Science.gov

Sample records for heterogeneous gas-solid flow

  1. A Generalized Kinetic Model for Heterogeneous Gas-Solid Reactions

    SciTech Connect

    Xu, Zhijie; Sun, Xin; Khaleel, Mohammad A.

    2012-08-15

    We present a generalized kinetic model for gas-solid heterogeneous reactions taking place at the interface between two phases. The model studies the reaction kinetics by taking into account the reactions at the interface, as well as the transport process within the product layer. The standard unreacted shrinking core model relies on the assumption of quasi-static diffusion that results in a steady-state concentration profile of gas reactant in the product layer. By relaxing this assumption and resolving the entire problem, general solutions can be obtained for reaction kinetics, including the reaction front velocity and the conversion (volume fraction of reacted solid). The unreacted shrinking core model is shown to be accurate and in agreement with the generalized model for slow reaction (or fast diffusion), low concentration of gas reactant, and small solid size. Otherwise, a generalized kinetic model should be used.

  2. Turbulence modeling of gas-solid suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1988-01-01

    The purpose here is to discuss and review advances in two-phase turbulent modeling techniques and their applications in various gas-solid suspension flow situations. In addition to the turbulence closures, heat transfer effect, particle dispersion and wall effects are partially covered.

  3. Solids flow mapping in gas-solid risers

    NASA Astrophysics Data System (ADS)

    Bhusarapu, Satish Babu

    Gas-solid risers are extensively used in many industrial processes for gas-solid reactions (e.g. coal combustion and gasification) and for solid catalyzed gas phase reactions (e.g. fluid catalytic cracking, butane oxidation to maleic anhydride). Ab initio prediction of the complex multiphase fluid dynamics in risers is not yet possible, which makes reactor modeling difficult. In particular, quantification of solids flow and mixing is important. Almost all the experimental techniques used to characterize solids flow lead to appreciable errors in measured variables in large scale, high mass flux systems. In addition, none of the experimental techniques provide all the relevant data required to develop a satisfactory solids flow model. In this study, non-invasive Computer Automated Radioactive Particle Tracking (CARPT) is employed to visualize and quantify the solids dynamics and mixing in the gas-solid riser of a Circulating Fluidized Bed (CFB). A single radioactive tracer particle is monitored during its multiple visits to the riser and with an assumption of ergodicity, the following flow parameters are estimated: (a) Overall solids mass flux in the CFB loop. (b) Solids residence time distribution in the riser and down-comer. (c) Lagrangian and Eulerian solids velocity fields in a fully-developed section of the riser. This includes velocity fluctuations and components of the diffusivity tensor. The existing CARPT technique is extended to large scale systems. A new algorithm, based on a cross-correlation search, is developed for position rendition from CARPT data. Two dimensional solids holdup profiles are estimated using gamma-ray computed tomography. The image quality from the tomography data is improved by implementing an alternating minimization algorithm. This work establishes for the first time a reliable database for local solids dynamic quantities such as time-averaged velocities, Reynolds stresses, eddy diffusivities and turbulent kinetic energy. In addition

  4. Optical instrumentation and study of gas-solid suspension flows

    SciTech Connect

    Ling, S.C.; Pao, H.P.

    1990-09-01

    A new technique and particle detecting system for the quantification of local fluid flow velocities, particle concentrations and size distributions in gas-solid suspension flows has been successfully developed and constructed. A new 2-inch diameter pneumatic-pipe test-loop facility for study of solids transport flows has been built and in operation. In order to check scaling law developed from the experimental results in the 2-inch pipe, a 4-inch pipe test-loop facility was also designed and constructed. In the past, the mechanics of suspended-solid flow have not been solved in a closed form due to the lack of a model for the turbulent field to pick up solid particles from the flow boundary. In this research project, we have identified the existence of micro-hairpin vortices as a major mechanism for the lifting of solid particles from the flow boundary. This permits one to formulate a realistic model. That is, the introduction of a particle source term in the governing transport equation for the suspended particles. The resultant solution predicts the correct critical flow conditions for the initial pickup of different sizes of solid particles and their subsequent concentrations in the flow field. 21 figs.

  5. Open-source MFIX-DEM software for gas-solids flows: Part I verification studies

    SciTech Connect

    Garg, Rahul; Galvin, Janine; Li, Tingwen; Pannala, Sreekanth

    2012-01-01

    With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using a Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas solids flows can accelerate the research in computational gas solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas solids flows.

  6. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  7. FORCE2: A multidimensional flow program for gas solids flow theory guide

    SciTech Connect

    Burge, S.W.

    1991-05-01

    This report describes the theory and structure of the FORCE2 flow program. The manual describes the governing model equations, solution procedure and their implementation in the computer program. FORCE2 is an extension of an existing B&V multidimensional, two-phase flow program. FORCE2 was developed for application to fluid beds by flow implementing a gas-solids modeling technology derived, in part, during a joint government -- industry research program, ``Erosion of FBC Heat Transfer Tubes,`` coordinated by Argonne National Laboratory. The development of FORCE2 was sponsored by ASEA-Babcock, an industry participant in this program. This manual is the principal documentation for the program theory and organization. Program usage and post-processing of code predictions with the FORCE2 post-processor are described in a companion report, FORCE2 -- A Multidimensional Flow Program for Fluid Beds, User`s Guide. This manual is segmented into sections to facilitate its usage. In section 2.0, the mass and momentum conservation principles, the basis for the code, are presented. In section 3.0, the constitutive relations used in modeling gas-solids hydrodynamics are given. The finite-difference model equations are derived in section 4.0 and the solution procedures described in sections 5.0 and 6.0. Finally, the implementation of the model equations and solution procedure in FORCE2 is described in section 7.0.

  8. Open-source MFIX-DEM software for gas-solids flows: Part II Validation studies

    SciTech Connect

    Li, Tingwen; Garg, Rahul; Galvin, Janine; Pannala, Sreekanth

    2012-01-01

    With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the National Energy Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.

  9. Characteristics of dilute gas-solids suspensions in drag reducing flow

    NASA Technical Reports Server (NTRS)

    Kane, R. S.; Pfeffer, R.

    1973-01-01

    Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.

  10. Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.; Lu, X. F.; Lai, J.; Liu, H. Z.

    Gas solid flow characteristics in cyclone's inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10∶1. Tracer particles were adopted in the experiment and their motion trajectories in the two kinds of cyclone's inlet ducts were photographed by a high-speed camera. By analyzing the motion trajectories of tracer particles, acceleration performance of particle phases in the two inlet ducts was obtained. Results indicate that the acceleration performance of particles in the long inlet duct is better than that in the short inlet duct, but the pressure drop of the long inlet duct is higher. Meanwhile, under the same operating conditions, both the separation efficiency and the pressure drop of the cyclone are higher when the cyclone is connected with the long inlet duct. Figs 11, Tabs 4 and refs 10.

  11. Advanced instrumentation for local measurement of gas-solid suspension flows

    NASA Astrophysics Data System (ADS)

    Ling, S. C.; Pao, H. P.

    The study of gas-solid suspension flow is being conducted in two parts: the lifting of heavy particles from the flow boundary by micro-hairpin vortices and the design of an optical instrument to investigate the characteristics of turbulent flows has particle-size concentrations. The study of micro-hairpin vortices is based on the observation of these vortices in a cavitation water-tunnel. The micro-vortices exist within the laminar and intermediate sublayer of the turbulent flow field where the velocity gradient is most intense. These vortices are believed to be the major production source of turbulence which are also responsible for the picking up of heavy solid particles from the flow boundary at the bottom of the pipe. However, this important transport mechanism near the bottom boundary was not taken into account in all previous theories of solid transport. It is hoped that this work will provide a more basic understanding on the mechanics of solid transport. Our major research effort in this quarter has been concentrated on the construction of the experimental test-setup and the development of an optical particle-size and concentration detector. The optical detector also provides the information on flow characteristics.

  12. Effect of particle inertia on fluid turbulence in gas-solid disperse flow

    NASA Astrophysics Data System (ADS)

    Mito, Yoichi

    2016-11-01

    The effect of particle inertia on the fluid turbulence in gas-solid disperse flow through a vertical channel has been examined by using a direct numerical simulation, to calculate the gas velocities seen by the particles, and a simplified non-stationary flow model, in which a uniform distribution of solid spheres of density ratio of 1000 are added into the fully-developed turbulent gas flow in an infinitely wide channel. The gas flow is driven downward with a constant pressure gradient. The frictional Reynolds number defined with the frictional velocity before the addition of particles, v0*, is 150. The feedback forces are calculated using a point force method. Particle diameters of 0.95, 1.3 and 1.9, which are made dimensionless with v0* and the kinematic viscosity, and volume fractions, ranging from 1 ×10-4 to 2 ×10-3 , in addition to the one-way coupling cases, are considered. Gravitational effect is not clearly seen where the fluid turbulence is damped by feedback effect. Gas flow rate increases with the decrease in particle inertia, that causes the increase in feedback force. Fluid turbulence decreases with the increase in particle inertia, that causes the increase in diffusivity of feedback force and of fluid turbulence. This work was supported by JSPS KAKENHI Grant Number 26420097.

  13. Experimental Research on Gas-Solid Flow in a Square Cyclone Separator with Double Inlets

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Lu, X. F.; Amano, R. S.; Shu, C.

    A square cyclone separator with double inlets was developed for a new type Circulating Fluidized Bed (CFB) boiler arrangement scheme including two furnaces. Experiments on the performance and gas-solid flow recorded by a high-speed photography have been conducted in a cold test rig with a separator cross section 400mm×400mm. Experimental results indicated that with the inlet velocity of 22.4m/s and the inlet solids concentration of 4.9g/m3, the cut size is 15 μm, the critical size is 75μm, and the pressure drop coefficient is 1.7. The performance is also affected by the inlet velocity and solids concentration. The trajectory of particles shows that the particles swirl in the region near the wall and are easily separated. Especially, the instantaneous separation occurred at the corner is very significant for the improvement of the collection efficiency with the high inlet solids concentration for CFB boiler.

  14. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    SciTech Connect

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie

    2005-06-04

    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at

  15. Mechanism of kinetic energy transfer in homogeneous bidisperse gas-solid flow and its implications for segregation

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Mohammad; Subramaniam, Shankar

    2017-02-01

    Most gas-solid flows encountered in nature and industrial applications are polydisperse, and the segregation or mixing of particle classes in polydisperse gas-solid flows is a phenomenon of great practical importance. A statistically homogeneous gas-solid flow with a bidisperse distribution (in size or density) of particles is a canonical representation of polydisperse flows. A key feature that distinguishes the bidisperse flow from its monodisperse counterpart is the exchange of momentum and kinetic energy between the particle classes due to collisions, which are important for applications outside the very dilute regime. The average exchange of linear momentum between particle classes due to collisions occurs through the particle-particle drag term. The conservation equations for average momentum corresponding to each particle class can be used to deduce the average slip velocity between the particle size and density classes, which is the signature of particle segregation. In this canonical problem, the steady value of particle mean slip velocity results from a balance between three terms, each in turn involving the body force or the mean fluid pressure gradient, the gas-particle drag, and the particle-particle drag. The particle-particle drag depends on the particle velocity fluctuations in each class [Louge, M. Y. et al., "The role of particle collisions in pneumatic transport," J. Fluid Mech. 231, 345-359 (1991)], thereby coupling the mean and second-moment equations. For monodisperse gas-solid flows the transfer of kinetic energy from the mean to second-moment equations was explained by Subramaniam and co-workers who proposed the conservation of interphase turbulent kinetic energy transfer principle [Xu, Y. and Subramaniam, S., "Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows," Phys. Fluids 19(8), 085101 (2007)], and this was subsequently verified by particle-resolved direct numerical simulation [Mehrabadi

  16. Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system

    NASA Astrophysics Data System (ADS)

    Jaworski, Artur J.; Dyakowski, Tomasz

    2001-08-01

    Transient three-dimensional multiphase flows are a characteristic feature of many industrial processes. The experimental observations and measurements of such flows are extremely difficult, and industrial process tomography has been developed over the last decade into a reliable method for investigating these complex phenomena. Gas-solids flows, such as those in pneumatic conveying systems, exhibit many interesting features and these can be successfully investigated by using electrical capacitance tomography. This paper discusses the current state of the art in this field, advantages and limitations of the technique and required future developments. Various levels of visualization and processing of tomographic data obtained in a pilot-plant-scale pneumatic conveying system are presented. A case study outlining the principles of measuring the mass flow rate of solids in a vertical channel is shown.

  17. A new type of electrostatic sensor for velocity measurement of gas/solid two-phase flows

    NASA Astrophysics Data System (ADS)

    Deng, Xiang; Gao, Qian; Hu, Jing; Li, Guangyu

    2012-03-01

    Electrostatic sensor is used in gas/solid two-phase flow measurement, because of its simple structure, high sensitivity, low cost, safety, etc. However, there are still some issues need to be further investigated and discussed, such as sensing structural optimization, measuring model simplification and verification, more practical electrostatic sensor research and development, etc. In this paper, a new structure of sensor is designed on the basis of circle electrostatic sensor. Three-dimensional mathematical model of electrostatic sensor is established on the basis of point charge, and its numerical solution is studied. The effects of structural parameters (such as sizes of electrodes, etc) and location distribution of flowing particles in the sensing field of the new electrostatic sensor are investigated systematically. A theoretical basis for the performance improvement and design optimization of the sensor are provided.

  18. Gas-solid flows - 1986; Proceedings of the Fourth Fluid Mechanics, Plasma Dynamics, and Lasers Conference, Atlanta, GA, May 11-14, 1986

    NASA Astrophysics Data System (ADS)

    Jurewicz, J. T.

    Papers are presented on deposition and resuspension of gas-borne particles in recirculating turbulent flows, particle dispersion in decaying isotropic homogeneous turbulence, turbulent dispersion of droplets for air flow in a pipe, a comparison between Lagrangian and Eulerian model approaches to turbulent particle dispersion, and the effect of turbulent electrohydrodynamics on electrostatic precipitator efficiency. Also considered are errors due to turbidity in particle sizing using laser Doppler velocimetry, particle motion in a fluidically oscillating jet, high pressure steam/water jet measurements using a portable particle sizing laser Doppler system, the effect of particle shape on pressure drop in a turbulent gas/solid suspension, and the experimental study of gas solid flows in pneumatic conveying. Other topics include entropy production and pressure loss in gas-solid flows, a computational study of turbulent gas-particle flow in a Venturi, a numerical analysis of confined recirculating gas-solid turbulent flows, nozzle and free jet flows of gas particle mixtures, and particle separation in pulsed airflow. Papers are also presented on sampling of solid particles in clouds, particle motion near the inlet of a sampling probe, the effects of slot injection on blade erosion in direct coal-fueled gas turbines, bed diameter effects and incipient slugging in gas fluidized beds, and sedimentation of air fluidized fine graphite particles by methanol vapor.

  19. Asymptotic theory of two-phase gas-solid flow through a vertical tube at moderate pressure gradient

    NASA Astrophysics Data System (ADS)

    Sergeev, Y. A.; Zhurov, A. I.

    1997-02-01

    Based on the equations, constitutive relations and boundary conditions of the kinetic theory of colliding particles in a gas-solid suspension, the approximate theory of the steady, developed vertical flow of a gas-particulate mixture is developed for the case of moderate gas pressure gradient in a vertical tube. The basic equations and boundary conditions show a singular behaviour of the solution of the problem at the wall. The method of matched asymptotic expansions is applied to develop a boundary layer-type theory for the flow parameters of the particulate phase. The basic equations in the bulk flow are reduced to a system of two ordinary integrodifferential equations for the particle-phase concentration and mean kinetic energy of particle velocity fluctuations (particle-phase pseudotemperature). The distributions of the particle concentration and velocity are found in both the bulk and the boundary layer. The solutions shows the bifurcation of flow parameters, and an explicit criterion is derived to identify a range of the given macroscopic parameters corresponding to upward or downward particulate flow. The integrated parameters (total fluxes of the gas and particle phase) are calculated.

  20. Modeling and Prediction of the Effects of Collisions in a Gas-Solid Turbulent Channel Flow Using Moment Methods

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis; Squires, Kyle

    2015-11-01

    Modeling dispersions of particles in multiphase flows is especially challenging in gas-solid suspensions. Lagrangian methods are suitable for dilute particle mediums, but are not cost effective at denser concentrations and impose additional modeling challenges. A moderately dense particle phase is neither sufficiently dense for a continuum limit assumption (collisional equilibrium) nor sufficiently dilute for a Lagrangian method, and resides in the intermediate regime under consideration in the current work. A quadrature-based moment method (QBMM) is chosen to simulate a particle-laden turbulent channel flow considering inter-particle collision effects. In quadrature-based approaches similarly behaving particles may be grouped together and treated in a stochastic manner within an Eulerian framework. Specifically, the Conditional Quadrature Method of Moments (CQMOM) is implemented to discretize a fully 3-D velocity space and capture particle trajectory crossing (PTC). This has the potential for large computational savings as compared to Lagrangian methods, especially when dense collisions are prominent. The probability density function is discretized with a two-point-quadrature in each dimension - the minimum requirement to capture PTC and enforce collisions. Predictions of the channel flow demonstrate that the collision treatment leads to the expected effects (e.g., redistribution of kinetic energy) and also offer improved accuracy relative to simpler approaches.

  1. A CFD study of gas-solid jet in a CFB riser flow

    SciTech Connect

    Li, Tingwen; Guenther, Chris

    2012-03-01

    Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.

  2. Open-source MFIX-DEM software for gas-solids flows: Part 1 - Verification studies

    SciTech Connect

    Garg, Rahul; Galvin, Janine; Li, Tingwen; Pannala, Sreekanth

    2012-04-01

    With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas–solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using a Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas–solids flows can accelerate the research in computational gas–solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas–solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas–solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas–solids flows.

  3. Open Source MFIX-DEM Software for Gas-Solids Flows: Part 1 - Verification Studies

    SciTech Connect

    Garg, Rahul; Galvin, Janine; Li, Tingwen; Pannala, Sreekanth

    2012-04-01

    With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas–solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using a Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas–solids flows can accelerate the research in computational gas–solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas–solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas–solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas–solids flows.

  4. A Study of the Influence of Numerical Diffusion on Gas-Solid Flow Predictions in Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Ghandriz, Ronak; Sheikhi, Reza

    2015-11-01

    In this work, an investigation is made of the influence of numerical diffusion on the accuracy of gas-solid flow predictions in fluidized beds. This is an important issue particularly in bubbling fluidized beds since numerical error greatly affects the dynamics of bubbles and their associated mixing process. A bed of coal (classified as Geldart A) is considered which becomes fluidized as the velocity of nitrogen stream into the reactor is gradually increased. The fluidization process is simulated using various numerical schemes as well as grid resolutions. Simulations involve Eulerian-Eulerian two-phase flow modeling approach and results are compared with experimental data. It is shown that higher order schemes equipped with flux limiter give favorable prediction of bubble and particle dynamics and hence, the mixing process within the reactor. The excessive numerical diffusion associated with lower order schemes results in unrealistic prediction of bubble shapes and bed height. Comparison is also made of computational efficiency of various schemes. It is shown that the Monotonized Central scheme with down wind factor results in the shortest simulation time because of its efficient parallelization on distributed memory platforms.

  5. A novel ECT-EST combined method for gas-solids flow pattern and charge distribution visualization

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Zhang, J. Y.

    2013-07-01

    A non-invasive measurement method of visualizing the flow pattern and charge distribution of gas-solids two-phase flow has been studied and verified using gravity-dropping and pneumatic conveyance rigs with pulverized coal as solids. It has been proven that the permittivity distribution acquired from an electrical capacitance tomography (ECT) system can be used to improve the accuracy in establishing charge sensitivity field of an electrostatic tomography (EST) system, and to reduce the uncertainty of charge distribution reconstruction. The experimental results show that, under the given experimental conditions for the gravity-dropping system, charge density increases with particles' concentration, whilst in the pneumatic conveyance system, charge density decreases in the area where the particles' concentration is higher, and the total charge intensity decreases with the increase of the concentration of pulverized coal in the pipe. The method proposed in this paper is potentially important in pneumatic processes for charge distribution measurement and safe operations. It is envisaged that with further development, this technique can provide information for investigation into the mechanism of inter-particle force on electrostatic attraction and repulsion.

  6. The Clustering Instability in Rapid Granular and Gas-Solid Flows

    NASA Astrophysics Data System (ADS)

    Fullmer, William D.; Hrenya, Christine M.

    2017-01-01

    Flows of solid particles are known to exhibit a clustering instability—dynamic microstructures characterized by a dense region of highly concentrated particles surrounded by a dilute region with relatively few particles—that has no counterpart in molecular fluids. Clustering is pervasive in rapid flows. Its presence impacts momentum, heat, and mass transfer, analogous to how turbulence affects single-phase flows. Yet predicting clustering is challenging, again analogous to the prediction of turbulent flows. In this review, we focus on three key areas: (a) state-of-the-art mathematical tools used to study clustering, with an emphasis on kinetic theory–based continuum models, which are critical to the prediction of the larger systems found in nature and industry, (b) mechanisms that give rise to clustering, most of which are explained via linear stability analyses of kinetic theory–based models, and (c) a critical review of validation studies of kinetic theory–based models to highlight the accuracies and limitations of such theories.

  7. Open-Source MFIX-DEM Software for Gas-Solids Flows: Part II - Validation Studies

    SciTech Connect

    Li, Tingwen

    2012-04-01

    With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the National Energy Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas–solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.

  8. Experimental Study on Gas-Solid Flow Charcteristics in a CFB Riser Of 54M in Height

    NASA Astrophysics Data System (ADS)

    Hu, N.; Yang, H. R.; Zhang, H.; Zhang, R. Q.; Cao, J. N.; Liu, Q.; Lu, J. F.; Yue, G. X.

    Understanding the height effect on the gas-solid flow characteristics in a CFB riser is important as more and more large capacity CFB boilers are used and to be developed. In this study, a cold CFB test rig with a riser of 240mm in LD. and 38m and 54m in height was built. The influences of operating conditions, such as solid inventory and fluidizing gas velocity, on the axial voidage profile along the riser were assessed. When the gas velocity exceeds the transport velocity, the S-shaped profile of voidage in the riser was established. At the same time, the voidage in top-dilute section reached the saturation carrying capacity, and the solids circulation rate did not vary with the height of the riser nor the solids inventory. It was also found the critical solids inventory for the saturation carrying capacity increases as the riser height increases. When the height was changed from 38m to 54m, the critical solids inventory increased about 25% from about 40kg to about 50kg, and pressure drop in the furnace also increased about 25%.

  9. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  10. Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

    SciTech Connect

    Fox, Rodney O.; Passalacqua, Alberto

    2016-02-01

    Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can be then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into

  11. MERCURY REACTIONS IN THE PRESENCE OF CHLORINE SPECIES: HOMOGENOUS GAS PHASE AND HETEROGENOUS GAS-SOLID PHASE

    EPA Science Inventory

    The kinetics of mercury chlorination (with HC1) were studied using a flow reactor system with an on-line Hg analyzer and spciation sampling using a set of impingers. Kinetic parameters, such as reaction order (a), activation energy (Eu) and the overall rate constant (k') were es...

  12. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    SciTech Connect

    Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.

    2007-04-01

    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser

  13. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.

    PubMed

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  14. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles

    NASA Astrophysics Data System (ADS)

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  15. In-line continuous sizing of biomass particles in gas-solid two-phase flow at a biomass-fired power plant

    NASA Astrophysics Data System (ADS)

    Gao, L.; Yan, Y.; Sun, D.; Qian, X.; Xu, C. L.

    2014-04-01

    Gas-solid two-phase flows are widely seen in many industrial processes. A good exampleis the pneumatically conveyed pulverised fuel flow in the power generation industry. As a significant renewable fuel source, biomass has been widely adopted in electrical power generation. The particle size distribution of pneumatically conveyed biomass correlates closely with combustion efficiency and pollutant emissions and should therefore be monitored on anin-line, continuous basis. In this paper an integrated instrumentation system using both a piezoelectric sensorand anelectrostatic sensor arrayis proposed to measure the size distribution and flow velocity of biomass particles. A prototype system was tested on a 250mm bore pipe at a biomass-fired power plantand its performance has been evaluated under industrial conditions.

  16. Dynamical lag correlation exponent based method for gas-solid flow velocity measurement using twin-plane electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Xue, Qian; Wang, Huaxiang; Yang, Chengyi; Cui, Ziqiang

    2012-08-01

    In a twin-plane electrical capacitance tomography (ECT) system, velocity measurement of two-phase flow is transformed into the time delay estimation problem, while the nongaussianity and nonstationarity of two-phase flow signals have put the validity of the conventional cross-correlation algorithm in jeopardy. To improve the robustness and reliability of flow velocity measurement, an alternative method is proposed based on the dynamical lag correlation exponent and applied to coal ash measurement in a pneumatic pipeline. Different from the cross-correlation method which picks the peak point of the cross-correlation function as the delayed frames between the upstream and downstream signals, the proposed method determines the delayed frames by finding the minimum point of the dynamical lag correlation exponent. The preliminary results of flow velocity measurement indicate that the proposed method is capable of detecting various velocities (8-25 m s-1), which is useful for monitoring and predicting flow instability.

  17. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a

  18. Feedback effect on the large-scale fluid motion in wall-bounded gas-solid disperse flow

    NASA Astrophysics Data System (ADS)

    Mito, Yoichi

    2013-11-01

    Influence of the forces, exerted by dispersed particles, in a channel, in which gas is flowing turbulently, is examined using a direct numerical simulation to calculate the gas velocities seen by the particles and a point force method to calculate the forces exerted by the particles on the gas. Influence of gravity and inter-particle collisions is ignored. Distributions of the mean streamwise body forces, exerted on the fluid by the turbulence and by the particles, are calculated to show the mean large-scale motions of the fluid phase and of the disperse phase. The fluid turbulence forces decrease with increasing volume fraction to accommodate the inter-phase body forces. Thus the large-scale fluid motions, which make a major contribution to the fluid turbulence, are damped. The turbophoretic velocities, which represent the mean drifts, show that mean contribution of each particle to the mean large-scale motion of the disperse phase decreases with increasing volume fraction. This is caused by the decreases in the fluid turbulence and the turbulent transport, with increasing volume fraction.

  19. Estimating flow heterogeneity in natural fracture systems

    NASA Astrophysics Data System (ADS)

    Leckenby, Robert J.; Sanderson, David J.; Lonergan, Lidia

    2005-10-01

    Examples of small to medium scale fault systems have been mapped in Jurassic sedimentary rocks in north Somerset, England. These examples include contractional and dilational strike-slip oversteps as well as normal faults. These maps form the basis of calculations performed to investigate heterogeneity in natural fracture systems with the aim of predicting fluid flow localisation in different fault styles. As there is no way to measure fracture aperture directly, we use vein thickness to represent an integrated flow path or 'palaeo-aperture' from which we derive a representation of the flow distribution. Three different methods are used to estimate flow heterogeneity based on: (1) fracture density (the ratio of fracture length to area), (2) fracture aperture (fracture porosity) and (3) hydraulic conductance (fracture permeability normalised to the pressure gradient and fluid properties). Our results show that fracture density and hydraulic conductance are poorly correlated and that fracture density does not fully represent the natural heterogeneity of fracture systems. Fracture aperture and hydraulic conductance indicate stronger degrees of flow localisation. Different types of structures also seem to display characteristic and predictable patterns of heterogeneity. Normal fault systems show the highest magnitude of localisation along the faults rather than in the relay ramps, while contractional and dilational strike-slip systems show very strong localisation in the faults and oversteps, respectively. In all cases the amount of damage in the oversteps can modify such patterns of heterogeneity.

  20. Information flow in heterogeneously interacting systems.

    PubMed

    Yamaguti, Yutaka; Tsuda, Ichiro; Takahashi, Yoichiro

    2014-02-01

    Motivated by studies on the dynamics of heterogeneously interacting systems in neocortical neural networks, we studied heterogeneously-coupled chaotic systems. We used information-theoretic measures to investigate directions of information flow in heterogeneously coupled Rössler systems, which we selected as a typical chaotic system. In bi-directionally coupled systems, spontaneous and irregular switchings of the phase difference between two chaotic oscillators were observed. The direction of information transmission spontaneously switched in an intermittent manner, depending on the phase difference between the two systems. When two further oscillatory inputs are added to the coupled systems, this system dynamically selects one of the two inputs by synchronizing, selection depending on the internal phase differences between the two systems. These results indicate that the effective direction of information transmission dynamically changes, induced by a switching of phase differences between the two systems.

  1. Groundwater flow in heterogeneous composite aquifers

    NASA Astrophysics Data System (ADS)

    Winter, C. L.; Tartakovsky, Daniel M.

    2002-08-01

    We introduce a stochastic model of flow through highly heterogeneous, composite porous media that greatly improves estimates of pressure head statistics. Composite porous media consist of disjoint blocks of permeable materials, each block comprising a single material type. Within a composite medium, hydraulic conductivity can be represented through a pair of random processes: (1) a boundary process that determines block arrangement and extent and (2) a stationary process that defines conductivity within a given block. We obtain second-order statistics for hydraulic conductivity in the composite model and then contrast them with statistics obtained from a standard univariate model that ignores the boundary process and treats a composite medium as if it were statistically homogeneous. Next, we develop perturbation expansions for the first two moments of head and contrast them with expansions based on the homogeneous approximation. In most cases the bivariate model leads to much sharper perturbation approximations than does the usual model of flow through an undifferentiated material when both are applied to highly heterogeneous media. We make this statement precise. We illustrate the composite model with examples of one-dimensional flows which are interesting in their own right and which allow us to compare the accuracy of perturbation approximations of head statistics to exact analytical solutions. We also show the boundary process of our bivariate model is equivalent to the indicator functions often used to represent composite media in Monte Carlo simulations.

  2. Real-Time Monitoring of Heterogeneous Catalysis with Mass Spectrometry

    ERIC Educational Resources Information Center

    Young, Mark A.

    2009-01-01

    Heterogeneous, gas-solid processes constitute an important class of catalytic reactions that play a key role in a variety of applications, such as industrial processing and environmental controls. Heterogeneous catalytic chemistry can be demonstrated in a simple heated flow reactor containing a fragment of the catalytic converter from a vehicular…

  3. Chaos suppression in gas-solid fluidization.

    PubMed

    Pence, Deborah V.; Beasley, Donald E.

    1998-06-01

    Fluidization in granular materials occurs primarily as a result of a dynamic balance between gravitational forces and forces resulting from the flow of a fluid through a bed of discrete particles. For systems where the fluidizing medium and the particles have significantly different densities, density wave instabilities create local pockets of very high void fraction termed bubbles. The fluidization regime is termed the bubbling regime. Such a system is appropriately termed a self-excited nonlinear system. The present study examines chaos suppression resulting from an opposing oscillatory flow in gas-solid fluidization. Time series data representing local, instantaneous pressure were acquired at the surface of a horizontal cylinder submerged in a bubbling fluidized bed. The particles had a weight mean diameter of 345 &mgr;m and a narrow size distribution. The state of fluidization corresponded to the bubbling regime and total air flow rates employed in the present study ranged from 10% to 40% greater than that required for minimum fluidization. The behavior of time-varying local pressure in fluidized beds in the absence of a secondary flow is consistent with deterministic chaos. Kolmogorov entropy estimates from local, instantaneous pressure suggest that the degree of chaotic behavior can be substantially suppressed by the presence of an opposing, oscillatory secondary flow. Pressure signals clearly show a "phase-locking" phenomenon coincident with the imposed frequency. In the present study, the greatest degree of suppression occurred for operating conditions with low primary and secondary flow rates, and a secondary flow oscillation frequency of 15 Hz. (c) 1998 American Institute of Physics.

  4. A new dynamic model for heterogeneous traffic flow

    NASA Astrophysics Data System (ADS)

    Tang, T. Q.; Huang, H. J.; Zhao, S. G.; Shang, H. Y.

    2009-06-01

    Based on the property of heterogeneous traffic flow, we in this Letter present a new car-following model. Applying the relationship between the micro and macro variables, a new dynamic model for heterogeneous traffic flow is obtained. The fundamental diagram and the jam density of the heterogeneous traffic flow consisting of bus and car are studied under three different conditions: (1) without any restrictions, (2) under the action of the traffic control policy that restrains some private cars and (3) using bus to replace the private cars restrained by the traffic control policy. The numerical results show that our model can describe some qualitative properties of the heterogeneous traffic flow consisting of bus and car, which verifies that our model is reasonable.

  5. Flow within and above heterogeneous and homogeneous canopies

    NASA Astrophysics Data System (ADS)

    Hamed, Ali M.; Sadowski, Matthew J.; Chamorro, Leonardo P.

    2016-11-01

    The flow development above and within homogeneous and heterogeneous canopies was studied using planar and stereo PIV in a refractive-index-matching open channel. The homogeneous model is constituted of elements of height h arranged in staggered configuration; whereas the heterogeneous canopy consisted of elements of two heights h1 = h + 1/3 h and h2 = h - 1/3 h alternated every two rows. Both canopies had the same roughness density, element geometry, and mean height. The flow was studied under three submergences H/h = 2, 3, 4, where H denotes the flow depth. Turbulence statistics complemented with quadrant analysis and proper orthogonal decomposition reveal richer flow dynamics induced by height heterogeneity. Topography-induced spatially-periodic mean flows are observed for the heterogeneous canopy. In contrast to the homogeneous case, non-vanishing vertical velocity is maintained across the entire length of the heterogeneous canopy with increased levels at lower submergence depths. The results indicate that heterogeneous canopies exhibit greater vertical turbulent exchange at the canopy interface, suggesting a potential for greater scalar exchange and greater impact on channel hydraulic resistance.

  6. Heterogeneous scalable framework for multiphase flows.

    SciTech Connect

    Morris, Karla Vanessa

    2013-09-01

    Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computer platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.

  7. Start-up inertia as an origin for heterogeneous flow

    NASA Astrophysics Data System (ADS)

    Korhonen, Marko; Mohtaschemi, Mikael; Puisto, Antti; Illa, Xavier; Alava, Mikko J.

    2017-02-01

    For quite some time nonmonotonic flow curve was thought to be a requirement for shear banded flows in complex fluids. Thus, in simple yield stress fluids shear banding was considered to be absent. Recent spatially resolved rheological experiments have found simple yield stress fluids to exhibit shear banded flow profiles. One proposed mechanism for the initiation of such transient shear banding process has been a small stress heterogeneity rising from the experimental device geometry. Here, using computational fluid dynamics methods, we show that transient shear banding can be initialized even under homogeneous stress conditions by the fluid start-up inertia, and that such mechanism indeed is present in realistic experimental conditions.

  8. Theory for Indirect Conduction in Dense, Gas-Solid Systems

    NASA Astrophysics Data System (ADS)

    Lattanzi, Aaron; Hrenya, Christine

    2016-11-01

    Heat transfer in dense gas-solid systems is dominated by conduction, and critical to the operation of rotary-kilns, catalytic cracking, and heat exchangers with solid particles as the heat transfer fluid. In particular, the indirect conduction occurring between two bodies separated by a thin layer of fluid can significantly impact the heat transfer within gas-solid systems. Current state-of-the-art models for indirect conduction assume that particles are surrounded by a static "fluid lens" and that one-dimensional conduction occurs through the fluid lens when the lens overlaps another body. However, attempts to evaluate the effect of surface roughness and fluid lens thickness (theoretical inputs) on indirect conduction have been restricted to static, single-particle cases. By contrast, here we quantify these effects for dynamic, multi-particle systems. This analysis is compared to outputs from computational fluid dynamics and discrete element method (CFD-DEM) simulations of heat transfer in a packed bed and flow down a heated ramp. Analytical predictions for model sensitivity are found to be in agreement with simulation results and differ greatly from the static, single-particle analysis. Namely, indirect conduction in static systems is found to be most sensitive to surface roughness, while dynamic systems are sensitive to the fluid lens thickness.

  9. Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear.

    PubMed

    Martoïa, F; Perge, C; Dumont, P J J; Orgéas, L; Fardin, M A; Manneville, S; Belgacem, M N

    2015-06-28

    The rheology of NFC suspensions that exhibited different microstructures and colloidal stability, namely TEMPO and enzymatic NFC suspensions, was investigated at the macro and mesoscales using a transparent Couette rheometer combined with optical observations and ultrasonic speckle velocimetry (USV). Both NFC suspensions showed a complex rheology, which was typical of yield stress, non-linear and thixotropic fluids. Hysteresis loops and erratic evolutions of the macroscale shear stress were also observed, thereby suggesting important mesostructural changes and/or inhomogeneous flow conditions. The in situ optical observations revealed drastic mesostructural changes for the enzymatic NFC suspensions, whereas the TEMPO NFC suspensions did not exhibit mesoscale heterogeneities. However, for both suspensions, USV measurements showed that the flow was heterogeneous and exhibited complex situations with the coexistence of multiple flow bands, wall slippage and possibly multidimensional effects. Using USV measurements, we also showed that the fluidization of these suspensions could presumably be attributed to a progressive and spatially heterogeneous transition from a solid-like to a liquid-like behavior. As the shear rate was increased, the multiple coexisting shear bands progressively enlarged and nearly completely spanned over the rheometer gap, whereas the plug-like flow bands were eroded.

  10. Analytical studies on the instabilities of heterogeneous intelligent traffic flow

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    It has been widely reported in literature that a small perturbation in traffic flow such as a sudden deceleration of a vehicle could lead to the formation of traffic jams without a clear bottleneck. These traffic jams are usually related to instabilities in traffic flow. The applications of intelligent traffic systems are a potential solution to reduce the amplitude or to eliminate the formation of such traffic instabilities. A lot of research has been conducted to theoretically study the effect of intelligent vehicles, for example adaptive cruise control vehicles, using either computer simulation or analytical method. However, most current analytical research has only applied to single class traffic flow. To this end, the main topic of this paper is to perform a linear stability analysis to find the stability threshold of heterogeneous traffic flow using microscopic models, particularly the effect of intelligent vehicles on heterogeneous (or multi-class) traffic flow instabilities. The analytical results will show how intelligent vehicle percentages affect the stability of multi-class traffic flow.

  11. Maximum estimates for generalized Forchheimer flows in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Celik, Emine; Hoang, Luan

    2017-02-01

    This article continues the study in [4] of generalized Forchheimer flows in heterogeneous porous media. Such flows are used to account for deviations from Darcy's law. In heterogeneous media, the derived nonlinear partial differential equation for the pressure can be singular and degenerate in the spatial variables, in addition to being degenerate for large pressure gradient. Here we obtain the estimates for the L∞-norms of the pressure and its time derivative in terms of the initial and the time-dependent boundary data. They are established by implementing De Giorgi-Moser's iteration in the context of weighted norms with the weights specifically defined by the Forchheimer equation's coefficient functions. With these weights, we prove suitable weighted parabolic Poincaré-Sobolev inequalities and use them to facilitate the iteration. Moreover, local in time L∞-bounds are combined with uniform Gronwall-type energy inequalities to obtain long-time L∞-estimates.

  12. Multiscale analysis and computation for flows in heterogeneous media

    SciTech Connect

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.; Tchelepi, H.

    2016-08-04

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.

  13. Effects of incomplete mixing on chemical reactions under flow heterogeneities.

    NASA Astrophysics Data System (ADS)

    Perez, Lazaro; Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    Evaluation of the mixing process in aquifers is of primary importance when assessing attenuation of pollutants. In aquifers different hydraulic and chemical properties can increase mixing and spreading of the transported species. Mixing processes control biogeochemical transformations such as precipitation/dissolution reactions or degradation reactions that are fast compared to mass transfer processes. Reactions are local phenomena that fluctuate at the pore scale, but predictions are often made at much larger scales. However, aquifer heterogeities are found at all scales and generates flow heterogeneities which creates complex concentration distributions that enhances mixing. In order to assess the impact of spatial flow heterogeneities at pore scale we study concentration profiles, gradients and reaction rates using a random walk particle tracking (RWPT) method and kernel density estimators to reconstruct concentrations and gradients in two setups. First, we focus on a irreversible bimolecular reaction A+B → C under homogeneous flow to distinguish phenomena of incomplete mixing of reactants from finite-size sampling effects. Second, we analise a fast reversible bimolecular chemical reaction A+B rightleftharpoons C in a laminar Poiseuille flow reactor to determine the difference between local and global reaction rates caused by the incomplete mixing under flow heterogeneities. Simulation results for the first setup differ from the analytical solution of the continuum scale advection-dispersion-reaction equation studied by Gramling et al. (2002), which results in an overstimation quantity of reaction product (C). In the second setup, results show that actual reaction rates are bigger than the obtained from artificially mixing the system by averaging the concentration vertically. - LITERATURE Gramling, C. M.,Harvey, C. F., Meigs, and L. C., (2002). Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci

  14. Normal stress differences in a sheared gas-solid suspension

    NASA Astrophysics Data System (ADS)

    Saha, Saikat; Alam, Meheboob

    2016-11-01

    The stress tensor and normal stress differences are analyzed for a homogeneously sheared gas-solid suspension using Enskog-Boltzmann equation. Inelastic particles are suspended in a viscous fluid of viscosity μf and experience a Stokes drag force. Viscous heating due to shear is compensated by (i) the inelastic collisions between particles and (ii) the drag force experienced by the particles due to the interstitial fluid. Rheology of the particle phase is analyzed with anisotropic-Gaussian as the single particle distribution function. The first (N1) and second (N2) normal stress differences are computed as functions of the density (ν), Stokes number (St) and restitution coefficient (e). A comparison with the existing simulation data shows an excellent agreement for both N1 and N2 over the predictions from other Grad-level theories. Finally, in the limit of St -> ∞ (μf -> 0), the related results from the conventional theory of dry granular flows are recovered.

  15. Heterogeneities of flow in stochastically generated porous media

    NASA Astrophysics Data System (ADS)

    Hyman, Jeffrey D.; Smolarkiewicz, Piotr K.; Winter, C. Larrabee

    2012-11-01

    Heterogeneous flows are observed to result from variations in the geometry and topology of pore structures within stochastically generated three dimensional porous media. A stochastic procedure generates media comprising complex networks of connected pores. Inside each pore space, the Navier-Stokes equations are numerically integrated until steady state velocity and pressure fields are attained. The intricate pore structures exert spatially variable resistance on the fluid, and resulting velocity fields have a wide range of magnitudes and directions. Spatially nonuniform fluid fluxes are observed, resulting in principal pathways of flow through the media. In some realizations, up to 25% of the flux occurs in 5% of the pore space depending on porosity. The degree of heterogeneity in the flow is quantified over a range of porosities by tracking particle trajectories and calculating their attributes including tortuosity, length, and first passage time. A representative elementary volume is first computed so the dependence of particle based attributes on the size of the domain through which they are followed is minimal. High correlations between the dimensionless quantities of porosity and tortuosity are calculated and a logarithmic relationship is proposed. As the porosity of a medium increases the flow field becomes more uniform.

  16. Mechanisms of anomalous dispersion in flow through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Tyukhova, Alina; Dentz, Marco; Kinzelbach, Wolfgang; Willmann, Matthias

    2016-11-01

    We study the origins of anomalous dispersion in heterogeneous porous media in terms of the medium and flow properties. To identify and quantify the heterogeneity controls, we focus on porous media which are organized in assemblies of equally sized conductive inclusions embedded in a constant conductivity matrix. We study the behavior of particle arrival times for different conductivity distributions and link the statistical medium characteristics to large-scale transport using a continuous time random walk (CTRW) approach. The CTRW models particle motion as a sequence of transitions in space and time. We derive an explicit map of the conductivity onto the transition time distribution. The derived CTRW model predicts solute transport based on the conductivity distribution and the characteristic heterogeneity length. In this way, heavy tails in solute arrival times and anomalous particle dispersion as measured by the centered mean square displacement are directly related to the medium properties. These findings shed light on the mechanisms of anomalous dispersion in heterogeneous porous media, and provide a basis for the predictive modeling of large-scale transport.

  17. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across

  18. Predicting second gas-solid virial coefficients using calculated molecular properties on various carbon surfaces.

    PubMed

    Rybolt, Thomas R; Janeksela, Vanessa E; Hooper, Dana N; Thomas, Howard E; Carrington, Nathan A; Williamson, Eric J

    2004-04-01

    Gas-solid chromatography was used to obtain values of the second gas-solid virial coefficient, B2s, in the temperature range from 343 to 493 K for seven adsorbate gases: methane, ethane, propane, chloromethane, chlorodifluoromethane, dimethyl ether, and sulfur hexafluoride. Carboxen-1000, a 1200 m2/g carbon molecular sieve (Supelco Inc.), was used as the adsorbent. These data were combined with earlier work to make a combined data set of 36 different adsorbate gases variously interacting with from one to four different carbon surfaces. All B2s values were extrapolated to 403 K to create a set of 65 different gas-solid B2s values at a fixed temperature. The B2s value for a given gas-solid system can be converted to a chromatographic retention time at any desired flow rate and can be converted to the amount of gas adsorbed at any pressure in the low-coverage, Henry's law region. Beginning with a theoretical equation for the second gas-solid virial coefficient, various quantitative structure retention relations (QSRR) were developed and used to correlate the B2s values for different gas adsorbates with different carbon surfaces. Two calculated adsorbate molecular parameters (molar refractivity and connectivity index), when combined with two adsorbent parameters (surface area and a surface energy contribution to the gas-solid interaction), provided an effective correlation (r2 = 0.952) of the 65 different B2s values. The two surface parameters provided a simple yet useful representation of the structure and energy of the carbon surfaces and thus our correlations considered variation in both the adsorbate gas and the adsorbent solid.

  19. Inelastic non-Newtonian flow over heterogeneously slippery surfaces.

    PubMed

    Haase, A Sander; Wood, Jeffery A; Sprakel, Lisette M J; Lammertink, Rob G H

    2017-02-01

    In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n=0.4, the numerical results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear conditions at the wall.

  20. Inelastic non-Newtonian flow over heterogeneously slippery surfaces

    NASA Astrophysics Data System (ADS)

    Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.

    2017-02-01

    In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n =0.4 , the numerical results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear conditions at the wall.

  1. Scaling of flow and transport behavior in heterogeneous groundwater systems

    NASA Astrophysics Data System (ADS)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  2. Flow heterogeneity following global no-flow ischemia in isolated rabbit heart

    SciTech Connect

    Marshall, Robert C.; Powers-Risius, Patricia; Reutter, Bryan W.; Schustz, Amy M.; Kuo, Chaincy; Huesman, Michelle K.; Huesman, Ronald H.

    2003-02-01

    The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion following 60 min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five non-ischemic controls. Although variable in the post-ischemic hearts, flow heterogeneity was increased relative to pre-ischemia for the whole LV (0.92 plus or minus 0.41 vs. 0.37 plus or minus 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium (Epi) considered separately (endo: 1.28 plus or minus 0.74 vs. 0.30 plus or minus 0.09; epi: 0.69 plus or minus 0.22 vs. 0.38 plus or minus 0.08; P < 0.05 for both comparisons) during early reperfusion. There were also segments with abnormally reduced reflow. The number of segments with abnormally reduced reflow increased as flow heterogeneity increased. Abnormally reduced reflow indicates that regional ischemia can persist despite restoration of normal global flow. In addition, the relationship between regional and global flow is altered and venous outflow is derived from regions with continued perfusion and not the whole LV. These observations emphasize the need to quantify regional reflow during reperfusion following sustained no-flow ischemia in the isolated rabbit heart.

  3. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  4. Regional myocardial flow heterogeneity explained with fractal networks

    PubMed Central

    VAN BEEK, JOHANNES H. G. M.; ROGER, STEPHEN A.; BASSINGTHWAIGHTE, JAMES B.

    2010-01-01

    There is explain how the distribution of flow broadens with an increase in the spatial resolution of the measurement, we developed fractal models for vascular networks. A dichotomous branching network of vessels represents the arterial tree and connects to a similar venous network. A small difference in vessel lengths and radii between the two daughter vessels, with the same degree of asymmetry at each branch generation, predicts the dependence of the relative dispersion (mean ± SD) on spatial resolution of the perfusion measurement reasonably well. When the degree of asymmetry increases with successive branching, a better fit to data on sheep and baboons results. When the asymmetry is random, a satisfactory fit is found. These models show that a difference in flow of 20% between the daughter vessels at a branch point gives a relative dispersion of flow of ~30% when the heart is divided into 100–200 pieces. Although these simple models do not represent anatomic features accurately, they provide valuable insight on the heterogeneity of flow within the heart. PMID:2589520

  5. Ambient Flow and Heterogeneity in Multi-Aquifer Wells

    NASA Astrophysics Data System (ADS)

    Hart, D. J.; Gotkowitz, M. B.; Luczaj, J. A.

