages estimated with environmental tracer methods do not reflect mean water ages because of the mixing of waters from many flow paths with different ages. This is due to nonlinear variations in atmospheric concentrations of the tracer with time resulting in biases of mixed concentrations used to determine apparent ages. The bias of these methods is rarely reported and has not been systematically evaluated in heterogeneous settings. We simulate residence time distributions (RTDs) and environmental tracers CFCs, SF6 , (85) Kr, and (39) Ar in synthetic heterogeneous confined aquifers and compare apparent ages to mean ages. Heterogeneity was simulated as both K-field variance (σ(2) ) and structure. We demonstrate that an increase in heterogeneity (increase in σ(2) or structure) results in an increase in the width of the RTD. In low heterogeneity cases, widths were generally on the order of 10 years and biases generally less than 10%. In high heterogeneity cases, widths can reach 100 s of years and biases can reach up to 100%. In cases where the temporal variations of atmospheric concentration of individual tracers vary, different patterns of bias are observed for the same mean age. We show that CFC-12 and CFC-113 ages may be used to correct for the mean age if analytical errors are small. PMID:23550995
Meichtry, Jorge M; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I
2015-06-01
The dynamics of the transfer of electrons stored in TiO2 nanoparticles to Cr(VI) in aqueous solution have been investigated using the stopped flow technique. TiO2 nanoparticles were previously irradiated under UV light in the presence of formic acid, and trapped electrons (e(trap)(-)) were made to react with Cr(VI) as acceptor species; other common acceptor species such as O2 and H2O2 were also tested. The temporal evolution of the number of trapped electrons was followed by the decrease in the absorbance at 600 nm, and the kinetics of the electron-transfer reaction was modeled. Additionally, the rate of formation of the surface complex between Cr(VI) and TiO2 was determined with the stopped flow technique by following the evolution of the absorbance at 400 nm of suspensions of nonirradiated TiO2 nanoparticles and Cr(VI) at different concentrations. An approximately quadratic relationship was observed between the maximum absorbance of the surface complex and the concentration of Cr(VI), suggesting that Cr(VI) adsorbs onto the TiO2 surface as dichromate. The kinetic analyses indicate that the electron transfer from TiO2 to Cr(VI) does not require the previous formation of the Cr(VI)-TiO2 surface complex, at least the complex detected here through the stopped flow experiments. When previously irradiated TiO2 was used to follow the evolution of the Cr(VI)-TiO2 complex, an inhibition of the formation of the complex was observed, which can be related to the TiO2 deactivation caused by Cr(III) deposition.
Anisotropy and Heterogeneity Interaction in Shear Zones
NASA Astrophysics Data System (ADS)
Dabrowski, M.; Schmid, D. W.
2009-04-01
Rocks are heterogeneous on many different scales and deformation may introduce a coexistence of heterogeneity and anisotropy in shear zones. A competent inclusion embedded in a laminated matrix is a typical example. Indisputably, the presence of a mechanical heterogeneity leads to a flow perturbation and consequently to a deflection of the lamination in its vicinity. Assuming a passive response of the matrix phase, the pattern formation around rigid objects has been modeled in two and three dimensions using analytical solutions. Yet, the laminas may be mechanically distinct, leading to an effectively anisotropic rheology of the matrix. The feedback of an evolving matrix structure on the inclusion motion cannot be precluded in this case. In our study elliptical inclusions of varying aspect ratios are embedded in a laminated linear viscous host and subject to a large simple shear deformation in finite element numerical simulations. Increasing the viscosity ratio of the weak and strong lamina significantly changes the pattern characteristics in the matrix. The structural evolution around an inclusion proves to have a major impact on the inclusion motion, leading to the stabilization of elongated inclusions at antithetic orientations. We provide a comparison of two different modeling approaches. In the first approach discrete layers are introduced in the matrix and the large strain evolution of individual minute layers is resolved. Next, the matrix is modeled as an anisotropic medium using an evolving director field that locally describes the anisotropy direction. The length scale of layering can be restored in this model using the micropolar medium formulation.
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Political Jurisdictions in Heterogeneous Communities.
ERIC Educational Resources Information Center
Alesina, Alberto; Baqir, Reza; Hoxby, Caroline
2004-01-01
We investigate whether political jurisdictions form in response to the trade-off between economies of scale and the costs of a heterogeneous population. We consider heterogeneity in income, race, ethnicity, and religion, and we test the model using American school districts, school attendance areas, municipalities, and special districts. We find…
Query Expansion Using Heterogeneous Thesauri.