    2009-12-01

    Multi-aquifers wells, those wells that are open to more than one aquifer, have the potential to allow large quantities of flow between aquifers. Observed rates and direction of intra-borehole flow are often complex, reflecting the heterogeneity of the aquifers and variation of farfield heads. Spinner flow logs collected from several multi-aquifer wells in southern and eastern Wisconsin indicate the importance of flows through these wells in groundwater flow systems. The Paleozoic geology of Wisconsin, composed of more-or-less flat-lying sandstones, dolomites, and shales, gives rise to layered aquifer-aquitard systems where multi-aquifer wells are relatively common. A comparison of the flows in three multi-aquifer wells that cross the Wisconsin’s Paleozoic units showed heterogeniety in aquifers commonly thought to be homogeneous. Variation of the intra-borehole flow in a well gives an indication of heterogeneity and farfield heads in the aquifers. In the first example, the system was relatively simple, consisting of an aquitard (Eau Claire shale) between an upper aquifer (Wonewoc sandstone) and a lower aquifer (Mt Simon sandstone). Heads in the upper aquifer are higher than those in the lower aquifer. In this well, flows gradually increased with depth in the upper aquifer, remained constant in the aquitard, and then gradually decreased with depth in the lower aquifer. The gradual changes indicate relatively homogenous upper and lower aquifers. In the second example, the system also consisted of an aquitard (Tunnel City Group) between an upper aquifer (Sinnipee dolomite and the St. Peter sandstone) and a lower aquifer (Elk Mound Ground). As in the first example, heads in the upper aquifer are greater than those in the lower sandstone aquifer. In contrast to the first example, there were abrupt changes in intra-borehole flow in the upper aquifer, sometimes of more than 180 liters/minute over an interval of less than a meter. Caliper and television logging showed

  6. Macrodispersion by diverging radial flows in randomly heterogeneous porous media.

    PubMed

    Severino, Gerardo; Santini, Alessandro; Sommella, Angelo

    2011-04-01

    Radial flow takes place in a heterogeneous porous formation where the transmissivity T is modelled as a stationary random space function (RSF). The steady flow is driven by a given rate, and the mean velocity is radial. A pulse-like of a tracer is injected in the porous formation, and the thin plume spreads due to the fluctuations of the velocity which results a RSF as well. Transport is characterized by the mean front, and by the second spatial moment of the plume. We are primarily interested in tracer macrodispersion modelling. With the neglect of pore-scale dispersion, macrodispersion coefficients are computed at the second order of approximation, without neglecting the head-gradient fluctuations. Although transport is non-ergodic at the source, it is shown that ergodicity is achieved at small distances from the source. This is due to the fact that close to the source local velocities are quite large, and therefore solute particles become uncorrelated very soon. Under ergodic conditions, we compare macrodispersion mechanism in radial flows with that occurring in mean uniform flows. At short distances the spreading effect is highly enhanced by the large variability of the flow field, whereas at large distances transport exhibits a lesser dispersion due to the reduction of velocities. This supports the explanation provided by Indelman and Dagan (1999) to justify why the macrodispersivity is found smaller than that pertaining to mean uniform flows. The model is tested against a tracer transport experiment (Fernàndez-Garcia et al., 2004) by comparing the theoretical and experimental breakthrough curves. The accordance with real data, that is achieved without any fitting to concentration values, strengthens the capability of the proposed model to grasp the main features of such an experiment, the approximations as well as experimental uncertainties notwithstanding.

  7. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations

    SciTech Connect

    Li, Tingwen; Benyahia, Sofiane

    2013-10-01

    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  8. Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review

    NASA Astrophysics Data System (ADS)

    Sun, Jingyuan; Yan, Yong

    2016-11-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas-solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed.

  9. Upscaling unsaturated hydraulic parameters for flow through heterogeneous anisotropic sediments

    NASA Astrophysics Data System (ADS)

    Ward, Andy L.; Zhang, Z. Fred; Gee, Glendon W.

    2006-02-01

    We compare two methods for determining the upscaled water characteristics and saturation-dependent anisotropy in unsaturated hydraulic conductivity from a field-scale injection test. In both approaches an effective medium approximation is used to reduce a porous medium of M textures to an equivalent homogenous medium. The first approach is a phenomenological approach based on homogenization and assumes that moisture-based Richards' equation can be treated like the convective-dispersive equation (CDE). The gravity term, d Kz( θ)/d( θ), analogous to the vertical convective velocity in the CDE, is determined from the temporal evolution of the plume centroid along the vertical coordinate allowing calculation of an upscaled Kz( θ). As with the dispersion tensor in the CDE, the rate of change of the second spatial moment in 3D space is used to calculate the water diffusivity tensor, D( θ), from which an upscaled K( θ) is calculated. The second approach uses the combined parameter scale inverse technique (CPSIT). Parameter scaling is used first to reduce the number of parameters to be estimated by a factor M. Upscaled parameters are then optimized by inverse modeling to produce an upscaled K( θ) characterized by a pore tortuosity-connectivity tensor, L. Parameters for individual textures are finally determined from the optimized parameters by inverse scaling using scale factors determined a priori. Both methods produced upscaled K( θ) that showed evidence of saturation dependent anisotropy. Flow predictions with the STOMP simulator, parameterized with upscaled parameters, were compared with field observations. Predictions based on the homogenization method were able to capture the mean plume behavior but could not reproduce the asymmetry caused by heterogeneity and lateral spreading. The CPSIT method captured the effects of heterogeneity and anisotropy and reduced the mean squared residual by nearly 90% compared to local-scale and upscaled parameters from the

  10. Brittle, flowing structures focused on subtle crustal heterogeneities

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Shipton, Z. K.; Lunn, R. J.; Pytharouli, S.; Kirkpatrick, J. D.

    2011-12-01

    Fundamental to the development of groundwater flow models are geological models that accurately account for the spatial distribution and geometrical attributes of fracture systems in three dimensions, at both seismic and sub-seismic resolution. Accurate characterization of fracture populations in crystalline rock is of particular importance, as these are the principal targets for nuclear waste repositories and enhanced geothermal systems. Fracture models are populated using average properties from site specific outcrop and borehole data, geophysical imaging and empirical scaling relationships such as the decrease of fracture density with distance from a fault surface However, host rock heterogeneity is likely to be of equal importance in influencing fracture attributes. Our study focuses on brittle structures associated with a regional NE-SW ductile shear zone in NE Brazil. Detailed field mapping shows two phases of brittle structure overprinting a ductile shear zone: 1) a brittle fault zone, which is largely "sealed" to flow, 2) a later set of open fractures. The earliest brittle fault is 1.4 - 2.6m wide zone of chaotic breccia bound by two sub-vertical fault walls. Extremely indurated breccias branching from the fault core have an orientation consistent with sinistral motion on the fault. The breccia is composed of centimeter to meter scale clasts in a fine-grained matrix. The host rock is intensely fractured by centimeter-scale fractures up to 60 m away from the fault. Veining is predominantly concentrated within 15 meters of the fault wall, and joints beyond this are unmineralised. The latest brittle deformation is represented by meter-scale open discrete fractures and fracture zones, up to 80 meters from the main fault. The fractures are unmineralised suggesting formation at relatively shallow depths. Fracture zones vary from decimeters long en echelon fractures to intensely fractured zones where the host rock is completely fragmented. This final phase of

  11. ADAPTIVE-GRID SIMULATION OF GROUNDWATER FLOW IN HETEROGENEOUS AQUIFERS. (R825689C068)

    EPA Science Inventory

    Abstract

    The prediction of contaminant transport in porous media requires the computation of the flow velocity. This work presents a methodology for high-accuracy computation of flow in a heterogeneous isotropic formation, employing a dual-flow formulation and adaptive...

  12. Method for improved gas-solids separation

    DOEpatents

    Kusik, Charles L.; He, Bo X.

    1990-01-01

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.

  13. Method for improved gas-solids separation

    DOEpatents

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  14. Spatial heterogeneity of local blood flow and metabolite content in dog hearts

    SciTech Connect

    Franzen, D.; Conway, R.S.; Zhang, H.; Sonnenblick, E.H.; Eng, C. )

    1988-02-01

    Spatial variation (heterogeneity) of myocardial blood flow was studied under basal conditions in relation to four biochemical markers: creatine kinase (CK), lactate dehydrogenase (LDH), ATP, and glycogen. A total of 508 individual 0.5-g samples from the left ventricular free wall was studied in 12 dogs. Myocardial blood flow was measured by radioactive microspheres injected via a pigtail catheter into the left ventricle during light sedation; following thoracotomy, a second set of microspheres was injected via a catheter into the left atrium. In 27-54 samples/heart, myocardial blood flow, CK, LDH, protein, ATP, and glycogen were determined, permitting a direct correspondence between local blood flow and metabolic markers in each sample and an assessment of the spatial heterogeneity of flow and metabolite content. The coefficient of variation, which defines the extent of spatial heterogeneity, averaged 20% for closed-chest flow measurement, 19% for open-chest flow measurement, 22% for CK, 17% for LDH, 15% for protein, 8% for ATP, and 18% for glycogen. The correlation between local blood flow and the studied metabolities can only explain a minor portion of the spatial heterogeneity of myocardial blood flow. Although a physiological link between blood flow and metabolite content for small regions of the heart is demonstrated, the true local variability of blood flow may be modulated predominantly by other factors.

  15. Distinguishing features of flow in heterogeneous porous media: 4, Is a more general dynamic description required

    SciTech Connect

    Nelson, R.W.

    1990-11-01

    Groundwater theory that applies to only homogeneous systems is often too restricted to adequately solve actual groundwater pollution problems. For adequate solutions, the more general theory for heterogeneous porous systems is needed. However, the present dynamic and kinematic descriptions in heterogeneous materials have evolved largely from the restricted and less general homogeneous theory. These descriptions are inadequate because they fail to account for all the energy dissipation in the system. The basic distinguishing dynamic feature of heterogeneous flow theory from the less general homogeneous-based theory is the macroscopic rotational flow component. Specifically, existence of rotational flow components and their independence from the translational flow components are the necessary and sufficient conditions that completely differentiate between the complex lamellar heterogeneous flow theory and the simpler lamellar flow of homogeneous theory. This paper proposes a more general dynamic form of the flow equation to include the added rotational dissipation that is missing from the present Darcian description of flow in heterogeneous media. 31 refs.

  16. Heat transfer coefficients of dilute flowing gas-solids suspensions

    NASA Technical Reports Server (NTRS)

    Kane, R. S.; Pfeffer, R.

    1973-01-01

    Heat transfer coefficients of air-glass, argon-glass, and argon-aluminum suspensions were measured in horizontal and vertical tubes. The glass, 21.6 and 36.0 micron diameter particles, was suspended at gas Reynolds numbers between 11,000 and 21,000 and loading ratios between 0 and 2.5. The presence of particles generally reduced the heat transfer coefficient. The circulation of aluminum powder in the 0.870 inch diameter closed loop system produced tenacious deposits on protuberances into the stream. In the vertical test section, the Nusselt number reduction was attributed to viscous sublayer thickening; in the horizontal test section to particle deposition.

  17. Homogeneous-Heterogeneous Reactions in Peristaltic Flow with Convective Conditions

    PubMed Central

    Hayat, Tasawar; Tanveer, Anum; Yasmin, Humaira; Alsaedi, Ahmed

    2014-01-01

    This article addresses the effects of homogeneous-heterogeneous reactions in peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical modelling and analysis have been carried out in the presence of Hall current. The channel walls satisfy the more realistic convective conditions. The governing partial differential equations along with long wavelength and low Reynolds number considerations are solved. The results of temperature and heat transfer coefficient are analyzed for various parameters of interest. PMID:25460608

  18. The stationary flow in a heterogeneous compliant vessel network

    NASA Astrophysics Data System (ADS)

    Filoche, Marcel; Florens, Magali

    2011-09-01

    We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.

  19. Heterogeneities in fractured aquifers: Examples from outcrops and implications for fluid flow modeling

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Nella Mollema, Pauline

    2016-04-01

    Surface outcrops provide natural analogs for aquifers and they offer an opportunity to study the geometry of geologic heterogeneities in three dimensions over a range of scales. We show photographs, maps, quantitative field data of rock fractures and sedimentary features in outcrops exposed in a unique collection of many different settings. These include small-scale sedimentary structures, carbonate nodules, faults, and other fractures as documented in outcrops of porous sandstone (Utah, USA and Italy), tight sandstones (Bolivia), dolomite (Northern Italy), and carbonates (Central Italy). We simulate the geometries observed in outcrops with simple conceptual and numerical models of flow to show how important it is to recognize the appropriate attributes for the description and the process responsible for the formation of geologic heterogeneities. For example, knowing the type of structural heterogeneities (fault, joint, compaction band, stylolite, and vein) and their development mechanics helps to predict the distribution and preferential orientation of these features within an aquifer. This knowledge is particularly important for modeling of fluid flow where geophysical or borehole data are lacking. Geologic heterogeneities of sedimentary, structural or diagenetic (chemical) nature influence the fluid flow properties in many aquifers and reservoirs at scales varying over several orders of magnitude and with a spatial variability ranging from mm to tens of meters. Heterogeneities may enhance or degrade porosity and permeability, they impart anisotropy to permeability and dispersion and affect mass transport-related processes in groundwater. Furthermore, aquifer heterogeneities control aquifer continuity and compartmentalization. In fractured aquifers, geologic and diagenetic heterogeneities may affect connectivity, aperture of the flow channels or the distribution of permeability buffers, barriers and seals. Also variations in layer thickness and lithology within a

  20. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system.

    PubMed

    Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min

    2012-08-01

    Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests.

  1. Heterogeneous traffic flow modelling using second-order macroscopic continuum model

    NASA Astrophysics Data System (ADS)

    Mohan, Ranju; Ramadurai, Gitakrishnan

    2017-01-01

    Modelling heterogeneous traffic flow lacking in lane discipline is one of the emerging research areas in the past few years. The two main challenges in modelling are: capturing the effect of varying size of vehicles, and the lack in lane discipline, both of which together lead to the 'gap filling' behaviour of vehicles. The same section length of the road can be occupied by different types of vehicles at the same time, and the conventional measure of traffic concentration, density (vehicles per lane per unit length), is not a good measure for heterogeneous traffic modelling. First aim of this paper is to have a parsimonious model of heterogeneous traffic that can capture the unique phenomena of gap filling. Second aim is to emphasize the suitability of higher-order models for modelling heterogeneous traffic. Third, the paper aims to suggest area occupancy as concentration measure of heterogeneous traffic lacking in lane discipline. The above mentioned two main challenges of heterogeneous traffic flow are addressed by extending an existing second-order continuum model of traffic flow, using area occupancy for traffic concentration instead of density. The extended model is calibrated and validated with field data from an arterial road in Chennai city, and the results are compared with those from few existing generalized multi-class models.

  2. Reducing Spatial Heterogeneity of MALDI Samples with Marangoni Flows During Sample Preparation.

    PubMed

    Lai, Yin-Hung; Cai, Yi-Hong; Lee, Hsun; Ou, Yu-Meng; Hsiao, Chih-Hao; Tsao, Chien-Wei; Chang, Huan-Tsung; Wang, Yi-Sheng

    2016-08-01

    This work demonstrates a method to prepare homogeneous distributions of analytes to improve data reproducibility in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Natural-air drying processes normally result in unwanted heterogeneous spatial distributions of analytes in MALDI crystals and make quantitative analysis difficult. This study demonstrates that inducing Marangoni flows within drying droplets can significantly reduce the heterogeneity problem. The Marangoni flows are accelerated by changing substrate temperatures to create temperature gradients across droplets. Such hydrodynamic flows are analyzed semi-empirically. Using imaging mass spectrometry, changes of heterogeneity of molecules with the change of substrate temperature during drying processes are demonstrated. The observed heterogeneities of the biomolecules reduce as predicted Marangoni velocities increase. In comparison to conventional methods, drying droplets on a 5 °C substrate while keeping the surroundings at ambient conditions typically reduces the heterogeneity of biomolecular ions by 65%-80%. The observation suggests that decreasing substrate temperature during droplet drying processes is a simple and effective means to reduce analyte heterogeneity for quantitative applications. Graphical Abstract ᅟ.

  3. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts.

    PubMed

    Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū

    2015-04-16

    Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

  4. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū

    2015-04-01

    Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

  5. Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domains

    NASA Astrophysics Data System (ADS)

    Das, D. B.; Hanspal, N. S.; Nassehi, V.

    2005-09-01

    The existence of a free-flow domain (e.g. a liquid layer) adjacent to a porous medium is a common occurrence in many environmental and petroleum engineering problems. The porous media may often contain various forms of heterogeneity, e.g. layers, fractures, micro-scale lenses, etc. These heterogeneities affect the pressure distribution within the porous domain. This may influence the hydrodynamic conditions at the free-porous domain interface and, hence, the combined flow behaviour. Under steady-state conditions, the heterogeneities are known to have negligible effects on the coupled flow behaviour. However, the significance of the heterogeneity effects on coupled free and porous flow under transient conditions is not certain. In this study, numerical simulations have been carried out to investigate the effects of heterogeneous (layered) porous media on the hydrodynamics conditions in determining the behaviour of combined free and porous regimes. Heterogeneity in the porous media is introduced by defining a domain composed of two layers of porous media with different values of intrinsic permeability. The coupling of the governing equations of motion in free and porous domains has been achieved through the well-known Beavers and Joseph interfacial condition. Of special interest in this work are porous domains with flow-through ends. They represent the general class of problems where large physical domains are truncated to smaller sections for ease of mathematical analysis. However, this causes a practical difficulty in modelling such systems. This is because the information on flow behaviour, i.e. boundary conditions at the truncated sections, is usually not available. Use of artificial boundary conditions to solve these problems effectively implies the imposition of conditions that do not necessarily match with the solutions required for the interior of the domain. This difficulty is resolved in this study by employing stress-free boundary conditions at the open

  6. The Effect of the Heterogeneity on the Traffic Flow Behavior

    NASA Astrophysics Data System (ADS)

    Jetto, K.; Ez-Zahraouy, H.; Benyoussef, A.

    We propose a traffic flow model which takes into account the disorder in the length and the maximal speed of cars. Using cellular automaton model in parallel dynamics we have studied the behavior of traffic flow, especially the condition of formation (active phase) and the dissociation (absorbing phase) of platoons. It is found that the transition from active to absorbing phase depend on the length of the slow vehicles L2. Indeed, the transition is discontinuous for L2 = 1 and continuous when L2 > 1. In the later case, the critical exponent is calculated near the transition density, and the space-time diagram shows the presence of the two phases. Furthermore, we have found that the fundamental diagram exhibit a plateau which depend on the size of the system.

  7. Revisiting low-fidelity two-fluid models for gas-solids transport

    NASA Astrophysics Data System (ADS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  8. Heterogeneity of plastic flow of bimetals electrolytically saturated with hydrogen

    NASA Astrophysics Data System (ADS)

    Li, Yulia; Barannikova, Svetlana; Bochkareva, Anna; Lunev, Alexey; Shlyakhova, Galina; Zuev, Lev

    2016-11-01

    This paper presents the study of a corrosion-resistant bimetal composed of austenitic stainless steel (301 AISI) and low-carbon construction steel (A 283 Grade C) and the effect of its electrolytic hydrogenation on plastic flow of the test material. Localization patterns of plastic deformation in the process of uniaxial tension were obtained using the digital image correlation method. The evolution of localized plastic deformation zones was studied in the initial state and after electrolytic hydrogenation. The staging of stress-strain curves was analyzed.

  9. Non-Newtonian fluid flow over a heterogeneously slippery surface

    NASA Astrophysics Data System (ADS)

    Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.

    2015-11-01

    The no-slip boundary condition does not always hold. In the past, we have investigated the influence of effective wall slip on interfacial transport for a bubble mattress - a superhydrophobic surface consisting of an array of transverse gas-filled grooves. We proved experimentally that the amount of effective wall slip depends on the bubble protrusion angle and the surface porosity (Karatay et al., PNAS 110, 2013), and predicted that mass transport can be enhanced significantly (Haase et al., Soft Matter 9, 2013). Both studies involve the flow of water. In practise, however, many liquids encountered are non-Newtonian, like blood and polymer solutions. This raises some interesting questions. How does interfacial transport depend on the rheological properties of the liquid? Does the time-scale of the experiment matter? A bubble mattress is a suitable platform to investigate this, due to local variations in shear rate. We predict that for shear-thinning liquids, compared to water, the amount of wall slip can be enhanced considerably, although this depends on the applied flow rate. Experiments are performed to proof this behaviour. Simulations are used to assess what will happen when the characteristic time-scale of the system matches the relaxation time of the visco-elastic liquid. R.G.H.L. acknowledges the European Research Council for the ERC starting grant 307342-TRAM.

  10. Particle acceleration model for gas--solid suspensions at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tenneti, Sudheer; Garg, Rahul; Hrenya, Christine; Fox, Rodney; Subramaniam, Shankar

    2009-11-01

    Particle granular temperature plays an important role in the prediction of core annular structure in riser flows. The covariance of fluctuating particle acceleration and fluctuating particle velocity governs the evolution of the granular temperature in homogeneous suspensions undergoing elastic collisions. Koch and co--workers (Phys. Fluid. 1990, JFM 1999) showed that the granular temperature has a source term due to hydrodynamic interactions in gas--solid suspensions in the Stokes flow regime. We performed direct numerical simulations (DNS) of freely evolving suspensions at moderate Reynolds numbers using the immersed boundary method (IBM). We found that simple extension of a class of mean particle acceleration models to their instantaneous counterparts does not predict the correct fluctuating particle acceleration--fluctuating velocity covariance that is obtained from DNS. The fluctuating particle velocity autocorrelation function decay and the Lagrangian structure function obtained from DNS motivate the use of a Langevin model for the instantaneous particle acceleration.

  11. μPIV methodology using model systems for flow studies in heterogeneous biopolymer gel microstructures.

    PubMed

    Sott, Kristin; Gebäck, Tobias; Pihl, Maria; Lorén, Niklas; Hermansson, Anne-Marie; Heintz, Alexei; Rasmuson, Anders

    2013-05-15

    A methodology for studying flow in heterogeneous soft microstructures has been developed. The methodology includes: (1) model fractal or random heterogeneous microstructures fabricated in PDMS and characterised using CLSM; (2) μPIV measurements; (3) Lattice-Boltzmann simulations of flow. It has been found that the flow behaviour in these model materials is highly dependent on pore size as well as on the connectivity and occurrence of dead ends. The experimental flow results show good agreement with predictions from the Lattice-Boltzmann modelling. These simulations were performed in geometries constructed from 3D CLSM images of the actual PDMS structures. Given these results, mass transport behaviour may be predicted for even more complex structures, like gels or composite material in, e.g., food or biomaterials. This is a step in the direction towards predictive science with regards to tailoring soft biomaterials for specific mass transport properties.

  12. Upscaling unsaturated hydraulic parameters for flow through heterogeneous anisotropic sediments

    SciTech Connect

    Ward, Andy L; Zhang, Z F; Gee, Glendon W

    2006-02-01

    We compare two methods for determining the upscaled water characteristics and saturation-dependent anisotropy in the unsaturated hydraulic conductivity. In both approaches an effective medium approximation is used to reduce a porous medium of M textures to an equivalent homogenous medium. The first approach is based on in which the moisture-based Richards’ flow equation is treated as a nonlinear Fokker-Plank equation. Model parameters are derived from the spatial moments of an infiltrating water plume in a manner similar to that used for the convective dispersion equation. The gravity term, dKz(θ)/d(θ), which is analogous to the vertical convective velocity, is inferred from the temporal evolution of the vertical location of the plume centroid and allows calculation of the upscaled Kz(θ). As with the dispersion tensor, the rate of change of the second spatial moment in 3D space is related to the water diffusivity tensor D(θ) from which the upscale K(θ) is calculated. In the second approach, parameter scaling is used first to reduce the number of parameters to be estimated by a factor M. Upscaled parameters are then optimized by inverse modeling of a field-scale injection test to produce K(θ) and a pore connectivity tensor, L. Parameters for individual textures are finally inferred from the optimized parameters by inverse scaling using scale factors determined a priori. Parameter scaling reduced the inversion time by a factor of M2. Both methods produced upscaled K(θ) that show saturation dependent anisotropy. Flow predictions with the STOMP simulator, parameterized with the upscaled parameters were compared with field observations. Predictions based on the first method were only able to capture the mean plume behavior. The second method reduced the mean squared residual by nearly 90% compared to local-scale and upscaled parameters from the forts method. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle

  13. A disaggregation theory for predicting concentration gradient distributions in heterogeneous flows

    NASA Astrophysics Data System (ADS)

    Le Borgne, Tanguy; Huck, Peter; Dentz, Marco; Villermaux, Emmanuel

    2016-04-01

    Many transport processes occurring in fluid flows depend on concentration gradients, including a wide range of chemical reactions, such as mixing-driven precipitation, and biological processes, such as chemotaxis. A general framework for predicting the distribution of concentration gradients in heterogeneous flow fields is proposed based on a disaggregation theory. The evolution of concentration fields under the combined action of heterogeneous advection and diffusion is quantified from the analysis of the development and aggregation of elementary lamellar structures, which naturally form under the stretching action of flow fields. Therefore spatial correlations in concentrations can be estimated based on the understanding of the lamellae aggregation process that determine the concentration levels at neighboring spatial locations. Using this principle we quantify the temporal evolution of the concentration gradient Probability Density Functions in heterogeneous Darcy fields for arbitrary Peclet numbers. This approach is shown to provide accurate predictions of concentration gradient distributions for a range of flow systems, including turbulent flows and low Reynolds number porous media flows, for confined and dispersing mixtures.

  14. River-aquifer interactions, geologic heterogeneity, and low-flow management

    USGS Publications Warehouse

    Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E.

    2006-01-01

    Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year. Copyright ?? 2006 The Author(s).

  15. Transport phenomena of reactive fluid flow in heterogeneous combustion processes.

    NASA Technical Reports Server (NTRS)

    Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.

    1972-01-01

    A previously developed computer program was used to model two transient hybrid combustion processes involving tubes of solid Plexiglas. In the first study, representing combustion of a hybrid rocket, the oxidizing gas was oxygen, and calculations were continued sufficiently long to obtain steady-state values. Systematic variations were made in reaction rate constant, mass flow rate, and pressure, alternatively using constant and temperature dependent regression rate models for the fuel surface. Consistent results were obtained, as is evidenced by the values for the mass function of the reaction product and the flame temperature, for which plots are supplied. In the second study, fire initiation in a duct was studied, with an air mixture as the oxidizing gas. It was demonstrated that a satisfactory flame spread mechanism could be reproduced on the computer. In both of the above applications, the general, transient, two-dimensional conservation equations were represented, together with chemical reactions, solid-fuel interface conditions, and heat conduction in the solid fuel.

  16. Stochastic analysis of bounded unsaturated flow in heterogeneous aquifers: Spectral/perturbation approach

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2009-01-01

    This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heterogeneous porous medium subject to distributed infiltration. The presence of boundary conditions leads to non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier-Stieltjes representations for the perturbed quantities, the general expressions for the pressure head variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are presented in the wave number domain. Closed-form expressions are developed for the simplified case of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution parameter. These expressions allow us to investigate the impact of the boundary conditions, namely the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional, heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G, McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour Res 1991;27(7):1589-605; Li S-G, McLaughlin D. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995; 31(3):541-51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Adv Water Resour 2004;27:775-84].

  17. Modeling preferential flow and its consequences on solute transfer in a strongly heterogeneous deposit

    NASA Astrophysics Data System (ADS)

    Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy

    2016-04-01

    The understanding of the fate of pollutants in the vadose zone is a prerequisite to manage soil and groundwater quality. Water infiltrates into the soil and carries a large amount of pollutants (heavy metals, organic compounds, etc.). The quality of groundwater depends on the capability of soils to remove pollutants while water infiltrates. The capability of soils to remove pollutants depends not only on their geochemical properties and affinity with pollutants but also on the quality of the contact between the reactive particles of the soil and pollutants. In such a context, preferential flows are the worst scenario since they prevent pollutants from reaching large parts of the soil including reactive zones that could serve for pollutant removal. The negative effects of preferential flow have already been pointed out by several studies. In this paper, we investigate numerically the effect of the establishment of preferential flow in a numerical section (13.5m long and 2.5m deep) that mimics a strongly heterogeneous deposit. The modelled deposit is made of several lithofacies with contrasting hydraulic properties. The numerical study proves that this strong contrast in hydraulic properties triggers the establishment of preferential flow (capillary barriers and funneled flow). Preferential flow develops mainly for low initial water contents and low fluxes imposed at the soil surface. The impact of these flows on solute transfer is also investigated as a function of solute reactivity and affinity to soil sorption sites. Modeled results clearly show that solute transport is greatly impacted by flow heterogeneity. Funneled flows have the same impacts as water fractionation into mobile and immobile transfer with a fast transport of solutes by preferential flow and solute diffusion to zones where the flow is slower. Such a pattern greatly impacts retention and reduces the access of pollutants into large parts of the soil. Retention is thus greatly reduced at the section

  18. A model-based method for flow limitation analysis in the heterogeneous human lung.

    PubMed

    Polak, Adam G

    2008-02-01

    Flow limitation in the airways is a fundamental process constituting the maximal expiratory flow-volume curve. Its location is referred to as the choke point. In this work, expressions enabling the calculation of critical flows in the case of wave-speed, turbulent or viscous limitation were derived. Then a computational model for the forced expiration from the heterogeneous lung was used to analyse the regime and degree of flow limitation as well as movement and arrangement of the choke points. The conclusion is that flow limitation begins at similar time in every branch of the bronchial tree developing a parallel arrangement of the choke points. A serial configuration of flow-limiting sites is possible for short time periods in the case of increased airway heterogeneity. The most probable locations of choke points are the regions of airway junctions. The wave-speed mechanism is responsible for flow choking over most of vital capacity and viscous dissipation of pressure for the last part of the test. Turbulent dissipation, however, may play a significant role as a supporting factor in transition between wave-speed and viscous flow limitation.

  19. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  20. Heterogeneous voice flows-oriented call admission control in IEEE 802.11e WLANs

    NASA Astrophysics Data System (ADS)

    Wu, Qi-lin; Huang, Zhen-jin; Wang, Shi-yi

    2014-04-01

    Considering the circumstance of heterogeneous voice flows, first, by applying Markov chain, this paper proposes an unsaturated analytical model for the IEEE 802.11e EDCA protocol, which considers the condition of non-ideal transmission channel and the character of the occurrence of backoff countdown at the beginning of time slot in EDCA protocol. Furthermore, according to the proposed model, the media access delay and throughput of a flow are analysed, and the flow-oriented call admission control (CAC) scheme is proposed. Finally, the simulation results are shown to confirm that the proposed CAC scheme can guarantee the requirements of throughput and delay of voice flows, and can admit more voice flows to improve the utilisation efficiency of network resources by choosing the appropriate values of the minimum contention window or the appropriate varieties of voice flows.

  1. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    SciTech Connect

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5] for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.

  2. The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds

    NASA Astrophysics Data System (ADS)

    Fox, A.; Laube, G.; Schmidt, C.; Fleckenstein, J. H.; Arnon, S.

    2016-09-01

    Bed form-induced hyporheic exchange flux (qH) is increasingly viewed as a key process controlling water fluxes and biogeochemical processes in river networks. Despite the fact that streambeds are inherently heterogeneous, the majority of bed form flume-scale studies were done on homogeneous systems. We conducted salt and dye tracer experiments to study the effects of losing and gaining flow conditions on qH using a laboratory recirculating flume system packed with a heterogeneous streambed, and equipped with a drainage system that enabled us to apply losing or gaining fluxes. We found that when either losing or gaining fluxes increased (regardless of whether the flux was upward or downward), qH followed an exponential decline, the volume of the hyporheic flow cell drastically reduced, and the mean residence times declined moderately. A numerical flow model for the heterogeneous streambed was set up and fitted against the experimental data in order to test whether an equivalent homogeneous case exists. The measured qH were accurately predicted with the heterogeneous model, while it was underestimated using a homogeneous model characterized by the geometric mean of the hydraulic conductivity. It was also shown that in order to produce the results of the heterogeneous model with an equivalent hydraulic conductivity, the latter had to be increased as the losing or gaining fluxes increase. The results strongly suggest that it is critical to adequately account for the heterogeneous streambed structure in order to accurately predict the effect of vertical exchange fluxes between the stream and groundwater on hyporheic exchange.

  3. Geologically-Based Modeling of Unsaturated Flow Through Heterogeneous Alluvial Sediments, Lawrence Livermore National Laboratory, California

    NASA Astrophysics Data System (ADS)

    Martell, S. B.; Weissmann, G. S.; Phanikumar, M. S.; Hyndman, D. W.; Khire, M. V.

    2004-05-01

    Groundwater flow and transport modelers have recently realized the value of incorporating geologically realistic heterogeneities into their models. This study applies the same philosophy to the vadose zone at the Eastern Landing Mat (ELM) site at Lawrence Livermore National Laboratory, California. A series of pneumatic tests were conducted at the ELM site to evaluate approaches to remove high VOC concentrations. The pneumatic data measured during the tests appear to show a heterogeneous distribution of pressure drawdown with distance. Our research examines the role of vadose zone heterogeneities in the development of the measured responses. The pressure drawdown data will be evaluated through numerical simulations of the pneumatic tests. Core and geophysical well log data, along with conceptual facies models, provide (1) a stratigraphic framework for evaluating the site, (2) parameters used to develop Markov chain models of spatial variability, and (3) conditioning data for transition probability geostatistics. Through geostatistics, multiple realizations of facies distributions were developed for the ELM site. These realizations will be used to simulate 3-dimensional vadose zone flow based on the Non-isothermal Unsaturated Flow and Transport (NUFT) code, calibrated to the pneumatic data. We expect to be able to use these methods to locate the high permeability zones that act as short-cut pathways of air flow and mass movement. Such information could then be used to design an optimal remediation strategy such as an efficient soil vapor extraction system.

  4. Effective velocity for transport in heterogeneous compressible flows with mean drift

    NASA Astrophysics Data System (ADS)

    Attinger, Sabine; Abdulle, Assyr

    2008-01-01

    Solving transport equations in heterogeneous flows might give rise to scale dependent transport behavior with effective large scale transport parameters differing from those found on smaller scales. For incompressible velocity fields, homogenization methods have proven to be powerful in describing the effective transport parameters. In this paper, we aim at studying the effective drift of transport problems in heterogeneous compressible flows. Such a study was done by Vergassola and Avellaneda in Physica D 106, 148 (1997). There, it was shown that for static compressible flow without mean drift, impacts on the large scale drift do not occur. We will first discuss the impact of a mean drift and show that static compressible flow with mean drift can produce a heterogeneity driven large scale drift (or ballistic transport). For the case of Gaussian stationary random processes, we derive explicit results for the large scale drift. Moreover, we show that the large scale or effective drift depends on the small scale diffusion coefficients and thus on the molecular weights of the particles. This study could be applied to weight-based particle separation. Numerical simulations are presented to illustrate these phenomena.

  5. Field testing the role of heterogeneity at the inter-well scale during two phase flow

    NASA Astrophysics Data System (ADS)

    Hovorka, S. D.; Gulf Coast Carbon Center; Geoseq

    2011-12-01

    Connectivity of rocks with different fluid flow properties (reservoir architecture) is a major source of uncertainty in predicting multi-phase fluid flow. Multi-institution research teams have completed three major DOE-funded test programs in which movement of supercritical CO2 through brine-saturated fluvial sandstones was observed with multiple tools. In each test, closely spaced wells (30 to 100 m) were drilled to reservoir depth so that the amount of reservoir complexity sampled between the wells would be reduced and higher resolution measurements of change could be obtained during time-lapse monitoring. During one test (Frio 1), an exceptionally homogeneous injection zone produced by marine reworking of a fine-grained fluvial sandstone of the Upper Frio Formation produced a classic-wedge-shaped CO2 plume. The maximum area occupied by CO2 was the result of radial expansion of the plume near the injection well; this produced plume down-building. Away from the injection well , the importance of gravity-override increased. A second test at the same well array in a deeper sandstone (Frio 2) was sited in heterogeneous (gravel to muddy sandstone) high permeability (>3 Darcy), weakly cemented fluvial sandstone. A slow injection rate over a small interval at the flow unit base was used to accentuate buoyancy effects. Measurements of plume migration through time using tracers and cross-well seismic documented interaction between near-well radial flow and vertical rise. However, because of discontinuous fast paths in gravel zones and CO2 ponding against muddy sandstone baffles, reservoir heterogeneity was a dominant influence in short-term plume evolution. The third test interval in the SECARB "Early" test documented response of amalgamated gravel and sandstone point bars in which heterogeneity was reduced by cementation. CO2 injection rate was increased incrementally and flow-rate dependent reservoir responses observed. These suggest that capillary-entry pressure and

  6. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path.

    PubMed

    Lowell, Jennifer L; Gordon, Nathan; Engstrom, Dale; Stanford, Jack A; Holben, William E; Gannon, James E

    2009-10-01

    The Nyack floodplain is located on the Middle Fork of the Flathead River, an unregulated, pristine, fifth-order stream in Montana, USA, bordering Glacier National Park. The hyporheic zone is a nutritionally heterogeneous floodplain component harboring a diverse array of microbial assemblages essential in fluvial biogeochemical cycling, riverine ecosystem productivity, and trophic interactions. Despite these functions, microbial community structure in pristine hyporheic systems is not well characterized. The current study was designed to assess whether physical habitat heterogeneity within the hyporheic zone of the Nyack floodplain was sufficient to drive bacterial beta diversity between three different hyporheic flow path locations. Habitat heterogeneity was assessed by measuring soluble reactive phosphorous, nitrate, dissolved organic carbon, dissolved oxygen, and soluble total nitrogen levels seasonally at surface water infiltration, advection, and exfiltration zones. Significant spatial differences were detected in dissolved oxygen and nitrate levels, and seasonal differences were detected in dissolved oxygen, nitrate, and dissolved organic carbon levels. Denaturing gradient gel electrophoresis (DGGE) and cell counts indicated that bacterial diversity increased with abundance, and DGGE fingerprints covaried with nitrate levels where water infiltrated the hyporheic zone. The ribosomal gene phylogeny revealed that hyporheic habitat heterogeneity was sufficient to drive beta diversity between bacterial assemblages. Phylogenetic (P) tests detected sequence disparity between the flow path locations. Small distinct lineages of Firmicutes, Actinomycetes, Planctomycetes, and Acidobacteria defined the infiltration zone and alpha- and beta-proteobacterial lineages delineated the exfiltration and advection zone communities. These data suggest that spatial habitat heterogeneity drives hyporheic microbial community development and that attempts to understand functional

  7. A diffuse interface approach to injection-driven flow of different miscibility in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Yao; Yan, Pei-Yu

    2015-08-01

    Miscible and immiscible injection flows in heterogeneous porous media, for which the permeability is characterized by a log Gaussian distribution, are simulated by a robust diffuse-interface formulation. The robust numerical method enables direct qualitative and quantitative comparisons regarding pattern formations in various fluid miscibility conditions. For miscible injections, the typical size of fingering structures depends strongly on the correlation length and forms tapered fingers with sharper tips. On the other hand, the typical size of immiscible fingers is affected less significantly by the permeability heterogeneity, and wide spreading tips are retained in the fingering patterns. Prominence of fingering instability is quantitatively evaluated by the channeling width and the interfacial length. The channeling width shows strong and monotonic dependences on the heterogeneous variance. On the contrary, maximum channeling width occurs at intermediate correlation length due to local resonant effect between the faster penetrating fingers and permeability heterogeneity. On the other hand, effects of the correlation length and the permeability variance on the interfacial lengths are generally consistent. Longer interfacial length is perturbed by smaller correlation length or higher variance. Interesting invariant evolutions of interfacial lengths are revealed regardless of the permeability variance in sufficiently large correlation length under all miscibility conditions. In addition, the regime of slower growth of interfacial length at later times experimentally observed in homogeneous miscible injection is verified in heterogeneous porous media as well.

  8. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

    PubMed Central

    Davey, H M; Kell, D B

    1996-01-01

    The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359

  9. Modeling the establishment of preferential flow during infiltration in a heterogeneous glaciofluvial deposit

    NASA Astrophysics Data System (ADS)

    Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy

    2015-04-01

    Large cities are mostly situated in areas close to water resources in order to meet the water needs of their populations. Alluvial soils harbor large aquifers that are used to supply water, the Rhone-Alpes region being a good illustration. However, the increase of soil sealing has led to the development of best management practices such as infiltration basins which are aimed at infiltrating stormwater in order to reduce the amount of water collected and treated in usual systems. Yet, these infiltration basins are mainly settled over highly permeable geologic formations so as to ensure water infiltration and a proper functioning of these infiltration basins. Most of these formations are strongly heterogeneous, since they are made of different materials with contrasting sedimentological properties (e.g. particle size distribution) and transfer properties. This paper addresses flow modeling during the infiltration phase in the vadose zone underneath infiltration basins settled over a strongly heterogeneous glaciofluvial deposit. In particular, we want to pinpoint numerically the worst conditions with regards to preferential flow, in terms of initial hydric conditions (initial water contents) and imposed flow rates. For this purpose, a numerical study is proposed on the basis of previous studies offering a sedimentological description of the subsoil with the detail of its architecture and a precise description of the different lithofacies and their hydraulic properties. Considering this, we worked on a section (13.5m long and 2.5m high) for which a complete sedimentological and hydraulic description had already been performed. Water infiltration was modeled for different initial and boundary conditions (mostly the values of the flux imposed at surface). At first, different numerical tests and adjustments have been made including mesh optimization with regards to both accuracy and computation time. Following these tests, the "tight" mesh has been validated since it

  10. Toward efficient asymmetric carbon-carbon bond formation: continuous flow with chiral heterogeneous catalysts.

    PubMed

    Tsubogo, Tetsu; Yamashita, Yasuhiro; Kobayashi, Shū

    2012-10-22

    A chiral Ca catalyst based on CaCl(2) with a chiral ligand was developed and applied to the asymmetric 1,4-addition of 1,3-dicarbonyl compounds to nitroalkenes as a model system. To address product inhibition issues, the Ca catalyst was applied to continuous flow with a chiral heterogeneous catalyst. The continuous flow system using a newly synthesized, polymer-supported Pybox was successfully employed, and the TON was improved 25-fold compared with those of the previous Ca(OR)(2) catalysts.

  11. Estimating effective model parameters for heterogeneous unsaturated flow using error models for bias correction

    NASA Astrophysics Data System (ADS)

    Erdal, D.; Neuweiler, I.; Huisman, J. A.

    2012-06-01

    Estimates of effective parameters for unsaturated flow models are typically based on observations taken on length scales smaller than the modeling scale. This complicates parameter estimation for heterogeneous soil structures. In this paper we attempt to account for soil structure not present in the flow model by using so-called external error models, which correct for bias in the likelihood function of a parameter estimation algorithm. The performance of external error models are investigated using data from three virtual reality experiments and one real world experiment. All experiments are multistep outflow and inflow experiments in columns packed with two sand types with different structures. First, effective parameters for equivalent homogeneous models for the different columns were estimated using soil moisture measurements taken at a few locations. This resulted in parameters that had a low predictive power for the averaged states of the soil moisture if the measurements did not adequately capture a representative elementary volume of the heterogeneous soil column. Second, parameter estimation was performed using error models that attempted to correct for bias introduced by soil structure not taken into account in the first estimation. Three different error models that required different amounts of prior knowledge about the heterogeneous structure were considered. The results showed that the introduction of an error model can help to obtain effective parameters with more predictive power with respect to the average soil water content in the system. This was especially true when the dynamic behavior of the flow process was analyzed.

  12. Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow.

    PubMed

    Austin, R E; Aldea, G S; Coggins, D L; Flynn, A E; Hoffman, J I

    1990-08-01

    We examined the ability of individual regions of the canine left ventricle to increase blood flow relative to baseline rates of perfusion. Regional coronary flow was measured by injecting radioactive microspheres over 90 seconds in seven anesthetized mongrel dogs. Preliminary experiments demonstrated a correlation between the regional distributions of blood flow during asphyxia and pharmacological vasodilatation with adenosine (mean r = 0.75; 192 regions in each of two dogs), both of which resulted in increased coronary flow. Subsequent experiments, during which coronary perfusion pressure was held constant at 80 mm Hg, examined the pattern of blood flow in 384 regions (mean weight, 106 mg) of the left ventricular free wall during resting flow and during maximal coronary flow effected by intracoronary adenosine infusion. We found that resting and maximal flow patterns were completely uncorrelated to each other in a given dog (mean r = 0.06, p = NS; n = 3 dogs). Furthermore, regional coronary reserve, defined as the ratio of maximal to resting flow, ranged from 1.75 (i.e., resting flow was 57% of maximum) to 21.9 (resting flow was 4.5% of maximum). Thus, coronary reserve is spatially heterogeneous and determined by two distinct perfusion patterns: the resting (control) pattern and the maximal perfusion pattern. Normal hearts, therefore, contain small regions that may be relatively more vulnerable to ischemia. This may explain the patchy nature of infarction with hypoxia and at reduced perfusion pressures as well as the difficulty of using global parameters to predict regional ischemia. Despite the wide dispersion of coronary reserve, we found, by autocorrelation analysis, that reserve in neighboring regions (even when separated by a distance of several tissue samples) was significantly correlated. This also applied to patterns of resting myocardial flow. Thus, both resting coronary blood flow and reserve appear to be locally continuous and may define functional

  13. Field-scale experiments of unsaturated flow and solute transport in a heterogeneous porous medium

    NASA Astrophysics Data System (ADS)

    Nichol, Craig; Smith, Leslie; Beckie, Roger

    2005-05-01

    A multiyear flow and conservative tracer test has been carried out in unsaturated mine waste rock to examine the physical mechanisms by which water moves through this coarse, heterogeneous, granular material. The experimental system has a footprint of 8 m × 8 m, is 5 m high, and is built on a contiguous grid of 16 zero-tension lysimeters. A chloride tracer was applied during a single rainfall event. Subsequently, the system has been subject to both natural and applied rainfall events in which no further tracer was added. Water flow and tracer transport is monitored using in situ measurements of moisture content, matric suction, and soil water solution samplers. Results demonstrate for transient infiltration conditions the influence and interaction of matrix flow in a heterogeneous granular matrix, preferential flow in macropores, and noncapillary pathways. Tracer migration through preferential flow paths dominates the initial and peak breakthrough concentrations. Point measurements of tracer concentration from in situ solution samplers yield a relatively poor indication of the flux-averaged transport of mass that is recorded at the base of the experiment, in addition to overestimating the stored mass and underestimating residence time.

  14. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    SciTech Connect

    Rockhold, M L

    1993-02-01

    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration.

  15. Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations

    USGS Publications Warehouse

    Paillet, Frederick L.

    1998-01-01

    A numerical model of flow in the vicinity of a borehole is used to analyze flowmeter data obtained with high-resolution flowmeters. The model is designed to (1) precisely compute flow in a borehole, (2) approximate the effects of flow in surrounding aquifers on the measured borehole flow, (3) allow for an arbitrary number (N) of entry/exit points connected to M < N far-field aquifers, and (4) be consistent with the practical limitations of flowmeter measurements such as limits of resolution, typical measurement error, and finite measurement periods. The model is used in three modes: (1) a quasi-steady pumping mode where there is no ambient flow, (2) a steady flow mode where ambient differences in far-field water levels drive flow between fracture zones in the borehole, and (3) a cross-borehole test mode where pumping in an adjacent borehole drives flow in the observation borehole. The model gives estimates of transmissivity for any number of fractures in steady or quasi-steady flow experiments that agree with straddle-packer test data. Field examples show how these cross-borehole-type curves can be used to estimate the storage coefficient of fractures and bedding planes and to determine whether fractures intersecting a borehole at different locations are hydraulically connected in the surrounding rock mass.

  16. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    SciTech Connect

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    2011-02-15

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena into multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)

  17. Modeling expected solute concentration in randomly heterogeneous flow systems with multicomponent reactions.

    PubMed

    Malmström, Maria E; Destouni, Georgia; Martinet, Philippe

    2004-05-01

    Many environmental problems require assessment of extensive reaction systems within natural subsurface flow systems exhibiting large physical and biogeochemical heterogeneity. We present an approach to couple stochastic advective-reactive modeling of physical solute transport (LaSAR) with the geochemical model PHREEQC for modeling solute concentrations in systems with variable flow velocity and multicomponent reactions. PHREEQC allows for general and flexible quantification of a multitude of linear and nonlinear geochemical processes, while LaSAR efficiently handles field-scale solute spreading in stochastic heterogeneous flow fields. The combined LaSAR-PHREEQC approach requires very modest computational efforts, thereby allowing a large number of reactive transport problems to be readily assessed and facilitating handling of quantifiable uncertainty in environmental model applications. Computational efficiency and explicit handling of field-scale dispersion without introduction of excessive fluid mixing that may impair model results are general advantages of the LaSAR compared with alternative solute transport modeling approaches. The LaSAR-PHREEQC approach is restricted to steady or unidirectional flow fields, and our specific application examples are limited to homogeneous reaction systems without local or transverse dispersion-diffusion, although these are not general methodological limitations. As a comprehensive application example, we simulate the spreading of acid mine drainage in a groundwater focusing on Zn2+ and including relevant, major-component geochemistry. Model results show that Zn2+ may be substantially attenuated by both sorption and precipitation, with flow heterogeneity greatly affecting expected solute concentrations downstream of the mine waste deposit in both cases.

  18. Generalized gas-solid adsorption modeling: Single-component equilibria

    SciTech Connect

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.

    2015-01-07

    Over the last several decades, modeling of gas–solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Tóth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can be further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg–Marquardt’s algorithm to handle the non-linear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set of

  19. Generalized gas-solid adsorption modeling: Single-component equilibria

    DOE PAGES

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas; ...

    2015-01-07

    Over the last several decades, modeling of gas–solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Tóth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can bemore » further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg–Marquardt’s algorithm to handle the non-linear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set

  20. Real time mass flux measurements of gas-solid suspensions at low velocities

    SciTech Connect

    Saunders, J H; Chao, B T; Soo, S L

    1981-01-01

    In previous work, measurement of the particulate mass flux was made based upon a novel electrostatic technique. A small conducting wire sensor was inserted in the flow and as each particle hit the sensor an individual pulse of current was identified. Through suitable electronic circuitry, the number of pulses in a given time were counted. This was a direct measure of the number of particle-probe collisions which was related to local particle mass flow. The technique is currently limited to monodisperse suspensions. A primary advantage of the impact counter system is that the output does not depend upon the magnitude of the actual charge transfer. As long as the pulses are sufficiently above the noise level, variations in charge transfer will not affect the measurement. For the current work, the technique was applied to vertical gas-solid flow where the fluid velocity was slightly above the particle terminal velocity. Under these conditions a sufficient signal to noise ratio was not found. The Cheng-Soo charge transfer theory indicated that the low particle-sensor impact velocity was responsible. The probe system was then modified by extracting a particulate sample isokinetically and accelerating the particles to a sufficient velocity by an area reduction in the sampling tube. With this technique the signal to noise ratio was about 12 to 1. Mass flux results are shown to compare favorably with filter collection and weighing.

  1. Thermocapillary Flow and Coalescences of Heterogeneous Bubble Size Diameter in a Rotating Cylinder: 3D Study

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, Ali

    2016-12-01

    Two dimensional axisymmetric and three-dimensional VOF simulations of gas/liquid transient flow were performed using a multiphase flow algorithm based on the finite-volume method. The results for motion of a multiple bubbles of a heterogeneous sizes aligned horizontally and perpendicular to a hot surface incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment have been presented for the first time. No bubbles broke in any of the cases observed. The results also show that collision and agglomeration of bubbles of unequal sizes diameter are different from those of similar size diameters presented from earlier research work of Alhendal et al. Acta Astronaut. 117, 484-496 (2015). Different flow patterns such as thermocapillary bubble migration, collision, and stream function were observed and presented for the 2-D and 3-D models.

  2. Unravelling textural heterogeneity in obsidian: Shear-induced outgassing in the Rocche Rosse flow

    NASA Astrophysics Data System (ADS)

    Shields, J. K.; Mader, H. M.; Caricchi, L.; Tuffen, H.; Mueller, S.; Pistone, M.; Baumgartner, L.

    2016-01-01

    Obsidian flow emplacement is a complex and understudied aspect of silicic volcanism. Of particular importance is the question of how highly viscous magma can lose sufficient gas in order to erupt effusively as a lava flow. Using an array of methods we study the extreme textural heterogeneity of the Rocche Rosse obsidian flow in Lipari, a 2 km long, 100 m thick, ~ 800 year old lava flow, with respect to outgassing and emplacement mechanisms. 2D and 3D vesicle analyses and density measurements are used to classify the lava into four textural types: 'glassy' obsidian (< 15% vesicles), 'pumiceous' lava (> 40% vesicles), high aspect ratio, 'shear banded' lava (20-40% vesicles) and low aspect ratio, 'frothy' obsidian with 30-60% vesicles. Textural heterogeneity is observed on all scales (m to μm) and occurs as the result of strongly localised strain. Magnetic fabric, described by oblate and prolate susceptibility ellipsoids, records high and variable degrees of shearing throughout the flow. Total water contents are derived using both thermogravimetry and infrared spectroscopy to quantify primary (magmatic) and secondary (meteoric) water. Glass water contents are between 0.08-0.25 wt.%. Water analysis also reveals an increase in water content from glassy obsidian bands towards 'frothy' bands of 0.06-0.08 wt.%, reflecting preferential vesiculation of higher water bands and an extreme sensitivity of obsidian degassing to water content. We present an outgassing model that reconciles textural, volatile and magnetic data to indicate that obsidian is generated from multiple shear-induced outgassing cycles, whereby vesicular magma outgasses and densifies through bubble collapse and fracture healing to form obsidian, which then re-vesiculates to produce 'dry' vesicular magma. Repetition of this cycle throughout magma ascent results in the low water contents of the Rocche Rosse lavas and the final stage in the degassing cycle determines final lava porosity. Heterogeneities in

  3. Statistical thermodynamics of aerosols and the gas-solid Joule-Thomson effect

    NASA Astrophysics Data System (ADS)

    Pierotti, Robert A.; Rybolt, Thomas R.

    1984-04-01

    Due to the adsorption of a gas by a solid, it is expected that an aerosol created by dispersing a fine powder in a gas would have unique thermodynamic properties not found in pure or mixed gases. The virial equation of state associated with an aerosol dusty gas is obtained from statistical thermodynamic considerations. In the theoretical model presented here, the aerosol is considered to be a two component fluid made up of solid particles and gas molecules. The aerosol virial equation of state is used to derive an expression for the Joule-Thomson effect associated with a gas-solid dispersion. The magnitude of the gas-solid Joule-Thomson effect is expressed in terms of gas and gas-solid virial coefficients. Previous adsorption data for an argon-porous carbon system is used to obtain gas-solid virial coefficients and to predict the magnitude of the gas-solid Joule-Thomson effect. A significant enhancement of the Joule-Thomson effect is predicted for gas-solid systems which display a strong interaction. For example, at a temperature of 300 K an argon-Saran 746 porous carbon aerosol system at a concentration of (0.4 g of powder/l of gas) is predicted to have a gas-solid Joule-Thomson coefficient of 3.6 K/atm which is ten times greater than the effect for pure argon.

  4. Flow heterogeneity and correlations in a sheared hard sphere glass: Insight from computer simulations

    NASA Astrophysics Data System (ADS)

    Mandal, Suvendu; Gross, Markus; Raabe, Dierk; Varnik, Fathollah

    2013-02-01

    Understanding the origin of flow heterogeneity in glassy systems is of high interest both due to its importance from theoretical standpoint as well as due to its occurrence in a large number of practical situations such as the flow of the so-called soft-glassy materials (foams, colloidal suspensions, granular media, etc). Detailed experimental investigations do indeed confirm that the flow of driven amorphous solids is not homogeneous, even if the macroscopic stress is constant across the system. We study this issue via large scale event driven molecular dynamics simulations of a hard sphere glass. We observe significant fluctuations of the velocity profile with a time scale of the order of a few hundreds percent strain. Furthermore, there appears to be a correlation between the fluctuations of the local volume fraction and the fluctuations of the local shear rate. The time scales of the fluctuations of density and shear rate are practically identical. These observations motivate an interpretation of our results via the shear concentration coupling (SCC) theory. A detailed comparison, however, reveals serious inconsistencies. In particular, the amplitude of the fluctuations of the shear rate seems to be decoupled from that of density, a feature which is rather unexpected within the SCC picture. An alternative interpretation of our observations is also discussed invoking dynamic heterogeneity.

  5. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation.

    PubMed

    Abril, Meritxell; Muñoz, Isabel; Menéndez, Margarita

    2016-05-15

    In temporary Mediterranean streams, flow fragmentation during summer droughts originates an ephemeral mosaic of terrestrial and aquatic habitat types. The heterogeneity of habitat types implies a particular ecosystem functioning in temporary streams that is still poorly understood. We assessed the initial phases of leaf litter decomposition in selected habitat types: running waters, isolated pools and moist and dry streambed sediments. We used coarse-mesh litter bags containing Populus nigra leaves to examine decomposition rates, microbial biomass, macroinvertebrate abundance and dissolved organic carbon (DOC) release rates in each habitat type over an 11-day period in late summer. We detected faster decomposition rates in aquatic (running waters and isolated pools) than in terrestrial habitats (moist and dry streambed sediments). Under aquatic conditions, decomposition was characterized by intense leaching and early microbial colonization, which swiftly started to decompose litter. Microbial colonization in isolated pools was primarily dominated by bacteria, whereas in running waters fungal biomass predominated. Under terrestrial conditions, leaves were most often affected by abiotic processes that resulted in small mass losses. We found a substantial decrease in DOC release rates in both aquatic habitats within the first days of the study, whereas DOC release rates remained relatively stable in the moist and dry sediments. This suggests that leaves play different roles as a DOC source during and after flow fragmentation. Overall, our results revealed that leaf decomposition is heterogeneous during flow fragmentation, which has implications related to DOC utilization that should be considered in future regional carbon budgets.

  6. Seasonal invasion dynamics in a spatially heterogeneous river with fluctuating flows.

    PubMed

    Jin, Yu; Hilker, Frank M; Steffler, Peter M; Lewis, Mark A

    2014-07-01

    A key problem in environmental flow assessment is the explicit linking of the flow regime with ecological dynamics. We present a hybrid modeling approach to couple hydrodynamic and biological processes, focusing on the combined impact of spatial heterogeneity and temporal variability on population dynamics. Studying periodically alternating pool-riffle rivers that are subjected to seasonally varying flows, we obtain an invasion ratchet mechanism. We analyze the ratchet process for a caricature model and a hybrid physical-biological model. The water depth and current are derived from a hydrodynamic equation for variable stream bed water flows and these quantities feed into a reaction-diffusion-advection model that governs population dynamics of a river species. We establish the existence of spreading speeds and the invasion ratchet phenomenon, using a mixture of mathematical approximations and numerical computations. Finally, we illustrate the invasion ratchet phenomenon in a spatially two-dimensional hydraulic simulation model of a meandering river structure. Our hybrid modeling approach strengthens the ecological component of stream hydraulics and allows us to gain a mechanistic understanding as to how flow patterns affect population survival.

  7. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    SciTech Connect

    Choudhuri, Ahsan

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  8. Using Subdivision Surfaces and Adaptive Surface Simplification Algorithms for Modeling Chemical Heterogeneities in Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Schmalzl, J.

    2003-04-01

    Convective flows govern much of the dynamics of the Earth. Examples of such flows are convection in the Earth's mantle, convection in magma chambers and much of the dynamics of the world oceans. Nowadays these time-dependent flows are often studied by means of three dimensional (3D) numerical models which solve the equations for the transport of heat and momentum alternatingly. These flows are often driven by a temperature difference. But for many flows there is also an active or passive chemical component that has to be considered. One characteristics of these flows is that the chemical diffusivity is very small. Implementing such a chemical field with a very low diffusivity into a numerical model using a field approach is difficult due to numerical diffusion introduced by the Eulerian schemes. Using Lagrangian tracers is also difficult in 3D flow since a massive amount of tracers is needed. We therefore have implemented a tracer-mesh method which tracks only the position of the interface between the two different components. Compared to a 2D tracer-line the insertion of new 3D surface-elements in highly deformed regions is however more complex. This is due to the topology of the mesh which changes because of the adaptive refinement. Luckily the refinement of polygonal meshes is a very active field of research in computer graphics and has been termed "Subdivision Surfaces". There is a wealth of different subdivision schemes with different properties. We applied the Butterfly scheme and the Loop scheme for the refinement of tracer meshes. When a density difference is connected to a chemical component it often acts as a restoring force. In many cases, the governing flow is spatially heterogenous and the spatial location of the heterogeneities is varying in time (e.g. the location of an upwelling plume). The restoring force of the density contrast may result in a situation where a highly deformed, and therefore highly refined region, returns to a simple geometry. In

  9. Using Subdivision Surfaces and Adaptive Surface Simplification Algorithms for Modeling Chemical Heterogeneities in Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Schmalzl, J.; Loddoch, A.

    2003-12-01

    Convective flows govern much of the dynamics of the Earth. Examples of such flows are convection in the Earth's mantle, convection in magma chambers and much of the dynamics of the world oceans. Nowadays these time-dependent flows are often studied by means of three dimensional (3D) numerical models which solve the equations for the transport of heat and momentum alternatingly. These flows are often driven by a temperature difference. But for many flows there is also an active or passive chemical component that has to be considered. One characteristics of these flows is that the chemical diffusivity is very small. Implementing such a chemical field with a very low diffusivity into a numerical model using a field approach is difficult due to numerical diffusion introduced by the Eulerian schemes. Using Lagrangian tracers is also difficult in 3D flow since a massive amount of tracers is needed. We therefore have implemented a tracer-mesh method which tracks only the position of the interface between the two different components. Compared to a 2D tracer-line the insertion of new 3D surface-elements in highly deformed regions is however more complex. This is due to the topology of the mesh which changes because of the adaptive refinement. Luckily the refinement of polygonal meshes is a very active field of research in computer graphics and has been termed "Subdivision Surfaces". There is a wealth of different subdivision schemes with different properties. We applied the Butterfly scheme and the Loop scheme for the refinement of tracer meshes. When a density difference is connected to a chemical component it often acts as a restoring force. In many cases, the governing flow is spatially heterogenous and the spatial location of the heterogeneities is varying in time (e.g. the location of an upwelling plume). The restoring force of the density contrast may result in a situation where a highly deformed, and therefore highly refined region, returns to a simple geometry. In

  10. Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

    SciTech Connect

    Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu

    2014-11-01

    This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.

  11. Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.

    PubMed

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric

    2013-01-01

    In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.

  12. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity.

    PubMed

    Aubert, Julien; Amit, Hagay; Hulot, Gauthier; Olson, Peter

    2008-08-07

    Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.

  13. EFFECTS OF DOBUTAMINE ON INTESTINAL MICROVASCULAR BLOOD FLOW HETEROGENEITY AND OXYGEN EXTRACTION DURING SEPTIC SHOCK.

    PubMed

    Ospina-Tascón, Gustavo Adolfo; García Marín, Alberto Federico; Echeverri, Gabriel J; Bermúdez, William Fernando; Madriñán Navia, Humberto José; Valencia, Juan David; Quiñones, Edgardo; Rodríguez, Fernando; Marulanda, Angela; Arango Davila, César Augusto; Bruhn, Alejandro; Hernández, Glenn; De Backer, Daniel

    2017-03-23

    Derangements of microvascular blood flow distribution might contribute to disturbing oxygen extraction by peripheral tissues. We evaluated the dynamic relationships between the mesenteric oxygen extraction ratio (mes-ERO2) and the heterogeneity of microvascular blood flow at the gut and sublingual mucosa, during the development and resuscitation of septic shock in a swine model of fecal peritonitis. Jejunal-villi and sublingual microcirculation were evaluated using a portable intravital-microscopy technique. Simultaneously, we obtained arterial, mixed-venous and mesenteric blood gases, and jejunal-tonometric measurements. During resuscitation, pigs were randomly allocated to fixed-dose of dobutamine (5 µgr/kg/min) or placebo, while three sham models with identical monitoring served as controls. At the time-of-shock, we observed a significant decreased proportion of perfused intestinal-villi (villi-PPV) and sublingual percentage of perfused small-vessels (SL-PPV), paralleling an increase in mes-ERO2 in both dobutamine and placebo groups. After starting resuscitation, villi-PPV and SL-PPV significantly increased in the dobutamine group with subsequent improvement of functional capillary density, while mes-ERO2 exhibited a corresponding significant decrease (repeated-measures ANOVA, p=0.02 and p=0.04 for time*group-interactions and inter-group differences for villi-PPV and mes-ERO2, respectively). Variations in villi-PPV were paralleled by variations in mes-ERO2 (R(2)=0.88, p<0.001) and these, in turn, by mesenteric lactate changes (R(2)=0.86, p<0.001). There were no significant differences in cardiac output and systemic oxygen delivery throughout the experiment. In conclusion, dynamic changes in microvascular blood flow heterogeneity at jejunal mucosa are closely related to the mesenteric oxygen extraction ratio, suggesting a crucial role for microvascular blood flow distribution on oxygen uptake during development and resuscitation from septic shock.

  14. Compositional heterogeneity of the Sugarloaf melilite nephelinite flow, Honolulu Volcanics, Hawai'i

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Frey, Frederick A.; Garcia, Michael O.; Huang, Shichun; McWilliams, Michael; Beeson, Melvin H.

    2016-07-01

    The Sugarloaf flow is a melilite nephelinite erupted from the Tantalus rift during rejuvenated-stage volcanism on O'ahu, the Honolulu Volcanics. The flow ponded in Mānoa Valley forming a ∼15 m thick flow which was cored and sampled in a quarry. Nepheline from a pegmatoid segregation in the flow yielded a 40Ar-39Ar age of 76 ka. This age, combined with others, indicates that the Tantalus rift eruptions are some of the youngest on O'ahu. Honolulu Volcanics erupt on average about every 35-40 ka indicating that future eruptions are possible. We evaluated the compositional variability of 19 samples from the flow, including 14 from the core. Twelve samples are representative of the bulk flow, four are dark- or light-colored variants, one is a heavy rare earth element (REE)-enriched pegmatoid, and two visually resemble the bulk flow, but have chemical characteristics of the dark and light variants. Our objective was to determine intraflow heterogeneity in mineralogy and composition. Variable abundances of Na2O, K2O, Sr, Ba, Rb, Pb and U in the flow were caused by post-eruptive mobility in a vapor phase, most likely during or soon after flow emplacement, and heterogeneous deposition of secondary calcite and zeolites. Relative to fine-grained samples, a pegmatoid vein that crosscuts the flow is enriched in incompatible trace elements except Sr and TiO2. Element mobility after eruption introduced scatter in trace element ratios including light-REE/heavy-REE, and all ratios involving mobile elements K, Rb, Ba, Sr, Pb, and U. Lavas from some of the 37 Honolulu Volcanics vents have crosscutting REE patterns in a primitive mantle-normalized plot. Such patterns have been interpreted to reflect variable amounts of residual garnet during partial melting. Previous studies of lavas from different vents concluded that garnet, phlogopite, amphibole, and Fe-Ti oxides were residual phases of the partial melting processes that created the Honolulu Volcanics (Clague and Frey, 1982; Yang

  15. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities.

    PubMed

    Medici, G; West, L J; Mountney, N P

    2016-09-24

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤180m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth≤180m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize ~50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  16. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    NASA Astrophysics Data System (ADS)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  17. Computational and experimental studies of the flow, mixing, and size segregation phenomena of heterogeneous granular materials

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato R.; Castaldi, Marco J.; Themelis, Nickolas J.

    2008-11-01

    Flow, mixing, and size segregation of heterogeneous granular particles are intriguing phenomena. In order to characterize the behavior of heterogeneous particle, a two-dimensional stochastic model of particle flow and mixing within the packed bed on a traveling grate was developed. The model was calibrated and validated by means of a physical model of the reverse acting grate, using tracer particles ranging from 6 -- 22 cm in diameter. It was found that the motion of the traveling grate, whose speed ranged from 15 to 90 reciprocations/hr, increases the mean residence time of small and medium particles by 69% and 8%, respectively, while decreasing the mean residence time of large particles by 19%. This is because of size segregation known as the Brazil Nut Effect. When the ratio of particle diameter to the height of moving bar, d/h, increases from 0.46 to 1.69, the mixing diffusion coefficient, De at 60/hr., decreases from 96 to 38.4. This indicates that the height of the moving bars should be greater than the diameter of targeted particles.

  18. Flow cytometric methods to investigate culture heterogeneities for plant metabolic engineering.

    PubMed

    Gaurav, Vishal; Kolewe, Martin E; Roberts, Susan C

    2010-01-01

    Plant cell cultures provide an important method for production and supply of a variety of natural products, where conditions can be easily controlled, manipulated, and optimized. Development and optimization of plant cell culture processes require both bioprocess engineering and metabolic engineering approaches. Cultures are generally highly heterogeneous, with significant variability amongst cells in terms of growth, metabolism, and productivity of key metabolites. Taxus cultures produce the important anti-cancer agent Taxol((R)) (i.e., paclitaxel) and have demonstrated significant variability amongst cell populations in culture with regard to paclitaxel accumulation, cell cycle participation, and protein synthesis. To fully understand the link between cellular metabolism and culture behavior and to enable targeted metabolic engineering approaches, cultures need to be studied at a single cell level. This chapter describes the application of plant cell flow cytometric techniques to investigate culture heterogeneity at the single cell level, in order to optimize culture performance through targeted metabolic engineering. Flow cytometric analytical methods are described to study Taxus single cells, protoplasts, and nuclei suspensions with respect to secondary metabolite accumulation, DNA content, cell size, and complexity. Reproducible methods to isolate these single particle suspensions from aggregated Taxus cultures are discussed. Methods to stain both fixed and live cells for a variety of biological markers are provided to enable characterization of cell phenotypes. Fluorescence-activated cell sorting (FACS) methods are also presented to facilitate isolation of certain plant cell culture populations for both analysis and propagation of superior cell lines for use in bioprocesses.

  19. Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions.

    PubMed

    Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M

    2016-01-01

    This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.

  20. Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields 2. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Govindaraju, Rao S.; Kavvas, M. Levent

    1994-02-01

    Two models for horizontally averaged unsaturated flow have been developed from two different approaches in the first (Chen et al., this issue) of these companion papers. In this paper the results from both the spatially horizontally averaged Richards equation (SHARE) model and the averaged Green-Ampt model are compared with the results from a three-dimensional finite difference model of unsaturated flow which is perceived as the reference solution. The results of the averaged Green-Ampt model show very good agreement with the averaged results from the three-dimensional model, while SHARE model results are applicable only when fluctuations in soil parameters are small with respect to their mean values. It is also shown that methods of simple parameter averaging (arithmetic or geometric averages) with the local Richards equation does not yield meaningful results in heterogeneous soils. This study suggests that spatially horizontally averaged simplified models (such as the averaged Green-Ampt model) are attractive alternatives to perturbation models (such as the SHARE model) in heterogeneous fields. Due to their simplicity in formulation, accuracy in predicting average behaviors, and minimal requirement of computer effort, the spatially horizontally averaged simplified models can be easily implemented in large-scale models, such as atmospheric mesoscale models.

  1. Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions

    PubMed Central

    Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.

    2016-01-01

    This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883

  2. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    USGS Publications Warehouse

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.

    2011-01-01

    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  3. High-resolution monte carlo simulation of flow and conservative transport in heterogeneous porous media 1. Methodology and flow results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the first of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, Various aspects of the modelling effort are examined. In particular, the need to save on core memory causes one to use only specific realizations that have certain initial characteristics; in effect, these transport simulations are conditioned by these characteristics. Also, the need to independently estimate length Scales for the generated fields is discussed. The statistical uniformity of the flow field is investigated by plotting the variance of the seepage velocity for vector components in the x, y, and z directions. Finally, specific features of the velocity field itself are illuminated in this first paper. In particular, these data give one the opportunity to investigate the effective hydraulic conductivity in a flow field which is approximately statistically uniform; comparisons are made with first- and second-order perturbation analyses. The mean cloud velocity is examined to ascertain whether it is identical to the mean seepage velocity of the model. Finally, the variance in the cloud centroid velocity is examined for the effect of source size and differing strengths of local transverse dispersion.

  4. Upscaling for unsaturated flow for non-Gaussian heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Neuweiler, Insa; Vogel, Hans-JöRg

    2007-03-01

    Large-scale models of transient flow processes in the unsaturated zone require, in general, upscaling of the flow problem in order to capture the impact of heterogeneities on a small scale, which cannot be resolved by the model. Effective parameters for the upscaled models are often derived from second-order stochastic properties of the parameter fields. Such properties are good quantifications for parameter fields, which are multi-Gaussian. However, the structure of soil does rarely resemble these kinds of fields. The non-multi-Gaussian field properties can lead to strong discrepancies between predictions of upscaled models and the averaged real flow process. In particular, the connected paths of parameter ranges of the medium are important features, which are usually not taken into account in stochastic approaches. They are determined here by the Euler number of one-cut indicator fields. Methods to predict effective parameters are needed that incorporate this type of information. We discuss different simple and fast approaches for estimating the effective parameter for upscaled models of slow transient flow processes in the unsaturated zone, where connected paths of the material may be taken into account. Upscaled models are derived with the assumption of capillary equilibrium. The effective parameters are calculated using effective media approaches. We also discuss the limits of the applicability of these methods.

  5. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  6. Pneumatic nebulization gas-solid extraction of triazine herbicides in vegetable.

    PubMed

    Li, Na; Jin, Haiyan; Nian, Li; Wang, Yeqiang; Lei, Lei; Zhang, Rui; Zhang, Hanqi; Yu, Yong

    2013-08-23

    The pneumatic nebulization gas-solid extraction (PN-GSE) high-performance liquid chromatography (HPLC) was developed and applied to the extraction, separation and determination of triazine herbicides in vegetables. The herbicides were ultrasonically extracted from vegetables with 70% methanol in water. Then the extract was introduced to PN-GSE system to further clean-up. The experimental parameters, including type and concentration of extraction solvent, ratio of solvent to sample, pH value of sample solution and PN-GSE solution, extraction time, temperature, type of sorbent, flow rate of carrier gas, pumping rate of gas, and kind and volume of elution solvent, were investigated and optimized. The limits of detection for seven herbicides range from 0.59 to 1.05μg/kg. The recoveries of the herbicides are in the range of 86.2-110.6% and relative standard deviations are equal or less than 7.51%, when the present method was applied to the analysis of spiked samples. The present method was applied to the analysis of real samples and the results were satisfactory.

  7. Lattice Boltzmann simulation of gas-solid adsorption processes at pore scale level

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Chen, L.; Tao, W. Q.

    2015-11-01

    A two-dimensional lattice Boltzmann (LB) approach was established to implement kinetic concentration boundary conditions in interfacial mass-transfer processes and to simulate the adsorption process in porous media at pore scale and mesoscopic levels. A general treatment was applied to conduct three types of concentration boundary conditions effectively and accurately. Applicability for adsorption was verified by two benchmark examples, which were representative of the interparticle mass transport and intraparticle mass transport in the adsorption system, respectively. The gas-solid adsorption process in reconstructed porous media at the pore scale level was numerically investigated. Mass-transfer processes of the adsorption reaction were simulated by executing Langmuir adsorption kinetics on surfaces of adsorbent particles. Meanwhile, the homogeneous solid diffusion model (HSDM) was used for mass transport in interior particles. The transient adsorbed amount was obtained in detail, and the impact of flow condition, porosity, and adsorbent particle size on the entire dynamic adsorption performance was investigated. The time needed to approach steady state decreased with increased fluid velocity. Transient adsorption capability and time consumption to equilibrium were nearly independent of porosity, whereas increasing pore size led to a moderating adsorption rate and more time was consumed to approach the saturation adsorption. Benefiting from the advantages of the LB method, both bulk and intraparticle mass transfer performances during adsorption can be obtained using the present pore scale approach. Thus, interparticle mass transfer and intraparticle mass transfer are the two primary segments, and intraparticle diffusion has the dominant role.

  8. Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method

    NASA Astrophysics Data System (ADS)

    Qiao, W.

    2015-12-01

    The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the

  9. An Inverse Model of Three-Dimensional Flow and Transport in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Robinson, B. A.; Vrugt, J. A.; Yoon, H.; Zhang, C.; Werth, C. J.; Kitanidis, P. K.; Lichtner, P. C.; Lu, C.

    2007-12-01

    A three-dimensional flow and transport model was developed to simulate the results of a laboratory-scale experiment in which snapshots of concentration were obtained using magnetic resonance imaging (MRI) during the displacement of tracer through a 14 by 8 by 8 cm flow cell. The medium was deliberately constructed to be heterogeneous with a known spatial correlation structure using sand of five different grain-size distributions. The extremely well characterized flow cell and large, high-precision data set of concentrations during displacement make this a unique experiment for examining the validity of flow and transport models, and for exploring new methods for interpreting large data sets using advanced optimization algorithms. A transport model was constructed by solving the steady state flow equations using the Finite Element Heat and Mass (FEHM) code, using FEHM's particle tracking transport model for simulating tracer migration. The particle tracking model was selected so that precise estimates of the transport parameters could be obtained that are not corrupted by numerical dispersion; a large number of particles (typically one million) were required to provide accuracy. The inverse model included nine uncertain parameters, the five permeability values of the individual sand units, and four dispersion/diffusion parameters. The inverse problem was solved with AMALGAM and DREAM, two recently developed self-adaptive multimethod optimization algorithms. The computations were enabled by performing both the transport model and the optimization loop on a high-performance computing cluster. Computational results indicate that parameter estimates and increased understanding of the behavior of the system can be obtained, and significant improvements in the fit to the data over hand calibration can be achieved, using this inverse modeling approach. The study also illustrates that numerical methods that make effective use of high- performance computing resources and

  10. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury

    PubMed Central

    Østergaard, Leif; Engedal, Thorbjørn S; Aamand, Rasmus; Mikkelsen, Ronni; Iversen, Nina K; Anzabi, Maryam; Næss-Schmidt, Erhard T; Drasbek, Kim R; Bay, Vibeke; Blicher, Jakob U; Tietze, Anna; Mikkelsen, Irene K; Hansen, Brian; Jespersen, Sune N; Juul, Niels; Sørensen, Jens CH; Rasmussen, Mads

    2014-01-01

    Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions. PMID:25052556

  11. Numerical homogenization of the Richards equation for unsaturated water flow through heterogeneous soils

    NASA Astrophysics Data System (ADS)

    Li, Na; Yue, Xingye; Ren, Li

    2016-11-01

    Homogenized equations and the corresponding effective constitutive relations are generally necessary for numerically modeling large-scale unsaturated flow processes in soils. Recently, based on the Kirchhoff transformation and the two-scale convergence theory, a homogenization method for the Richards equation with the Mualem-van Genuchten model has been proposed, with a constant model parameter α relating to the inverse of the air-entry pressure and the soil pore size distribution. The homogenized model is computationally efficient and convenient to use because of its explicit expression. In this study, we generalize this method, allowing α to be a spatially distributed random field and proposing a homogenized Richards equation in the mixed form (θ/h) under the condition that the effective hydraulic conductivity tensor is diagonal. This generalization eliminates the limitation of a constant α in practical applications; the proposed homogenized model is meaningful in most situations because the flow problems are influenced mainly by the diagonal terms of conductivity and the off-diagonal terms are often neglected. Two-dimensional numerical tests are conducted in soil profiles with different degrees of spatial heterogeneity structure to illustrate that the homogenized model can capture the fine-scale flow behaviors on coarse grids effectively. Homogenization for the Richards equation with other two commonly used constitutive relations—the Brooks-Corey model and the Gardner-Russo model—is also illustrated in this study.

  12. Cost-effective hydraulic tomography surveys for predicting flow and transport in heterogeneous aquifers.

    PubMed

    Ni, Chuen-Fa; Yeh, Tian-Chyi Jim; Chent, Jui-Sheng

    2009-05-15

    This study shows how a cost-effective hydraulic tomography survey (HTS) and the associated data estimator can be used to characterize flow and transport in heterogeneous aquifers. The HTS is an improved field hydraulic test that accounts for responses of hydraulic stresses caused by pumping or injection events at different locations of an aquifer. A sequential data assimilation method based on a cokriging algorithm is then used to map the aquifer hydraulic conductivity (K). This study uses a synthetic two-dimensional aquifer to assess the accuracy of predicted concentration breakthrough curves (BTCs) on the basis of the Kfields estimated by geometric mean, kriging, and HTS. Such Kfields represent different degrees of flow resolutions as compared with the synthetically generated one. Without intensive experimentsto calibrate accurate dispersivities at sites, the flow field based on the HTS Kfield can yield accurate predictions of BTC peaks and phases. On the basis of calculating mean absolute and square errors for estimated K fields, numerical assessments on the HTS operation strategy show that more pumping events will generally lead to more accurate estimations of Kfields, and the pump locations need to be installed in high Kzones to maximize the delivery of head information from pumps to measurement points. Additionally, the appropriate distances of installed wells are suggested to be less than one-third of the ln(K) correlation length in x direction.

  13. The investigation of heterogeneous flow generated by the direct current plasma torch

    NASA Astrophysics Data System (ADS)

    Evmenchikov, N. L.; Penyazkov, O. G.; Shatan, I. N.

    2016-11-01

    In the article, the two-phase flow of electric arc gas heater of the linear scheme is studied. The power of the plasma torch can be varied from 200 to 1500 kW. For stabilization of the electric arc a magnetic coil is used. The operation of the plasma torch took place at overpressure in the discharge chamber. Injection of the powder was made near the exit of the nozzle. A powder of SiO2 was used as a disperse phase. The size of the particles was not more than 50 microns. The dispensing device was used for the powder injection. The technique of velocity measurement in high-temperature heterogeneous flow from the registration of flow by the high-speed camera is presented. The results of measurements indicate that the speed of the particles much lower than the speed of the gas. The results of measuring the heat flux along the axis of the plasma torch are presented. The heat flux was measured by means of regular mode uncooled sensors with tablet type calorimeters.

  14. Anode materials for sour natural gas solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Danilovic, Nemanja

    Novel anode catalysts have been developed for sour natural gas solid oxide fuel cell (SOFC) applications. Sour natural gas comprises light hydrocarbons, and typically also contains H2S. An alternative fuel SOFC that operates directly on sour natural gas would reduce the overall cost of plant construction and operation for fuel cell power generation. The anode for such a fuel cell must have good catalytic and electrocatalytic activity for hydrocarbon conversion, sulfur-tolerance, resistance to coking, and good electronic and ionic conductivity. The catalytic activity and stability of ABO3 (A= La, Ce and/or Sr, B=Cr and one or more of Ti, V, Cr, Fe, Mn, or Co) perovskites as SOFC anode materials depends on both A and B, and are modified by substituents. The materials have been prepared by both solid state and wet-chemical methods. The physical and chemical characteristics of the materials have been fully characterized using electron microscopy, XRD, calorimetry, dilatometry, particle size and area, using XPS and TGA-DSC-MS. Electrochemical performance was determined using potentiodynamic and potentiostatic cell testing, electrochemical impedance analysis, and conductivity measurements. Neither Ce0.9Sr0.1VO3 nor Ce0.9 Sr0.1Cr0.5V0.5O3 was an active anode for oxidation of H2 and CH4 fuels. However, active catalysts comprising Ce0:9Sr0:1V(O,S)3 and Ce0.9Sr 0.1Cr0.5V0.5(O,S)3 were formed when small concentrations of H2S were present in the fuels. The oxysulfides formed in-situ were very active for conversion of H2S. The maximum performance improved from 50 mW cm-2 to 85 mW cm -2 in 0.5% H2S/CH4 at 850°C with partial substitution of V by Cr in Ce0.9Sr0.1V(O,S)3. Selective conversion of H2S offers potential for sweetening of sour gas without affecting the hydrocarbons. Perovskites La0.75Sr0.25Cr0.5X 0.5O3--delta, (henceforth referred to as LSCX, X=Ti, Mn, Fe, Co) are active for conversion of H2, CH4 and 0.5% H2S/CH4. The order of activity in the different fuels depends on

  15. Heterogeneous Traffic Flow Model for a Two-Lane Roundabout and Controlled Intersection

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Liu, Y.; Deo, P.; Ruskin, H. J.

    Modern urban traffic management depends heavily on the efficiency of road features, such as controlled intersections and multi-lane roundabouts. Vehicle throughput at any such configuration is modified by traffic mix, by rules governing manoeuvrability and by driver observance, as well as by traffic density. Here, we study heterogeneous traffic flow on two-lane roads through a cellular automata model for a binary mix of long and short vehicles. Throughput is investigated for a range of arrival rates and for fixed turning rate at an intersection: manoeuvres, while described in terms of left-lane driving, are completely generalisable. For a given heterogeneous distribution of vehicle type, there is a significant impact on queue length, delay times experienced and throughput at a fixed-cycle traffic light controlled two-way intersection and two-lane roundabout, when compared to the homogeneous case. As the proportion of long vehicles increases, average throughput for both configurations declines for increasing arrival rate, with average queue length and waiting time correspondingly increased. The effect is less-marked for the two-lane roundabout, due to absence of cross-traffic delays. Nevertheless, average waiting times and queue lengths remain uniformly high for arrival rates >0.25 vehicle per second (900 vph) on entry roads and for long vehicle proportion above 0.30-0.35.

  16. Investigation of flow and solute transport at the field scale through heterogeneous deformable porous media

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2016-09-01

    This work describes an investigation of the spatial statistical structure of specific discharge field and solute transport process of a nonreactive solute at the field scale through a heterogeneous deformable porous medium. The flow field is driven by a vertical gradient in the excess pore water pressure induced by a step increase in load applied on the upper part of a finite-thickness aquifer. The non-stationary spectral representation is adopted to characterize the spatial covariance of the specific discharge field necessary for the development of the solute particle trajectory statistics using the Lagrangian formalism. We show that the statistics of the specific discharge and particle trajectory derived herein are non-stationary and functions of the coefficient of soil compressibility, μ. The effect of μ on the relative variation of specific discharge and the solute particle trajectory statistics are analyzed upon evaluating our expressions.

  17. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    NASA Astrophysics Data System (ADS)

    Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai

    2015-10-01

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model.

  18. A heterogeneous traffic flow model consisting of two types of vehicles with different sensitivities

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Xu, Xun; Xu, Shangzhi; Qian, Yeqing

    2017-01-01

    A heterogeneous car following model is constructed for traffic flow consisting of low- and high-sensitivity vehicles. The stability criterion of new model is obtained by using the linear stability theory. We derive the neutral stability diagram for the proposed model with five distinct regions. We conclude the effect of the percentage of low-sensitivity vehicle on the traffic stability in each region. In addition, we further consider a special case that the number of the low-sensitivity vehicles is equal to that of the high-sensitivity ones. We explore the dependence of traffic stability on the average value and the standard deviation of two sensitivities characterizing two vehicle types. The direct numerical simulation results verify the conclusion of theoretical analysis.

  19. Characterizing flow behavior for gas injection: Relative permeability of CO2-brine and N2-water in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Krevor, S.

    2015-12-01

    We provide a comprehensive experimental study of steady state, drainage relative permeability curves with CO2-brine and N2-deionized water, on a single Bentheimer sandstone core with a simple two-layer heterogeneity. We demonstrate that, if measured in the viscous limit, relative permeability is invariant with changing reservoir conditions, and is consistent with the continuum-scale multiphase flow theory for water wet systems. Furthermore, we show that under capillary limited conditions, the CO2-brine system is very sensitive to heterogeneity in capillary pressure, and by performing core floods under capillary limited conditions, we produce effective relative permeability curves that are flow rate and fluid parameter dependent. We suggest that the major uncertainty in past observations of CO2-brine relative permeability curves is due to the interaction of CO2 flow with pore space heterogeneity under capillary limited conditions and is not due to the effects of changing reservoir conditions. We show that the appropriate conditions for measuring intrinsic or effective relative permeability curves can be selected simply by scaling the driving force for flow by a quantification of capillary heterogeneity. Measuring one or two effective curves on a core with capillary heterogeneity that is representative of the reservoir will be sufficient for reservoir simulation.

  20. Setup for in situ investigation of gases and gas/solid interfaces by soft x-ray emission and absorption spectroscopy

    SciTech Connect

    Benkert, A. E-mail: l.weinhardt@kit.edu; Blum, M.; Meyer, F.; Wilks, R. G.; Yang, W.; Bär, M.; and others

    2014-01-15

    We present a novel gas cell designed to study the electronic structure of gases and gas/solid interfaces using soft x-ray emission and absorption spectroscopies. In this cell, the sample gas is separated from the vacuum of the analysis chamber by a thin window membrane, allowing in situ measurements under atmospheric pressure. The temperature of the gas can be regulated from room temperature up to approximately 600 °C. To avoid beam damage, a constant mass flow can be maintained to continuously refresh the gaseous sample. Furthermore, the gas cell provides space for solid-state samples, allowing to study the gas/solid interface for surface catalytic reactions at elevated temperatures. To demonstrate the capabilities of the cell, we have investigated a TiO{sub 2} sample behind a mixture of N{sub 2} and He gas at atmospheric pressure.

  1. The recovering of the contaminant release history in heterogeneous and partially known flow field

    NASA Astrophysics Data System (ADS)

    Zanini, A.; Cupola, F.; Tanda, M. G.

    2015-12-01

    The recovering of the release history of a pollutant in an aquifer is a subject that obtains the researchers attention since 1990 because the knowledge of the pollutant discharge history can be a useful tool to share, among the responsible parties, the costs of the remediation actions. The methods developed are based on the perfect knowledge of the flow field where the pollutant event has occurred. But very often this perfect knowledge is only an unattainable hope: few boreholes and pumping tests are usually available and realizing new ones can lead to unacceptable costs. An evaluation of the reliability of the results obtained with the procedures for the recovering of the release history in heterogeneous and partially known flow field can be a very useful subject under the point of view of researchers and the practitioners. In fact the different methods can be more or less sensitive to the problem or give information that includes or not an uncertainty evaluation; moreover it can be possible to quantify the adequate amount of the site characterization actions. In this work we deal with a geostatistically based approach that in the past we have successfully applied on a perfect-known transmissivity field. The objective of the actual study is to investigate the importance of the knowledge of the hydraulic conductivity field and to identifying the minimum information required for recovering an acceptable release history. At this aim we built a numerical model of a 2-D confined aquifer with rectangular shape characterized by a heterogeneous hydraulic conductivity field. We estimate the conductivity field through a kriging interpolation starting from values sampled on a regular grids of different density and on that partially known field we estimate the pollutant release history. The results show that the reliability of the recovered release history, of course, increases with the density of the grid but meaningful indications can be obtained also with not very detailed

  2. A comparison of seven inverse methods for modeling groundwater flow in mildly to strongly heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H.-J.; Alcolea, A.; Riva, M.; Bakr, M.; van de Wiel, N.; Stauffer, F.; Guadagnini, A.,

    2009-04-01

    While several inverse modeling methods for groundwater flow have been developed during the last decades, hardly any comparisons among them have been published. We present a comparison of the performance of seven inverse methods, the Regularized Pilot Points Method (both in its classical estimation (RPPM-CE) and Monte Carlo (MC) simulation (RPPM-CS) variants), the Monte-Carlo variant of the Representer Method (RM), the Sequential-Self Calibration method (SSC), the Zonation Method (ZM), the Moment Equations Method (MEM) and a recently developed Semi-Analytical Method (SAM). The aforementioned methods are applied to a two-dimensional synthetic set-up, depicting the steady-state groundwater flow around an extraction well in the presence of distributed recharge. Their relative performances were assessed in terms of characterization of (a) the log-transmissivity field, (b) the hydraulic head distribution and (c) the well catchment delineation with respect to the reference scenario. Simulations were performed for a mildly and strongly heterogeneous transmissivity field. Adopted comparison measures include the absolute mean error, the root mean square error and the average ensemble standard deviation (whenever a method allows evaluating it) of the log-transmissivity and hydraulic head distributions. In addition, the estimated median and reference well catchments were compared and the uncertainty associated with the estimated catchment was evaluated. We found that the MC-based methods (RPPM-CS, RM and SSC) yield very similar results in all tested scenarios, despite they use different parameterization schemes and different objective functions. The linear correlation coefficient between the estimates obtained by the different MC methods increases with the number of stochastic realizations adopted and attains values up to 0.99 for 500 stochastic realisations. For the mildly heterogeneous case, the other inverse methods (i.e., non MC) yielded results which were consistent with

  3. Influence of tile-drainage on groundwater flow and nitrate transport in heterogeneous geological materials

    NASA Astrophysics Data System (ADS)

    De Schepper, G.; Therrien, R.; Refsgaard, J.

    2012-12-01

    Subsurface drainage is a common agricultural practice in poorly drained production fields to guarantee the productivity of crops and to reduce flooding risks. The impact of shallow tile-drainage networks on groundwater flow patterns and associated nitrate transport from the surface needs to be quantified for adequate agricultural management. A challenge is to represent tile-drain networks in numerical models, at the field scale, while accounting for the influence of subsurface heterogeneities on flow and transport. A numerical model of a tile-drainage system has been developed with the fully integrated HydroGeoSphere model for the Lillebaek agricultural catchment, Denmark. The Lillebaek catchment is an experimental study area where hydraulic heads, stream and drain discharges, as well as groundwater and surface water nitrate concentrations are regularly measured. This catchment includes various tile-drainage networks that are monitored on a daily basis; the one we have been focusing on is about 5 ha within a 34 ha model domain. The Lillebaek catchment subsurface is made of about 30 m thick Quaternary deposits which consist of a local sandy aquifer with upper and lower clayey till units, confining the aquifer in the upper part. The main modelling objective is to assess the influence of tile drains on the water flow pattern within the confining clayey till unit with and on the nitrate reduction zone depth, also known as the redox-interface, while accounting for local geological heterogeneities. Using the national-scale geological model for Denmark combined with available local data, a hydrogeological model at field scale has been generated. A proper representation of the tile-drains geometry is essential to calibrate and validate the water flow model associated with nitrate transport. HydroGeoSphere can represent drains directly into a model as one-dimensional features, which however requires a very fine mesh discretization that limits the size of the simulation

  4. STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004

    SciTech Connect

    Pollard, David; Aydin, Atilla

    2005-02-22

    Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical

  5. An Improved Discrete-Time Model for Heterogeneous High-Speed Train Traffic Flow

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Bin; Li, Ming-Hua; Li, Xin-Gang

    2016-03-01

    This paper aims to present a simulation model for heterogeneous high-speed train traffic flow based on an improved discrete-time model (IDTM). In the proposed simulation model, four train control strategies, including departing strategy, traveling strategy, braking strategy, overtaking strategy, are well defined to optimize train movements. Based on the proposed simulation model, some characteristics of train traffic flow are investigated. Numerical results indicate that the departure time intervals, the station dwell time, the section length, and the ratio of fast trains have different influence on traffic capacity and train average velocity. The results can provide some theoretical support for the strategy making of railway departments. Supported by the National Basic Research Program of China under Grant No. 2012CB725400, the National Natural Science Foundation of China under Grant No. 71222101, the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2014ZT16, and the Fundamental Research Funds for the Central Universities No. 2015YJS088, Beijing Jiaotong University

  6. Experimental investigation on front morphology for two-phase flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Heiß, V. I.; Neuweiler, I.; Ochs, S.; FäRber, A.

    2011-10-01

    In this work, we studied the influence of heterogeneities, fluid properties, and infiltration rates on front morphology during two-phase flow. In our experiments, a sand box, 40 cm × 60 cm × 1.2 cm, was packed with two different structures (either random or periodic) composed of 25% coarse material and 75% fine material. The infiltration process was characterized by the capillary number, Ca, and the viscosity ratio, M, between the fluids. The displacing and the displaced fluid had the same densities, such that gravity effects could be neglected. Similar to the pore scale, the stability of the front depends on the relation between M and Ca. However, on the scale under study, depending on the structure, zones of immobilized wetting fluid developed during drainage. The lifetime of these zones depended on the flow regime. Here we show that immobilized zones have an influence on the length of the transition zone, which could lead to a different time behavior than for that of the front width.

  7. Multidimensional directional flux weighted upwind scheme for multiphase flow modeling in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2012-12-01

    Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions

  8. LUGH an experimental facility for preferential flow-colloidal transport in heterogeneous unsaturated soil

    NASA Astrophysics Data System (ADS)

    Angulo-Jaramillo, R.; Bien, L.; Hehn, V.; Winiarski, T.

    2011-12-01

    Colloidal particles transport through vadose zone can contribute to fast transport of contaminants into groundwater. The objective is to study the preferential flow and transport of colloids in heterogeneous unsaturated soil subjected to high organic matter entry. A physically based model is developed based on a large laboratory lysimeter than usual laboratory column experiments. LUGH-Lysimeter for Unsaturated Groundwater Hydrodynamics- is used to embed a soil monolith (1.6 m3) made of different cross-bedded lithological types with contrasting hydraulic properties. The filling material is a carbonated graded sand and gravel from the fluvioglacial vadose zone of the east of Lyon (France). Materials are 3D arranged on contrasting textured lithofacies analogous to the sedimentary lithology of a fluvioglacial cross-bedded deposit. Tracer (Br 1E-2M) and colloid solutions were injected in a pulse mode using a rainfall simulator. Colloid solution is Chlamydomonas reinhardtii at 3.2E+6 units/mL concentration. These unicellular algae can be considered as spherical particles from 6 to 10 μm in diam. Their resistance and doubling time of cell growth are greater than the transfer time in the lysimeter. Algae moving into the porous medium do not immediately reproduce, and then the population size remains constant. During this period, called the lag phase (1 to 2 days), the cells are metabolically active and increase only in cell size. Tensiometers, TDR and electric resistivity enable measurements of the parameters related to flow, solute and colloid transfer. Eluted solutions are sampled by 15 separated fraction collectors, leading to independent breakthrough curves. Eluted colloid concentration is measured by spectrofluorometry. The model approach combines Richards equation, coupled to a convective-dispersive equation with a source/sink term for particle transport and mobilization. Macroscopic particle attachment/detachment from pores is assumed to follow first-order kinetics

  9. Using borehole flow logging to optimize hydraulic-test procedures in heterogeneous fractured aquifers

    USGS Publications Warehouse

    Paillet, F.L.