ERIC Educational Resources Information Center
Mandala, Rila; Tokunaga, Takenobu; Tanaka, Hozumi
2000-01-01
Proposes a method to improve the performance of information retrieval systems by expanding queries using heterogeneous thesauri. Experiments show that using heterogeneous thesauri with an appropriate weighting method results in better retrieval performance than using only one type of thesaurus. (Author/LRW)
Effective Hydraulic Conductivity of Unsaturated Isotropic Soils with Multidimensional Heterogeneity
Zhang, Z. F.
2010-05-01
Accurate simulation and prediction of flow and transport of solutes in a heterogeneous vadose zone requires the appropriate hydraulic properties corresponding to the spatial scale of interest. Upscaling techniques provide effective properties to describe the vadose zone system’s behavior with information collected at a much smaller scale. Realizing that a saturated system can be considered as a special state of the unsaturated system, the methodologies for upscaling the saturated hydraulic conductivity of heterogeneous isotropic porous media under steady-state flow conditions can be extended for upscaling the unsaturated hydraulic conductivity. An advantage of this approach is that the extended upscaling methods are independent of the choice of hydraulic function models. The Matheron, small-perturbation, and self-consistent upscaling methods were used to demonstrate the approach. The extended upscaling methods were tested using multi-step numerical experiments of gravity-induced flow into Miller-similar synthetic soils with different levels of heterogeneity. Results show that, under 3-D flow conditions in isotropic soils, the self-consistent method applies to all the soil heterogeneity conditions considered while the Matheron and small-perturbation methods are acceptable for soil of relatively low variability.
Reference Point Heterogeneity.
Terzi, Ayse; Koedijk, Kees; Noussair, Charles N; Pownall, Rachel
2016-01-01
It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income. PMID:27672374
Terzi, Ayse; Koedijk, Kees; Noussair, Charles N.; Pownall, Rachel
2016-01-01
It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income. PMID:27672374
NASA Astrophysics Data System (ADS)
Sukhanov, Vitaly I.
1991-02-01
The paper summarizes the results of investigations performed to obtain deep 3-D holograms with 102 i0 mkm physical thickness allowing the postexposure amplification and the a posteriori changing of the grating parameters. This aim has been achieved by developing heterogeneous systems on the basis of porous glass with light-sensitive compositions introduced into it. 1. INTRODUCTION. LIGHT-SENSITIVE MEDIA FOR 3-D HOLOGRAMS RECORDING. The 3-D holograms have many useful properties: very high diffraction efficiency angular and spectral selectivity but low level of noise. It shoud be noted that in this case deep 3-D holograms are dealt with whose physical thickness is as high as 102 -i mkm. Such hologram recording is usually done using homogeneous light-sensitive media for example dyed acid-halide and electrooptical crystals photochrome glass photostructurized polimer compositions and so on. The nature of photophisical and photochemical processes responsible for the light sensitivity of these materials exclude the possibility of post-exposure treatment. This does not allow to enhance the recorded holograms and considerably hampers their fixing or makes it practically impossible. The object of our work is to create the media which are quite suitable for two-stage processes of the deep hologram formation with post-exposure processing. Such material must satisfy the following requirements: a)they must have high permeability for the developing substances in order to make the development duration suitable for practical applications b)they must be shrinkproof to prevent deformation of the
On Heterogeneous Covert Networks
NASA Astrophysics Data System (ADS)
Lindelauf, Roy; Borm, Peter; Hamers, Herbert
Covert organizations are constantly faced with a tradeoff between secrecy and operational efficiency. Lindelauf, Borm and Hamers [13] developed a theoretical framework to determine optimal homogeneous networks taking the above mentioned considerations explicitly into account. In this paper this framework is put to the test by applying it to the 2002 Jemaah Islamiyah Bali bombing. It is found that most aspects of this covert network can be explained by the theoretical framework. Some interactions however provide a higher risk to the network than others. The theoretical framework on covert networks is extended to accommodate for such heterogeneous interactions. Given a network structure the optimal location of one risky interaction is established. It is shown that the pair of individuals in the organization that should conduct the interaction that presents the highest risk to the organization, is the pair that is the least connected to the remainder of the network. Furthermore, optimal networks given a single risky interaction are approximated and compared. When choosing among a path, star and ring graph it is found that for low order graphs the path graph is best. When increasing the order of graphs under consideration a transition occurs such that the star graph becomes best. It is found that the higher the risk a single interaction presents to the covert network the later this transition from path to star graph occurs.