    1995-01-01

    Hydraulic properties of heterogeneous fractured aquifers are difficult to characterize, and such characterization usually requires equipment-intensive and time-consuming applications of hydraulic testing in situ. Conventional coring and geophysical logging techniques provide useful and reliable information on the distribution of bedding planes, fractures and solution openings along boreholes, but it is often unclear how these locally permeable features are organized into larger-scale zones of hydraulic conductivity. New boreholes flow-logging equipment provides techniques designed to identify hydraulically active fractures intersecting boreholes, and to indicate how these fractures might be connected to larger-scale flow paths in the surrounding aquifer. Potential complications in interpreting flowmeter logs include: 1) Ambient hydraulic conditions that mask the detection of hydraulically active fractures; 2) Inability to maintain quasi-steady drawdowns during aquifer tests, which causes temporal variations in flow intensity to be confused with inflows during pumping; and 3) Effects of uncontrolled background variations in hydraulic head, which also complicate the interpretation of inflows during aquifer tests. Application of these techniques is illustrated by the analysis of cross-borehole flowmeter data from an array of four bedrock boreholes in granitic schist at the Mirror Lake, New Hampshire, research site. Only two days of field operations were required to unambiguously identify the few fractures or fracture zones that contribute most inflow to boreholes in the CO borehole array during pumping. Such information was critical in the interpretation of water-quality data. This information also permitted the setting of the available string of two packers in each borehole so as to return the aquifer as close to pre-drilling conditions as possible with the available equipment.

  10. Heterogeneous Heat Flow and Groundwater Effects on East Antarctic Ice Sheet Dynamics

    NASA Astrophysics Data System (ADS)

    Gooch, B. T.; Soderlund, K. M.; Young, D. A.; Blankenship, D. D.

    2015-12-01

    We present the results numerical models describing the potential contributions groundwater and heterogeneous heat sources might have on ice dynamics. A two-phase, 1D hydrothermal model demonstrates the importance of groundwater flow in heat flux advection near the ice-bed interface. Typical, conservative vertical groundwater volume fluxes on the order of +/- 1-10 mm/yr can alter vertical heat flux by +/- 50-500 mW/m2 that could produce considerable volumes of meltwater depending on basin geometry and geothermal heat production. A 1D hydromechanical model demonstrates that during ice advance groundwater is mainly recharged into saturated sedimentary aquifers and during retreat groundwater discharges into the ice-bed interface, potentially contributing to subglacial water budgets on the order of 0.1-1 mm/yr during ice retreat. A map of most-likely elevated heat production provinces, estimated sedimentary basin depths, and radar-derived bed roughness are compared together to delineate areas of greatest potential to ice sheet instability in East Antarctica. Finally, a 2D numerical model of crustal fluid and heat flow typical to recently estimated sedimentary basins under the East Antarctic Ice Sheet is coupled to a 2.5D Full Stokes ice sheet model (with simple basal hydrology) to test for the sensitivity of hydrodynamic processes on ice sheet dynamics. Preliminary results show that the enhanced fluid flow can dramatically alter the basal heating of the ice and its temperature profile, as well as, the sliding rate, which heavily alter ice dynamics.

  11. Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison with theoretical results

    NASA Astrophysics Data System (ADS)

    Janković, I.; Fiori, A.; Dagan, G.

    2003-09-01

    In parts 1 [, 2003] and 2 [, 2003] a multi-indicator model of heterogeneous formations is devised in order to solve flow and transport in highly heterogeneous formations. The isotropic medium is made up from circular (2-D) or spherical (3-D) inclusions of different conductivities K, submerged in a matrix of effective conductivity. This structure is different from the multi-Gaussian one, even for equal log conductivity distribution and integral scale. A snapshot of a two-dimensional plume in a highly heterogeneous medium of lognormal conductivity distribution shows that the model leads to a complex transport picture. The present study was limited, however, to investigating the statistical moments of ergodic plumes. Two approximate semianalytical solutions, based on a self-consistent model (SC) and on a first-order perturbation in the log conductivity variance (FO), are used in parts 1 and 2 in order to compute the statistical moments of flow and transport variables for a lognormal conductivity pdf. In this paper an efficient and accurate numerical procedure, based on the analytic-element method [, 1989], is used in order to validate the approximate results. The solution satisfies exactly the continuity equation and at high-accuracy the continuity of heads at inclusion boundaries. The dimensionless dependent variables depend on two parameters: the volume fraction n of inclusions in the medium and the log conductivity variance σY2. For inclusions of uniform radius, the largest n was 0.9 (2-D) and 0.7 (3-D), whereas the largest σY2 was equal to 10. The SC approximation underestimates the longitudinal Eulerian velocity variance for increasing n and increasing σY2 in 2-D and, to a lesser extent, in 3-D, as compared to numerical results. The FO approximation overestimates these variances, and these effects are larger in the transverse direction. The longitudinal velocity pdf is highly skewed and negative velocities are present at high σY2, especially in 2-D. The main

  12. Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS)

    NASA Astrophysics Data System (ADS)

    Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi

    2016-09-01

    This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.

  13. Micro-PIV measurements of multiphase flow of water and supercritical CO2 in 2D heterogeneous porous micromodels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2015-12-01

    Multiphase flow of water and supercritical carbon dioxide (CO2) in porous media is central to geological sequestration of CO2 into saline aquifers. However, our fundamental understanding of the coupled flow dynamics of CO2 and water in complex geologic media still remains limited, especially at the pore scale. Recently, studies have been carried out in 2D homogeneous models with the micro-PIV technique, yielding very interesting observations of pore-scale flow transport. The primary aim of this work is to leverage this experimental protocol to quantify the pore-scale flow of water and liquid/supercritical CO2 in 2D heterogeneous porous micromodels under reservoir-relevant conditions. The goal is to capture the dynamics of this multi-phase flow in a porous matrix that mimics the heterogeneity of natural rock. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously measure the spatially-resolved instantaneous velocity field in the water and quantify the instantaneous spatial configuration of both phases. The results for heterogeneous micromodels will be presented and compared with those for homogeneous micromodels, yielding valuable insight into flow processes at the pore scale in natural rock.

  14. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  15. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  16. Analysis of the Impact of Soil Heterogeneity on the Spatial Variation of Unsaturated Flow

    NASA Astrophysics Data System (ADS)

    Patterson, Matthew; Gimenez, Daniel; Kerry, Ruth; Goovaerts, Pierre

    2016-04-01

    Modelling infiltration into soils with deterministic models requires knowledge of the hydraulic properties of that soil. Informing a model with these properties is complex because of the spatial heterogeneity of hydraulic properties that naturally occurs in all soils . The objective of this work was to analyze the effects that contrasting synthetic heterogeneities have on spatial outflows using a three-dimensional numerical model. An undisturbed soil column of 32 cm diameter and 50 cm height was used in an outflow experiment in the laboratory, where outflow was collected from the bottom of the column in 145 spatially-varied outflow cells and the column was subjected to multiple inflow rates. After the completion of the experiment, 30 sub-cores of 8 cm diameter and 5 cm height were extracted from the column and used to measure hydraulic properties and texture through a combination of pressure plate extractor, automated evaporation method, and a dewpoint potentiometer. The spatial heterogeneity of the soil in the column was represented by a Local Indicator of Spatial Autocorrelation (LISA - Local Moran's I) clustering algorithm, which used both texture and Electrical Resistivity Tomography data to identify significant clusters of points with high (HH) and low (LL) values and values that were not part of a significant cluster (NS). Each cluster was also assigned a numerical index based on LISA. Effective hydraulic properties were assigned to the HH and LL clusters and NS points based on the location of the 30 sub-cores and their average hydraulic properties. Resistivity data were used with omni-directional variograms with ranges of 5 and 15 cm and a nugget of 0.25 to conditionally simulate 50 realizations of 3-D data based on each variogram. The LISA algorithm was then used to detect significant clusters in these data and classify them as HH, LL or NS. Importing the resulting 100 sets of synthetic clusters and their corresponding effective hydraulic properties into

  17. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  18. Dry Scrubbing of Aluminum Cell Gases: Design and Operating Characteristics of a Novel Gas/Solids Reactor

    NASA Astrophysics Data System (ADS)

    Lamb, W. D.; Reeve, Martin R.; Dethloff, F. H.; Leinum, Magne

    1982-11-01

    Engineering details of a pilot plant reactor are described. It comprises a vertical cylindrical vessel with a tangential bottom gas entry. Countercurrent spiraling gas-solids flow is achieved. Reacted solids can be withdrawn from the bottom or the top using a rising axial gas jet. The reactor was evaluated by testing in a dry scrubber system treating 14,000 m3/h of gas from prebake cells. At inlet concentrations of 30-60 mg/m3 it achieved 99.5% scrubbing efficiency with aluminas of a surface area of 45-80 m2/g at feed rates considerably less than cell requirements. Potential benefits are: 1) control of metal purity by segregation of scrubber catch to selected cells, 2) scrubbing high HF inlet concentrations at full feed rate, and 3) meeting more stringent working environment and stack emission requirements.

  19. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    2010-08-10

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  20. Flow and Transport in Highly Heterogeneous Porous Formations: Numerical Experiments Performed Using the Analytic Element Method

    NASA Astrophysics Data System (ADS)

    Jankovic, I.

    2002-05-01

    can be used to infer the effective conductivity of the medium. As many as 100,000 inhomogeneities are placed inside the domain for 2D simulations. Simulations in 3D were limited to 50,000 inclusions. A large number of simulations was conducted on a massively parallel supercomputer cluster at the Center for Computational Research, University at Buffalo. Simulations range from mildly heterogeneous formations to highly heterogeneous formations (variance of the logarithm of conductivity equal to 10) and from sparsely populated systems to systems where inhomogeneities cover 95% of the volume. Particles are released and tracked inside the core of constant mean velocity. Following the particle tracking, various medium, flow, and transport statistics are computed. These include: spatial moments of particle positions, probability density function of hydraulic conductivity and each component of velocity, their two-point covariance function in the direction of flow and normal to it, covariance of Lagrangean velocities, and probability density function of travel times to various break-through locations. Following the analytic nature of the flow solution, all the results are presented in dimensionless forms. For example, the dispersion coefficients are made dimensionless with respect to the mean velocity and size of inhomogeneities. Detailed results will be presented and compared to well known first-order results and the results that are based on simple approximate transport solutions of Aldo Fiori.

  1. Low-frequency sound transmission through a gas-solid interface.

    PubMed

    Godin, Oleg A

    2011-02-01

    Sound transmission through gas-solid interfaces is usually very weak because of the large contrast in wave impedances at the interface. Here, it is shown that diffraction effects can lead to a dramatic increase in the transparency of gas-solid interfaces at low frequencies, resulting in the bulk of energy emitted by compact sources within a solid being radiated into a gas. The anomalous transparency is made possible by power fluxes in evanescent body waves and by excitation of interface waves. Sound transmission into gas is found to be highly sensitive to absorption of elastic waves within a solid.

  2. Heterokaryotic nuclear conditions and a heterogeneous nuclear population are observed by flow cytometry in Phytophthora infestans.

    PubMed

    Catal, Mursel; King, Louis; Tumbalam, Pavani; Wiriyajitsomboon, Prissana; Kirk, William W; Adams, Gerard C

    2010-08-01

    A simple and reliable method for preparation of whole nuclei of a common oomycete, Phytophthora infestans, is described for laser flow cytometry. The ease of preparation, the absence of detectable debris and aggregates, and the precision in determinations of DNA content per nucleus improve interpretation and understanding of the genetics of the organism. Phytophthora infestans is the pathogen that causes potato and tomato late blight. The genetic flexibility of P. infestans and other oomycete pathogens has complicated understanding of the mechanisms of variation contributing to shifts in race structure and virulence profiles on important agricultural crops. Significant phenotypic and genotypic changes are being reported in the apparent absence of sexual recombination in the field. Laser flow cytometry with propidium iodide is useful in investigating the nuclear condition of the somatic colony of field strains of P. infestans. The majority of the studied strains contain a single population of nuclei in nonreplicated diplophase. However, mean DNA content per nucleus varies considerably among isolates confirming the heterogeneity of the nuclear population in regard to C-value, for field isolates. Nuclear DNA content varies from 1.75x to 0.75x that of nuclei in a standard strain from central Mexico. Some strains contain two to three populations of nuclei with differing DNA contents in the mycelium and are heterokaryons. Such a range in DNA content suggests DNA-aneuploidy, but direct confirmation of aneuploidy will require microscopy of chromosomes. Heterokaryosis and populations of nuclei of differing DNA content necessarily confound standardized assays used worldwide in crop breeding programs for determination of race profiles and virulence phenotypes of this important pathogen.

  3. A theory for modeling ground-water flow in heterogeneous media

    USGS Publications Warehouse

    Cooley, Richard L.

    2004-01-01

    Construction of a ground-water model for a field area is not a straightforward process. Data are virtually never complete or detailed enough to allow substitution into the model equations and direct computation of the results of interest. Formal model calibration through optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal with this problem and provide for quantitative evaluation and uncertainty analysis of the model. However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the solution of the model equations with respect to some of the model (or hydrogeologic) input variables (termed in this report system characteristics) and 2) detailed and generally unknown spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is developed in this report to address these problems. The theory allows construction and analysis of a ground-water model of flow (and, by extension, transport) in heterogeneous media using a small number of lumped or smoothed system characteristics (termed parameters). The theory fully addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed to be effective values. The ground-water flow system is assumed to be adequately characterized by a set of spatially and temporally distributed discrete values, ?, of the system characteristics. This set contains both small-scale variability that cannot be described in a model and large-scale variability that can. The spatial and temporal variability in ? are accounted for by imagining ? to be generated by a stochastic process wherein ? is normally distributed, although normality is not essential. Because ? has too large a dimension to be estimated using the data normally available, for modeling purposes ? is replaced by a smoothed or lumped approximation y?. (where y is a

  4. Electrical Resistivity, Seismic Refraction Tomography and Drilling Logs to Identify the Heterogeneity and the Preferential Flow in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Lachhab, A.

    2015-12-01

    The study site is located at the Center for Environmental Education and Research (CEER) at Susquehanna University. Electrical Resistivity and Seismic Refraction Tomography (ERT and SRT), as well as several pumping tests were performed to identify zones of heterogeneities and hydrogeophysical characteristics of a shallow unconfined aquifer. The combination of these methods was selected to study the local geology and the subsurface preferential pathways of groundwater flow. 22 Dipole-Dipole ERT transects with 56 electrodes each and 11 SRT transects with 24 geophones each were performed. Drilling logs of 5 observation wells located within the site were also used. All drilling logs showed clearly the heterogeneity of the aquifer when compared to each other. The combination of ERT and SRT indicated that a potential zone of preferential flow is present within the aquifer and can be accurately identified based on the approach adopted in this study. The drilling logs served to specifically identify the soil and the geological formations making the heterogeneity of the aquifer. 3D ERT and SRT block diagrams were generated to connect all formations shown in the 2D tomography profiles to visualize the pathways of preferential flow and non-conductive formations. While ERT has proven to show saturated areas of the subsurface, SRT was more effective in identifying the bedrock-soil discontinuity and other near surface formations contributing to the local heterogeneity.

  5. Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography.

    PubMed

    Al-Khulaifi, Yousef; Lin, Qingyang; Blunt, Martin J; Bijeljic, Branko

    2017-04-04

    We study dissolution in a chemically heterogeneous medium consisting of two minerals with contrasting initial structure and transport properties. We perform a reactive transport experiment using CO2-saturated brine at reservoir conditions in a millimeter-scale composite core composed of Silurian dolomite and Ketton limestone (calcite) arranged in series. We repeatedly image the composite core using X-ray microtomography (XMT) and collect effluent to assess the individual mineral dissolution. The mineral dissolution from image analysis was comparable to that measured from effluent analysis using inductively coupled plasma mass spectrometry (ICP-MS). We find that the ratio of the effective reaction rate of calcite to that of dolomite decreases with time, indicating the influence of dynamic transport effects originating from changes in pore structure coupled with differences in intrinsic reaction rates. Moreover, evolving flow and transport heterogeneity in the initially heterogeneous dolomite is a key determinant in producing a two-stage dissolution in the calcite. The first stage is characterized by a uniform dissolution of the pore space, while the second stage follows a single-channel growth regime. This implies that spatial memory effects in the medium with a heterogeneous flow characteristic (dolomite) can change the dissolution patterns in the medium with a homogeneous flow characteristic (calcite).

  6. An adaptive control volume finite element method for simulation of multi-scale flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Mostaghimi, P.; Percival, J. R.; Pavlidis, D.; Gorman, G.; Jackson, M.; Neethling, S.; Pain, C. C.

    2013-12-01

    Numerical simulation of multiphase flow in porous media is of importance in a wide range of applications in science and engineering. We present a novel control volume finite element method (CVFEM) to solve for multi-scale flow in heterogeneous geological formations. It employs a node centred control volume approach to discretize the saturation equation, while a control volume finite element method is applied for the pressure equation. We embed the discrete continuity equation into the pressure equation and assure that the continuity is exactly enforced. Anisotropic mesh adaptivity is used to accurately model the fine grained features of multiphase flow. The adaptive algorithm uses a metric tensor field based on solution error estimates to locally control the size and shape of elements in the metric. Moreover, it uses metric advection between adaptive meshes in order to predict the future required density of mesh thereby reducing numerical dispersion at the saturation front. The scheme is capable of capturing multi-scale heterogeneity such as those in fractured porous media through the use of several constraints on the element size in different regions of porous media. We show the application of our method for simulation of flow in some challenging benchmark problems. For flow in fractured reservoirs, the scheme adapts the mesh as the flow penetrates through the fracture and the matrix. The constraints for the element size within the fracture are smaller by several orders of magnitude than the generated mesh within the matrix. We show that the scheme captures the key multi-scale features of flow while preserving the geometry. We demonstrate that mesh adaptation can be used to accurately simulate flow in heterogeneous porous media at low computational cost.

  7. Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.

    ERIC Educational Resources Information Center

    Paspek, Stephen C.; And Others

    1980-01-01

    Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)

  8. The impact of reservoir conditions and rock heterogeneity on multiphase flow in CO2-brine-sandstone systems

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.

    2015-12-01

    Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood

  9. High resolution characterization of aquifers to improve flow and transport models of highly heterogeneous media

    NASA Astrophysics Data System (ADS)

    Dogan Diker, Mine

    Aquifers are the primary sources of clean drinking water. Pollution in aquifers is one of the most challenging and important environmental problems. It is not only extremely complex to map but also difficult to remediate. Flow and transport of water and pollutants in porous media requires detailed characterization of the properties of the media. The main property which controls the flow and transport is hydraulic conductivity (K), which can be defined as the ability of the media to let the water flow through. Intensive studies to map the distribution of hydraulic conductivity are necessary to model the plume migration. Conventional in-situ aquifer characterization techniques are invasive and lack the necessary high resolution. Therefore, novel methods are required to improve the methods to monitor and simulate the flow and transport through aquifers. This study introduces a combination of novel techniques to provide the necessary information related to porous media. The proposed method was tested at a highly heterogeneous site called the Macro Dispersion Experiment (MADE) site in Mississippi. The MADE site is a very well studied site where several large scale tracer tests were conducted in the 1980s and 1990s. The tracers used for these tests were monitored using more than 300 multi-level sampler (MLS) wells. Concentration measurements showed that the majority of the mass stayed near the injection area, whereas minute concentrations were measured further down-gradient. This behavior is significantly different from the simulations created using models based on the Advection-Dispersion Equation (ADE). This behavior and the inability to explain this using most models has led to a major debate in the hydrologic science community. The hypothesis of this study is that the ADE based models can reproduce simulations of the measured transport when the models are parameterized with sufficient high-resolution hydraulic conductivity data. Two novel high resolution

  10. Development of a novel heterogeneous flow reactor -- Soot formation and nanoparticle catalysis

    NASA Astrophysics Data System (ADS)

    Camacho, Joaquin

    numerical analysis of the gas-phase chemistry for butanol and butane indicates the fuel structure effect is largely exhibited in the relative importance of C2 versus C3 intermediate species formed during the initial stage of fuel breakdown. Oxidation kinetics of soot are typically measured with carbon black or well aged soot as substrates. The soot surface is also assumed to be graphitic in theoretical soot oxidation rate calculations. However, recent experimental and theoretical studies show that nascent soot can have structures and surface composition drastically different from mature, graphitized soot. In the current study, oxidation of nascent soot by O2 was observed at T= 950 and 1000K for oxygen concentrations ranging from 1000 to 7800 ppm in a laminar aerosol flow reactor at ambient pressure. Oxidation behavior of primary particles (Dp < 20 nm) of nascent soot from a premixed BSS ethylene flame was observed by tracking the shift in the particle size distribution function (PSDF) under a given residence time. The measured rate of the surface reaction ranges from 1x106 -- 3x10 6 g/cm2s for nascent soot. The rate of oxidation observed at the given conditions is an order of magnitude faster than predicted by the classical Nagle Strickland-Constable (NSC) correlations derived from graphite oxidation. Heterogeneous surface reaction rates are highly sensitive to the surface composition. Thus the faster rate of surface reaction by the nascent soot observed currently suggests that the surface composition of nascent soot is more reactive than the conventional graphite surface. Catalytic activity in reacting flow laden with suspended nanoparticle catalyst is measured in a novel aerosol flow reactor. Similar to conventional gas phase kinetics, heterogeneous reactions are the product of collisions between the particle surface and surrounding gas. However, particles below 10 nm in diameter are in a transition region where collisions do not always result in perfectly elastic

  11. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    PubMed

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process.

  12. Porous flow of liquid water in Enceladus rock core driven by heterogeneous tidal heating

    NASA Astrophysics Data System (ADS)

    Choblet, Gael; Tobie, Gabriel; Behounkova, Marie; Cadek, Ondrej

    2016-10-01

    Surface heat flux estimates in excess of 15 GW (e.g. Howett et al., 2016) raise the question of the origin of Enceladus' heat production. While strong heating by tidal dissipation is probably the only viable source, whether the maximum production occurs in the outer ice shell or, deeper, in the ocean or in the rock core, is however unclear. While the analysis of measurements by the Cassini mission (gravity and topography data, observed libration), seems to favor an extremely thin shell at Enceladus South Pole (a few kms only, cf. Thomas et al., 2016, Cadek et al., 2016), the distribution of heat sources remains a major issue in the light of the evolutionary trend that led to this present-day physical state of the moon.Here, we build up on a recent evaluation of tidal deformation in a porous rock core saturated with liquid water indicating that, owing to its unconsolidated state, plausible core rheologies could lead to significant heat production there (typically 20 GW, Tobie et al., in prep.). We describe porous flow in a 3D spherical model following the work of Travis and Schubert (2015). Compaction of the rock matrix is neglected. Water characteristics (density and viscosity), and the bulk thermal conductivity of the porous core are temperature-dependent and the effect of non-water compounds can be considered. Tidal heating is introduced as a heterogeneous heat source with a pattern inferred from numerical models of the tidal response. Our analysis focuses particularly on the heat flux pattern at the ocean/core interface where water is advected in/out of the porous medium.

  13. Engineering models for the gas-solid motion and interaction in the return loop of circulating fluidized beds. Topical report, January 1992--June 1992

    SciTech Connect

    Celik, I.; Zhang, G.Q.

    1992-08-01

    It is reported on development, testing and verification of engineering models for predicting the pressure drop, the solids flow rate, and the downcoming gas flow rate through an L-valve for a given aeration flow rate. The models are, in particular, applicable for studying the one-dimensional gas-solids motion through the return loop of a circulating fluidized bed. A literature review is presented in a comparative manner. One-dimensional transient equations governing the dense two-phase flows are derived. Those equations are then used to deduce relevant characteristic dimensionless parameters. Experimental data from literature have been analyzed and empirical correlations are suggested. A calculation procedure is proposed for predicting relevant gas and solid flow parameters. The model is based on integrated conservation equations for mass and momentum for both phases. Some experiments of our own have been performed and the data have been analyzed. The model is calibrated against experimental data.

  14. Composite polymer/oxide hollow fiber contactors: versatile and scalable flow reactors for heterogeneous catalytic reactions in organic synthesis.

    PubMed

    Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W

    2015-05-26

    Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors.

  15. Emerging Methods in Sub Core-Scale Imaging and Characterization of the Influence of Heterogeneity on Flow in Rocks (Invited)

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Hingerl, F.; Pini, R.

    2013-12-01

    New imaging techniques and approaches are providing unparalleled insight into the influence of sub-core scale heterogeneities on single and multiphase flows. Quantification of sub core-scale porosity, permeability, and even capillary pressure curves at a spatial scale of about 1-10 cubic millimeters is now possible. This scale provides a critical link in the continuum of spatial scales needed to link pore-scale processes to core-scale and field scale flow and transport. Data from such studies can be used to directly test the veracity of models for flow and transport in heterogeneous rocks, provide data for multi-stage upscaling, and reveal insights about physical/chemical processes heretofore neglected. Here we present data from three emerging techniques capable of imaging and quantifying transport properties and phenomena at the sub-core scale: magnetic resonance imaging (MRI); positron emission tomography (PET); and X-Ray CT scanning. Direct imaging of spatially resolved fluid velocities and porosity is possible with MRI (Romanenko et al., 2012). These data can be inverted to provide permeability and porosity maps at a spatial scale of ~10 cubic millimeter. PET imaging can be used to track movement of a radioactive tracer through a rock and simultaneously measure effluent tracer concentrations at a similar resolution (Boutchko et al., 2012). X-ray CT scanning of multiphase flow experiments can be used to measure capillary pressure curves and through scaling relationships, to calculate permeability at a scale of about 1 cubic millimeters(Krause et al., 2011; Pini et al., 2013). Strengths and shortcomings of these techniques are discussed--along with the benefits of combining them. Together these techniques provide a new platform from which to probe more deeply the ubiquitous influence of heterogeneity on subsurface flow and transport processes, and ultimately improve predictions of subsurface transport. Boutchk et al., 2012. Imaging and modeling of flow in porous

  16. Coupling Between Flow and Precipitation In Heterogeneous Subsurface Environments and Effects on Contaminant Fate and Transport (Project no. 99272)

    SciTech Connect

    Redden, G.D.; Fujita, Y.; Scheibe, T.D.; Tartakovsky, A.M.; Smith, R.W.; Reddy, M.M.; Kelly, S.D.

    2006-04-05

    This project is aimed at understanding how contaminant transport in heterogeneous porous media is impacted by precipitation and dissolution events through chemical interactions with precipitates and as a consequence of coupling between precipitation and flow. We hypothesize that precipitation/coprecipitation, encapsulation, isolation from flow and alteration of reactive surfaces will contribute to altering contaminant mobility during precipitation events, and that predicting the release of contaminants during precipitate dissolution requires an understanding of how precipitates are distributed and how contaminants are released from the different compartments over time. Using calcium carbonate as a model system, physical experiments and modeling at the pore-scale and continuum-scale will be used to improve the conceptual approach to predicting the impact of flow-precipitation coupling on solute migration. Column and 2-dimensional intermediate-scale experiments with constructed physical and chemical heterogeneities will be used to investigate the movement of fluids and reactive solutes during different types of mixing events that lead to calcium carbonate supersaturation and precipitation. Smoothed particle hydrodynamic modeling will be used to simulate pore-scale mixing and precipitation in heterogeneous porous media and estimate continuum-scale parameters. Continuum-scale modeling will be used to test conceptual models and associated effective parameters that simulate the macroscopic behavior of the experimental domains.

  17. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions.

    PubMed

    Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K

    2014-01-15

    The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [(15)O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min(-1); old men: 25.1 ± 15.4 ml min(-1); age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min(-1) (100 g)(-1)) than the younger (8.6 ± 3.6 ml min(-1) (100 g)(-1)) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia.

  18. Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.

  19. Multi-rate mass transfer modeling of two-phase flow in highly heterogeneous fractured and porous media

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco

    2016-05-01

    We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.

  20. A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions

    NASA Astrophysics Data System (ADS)

    Irsa, J.; Zhang, Y.

    2012-09-01

    We propose a novel direct method for estimating steady state hydrogeological model parameters and model state variables in an aquifer where boundary conditions are unknown. The method is adapted from a recently developed potential theory technique for solving general inverse/reconstruction problems. Unlike many inverse techniques used for groundwater model calibration, the new method is not based on fitting and optimizing an objective function, which usually requires forward simulation and iterative parameter updates. Instead, it directly incorporates noisy observed data (hydraulic heads and flow rates) at the measurement points in a single step, without solving a boundary value problem. The new method is computationally efficient and is robust to the presence of observation errors. It has been tested on two-dimensional groundwater flow problems with regular and irregular geometries, different heterogeneity patterns, variances of heterogeneity, and error magnitudes. In all cases, parameters (hydraulic conductivities) converge to the correct or expected values and are thus unique, based on which heads and flow fields are constructed directly via a set of analytical expressions. Accurate boundary conditions are then inferred from these fields. The accuracy of the direct method also improves with increasing amount of observed data, lower measurement errors, and grid refinement. Under natural flow (i.e., no pumping), the direct method yields an equivalent conductivity of the aquifer, suggesting that the method can be used as an inexpensive characterization tool with which both aquifer parameters and aquifer boundary conditions can be inferred.

  1. An innovative gas-solid torbed reactor for the recycling industries

    NASA Astrophysics Data System (ADS)

    Dodson, C. E.; Lakshmanan, V. I.

    1998-07-01

    Gas-solid Torbed reactors have been developed for processing a wide range of materials. The reactors have facilitated several novel recycling projects in countries where they are used. One of the major advantages of these reactors when applied to the recycling industries is the compactness of the plant and its inherent ability to be scaled down and fully automated to better match the volume requirements of this sector.

  2. The Onset of Nonlinear Flow in Three-Dimensional Heterogeneous Flow Domains Based on Energy Dissipation Measures

    NASA Astrophysics Data System (ADS)

    Meakin, P.; Basagaoglu, H.; Succi, S.; Welhan, J.

    2005-12-01

    The onset of nonlinear flow in three-dimensional random disordered porous flow domains was analyzed using participation numbers based on local kinetic energies, and energy dissipation rates computed via non-equilibrium kinetic tensors. A three-dimensional lattice Boltzmann model was used to simulate gravity-driven single-phase flow over a range of Reynolds numbers that included the crossover from linear to nonlinear flow. The simulations results indicated that the kinetic energy participation number characterized the onset of nonlinear flow in terms of transition to a more dispersed (uniform) distribution of kinetic energy densities as the flow rate increased. However, the energy dissipation participation number characterized the onset of nonlinear flow in terms of a transition to a more locally concentrated distribution of energy dissipation densities at higher flows. The flow regime transition characterized by the energy dissipation participation number occurred over a nearly equal or a narrower range of Reynolds numbers compared to the transition characterized by the kinetic energy participation number. The results also revealed that the boundary conditions (periodic vs. no-slip) parallel to the main flow direction have an insignificant effect on the magnitude of the critical Reynolds number, that characterizes the onset of nonlinear effects, although they did influence the spatial correlations of the pore-scale kinetic energy and the energy dissipation densities in all Cartesian directions. Flow domains with periodic boundaries resulted in less-localized (more dispersed) steady-state flows than domains with no-slip boundaries. These results should be useful for designing future experiment like those of Zeria et al. 2005 (Transport in Porous Media, 60:159-181) that would have significant potential implications in diverse fields.

  3. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    PubMed

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αDB ). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αDB in the brain layer with a step decrement of 10% while maintaining αDB values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  4. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    SciTech Connect

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  5. Gravity-Driven Flow of non-Newtonian Fluids in Heterogeneous Porous Media: a Theoretical and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2015-12-01

    A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel

  6. Groundwater flow and heterogeneous discharge into a seepage lake: Combined use of physical methods and hydrochemical tracers

    NASA Astrophysics Data System (ADS)

    Kazmierczak, J.; Müller, S.; Nilsson, B.; Postma, D.; Czekaj, J.; Sebok, E.; Jessen, S.; Karan, S.; Stenvig Jensen, C.; Edelvang, K.; Engesgaard, P.

    2016-11-01

    Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical tracers supplement each other. Discharge measurements yield flux estimates but rarely provide information about the origin and flow path of the water. Hydrochemical tracers may reveal the origin and flow path of the water but rarely provide any information about the flux. While aquifer interacting with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater springs and high discharge zones (HDZs) are observed at the lake bottom and at seepage faces adjacent to the lake. In the 2-D cross section, surface runoff from the seepage faces delivers 64% of the total groundwater inputs to the lake, and a 2 m wide offshore HDZ delivers 13%. Presence of HDZs may control nutrient fluxes to the lake.

  7. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media 2. Transport results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic- conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non- Gaussian behavior of the mean cloud, are reported on as well.

  8. Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Fiori, A.; Dagan, G.

    2016-12-01

    The driving mechanism of tracer transport in aquifers is groundwater flow which is controlled by the heterogeneity of hydraulic properties. We show how hydrodynamics and mass transfer are coupled in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of residence time are illustrated assuming a log-normal hydraulic conductivity field and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity.

  9. Spatial heterogeneity of microtopography and its influence on the flow convergence of slopes under different rainfall patterns

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin

    2017-02-01

    This study aimed to reveal the spatial heterogeneity of the microtopography and its influence on flow convergence on sloping farmland of purple soil area in China. Methods involving artificial rainfall, pin meter and photographic measurements were adopted to generate DEM (digital elevation model). Geographic statistics and multifractal theory were used for quantitative and hydrological analyses of microtopography based on ArcGIS. Two artificial tillage practices (ridge tillage and conservation tillage) were used to simulate different types of microtopography. Ridge tillage (RT) was designed according to local agricultural customs in China, with conservation tillage (CK) used for comparison purposes. A total of 12 rainfall simulation experiments were conducted in two 1 m by 2 m boxes under increased rainfall series (1.0, 1.5, and 2.0 mm min-1) and decreased rainfall series (2.0, 1.5, and 1.0 mm min-1) on a typical slope gradient of 15°. Artificial tillage was the major contributing factor to the spatial heterogeneity of microtopography on sloping farmland of the purple soil area. Spatiotemporal variability of microtopography was expressed using semivariogram and multifractal spectrum, and spatial heterogeneity of drainage networks was expressed using general fractal dimension ΔD based on multifractal theory. In general, the drainage networks was mostly effected by microrelief. The drainage density of ridge tillage was smaller than that of the conservation tillage under different rainfall patterns, and the drainage density decreased remarkably with the increasing microrelief. Moreover, the ΔD values of ridge tillage ranged from 0.1817 to 0.5677. By contrast, the ΔD values of the conservation tillage ranged from 0.9662 to 1.3013, and thus the lower spatial heterogeneity of drainage networks in ridge tillage compared to conservation tillage. In this study, we established a novel method for analysis of the spatial heterogeneity of microtopography and demonstrated

  10. Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media

    SciTech Connect

    Müller, Florian Jenny, Patrick Meyer, Daniel W.

    2013-10-01

    Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared to MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.

  11. Origin and heterogeneity of pore sizes in the Mount Simon Sandstone and Eau Claire Formation: Implications for multiphase fluid flow

    SciTech Connect

    Mozley, Peter S.; Heath, Jason E.; Dewers, Thomas A.; Bauer, Stephen J.

    2016-01-01

    The Mount Simon Sandstone and Eau Claire Formation represent a principal reservoir - caprock system for wastewater disposal, geologic CO2 storage, and compressed air energy storage (CAES) in the Midwestern United States. Of primary concern to site performance is heterogeneity in flow properties that could lead to non-ideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center Structure, Iowa, we investigate pore structure that governs flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibit highly variable intra- and inter-informational distributions of pore throat and body sizes. Based on pore-throat size, samples fall into four distinct groups. Micropore-throat dominated samples are from the Eau Claire Formation, whereas the macropore-, mesopore-, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, non-uniform compaction, and later dissolution of cements. Furthermore, the cement dissolution event probably accounts for much of the current porosity in the unit. The unusually heterogeneous nature of the pore networks in the Mount Simon Sandstone indicates that there is a greater-than-normal opportunity for reservoir capillary trapping of non-wetting fluids — as quantified by CO2 and air column heights — which should be taken into account when assessing the potential of the reservoir-caprock system for CO2 storage and CAES.

  12. Origin and heterogeneity of pore sizes in the Mount Simon Sandstone and Eau Claire Formation: Implications for multiphase fluid flow

    DOE PAGES

    Mozley, Peter S.; Heath, Jason E.; Dewers, Thomas A.; ...

    2016-01-01

    The Mount Simon Sandstone and Eau Claire Formation represent a principal reservoir - caprock system for wastewater disposal, geologic CO2 storage, and compressed air energy storage (CAES) in the Midwestern United States. Of primary concern to site performance is heterogeneity in flow properties that could lead to non-ideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center Structure, Iowa, we investigate pore structure that governs flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibit highlymore » variable intra- and inter-informational distributions of pore throat and body sizes. Based on pore-throat size, samples fall into four distinct groups. Micropore-throat dominated samples are from the Eau Claire Formation, whereas the macropore-, mesopore-, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, non-uniform compaction, and later dissolution of cements. Furthermore, the cement dissolution event probably accounts for much of the current porosity in the unit. The unusually heterogeneous nature of the pore networks in the Mount Simon Sandstone indicates that there is a greater-than-normal opportunity for reservoir capillary trapping of non-wetting fluids — as quantified by CO2 and air column heights — which should be taken into account when assessing the potential of the reservoir-caprock system for CO2 storage and CAES.« less

  13. Numerical Modeling of One-Dimensional Steady-State Flow and Contaminant Transport in a Horizontally Heterogeneous Unconfined Aquifer with an Uneven Base

    EPA Science Inventory

    Algorithms and a short description of the D1_Flow program for numerical modeling of one-dimensional steady-state flow in horizontally heterogeneous aquifers with uneven sloping bases are presented. The algorithms are based on the Dupuit-Forchheimer approximations. The program per...

  14. Polyionic polymers – heterogeneous media for metal nanoparticles as catalyst in Suzuki–Miyaura and Heck–Mizoroki reactions under flow conditions

    PubMed Central

    Mennecke, Klaas

    2009-01-01

    Summary The preparation of monolithic polyionic supports which serve as efficient heterogeneous supports for palladium(0) nanoparticles is described. These functionalized polymers were incorporated inside a flow reactor and employed in Suzuki–Miyaura and Heck cross couplings under continuous flow conditions. PMID:19590749

  15. Numerical simulation study on gas solid two-phase flow in pre-calciner

    NASA Astrophysics Data System (ADS)

    Hu, Zhijuan; Lu, Jidong; Huang, Lai; Wang, Shijie

    2006-06-01

    A three-dimensional numerical simulation of DD (dual combustion and denitratior process) pre-calciner for cement production was conducted in this paper. In Euler coordinate system, the fluid phase is expressed with RNG k- ɛ two-equation model and the solid phase is expressed with particle stochastic trajectory model in Lagrange coordinate system. Four mixture fractions are deduced in this article to simulate the gas compositions. The results of numerical simulation predicted the burn-out ratio of coal and the decomposition ratio of limestone particles along with particle trajectories. It also supplied theoretical foundation for industrial analysis of the coupling relation between coal combustion and calcium carbonate decomposition.

  16. Experimental Research on Gas-Solid Flow in an External Heat Exchanger with Double Outlets

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Lu, X. F.

    A new type scaling-up scheme of CFB boiler that takes separator as center and furnaces are laid around was put forward in this paper. In the recycle system, a new type heat exchanger device with double outlets was designed for this disposal scheme. As we know, the external heat exchanger is very important for the CFB, which be able no only to adjust the steam temperature, but also to adjust the bed temperature. In this paper, through the adjustment of air speed in different room of the heat exchanger, the adjusting performance of the new type heat exchanger was analyzed. Moreover, the test of the pressure in the whole recycle system was analyzed. The pressure balance system of the circulating circuit with this new arrangement scheme was realized. Through this test research, the main conclusions were got as follows: The external heat exchanger, which has two recycled solid outlets, could run flexibly and stably and could successfully discharge the materials from the standpipe into either of the furnaces. This test device has a good pressure and material balance system.

  17. Microscopic Processes at the Gas-Solid Interface of Compound Semiconductors.

    DTIC Science & Technology

    1981-03-01

    AGO35 PI ETN MV NJD TOFEETIA ENIERN AD-T FG20 2 MICROSCOPIC PROCESSES AT THE GAS-SOLID INTERFACE OF COMPOUND SE-ETC(U) UUCMAR 81 P MARK . A KAHN...1. A. Kahn, G. Cisneros, M. Bonn and P. Mark , Surf. Sct., 71 (1978) 387. 2. A. Kahn, E. So and P. Mark , J. Vac. Sci. Technol., 15, No. 2, (1978) 580...4 3. A. Kahn, E. So and P. Mark , J. Vac. Sc. Technol., 15, (1978) 1223. 4. R.J. Meyer, C.B. Duke, A. Paton, J.L. Yeh, J.C. Tsang, A. Kahn and P. Mark

  18. First Kinetic Reactive-Flow and Melting Calculations for Entropy Budget and Major Elements in Heterogeneous Mantle Lithologies (Invited)

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.

    2009-12-01

    The consequences of source heterogeneity and reactive flow during melt transport in the mantle can be classified by scale. At the smallest spatial and longest temporal scales, we can assume complete equilibrium and use batch melting of homogenized sources or equilibrium porous flow treatments. At large enough spatial scale or short enough temporal scale to prevent any thermal or chemical interaction between heterogeneities or between melt and matrix, we can assume perfectly fractional melting and transport and apply simple melt-mixing calculations. At a somewhat smaller spatial or longer temporal scale, thermal but not chemical interactions are significant and various lithologies and channel/matrix systems must follow common pressure-temperature paths, with energy flows between them. All these cases are tractable to model with current tools, whether we are interested in the energy budget, major elements, trace elements, or isotopes. There remains, however, the very important range of scales where none of these simple theories applies because of partial chemical interaction among lithologies or along the flow path. Such disequilibrium or kinetic cases have only been modeled, in the case of mantle minerals and melts, for trace elements and isotopes, with fixed melting rates instead of complete energy budgets. In order to interpret volumes of magma production and major element basalt and residue compositions that might emerge from a heterogeneous mantle in this last range of scales, we must develop tools that can combine a kinetic formulation with a major element and energy-constrained thermodynamic calculation. The kinetics can be handled either with a chemical kinetic approach with rate constants for various net transfer and exchange reactions, or with a physical diffusion-limited approach. A physical diffusion-limited approach can be built with the following elements. At grain scale, spherical grains of an arbitrary number of solid phases can evolve zoning profiles

  19. An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow in heterogeneous poroelastic media

    NASA Astrophysics Data System (ADS)

    Solazzi, Santiago G.; Rubino, J. Germán; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus

    2016-11-01

    Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically layered media to rocks containing fractures and highly irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall

  20. Flow Banding in Rhyolites: A Manifestation of Water Concentration Heterogeneity in the Melt?

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.; Dyar, D.; Marinkovic, N.

    2005-12-01

    Synchrotron-generated infrared radiation was used to obtain Fourier transform infrared (FTIR) spectroscopic analyses of glass and spherulites from the Bartolo lava flow, a finely flow banded Oligocene (~24 Ma) rhyodacite from the Atascosa Mountains of southern Arizona. The bright synchrotron-generated infrared beam permits analysis of spots as small as 10 ?m2 and rapid collection of maps of water concentration across areas of interest. The goal of this study was to explore the origin of flow-banded rhyolites that consist of darker and lighter flow bands that are not compositionally distinct magmas, but contrast in texture and color. In the Bartolo lava flow, lighter-colored, thicker flow bands consist of gray glass and large (2.5 to 5 mm) spherulites. Darker-colored, thinner orange flow bands consist of orange glass and smaller (0.1 to 0.3 mm) spherulites. Zones of brown glass separate lighter and darker flow bands. Overall, the lighter-colored, thicker flow bands, that host the larger spherulites, have higher average water concentrations (to 5000 ppm average) than the darker-colored, thinner flow bands that host the smaller spherulites (to 2000 ppm average). This difference, although not large, may indicate that flow bands result from stretching of zones in the melt that had contrasting water concentration prior to flow of the melt. Spherulites in the bands preserve a record of fluctuating water concentration at the boundary between the growing spherulite and the surrounding melt. In large spherulites in the lighter bands, in some cases, two zones of feldspar radiate from the center of the spherule. The two zones are separated by a concentric zone of glass. The innermost radiating feldspar zone typically contains less (~2500 ppm) water, and the outer radiating feldspar zone contains ~3800 ppm water. The transitional glass zones that separate the inner and outer zones contain to 7500 ppm water. These characteristics suggest that when the spherulites began to grow

  1. Three dimensional numerical prediction of two phase flow in industrial CFB boiler

    SciTech Connect

    Balzer, G.; Simonin, O.

    1997-12-31

    Gas-solid two phase flows are encountered in number of industrial applications such as pneumatic transport, catalytic cracking, coal combustors. The paper aims at presenting the numerical model of gas-solid flows which have been developed for several years at the Laboratoire National d`Hydraulique of Electricite de France and its application to the prediction of an industrial CFB Boiler.

  2. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials

    NASA Astrophysics Data System (ADS)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F.; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H.; Neilson, James R.

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N2 by Ca-exchanged zeolite-X (Na78-2xCaxAl78Si144O384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N2 and 14N2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  3. Coupling Between Flow and Precipitation in Heterogeneous Subsurface Environments and Effects On Contaminant Fate and Transport

    SciTech Connect

    Tartakovsky, Alexandre M.; Redden, George D.; Yoshiko Fujita; Scheibe, Tim; Smith, Robert; Reddy, Michael; Kelly, Shelly

    2006-06-01

    Reactive mixing fronts can occur at large scales, e.g. when chemical amendments are injected in wells, or at small scales (pore-scales) when reactive intermediates are being generated in situ at grain boundaries, cell surfaces and adjacent to biofilms. The product of the reactions such as mineral precipitates, biofilms or filtered colloids modifies permeability leading to the complex coupling between flow and reactions and precipitation. The objectives are to determine how precipitates are distributed within large and small scale mixing fronts, how permeability and flow is modified by precipitation, how the mobility of a representative contaminant, strontium, is affected by the precipitation of carbonates, and how subsequent dissolution of the carbonates result in mobilization of Sr and increased flow. The desired outcomes of the project are to help develop methods leading to sequestration of metal contaminants, and to determine how macroscopic field-scale modeling can be applied to predict the outcome of remediation activities.

  4. Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media

    USGS Publications Warehouse

    Cooley, R.L.; Christensen, S.

    2006-01-01

    Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is

  5. Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymentoptera: Apidae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color polymorphisms, and shows evidence of genetic structuring among regional populations. We test whether this structure is evidence for discrete gene flow barriers tha...

  6. Application of Heterogeneous Copper Catalyst in a Continuous Flow Process: Dehydrogenation of Cyclohexanol

    ERIC Educational Resources Information Center

    Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa

    2016-01-01

    In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…

  7. A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy.

    PubMed

    Vogiatzis, Ioannis; Habazettl, Helmut; Louvaris, Zafeiris; Andrianopoulos, Vasileios; Wagner, Harrieth; Zakynthinos, Spyros; Wagner, Peter D

    2015-03-15

    Heterogeneity in the distribution of both blood flow (Q̇) and O2 consumption (V̇O2) has not been assessed by near-infrared spectroscopy in exercising normal human muscle. We used near-infrared spectroscopy to measure the regional distribution of Q̇ and V̇O2 in six trained cyclists at rest and during constant-load exercise (unloaded pedaling, 20%, 50%, and 80% of peak Watts) in both normoxia and hypoxia (inspired O2 fraction = 0.12). Over six optodes over the upper, middle, and lower vastus lateralis, we recorded 1) indocyanine green dye inflow after intravenous injection to measure Q̇; and 2) fractional tissue O2 saturation (StiO2) to estimate local V̇O2-to-Q̇ ratios (V̇o2/Q̇). Varying both exercise intensity and inspired O2 fraction provided a (directly measured) femoral venous O2 saturation range from about 10 to 70%, and a correspondingly wide range in StiO2. Mean Q̇-weighted StiO2 over the six optodes related linearly to femoral venous O2 saturation in each subject. We used this relationship to compute local muscle venous blood O2 saturation from StiO2 recorded at each optode, from which local V̇O2/Q̇ could be calculated by the Fick principle. Multiplying regional V̇O2/Q̇ by Q̇ yielded the corresponding local V̇O2. While six optodes along only in one muscle may not fully capture the extent of heterogeneity, relative dispersion of both Q̇ and V̇O2 was ∼0.4 under all conditions, while that for V̇O2/Q̇ was minimal (only ∼0.1), indicating in fit young subjects 1) a strong capacity to regulate Q̇ according to regional metabolic need; and 2) a likely minimal impact of heterogeneity on muscle O2 availability.

  8. Lateral and vertical heterogeneity of flow and suspended sediment characteristics during a dam flushing event, in high velocity conditions

    NASA Astrophysics Data System (ADS)

    Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu

    2015-04-01

    The dynamic of suspended sediments in highly turbulent and concentrated flow is an important issue to better predict the sediment propagation along mountain rivers. In such extreme environments, the spatial and temporal variability of hydraulic and sediment parameters are difficult to measure: the flow velocity and the suspended sediment concentration (SSC) could be high (respectively several m/s and g/l) and rapidly variable. Simple methods are commonly used to estimate water discharge and mean or punctual SSC. But no method has been used successfully in a mountain river to estimate during a whole event the spatial distribution of flow velocity and SSC, as well as sediment parameters like grain size or settling velocity into a river cross section. This leads to these two questions: in such conditions, can we calculate sediment fluxes with one sediment concentration measurement? How can we explain the spatial heterogeneity of sediment characteristics? In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. Especially, several measurements are usually done during the flushing of the dams located on the upper part of the river. During the flushing event of June 2014, we instrumented the gauging station located just upstream the confluence between the Isere and the Arc River, at the outlet of the Arc River watershed. ADCP measurements have been performed to estimate the spatial distribution of the flow velocity (up to 3 m/s), and turbidimeters and automatic samplers have been used to estimate the spatial distribution of the SSC into the cross section (up to 6 g/l). These samples have been directly analyzed

  9. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions.