Terzi, Ayse; Koedijk, Kees; Noussair, Charles N.; Pownall, Rachel
2016-01-01
It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income.
Angiotensin II receptor heterogeneity
Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )
1991-04-01
The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.
Lattice Boltzmann equation for microscale gas flows of binary mixtures.
Guo, Zhaoli; Asinari, Pietro; Zheng, Chuguang
2009-02-01
Modeling and simulating gas flows in and around microdevices are a challenging task in both science and engineering. In practical applications, a gas is usually a mixture made of different components. In this paper we propose a lattice Boltzmann equation (LBE) model for microscale flows of a binary mixture based on a recently developed LBE model for continuum mixtures [P. Asinari and L.-S. Luo, J. Comput. Phys. 227, 3878 (2008)]. A consistent boundary condition for gas-solid interactions is proposed and analyzed. The LBE is validated and compared with theoretical results or other reported data. The results show that the model can serve as a potential method for flows of binary mixture in the microscale.
Predictive modeling of particle-laden turbulent flows. Final report
Shaffer, F.; Bolio, E.J.; Hrenya, C.M.
1993-12-31
Earlier work of Sinclair and Jackson which treats the laminar flow of gas-solid suspensions is extended to model dilute turbulent flow. The random particle motion, often exceeding the turbulent fluctuations in the gas, is obtained using a model based on kinetic theory of granular materials. A two-equation low Reynolds number turbulence model is, modified to account for the presence of the dilute particle phase. Comparisons of the model predictions with available experimental data for the mean and fluctuating velocity profiles for both phases indicate that the resulting theory captures many of the flow features observed in the pneumatic transport of large particles. The model predictions did not manifest an extreme sensitivity to the degree of inelasticity in the particle-particle collisions for the range of solid loading ratios investigated.
Marangoni Flow of Soluble Amphiphiles
NASA Astrophysics Data System (ADS)
Roché, Matthieu; Li, Zhenzhen; Griffiths, Ian M.; Le Roux, Sébastien; Cantat, Isabelle; Saint-Jalmes, Arnaud; Stone, Howard A.
2014-05-01
Surfactant distribution heterogeneities at a fluid-fluid interface trigger the Marangoni effect, i.e., a bulk flow due to a surface tension gradient. The influence of surfactant solubility in the bulk on these flows remains incompletely characterized. Here we study Marangoni flows sustained by injection of hydrosoluble surfactants at the air-water interface. We show that these flows have a finite size that increases with a decrease of the critical micelle concentration of the surfactants. We document the universality of the surface velocity field of these finite flows and predict scaling laws based on hydrodynamics and surfactant physical chemistry that capture the flow features.
Analytical and experimental analysis of solute transport in heterogeneous porous media.
Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael
2014-01-01
Knowledge of solute transport in heterogeneous porous media is crucial to monitor contaminant fate and transport in soil and groundwater systems. In this study, we present new findings from experimental and mathematical analysis to improve current understanding of solute transport in structured heterogeneous porous media. Three saturated columns packed with different sand combinations were used to examine the breakthrough behavior of bromide, a conservative tracer. Experimental results showed that bromide had different breakthrough responses in the three types of sand combinations, indicating that heterogeneity in hydraulic conductivity has a significant effect on the solute transport in structured heterogeneous porous media. Simulations from analytical solutions of a two-domain solute transport model matched experimental breakthrough data well for all the experimental conditions tested. Experimental and model results show that under saturated flow conditions, advection dominates solute transport in both fast-flow and slow-flow domains. The sand with larger hydraulic conductivity provided a preferential flow path for solute transport (fast-flow domain) that dominates the mass transfer in the heterogeneous porous media. Importantly, the transport in the slow-flow domain and mass exchange between the domains also contribute to the flow and solute transport processes and thus must be considered when investigating contaminant transport in heterogeneous porous media. PMID:24279625
Analytical and experimental analysis of solute transport in heterogeneous porous media.
Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael
2014-01-01
Knowledge of solute transport in heterogeneous porous media is crucial to monitor contaminant fate and transport in soil and groundwater systems. In this study, we present new findings from experimental and mathematical analysis to improve current understanding of solute transport in structured heterogeneous porous media. Three saturated columns packed with different sand combinations were used to examine the breakthrough behavior of bromide, a conservative tracer. Experimental results showed that bromide had different breakthrough responses in the three types of sand combinations, indicating that heterogeneity in hydraulic conductivity has a significant effect on the solute transport in structured heterogeneous porous media. Simulations from analytical solutions of a two-domain solute transport model matched experimental breakthrough data well for all the experimental conditions tested. Experimental and model results show that under saturated flow conditions, advection dominates solute transport in both fast-flow and slow-flow domains. The sand with larger hydraulic conductivity provided a preferential flow path for solute transport (fast-flow domain) that dominates the mass transfer in the heterogeneous porous media. Importantly, the transport in the slow-flow domain and mass exchange between the domains also contribute to the flow and solute transport processes and thus must be considered when investigating contaminant transport in heterogeneous porous media.
Node assignment in heterogeneous computing
NASA Technical Reports Server (NTRS)
Som, Sukhamoy
1993-01-01
A number of node assignment schemes, both static and dynamic, are explored for the Algorithm to Architecture Mapping Model (ATAMM). The architecture under consideration consists of heterogeneous processors and implements dataflow models of real-time applications. Terminology is developed for heterogeneous computing. New definitions are added to the ATAMM for token and assignment classifications. It is proved that a periodic execution is possible for dataflow graphs. Assignment algorithms are developed and proved. A design procedure is described for satisfying an objective function in an heterogeneous architecture. Several examples are provided for illustration.
Saltwater Intrusion Simulation in Heterogeneous Aquifer Using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Servan-Camas, B.; Tsai, F. T.
2006-12-01
This study develops a saltwater intrusion simulation model using a lattice Boltzmann method (LBM) in a two- dimensional coastal confined aquifer. The saltwater intrusion phenomenon is described by density-varied groundwater flow and mass transport equations, where a freshwater-saltwater mixing zone is considered. Although primarily developed using the mesoscopic approach to solve macroscopic fluid dynamic problems (e.g. Navier-Stoke equation), LBM is able to be adopted to solve physical-based diffusion-type governing equations as for the groundwater flow and mass transport equations. The challenge of using LBM in saltwater intrusion modeling is to recover hydraulic conductivity heterogeneity. In this study, the Darcy equation and the advection-dispersion equation (ADE) are recovered in the lattice Boltzmann modeling. Specifically, the hydraulic conductivity heterogeneity is represented by the speed of sound in LBM. Under the consideration on the steady-state groundwater flow due to low storativity, in each time step the flow problem is modified to be a Poisson equation and solved by LBM. Nevertheless, the groundwater flow is still a time-marching problem with spatial-temporal variation in salinity concentration as well as density. The Henry problem is used to compare the LBM results against the Henry analytic solution and SUTRA result. Also, we show that LBM is capable of handling the Dirichlet, Neumann, and Cauchy concentration boundary conditions at the sea side. Finally, we compare the saltwater intrusion results using LBM in the Henry problem when heterogeneous hydraulic conductivity is considered.
Spatial weighting functions: transient hydraulic tests and heterogeneous media.
Molz, Fred J; Guan, Jianyong; Wang, Jinjun
2005-01-01
To improve understanding of property measurements in heterogeneous media, an energy-based weighting function concept is developed. In (assumed) homogeneous media, the instrument spatial weighting function (ISWF) depends only on the energy dissipation distribution set up by the measurement procedure and it reduces to simply inverse sample volume (uniform weighting) for 1-D parallel flow case (ideal permeameter). For 1-D transient flow in homogeneous media, such as with slug tests, the ISWF varies with position and time, with 95% of the total weighting contained within 115 well radii, even late in the test. In the heterogeneous case, the determination of the ISWF is connected to the problem of determining an equivalent hydraulic conductivity (K), where the criterion for equivalence is based on equal energy dissipation rate rather than equal volume discharge. The discharge-based equivalent K (K(E)) and the energy-based equivalent K in heterogeneous media (K(eh)) are not equal in general, with K(eh) typically above the nodal arithmetic mean K. The possibly more fundamental problem is that as one makes K measurements in heterogeneous media at different locations or on different cores of heterogeneous materials, the ISWF will be heterogeneity dependent, implying that the averaging process resulting in the equivalent K value also varies with position. If the testing procedure is transient, then the averaging process varies with time. This suggests a fundamental ambiguity in the interpretation of hydraulic conductivity measurements in heterogeneous media that may impact how we approach modeling and prediction in a practical sense (Molz 2003). Further research is suggested.
High performance simulation of environmental tracers in heterogeneous domains.
Gardner, William P; Hammond, Glenn; Lichtner, Peter
2015-04-01
In this study, we use PFLOTRAN, a highly scalable, parallel, flow, and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, and the mean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2D and 3D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer to the tracer age limit. Age distributions in 3D domains differ significantly from 2D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3D systems. PMID:24372403
High performance simulation of environmental tracers in heterogeneous domains.