    PubMed

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number.

  10. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions

    PubMed Central

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457

  11. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    SciTech Connect

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.

  12. Gravity versus radiation models: on the importance of scale and heterogeneity in commuting flows.

    PubMed

    Masucci, A Paolo; Serras, Joan; Johansson, Anders; Batty, Michael

    2013-08-01

    We test the recently introduced radiation model against the gravity model for the system composed of England and Wales, both for commuting patterns and for public transportation flows. The analysis is performed both at macroscopic scales, i.e., at the national scale, and at microscopic scales, i.e., at the city level. It is shown that the thermodynamic limit assumption for the original radiation model significantly underestimates the commuting flows for large cities. We then generalize the radiation model, introducing the correct normalization factor for finite systems. We show that even if the gravity model has a better overall performance the parameter-free radiation model gives competitive results, especially for large scales.

  13. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow.

    PubMed

    Gerloff, Sascha; Klapp, Sabine H L

    2016-12-01

    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  14. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow

    NASA Astrophysics Data System (ADS)

    Gerloff, Sascha; Klapp, Sabine H. L.

    2016-12-01

    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  15. Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport

    NASA Astrophysics Data System (ADS)

    Kitanidis, Peter K.

    2015-08-01

    When Water Resources Research was launched in 1965, heterogeneity, uncertainty, and scale issues in subsurface hydrology were in the backburner. Only about 10 years later, under the stimulus of dealing with solute transport problems, these problems received attention. The stochastic approach brought tools to deal both with problems of upscaling, also known as homogenization and coarse-graining, and uncertainty quantification. Effective conductivity and effective dispersion, also known as macrodispersion, coefficients in statistically homogeneous formations were extensively studied. Mixing, in its role of affecting reaction rates, started receiving attention. While in the dispersion problem emphasis was on Fickian representations, more sophisticated models have also been studied. Uncertainty quantification in the inverse problem has also made progress and geostatistical ideas, as well as ideas originating in signal processing, influenced how we approach problems of inference like interpolation and inverse modeling. My view is that we should emphasize information aspects, i.e., the collection of more and better data, their correct assimilation, the quantification of uncertainty associated with predictions, and the selection of designs or policies that accurately reflect what we actually know and thus manage risk. Progress in this department has been hampered by ingrained ideas, inadequate training, and inadequate resources. Research in problems of upscaling will continue to shed new light and provide better tools to deal with onerous problems. At the same time, no cure is more universally potent than using a more refined grid. Finally, although research is active, the diffusion of research results to education and practice has been slow.

  16. Time-averaged Turbulent Flow Characteristics over a Highly Spatially Heterogeneous Gravel-Bed

    NASA Astrophysics Data System (ADS)

    Sarkar, Sankar

    2016-10-01

    The present study focuses on the time-averaged turbulence characteristics over a highly spatially-heterogeneous gravel-bed. The timeaveraged streamwise velocity, Reynolds shear and normal stresses, turbulent kinetic energy, higher-order moments of velocity fluctuations, length scales, and the turbulent bursting were measured over a gravel-bed with an array of larger gravels. It was observed that the turbulence characteristics do not vary significantly above the crest level of the array as compared to those below the array. The nondimensional streamwise velocity decreases considerably with a decrease in depth below the array. Below the array, the Reynolds shear stress (RSS) deviates from the gravity- law of RSS distributions. Turbulence intensities reduce below the crest level of the gravel-bed. The third-order moments of velocity fluctuations increase below the crest level of the gravel-bed and give a clear indication of sweeps as the predominating event which were further verified with the quadrant analysis plots. The turbulent length scales values change significantly below the crest level of the gravel-bed.

  17. Gas-solid carbonation as a possible source of carbonates in cold planetary environments

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.; Pommerol, A.

    2013-02-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of the Earth and they have been proposed as tracers of liquid water in extraterrestrial environments. Their formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonate minerals have been discovered on Mars' surface by different orbitals or rover missions. In particular, the phoenix mission has measured from 1% to 5% of calcium carbonate (calcite type) within the soil (Smith et al., 2009). These occurrences have been reported in area where the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process on mineral grain surfaces (as suggested by Shaheen et al., 2010) than carbonation in aqueous conditions. Such an observation could rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. To understand the mechanism of carbonate formation under conditions relevant to current Martian atmosphere and surface, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup). Three different mineral precursors of carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4), low temperature (from -10 to +30 °C), and reduced CO2 pressure (from 100 to 2000 mbar) were utilized to investigate the mechanism of gas-solid carbonation at mineral surfaces. These mineral materials are crucial precursors to form Ca and Mg carbonates in humid environments (0%gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars' surface

  18. Comparison of iterative methods and preconditioners for the solution of miscible two-phase flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Büsing, Henrik

    2014-05-01

    The geological sequestration of CO2 is considered as one option to mitigate anthropogenic effects on climate change. To describe the behavior of CO2 underground we consider mass balance equations for the two phases, CO2 and brine, which include the dissolution of CO2 into the brine phase and of H2O into the gas phase (c.f. [1]). After discretization in time with the implicit Euler method and in space with the Box method (c.f. [2]), we end up with a nonlinear system of equations. Newton's method is used to solve these systems, where the required Jacobians are obtained by automatic differentiation (AD) (c.f. [3]). In contrast to approximate Jacobians via finite differences, AD gives exact Jacobians through a source code transformation. These exact Jacobians have the advantage that no additional errors are introduced by the derivative computation. In consequence, fewer Newton iterations are needed and a performance increase during derivative computation can be observed (c.f. [4]). During the initial stage of a CO2 sequestration scenario the movement of the CO2 plume is driven by advective and buoyancy forces. After injection is finished solubility and density driven flow become dominant. We examine the performance of different iterative solvers and preconditioners for these two stages. To this end, we consider standard ILU preconditioning with BiCGStab as iterative solver, as well as GMRES, and algebraic and geometric multigrid methods. Our test example considers, on the one hand, a homogeneous permeability distribution and, on the other hand, a heterogeneous one. In the latter case we sample a heterogeneous porosity field from a Gaussian distribution and, subsequently, derive the corresponding permeabilities after [5]. Finally, we examine to which extent the amount of dissolved CO2 depends on the heterogeneities in the reservoir. References [1] Spycher, N., Pruess, K., & Ennis-King, J., 2003. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and

  19. Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Deng, Mingge; Tang, Yu-Hang; Karniadakis, George Em

    2016-03-01

    We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997), 10.1142/S0129183197000837], the relaxation dynamics [O'Connell and Thompson, Phys. Rev. E 52, R5792 (1995), 10.1103/PhysRevE.52.R5792], the least constraint dynamics [Nie et al., J. Fluid Mech. 500, 55 (2004), 10.1017/S0022112003007225; Werder et al., J. Comput. Phys. 205, 373 (2005), 10.1016/j.jcp.2004.11.019], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000), 10.1209/epl/i2000-00434-8], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations.

  20. Electrostatic sensors applied to the measurement of electric charge transfer in gas solids pipelines

    NASA Astrophysics Data System (ADS)

    Woodhead, S. R.; Denham, J. C.; Armour-Chelu, D. I.

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results.

  1. In situ measurement of gas-solid interactions in astrophysical dust & planetary analogues

    NASA Astrophysics Data System (ADS)

    Thompson, S. P.; Parker, J. E.; Day, S. J.; Evans, A.; Tang, C. C.

    2012-02-01

    Facilities for studying gas-solid interactions on beamline I11 at the Diamond Light Source are described. Sample evolution in low and high gas pressure capillary cells (1 × 10-7 to 100 bar) with non-contact cooling and heating (80 to 1273 K) can be monitored structurally (X-rays) and spectroscopically (Raman). First results on the dehydration of MgSO4.7H2O, the formation of CO2 clathrate hydrate and the reaction of amorphous CaSiO3 grains with CO2 gas to form CaCO3 are presented to demonstrate the application of these cells to laboratory investigations involving the processing of cosmic dust simulants and planetary materials analogues.

  2. Flow patterns of precipitation and soil water beneath forest canopies: An experimental approach to assessing water flow heterogeneity with high resolution measurements.

    NASA Astrophysics Data System (ADS)

    Metzger, Johanna Clara; Dalla Valle, Nicolas; Wutzler, Thomas; Filipzik, Janett; Grauer, Christoph; Schelhorn, Danny; Weckmüller, Josef; Hildebrandt, Anke

    2015-04-01

    Due to the mechanisms of interception, stemflow and canopy throughfall, precipitation reaches a forest soil surface in an altered temporal and spatial distribution. It is characterized by a strong heterogeneity. The retention of water by canopies is contrasted by the formation of dynamic hotspots, which channel rain water down to the soil: canopy dripping points and stemflow. This poster introduces a new experimental site established within the collaborative research center of AquaDiva, where we aim to investigate the flow paths of water from the top of the canopy through the soil below the main rooting zone in an intensive field study. The study site, sized one hectare, is located in Thuringia in an unmanaged Central European beech forest on limestone, and complemented by measurements in an adjacent grassland site. A soil moisture sensor network (SoilNet) has been established for monitoring soil water content at high temporal (3 min interval) and spatial (420 sensors per ha) resolution. During field campaigns in spring and early summer, the spatial distribution of net precipitation is measured. Vegetation properties and soil physical and scientific characteristics have been surveyed. Using this setup, we plan to determine, whether and during which conditions spatial patterns of net precipitation persist in soil moisture and fluxes. Using the high-resolution soil water content data we aim to discover flow dynamics and thus identify preferential flow paths in the soil. Geostatistical analysis will yield information about spatial distribution and the relationship of above- and subsurface flow patterns and impact factors. In this poster we will present first results of net precipitation composition and statistical characteristics of throughfall and soil moisture data.

  3. The MAST-edge centred lumped scheme for the flow simulation in variably saturated heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Aricò, Costanza; Sinagra, Marco; Tucciarelli, Tullio

    2012-02-01

    A novel methodology is proposed for the solution of the flow equation in a variably saturated heterogeneous porous medium. The computational domain is descretized using triangular meshes and the governing PDEs are discretized using a lumped in the edge centres numerical technique. The dependent unknown variable of the problem is the piezometric head. A fractional time step methodology is applied for the solution of the original system, solving consecutively a prediction and a correction problem. A scalar potential of the flow field exists and in the prediction step a MArching in Space and Time (MAST) formulation is applied for the sequential solution of the Ordinary Differential Equation of the cells, ordered according to their potential value computed at the beginning of the time step. In the correction step, the solution of a large linear system with order equal to the number of edges is required. A semi-analytical procedure is also proposed for the solution of the prediction step. The computational performance, the order of convergence and the mass balance error have been estimated in several tests and compared with the results of other literature models.

  4. Experimental Observations of Calcite Precipitation in Fractures: The Role of Physical and Chemical Heterogeneity on the Persistence of Preferential Flow Paths

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2015-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. In an idealized parallel-plate fracture with uniform surface reactivity, the injection of a supersaturated fluid leads to faster precipitation near the inlet and rapid sealing of the fracture. However, it is likely that physical and chemical heterogeneities will perturb local reaction rates. Predicting the evolution of transport properties in heterogeneous fractures requires an improved understanding of the feedback between mineral precipitation and fluid flow. We present results from three experiments in transparent analog fractures: i) uniform aperture with uniform surface reactivity, ii) uniform aperture with heterogeneous surface reactivity, and iii) variable aperture with heterogeneous reactivity. We controlled surface reactivity by exposing one fracture surface to a solution supersaturated with calcium carbonate for different durations. We then injected a metastable mixture with log-saturation-index of 1.44 at a constant rate of 0.5 ml/min. Transmitted light techniques provided quantitative measurements of fracture aperture and fluid transport over the flow field. In the homogeneous fracture (i), as expected, aperture decreased most rapidly along the inlet. In the variable aperture fracture (iii), we observed enhanced reduction rates in small aperture regions; these local reactions organized flow into thin pathways that connected regions of low surface reactivity and grew to span the length of the fracture over the six-month duration of the experiment. An ongoing experiment (ii) will clarify the relative importance of chemical heterogeneity versus aperture variability on the formation of these preferential pathways.

  5. Stability analysis of non-inertial thin film flow over a heterogeneously heated porous substrate

    NASA Astrophysics Data System (ADS)

    Kumawat, Tara Chand; Tiwari, Naveen

    2016-02-01

    The dynamics and linear stability of a gravity drive thin film flowing over non-uniformly heated porous substrate are studied. A governing equation for the evolution of film-thickness is derived within the lubrication approximation. Darcy-Brinkman equation is used to model flow in the porous medium along with a tangential stress-jump condition at the interface of the porous layer and the fluid film. A temperature profile is imposed at the solid wall to model an embedded heater beneath the porous layer. At the upstream edge of the heater, an opposing thermocapillary stress at the liquid-air interface leads to the formation of a thermocapillary ridge. The ridge becomes unstable beyond a critical Marangoni number leading to the formation of rivulets that are periodic in the spanwise direction. Increase in the values of parameters such as Darcy number, stress jump coefficient, and porosity is shown to have stabilizing effect on the film dynamics. The critical Marangoni number is shown to increase monotonically with Darcy number for various values of porosity. At large values of stress-jump coefficient, a non-monotonic variation in critical Marangoni number versus Darcy number is shown. A correlation is developed numerically for the ratio of critical Marangoni number at large Darcy number to that for a non-porous substrate as a function of porosity and thickness of the porous substrate. A transient growth analysis is carried out followed by non-linear stability analysis. The non-modal growth is found to be negligible thus indicating that the eigenvalues are physically determinant.

  6. Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures

    SciTech Connect

    Sampath, Rahul S; Veerapaneni, Shravan; Biros, George; Zorin, Denis; Vuduc, Richard; Vetter, Jeffrey S; Moon, Logan; Malhotra, Dhairya; Shringarpure, Aashay; Rahimian, Abtin; Lashuk, Ilya; Chandramowlishwaran, Aparna

    2010-01-01

    We present a fast, petaflop-scalable algorithm for Stokesian particulate flows. Our goal is the direct simulation of blood, which we model as a mixture of a Stokesian fluid (plasma) and red blood cells (RBCs). Directly simulating blood is a challenging multiscale, multiphysics problem. We report simulations with up to 260 million deformable RBCs. The largest simulation amounts to 90 billion unknowns in space. In terms of the number of cells, we improve the state-of-the art by several orders of magnitude: the previous largest simulation, at the same physical fidelity as ours, resolved the flow of O(1,000-10,000) RBCs. Our approach has three distinct characteristics: (1) we faithfully represent the physics of RBCs by using nonlinear solid mechanics to capture the deformations of each cell; (2) we accurately resolve the long-range, N-body, hydrodynamic interactions between RBCs (which are caused by the surrounding plasma); and (3) we allow for highly non-uniform spatial distributions of RBCs. The new method has been implemented in the software library MOBO (for 'Moving Boundaries'). We designed MOBO to support parallelism at all levels, including inter-node distributed memory parallelism, intra-node shared memory parallelism, data parallelism (vectorization), and fine-grained multithreading for GPUs. We have implemented and optimized the majority of the computation kernels on both Intel/AMD x86 and NVidia's Tesla/Fermi platforms for single and double floating point precision. Overall, the code has scaled on 256 CPU-GPUs on the Teragrid's Lincoln cluster and on 200,000 AMD cores of the Oak Ridge National Laboratory's Jaguar PF system. In our largest simulation, we have achieved 0.7 Petaflops/s of sustained performance on Jaguar.

  7. Cell Surface Profiling Using High-Throughput Flow Cytometry: A Platform for Biomarker Discovery and Analysis of Cellular Heterogeneity

    PubMed Central

    Gedye, Craig A.; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J.; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E.

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers. PMID:25170899

  8. Flow microcalorimetry investigation of the influence of surfactants on a heterogeneous aerobic culture.

    PubMed Central

    Beaubien, A; Keita, L; Jolicoeur, C

    1987-01-01

    The influence of various surfactants on the biological activity of a mixed aerobic culture has been investigated by using flow microcalorimetry. The response of the culture to the addition of homologous n-alkylcarboxylates (C2 to C16) and n-alkylpyridinium bromides (C11 to C14) has been examined under endogenous and substrate saturation conditions, and inhibitory concentrations (MIC or the concentration which decreased the initial activity (heat flux) of the culture by 50%) were determined for each state. Under both conditions, the n-alkylpyridinium bromides were found to be more toxic than the n-alkylcarboxylates of identical chain length, thus confirming that the head group of the amphiphiles plays an important role in the microbial toxicity of surfactants. The relationship observed between the concentration at which 50% of the activity is lost and the chain length of the surfactant further confirms that cellular toxicity is also dependent on surfactant hydrophobicity. In relation to the biodegradability of surfactants in mixed aerobic cultures, the low concentration effects of n-alkylcarboxylates on endogenous culture were investigated in some detail. There appear to be compounded indications that these surfactants are rapidly metabolized by the microorganisms of the mixed culture, at least for homologs lower than C10. PMID:3426221

  9. Efficient Geostatistical Inversion under Transient Flow Conditions in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf

    2014-05-01

    The assessment of hydraulic aquifer parameters is important for the evaluation of anthropogenic impacts on groundwater resources. The distribution of these parameters determines flow paths and solute travel times and is therefore critical for the successful design and deployment of remediation schemes at contaminated sites. Direct measurement of these properties is not possible, making indirect observations through dependent quantities and parameter estimation a necessity. The geostatistical approach characterizes these hydraulic parameters without predetermined zonation. The parameter fields are treated as stochastic processes, optionally incorporating a priori information in the probability distribution. Maximizing the likelihood of the parameters with regard to the given observations yields a parameter estimate with high spatial resolution. This approach naturally leads to nonlinear least squares optimization problems, namely objective functions of the form L(Y ) = 1(Y ')TQ -Y1YY ' + 1[F(Y) - z]T Q-z1z [F(Y )- z], 2 2 where Y are the parameters, Y ' their deviations from the a priori estimate, QY Y their covariance matrix, z the measurements, Qzz their covariance matrix and F the forward model mapping parameters to observations. In theory, this objective function may be minimized using standard gradient-based techniques like Gauss-Newton. Due to the typically high number of parameters, however, this is not practical. Let nY be the number of parameters and nz the number of observations. Then QY Y and its inverse are both dense nY ×nY matrices, and the sensitivity matrix Hz := δz/δY is a nz ×nY matrix that has to be assembled using forward or adjoint model runs. Specialized schemes have been developed to reduce the dimensionality of the problem and avoid the high cost of handling products with QY Y -1. This enables efficient inversion in the case of a moderate number of observations as encountered in stationary inversion, where the cost of assembling Hz is in

  10. Estimating parameters and uncertainty for three-dimensional flow and transport in a highly heterogeneous sand box experiment.

    SciTech Connect

    McKenna, Sean Andrew; Yoon, Hongkyu; Hart, David Blaine

    2010-12-01

    Heterogeneity plays an important role in groundwater flow and contaminant transport in natural systems. Since it is impossible to directly measure spatial variability of hydraulic conductivity, predictions of solute transport based on mathematical models are always uncertain. While in most cases groundwater flow and tracer transport problems are investigated in two-dimensional (2D) systems, it is important to study more realistic and well-controlled 3D systems to fully evaluate inverse parameter estimation techniques and evaluate uncertainty in the resulting estimates. We used tracer concentration breakthrough curves (BTCs) obtained from a magnetic resonance imaging (MRI) technique in a small flow cell (14 x 8 x 8 cm) that was packed with a known pattern of five different sands (i.e., zones) having cm-scale variability. In contrast to typical inversion systems with head, conductivity and concentration measurements at limited points, the MRI data included BTCs measured at a voxel scale ({approx}0.2 cm in each dimension) over 13 x 8 x 8 cm with a well controlled boundary condition, but did not have direct measurements of head and conductivity. Hydraulic conductivity and porosity were conceptualized as spatial random fields and estimated using pilot points along layers of the 3D medium. The steady state water flow and solute transport were solved using MODFLOW and MODPATH. The inversion problem was solved with a nonlinear parameter estimation package - PEST. Two approaches to parameterization of the spatial fields are evaluated: (1) The detailed zone information was used as prior information to constrain the spatial impact of the pilot points and reduce the number of parameters; and (2) highly parameterized inversion at cm scale (e.g., 1664 parameters) using singular value decomposition (SVD) methodology to significantly reduce the run-time demands. Both results will be compared to measured BTCs. With MRI, it is easy to change the averaging scale of the observed

  11. Modeling flow and transport in highly heterogeneous three-dimensional aquifers: Ergodicity, Gaussianity, and anomalous behavior—2. Approximate semianalytical solution

    NASA Astrophysics Data System (ADS)

    Fiori, A.; Janković, I.; Dagan, G.

    2006-06-01

    Flow and transport take place in a heterogeneous medium of lognormal distribution of the conductivity K. Flow is uniform in the mean, and the system is defined by U (mean velocity), σY2 (log conductivity variance), and integral scale I. Transport is analyzed in terms of the breakthrough curve of the solute, identical to the traveltime distribution, at control planes at distance x from the source. The "self-consistent" approximation is used, where the traveltime τ is approximated by the sum of τ pertinent to the different separate inclusions, and the neglected interaction between inclusions is accounted for by using the effective conductivity. The pdf f(τ, x), where x is the control plane distance, is derived by a simple convolution. It is found that f(τ, x) has an early arrival time portion that captures most of the mass and a long tail, which is related to the slow solute particles that are trapped in blocks of low K. The macrodispersivity is very large and is independent of x. The tail f(τ, x) is highly skewed, and only for extremely large x/I, depending on σY2, the plume becomes Gaussian. Comparison with numerical simulations shows very good agreement in spite of the absence of parameter fitting. It is found that finite plumes are not ergodic, and a cutoff of f(τ, x) is needed in order to fit the mass flux of a finite plume, depending on σY2 and x/I. The bulk of f(τ, x) can be approximated by a Gaussian shape, with fitted equivalent parameters. The issue of anomalous behavior is examined with the aid of the model.

  12. An analytical approach for the simulation of flow in a heterogeneous confined aquifer with a parameter zonation structure

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Yeh, Hund-Der

    2016-11-01

    This study introduces an analytical approach to estimate drawdown induced by well extraction in a heterogeneous confined aquifer with an irregular outer boundary. The aquifer domain is divided into a number of zones according to the zonation method for representing the spatial distribution of a hydraulic parameter field. The lateral boundary of the aquifer can be considered under the Dirichlet, Neumann or Robin condition at different parts of the boundary. Flow across the interface between two zones satisfies the continuities of drawdown and flux. Source points, each of which has an unknown volumetric rate representing the boundary effect on the drawdown, are allocated around the boundary of each zone. The solution of drawdown in each zone is expressed as a series in terms of the Theis equation with unknown volumetric rates from the source points. The rates are then determined based on the aquifer boundary conditions and the continuity requirements. The estimated aquifer drawdown by the present approach agrees well with a finite element solution developed based on the Mathematica function NDSolve. As compared with the existing numerical approaches, the present approach has a merit of directly computing the drawdown at any given location and time and therefore takes much less computing time to obtain the required results in engineering applications.

  13. Henry`s law gas-solid chromatography and correlations of virial coefficients for hydrocarbons, chlorofluorocarbons, ethers, and sulfur hexafluoride adsorbed onto carbon

    SciTech Connect

    Rybolt, T.R.; Epperson, M.T.; Weaver, H.W.; Thomas, H.E.; Clare, S.E.; Manning, B.M.; McClung, J.T.

    1995-07-01

    Gas-solid chromatography was used to determine the Henry`s law second gas-solid virial coefficients within the temperature range of 314--615 K for ethane, propane, butane, isobutane, pentane, hexane, heptane, chloromethane, dichloromethane, trichloromethane, tetrachloromethane, trichlorofluoromethane (Freon 11), chlorodifluoromethane (Freon 22), dichlorodifluoromethane (Freon 12), methyl ether, ethyl ether, and sulfur hexafluoride with Carbopack B, a microporous carbon adsorbent. The temperature dependence of the second gas-solid virial coefficients of these adsorbates was used in conjunction with analyses based on a graphical method, a single-surface numeric integration method, a single-surface analytic expression method, and a two-surface analytic expression method to determine the gas-solid interaction energies and other parameters. The interaction energies were correlated with a ratio of the critical temperature divided by the square root of the critical pressure. The four methods were compared in their abilities to successfully calculate second gas-solid virial coefficient values.

  14. Gas-solid carbonation as a current alternative origin for carbonates in Martian regolith

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.

    2011-12-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of Earth and they have been proposed as tracers of liquid water in extraterrestrial environments (e.g. at Mars surface). Its formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonates minerals have been discovered on Mars surface by different orbital or rovers missions. In particular, the phoenix mission has measured from 1 to 5% of calcium carbonate (calcite type). These occurrences have been reported in area were the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process than carbonation in aqueous conditions. Such an observation might rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. For this reason, in the present study, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup) in order to investigate the gas-solid carbonation of three different mineral precursors for carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4) at low temperature (from -10 to 25°C) and at reduced CO2 pressure (from 100 to 1000 mbar). These mineral materials are crucial precursors to form respective Ca and Mg carbonates in humid environments (0 < relative humidity < 100%) at dust-CO2 or dust-water ice-CO2 interfaces. The results have revealed a significant and fast carbonation process for Ca hydroxide and hydrated Ca silicate. Conversely, slight carbonation process was observed for Mg hydroxide. These results suggest that gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars surface process. We note that the carbonation process at low temperature (<0°C) described in the present study could also have important implications on the dust-water ice-CO2 interactions in

  15. Computational Study of Chemical Reaction Dynamics at the Gas-Solid Interface.

    DTIC Science & Technology

    1978-11-20

    list of conditions has been produced detailing the conditions under which useful vibrational population inversions may be expected in the molecules produced from such heterogeneous catalysis . (Author)

  16. Kinetics of thermochemical gas-solid reactions important in the Venus sulfur cycle

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1988-01-01

    The thermochemical net reaction CaCO3 + SO2 yields CaSO4 + CO is predicted to be an important sink for incorporation of SO2 into the Venus crust. The reaction rate law was established to understand the dependence of rate on experimental variables such as temperature and partial pressure of SO2, CO2, and O2. The experimental approach was a variant of the thermogravimetric method often employed to study the kinetics of thermochemical gas-solid reactions. Clear calcite crystals were heated at constant temperature in SO2-bearing gas streams for varying time periods. Reaction rate was determined by three independent methods. A weighted linear least squares fit to all rate data yielded a rate equation. Based on the Venera 13, 14 and Vega 2 observations of CaO content of the Venus atmosphere, SO2 at the calculated rate would be removed from the Venus atmosphere in about 1,900,00 years. The most plausible endogenic source of the sulfur needed to replenish atmospheric SO2 is volcanism. The annual amount of erupted material needed for the replenishment depends on sulfur content; three ratios are used to calculate rates ranging from 0.4 to 11 cu km/year. This geochemically derived volcanism rate can be used to test if geophysically derived rates are correct. The work also suggests that Venus is less volcanically active than the Earth.

  17. Origin of melting point depression for rare gas solids confined in carbon pores.

    PubMed

    Morishige, Kunimitsu; Kataoka, Takaaki

    2015-07-21

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  18. Origin of melting point depression for rare gas solids confined in carbon pores

    SciTech Connect

    Morishige, Kunimitsu Kataoka, Takaaki

    2015-07-21

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  19. Venus volcanism: Rate estimates from laboratory studies of sulfur gas-solid reactions

    NASA Technical Reports Server (NTRS)

    Ehlers, K.; Fegley, B., Jr.; Prinn, R. G.

    1989-01-01

    Thermochemical reactions between sulfur-bearing gases in the atmosphere of Venus and calcium-, iron-, magnesium-, and sulfur-bearing minerals on the surface of Venus are an integral part of a hypothesized cycle of thermochemical and photochemical reactions responsible for the maintenance of the global sulfuric acid cloud cover on Venus. SO2 is continually removed from the Venus atmosphere by reaction with calcium bearing minerals on the planet's surface. The rate of volcanism required to balance SO2 depletion by reactions with calcium bearing minerals on the Venus surface can therefore be deduced from a knowledge of the relevant gas-solid reaction rates combined with reasonable assumptions about the sulfur content of the erupted material (gas + magma). A laboratory program was carried out to measure the rates of reaction between SO2 and possible crustal minerals on Venus. The reaction of CaCO3(calcite) + SO2 yields CaSO4 (anhydrite) + CO was studied. Brief results are given.

  20. Application of a gas-solid fluidized bed separator for shredded municipal bulky solid waste separation.

    PubMed

    Sekito, T; Matsuto, T; Tanaka, N

    2006-01-01

    A laboratory-scale gas-solid fluidized bed separator able to separate fractions of 5.6-50mm was used for separation of shredded municipal bulky waste (SBW) into combustibles and incombustibles. In batch-scale tests, it was found that accumulation of SBW in the bottom of the bed significantly reduced the separation efficiency. In this study, stirring was shown to be effective in preventing this accumulation. Flexible sheet materials such as paper and film plastics also significantly decreased the separation efficiency. In batch-scale tests, an overall efficiency of 90% was obtained when flexible materials such as film plastics and paper were excluded from the feed SBW. In continuous feeding tests, purities of the float and sink fractions attained 95% and 86% efficiencies, respectively, with an overall efficiency of 79%. The effect of feedstock shape on separation efficiency was also investigated. This study revealed that large particles can be properly separated on the basis of density, while the shape of the material significantly influenced behavior in the fluidizing bed.

  1. Origin of melting point depression for rare gas solids confined in carbon pores

    NASA Astrophysics Data System (ADS)

    Morishige, Kunimitsu; Kataoka, Takaaki

    2015-07-01

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ˜0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  2. A comparison of heterogenous and homogenous models of two-phase transonic compressible CO2 flow through a heat pump ejector

    NASA Astrophysics Data System (ADS)

    Bulinski, Zbigniew; Smolka, Jacek; Fic, Adam; Banasiak, Krzysztof; Nowak, Andrzej J.

    2010-06-01

    This paper presents mathematical model of a two-phase transonic flow occurring in a CO2 ejector which replaces a throttling valve typically used in heat pump systems. It combines functions of the expander and compressor and it recovers the expansion energy lost by a throttling valve in the classical heat pump cycle. Two modelling approaches were applied for this problem, namely a heterogenous and homogenous. In the heterogenous model an additional differential transport equation for the mass fraction of the gas phase is solved. The evaporation and condensation process in this model is described with use of the Rayleigh-Plesset equation. In the homogenous model, phases are traced based on the thermodynamic parameters. Hence the heterogenous model is capable to predict non-equilibrium conditions. Results obtained with both models were compared with the experimental measurements.

  3. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    SciTech Connect

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  4. Feasibility of gas/solid carboligation: conversion of benzaldehyde to benzoin using thiamine diphosphate-dependent enzymes.

    PubMed

    Mikolajek, R; Spiess, A C; Büchs, J

    2007-05-10

    A carboligation was investigated for the first time as an enzymatic gas phase reaction, where benzaldehyde was converted to benzoin using thiamine diphosphate (ThDP)-dependent enzymes, namely benzaldehyde lyase (BAL) and benzoylformate decarboxylase (BFD). The biocatalyst was immobilized per deposition on non-porous support. Some limitations of the gas/solid biocatalysis are discussed based on this carboligation and it is also demonstrated that the solid/gas system is an interesting tool for more volatile products.

  5. Thermostability of Sm2(FeGa)17Cy prepared by gas-solid reaction (GSR)

    NASA Astrophysics Data System (ADS)

    Cao, L.; Handstein, A.; Gebel, B.; Schäfer, R.; Müller, K.-H.

    1997-04-01

    The gas-solid-reaction (GSR) was used to introduce interstitial carbon atoms into Sm2Fe17-xGax compounds with x=0, 0.5, 1, and 2. For this process, powders made from homogenized ingots were annealed at 500 °C under methane for different times. The thermostability increases for small amounts of Ga and the investigation shows that Sm2Fe16.5Ga0.5Cy is stable up to 750 °C. In the case of Sm2Fe15Ga2Cy carburized for 6 h (y=2.0) and 18 h (y=2.2), the x-ray diffraction patterns show the Th2Zn17-type structure only. After annealing at 800 °C for 20 min the 6 h carburized sample shows a small amount of α-Fe and other phases and there is a large Fe content after annealing at 850 °C. For an 18 h carburized sample, less Fe and no other phases have be seen after annealing at 800 °C, i.e., the material is nearly single phase. The result that longer carburization times stabilize the Th2Zn17-type structure could also be manifested by Kerr microscopy. A comparison with mechanically alloyed Sm2Fe15Ga2C2 powders prepared with Sm excess shows that those are very stable up to 900 °C. The density of fine-grained Sm2Fe17-xGaxCy could be increased by hot pressing, but the degree of compaction and the phase purity very sensitively depend on the Ga content.

  6. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  7. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    NASA Astrophysics Data System (ADS)

    Merino-Martín, L.; Moreno-de las Heras, M.; Pérez-Domingo, S.; Espigares, T.; Nicolau, J. M.

    2012-05-01

    Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope) in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover). Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil) to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata). Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index): when overland flow increases at the slope scale hydrological diversity diminishes.

  8. Improved Simulation of Subsurface Flow in Heterogeneous Reservoirs Using a Fully Discontinuous Control-Volume-Finite-Element Method, Implicit Timestepping and Dynamic Unstructured Mesh Optimization

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.

    2015-12-01

    We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.

  9. Micro-PIV measurements of multiphase flow of water and liquid CO2 in 2D homogeneous and heterogeneous porous micromodels

    NASA Astrophysics Data System (ADS)

    Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth

    2015-11-01

    Geological sequestration of carbon dioxide (CO2) has been of great interest primarily for the reason of CO2 emission reduction and enhanced oil recovery. Yet, our fundamental understanding of the coupled flow dynamics of CO2 and water in geologic media still remains limited, especially at the pore scale. Therefore, in this work the pore-scale flow of water and liquid/supercritical CO2 are quantified in 2D homogeneous and heterogeneous porous micro-models under reservoir-relevant conditions. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. The velocity measurements in the homogeneous micro-model illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Moreover, the results for heterogeneous micro-models are presented and compared with those for homogeneous micro-models, which give valuable insight into flow processes at the pore scale in natural rock.

  10. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    NASA Astrophysics Data System (ADS)

    Merino-Martín, L.; Moreno-de Las Heras, M.; Pérez-Domingo, S.; Espigares, T.; Nicolau, J. M.

    2011-11-01

    Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment sinks and source patches are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted a field research to study the hydrological role of patches and slopes along an overland flow gradient in three reclaimed slopes coming from mining reclamation in a Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated to seven vegetation patches (characterized by plant community types and cover). Two types of sink patches were identified: shrub Genista scorpius patches could be considered as a "deep sink", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil) to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata). Finally, we identified the volume of overland flow routing along the slope as a controlling major factor of hydrological diversity: when overland flow increases at the slope scale hydrological diversity diminishes.

  11. Room temperature gas-solid reaction of titanium on glass surfaces forming a very low resistivity layer

    NASA Astrophysics Data System (ADS)

    Solís, Hugo; Clark, Neville; Azofeifa, Daniel; Avendano, E.

    2016-09-01

    Titanium films were deposited on quartz, glass, polyamide and PET substrates in a high vacuum system at room temperature and their electrical resistance monitored in vacuo as a function of thickness. These measurements indicate that a low electrical resistance layer is formed in a gas-solid reaction during the condensation of the initial layers of Ti on glass and quartz substrates. Layers begin to show relative low electrical resistance at around 21 nm for glass and 9nm for quartz. Samples deposited on polyamide and PET do not show this low resistance feature.

  12. Opaque Mineral Assemblages at Chondrule Boundaries in the Vigarano CV Chondrite: Evidence for Gas-Solid Reactions Following Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Lauretta, Dante S.

    2004-01-01

    Recent studies of opaque minerals in primitive ordinary chondrites suggest that metal grains exposed at chondrule boundaries were corroded when volatile elements recondensed after the transient heating event responsible for chondrule formation. Metal grains at chondrule boundaries in the Bishunpur (LL3.1) chondrite are rimmed by troilite and fayalite. If these layers formed by gas solid reaction, then the composition of the corrosion products can provide information on the chondrule formation environment. Given the broad similarities among chondrules from different chondrite groups, similar scale layers should occur on chondrules in other primitive meteorite groups. Here I report on metal grains at chondrule boundaries in Vigarano (CV3).

  13. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture

    PubMed Central

    Dodd, Ian C.; Egea, Gregorio; Davies, William J.

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. ‘Two root-one shoot’ grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Ψsoil) during PRD. Although Ψsoil of the irrigated pot determined the threshold Ψsoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Ψsoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Ψsoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed. PMID:18940933

  14. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture.

    PubMed

    Dodd, Ian C; Egea, Gregorio; Davies, William J

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.

  15. Evaluation of Rainfall Impacts on Groundwater Flow and Land Deformation in an Unsaturated Heterogeneous Slope and Slope Stability Using a Fully Coupled Hydrogeomechanical Numerical Model

    NASA Astrophysics Data System (ADS)

    Kihm, J.; Kim, J.

    2006-12-01

    A series of numerical simulations using a fully coupled hydrogeomechanical numerical model, which is named COWADE123D, is performed to analyze groundwater flow and land deformation in an unsaturated heterogeneous slope and its stability under various rainfall rates. The slope is located along a dam lake in Republic of Korea. The slope consists of the Cretaceous granodiorite and can be subdivided into the four layers such as weathered soil, weathered rock, intermediate rock, and hard rock from its ground surface due to weathering process. The numerical simulation results show that both rainfall rate and heterogeneity play important roles in controlling groundwater flow and land deformation in the unsaturated slope. The slope becomes more saturated, and thus its overall hydrogeomechanical stability deteriorates, especially in the weathered rock and weathered soil layers, as the rainfall increases up to the maximum daily rainfall rate in the return period of one year. However, the slope becomes fully saturated, and thus its hydrogeomechanical responses are almost identical under more than such a critical rainfall rate. From the viewpoint of hydrogeology, the pressure head, and hence the hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. Particularly, the groundwater flow velocity increases significantly in the weathered soil and weathered rock layers as the rainfall rate increases. This is because their hydraulic conductivity is relatively higher than that of the intermediate rock and hard rock layers. From the viewpoint of geomechanics, the horizontal displacement increases, while the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the

  16. The Impact of the Flow Field Heterogeneity and of the Injection Rate on the Effective Reaction Rates in Carbonates: a Study at the Pore Scale

    NASA Astrophysics Data System (ADS)

    Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.

    2015-12-01

    Carbonate rocks are notoriously difficult to characterize. Their abrupt facies variations give rise to drastic changes in the petrophysical properties of the reservoir. Such heterogeneity, when further associated with variations in rock mineralogy due to diagenetic processes, result in a challenging scenario to model from the pore to the field scale. Micro-CT imaging is one of the most promising technologies to characterize porous rocks. The understanding at the pore scale of reactive and non-reactive transport is being pushed forward by recent developments in both imaging capability - 3D images with resolution of a few microns - and in modeling techniques - flow simulations in giga-cell models. We will present a particle-based method capable of predicting the evolution of petrophysical properties of carbonate cores subjected to CO2 injection at reservoir conditions (i.e. high pressures and temperatures). Reactive flow is simulated directly on the voxels of high resolution micro-CT images of rocks. Reactants are tracked using a semi-analytical streamline tracing algorithm and rock-fluid interaction is controlled by the diffusive flux of particles from the pores to the grains. We study the impact of the flow field heterogeneity and of the injection rate on the sample-averaged (i.e. effective) reaction rate of calcite dissolution in three rocks of increasing complexity: a beadpack, an oolitic limestone and a bioclastic limestone. We show how decreases in the overall dissolution rate depend on both the complexity of the pore space and also on the flow rate. This occurs even in chemically homogenous rocks. Our results suggest that the large differences observed between laboratory and field scale rates could, in part, be explained by the inhomogeneity in the flow field at the pore scale and the consequent transport-limited flux of reactants at the solid surface. Our results give valuable insight into the processes governing carbonate dissolution and provide a starting

  17. Higher order FE-FV method on unstructured grids for transport and two-phase flow with variable viscosity in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Schmid, K. S.; Geiger, S.; Sorbie, K. S.

    2013-05-01

    This paper presents higher order methods for the numerical modeling of two-phase flow with simultaneous transport and adsorption of viscosifying species within the individual phases in permeable porous media. The numerical scheme presented addresses the three major challenges in simulating this process. Firstly, the component transport is strongly coupled with the viscous and capillary forces that act on the movement of the carrier phase. The discretization of the capillary parts is especially difficult since its effect on flow yields non-linear parabolic conservation equations. These are amenable to non-linear finite elements (FEs), while the capillary contribution on the component transport is first-order hyperbolic, where classical FEs are unsuitable. We solve this efficiently by a Strang splitting that uses finite volumes (FVs) with explicit time-stepping for the viscous parts and a combined finite element-finite volume (FEFV) scheme with implicit time-stepping for the capillary parts. Secondly, the components undergo hydrodynamic dispersion and discerning between numerical and physical dispersion is essential. We develop higher-order formulations for the phase and component fluxes that keep numerical dispersion low and combine them with implicit FEs such that the non-linearities of the dispersion tensor are fully incorporated. Thirdly, subsurface permeable media show strong spatial heterogeneity, with coefficients varying over many orders of magnitude and geometric complexity that make the use of unstructured grids essential. In this work, we employ node-centered FVs that combine their ability to resolve flow with the flexibility of FEs. Numerical examples of increasing complexity are presented that demonstrate the convergence and robustness of our approach and prove its versatility for highly heterogeneous, and geometrically complex fractured porous media.

  18. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.

  19. Efficient triple-grid multiscale finite element method for 3D groundwater flow simulation in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Xie, Yifan; Wu, Jichun; Nan, Tongchao; Xue, Yuqun; Xie, Chunhong; Ji, Haifeng

    2017-03-01

    In this paper, an efficient triple-grid multiscale finite element method (ETMSFEM) is proposed for 3D groundwater simulation in heterogeneous porous media. The main idea of this method is to employ new 3D linear base functions and the domain decomposition technique to solve the local reduced elliptical problem, thereby simplifying the base function construction process and improving the efficiency. Furthermore, by using the ETMSFEM base functions, this method can solve Darcy's equation with high efficiency to obtain a continuous velocity field. Therefore, this method can considerably reduce the computational cost of solving for heads and velocities, which is crucial for large-scale 3D groundwater simulations. In the application section, we present numerical examples to compare the ETMSFEM with several classical methods to demonstrate its efficiency and effectiveness.

  20. Erratum to “On the gas-solid difference in stopping power for low energy ions” [Nucl. Instr. and Meth. B 262 (2007) 13

    NASA Astrophysics Data System (ADS)

    Paul, Helmut

    2008-03-01

    Recently, we claimed that the gas-solid difference in stopping powers persists from high down to low ion energies. This claim was based on a comparison between experimental data and the table of ICRU Report 73. We reconsider this claim in view of a recent article by Sigmund and Schinner where the claim was rejected. We find that the apparent gas-solid difference shown in our calculations is an artifact: it really points to an inadequacy of the table of ICRU 73 for low energy ions.

  1. Experimental and numerical analysis of parallel reactant flow and transverse mixing with mineral precipitation in homogeneous and heterogeneous porous media

    SciTech Connect

    Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; Huang, Hai; Redden, George

    2015-12-17

    Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous and high permeability inclusion experiments, BaSO4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.

  2. A computer controlled system for studying gas-solid state reactions in X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Gaponov, Yu. A.; Yevdokov, O. V.; Sukhorukov, A. V.

    1995-02-01

    An automated system for temperature and pressure control in a reaction chamber for studying gas-solid state reactions in X-ray diffraction experiments with the use of synchrotron radiation (SR) is designed at the Siberian Synchrotron Radiation Center (Budker INP, Novosibirsk). A computer algorithm for controlling the temperature in the reaction chamber was developed. An analysis of the thermal characteristics of the reaction chamber was carried out in the 293-800 K temperature range and in the 0-0.2 MPa range of pressures with an accuracy of 1-3 K and 0.01 MPa respectively. Test experiments on studying the thermal decomposition of some organo-metallic compounds were carried out with the use of the designed system.

  3. Molecular engineering of Schiff-base linked covalent polymers with diverse topologies by gas-solid interface reaction.

    PubMed

    Liu, Xuan-He; Guan, Cui-Zhong; Zheng, Qing-Na; Wang, Dong; Wan, Li-Jun

    2015-03-14

    The design and construction of molecular nanostructures with tunable topological structures are great challenges in molecular nanotechnology. Herein, we demonstrate the molecular engineering of Schiff-base bond connected molecular nanostructures. Building module construction has been adopted to modulate the symmetry of resulted one dimensional (1D) and two dimensional (2D) polymers. Specifically, we have designed and constructed 1D linear and zigzag polymers, 2D hexagonal and chessboard molecular nanostructures by varying the number of reactive sites and geometry and symmetry of precursors. It is demonstrated that high-quality conjugated polymers can be fabricated by using gas-solid interface reaction. The on-demanding synthesis of polymeric architectures with diverse topologies paves the way to fabricate molecular miniature devices with various desired functionalities.

  4. Experimental quantification of pore-scale flow of water and liquid CO2 in 2D heterogeneous porous micromodels at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth

    2016-11-01

    Pore-scale flow interactions between water and supercritical CO2 is relevant to large-scale geologic sequestration of CO2. Recent studies have provided evidence of strong instabilities at the meniscus resulting in burst events and onset of inertial effects. This supports the notion that pore-scale physics cannot be captured by Darcian models and unsteady events play a defining role in CO2 transport/trapping processes and such burst events may generate pressure fluctuations that can be linked to micro-seismic events in the pore structure. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions in 2D heterogeneous porous micro-models that reflect the complexity of a real sandstone. Fluorescent microscopy and micro-PIV are complemented by a fast differential pressure transmitter, allowing for simultaneous quantification of the flow field within and the instantaneous pressure drop across the micromodels. A number of CO2 invasion patterns and corresponding pressure drop variations are observed over a range of wettability conditions, yielding a more comprehensive picture of the CO2 drainage processes. This work was primarily supported as part of the Center for Geologic Storage of CO2 , an EFRC funded by the U.S. Department of Energy, Office of Science and partially supported by WPI-I2CNER based at Kyushu University, Japan.

  5. Understanding the formation of Titan's aerosols : Study by UV-visible spectrometry of gas/solid interactions in Titan's simulated atmosphere.

    NASA Astrophysics Data System (ADS)

    Bernard, J.-M.; Coll, P.; Jolly, A.; Bénilan, Y.; Cernogora, G.; Raulin, F.

    2003-04-01

    The atmospheric chemistry on Titan is reproduced during laboratory simulation experiments since several years. In order to simulate as well as possible Titan's atmosphere, these simulations are done by initiating a glow discharge in a continuously flowing N2/CH4 mixture at low temperature. Cold plasma at low pressure are used to simulate the photochemistry because the Electron Energy Distribution Function (EEDF) is close to the solar spectrum. The aim of the presented work is the in situ plasma study by a UV-visible Optical Emission Spectrometry and electrostatic probe measurements. The gas temperature is deduced from rotational nitrogen spectra, and the electric field from probe measurements. From the ratio E/N0 it is possible to calculate the EEDF. Moreover, the compounds (molecules/radicals/ions) evolution analysis in the reactor will allow the identification of those at the origin of the building of the solid phase, at gas/solid interface. From this work it could be possible to have a better knowledge of the formation of "tholins" considered to be an analogue of Titan's aerosols. We will present the first results obtained by emission spectroscopy, during experimental simulations of Titan's atmosphere. We will point out the detection of all the possible diatomic species made of C, N or H. We will also show the variation of their abundance as a function of the physico-chemical parameters of the discharge (temperature, pressure, percentage of methane in the initial gas mixture...). For example, the reactor immersion in a cryogenic fluid (liquid nitrogen) implies a noticeable change on the gas temperature and proves also the impact of this immersion to better simulate Titan's environment.

  6. Study By Uv-visible Spectrometry of Gas/solid Interactions In Titan's Simulated Atmosphere, A.k.a. How Aerosols Are Formed On Titan ?

    NASA Astrophysics Data System (ADS)

    Bernard, J.-M.; Coll, P.; Jolly, A.; Bénilan, Y.; Cernogora, G.; Raulin, F.

    The atmospheric chemistry on Titan is reproduced during laboratory simulation ex- periments since several years. The device we developed at LISA leaded to the identi- fication of 70 gaseous compounds (46 hydrocarbons and 24 nitrogenous compounds), while the chemical composition of the solid phase is still not known in spite of IR spectrometry and pyrolysis analysis. These simulations are based on a initial mixture of N2/CH4, submitted to a glow discharge, at continuous flow and at low temperature in order to simulate as well as possible Titan's atmosphere. The highlighting identi- fication of C4N2, detected on Titan but never identified previously in experimental simulations, validates the representativity of the LISA experiment. The aim of the project presented today is a UV-visible spectrometry in situ study of the reactional environment where are produced the solid phase, considered as an analogue of Titan's aerosols. The analysis of the evolution of the compounds (molecules/radicals/ions) present in the reactor will allow the identification of those responsible of the building of the solid phase, at gas/solid interface. A second step will be the modeling of the mechanisms taking place in the reactor, which are very badly known at the present time. The final stage of this work will be to use a full theoretical model of plasma chemistry, still developed. We will present today the first results obtained by emission spectroscopy, during an experimental simulation of Titan's atmosphere, and point out the decreasing of some compounds in parallel to the formation of solid phase.

  7. Ground-based thermography of fluvial systems at low and high discharge reveals potential complex thermal heterogeneity driven by flow variation and bioroughness

    USGS Publications Warehouse

    Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.

    2008-01-01

    Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.

  8. A one-dimensional model for gas-solid heat transfer in pneumatic conveying

    NASA Astrophysics Data System (ADS)

    Smajstrla, Kody Wayne

    A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.

  9. A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-02-01

    A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.

  10. Experimental and numerical analysis of parallel reactant flow and transverse mixing with mineral precipitation in homogeneous and heterogeneous porous media

    DOE PAGES

    Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; ...

    2015-12-17

    Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous andmore » high permeability inclusion experiments, BaSO4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.« less

  11. Frictional strength heterogeneity and surface heat flow: Implications for the strength of the creeping San Andreas fault

    USGS Publications Warehouse

    d'Alessio, M. A.; Williams, C.F.; Burgmann, R.

    2006-01-01

    Heat flow measurements along much of the San Andreas fault (SAF) constrain the apparent coefficient of friction (??app) of the fault to 0.2 should be detectable even with the sparse existing observations, implying that ??app for the creeping section is as low as the surrounding SAF. Because the creeping section does not slip in large earthquakes, the mechanism controlling its weakness is not related to dynamic processes resulting from high slip rate earthquake ruptures. Copyright 2006 by the American Geophysical Union.

  12. Heterogeneities in the thickness of the elastic lithosphere of Mars: Constraints on heat flow and internal dynamics

    SciTech Connect

    Solomon, S.C. ); Head, J.W. )

    1990-07-10

    Derived values of the thickness of the effective elastic lithosphere on Mars are converted to estimates of lithospheric thermal gradients and surface heat flow by finding the thickness of the elastic-plastic plate having the same bending moment and curvature, subject to assumed strain rates and temperature-dependent flow laws for crustal and mantle material. Local thermal gradients and heat flow values so estimated were 10-14 K km{sup {minus}1} and 25-35 mW m{sup {minus}2}, respectively, at the time of formation of flexurally induced graben surrounding the Tharsis Montes and Alba Patera, while gradients and heat flow values of less than 5-6 K km{sup {minus}1} and 17-24 mW m{sup {minus}2}, respectively, characterized the lithosphere beneath the Isidis mascon and Olympus Mons at the time of emplacement of these loads. On the basis of the mean global thickness of the elastic lithosphere inferred to support the Tharsis rise and estimates of mantle heat production obtained from SNC meteorites, it is suggested that the present average global heat flux on Mars is in the range 15-25 mW m{sup {minus}2}. Approximately 3-5% of this heat flux during the Amazonian epoch has been contributed by excess conducted heat in the central regions of major volcanic provinces. Most likely, this excess heat flux has been delivered to the base of the lithosphere by mantle plumes. The fractional mantle heat transport contributed by plumes during the last 2 b.y. on Mars is therefore similar to that at present on Earth.

  13. Photosensitized Heterogeneous Oxidation Reactions of Organic Biomass Burning Aerosol Surrogates by Ozone Using a Novel Irradiation-Permitting Rectangular Channel Flow Reactor

    NASA Astrophysics Data System (ADS)

    Forrester, S. M.; Knopf, D. A.

    2012-12-01

    Organic aerosol particles are ubiquitous in the atmosphere and can influence the climate both directly through scattering and absorption of radiation and indirectly through modification of cloud properties. Biomass burning is a major source of organic aerosol particles to the atmosphere. Source apportionment of biomass burning plumes relies heavily on biomolecular markers such as levoglucosan. However, these compounds can react heterogeneously with trace gases, which may cause source strength underestimation. The presence of light absorbing material known as photosensitizers can cause biomolecular markers to react more efficiently with trace gases when exposed to radiation. In this study, the heterogeneous kinetics between ozone and compounds typical of organic biomass burning aerosol particles are determined in the absence and presence of a photosensitizing compound. The effect of visible or UV radiation on the heterogeneous kinetics is investigated. Levoglucosan and nitroguaiacol serve as surrogates for organic biomass burning aerosol and Pahokee peat serves as a surrogate for HuLIS (humic-like substances). The latter is known to be a photosensitizer and can be found in biomass burning aerosol particles. The reactive uptake experiments are conducted with a newly designed rectangular channel flow reactor that allows controlled visible and UV irradiation of the organic substrates. The absolute irradiance of the visible and UV light sources is characterized using a calibrated fiber optic spectrometer. Reactive uptake coefficients are determined by monitoring the gas-phase loss of ozone to the organic substrate using a custom-built chemical ionization mass spectrometer (CIMS). The heterogeneous kinetics are derived in the presence of atmospherically relevant O3 and O2 concentrations and total pressure is about 2-3 hPa, ensuring negligible diffusion limitations. Reactive uptake experiments are also performed as a function of total incoming photon flux and ozone

  14. On the Superficial Gas Velocity in Deep Gas-Solid Fluidized Beds

    SciTech Connect

    Li, Tingwen; Grace, John; Shadle, Lawrence; Guenther, Chris

    2011-11-15

    The superficial gas velocity is one of the key parameters used to determine the flow hydrodynamics in gas–solids fluidized beds. However, the superficial velocity varies with height in practice, and there is no consistent basis for its specification. Different approaches to determine the superficial gas velocity in a deep gas–solids system are shown to cause difficulties in developing models and in comparing predictions with experimental results. In addition, the reference conditions for superficial gas velocity are important in modeling of deep gas–solids systems where there is a considerable pressure drop.

  15. Heterogeneities in the thickness of the elastic lithosphere of Mars - Constraints on heat flow and internal dynamics

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; Head, James W.

    1990-07-01

    Estimates of the effective thickness of the Martian elastic lithosphere are reviewed, and these thickness values are converted to estimates of lithospheric thermal gradients and surface heat flow by means of temperature-dependent strength envelopes. The results of estimates of thermal gradients for various locations, together with the information on the geological epochs appropriate to each estimate of thermal gradient, were related to the global heat flux, the interior thermal evolution, the Martial lithospheric reheating mechanisms, and the evolution of major volcanic provinces on Mars.

  16. Heterogeneities in the thickness of the elastic lithosphere of Mars - Constraints on heat flow and internal dynamics

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Head, James W.

    1990-01-01

    Estimates of the effective thickness of the Martian elastic lithosphere are reviewed, and these thickness values are converted to estimates of lithospheric thermal gradients and surface heat flow by means of temperature-dependent strength envelopes. The results of estimates of thermal gradients for various locations, together with the information on the geological epochs appropriate to each estimate of thermal gradient, were related to the global heat flux, the interior thermal evolution, the Martial lithospheric reheating mechanisms, and the evolution of major volcanic provinces on Mars.

  17. Heterogeneous uptake of NO2 on Arizona Test Dust under UV-A irradiation: An aerosol flow tube study

    NASA Astrophysics Data System (ADS)

    Dupart, Yoan; Fine, Ludovic; D'Anna, Barbara; George, Christian

    2014-12-01

    The uptake rate of NO2 on Arizona Test Dust aerosols was measured using an aerosol flow tube (AFT). While the uptake rate in the dark could not be measured, the uptake under UV-A irradiation was enhanced, with values in the range from (0.6 ± 0.3) × 10-8, (2.4 ± 0.4) × 10-8. The observed gas phase products were HONO and NO, with yields of at 30% and 9.6%, respectively. The difference between these measurements and those previously reported on macroscopic films are discussed and differences highlighted. Interestingly, a reasonable agreement is observed between the uptake kinetics of NO2 on Arizona Test Dust macroscopic films and aerosols, despite the different experimental approaches. The simplest approach i.e. thin films having a significant porosity, provides similar uptake kinetics to the more complex and realistic AFT approach.

  18. Cerebral Blood Flow Heterogeneity in Preterm Sheep: Lack of Physiological Support for Vascular Boundary Zones in Fetal Cerebral White Matter

    PubMed Central

    McClure, Melissa; Riddle, Art; Manese, Mario; Luo, Ning Ling; Rorvik, Dawn A.; Kelly, Katherine A.; Barlow, Clyde H.; Kelly, Jeffrey J.; Vinecore, Kevin; Roberts, Colin; Hohimer, A. Roger; Back, Stephen A.

    2011-01-01

    Periventricular white matter (PVWM) injury is the leading cause of chronic neurological disability in survivors of prematurity. To address the role of cerebral ischemia in the pathogenesis of this injury, we tested the hypothesis that immaturity of spatially distal vascular “end” or “border” zones predisposes the PVWM to be more susceptible to falls in cerebral blood flow (CBF) than more proximal regions, such as the cerebral cortex. We used fluorescently-labeled microspheres to quantify regional CBF in situ in the 0.65 gestation fetal sheep in histopathologically-defined 3-dimensional regions by means of post hoc digital dissection and co-registration algorithms. Basal flow in PVWM was significantly lower than gyral white matter and cerebral cortex, but was equivalent in superficial, middle and deep PVWM. Absolute and relative CBF (expressed as percentage of basal) CBF did not differ during ischemia or reperfusion between the PVWM and more superficial gyral white matter or cortex. Moreover, CBF during ischemia and reperfusion was equivalent at three distinct levels of the PVWM. Absolute and relative CBF during ischemia and reperfusion was not predictive of the severity of PVWM injury, as defined by TUNEL staining. However, the magnitude of ischemia to the cerebral cortex directly correlated with lesion severity (r= −0.48, p<.05). Hence, the PVWM did not display unique CBF disturbances that accounted for the distribution of injury. These results suggest that previously-defined cellular-maturational factors have a greater influence on the vulnerability of PVWM to ischemic injury than the presence of immature vascular-boundary zones. PMID:18091757

  19. When good statistical models of aquifer heterogeneity go right: The impact of aquifer permeability structures on 3D flow and transport

    NASA Astrophysics Data System (ADS)

    Jankovic, I.; Maghrebi, M.; Fiori, A.; Dagan, G.

    2017-02-01

    Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the univariate PDF f(Y) and autocorrelation ρY. Solute transport is analyzed through the Breakthrough Curve (BTC) at planes at distance x from the injection plane. The study examines the impact of permeability structures sharing same f(Y) and ρY, but differing in higher order statistics (integral scales of variograms of Y classes) upon the numerical solution of flow and transport. Flow and transport are solved for 3D structures, rather than the 2D models adopted in most of previous works. We considered a few permeability structures, including the widely employed multi-Gaussian, the connected and disconnected fields introduced by Zinn and Harvey [2003] and a model characterized by equipartition of the correlation scale among Y values. We also consider the impact of statistical anisotropy of Y, the shape of ρY and local diffusion. The main finding is that unlike 2D, the prediction of the BTC of ergodic plumes by numerical and analytical models for different structures is quite robust, displaying a seemingly universal behavior, and can be used with confidence in applications. However, as a prerequisite the basic parameters KG (the geometric mean), σY2 (the logconductivity variance) and I (the horizontal integral scale of ρY) have to be identified from field data. The results suggest that narrowing down the gap between the BTCs in applications can be achieved by obtaining Kef (the effective conductivity) or U independently (e.g. by pumping tests), rather than attempting to characterize the permeability structure beyond f(Y) and ρY.

  20. Torsional rheometer for granular materials slurries and gas-solid mixtures and related methods

    DOEpatents

    Rajagopal, C.; Rajagopal, K.R.; Yalamanchili, R.C.

    1997-03-11

    A torsional rheometer apparatus for determining rheological properties of a specimen is provided. A stationary plate and a rotatable plate are in generally coaxial position and structured to receive a specimen there between. In one embodiment, at least one of the plates and preferably both have roughened specimen engaging surfaces to serve to reduce undesired slippage between the plate and the specimen. A motor is provided to rotate the rotatable plate and a transducer for monitoring forces applied to the stationary plate and generating output signals to a computer which determines the desired rheological properties are provided. In one embodiment, the roughened surfaces consist of projections extending toward the specimen. Where granular material is being evaluated, it is preferred that the roughness of the plate is generally equal to the average size of the granular material being processed. In another embodiment, an air-solid mixture is processed and the roughened portions are pore openings in the plates. Air flows through the region between the two pore containing plates to maintain the solid materials in suspension. In yet another embodiment, the base of the stationary plate is provided with a deformable capacitance sensor and associated electronic means. 17 figs.

  1. Transparent organosilica photocatalysts activated by visible light: photophysical and oxidative properties at the gas-solid interface.

    PubMed

    Arzoumanian, Emmanuel; Ronzani, Filippo; Trivella, Aurélien; Oliveros, Esther; Sarakha, Mohamed; Richard, Claire; Blanc, Sylvie; Pigot, Thierry; Lacombe, Sylvie

    2014-01-08

    The photophysical properties of several photosensitizers (PSs) included or grafted in silica monoliths were compared to their properties in solution. The effects of the solid support on their steady-state and transient absorption spectra, on their quantum yields of singlet oxygen ((1)O2) production, and on their ability to photoinduce the oxidation of dimethylsulfide (DMS) were investigated. Two cyanoanthracene derivatives (9,14-dicyanobenzo[b]triphenylene, DBTP, and 9,10-dicyanoanthracene, DCA), as well as three phenothiazine dyes (methylene blue, MB(+), new methylene blue, NMB(+), methylene violet, MV), were encapsulated in silica, analyzed and compared to two reference PSs (perinaphthenone, PN and rose bengal, RB). A DBTP derivative (3-[N-(N″-triethoxysilylpropyl-N'-hexylurea)]carboxamido-9,14-dicyanobenzo[b]triphenylene, 3) was also prepared and grafted onto silica. Thanks to the transparency and the free-standing shape of the monoliths, the complete spectroscopic characterization of the supported PSs was carried out directly at the gas-solid interface. The influence of the silica network, the PS, and the adsorption/grafting link between the PS and silica was investigated. The effects of PS concentration, gaseous atmosphere, humidity, and hydrophobicity on the production of (1)O2 were analyzed. With all PSs, (1)O2 production was very efficient (quantum yields of (1)O2 production, relative to PN, between 0.6 and 1), and this species was the only one involved in the pollutant photooxidation. The influence of the matrix on the PSs' photophysics could be considered as negligible. In contrast, the matrix effect on DMS photooxidation was extremely important: the gas diffusion inside the porous structure, and thus, the photoactivity of the materials, strictly depended on silica's surface area and porosity. Our results highlight the suitability of these silica structures as inert supports for the study of the photosensitizing properties at the gas-solid interface

  2. Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Li, Zhen-wei; Zhang, Guang-hui; Geng, Ren; Wang, Hao

    2015-11-01

    Ephemeral gullies are typical erosional landforms and widespread on the Chinese Loess Plateau. To better understand the spatial variability in soil detachment capacity (DC) by overland flow and its influence at a hillslope with an ephemeral gully, this study investigates a hillslope on the Loess Plateau using classical statistics, geostatistical analysis, and principal component analysis. Undisturbed soil samples were collected from 202 sites along nine 90 m transects in two completely developed ephemeral gullies, and were scoured in a laboratory flume under consistent hydraulic conditions. The results indicate that DC varied widely from 0.0004 to 1.25 kg m- 2 s- 1 with a mean of 0.22 kg m- 2 s- 1. The coefficient of variation also shows a high variability in DC. The ephemeral gullies were divided into four sections (uppermost, upper, middle and lower slopes) and DC differed significantly among the four sections. A semivariogram of DC indicated a moderate spatial dependence. The sampling interval significantly affects the spatial pattern of DC. When the sampling interval decreased from 10 to 2 m, the nugget variance decreased, whereas structured variance, spatial dependence, and range increased. Distribution maps of DC, derived from kriging interpolation, showed that samples in the lower slope position have greater DC than the other positions. DC significantly correlates with clay content, sand content, median soil grain size, bulk density, cohesion, water stable aggregate, and litter mass density. Principal component analysis (PCA) and a minimum data set (MDS) method identified that the median soil grain size, bulk density, and litter mass density were the major factors affecting the spatial variability in DC.

  3. Behavior of an heterogeneous annular FBR core during an unprotected loss of flow accident: Analysis of the primary phase with SAS-SFR

    SciTech Connect

    Massara, S.; Schmitt, D.; Bretault, A.; Lemasson, D.; Darmet, G.; Verwaerde, D.; Struwe, D.; Pfrang, W.; Ponomarev, A.

    2012-07-01

    In the framework of a substantial improvement on FBR core safety connected to the development of a new Gen IV reactor type, heterogeneous core with innovative features are being carefully analyzed in France since 2009. At EDF R and D, the main goal is to understand whether a strong reduction of the Na-void worth - possibly attempting a negative value - allows a significant improvement of the core behavior during an unprotected loss of flow accident. Also, the physical behavior of such a core is of interest, before and beyond the (possible) onset of Na boiling. Hence, a cutting-edge heterogeneous design, featuring an annular shape, a Na-plena with a B{sub 4}C plate and a stepwise modulation of fissile core heights, was developed at EDF by means of the SDDS methodology, with a total Na-void worth of -1 $. The behavior of such a core during the primary phase of a severe accident, initiated by an unprotected loss of flow, is analyzed by means of the SAS-SFR code. This study is carried-out at KIT and EDF, in the framework of a scientific collaboration on innovative FBR severe accident analyses. The results show that the reduction of the Na-void worth is very effective, but is not sufficient alone to avoid Na-boiling and, hence, to prevent the core from entering into the primary phase of a severe accident. Nevertheless, the grace time up to boiling onset is greatly enhanced in comparison to a more traditional homogeneous core design, and only an extremely low fraction of the fuel (<0.1%) enters into melting at the end of this phase. A sensitivity analysis shows that, due to the inherent neutronic characteristics of such a core, the gagging scheme plays a major role on the core behavior: indeed, an improved 4-zones gagging scheme, associated with an enhanced control rod drive line expansion feed-back effect, finally prevents the core from entering into sodium boiling. This major conclusion highlights both the progress already accomplished and the need for more detailed

  4. Gas/solid carbon branching ratios in surface-mediated reactions and the incorporation of carbonaceous material into planetesimals

    NASA Astrophysics Data System (ADS)

    Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia

    2016-07-01

    We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume "filamentous" structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.

  5. An Improved Pneumatic Nebulization Gas-Solid Microextraction Device Used to Detect Triazine Herbicides in White Spirit.

    PubMed

    Xu, Hui; Fei, Qiang; Shan, Hongyan; Huan, Yanfu; Mi, Hongyu; Zhang, Hanqi; Li, Guanghua; Feng, Guodong

    2016-01-01

    The pneumatic nebulization gas-solid microextraction device fascinating us is because it directly atomized organic samples to cross a solid-phase microextraction (SPME) cartridge without any pretreatment. In this work, both the spray chamber and SPME column of the extraction device were heated. We found that this would significantly improve the extraction efficiency of this method. Then, this method was used to detect seven triazine herbicides (atraton, desmetryn, atrazine, terbumeton, terbuthylazine, terbutryn, and dipropetryn) in drinking alcohol samples. The experimental results indicated that this extraction procedure could conveniently, efficiently and accurately concentrate any triazine herbicides from drinking alcohol samples. The limits of detection (LODs) were from 0.08 to 0.23 μg L(-1), the limits of quantification (LOQs) were from 0.27 to 0.78 μg L(-1). We used this method to detect triazine herbicides in five white spirit samples. Four concentrations were chosen (5, 25, 50 and 100 μg L(-1)) as the amounts of spikes to investigate the recovery and precision of the present PN-GSME method. The recoveries ranged from 95.91 to 106.67%. The relative standard deviations were not more than 6.51%. Also this method matches the requirement of the maximum residue limits of the European Union.

  6. CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust.

    PubMed

    El-Naas, Muftah H; El Gamal, Maisa; Hameedi, Suhaib; Mohamed, Abdel-Mohsen O

    2015-06-01

    Mineral CO2 sequestration is a promising process for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline calcium-rich dust particles collected from bag filters of electric arc furnaces (EAF) for steel making were utilized as a viable raw material for mineral CO2 sequestration. The dust particles were pre-treated through hydration, drying and screening. The pre-treated particles were then subjected to direct gas-solid carbonation reaction in a fluidized-bed reactor. The carbonated products were characterized to determine the overall sequestration capacity and the mineralogical structures. Leaching tests were also performed to measure the extracted minerals from the carbonated dust and evaluate the carbonation process on dust stabilization. The experimental results indicated that CO2 could be sequestered using the pre-treated bag house dust. The maximum sequestration of CO2 was 0.657 kg/kg of dust, based on the total calcium content. The highest degree of carbonation achieved was 42.5% and the carbonation efficiency was 69% at room temperature.

  7. Gas-solid chromatographic analysis of automobile tailpipe emissions as a function of different engine and exhaust system modifications

    SciTech Connect

    Kang, L.; Armstrong, D.W.

    1994-12-31

    The authors developed a single, relatively short gas-solid chromatographic PLOT column and used it to separate aliphatic hydrocarbons, aromatic hydrocarbons and some inorganic gases (O{sub 2}, N{sub 2}, CO and CO{sub 2}) found in automobile exhaust. In the case of hydrocarbons, both aliphatic and aromatic components (up through alkylated-benzenes) were done in one run. Subambient temperature was needed for the oxygen-nitrogen separation, but they were easily resolved from each other and the other compounds present. The effects of different engine and exhaust system modifications on the level of compounds in the exhaust were tested. The concentrations of the emission gases varied considerably with changes in air/fuel ratio, coil voltage, use of catalytic converters and so forth. The results showed that the use of catalytic converter and a higher voltage coil tended to produce the most pronounced decreases in emissions of hydrocarbons and the catalytic converter produced the significant decrease in carbon monoxide concentrations. The results of the GSC analyses were compared to those of a commercial emission analyzer (i.e., sniffer). They showed similar trends and relative concentrations but somewhat different absolute concentrations. This may have been due to differences in the calibration of these methods.

  8. Observation and simulation of heterogeneous 2D water and solute flow processes in ditch beds for subsequent catchment modelling

    NASA Astrophysics Data System (ADS)

    Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc

    2015-04-01

    Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last

  9. A dynamic flow simulation code benchmark study addressing the highly heterogeneous properties of the Stuttgart formation at the Ketzin pilot site

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Class, Holger; Görke, Uwe-Jens; Norden, Ben; Kolditz, Olaf; Kühn, Michael; Walter, Lena; Wang, Wenqing; Zehner, Björn

    2013-04-01

    CO2 injection at the Ketzin pilot site located in Eastern Germany (Brandenburg) about 25 km west of Berlin is undertaken since June 2008 with a scheduled total amount of about 70,000 t CO2 to be injected into the saline aquifer represented by the Stuttgart Formation at a depth of 630 m to 650 m until the end of August 2013. The Stuttgart Formation is of fluvial origin determined by high-permeablity sandstone channels embedded in a floodplain facies of low permeability indicating a highly heterogeneous distribution of reservoir properties as facies distribution, porosity and permeability relevant for dynamic flow simulations. Following the dynamic modelling activities discussed by Kempka et al. (2010), a revised geological model allowed us to history match CO2 arrival times in the observation wells and reservoir pressure with a good agreement (Martens et al., 2012). Consequently, the validated reservoir model of the Stuttgart Formation at the Ketzin pilot site enabled us to predict the development of reservoir pressure and the CO2 plume migration in the storage formation by dynamic flow simulations. A benchmark study of industrial (ECLIPSE 100 as well as ECLIPSE 300 CO2STORE and GASWAT) and scientific dynamic flow simulations codes (TOUGH2-MP/ECO2N, OpenGeoSys and DuMuX) was initiated to address and compare the simulator capabilities considering a highly complex reservoir model. Hence, our dynamic flow simulations take into account different properties of the geological model such as significant variation of porosity and permeability in the Stuttgart Formation as well as structural geological features implemented in the geological model such as seven major faults located at the top of the Ketzin anticline. Integration of the geological model into reservoir models suitable for the different dynamic flow simulators applied demonstrated that a direct conversion of reservoir model discretization between Finite Volume and Finite Element flow simulators is not feasible

  10. Geochemical heterogeneity in a small, stratigraphically complex moraine aquifer system (Ontario, Canada): Interpretation of flow and recharge using multiple geochemical parameters

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; El Mugammar, H.T.; Johnston, C.; Judd-Henrey, I.; Harvey, F.E.; Drimmie, R.; Jones, J.P.

    2011-01-01

    The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30 years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic "windows" cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows. ?? 2010 Springer-Verlag.

  11. Potential Groundwater Recharge and the Effects of Soil Heterogeneity on Flow at Two Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect

    V. Yucel; D. G. Levitt

    2001-11-01

    Two low-level Radioactive Waste Management Sites (RWMSs), consisting of shallow land burial disposal units at the Nevada Test Site (NTS), are managed by Bechtel Nevada for the U.S. Department of Energy, National Nuclear Security Administration. The NTS has an arid climate with annual average precipitation of about 17 cm at the Area 3 RWMS and about 13 cm at the Area 5 RWMS. The vadose zone is about 490 m thick at the Area 3 RWMS, and about 235 m thick at the Area 5 RWMS. Numerous studies indicate that under current climatic conditions, there is generally no groundwater recharge at these sites. Groundwater recharge may occur at isolated locations surrounding the RWMSs, such as in large drainage washes. However, groundwater recharge scenarios (and radionuclide transport) at the RWMSs are modeled in support of Performance Assessment (PA) documents required for operation of each RWMS. Recharge scenarios include conditions of massive subsidence and flooding, and recharge resulting from deep infiltration through bare-soil waste covers. This paper summarizes the groundwater recharge scenarios and travel time estimates that have been conducted in support of the PAs, and examines the effects of soil hydraulic property heterogeneity on flow.

  12. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    PubMed

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.

  13. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry.

  14. Quantum State-Resolved Reactive and Inelastic Scattering at Gas-Liquid and Gas-Solid Interfaces

    NASA Astrophysics Data System (ADS)

    Grütter, Monika; Nelson, Daniel J.; Nesbitt, David J.

    2012-06-01

    Quantum state-resolved reactive and inelastic scattering at gas-liquid and gas-solid interfaces has become a research field of considerable interest in recent years. The collision and reaction dynamics of internally cold gas beams from liquid or solid surfaces is governed by two main processes, impulsive scattering (IS), where the incident particles scatter in a few-collisions environment from the surface, and trapping-desorption (TD), where full equilibration to the surface temperature (T{TD}≈ T{s}) occurs prior to the particles' return to the gas phase. Impulsive scattering events, on the other hand, result in significant rotational, and to a lesser extent vibrational, excitation of the scattered molecules, which can be well-described by a Boltzmann-distribution at a temperature (T{IS}>>T{s}). The quantum-state resolved detection used here allows the disentanglement of the rotational, vibrational, and translational degrees of freedom of the scattered molecules. The two examples discussed are (i) reactive scattering of monoatomic fluorine from room-temperature ionic liquids (RTILs) and (ii) inelastic scattering of benzene from a heated (˜500 K) gold surface. In the former experiment, rovibrational states of the nascent HF beam are detected using direct infrared absorption spectroscopy, and in the latter, a resonace-enhanced multi-photon-ionization (REMPI) scheme is employed in combination with a velocity-map imaging (VMI) device, which allows the detection of different vibrational states of benzene excited during the scattering process. M. E. Saecker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson Science 252, 1421, 1991. A. M. Zolot, W. W. Harper, B. G. Perkins, P. J. Dagdigian and D. J. Nesbitt J. Chem. Phys 125, 021101, 2006. J. R. Roscioli and D. J. Nesbitt Faraday Disc. 150, 471, 2011.

  15. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  16. Heterogeneous catalysis.

    PubMed

    Schlögl, Robert

    2015-03-09

    A heterogeneous catalyst is a functional material that continually creates active sites with its reactants under reaction conditions. These sites change the rates of chemical reactions of the reactants localized on them without changing the thermodynamic equilibrium between the materials.

  17. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Liu, Zhao; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-11-19

    Depositing a pinhole-free perovskite film is of paramount importance to achieve high performance perovskite solar cells, especially in a heterojunction device format that is free of hole transport material (HTM). Here, we report that high-quality pinhole-free CH3NH3PbI3 perovskite film can be controllably deposited via a facile low-temperature (<150 °C) gas-solid crystallization process. The crystallite formation process was compared with respect to the conventional solution approach, in which the needle-shaped solvation intermediates (CH3NH3PbI3·DMF and CH3NH3PbI3·H2O) have been recognized as the main cause for the incomplete coverage of the resultant film. By avoiding these intermediates, the films crystallized at the gas-solid interface offer several beneficial features for device performance including high surface coverage, small surface roughness, as well as controllable grain size. Highly efficient HTM-free perovskite solar cells were constructed with these pinhole-free CH3NH3PbI3 films, exhibiting significant enhancement of the light harvesting in the long wavelength regime with respect to the conventional solution processed one. Overall, the gas-solid method yields devices with an impressive power conversion efficiency of 10.6% with high reproducibility displaying a negligible deviation of 0.1% for a total of 30 cells.

  18. Bayesian Uncertainty Quantification in Predictions of Flows in Highly Heterogeneous Media and Its Applications to the CO2 Sequestration

    SciTech Connect

    Efendiev, Yalchin; Datta-Gupta, Akhil; Jafarpour, Behnam; Mallick, Bani; Vassilevski, Panayot

    2015-11-09

    In this proposal, we have worked on Bayesian uncertainty quantification for predictions of fows in highly heterogeneous media. The research in this proposal is broad and includes: prior modeling for heterogeneous permeability fields; effective parametrization of heterogeneous spatial priors; efficient ensemble- level solution techniques; efficient multiscale approximation techniques; study of the regularity of complex posterior distribution and the error estimates due to parameter reduction; efficient sampling techniques; applications to multi-phase ow and transport. We list our publications below and describe some of our main research activities. Our multi-disciplinary team includes experts from the areas of multiscale modeling, multilevel solvers, Bayesian statistics, spatial permeability modeling, and the application domain.

  19. Magnesium hydroxide extracted from a magnesium-rich mineral for CO{sub 2} sequestration in a gas-solid system

    SciTech Connect

    Pao-Chung Lin; Cheng-Wei Huang; Ching-Ta Hsiao; Hsisheng Teng

    2008-04-15

    Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO{sub 2} as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH){sub 2} precipitation was demonstrated. The extracted Mg(OH){sub 2} powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m{sup 2}/g. Under one atmosphere of 10 vol% CO{sub 2}/N{sub 2}, carbonation of the serpentine-derived Mg(OH){sub 2} to 26% of the stoichiometric limit was achieved at 325{sup o}C in 2 h; while carbonation of a commercially available Mg(OH){sub 2}, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m{sup 2}/g, reached only 9% of the stoichiometric limit. The amount of CO{sub 2} fixation was found to be inversely proportional to the crystal domain size of the Mg(OH){sub 2} specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain. 24 refs., 6 figs., 2 tabs.

  20. Climate-dependent sediment production: numerical modeling and field observations of variable grain size distributions from heterogeneous hillslope weathering of fractured basalt flows, Kohala Peninsula, Hawaii

    NASA Astrophysics Data System (ADS)

    Murphy, B. P.; Johnson, J. P.

    2012-12-01

    We present a numerical model for hillslope sediment production that includes climate-dependent chemical weathering rates and bedrock fracture spacings, and predicts how grain size distributions vary with climate and hillslope erosion rate. Understanding sediment preparation, or the in situ reduction of fractured bedrock to coarse sediment by heterogeneous weathering on hillslopes, is critical to understanding the evolution of mountainous landscapes, as sediment supply rates and size distributions can strongly influence river incision rates. The majority of soil production models assume a homogenous substrate and uniform weathering front, and therefore do not track the size of rock fragments and corestones, which become the sediment supplied to channels by hillslope erosion. Our model is inspired by the Kohala Peninsula on the big island of Hawaii, which has a gradient of mean annual precipitation (MAP) spanning over an order of magnitude that has been shown to influence the weathering rates of the basalt. Previous geochemical studies have constrained climate-dependent weathering rates for local soil production. Using these inputs, we developed a kinetics-based numerical model for the chemical weathering of initially fractured basalt into soil and coarse sediment over 150ky. Following first-order reaction kinetics, chemical weathering in the model decreases exponentially with both depth below the surface and time. The model starts with a column of repeating basalt flows (typically 1 m thick), each with fracture spacing distributions consistent with thermal-mechanical cooling characteristics. Each individual fracture-bound block is assumed to weather from the surface inwards, similar in form to a weathering rind. Since the model is constructed of discrete blocks, larger blocks remain as unweathered corestones (the "sediment"), surrounded by weathered material. In addition to a MAP-dependent initial surface weathering rate and rate constant, climate is also reflected

  1. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS.

    PubMed

    Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K; Brand, Andreas; Inglis, R Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank

    2015-01-01

    Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with (15)N2 and (13)CO2 under in situ conditions with and without NH4 (+). Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation (15)N and (13)C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4 (+), but not in the presence of NH4 (+) as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a

  2. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS

    PubMed Central

    Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank

    2015-01-01

    Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial

  3. Development of Criteria and Identification of Particle Cluster Size Based on Measurements of Void Fraction in Gas-Solid Systems

    SciTech Connect

    David Roelant; Seckin Gokaltun

    2009-06-30

    A circulating fluidized bed (CFB) built at FIU was used to study particle motion in the riser in order to simulate flow regimes in a cold gasifier. High speed imaging was used in order to capture the dynamics of the particles flowing in the riser. The imaging method used here is called the shadow sizing technique which allowed the determination of particle areas and trajectories at various flow rates in the riser. The solid volume fraction and particle velocities calculated using the images acquired during the experiments can be related to granular temperature in order to detect formations of clusters in the riser section of the CFB. The shadow sizing technique was observed to be an effective method in detecting dynamics of particles in motion and formation of clusters when supported with high-speed imaging.

  4. The Penetration Behavior of an Annular Gas-Solid Jet Impinging on a Liquid Bath: The Effects of the Density and Size of Solid Particles

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Sohn, H. Y.

    2012-08-01

    Top-blow injection of a gas-solid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas-solid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was

  5. Calculation of multicomponent chemical equilibria in gas-solid- liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens

    USGS Publications Warehouse

    Symonds, R.B.; Reed, M.H.

    1993-01-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. Examples of gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mount St. Helens are shown. -from Authors

  6. Spatially resolved characterization of catalyst-coated membranes by distance-controlled scanning mass spectrometry utilizing catalytic methanol oxidation as gas-solid probe reaction.

    PubMed

    Li, Nan; Assmann, Jens; Schuhmann, Wolfgang; Muhler, Martin

    2007-08-01

    The spatially resolved catalytic activity of a catalyst-coated membrane (CCM), which is the essential part of PEM fuel cells, was visualized rapidly without any damage by a distance-controlled scanning mass spectrometer with an improved resolution of 250 microm. Methanol oxidation was identified as a suitable gas-solid probe reaction for the characterization of local catalytic activity. In addition, defects were manually generated in the CCM to simulate inhomogeneous coating and pinholes. The measurements successfully demonstrated that catalytically active and less active regions can be clearly distinguished. Simultaneously, the local topography was recorded, providing additional information on the location of the scratches and pinholes. The catalytic results were highly reproducible due to the constant-distance feedback loop rendering scanning mass spectrometry a promising tool for the quantitative quality control of CCMs.

  7. Heterogeneous porous media in hydrology

    NASA Astrophysics Data System (ADS)

    Ababou, Rachid

    In natural geologic formations, flow and transport-related processes are perturbed by multidimensional and anisotropic material heterogeneities of diverse sizes, shapes, and origins (bedding, layering, inclusions, fractures, grains, for example). Heterogeneity tends to disperse and mix transported quantities and may initiate new transfer mechanisms not seen in ideally homogeneous porous media. Effective properties such as conductivity and dispersivity may not be simple averages of locally measured quantities.The special session, “Effective Constitutive Laws for Heterogeneous Porous Media,” convened at AGU's 1992 Fall Meeting in San Francisco, addressed these issue. Over forty-five contributions, both oral and poster, covering a broad range of physical phenomena were presented. The common theme was the macroscale characterization and modeling of flow and flow-related processes in geologic media that are heterogeneous at various scales (from grain size or fracture aperture, up to regional scales). The processes analyzed in the session included coupled hydro-mechanical processes; Darcy-type flow in the saturated, unsaturated, or two-phase regimes; tracer transport, dilution, and dispersion. These processes were studied for either continuous (porous) or discontinuous (fractured) media.

  8. A gas-tight Cu K alpha x-ray transparent reaction chamber for high-temperature x-ray diffraction analyses of halide gas/solid reactions.

    PubMed

    Shian, Samuel; Sandhage, Kenneth H

    2009-11-01

    An externally heated, x-ray transparent reaction chamber has been developed to enable the dynamic high temperature x-ray diffraction (HTXRD) analysis of a gas/solid [TiF(4)(g)/SiO(2)(s)] reaction involving a halide gas reactant formed at elevated temperatures (up to 350 degrees C) from a condensed source (TiF(4) powder) sealed within the chamber. The reaction chamber possessed x-ray transparent windows comprised of a thin (13 microm) internal layer of Al foil and a thicker (125 microm) external Kapton film. After sealing the SiO(2) specimens (diatom frustules or Stober spheres) above TiF(4) powder within the reaction chamber, the chamber was heated to a temperature in the range of 160-350 degrees C to allow for internal generation of TiF(4)(g). The TiF(4)(g) underwent a metathetic reaction with the SiO(2) specimen to yield a TiOF(2)(s) product. HTXRD analysis, using Cu K alpha x rays passed through the Kapton/Al windows of the chamber, was used to track the extent of SiO(2) consumption and/or TiOF(2) formation with time. The Al foil inner layer of the windows protected the Kapton film from chemical attack by TiF(4)(g), whereas the thicker, more transparent Kapton film provided the mechanical strength needed to contain this gas. By selecting an appropriate combination of x-ray transparent materials to endow such composite windows with the required thermal, chemical, and mechanical performance, this inexpensive reaction chamber design may be applied to the HTXRD analyses of a variety of gas/solid reactions.

  9. Rapid screening of the heterogeneity of DNA methylation by single-strand conformation polymorphism and CE-LIF in the presence of electro-osmotic flow.

    PubMed

    Yu, Meng-Hsuan; Huang, Ya-Chi; Chang, Po-Ling

    2014-08-01

    DNA methylation is a complex event in epigenetic studies because of both the large CpG islands present upstream of the promoter region and the different distribution of DNA methylation despite similar methylation levels. For this reason, we proposed a fast, cost-effective method for the screening of DNA methylation based on SSCP and CE-LIF. In this study, the PCR products that were amplified from bisulfite-treated genomic DNA were denatured at 94°C, followed by immediate chilling in ice water to form the ssDNA. The ssDNA were separated by 1.5% poly(ethylene oxide) (Mavg 8 000 000 Da) in the presence of EOF according to the different conformations represented by their unique methylation states. This result demonstrated that four hepatocellular carcinoma cell lines represented a different heterogeneity of DNA methylation and could be distinguished by SSCP-CE. The results obtained from SSCP-CE also corresponded with those obtained from combined bisulfide restriction analysis and methylation-sensitive high-resolution melting analysis. Therefore, the proposed SSCP-CE method may potentially be used for rapid screening for determination of the heterogeneity of DNA methylation in further epigenetic studies and clinical diagnosis.

  10. Abscisic acid signalling when soil moisture is heterogeneous: decreased photoperiod sap flow from drying roots limits abscisic acid export to the shoots.

    PubMed

    Dodd, Ian C; Egea, Gregorio; Davies, William J

    2008-09-01

    To investigate the contribution of different parts of the root system to total sap flow and leaf xylem abscisic acid (ABA) concentration ([X-ABA](leaf)), individual sunflower (Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots and sap flow through each hypocotyl measured below the graft union. During deficit irrigation (DI), both pots received the same irrigation volumes, while during partial root zone drying (PRD) one pot ('wet') was watered and another ('dry') was not. During PRD, once soil water content (theta) decreased below a threshold, the fraction of sap flow from drying roots declined. As theta declined, root xylem ABA concentration increased in both irrigation treatments, and [X-ABA](leaf) increased in DI plants, but [X-ABA](leaf) of PRD plants actually decreased within a certain theta range. A simple model that weighted ABA contributions of wet and dry root systems to [X-ABA](leaf) according to the sap flow from each, better predicted [X-ABA](leaf) of PRD plants than either [X-ABA](dry), [X-ABA](wet) or their mean. Model simulations revealed that [X-ABA](leaf) during PRD exceeded that of DI with moderate soil drying, but continued soil drying (such that sap flow from roots in drying soil ceased) resulted in the opposite effect.

  11. Design and development of an environmental cell for dynamic in situ observation of gas-solid reactions at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pushkarraj Vasant

    In situ monitoring of events in transmission electron microscopy provides information on how materials behave in their true state while varying environmental conditions (i.e. temperature and pressure) and exposure to reactant gas mixtures. In-situ results are usually different from static, post-reaction observations because they provide valuable real time---rather than post mortem---information. To facilitate applications that demand in situ observations, a transmission electron microscope specimen holder assembly has been developed in this dissertation. This assembly incorporates a gas flow and heating mechanism along with a novel window-type environmental cell. A controlled mixture of up to four different gases can be circulated through the cell during an experiment. In addition, the specimen can be heated up to a temperature of 1500°C using a specially designed carbon dioxide laser mechanism. This heating technique provides major advantages over conventional methods in terms of product life, specimen heating time and design size. The cell design incorporates a gas reaction chamber less than 1 mm in height, enclosed between a pair of 20 nm thick silicon nitride windows. The chamber can accommodate a specimen or a grid having a diameter of 3 mm and thicknesses in the range of 50 to 100 microns. The volume for the gas environment within the chamber is approximately 3 mm 3 and the gas path length is less than 1 mm. This holder has been designed by incorporating cutting edge heating and Si3N4 window fabrication technology to achieve excellent resolution along with a low thermal drift. Successful application of the holder has been shown to provide scientists with an economical alternative to dedicated transmission electron microscopes for a vast array of in situ applications. These applications include understanding the basic material properties, catalysis reactions, semiconductor device development, and nano structure fabrication.

  12. Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia.

    PubMed Central

    Liu, F Y; Cogan, M G

    1986-01-01

    These studies examined regulation of superficial proximal convoluted tubule (PCT) transport as a function of length. When single nephron glomerular filtration rate (SNGFR) increased from 28.7 +/- 0.7 nl/min in hydropenia to 41.5 +/- 0.4 nl/min in euvolemia, bicarbonate, chloride, and water reabsorption in the early (1st mm) PCT increased proportionally: from 354 +/- 21 peq/mm X min, 206 +/- 55 peq/mm X min, and 5.9 +/- 0.4 nl/mm X min to 520 +/- 12 peq/mm X min, 585 +/- 21 peq/mm X min, and 10.1 +/- 0.4 nl/mm X min, respectively. These high transport rates did not increase further, however, when SNGFR went to 51.2 +/- 0.7 or 50.7 +/- 0.6 nl/min after atrial natriuretic factor or glucagon administration. Anion and water transport rates in the late PCT were lower and exhibited less flow dependence. During chronic metabolic alkalosis, acidification was inhibited in the late but not early PCT. In conclusion, the early PCT is distinguished from the late PCT by having high-capacity, flow-responsive but saturable, anion- and water-reabsorptive processes relatively unaffected by alkalemia. PMID:3782470

  13. Temperature-based versus enthalpy-based numerical simulations of non-isothermal subsurface fluid flow in heterogeneous porous or fractured media

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Coumou, D.

    2005-12-01

    We compare temperature-based and enthalpy-based numerical schemes for compressible non-isothermal subsurface fluid flow. We formulate a diffusion equation for the fluid pressure, a diffusion equation for heat conduction, and an equation for the advective transport of temperature or enthalpy in the fluid. These equations can readily be solved by a combination of finite element and higher-order finite volume methods, which are capable of preserving steep temperature gradients in advection dominated flows and handling complex two- and three-dimensional geologic structures with orders of magnitude variation in permeability. Since the time-scale of pressure diffusion is slower than the time-scale for advective fluid flow, it is possible to decouple the equations and use implicit finite element methods for the parabolic (diffusion) equations and explicit finite volume methods for the hyperbolic (advection) equations. For single-phase flow, we use the thermal wave speed to compute the advection of the temperature field on the finite volumes. Since the thermal front is advected at a slower rate than the actual fluid flow, a significant (i.e., a factor 10 at liquid and a factor 1000 at vapor conditions) computational speedup can be achieved in comparison to the formulation where enthalpy is advected. The results for temperature-based and enthalpy-based formulations at vapor or liquid conditions, however, are identical and compare extremely well with results obtained from other codes that use fully coupled solution techniques. Our results do not improve if we use Picard iteration to couple the pressure, conduction, and advection equations. For the enthalpy-based transport schemes, we use a Newton iteration to equilibrate the energy in the fluid and rock. This also allows us to use more modern equation of states for complex multi-component systems, that are formulated in terms of pressure p, temperature T, and composition X, and hence cannot use the specific enthalpy h to

  14. Thermal diode in gas-filled nanogap with heterogeneous surfaces using nonequilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Avanessian, T.; Hwang, G.

    2016-10-01

    A thermal diode serves as a basic building block to design advanced thermal management systems in energy-saving applications. However, the main challenges of existing thermal diodes are poor steady-state performance, slow transient response, and/or extremely difficult manufacturing. In this study, the thermal diode is examined by employing an argon gas-filled nanogap with heterogeneous surfaces in the Knudsen regime, using nonequilibrium molecular dynamics simulation. The asymmetric gas pressure and thermal accommodation coefficients changes are found due to asymmetric adsorptions onto the heterogeneous nanogap with respect to the different temperature gradient directions, and these in turn result in the thermal diode. The maximum degree of diode (or rectification) is Rmax ˜ 7, at the effective gas-solid interaction ratio between the two surfaces of ɛ*= 0.75. This work could pave the way to designing advanced thermal management systems such as thermal switches (transistors).

  15. Surface Structure of Kio (3) Grown By Heterogeneous Reaction of Ozone With Ki (001)

    SciTech Connect

    Brown, M.A.; Liu, Z.; Ashby, P.D.; Mehta, A.; Grimm, R.L.; Hemminger, J.C.

    2009-05-12

    The crystal structure of KIO{sub 3} grown by heterogeneous surface oxidation of KI (001) with ozone is reported. Under ambient reaction conditions (RH {approx}35%, room temperature) a thick layer of KIO{sub 3} grows at the gas-solid interface. Two doublets are present in the I(4d) X-ray photoelectron spectroscopy structure measurements, characteristic of unreacted KI (I{sup -}) from the substrate and the oxidized KIO{sub 3} (I{sup 5+}) reaction product. X-ray diffraction measurements confirm the presence at the interface of randomly oriented polycrystalline-triclinic KIO{sub 3} with an average particle diameter of 15 nm. KIO{sub 3} particle diameters determined from the X-ray diffraction peak widths are consistent with the results of atomic force microscopy. There is no X-ray powder diffraction evidence to suggest that the underlying KI substrate is altered in any manner during this heterogeneous interfacial reaction.

  16. Characterizing hydrogeologic heterogeneity using lithologic data

    SciTech Connect

    Flach, G.; Hamm, LL.L.; Harris, M.K.; Thayer, P.A.; Haselow, J.S.; Smits, A.D.

    1997-06-13

    Large-scale (>1 m) variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport. Incorporating realistic hydraulic conductivity heterogeneity into flow and transport models is paramount to accurate simulations, particularly for contaminant migration. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about site-scale heterogeneity, than other site characterization data. In this study, a technique for generating a heterogeneous, three- dimensional hydraulic conductivity field from sediment lithologic descriptions is presented. The approach involves creating a three-dimensional, fine-scale representation of mud (silt and clay) percentage using a stratified interpolation algorithm. Mud percentage is then translated into horizontal and vertical conductivity using direct correlations derived from measured data and inverse groundwater flow modeling. Lastly, the fine-scale conductivity fields are averaged to create a coarser grid for use in groundwater flow and transport modeling.

  17. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian

    2016-12-01

    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has

  18. Mechanistic Features of the TiO2 Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stopped-Flow Technique.

    PubMed

    Meichtry, Jorge M; Levy, Ivana K; Mohamed, Hanan H; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I

    2016-03-16

    The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600 nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650 nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) .

  19. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    SciTech Connect

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.

  20. DRIFTS studies on the role of surface water in stabilizing catechol-iron(III) complexes at the gas/solid interface.

    PubMed

    Tofan-Lazar, Julia; Situm, Arthur; Al-Abadleh, Hind A

    2013-10-10

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. However, little is known about the role of surface water in the complexation of organic acid molecules to transition metals in multicomponent aerosol systems. We report herein results from real time DRIFTS experiments that show in situ complexation of catechol to Fe(III) under humid conditions. Catechol was schosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It was also detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative, and qualitative information about complexes in the bulk, and potential degradation products in the dark. Under dry conditions, DRIFTS spectra show that gas phase catechol adsorbs molecularly and is fully protonated on samples containing FeCl3 with no evidence of complexation to Fe(III). Upon increasing the relative humidity to a value below the deliquescence of FeCl3, surface water facilitates ionic mobility resulting in the formation of monodentate catechol-Fe complexes. These complexes are stable at the gas/solid interface and do not undergo any further degradation in the dark as shown from bulk UV-vis and HPLC experiments. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin films on buildings, and ocean surfaces containing transition metals are discussed.