Gardner, William P; Hammond, Glenn; Lichtner, Peter
2015-04-01
In this study, we use PFLOTRAN, a highly scalable, parallel, flow, and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, and the mean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2D and 3D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer to the tracer age limit. Age distributions in 3D domains differ significantly from 2D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3D systems.
Microstructural heterogeneity perspective on the yield strength of metallic glasses
NASA Astrophysics Data System (ADS)
Cao, X. F.; Gao, M.; Zhao, L. Z.; Wang, W. H.; Bai, H. Y.
2016-02-01
We report an intrinsic universal correlation between yielding and dynamic activation of flow units in various metallic glasses, analogous to yielding in crystalline materials accompanied by activation of structural defects of dislocation. A transition point of yield strength when test temperature reaches a critical value is observed, and the evolution of the yield strength corresponds well to the evolution of activation energy and fraction of flow units with temperature, indicating the correlation between yield strength and intrinsic structural heterogeneity in glasses. We propose a model based on the flow units to understand the structural origin of yielding phenomenon and the nature of the yield strength.
Heterogeneous Oxidation of Catechol.
Pillar, Elizabeth A; Zhou, Ruixin; Guzman, Marcelo I
2015-10-15
Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air-solid interface under variable relative humidity (RH = 0-90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10(-6) occurs for 90% RH. Upon exposure of ca. 104-μm thick catechol films to O3(g) mixing ratios between 230 ppbv and 25 ppmv, three main reaction pathways are observed. (1) The cleavage of the 1,2 carbon-carbon bond at the air-solid interface resulting in the formation of cis,cis-muconic acid via primary ozonide and hydroperoxide intermediates. Further direct ozonolysis of cis,cis-muconic yields glyoxylic, oxalic, crotonic, and maleic acids. (2) A second pathway is evidenced by the presence of Baeyer-Villiger oxidation products including glutaconic 4-hydroxy-2-butenoic and 5-oxo-2-pentenoic acids during electrospray ionization mass spectrometry (MS) and ion chromatography MS analyses. (3) Finally, indirect oxidation by in situ produced hydroxyl radical (HO(•)) results in the generation of semiquinone radical intermediates toward the synthesis of polyhydoxylated aromatic rings such as tri-, tetra-, and penta-hydroxybenzene. Remarkably, heavier polyhydroxylated biphenyl and terphenyl products present in the extracted oxidized films result from coupling reactions of semiquinones of catechol and its polyhydroxylated rings. The direct ozonolysis of 1,2,3- and 1,2,4-trihydroxybenezene yields 2- and 3-hydroxy-cis,cis-muconic acid, respectively. The production of 2,4- or 3,4-dihdroxyhex-2-enedioic acid is
Homogeneous, Heterogeneous, and Enzymatic Catalysis.
ERIC Educational Resources Information Center
Oyama, S. Ted; Somorjai, Gabor A.
1988-01-01
Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)
NASA Astrophysics Data System (ADS)
Krasokha, Nikolaj; Weber, Sebastian; Huth, Stephan; Zumsande, Kathrin; Theisen, Werner
2012-11-01
This work deals with gas-solid interactions between a high-alloyed steel powder and the surrounding atmosphere during continuous heating. It is motivated by the recently developed corrosion-resistant CrMnCN austenitic cast steels. Here, powder metallurgical processing would be desirable to manufacture highly homogeneous parts and/or novel corrosion-resistant metal-matrix composites. However, the successful use of this new production route calls for a comprehensive investigation of interactions between the sintering atmosphere and the metallic powder to prevent undesirable changes to the chemical composition, e.g., degassing of nitrogen or evaporation of manganese. In this study, dilatometric measurements combined with residual gas analysis, high-temperature X-ray diffraction (XRD) measurements, and thermodynamic equilibrium calculations provided detailed information about the influence of different atmospheric conditions on the microstructure, constitution, and densification behavior of a gas-atomized CrMnCN steel powder during continuous heating. Intensive desorption of nitrogen led to the conclusion that a vacuum atmosphere is not suitable for powder metallurgical (PM) processing. Exposure to an N2-containing atmosphere resulted in the formation of nitrides and lattice expansion. Experimental findings have shown that the N content can be controlled by the nitrogen partial pressure. Furthermore, the reduction of surface oxides because of a carbothermal reaction at elevated temperatures and the resulting enhancement of the powder's densification behavior are discussed in this work.
Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance
NASA Technical Reports Server (NTRS)
Molina, Mario J.
2004-01-01
The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.