  1. Study on electrodynamic sensor of multi-modality system for multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Deng, Xiang; Chen, Dixiang; Yang, Wuqiang

    2011-12-01

    Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.

  2. Study on electrodynamic sensor of multi-modality system for multiphase flow measurement.

    PubMed

    Deng, Xiang; Chen, Dixiang; Yang, Wuqiang

    2011-12-01

    Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.

  3. Fusion Research of Electrical Tomography with Other Sensors for Two-phase Flow Measurement

    NASA Astrophysics Data System (ADS)

    Deng, Xiang; Yang, W. Q.

    2012-01-01

    The two-phase flow widely exists in the nature and industrial processes. The measurement of two-phase flows, including gas/solids, gas/liquid and liquid/liquid flows, is still challenging. Fusions of electrical tomography with conventional sensors provide possibilities to improve two-phase flow accurate measurement. In this paper, fusions of (1) electrical resistance tomography (ERT) with electromagnetic (EM) flowmeter, (2) electrical capacitance tomography (ECT) with ERT and (3) ECT with electrostatic sensor are introduced. Some research results of fusion methods are presented and discussed. This paper can provide the theoretical support for the multi-sensor fusion for two-phase flow measurement.

  4. Phenotypically heterogeneous populations in spatially heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Patra, Pintu; Klumpp, Stefan

    2014-03-01

    The spatial expansion of a population in a nonuniform environment may benefit from phenotypic heterogeneity with interconverting subpopulations using different survival strategies. We analyze the crossing of an antibiotic-containing environment by a bacterial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-tolerant persister cells. The dynamics of crossing is characterized by mean first arrival times and is found to be surprisingly complex. It displays three distinct regimes with different scaling behavior that can be understood based on an analytical approximation. Our results suggest that a phenotypically heterogeneous population has a fitness advantage in nonuniform environments and can spread more rapidly than a homogeneous population.

  5. Effects of aquifer heterogeneity on ground-water flow and chloride concentrations in the Upper Floridan aquifer near and within an active pumping well field, west-central Florida

    USGS Publications Warehouse

    Tihansky, A.B.

    2005-01-01

    Chloride concentrations have been increasing over time in water from wells within and near the Eldridge-Wilde well field, near the coast in west-central Florida. Variable increases in chloride concentrations from well to well over time are the combined result of aquifer heterogeneity and ground-water pumping within the Upper Floridan aquifer. Deep mineralized water and saline water associated with the saltwater interface appear to move preferentially along flow zones of high transmissivity in response to ground-water withdrawals. The calcium-bicarbonate-type freshwater of the Upper Floridan aquifer within the study area is variably enriched with ions by mixing with introduced deep and saline ground water. The amount and variability of increases in chloride and sulfate concentrations at each well are related to well location, depth interval, and permeable intervals intercepted by the borehole. Zones of high transmissivity characterize the multilayered carbonate rocks of the Upper Floridan aquifer. Well-developed secondary porosity within the Tampa/Suwannee Limestones and the Avon Park Formation has created producing zones within the Upper Floridan aquifer. The highly transmissive sections of the Avon Park Formation generally are several orders of magnitude more permeable than the Tampa/Suwannee Limestones, but both are associated with increased ground-water flow. The Ocala Limestone is less permeable and is dominated by primary, intergranular porosity. Acoustic televiewer logging, caliper logs, and borehole flow logs (both electromagnetic and heat pulse) indicate that the Tampa/Suwannee Limestone units are dominated by porosity owing to dissolution between 200 and 300 feet below land surface, whereas the porosity of the Avon Park Formation is dominated by fractures that occur primarily from 600 to 750 feet below land surface and range in angle from horizontal to near vertical. Although the Ocala Limestone can act as a semiconfining unit between the Avon Park

  6. Patterns of Emphysema Heterogeneity

    PubMed Central

    Valipour, Arschang; Shah, Pallav L.; Gesierich, Wolfgang; Eberhardt, Ralf; Snell, Greg; Strange, Charlie; Barry, Robert; Gupta, Avina; Henne, Erik; Bandyopadhyay, Sourish; Raffy, Philippe; Yin, Youbing; Tschirren, Juerg; Herth, Felix J.F.

    2016-01-01

    Background Although lobar patterns of emphysema heterogeneity are indicative of optimal target sites for lung volume reduction (LVR) strategies, the presence of segmental, or sublobar, heterogeneity is often underappreciated. Objective The aim of this study was to understand lobar and segmental patterns of emphysema heterogeneity, which may more precisely indicate optimal target sites for LVR procedures. Methods Patterns of emphysema heterogeneity were evaluated in a representative cohort of 150 severe (GOLD stage III/IV) chronic obstructive pulmonary disease (COPD) patients from the COPDGene study. High-resolution computerized tomography analysis software was used to measure tissue destruction throughout the lungs to compute heterogeneity (≥ 15% difference in tissue destruction) between (inter-) and within (intra-) lobes for each patient. Emphysema tissue destruction was characterized segmentally to define patterns of heterogeneity. Results Segmental tissue destruction revealed interlobar heterogeneity in the left lung (57%) and right lung (52%). Intralobar heterogeneity was observed in at least one lobe of all patients. No patient presented true homogeneity at a segmental level. There was true homogeneity across both lungs in 3% of the cohort when defining heterogeneity as ≥ 30% difference in tissue destruction. Conclusion Many LVR technologies for treatment of emphysema have focused on interlobar heterogeneity and target an entire lobe per procedure. Our observations suggest that a high proportion of patients with emphysema are affected by interlobar as well as intralobar heterogeneity. These findings prompt the need for a segmental approach to LVR in the majority of patients to treat only the most diseased segments and preserve healthier ones. PMID:26430783

  7. Tumour Cell Heterogeneity

    PubMed Central

    Gay, Laura; Baker, Ann-Marie; Graham, Trevor A.

    2016-01-01

    The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment. PMID:26973786

  8. Dispersivity in heterogeneous permeable media

    SciTech Connect

    Chesnut, D.A.

    1994-01-01

    When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. For continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the, clinical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects. of this behavior on radionuclide or other contaminant migration.

  9. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  10. Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun

    1994-01-01

    The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.

  11. Heterogeneous Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Schryer, David R.

    In the past few years it has become increasingly clear that heterogeneous, or multiphase, processes play an important role in the atmosphere. Unfortunately the literature on the subject, although now fairly extensive, is still rather dispersed. Furthermore, much of the expertise regarding heterogeneous processes lies in fields not directly related to atmospheric science. Therefore, it seemed desirable to bring together for an exchange of ideas, information, and methodologies the various atmospheric scientists who are actively studying heterogeneous processes as well as other researchers studying similar processes in the context of other fields.

  12. Research on Flow Non-Uniformity in Main Circulation Loop of a CFB Boiler with Multiple Cyclones

    NASA Astrophysics Data System (ADS)

    Yang, S.; Yang, H. R.; Liu, Q.; Zhang, H.; Wu, Y. X.; Yue, G. X.; Wang, Y. Z.

    Maldistribution of gas-solid tow-phase flow field in circulating fluidized bed (CFB) can cause a series of problems, such as thermal deviation, wear of water walls, etc. In this study, a cold model CFB facility, which was scaled down from a commercial 300MWe CFB boiler with three cyclones placed in an array, was built up and a series of experiments were conducted the flow non-uniformity. The results showed that in CFB boiler with multiple cyclones, the distribution of bed material in the circulation loops is different and uncertain. The gas-solid two-phase flow in the furnace is unbiased, even the circulating rates in the circulation loops are different. The circulating rate in the middle loop is larger than that in the side loops. The difference is less than 10%.

  13. Towards heterogeneous distributed debugging

    SciTech Connect

    Damodaran-Kamal, S.K.

    1995-04-01

    Several years of research and development in parallel debugger design have given up several techniques, though implemented in a wide range of tools for an equally wide range of systems. This paper is an evaluation of these myriad techniques as applied to the design of a heterogeneous distributed debugger. The evaluation is based on what features users perceive as useful, as well as the ease of implementation of the features using the available technology. A preliminary architecture for such a heterogeneous tool is proposed. Our effort in this paper is significantly different from the other efforts at creating portable and heterogeneous distributed debuggers in that we concentrate on support for all the important issues in parallel debugging, instead of simply concentrating on portability and heterogeneity.

  14. Heterogeneous basic catalysis

    SciTech Connect

    Hattori, Hideshi

    1995-05-01

    Heterogeneous acid catalysis attracted much attention primarily because heterogeneous acidic catalysts act as catalysts in petroleum refinery and are known as a main catalyst in the cracking process which is the largest process among the industrial chemical processes. In contrast to these extensive studies of heterogeneous acidic catalysts, fewer efforts have been given to the study of heterogeneous basic catalysts. The types of heterogeneous basic catalysts are listed in Table 1. Except for non-oxide catalysts, the basic sites are believed to be surface O atoms. The studies of heterogeneous catalysis have been continuous and progressed steadily. They have never been reviewed in the chemical Reviews before. It is more useful and informative to describe the studies of heterogeneous basic catalysis performed for a long period. In the present article, therefore, the cited papers are not restricted to those published recently, but include those published for the last 25 years. The paper first describes the generation of basic sites before describing methods used in the characterization of basic surfaces. These are indicator methods, temperature programmed desorption (TPD) of CO{sub 2}, UV absorption and luminescence spectroscopies, TPD of H{sub 2}, XPS, IR of CO{sub 2}, IR of pyrrole, and oxygen exchange between CO{sub 2} and the surface. The paper then discusses studies on the catalysis by heterogeneous basic catalysts. Some of these reactions are dehydration, dehydrogenation, hydrogenation, amination, alkylation, ring transformation, and reactions of organosilanes. Catalysts discussed are single component metal oxides, zeolites, non-oxide types, and superbasic catalysts. 141 refs.

  15. Heterogeneity and Scaling in Geologic Media

    SciTech Connect

    Gregory N. Boitnott; Gilles Y. Bussod; Paul N. Hagin; Stephen R. Brown

    2005-04-18

    The accurate characterization and remediation of contaminated subsurface environments requires the detailed knowledge of subsurface structures and flow paths. Enormous resources are invested in scoping and characterizing sites using core sampling, 3-D geophysical surveys, well tests, etc.... Unfortunately, much of the information acquired is lost to compromises and simplifications made in constructing numerical grids for the simulators used to predict flow and transport from the contaminated area to the accessible environment. In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. In the interest of computational efficiency, recognized heterogeneities are simplified, averaged out, or entirely ignored in spite of recent studies that recognize that: (1) Structural and lithologic heterogeneities exist on all scales in rocks. (2) Small heterogeneities influence, and can control the physical and chemical properties of rocks. In this work we propose a physically based approach for the description and treatment of heterogeneities, that highlights the use of laboratory equipment designed to measure the effect on physical properties of fine scale heterogeneities observed in rocks and soils. We then discuss the development of an integration methodology that uses these measurements to develop and upscale flow and transport models. Predictive simulations are 'calibrated' to the measured heterogeneity data, and subsequently upscaled in a way that is consistent with the transport physics and the efficient use of environmental geophysics. This methodology provides a more accurate interpretation and representation of the subsurface for both environmental engineering and remediation. We show through examples, (i) the important influence of even subtle heterogeneity in the interpreting of geophysical data, and (ii) how physically based upscaling can lead

  16. Fluid dynamics of active heterogeneities in a mantle plume conduit

    NASA Astrophysics Data System (ADS)

    Farnetani, C. G.; Limare, A.; Hofmann, A. W.

    2015-12-01

    Laboratory experiments and numerical simulations indicate that the flow of a purely thermal plume preserves the azimuthal zonation of the source region, thus providing a framework to attribute a deep origin to the isotopic zonation of Hawaiian lavas. However, previous studies were limited to passive heterogeneities not affecting the flow. We go beyond this simplification by considering active heterogeneities which are compositionally denser, or more viscous, and we address the following questions: (1) How do active heterogeneities modify the axially symmetric velocity field of the plume conduit? (2) Under which conditions is the azimuthal zonation of the source region no longer preserved in the plume stem? (3) How do active heterogeneities deform during upwelling and what is their shape once at sublithospheric depths? We conducted both laboratory experiments, using a Particle Image Velocimetry (PIV) to calculate the velocity field, and high resolution three-dimensional simulations where millions of tracers keep track of the heterogeneous fluid. For compositionally denser heterogeneities we cover a range of buoyancy ratios 0heterogeneities, the range of viscosity ratios is 0<λ<20, where λ=ηheterogeneity/ηfluid and η is viscosity. The initial heterogeneity has the arbitrary shape of a sphere and we vary its volume and its distance from the plume axis. We find that by increasing λ, the shape of the heterogeneity changes from filament-like to blob-like characterized by internal rotation and little stretching. By increasing B the heterogeneity tends to spread at the base of the plume stem and to rise as a tendril close to the axis, so that the initial zonation may be poorly preserved. We also find that the plume velocity field can be profoundly modified by active heterogeneities, and we explore the relation between strain rates and the evolving shape of the upwelling heterogeneity.

  17. Characterization of Paper Heterogeneity

    NASA Astrophysics Data System (ADS)

    Considine, John M.

    Paper and paperboard are the most widely-used green materials in the world because they are renewable, recyclable, reusable, and compostable. Continued and expanded use of these materials and their potential use in new products requires a comprehensive understanding of the variability of their mechanical properties. This work develops new methods to characterize the mechanical properties of heterogeneous materials through a combination of techniques in experimental mechanics, materials science and numerical analysis. Current methods to analyze heterogeneous materials focus on crystalline materials or polymer-crystalline composites, where material boundaries are usually distinct. This work creates a methodology to analyze small, continuously-varying stiffness gradients in 100% polymer systems and is especially relevant to paper materials where factors influencing heterogeneity include local mass, fiber orientation, individual pulp fiber properties, local density, and drying restraint. A unique approach was used to understand the effect of heterogeneity on paper tensile strength. Additional variation was intentionally introduced, in the form of different size holes, and their effect on strength was measured. By modifying two strength criteria, an estimate of strength in the absence of heterogeneity was determined. In order to characterize stiffness heterogeneity, a novel load fixture was developed to excite full-field normal and shear strains for anisotropic stiffness determination. Surface strains were measured with digital image correlation and were analyzed with the VFM (Virtual Fields Method). This approach led to VFM-identified stiffnesses that were similar to values determined by conventional tests. The load fixture and VFM analyses were used to measure local stiffness and local stiffness variation on heterogeneous anisotropic materials. The approach was validated on simulated heterogeneous materials and was applied experimentally to three different paperboards

  18. Distributional Scaling in Heterogeneous Aquifers

    NASA Astrophysics Data System (ADS)

    Polsinelli, J. F.

    2015-12-01

    An investigation is undertaken into the fractal scaling properties of the piezometric head in a heterogeneous unconfined aquifer. The governing equations for the unconfined flow are derived from conservation of mass and the Darcy law. The Dupuit approximation will be used to model the dynamics. The spatially varying nature of the tendency to conduct flow (e.g. the hydraulic conductivity) is represented as a stochastic process. Experimental studies in the literature have indicated that the conductivity belongs to a class of non-stationary stochastic fields, called H-ss fields. The uncertainty in the soil parameters is imparted onto the flow variables; in groundwater investigations the potentiometric head will be a random function. The structure of the head field will be analyzed with an emphasis on the scaling properties. The scaling scheme for the modeling equations and the simulation procedure for the saturated hydraulic conductivity process will be explained, then the method will be validated through numerical experimentation using the USGS Modflow-2005 software. The results of the numerical simulations demonstrate that the head will exhibit multi-fractal scaling if the hydraulic conductivity exhibits multi-fractal scaling and the differential equations for the groundwater equation satisfy a particular set of scale invariance conditions.

  19. Heterogeneity and thermal modeling of ground water.

    PubMed

    Ferguson, Grant

    2007-01-01

    Heat transport in aquifers is becoming an increasingly important topic due to recent growth in the use of ground water in thermal applications. However, the effect of heterogeneity on heat transport in aquifers has yet to be examined in the same detail as it has been for solute transport, and it is unclear what effect this may have on our ability to create accurate models. This study examines this issue through stochastic modeling using the geostatistics for two aquifers with low and high degrees of heterogeneity. The results indicate that there is considerable uncertainty in the distribution of heat associated with injection of warm water into an aquifer. Heterogeneity in the permeability field was also found to slightly reduce the ability to recover this introduced heat at a later time. These simulations also reveal that hydrodynamic macrodispersion is an important consideration in some heat flow problems.

  20. Shock Initiation of Heterogeneous Explosives

    SciTech Connect

    Reaugh, J E

    2004-05-10

    The fundamental picture that shock initiation in heterogeneous explosives is caused by the linking of hot spots formed at inhomogeneities was put forward by several researchers in the 1950's and 1960's, and more recently. Our work uses the computer hardware and software developed in the Advanced Simulation and Computing (ASC) program of the U.S. Department of Energy to explicitly include heterogeneities at the scale of the explosive grains and to calculate the consequences of realistic although approximate models of explosive behavior. Our simulations are performed with ALE-3D, a three-dimensional, elastic-plastic-hydrodynamic Arbitrary Lagrange-Euler finite-difference program, which includes chemical kinetics and heat transfer, and which is under development at this laboratory. We developed the parameter values for a reactive-flow model to describe the non-ideal detonation behavior of an HMX-based explosive from the results of grain-scale simulations. In doing so, we reduced the number of free parameters that are inferred from comparison with experiment to a single one - the characteristic defect dimension. We also performed simulations of the run to detonation in small volumes of explosive. These simulations illustrate the development of the reaction zone and the acceleration of the shock front as the flame fronts start from hot spots, grow, and interact behind the shock front. In this way, our grain-scale simulations can also connect to continuum experiments directly.

  1. Hydrological heterogeneity in agricultural riparian buffer strips

    NASA Astrophysics Data System (ADS)

    Hénault-Ethier, Louise; Larocque, Marie; Perron, Rachel; Wiseman, Natalie; Labrecque, Michel

    2017-03-01

    Riparian buffer strips (RBS) may protect surface water and groundwater in agricultural settings, although their effectiveness, observed in field-scale studies, may not extend to a watershed scale. Hydrologically-controlled leaching plots have often shown RBS to be effective at buffering nutrients and pesticides, but uncontrolled field studies have sometimes suggested limited effectiveness. The limited RBS effectiveness may be explained by the spatiotemporal hydrological heterogeneity near non-irrigated fields. This hypothesis was tested in conventional corn and soy fields in the St. Lawrence Lowlands of southern Quebec (Canada), where spring melt brings heavy and rapid runoff, while summer months are hot and dry. One field with a mineral soil (Saint-Roch-de-l'Achigan) and another with an organic-rich soil (Boisbriand) were equipped with passive runoff collectors, suction cup lysimeters, and piezometers placed before and after a 3 m-wide RBS, and monitored from 2011 to 2014. Soil topography of the RBS was mapped to a 1 cm vertical precision and a 50 cm sampling grid. On average, surface runoff intersects the RBS perpendicularly, but is subject to substantial local heterogeneity. Groundwater saturates the root zones, but flows little at the time of snowmelt. Groundwater flow is not consistently perpendicular to the RBS, and may reverse, flowing from stream to field under low water flow regimes with stream-aquifer connectivity, thus affecting RBS effectiveness calculations. Groundwater flow direction can be influenced by stratigraphy, local soil hydraulic properties, and historical modification of the agricultural stream beds. Understanding the spatiotemporal heterogeneity of surface and groundwater flows is essential to correctly assess the effectiveness of RBS in intercepting agro-chemical pollution. The implicit assumption that water flows across vegetated RBS, from the field to the stream, should always be verified.

  2. Spatial heterogeneity in medulloblastoma.

    PubMed

    Morrissy, A Sorana; Cavalli, Florence M G; Remke, Marc; Ramaswamy, Vijay; Shih, David J H; Holgado, Borja L; Farooq, Hamza; Donovan, Laura K; Garzia, Livia; Agnihotri, Sameer; Kiehna, Erin N; Mercier, Eloi; Mayoh, Chelsea; Papillon-Cavanagh, Simon; Nikbakht, Hamid; Gayden, Tenzin; Torchia, Jonathon; Picard, Daniel; Merino, Diana M; Vladoiu, Maria; Luu, Betty; Wu, Xiaochong; Daniels, Craig; Horswell, Stuart; Thompson, Yuan Yao; Hovestadt, Volker; Northcott, Paul A; Jones, David T W; Peacock, John; Wang, Xin; Mack, Stephen C; Reimand, Jüri; Albrecht, Steffen; Fontebasso, Adam M; Thiessen, Nina; Li, Yisu; Schein, Jacqueline E; Lee, Darlene; Carlsen, Rebecca; Mayo, Michael; Tse, Kane; Tam, Angela; Dhalla, Noreen; Ally, Adrian; Chuah, Eric; Cheng, Young; Plettner, Patrick; Li, Haiyan I; Corbett, Richard D; Wong, Tina; Long, William; Loukides, James; Buczkowicz, Pawel; Hawkins, Cynthia E; Tabori, Uri; Rood, Brian R; Myseros, John S; Packer, Roger J; Korshunov, Andrey; Lichter, Peter; Kool, Marcel; Pfister, Stefan M; Schüller, Ulrich; Dirks, Peter; Huang, Annie; Bouffet, Eric; Rutka, James T; Bader, Gary D; Swanton, Charles; Ma, Yusanne; Moore, Richard A; Mungall, Andrew J; Majewski, Jacek; Jones, Steven J M; Das, Sunit; Malkin, David; Jabado, Nada; Marra, Marco A; Taylor, Michael D

    2017-04-10

    Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.

  3. Study of heterogeneity loss in upscaling of geological maps by introducing a cluster-based heterogeneity number

    NASA Astrophysics Data System (ADS)

    Ganjeh-Ghazvini, Mostafa; Masihi, Mohsen; Baghalha, Morteza

    2015-10-01

    The prediction of flow behavior in porous media can provide useful insights into the mechanisms involved in CO2 sequestration, petroleum engineering and hydrology. The multi-phase flow is usually simulated by solving the governing equations over an efficient model. The geostatistical (or fine grid) models are rarely used for simulation purposes because they have too many cells. A common approach is to coarsen a fine gird realization by an upscaling method. Although upscaling can speed up the flow simulation, it neglects the fine scale heterogeneity. The heterogeneity loss reduces the accuracy of simulation results. In this paper, the relation between heterogeneity loss during upscaling and accuracy of flow simulation is studied. A realization is divided into some clusters. Every cluster consists of a number of neighboring cells whose permeability values belong to a pre-known interval. The concept of coefficient of variation is applied to define the intra-cluster and inter-cluster heterogeneity numbers. These numbers are then calculated for some fine grid and corresponding upscaled models. The heterogeneous fine grid models are generated by the process of fractional Brownian motion. After simulating water-oil displacement in both fine and coarse models, the relation between flow performance error and heterogeneity loss is investigated. An upper limit for the degree of coarsening is also suggested according to this relation.

  4. Cancer heterogeneity and imaging.

    PubMed

    O'Connor, James P B

    2016-10-04

    There is interest in identifying and quantifying tumor heterogeneity at the genomic, tissue pathology and clinical imaging scales, as this may help better understand tumor biology and may yield useful biomarkers for guiding therapy-based decision making. This review focuses on the role and value of using x-ray, CT, MRI and PET based imaging methods that identify, measure and map tumor heterogeneity. In particular we highlight the potential value of these techniques and the key challenges required to validate and qualify these biomarkers for clinical use.

  5. Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas-solid transformation and their applications as supercapacitor electrodes for p-doping of graphene transistors.

    PubMed

    Tsai, Hung-Wei; Yaghoubi, Alireza; Chan, Tsung-Cheng; Wang, Chun-Chieh; Liu, Wei-Ting; Liao, Chien-Neng; Lu, Shih-Yuan; Chen, Lih-Juann; Chueh, Yu-Lun

    2015-05-07

    We herein report a gas-solid transformation mechanism for the surfactant-free synthesis of Te NWs at room temperature by electrolysis of bulk Bi2Te3 using H2Te gas. Te NWs, with an average diameter below 20 nm, grow along the [001] direction due to the unique spiral chains in the crystal structure and show an enhanced Raman scattering effect, a broad absorption band over the range of 350-750 nm and an emission band over the range of 400-700 nm in the photoluminescence spectrum. In terms of device applications, we demonstrate how Te NWs can be directly applied as a p-type dopant source in order to shift the Dirac point in ambipolar field effect graphene transistors. Finally, the favorable capacitive properties of Te NWs are established as supercapacitor electrodes with negligible internal resistance and excellent electrochemical reversibility and a specific capacitance of 24 F g(-1).

  6. Comparing Assayed Surface Heterogeneity Under Low Versus Maximum Attachment Conditions

    NASA Astrophysics Data System (ADS)

    Rasmuson, J. A.

    2014-12-01

    It has long been suspected that nanoscale heterogeneity is responsible for colloid attachment to surfaces under conditions unfavorable to attachment. Recently, mechanistic colloid force and torque simulations have been applied to arrays of experimental data to back out nanoscale heterogeneity that is representative of the collector surface. These recent experiments were performed under flowing conditions with limited colloid attachment. This presentation explores whether surface heterogeneity backed out from experiments performed under conditions designed to maximize attachment (e.g., non-flowing followed by elution) yields a characteristic heterogeneity that can be reproduced on surfaces backed out under other conditions. The nature of attachment under flowing vs. non-flowing conditions differed for large (2.0 μm) relative to small (0.25 μm) colloids. For example, the maximum loading of small colloids was the same under flowing conditions versus non-flowing conditions followed by elution. The maximum loading of large colloids however was much lower under flowing conditions relative to non-flowing conditions followed by elution. This difference indicates a mechanism contributing to the attachment of large colloids that is not included in mechanistic force and torque balances. These possible mechanisms are reviewed and strategies to incorporate them are discussed. The reproducibility of attachments and their spatial distribution will also be examined.

  7. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  8. Heterogeneous Uncertainty Management

    DTIC Science & Technology

    2008-03-08

    probabilistic ( HTP ) agents, the concept of probabilistic version of XML and RDF, and probabilistic methods to reason about collections of moving objects. S...heterogeneous temporal probabilistic ( HTP ) agents, the concept of probabilistic version of XML and RDF, and probabilistic methods to reason about...temporal probabilistic ( HTP ) agent. HTP agents can build temporal probabilistic reasoning capabilities on top of multiple databases and software

  9. Heterogeneous waste processing

    DOEpatents

    Vanderberg, Laura A.; Sauer, Nancy N.; Brainard, James R.; Foreman, Trudi M.; Hanners, John L.

    2000-01-01

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  10. Scales of mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Akber-Knutson, S.; Konter, J.; Kellogg, J.; Hart, S.; Kellogg, L. H.; Romanowicz, B.

    2004-12-01

    A long-standing question in mantle dynamics concerns the scale of heterogeneity in the mantle. Mantle convection tends to both destroy (through stirring) and create (through melt extraction and subduction) heterogeneity in bulk and trace element composition. Over time, these competing processes create variations in geochemical composition along mid-oceanic ridges and among oceanic islands, spanning a range of scales from extremely long wavelength (for example, the DUPAL anomaly) to very small scale (for example, variations amongst melt inclusions). While geochemical data and seismic observations can be used to constrain the length scales of mantle heterogeneity, dynamical mixing calculations can illustrate the processes and timescales involved in stirring and mixing. At the Summer 2004 CIDER workshop on Relating Geochemical and Seismological Heterogeneity in the Earth's Mantle, an interdisciplinary group evaluated scales of heterogeneity in the Earth's mantle using a combined analysis of geochemical data, seismological data and results of numerical models of mixing. We mined the PetDB database for isotopic data from glass and whole rock analyses for the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR), projecting them along the ridge length. We examined Sr isotope variability along the East Pacific rise by looking at the difference in Sr ratio between adjacent samples as a function of distance between the samples. The East Pacific Rise exhibits an overall bowl shape of normal MORB characteristics, with higher values in the higher latitudes (there is, however, an unfortunate gap in sampling, roughly 2000 km long). These background characteristics are punctuated with spikes in values at various locations, some, but not all of which are associated with off-axis volcanism. A Lomb-Scargle periodogram for unevenly spaced data was utilized to construct a power spectrum of the scale lengths of heterogeneity along both ridges. Using the same isotopic systems (Sr, Nd

  11. Heterogeneous Vapor Condensation in Boundary Layers

    SciTech Connect

    Bonilla, L. L.; Carpio, A.; Neu, J. C.

    2008-09-01

    We consider heterogeneous condensation of vapors mixed with a carrier gas in stagnation point boundary layer flow near a cold wall in the presence of solid particles much larger than the mean free path of vapor particles. The supersaturated vapor condenses on the particles by diffusion, particles and droplets are thermophoretically attracted to the wall. We sketch three asymptotic theories of the condensation process, calculate the flow-induced shift in the dew point interface, vapor density profile and deposition rates at the wall, and compare them to direct numerical simulation.

  12. Altering Emulsion Stability with Heterogeneous Surface Wettability

    PubMed Central

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-01-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703

  13. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  14. Heterogeneity in Desiccated Solutions: Implications for Biostabilization

    PubMed Central

    Ragoonanan, Vishard; Aksan, Alptekin

    2008-01-01

    Biopreservation processes such as freezing and drying inherently introduce heterogeneity. We focused on exploring the mechanisms responsible for heterogeneity in isothermal, diffusively dried biopreservation solutions that contain a model protein. The biopreservation solutions used contained trehalose (a sugar known for its stabilization effect) and salts (LiCl, NaCl, MgCl2, and CaCl2). Performing Fourier transform infrared spectroscopy analysis on the desiccated droplets, spatial distributions of the components within the dried droplet, as well as their specific interactions, were investigated. It was established that the formation of multiple thermodynamic states was induced by the spatial variations in the cosolute concentration gradients, directly affecting the final structure of the preserved protein. The spatial distribution gradients were formed by two competing flows that formed within the drying droplet: a dominant peripheral flow, induced by contact line pinning, and the Marangoni flow, induced by surface tension gradients. It was found that the changes in cosolute concentrations and drying conditions affected the spatial heterogeneity and stability of the product. It was also found that trehalose and salts had a synergistic stabilizing effect on the protein structure, which originated from destructuring of the vicinal water, which in turn mediated the interactions of trehalose with the protein. This interaction was observed by the change in the glycosidic CO, and the CH stretch vibrations of the trehalose molecule. PMID:18055531

  15. Concepts in Heterogeneous Catalysis

    DTIC Science & Technology

    1974-06-01

    OxIdlaing Species In Heterogeneous Catalytic Oxidation. In the history of the study of heterogeneioum oxidation catalysis, reaction mechanisms have’ been...for sonti timie but recent workŔ’ onl the lplatitnum-rtothe~idina alloy systemn semi- s quite promising 10) lvad ito at bettr understanding. 1t wait...chemical nature of the catalyst, its previous history , and on the courac of the catalytic reaction itself. The energy spectrum of the active surface

  16. Heterogeneities in granular dynamics

    PubMed Central

    Mehta, A.; Barker, G. C.; Luck, J. M.

    2008-01-01

    The absence of Brownian motion in granular media is a source of much complexity, including the prevalence of heterogeneity, whether static or dynamic, within a given system. Such strong heterogeneities can exist as a function of depth in a box of grains; this is the system we study here. First, we present results from three-dimensional, cooperative and stochastic Monte Carlo shaking simulations of spheres on heterogeneous density fluctuations. Next, we juxtapose these with results obtained from a theoretical model of a column of grains under gravity; frustration via competing local fields is included in our model, whereas the effect of gravity is to slow down the dynamics of successively deeper layers. The combined conclusions suggest that the dynamics of a real granular column can be divided into different phases—ballistic, logarithmic, activated, and glassy—as a function of depth. The nature of the ground states and their retrieval (under zero-temperature dynamics) is analyzed; the glassy phase shows clear evidence of its intrinsic (“crystalline”) states, which lie below a band of approximately degenerate ground states. In the other three phases, by contrast, the system jams into a state chosen randomly from this upper band of metastable states. PMID:18541918

  17. Characterizing hydrogeologic heterogeneity using lithologic data

    SciTech Connect

    Flach, G.P.; Hamm, L.L.; Harris, M.K.; Thayer, P.A.; Haselow, J.S.; Smits, A.D.

    1995-12-31

    Large-scale (> 1 m) variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about site-scale heterogeneity, than other site characterization data. In this study, a technique for generating a heterogeneous, three-dimensional hydraulic conductivity field from sediment lithologic descriptions is presented. The approach involves creating a three-dimensional, fine-scale representation of mud (silt + clay) percentage using a stratified interpolation algorithm. Mud percentage is then translated into horizontal and vertical conductivity using direct correlations derived from measured data and inverse groundwater flow modeling. Lastly, the fine-scale conductivity fields are averaged to create a coarser grid for use in groundwater flow and transport modeling. The approach is demonstrated using a finite-element groundwater flow model of a Savannah River Site solid radioactive and hazardous waste burial ground. Hydrostratigraphic units in the area consist of fluvial, deltaic, and shallow marine sand, mud and calcareous sediment that exhibit abrupt facies changes over short distances.

  18. Physical mechanisms of flow resistance in textured microchannels

    NASA Astrophysics Data System (ADS)

    Game, Simon; Papageorgiou, Demetrios; Keaveny, Eric; Hodes, Marc

    2015-11-01

    Transport in microchannels can be enhanced by replacing flat, no-slip boundaries with boundaries etched with longitudinal grooves containing an inert gas, resulting in an effective slip flow. Various physical considerations which are often omitted from mathematical models play a significant role in the behaviour of this flow. Such considerations include: gas viscosity, meniscus curvature, finite channel cross-sections, molecular slip on the gas/liquid or gas/solid interfaces. Using a computationally efficient, multi-element, Chebyshev collocation method, we are able to quantify and combine each of these physical effects. We have shown that for physically realistic parameter values, including each of these effects significantly alters the volumetric flow rate, and hence these effects should not be ignored. Using this framework, we hope to manipulate these effects in order to minimise the flow resistance of the channel.

  19. Dealing with spatial heterogeneity

    NASA Astrophysics Data System (ADS)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  20. Genetic Heterogeneity in Algerian Human Populations

    PubMed Central

    Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David

    2015-01-01

    The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region. PMID:26402429

  1. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    SciTech Connect

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  2. Unravelling mononuclear phagocyte heterogeneity

    PubMed Central

    Geissmann, Frédéric; Gordon, Siamon; Hume, David A.; Mowat, Allan M.; Randolph, Gwendalyn J.

    2011-01-01

    When Ralph Steinman and Zanvil Cohn first described dendritic cells (DCs) in 1973 it took many years to convince the immunology community that these cells were truly distinct from macrophages. Almost four decades later, the DC is regarded as the key initiator of adaptive immune responses; however, distinguishing DCs from macrophages still leads to confusion and debate in the field. Here, Nature Reviews Immunology asks five experts to discuss the issue of heterogeneity in the mononuclear phagocyte system and to give their opinion on the importance of defining these cells for future research. PMID:20467425

  3. Integrating CLIPS applications into heterogeneous distributed systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

  4. Two-Phase Flow Simulations through Experimentally Studied Porous Media Analogies

    SciTech Connect

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.

    2007-07-01

    of the fluids were shown to affect the percent of displaced fluid, with lower capillary number and higher viscosity ratio displacing a greater amount of the wetting fluid. Displacement of a non-wetting, in-place fluid by a less viscous, wetting fluid (the case of imbibition; contact angle > 90°) is then studied with the numerical model. The invading fluid is shown to preferentially move into small throats and displace a larger percent of the in-place fluid than observed in the drainage case. The interface was also observed to have a higher fractal dimension, closer to 2. These results highlight the potential for greater fundamental understanding of liquid-gas-solid interactions in heterogeneous, porous media that can be obtained from computational fluid dynamics (CFD). Situations, which are difficult to experimentally study, can be examined with CFD in a manner that more accurately accounts for the geological conditions relevant to CO2 sequestration. This allows for greater accuracy in the prediction of storage capacity within known geological structures. This study shows that as the contact angle between the invading fluid and the defending fluid increase, a greater portion of the porous medium is invaded. Thus, a greater portion of CO2 can be sequestered in reservoirs that are not strongly water wet. Low flow rates are shown to increase the final percent saturation of the invading fluid as well, regardless of wetting conditions.

  5. Gas-Solid Interactions During Nonisothermal Heat Treatment of a High-Strength CrMnCN Austenitic Steel Powder: Influence of Atmospheric Conditions and Heating Rate on the Densification Behavior

    NASA Astrophysics Data System (ADS)

    Krasokha, Nikolaj; Weber, Sebastian; Huth, Stephan; Zumsande, Kathrin; Theisen, Werner

    2012-11-01

    This work deals with gas-solid interactions between a high-alloyed steel powder and the surrounding atmosphere during continuous heating. It is motivated by the recently developed corrosion-resistant CrMnCN austenitic cast steels. Here, powder metallurgical processing would be desirable to manufacture highly homogeneous parts and/or novel corrosion-resistant metal-matrix composites. However, the successful use of this new production route calls for a comprehensive investigation of interactions between the sintering atmosphere and the metallic powder to prevent undesirable changes to the chemical composition, e.g., degassing of nitrogen or evaporation of manganese. In this study, dilatometric measurements combined with residual gas analysis, high-temperature X-ray diffraction (XRD) measurements, and thermodynamic equilibrium calculations provided detailed information about the influence of different atmospheric conditions on the microstructure, constitution, and densification behavior of a gas-atomized CrMnCN steel powder during continuous heating. Intensive desorption of nitrogen led to the conclusion that a vacuum atmosphere is not suitable for powder metallurgical (PM) processing. Exposure to an N2-containing atmosphere resulted in the formation of nitrides and lattice expansion. Experimental findings have shown that the N content can be controlled by the nitrogen partial pressure. Furthermore, the reduction of surface oxides because of a carbothermal reaction at elevated temperatures and the resulting enhancement of the powder's densification behavior are discussed in this work.

  6. Disordered hyperuniform heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2016-10-01

    Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space {{{R}}d} . Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be ‘multihyperuniform’. We then consider hyperuniformity for general two-phase media in {{{R}}d} . Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family of

  7. Disordered hyperuniform heterogeneous materials.

    PubMed

    Torquato, Salvatore

    2016-10-19

    Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space [Formula: see text]. Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be 'multihyperuniform'. We then consider hyperuniformity for general two-phase media in [Formula: see text]. Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family

  8. Heterogeneity in Waardenburg syndrome.

    PubMed Central

    Hageman, M J; Delleman, J W

    1977-01-01

    Heterogeneity of Waardenburg syndrome is demonstrated in a review of 1,285 patients from the literature and 34 previously unreported patients in five families in the Netherlands. The syndrome seems to consist of two genetically distinct entities that can be differentiated clinically: type I, Waardenburg syndrome with dystopia canthorum; and type II, Waardenburg syndrome without dystopia canthorum. Both types have an autosomal dominant mode of inheritance. The incidence of bilateral deafness in the two types of the syndrome was found in one-fourth with type I and about half of the patients with type II. This difference has important consequences for genetic counseling. Images Fig. 7 Fig. 8 Fig. 9 PMID:331943

  9. Treatment of Organic Pollutants by Heterogeneous Photocatalysis

    NASA Astrophysics Data System (ADS)

    Feroz, S.; Jesil, A.

    2012-08-01

    An experimental investigation was carried out in the area of heterogeneous catalysis using TiO2 as a catalyst for the removal of the model organic compounds (benzoic acid and phenol) in three different photocatalytic reactors. Natural and artificial UV source of radiation were used and the performance of the reactors were studied in the present investigation. The extent of degradation/removal of the organic compounds was found by varying the initial concentration, flow rate, pipe diameter, TiO2 concentration and exposure time.

  10. Interconnecting heterogeneous database management systems

    NASA Technical Reports Server (NTRS)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  11. SIMULATING VENTILATION DISTRIBUTION IN HETEROGENOUS LUNG INJURY USING A BINARY TREE DATA STRUCTURE

    PubMed Central

    Colletti, Ashley A.; Amini, Reza; Kaczka, David W.

    2011-01-01

    To determine the impact of mechanical heterogeneity on the distribution of regional flows and pressures in the injured lung, we developed an anatomic model of the canine lung comprised of an asymmetric branching airway network which can be stored as binary tree data structure. The entire tree can be traversed using a recursive flow divider algorithm, allowing for efficient computation of acinar flow and pressure distributions in a mechanically heterogeneous lung. These distributions were found to be highly dependent on ventilation frequency and the heterogeneity of tissue elastances, reflecting the preferential distribution of ventilation to areas of lower regional impedance. PMID:21872852

  12. Application of the Stopped Flow Technique to the TiO₂-Heterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with O₂ and H₂O₂ as Electron Acceptors.

    PubMed

    Meichtry, Jorge M; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I

    2015-06-09

    The dynamics of the transfer of electrons stored in TiO2 nanoparticles to Cr(VI) in aqueous solution have been investigated using the stopped flow technique. TiO2 nanoparticles were previously irradiated under UV light in the presence of formic acid, and trapped electrons (e(trap)(-)) were made to react with Cr(VI) as acceptor species; other common acceptor species such as O2 and H2O2 were also tested. The temporal evolution of the number of trapped electrons was followed by the decrease in the absorbance at 600 nm, and the kinetics of the electron-transfer reaction was modeled. Additionally, the rate of formation of the surface complex between Cr(VI) and TiO2 was determined with the stopped flow technique by following the evolution of the absorbance at 400 nm of suspensions of nonirradiated TiO2 nanoparticles and Cr(VI) at different concentrations. An approximately quadratic relationship was observed between the maximum absorbance of the surface complex and the concentration of Cr(VI), suggesting that Cr(VI) adsorbs onto the TiO2 surface as dichromate. The kinetic analyses indicate that the electron transfer from TiO2 to Cr(VI) does not require the previous formation of the Cr(VI)-TiO2 surface complex, at least the complex detected here through the stopped flow experiments. When previously irradiated TiO2 was used to follow the evolution of the Cr(VI)-TiO2 complex, an inhibition of the formation of the complex was observed, which can be related to the TiO2 deactivation caused by Cr(III) deposition.

  13. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  14. Etiologic heterogeneity in alcoholism.

    PubMed

    Gilligan, S B; Reich, T; Cloninger, C R

    1987-01-01

    Etiologic heterogeneity in alcohol abuse was evaluated in 195 extended pedigrees, comprising 288 nuclear families of 140 male and 55 female Caucasian American hospitalized alcoholics. Previous adoption studies in Sweden demonstrated differential heritability of two patterns of alcohol abuse in men: type-2 alcoholism exhibited early onset of abuse associated with criminal behavior, while type-1 abuse began at a later age, uncomplicated by antisocial traits. Alcohol abuse in female Swedish adoptees was relatively homogeneous and similar to the late-onset, type-1 abuse. The notion of etiologic heterogeneity, as suggested by the Stockholm Adoption Studies, was examined in the American pedigrees by contrasting the models of familial transmission of susceptibility to alcoholism obtained via segregation analyses of families of male versus female probands. Families of male probands demonstrated significant familial resemblance, accounted for by a multifactorial-polygenic background in addition to a major (gene) effect. In contrast, familial resemblance in the pedigrees of female probands was attributed solely to a multifactorial-polygenic effect. We considered whether some families of male alcoholics were similar to families of female probands, who expressed type-1 abuse predominantly. Pedigrees of male probands were separated in two groups: (1) "female-like" families had a better likelihood for the model obtained for families of female probands than the one for families of all male probands, (2) "male-like" families had a better likelihood for the model of familial transmission describing families of all male probands. A statistically significant difference in the pattern of familial transmission was observed between the "male-like" and "female-like" groups. Discriminant function analysis of alcohol-related symptoms showed that the familial subtypes differed in clinical features as well. Alcohol abuse by male relatives in "male-like" families was characterized by the

  15. Data manipulation in heterogeneous databases

    SciTech Connect

    Chatterjee, A.; Segev, A.

    1991-10-01

    Many important information systems applications require access to data stored in multiple heterogeneous databases. This paper examines a problem in inter-database data manipulation within a heterogeneous environment, where conventional techniques are no longer useful. To solve the problem, a broader definition for join operator is proposed. Also, a method to probabilistically estimate the accuracy of the join is discussed.

  16. Interference Management in Heterogeneous Networks

    DTIC Science & Technology

    2013-06-01

    INTERFERENCE MANAGEMENT IN HETEROGENEOUS NETWORKS UNIVERSITY OF MARYLAND JUNE 2013 FINAL TECHNICAL REPORT APPROVED...3. DATES COVERED (From - To) AUG 2011 – FEB 2013 4. TITLE AND SUBTITLE INTERFERENCE MANAGEMENT IN HETEROGENEOUS NETWORKS 5a. CONTRACT NUMBER...However, such deployments require efficient frequency allocation schemes for managing interference from the pico- and macro base stations that are

  17. Molecular modeling of heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Gislason, Jason Joseph

    A novel method for modeling heterogeneous catalysis was developed to further facilitate the understanding of catalytic reactor mechanisms. The method employs molecular dynamics simulations, statistical mechanical, and Unity Bond Index - Quadratic Exponential Potential (UBI-QEP) calculations to calculate the rate constants for reactions on metal surfaces. The primary difficulty of molecular dynamics simulations on metal surfaces has been the lack of reliable reactive potential energy surfaces. We have overcome this through the development of the Normalized Bond Index - Reactive Potential Function (NBI-RPF), which can accurately describe the reaction of adsorbates on metal surfaces. The first calculations of rate constants for a reaction on a metal surface using molecular dynamics simulations are presented. This method is applied to the determination of the mechanism for selective hydrogenation of acetylene in an ethylene rich flow. It was determined that the selectivity for acetylene hydrogenation is attributable to the higher reactivity of acetylene versus ethylene with respect to hydrogenation by molecular hydrogen. It was shown that hydrogen transfer from the carbonaceous layer to acetylene or ethylene is insignificant in the hydrogenation process. Molecular dynamics simulations and molecular mechanics calculations were used to determine the diffusion rate constants for dimethylnaphthalene isomers is mordenite. 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene were found to have similar diffusion rate constants. Grand canonical Monte Carlo calculations were performed on the competitive adsorption of 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene in type X zeolites exchanged individually with barium, calcium, potassium, and rubidium ions, calcium exchanged MCM-22, and hydrogen form mordenite (MOR), X zeolite, Y zeolite, hypBEB, ZSM- 12, and MCM-22. These calculations showed that barium exchanged X zeolite was the most selective toward 2

  18. Theory of heterogeneous viscoelasticity

    NASA Astrophysics Data System (ADS)

    Schirmacher, Walter; Ruocco, Giancarlo; Mazzone, Valerio

    2016-03-01

    We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass transition. In our model, we assume that each point in the material has a specific viscosity, which varies randomly in space according to a fluctuating activation free energy. We include a Maxwellian elastic term, and assume that the corresponding shear modulus fluctuates as well with the same distribution as that of the activation barriers. The model is solved in coherent potential approximation, for which a derivation is given. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing frequency limit, independent of the distribution of the activation barriers. The theory implies that this activation energy is generally different from that of a diffusing particle with the same barrier height distribution. If the distribution of activation barriers is assumed to have the Gaussian form, the finite-frequency version of the theory describes well the typical low-temperature alpha relaxation peak of glasses. Beta relaxation can be included by adding another Gaussian with centre at much lower energies than that is responsible for the alpha relaxation. At high frequencies, our theory reduces to the description of an elastic medium with spatially fluctuating elastic moduli (heterogeneous elasticity theory), which explains the occurrence of the boson peak-related vibrational anomalies of glasses.

  19. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  20. Heterogeneous recording media

    NASA Astrophysics Data System (ADS)

    Sukhanov, Vitaly I.

    1991-02-01

    The paper summarizes the results of investigations performed to obtain deep 3-D holograms with 102 i0 mkm physical thickness allowing the postexposure amplification and the a posteriori changing of the grating parameters. This aim has been achieved by developing heterogeneous systems on the basis of porous glass with light-sensitive compositions introduced into it. 1. INTRODUCTION. LIGHT-SENSITIVE MEDIA FOR 3-D HOLOGRAMS RECORDING. The 3-D holograms have many useful properties: very high diffraction efficiency angular and spectral selectivity but low level of noise. It shoud be noted that in this case deep 3-D holograms are dealt with whose physical thickness is as high as 102 -i mkm. Such hologram recording is usually done using homogeneous light-sensitive media for example dyed acid-halide and electrooptical crystals photochrome glass photostructurized polimer compositions and so on. The nature of photophisical and photochemical processes responsible for the light sensitivity of these materials exclude the possibility of post-exposure treatment. This does not allow to enhance the recorded holograms and considerably hampers their fixing or makes it practically impossible. The object of our work is to create the media which are quite suitable for two-stage processes of the deep hologram formation with post-exposure processing. Such material must satisfy the following requirements: a)they must have high permeability for the developing substances in order to make the development duration suitable for practical applications b)they must be shrinkproof to prevent deformation of the

  1. Reference Point Heterogeneity

    PubMed Central

    Terzi, Ayse; Koedijk, Kees; Noussair, Charles N.; Pownall, Rachel

    2016-01-01

    It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income. PMID:27672374

  2. Reference Point Heterogeneity.

    PubMed

    Terzi, Ayse; Koedijk, Kees; Noussair, Charles N; Pownall, Rachel

    2016-01-01

    It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income.

  3. Type-curve estimation of statistical heterogeneity

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.; Guadagnini, Alberto; Riva, Monica

    2004-04-01

    The analysis of pumping tests has traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. We explore numerically the feasibility of using a simple graphical approach (without numerical inversion) to estimate the geometric mean, integral scale, and variance of local log transmissivity on the basis of quasi steady state head data when a randomly heterogeneous confined aquifer is pumped at a constant rate. By local log transmissivity we mean a function varying randomly over horizontal distances that are small in comparison with a characteristic spacing between pumping and observation wells during a test. Experimental evidence and hydrogeologic scaling theory suggest that such a function would tend to exhibit an integral scale well below the maximum well spacing. This is in contrast to equivalent transmissivities derived from pumping tests by treating the aquifer as being locally uniform (on the scale of each test), which tend to exhibit regional-scale spatial correlations. We show that whereas the mean and integral scale of local log transmissivity can be estimated reasonably well based on theoretical ensemble mean variations of head and drawdown with radial distance from a pumping well, estimating the log transmissivity variance is more difficult. We obtain reasonable estimates of the latter based on

  4. Automated liquid operation method for microfluidic heterogeneous immunoassay.

    PubMed

    Yi, Hui; Pan, Jian-Zhang; Shi, Xiao-Tong; Fang, Qun

    2013-02-15

    In this work, an automated liquid operation method for multistep heterogeneous immunoassay toward point of care testing (POCT) was proposed. A miniaturized peristaltic pump was developed to control the flow direction, flow time and flow rate in the microliter range according to a program. The peristaltic pump has the advantages of simple structure, small size, low cost, and easy to build and use. By coupling the peristaltic pump with an antibody-coated capillary and a reagent-preloaded cartridge, the complicated liquid handling operation for heterogeneous immunoassay, including sample metering and introduction, multistep reagent introduction and rinsing, could be triggered by an action and accomplished automatically in 12 min. The analytical performance of the present immunoassay system was demonstrated in the measurement of human IgG with fluorescence detection. A detection limit of 0.68 μg/mL IgG and a dynamic range of 2-300 μg/mL were obtained.

  5. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts.

    PubMed

    Zhang, Jixiang; Chen, Wan-Ting; Zhang, Peng; Luo, Zhongyang; Zhang, Yuanhui

    2013-04-01

    Hydrothermal liquefaction (HTL) of low lipid content microalgae Chlorella pyrenoidosa with heterogeneous catalysts was processed under sub- and supercritical conditions of ethanol (200-300°C, 2.8-9.0 MPa, 30 min). The HTL products were separated into bio-crude, gas, solid residue and volatile components, and then characterized. The highest mass and energy recovery ratios of bio-crude on the dry basis of alga were 71.3% and 101.8% respectively, obtained at 240°C, while the highest higher heating value of bio-crude was 36.19 MJ/kg, obtained at 300°C. Temperature was found to be the most dominant parameter. H2 as a processing gas at an initial pressure of 1.03 MPa slightly improved the bio-crude yield and quality. Raney-Ni and HZSM-5 type zeolite catalysts had no significant effect on the presented HTL process. The results indicated that HTL with ethanol as the solvent was able to produce 50-70 wt.% of bio-crude directly from C. pyrenoidosa.

  6. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  7. Wind resource assessment in heterogeneous terrain.

    PubMed

    Vanderwel, C; Placidi, M; Ganapathisubramani, B

    2017-04-13

    High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech.782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech.774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of [Formula: see text] and [Formula: see text] (where U is the streamwise velocity), which act as proxies for thrust and power output. For the second case, the secondary flows that cause low- and high-momentum pathways when the spacing between adjacent hills is beyond a critical value result in significant variations in wind resource availability. Contour maps of [Formula: see text] and [Formula: see text] show a large difference in thrust and power potential (over 50%) between hills and valleys (at a fixed vertical height). These variations do not seem to be present when adjacent hills are close to each other (i.e. when the spacing is much less than the boundary layer thickness). The variance in thrust and power also appears to be significant in the presence of secondary flows. Finally, there are substantial differences in the dispersive and turbulent stresses across the terrain, which could lead to variable fatigue life depending on

  8. Heterogeneity in motor driven transport

    NASA Astrophysics Data System (ADS)

    Tabei, Ali

    2015-03-01

    I will discuss quantitative analysis of particle tracking data for motor driven vesicles inside an insulin secreting cell. We use this method to study the dynamical and structural heterogeneity inside the cell. I will discuss our effort to explain the origin of observed heterogeneity in intracellular transport. Finally, I will explain how analyzing directional correlations in transport trajectories reveals self-similarity in the diffusion media.

  9. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.

  10. Computational Mechanics for Heterogeneous Materials

    SciTech Connect

    Lechman, Jeremy B.; Baczewski, Andrew David; Stephen Bond; Erikson, William W.; Lehoucq, Richard B.; Mondy, Lisa Ann; Noble, David R.; Pierce, Flint; Roberts, Christine; van Swol, Frank B.; Yarrington, Cole

    2013-11-01

    The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem

  11. Analyzing the Tumor Microenvironment by Flow Cytometry.

    PubMed

    Young, Yoon Kow; Bolt, Alicia M; Ahn, Ryuhjin; Mann, Koren K

    2016-01-01

    Flow cytometry is an essential tool for studying the tumor microenvironment. It allows us to quickly quantify and identify multiple cell types in a heterogeneous sample. A brief overview of flow cytometry instrumentation and the appropriate considerations and steps in building a good flow cytometry staining panel are discussed. In addition, a lymphoid tissue and solid tumor leukocyte infiltrate flow cytometry staining protocol and an example of flow cytometry data analysis are presented.

  12. Thermal and compositional contributions to mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Simmons, N. A.; Grand, S. P.; Forte, A. M.

    2007-12-01

    We have integrated seismic, geodynamic and mineral physics constraints to obtain models of mantle heterogeneity. The seismic constraints primarily consist of teleseismic shear body wave travel times and the geodynamic constraints include the global free-air gravity field, tectonic plate divergences, dynamic surface topography and the excess ellipticity of the core-mantle boundary. The geodynamic observations are interpreted with viscous flow response kernels and velocity-to-density scaling relationships for thermally-varying mantle material. Considering the viscosity model from Mitrovica & Forte (2004) and an optimal thermal density-velocity scaling relationship, we have found a single velocity/density model capable of satisfying the combined dataset to high degrees. The implication is that thermal variations dominate and compositional contributions are secondary throughout most of the non-cratonic mantle (Simmons et al. 2007). This modeling approach inherently minimizes potential non-thermal contributions to the density field and thus establishes a minimal estimate of the influence of composition needed to reconcile the observations. This is due to the fact that we use optimal viscosity and density-velocity scaling relationships to model the data with the initial assumption that all heterogeneity is generated by thermal variations. Therefore, we test other possibilities including simplified viscosity profiles and alternative thermal density-velocity relationships in order to evaluate how these input parameters increase the level of compositional influence required to satisfy the combined dataset. We also demonstrate the potential downfall of scaling a purely seismically-derived shear velocity model to obtain density heterogeneity in the mantle. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. UCRL-ABS-233968

  13. How snowpack heterogeneity affects diurnal streamflow timing

    USGS Publications Warehouse

    Lundquist, J.D.; Dettinger, M.D.

    2005-01-01

    Diurnal cycles of streamflow in snow-fed rivers can be used to infer the average time a water parcel spends in transit from the top of the snowpack to a stream gauge in the river channel. This travel time, which is measured as the difference between the hour of peak snowmelt in the afternoon and the hour of maximum discharge each day, ranges from a few hours to almost a full day later. Travel times increase with longer percolation times through deeper snowpacks, and prior studies of small basins have related the timing of a stream's diurnal peak to the amount of snow stored in a basin. However, in many larger basins the time of peak flow is nearly constant during the first half of the melt season, with little or no variation between years. This apparent self-organization at larger scales can be reproduced by employing heterogeneous observations of snow depths and melt rates in a model that couples porous medium flow through an evolving snowpack with free surface flow in a channel. Copyright 2005 by the American Geophysical Union.

  14. Heterogeneous ageing of skeletal muscle microvascular function.

    PubMed

    Muller-Delp, Judy M

    2016-04-15

    The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.

  15. Heterogeneous chemistry of HOBR on surfaces characteristic of atmospheric aerosols

    SciTech Connect

    Abbatt, J.P.D.

    1995-12-31

    The heterogeneous interactions of HOBr, HBr and HCl with ice and supercooled sulfuric acid solutions have been studied in a low temperatures low pressure flow tube coupled to a mass spectrometer. The heterogeneous reactions HOBr + HCl {yields} BrCl + H{sub 2}O and HOBr + HBr {yields} Br{sub 2} + H{sub 2}O have been demonstrated to proceed readily on these surfaces, and it has been shown that both HOBr and HBr are more easily partitioned to the condensed phase than their chlorine analogues. These heterogeneous reactions represent routes for the activation of halogen species in the atmosphere. In particular, the implications of this research to the depletion of stratospheric ozone after the Mt. Pinatubo volcanic eruption and to the depletion of ozone in the springtime Arctic boundary layer will be discussed.

  16. Optimization Model for Irrigation Planning in Heterogenous Area

    NASA Astrophysics Data System (ADS)

    Kangrang, Anongrit; Phumphan, Anujit; Chaleeraktrakoon, Chavalit

    This study proposes an allocation LP model that can take into account heterogeneity of land area. The divided scenario into several sub-areas based on suitable soil type for each crops was used to represent the heterogeneous character in term of water requirement and crop yield. The proposed model was applied to find the dry-season (January-May) crop pattern of the Nong Wei Irrigation Project which located in the Northeast Region of Thailand. The records of seasonal flow, requested areas, crop water requirements, evaporation and effective rainfalls of the project were used for this illustrative application. Results showed that the proposed LP model gave the optimum crop pattern with net seasonal profit which corresponding seasonal available water and required area. It provided the highest profit as compare to the existing LP model that considering homogeneous project. The obtained patterns of considering heterogeneity corresponded to the available land areas of the suitable soil type.

  17. Evaluation of longitudinal dispersivity estimates from forced-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2002-01-01

    Converging radial-flow and two-well tracer tests are simulated in two-dimensional aquifers to investigate the effects of heterogeneity and forced-gradient test configuration on longitudinal dispersivity (??L) estimates, and to compare ??L estimates from forced-gradient tests with ??L values that characterize solute spreading under natural-gradient flow. Results indicate that in both mildly and highly heterogeneous aquifers, ??L estimates from two-well tests are generally larger than those from radial-flow tests. In mildly heterogeneous aquifers, ??L estimates from two-well tests with relatively large tracer transport distances are similar to ??L values from natural-gradient simulations. In highly heterogeneous aquifers, ??L estimates from two-well tests at all tracer transport distances are typically smaller than ??L values from natural-gradient simulations.

  18. Deformation field heterogeneity in punch indentation

    PubMed Central

    Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid

    2014-01-01

    Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521

  19. Heterogeneity of vertebrate brain tubulins.

    PubMed Central

    Field, D J; Collins, R A; Lee, J C

    1984-01-01

    We have examined the extent of brain tubulin heterogeneity in six vertebrate species commonly used in tubulin research (rat, calf, pig, chicken, human, and lamb) using isoelectric focusing, two-dimensional electrophoresis, and peptide mapping procedures that provide higher resolution than previously available. The extent of heterogeneity is extremely similar in all of these organisms, as judged by number, range of isoelectric points, and distribution of the isotubulins. A minimum of 6 alpha and 12 beta tubulins was resolved from all sources. Even the pattern of spots on two-dimensional peptide maps is remarkably similar. These similarities suggest that the populations of tubulin in all of these brains should have similar overall physical properties. It is particularly interesting that chicken, which has only four or five beta-tubulin genes, contains approximately 12 beta tubulins. Thus, post-translational modification must generate at least some of the tubulin heterogeneity. Mammalian species, which contain 15-20 tubulin DNA sequences, do not show any more tubulin protein heterogeneity than does chicken. This suggests that expression of only a small number of the mammalian genes may be required to generate the observed tubulin heterogeneity. Images PMID:6588378

  20. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  1. Shock wave structure in heterogeneous reactive media

    SciTech Connect

    Baer, M.R.

    1997-06-01

    Continuum mixture theory and mesoscale modeling are applied to describe the behavior of shock-loaded heterogeneous media. One-dimensional simulations of gas-gun experiments demonstrate that the wave features are well described by mixture theory, including reflected wave behavior and conditions where significant reaction is initiated. Detailed wave fields are resolved in numerical simulations of impact on a lattice of discrete explosive {open_quotes}crystals{close_quotes}. It is shown that rapid distortion first occurs at material contact points; the nature of the dispersive fields includes large amplitude fluctuations of stress over several particle pathlengths. Localization of energy causes {open_quotes}hot-spots{close_quotes} due to shock focusing and plastic work as material flows into interstitial regions.

  2. Heterogenous catalysis mediated by plasmon heating.

    PubMed

    Adleman, James R; Boyd, David A; Goodwin, David G; Psaltis, Demetri

    2009-12-01

    We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO(2), CO, and H(2), are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.

  3. Wheat Transpiration Response to Soil Heterogeneity

    NASA Astrophysics Data System (ADS)

    Langensiepen, M.; Kupisch, M.; Cai, G.; Vanderborght, J.; Stadler, A.; Hüging, H.; Ewert, F.

    2014-12-01

    Measuring sap-flow in thin wheat tillers has been difficult so far due to technical difficulties associated with the application of the heat-balance method for this purpose. We developed a new method which solved this problem (Langensiepen et al. 2014) and applied it during four consecutive vegetation seasons for determining tiller transpiration rates in a wheat field with strong soil heterogeneity. The transpiration rates differed insignificantly between different field sections characterized by strong differences in physical soil conditions, regardless whether the crop was irrigated or supplied with variable rainwater. Tiller transpiration in a sheltered section was slightly reduced. Maximum leaf vapor conductance didn't differ among these different conditions, except under severe water stress conditions. Leaf water potential varied considerably during daily cycles under all circumstances. These responses are typical for plants with anisohydric behaviors which are characterized by small sensitivities of guard cells to critical leaf water potential thresholds and high photosynthetic productivity under absent or mild water stress. Recent studies conducted in Eucalyptus, tomato, and Arabidopsis plants have shown that the transition from mild to severe stress in anisohydric plants is marked by an increasing sensitivity of stomatal control to the transpiration rate. The results of this study demonstrate that this also seems to be the case for wheat. This practically implies that the parameterization of models calculating wheat canopy flux responses to soil heterogeneity patterns must not only account for the crop-type specific soil-vegetation pattern interaction under absent or mild stress, but also for additional mechanisms which kick in when water stress becomes severe. Langensiepen, M., Kupisch, M., Graf, A., Schmidt, M., Ewert, F. (2014) Improving the stem heat balance method for determining sap-flow in wheat. Agric. For. Met. 186: 34-42

  4. Accelerating Subsurface Transport Simulation on Heterogeneous Clusters

    SciTech Connect

    Villa, Oreste; Gawande, Nitin A.; Tumeo, Antonino

    2013-09-23

    Reactive transport numerical models simulate chemical and microbiological reactions that occur along a flowpath. These models have to compute reactions for a large number of locations. They solve the set of ordinary differential equations (ODEs) that describes the reaction for each location through the Newton-Raphson technique. This technique involves computing a Jacobian matrix and a residual vector for each set of equation, and then solving iteratively the linearized system by performing Gaussian Elimination and LU decomposition until convergence. STOMP, a well known subsurface flow simulation tool, employs matrices with sizes in the order of 100x100 elements and, for numerical accuracy, LU factorization with full pivoting instead of the faster partial pivoting. Modern high performance computing systems are heterogeneous machines whose nodes integrate both CPUs and GPUs, exposing unprecedented amounts of parallelism. To exploit all their computational power, applications must use both the types of processing elements. For the case of subsurface flow simulation, this mainly requires implementing efficient batched LU-based solvers and identifying efficient solutions for enabling load balancing among the different processors of the system. In this paper we discuss two approaches that allows scaling STOMP's performance on heterogeneous clusters. We initially identify the challenges in implementing batched LU-based solvers for small matrices on GPUs, and propose an implementation that fulfills STOMP's requirements. We compare this implementation to other existing solutions. Then, we combine the batched GPU solver with an OpenMP-based CPU solver, and present an adaptive load balancer that dynamically distributes the linear systems to solve between the two components inside a node. We show how these approaches, integrated into the full application, provide speed ups from 6 to 7 times on large problems, executed on up to 16 nodes of a cluster with two AMD Opteron 6272

  5. Simulator for heterogeneous dataflow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    1993-01-01

    A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.

  6. Simulator for heterogeneous dataflow architectures

    NASA Astrophysics Data System (ADS)

    Malekpour, Mahyar R.

    1993-09-01

    A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.

  7. Static heterogeneities in liquid water

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas

    2004-10-01

    The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.

  8. Dynamic fracture of heterogeneous materials

    SciTech Connect

    Stout, M.G.; Liu, C.; Addessio, F.L.; Williams, T.O.; Bennett, J.G.; Haberman, K.S.; Asay, B.W.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to investigate the fundamental aspects of the process of dynamic fracture propagation in heterogeneous materials. The work focused on three important, but poorly understood, aspects of dynamic fracture for materials with a heterogeneous microstructure. These were: the appropriateness of using a single-parameter asymptotic analysis to describe dynamic crack-tip deformation fields, the temperature rises at the tip and on the flanks of a running crack, and the constitutive modeling of damage initiation and accumulation.

  9. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  10. Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations

    SciTech Connect

    Englert, A.; Hubbard, S.S.; Williams, K.H.; Li, L.; Steefel, C.I.

    2009-04-15

    For guiding optimal design and interpretation of in-situ treatments that strongly perturb subsurface systems, knowledge about the spatial and temporal patterns of mass transport and reaction intensities are important. Here, a procedure was developed and applied to time-lapse concentrations of a conservative tracer (bromide), an injected amendment (acetate) and reactive species (iron(II), uranium(VI) and sulfate) associated with two field scale biostimulation experiments, which were conducted successively at the same field location over two years. The procedure is based on a temporal moment analysis approach that relies on a streamtube approximation. The study shows that biostimulated reactions can be considerably influenced by subsurface hydrological and geochemical heterogeneities: the delivery of bromide and acetate and the intensity of the sulfate reduction is interpreted to be predominantly driven by the hydrological heterogeneity, while the intensity of the iron reduction is interpreted to be primarily controlled by the geochemical heterogeneity. The intensity of the uranium(VI) reduction appears to be impacted by both the hydrological and geochemical heterogeneity. Finally, the study documents the existence of feedbacks between hydrological heterogeneity and remediation-induced biogeochemical transformations at the field scale, particularly the development of precipitates that may cause clogging and flow rerouting.

  11. Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.

    PubMed

    Schauermann, Swetlana; Freund, Hans-Joachim

    2015-10-20

    appears to be a general trend. In the second case study, we address the role of the surface modifiers, such as carbon, on the process of hydrogen diffusion into volume of Pd nanoparticles that was previously identified is an important step in hydrogenation chemistry. We provide for the first time direct experimental evidence that, inline with the recent theoretical predictions, the atomically flexible low-coordinated surface sites on Pd particles play a crucial role in the diffusion process and that their selective modification with carbon results in marked facilitation of subsurface hydrogen diffusion. By virtue of these examples, we demonstrate how model studies on complex nanostructured materials may provide an atomistic view of processes at the gas-solid interface related to heterogeneous catalysis.

  12. Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH).

    PubMed

    Gutiérrez-Jiménez, Eugenio; Cai, Changsi; Mikkelsen, Irene Klærke; Rasmussen, Peter Mondrup; Angleys, Hugo; Merrild, Mads; Mouridsen, Kim; Jespersen, Sune Nørhøj; Lee, Jonghwan; Iversen, Nina Kerting; Sakadzic, Sava; Østergaard, Leif

    2016-12-01

    Functional hyperemia reduces oxygen extraction efficacy unless counteracted by a reduction of capillary transit-time heterogeneity of blood. We adapted a bolus tracking approach to capillary transit-time heterogeneity estimation for two-photon microscopy and then quantified changes in plasma mean transit time and capillary transit-time heterogeneity during forepaw stimulation in anesthetized mice (C57BL/6NTac). In addition, we analyzed transit time coefficient of variance = capillary transit-time heterogeneity/mean transit time, which we expect to remain constant in passive, compliant microvascular networks. Electrical forepaw stimulation reduced, both mean transit time (11.3% ± 1.3%) and capillary transit-time heterogeneity (24.1% ± 3.3%), consistent with earlier literature and model predictions. We observed a coefficient of variance reduction (14.3% ± 3.5%) during functional activation, especially for the arteriolar-to-venular passage. Such coefficient of variance reduction during functional activation suggests homogenization of capillary flows beyond that expected as a passive response to increased blood flow by other stimuli. This finding is consistent with an active neurocapillary coupling mechanism, for example via pericyte dilation. Mean transit time and capillary transit-time heterogeneity reductions were consistent with the relative change inferred from capillary hemodynamics (cell velocity and flux). Our findings support the important role of capillary transit-time heterogeneity in flow-metabolism coupling during functional activation.

  13. Molecular ingredients of heterogeneous catalysis

    SciTech Connect

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described.

  14. Teaching about Heterogeneous Response Models

    ERIC Educational Resources Information Center

    Murray, Michael P.

    2014-01-01

    Individuals vary in their responses to incentives and opportunities. For example, additional education will affect one person differently than another. In recent years, econometricians have given increased attention to such heterogeneous responses and to the consequences of such responses for interpreting regression estimates, especially…

  15. Floodplain heterogeneity and meander migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of horizontal heterogeneity of floodplain soils on rates and patterns of meander migration is analyzed with a Ikeda et al. (1981)-type model for hydrodynamics and bed morphodynamics, coupled with a physically-based bank erosion model according to the approach developed by Motta et al. (20...

  16. Social Capital and Community Heterogeneity

    ERIC Educational Resources Information Center

    Coffe, Hilde

    2009-01-01

    Recent findings indicate that more pronounced community heterogeneity is associated with lower levels of social capital. These studies, however, concentrate on specific aspects in which people differ (such as income inequality or ethnic diversity). In the present paper, we introduce the number of parties in the local party system as a more…

  17. Surface science of heterogeneous reactions.

    PubMed

    White, J M

    1982-10-29

    Some of the present and future directions for surface science as a growing and naturally interdisciplinary subject are reviewed. Particular attention is given to surface reaction chemistry as it is related to heterogenous catalysis, a subject area where there are abundant opportunities for detailed measurements of structure and dynamics at the molecular level.

  18. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual

  19. Price of anarchy on heterogeneous traffic-flow networks

    NASA Astrophysics Data System (ADS)

    Rose, A.; O'Dea, R.; Hopcraft, K. I.

    2016-09-01

    The efficiency of routing traffic through a network, comprising nodes connected by links whose cost of traversal is either fixed or varies in proportion to volume of usage, can be measured by the "price of anarchy." This is the ratio of the cost incurred by agents who act to minimize their individual expenditure to the optimal cost borne by the entire system. As the total traffic load and the network variability—parameterized by the proportion of variable-cost links in the network—changes, the behaviors that the system presents can be understood with the introduction of a network of simpler structure. This is constructed from classes of nonoverlapping paths connecting source to destination nodes that are characterized by the number of variable-cost edges they contain. It is shown that localized peaks in the price of anarchy occur at critical traffic volumes at which it becomes beneficial to exploit ostensibly more expensive paths as the network becomes more congested. Simulation results verifying these findings are presented for the variation of the price of anarchy with the network's size, aspect ratio, variability, and traffic load.

  20. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    DOE PAGES

    Jia, Dening; Cathary, Océane; Peng, Jianghong; ...

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less

  1. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    SciTech Connect

    Jia, Dening; Cathary, Océane; Peng, Jianghong; Bi, Xiaotao; Lim, C. Jim; Sokhansanj, Shahab; Liu, Yuping; Wang, Ruixu; Tsutsumi, Atsushi

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gas pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.

  2. Surface heterogeneity of small asteroids

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho

    A rubble pile model of asteroid origin would predict averaged rather homogeneous surface of an asteroid. Previous spacecraft observations (mostly S-type asteroids) did not show large color/albedo variation on the surface. Vesta would be exceptional since HST observation suggested that its surface should be heterogeneous due to the impact excavation of the interior. As for a young asteroid (832) Karin (age being 5Ma), Sasaki et al. (2004) detected variation of infrared spectra which could be explained by the difference of the space weathering degree. They discussed the possibility of the survival of the old surface. However, the variation was not confirmed by later observation (Chapman et al., 2007; Vernazza et al., 2007). Recent observation of a small (550m) asteroid Itokawa by Hayabusa spacecraft revealed that Itokawa is heterogeneous in color and albedo although the overall rocky structure is considered as a rubble pile (Saito et al., 2006). The color difference can be explained by the difference of weathering degree (Ishiguro et al., 2008). The heterogeneity could be explained by mass movement caused by rapid rotation from YORP effect (Scheeres et al., 2007) or seismic shaking (Sasaki, 2006). Probably small silicate asteroids without significant regolith could have heterogeneous in color and albedo. On large asteroids (˜ a few 10km), regolith reaccumulation should have covered the underlying heterogeneity. References: Chapman, C. R. et al (2007) Icarus, 191, 323-329 Ishiguro, M. et al. (2008) MAPS, in press. Saito, J. et al. (2006) Science, 312, 1341-1344 Sasaki, S. (2006) in Spacecraft Reconnaissance of Asteroid and Comet Interiors Sasaki, T. et al (2004) Astrophys. J. 615, L161-L164 Scheeres, D. J. (2007) Icarus 188, 425-429 Vernazza, P. et al. (2007) Icarus 191, 330-336.

  3. Effects of Heterogeneity on Transport of Graphene Oxide in Saturated and Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Dong, S.; Sun, Y.; Shi, X.; Wu, J.; Gao, B.

    2015-12-01

    Graphene oxide (GO) has received increasing attention in many fields with its wide applications and rapid growth in production. Therefore, it is expected that GO nanoparticles will inevitably be released into the subsurface and cause the environmental risk subsequently. In view of this, knowledge of the fate for GO in the vadose zone and groundwater systems is indispensable. So far most research has focused on the deposition and transport of GO nanoparticles in one-dimensional homogenous porous media; nonetheless, the complex heterogeneous system is extensively distributed in natural subsurface environment and may not be well represented by the homogeneous packed columns. However, little investigations have been directed toward understanding the transport of GO in heterogeneous porous media. The overarching objective of this study is to advance current understanding of GO transport in structured heterogeneous porous media. The saturated and unsaturated columns packed with different sand combinations and solution ionic strength, were used to examine the breakthrough behavior of GO in heterogeneous porous media. A two-domain model considering GO exchange between zones was developed to describe GO transport in structured, heterogeneous porous media. The experimental data indicate that volumetric moisture content and water flow are the critical factors that control GO transport in heterogeneous porous media. And higher ionic strength decrease the mobility of GO particles in both saturated and unsaturated heterogeneous pore media. Simulations of this two-domain nanoparticle transport model matched experimental breakthrough data well for all the experimental conditions. Experimental and model results show that under saturated conditions, both fast-flow and slow-flow domains affect colloid transport in heterogeneous media. Under unsaturated conditions, however, our results indicate that flows in the fast flow domain dominate the colloid transport and retention processes.

  4. Upscaling of Forchheimer flows

    NASA Astrophysics Data System (ADS)

    Aulisa, Eugenio; Bloshanskaya, Lidia; Efendiev, Yalchin; Ibragimov, Akif

    2014-08-01

    In this work we propose upscaling method for nonlinear Forchheimer flow in heterogeneous porous media. The generalized Forchheimer law is considered for incompressible and slightly-compressible single-phase flows. We use recently developed analytical results (Aulisa et al., 2009) [1] and formulate the resulting system in terms of a degenerate nonlinear flow equation for the pressure with the nonlinearity depending on the pressure gradient. The coarse scale parameters for the steady state problem are determined so that the volumetric average of velocity of the flow in the domain on fine scale and on coarse scale are close. A flow-based coarsening approach is used, where the equivalent permeability tensor is first evaluated following streamline methods for linear cases, and modified in order to take into account the nonlinear effects. Compared to previous works (Garibotti and Peszynska, 2009) [2], (Durlofsky and Karimi-Fard) [3], this approach can be combined with rigorous mathematical upscaling theory for monotone operators, (Efendiev et al., 2004) [4], using our recent theoretical results (Aulisa et al., 2009) [1]. The developed upscaling algorithm for nonlinear steady state problems is effectively used for variety of heterogeneities in the domain of computation. Direct numerical computations for average velocity and productivity index justify the usage of the coarse scale parameters obtained for the special steady state case in the fully transient problem. For nonlinear case analytical upscaling formulas in stratified domain are obtained. Numerical results were compared to these analytical formulas and proved to be highly accurate.

  5. Investigation on particle flow characteristics using electrostatic sensor array

    NASA Astrophysics Data System (ADS)

    Fu, Feifei; Xu, Chuanlong; Heming, Gao, Jian, Li; Wang, Shimin

    2012-03-01

    In recent years, great advance has been made on electrostatic sensing technique for gas-solid flow measurement. Electrostatic tomography(EST) has been used in experiment researches as a novel non-intrusive measurement technique. Electrostatic sensor array is one of the key parts of electrostatic tomography system. Based on the image reconstruction algorithm, the charge on the particles can be obtained from the electrostatic measurement signals. However, reports on the relationship between the electrostatic signal acquired by the electrostatic sensor array and flow characteristics of the particles were very few. In this paper the mathematical model of the electrostatic sensor array was adopted, and its spatial sensitivity field was investigated. In the experiment, the electrostatic signals of the quarter flow and full pipe flow were acquired by the electrostatic sensor array. Based on the EST experiment and Power Spectrum Analysis of Signal, the energy distributions of those two flow patterns were compared. Results show that the sensitivity of the electrostatic sensor array is inhomogeneous in three-dimensional space. For this reason, the energy distributions of those two flow patterns are distinguished.

  6. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  7. Biodiesel production using heterogeneous catalysts.

    PubMed

    Semwal, Surbhi; Arora, Ajay K; Badoni, Rajendra P; Tuli, Deepak K

    2011-02-01

    The production and use of biodiesel has seen a quantum jump in the recent past due to benefits associated with its ability to mitigate greenhouse gas (GHG). There are large number of commercial plants producing biodiesel by transesterification of vegetable oils and fats based on base catalyzed (caustic) homogeneous transesterification of oils. However, homogeneous process needs steps of glycerol separation, washings, very stringent and extremely low limits of Na, K, glycerides and moisture limits in biodiesel. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The present report is review of the progress made in development of heterogeneous catalysts suitable for biodiesel production. This review shall help in selection of suitable catalysts and the optimum conditions for biodiesel production.

  8. NASA GSFC Perspective on Heterogeneous Processing

    NASA Technical Reports Server (NTRS)

    Powell, Wesley A.

    2016-01-01

    This presentation provides an overview of NASA GSFC, our onboard processing applications, the applicability heterogeneous processing to these applications, and necessary developments to enable heterogeneous processing to be infused into our missions.

  9. Temperature chaos and quenched heterogeneities

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo; Parisi, Giorgio; Rizzo, Tommaso

    2014-03-01

    We present a treatable generalization of the Sherrington-Kirkpatrick (SK) model which introduces correlations in the elements of the coupling matrix through multiplicative disorder on the single variables and investigate the consequences on the phase diagram. We define a generalized qEA parameter and test the structural stability of the SK results in this correlated case evaluating the de Almeida-Thouless line of the model. As a main result we demonstrate the increase of temperature chaos effects due to heterogeneities.

  10. The Heterogeneous Dynamics of Economic Complexity

    PubMed Central

    Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano

    2015-01-01

    What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch—Economic Complexity—have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method—the selective predictability scheme—in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries. PMID:25671312

  11. The heterogeneous dynamics of economic complexity.

    PubMed

    Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano

    2015-01-01

    What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch--Economic Complexity--have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method--the selective predictability scheme--in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries.

  12. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  13. On comparing heterogeneity across biomarkers.

    PubMed

    Steininger, Robert J; Rajaram, Satwik; Girard, Luc; Minna, John D; Wu, Lani F; Altschuler, Steven J

    2015-06-01

    Microscopy reveals complex patterns of cellular heterogeneity that can be biologically informative. However, a limitation of microscopy is that only a small number of biomarkers can typically be monitored simultaneously. Thus, a natural question is whether additional biomarkers provide a deeper characterization of the distribution of cellular states in a population. How much information about a cell's phenotypic state in one biomarker is gained by knowing its state in another biomarker? Here, we describe a framework for comparing phenotypic states across biomarkers. Our approach overcomes the current limitation of microscopy by not requiring costaining biomarkers on the same cells; instead, we require staining of biomarkers (possibly separately) on a common collection of phenotypically diverse cell lines. We evaluate our approach on two image datasets: 33 oncogenically diverse lung cancer cell lines stained with 7 biomarkers, and 49 less diverse subclones of one lung cancer cell line stained with 12 biomarkers. We first validate our method by comparing it to the "gold standard" of costaining. We then apply our approach to all pairs of biomarkers and use it to identify biomarkers that yield similar patterns of heterogeneity. The results presented in this work suggest that many biomarkers provide redundant information about heterogeneity. Thus, our approach provides a practical guide for selecting independently informative biomarkers and, more generally, will yield insights into both the connectivity of biological networks and the complexity of the state space of biological systems.

  14. Soft Dielectrics: Heterogeneity and Instabilities

    NASA Astrophysics Data System (ADS)

    Rudykh, Stephan; Debotton, Gal; Bhattacharya, Kaushik

    2012-02-01

    Dielectric Elastomers are capable of large deformations in response to electrical stimuli. Heterogeneous soft dielectrics with proper microstructures demonstrate much stronger electromechanical coupling than their homogeneous constituents. In turn, the heterogeneity is an origin for instability developments leading to drastic change in the composite microstructure. In this talk, the electromechanical instabilities are considered. Stability of anisotropic soft dielectrics is analyzed. Ways to achieve giant deformations and manipulating extreme material properties are discussed. 1. S. Rudykh and G. deBotton, ``Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses.'' Journal of Elasticity, 2011. http://dx.doi.org/2010.1007/s10659-011-9313-x 2. S. Rudykh, K. Bhattacharya and G. deBotton, ``Snap-through actuation of thick-wall electroactive balloons.'' International Journal of Non-Linear Mechanics, 2011. http://dx.doi.org/10.1016/j.ijnonlinmec.2011.05.006 3. S. Rudykh and G. deBotton, ``Stability of Anisotropic Electroactive Polymers with Application to Layered Media.'' Zeitschrift f"ur angewandte Mathematik und Physik, 2011. http://dx.doi.org/10.1007/s00033-011-0136-1 4. S. Rudykh, A. Lewinstein, G. Uner and G. deBotton, ``Giant Enhancement of the Electromechanical Coupling in Soft Heterogeneous Dielectrics.'' 2011 http://arxiv.org/abs/1105.4217v1

  15. Measuring heterogeneous remanence in paleomagnetism

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Geneviciene, Ieva

    2007-06-01

    Remanence directions of from the same block-sample may be inconsistent or unrepresentative due to orientation and location heterogeneity of their remanence-bearing minerals (RBM). Magnetization-heterogeneity is usually undetectable at the specimen-level but we replicated its effects by measuring 8 small specimens with stable magnetizations (8 or 5.2 cm3). These were assembled into a single large multi-specimen inside 125 cm3 containers that were measured in a Molspin ``BigSpin'' magnetometer. Large-specimen remanence directions deflect towards the direction of any strongly magnetized sub-specimen. Differences between the large-specimen remanence and that for the group of individually measured sub-specimens worsened when one sub-specimen was mis-oriented. These discrepancies were cancelled or reduced using larger numbers of specimen orientations in the magnetometer. Conventional schemes with 4 or 6 different measurement-orientations may fail to suppress heterogeneity-effects whereas our 12-orientation protocol may succeed. For most specimens, acceptable remanence-homogeneity is present where similar remanence-directions are recorded from 4, 6, and 12 different spin-orientations.

  16. Analyzing and modeling heterogeneous behavior

    NASA Astrophysics Data System (ADS)

    Lin, Zhiting; Wu, Xiaoqing; He, Dongyue; Zhu, Qiang; Ni, Jixiang

    2016-05-01

    Recently, it was pointed out that the non-Poisson statistics with heavy tail existed in many scenarios of human behaviors. But most of these studies claimed that power-law characterized diverse aspects of human mobility patterns. In this paper, we suggest that human behavior may not be driven by identical mechanisms and can be modeled as a Semi-Markov Modulated Process. To verify our suggestion and model, we analyzed a total of 1,619,934 records of library visitations (including undergraduate and graduate students). It is found that the distribution of visitation intervals is well fitted with three sections of lines instead of the traditional power law distribution in log-log scale. The results confirm that some human behaviors cannot be simply expressed as power law or any other simple functions. At the same time, we divided the data into groups and extracted period bursty events. Through careful analysis in different groups, we drew a conclusion that aggregate behavior might be composed of heterogeneous behaviors, and even the behaviors of the same type tended to be different in different period. The aggregate behavior is supposed to be formed by "heterogeneous groups". We performed a series of experiments. Simulation results showed that we just needed to set up two states Semi-Markov Modulated Process to construct proper representation of heterogeneous behavior.

  17. Aquifer Heterogeneity and Solute-Transport Modeling in the Floridan Aquifer System

    NASA Astrophysics Data System (ADS)

    Guo, W.; Maliva, R. G.; Missimer, T. M.

    2008-05-01

    The Floridan Aquifer System (FAS) is one of the most prolific aquifers in the world and is widely used for public and irrigation water supply. The FAS is also increasingly being used as a storage zone for aquifer storage and recovery (ASR) systems, including a 333-well system that is planned as part of the Comprehensive Everglades Restoration Plan (CERP). The FAS is highly heterogeneous with respect to hydraulic conductivity, with meter- scale inter-bed variation exceeding seven orders of magnitude in some cases, even in South Florida where mega-karst is not well developed. Aquifer heterogeneity can have a major impact on ASR system performance because of its affects on the movement and mixing of stored water. Aquifer heterogeneity poses challenges for accurate modeling of the FAS, including solute transport modeling of ASR systems and variable density flow modeling of the freshwater/saltwater interface along coastal areas. Dispersivity is an important parameter in solute transport modeling, which is associated with aquifer heterogeneity. Commonly the values of dispersivity used in solute-transport modeling are derived from literature review and adjusted during model calibration process. Artificially large dispersivity values are often used in solute-transport models of ASR systems as a "fudge factor" to simulate the apparent greater mixing caused by inter-bed heterogeneity. This approach is problematic because the use of artificial hydraulic parameters for calibration opens the results of predictive simulations to question. The use of large dispersivity values to simulate aquifer heterogeneity also does not incorporate other impacts of aquifer heterogeneity, such as differential flow rates and migration distances between beds. The technical challenge is to incorporate aquifer heterogeneity into groundwater models at a scale that is sufficient to adequately simulate its effect on ASR system performance and coastal groundwater flow, while maintaining acceptable

  18. OH initiated heterogeneous degradation of organophosphorus compounds

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Liu, Y.; Harner, T.; Jantunen, L.; Shoeib, M.; Li, S.

    2013-12-01

    Organophosphorus compounds (OPs) have been extensively used worldwide as flame retardants, plasticizers, antifoaming agents, and additives because of their favorable physicochemical characteristics. The global consumption of OPs is likely to greatly increase due to the phasing out of bromine-containing flame retardants (BFRs) with OPs identified as possible substitutes. In most applications, OPs easily leach out of the material into the environment via volatilization, abrasion, and dissolution and have been observed widely in atmospheric particles even in polar regions. However, little is known about their atmospheric fate. The Canadian Chemicals Management Plan (CMP) has targeted OP FRs for risk assessment, including assessing stability and atmospheric transport potential of OP FRs and other priority chemicals that are associated primarily with particles. In the current study, OH initiated heterogeneous reaction kinetics of tris(1,3-dichloro-2-propyl) phosphate (TDCPP), tris-2-ethylhexyl-phosphate (TEHP), tris-2-butoxyethyl-phosphate (TBEP), and tri-phenyl phosphate (TPhP) coated on (NH4)2SO4 were investigated using a photo-chemical flow tube which was coupled to an Aerosol Mass Spectrometer (AMS) and Proton Transfer Reaction Mass Spectrometer (PTR-MS). second-order rate constants (k2) for the heterogeneous loss of TPhP, TEHP and TDCPP were (2.07×0.19)×10-12, (2.69×0.63)×10-12 and (9.22×0.92)×10-13 cm3 molecule-1 s-1, respectively, from which approximate atmospheric lifetimes were estimated to be 5.6 (5.2-6.0), 4.3 (3.5-5.6), and 12.6 (11.4-14.0) days. These results represent the first reported estimates of heterogeneous rate constants for these species, and suggest that particle bound OPEs will be highly persistent in the atmosphere, supporting the assumption that OPEs can undergo medium or long-range transport, as proposed on the basis of field measurements.

  19. Modeling groundwater flow on MPPs

    SciTech Connect

    Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Tompson, A.F.B.

    1993-10-01

    The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code`s scalability.

  20. Mapping small-scale mantle heterogeneities using seismic arrays

    NASA Astrophysics Data System (ADS)

    Bentham, H. L.; Rost, S.

    2012-12-01

    In recent years array seismology has been used extensively to detect and locate the small scale (~10 km) structure of the Earth. In the mantle, small scale structure likely represents chemical heterogeneity and is essential in our understanding of mechanical mixing processes within mantle convection. As subducted crust is chemically distinct from the background mantle, imaging the remains of the crust provides a tracer for convectional flow. Evidence for heterogeneities has been found in the lower mantle in previous seismology studies but the arrivals associated with such heterogeneities are difficult to detect in the seismic data as they are typically low amplitude and are often masked by a multitude of larger amplitude arrivals. In this study we find global and regional seismic heterogeneities in the mantle by processing teleseismic earthquake data through array seismology methods. We find global patterns of heterogeneity using a stacking approach. To locate regional heterogeneities, we target the "quiet" window prior to the PP arrival for earthquakes with epicentral distances of 90-110°. Within this time window, we enhance the weak coherent energy that arrives off great circle path by calculating the observed directivity (slowness and backazimuth) and using a semblance weighted beampower measure. We use the directivity and travel times of suitable precursors to back-trace the energy to the origin of P-to-P reflections, using a 1D raytracer. Most of the P-to-P reflections that we observe have reflection origins in the upper/mid mantle. Beneath the western Pacific subduction zones, such reflections show a good correlation with subduction zone contours that are derived from subduction zone seismicity, and correlate well with tomography gradients of 0.01-0.5% per degree, interpreted as the edge of the slab. Deep mantle reflections (>600 km) are also observed to depths of ~1900 km. The locations of these heterogeneities are combined with previous seismological

  1. Quantitative study of cellular heterogeneity in doxorubicin uptake and its pharmacological effect on cancer cells.

    PubMed

    Deng, Bin; Wang, Zhi-Ming; Zhou, Zi-Hao; Liu, Yi-Meng; Yang, Xi-Liang; Song, Jian; Xiao, Yu-Xiu

    2014-10-01

    Cellular heterogeneity in doxorubicin (DOX) uptake and its relationship with pharmacological effect on cancer cells were quantitatively investigated for the first time. An in vitro experimental model was established by treating human leukemia K562 and breast cancer MCF-7 cells with different schedules of DOX with or without surface P-glycoprotein (P-gp) inhibitor verapamil (VER). The cellular heterogeneity in DOX uptake was quantitatively examined by single-cell analysis using capillary electrophoresis coupled with laser-induced fluorescence detection. The corresponding cytotoxic effect was tested by cellular morphology, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium and flow cytometry assays. The expression of cellular membrane surface P-gp was determined by flow cytometry. Results showed that the cellular heterogeneity exists in DOX uptake. The single-high DOX schedule leads to lower uptake heterogeneity and higher mean drug uptake. The cellular heterogeneity in DOX uptake was found to be negatively correlated with drug cytotoxicity and surface P-gp expression, with r = -0.7680 to ~ -0.9587. VER reduces the cellular variation in DOX uptake, suggesting that surface P-gp may be one of the causes of the cellular heterogeneity in DOX uptake. This research demonstrates the importance of quantitative study of cellular heterogeneity in drug uptake and its potential application in drug schedule design, response prediction and therapy modulation.

  2. Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation.

    PubMed

    de Jong, Imke G; Veening, Jan-Willem; Kuipers, Oscar P

    2010-04-01

    In response to limiting nutrient sources and cell density signals, Bacillus subtilis can differentiate and form highly resistant endospores. Initiation of spore development is governed by the master regulator Spo0A, which is activated by phosphorylation via a multicomponent phosphorelay. Interestingly, only part of a clonal population will enter this developmental pathway, a phenomenon known as sporulation bistability or sporulation heterogeneity. How sporulation heterogeneity is established is largely unknown. To investigate the origins of sporulation heterogeneity, we constructed promoter-green fluorescent protein (GFP) fusions to the main phosphorelay genes and perturbed their expression levels. Using time-lapse fluorescence microscopy and flow cytometry, we showed that expression of the phosphorelay genes is distributed in a unimodal manner. However, single-cell trajectories revealed that phosphorelay gene expression is highly dynamic or "heterochronic" between individual cells and that stochasticity of phosphorelay gene transcription might be an important regulatory mechanism for sporulation heterogeneity. Furthermore, we showed that artificial induction or depletion of the phosphorelay phosphate flow results in loss of sporulation heterogeneity. Our data suggest that sporulation heterogeneity originates from highly dynamic and variable gene activity of the phosphorelay components, resulting in large cell-to-cell variability with regard to phosphate input into the system. These transcriptional and posttranslational differences in phosphorelay activity appear to be sufficient to generate a heterogeneous sporulation signal without the need of the positive-feedback loop established by the sigma factor SigH.

  3. Mixing and the distribution of heterogeneities in a chaotically convecting mantle

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Turcotte, D. L.

    1990-01-01

    Chemical heterogeneities are introduced into the mantle by subduction of oceanic lithosphere and possibly by subduction of sediments and delamination of the continental lithosphere. These heterogeneities are blended into the mantle by convective mixing. Chemically distinct heterogeneities are stirred into the surrounding mantle matrix by convective shear, which deforms them, increasing the area of contact between an heterogeneity and the matrix. Final homogenization is accomplished by diffusion, which brings centimetersized heterogeneities into chemical equilibrium with the matrix. Numerical models of mantle convection suggest that it is chaotic. To study the effect of a chaotic flow on mixing, we have generated a space-filling, two-dimensional flow using the Lorenz equations in the chaotic regime as a driver. We specify a two-mode expansion of the stream function, resulting in a flow which oscillates smoothly between one and two cells. Particle paths are chaotic in time and space. Mixing is very rapid; the mixing time for heterogeneities with an initial size of 6 km is 240 m.y. for layered mantle convection; the corresponding mixing time for whole mantle convection is 960 m.y. The source region for mid-ocean ridge basalts has a "marble cake" structure; it is made up of material which has been processed through ridges, subducted, stretched, and thinned and is either partially or wholly homogenized. The incompletely mixed subducted oceanic crust forms bands of eclogite in the peridotite matrix. These bands range in scale from 6 km to a few centimeters.

  4. Integrated characterisation of aquifer heterogeneity and landfill leachate plume migration

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Lefebvre, R.; Gloaguen, E.; Paradis, D.

    2009-05-01

    The understanding of groundwater flow and contaminant migration is based on our ability to characterize aquifers and represent these processes with numerical simulators. This understanding is required to efficiently remediate contaminated sites since the failure of remediation actions are often related to an insufficient understanding of aquifer heterogeneity. During the last decades, continuous development of numerical simulators allowed models to better represent complex flow systems. However, conventional hydrogeological characterization methods do not provide the data required to define aquifer heterogeneity. An original hydrogeological characterization approach was used to define aquifer heterogeneity and delineate landfill leachate plumes through the use and integration of varied techniques. The objective of the study is to develop a methodology to integrate hydrogeological, geophysical and geochemical data using geostatistical tools. The characterization program aims to better characterize the aquifer, delineate leachate plumes emitted by a former landfill, and guide a study of the natural attenuation of the plumes. The initial phase of the integrated multidisciplinary aquifer characterization program was carried out in a 12 km2 area of the sub-watershed surrounding the landfill of St-Lambert-de-Lauzon, Québec. In the study area, a 10-m thick sandy unconfined aquifer overlies clayey silt and till layers. In this relatively flat area, natural streams as well as agricultural and forestry drainage networks control groundwater flow. The first phase of the project focused on a regional hydrogeological and geochemical characterization where 5 field methods were combined: 1) surface geophysics (ground penetrating radar and electrical tomography) (GPR); 2) direct-push methods including a) cone penetration tests (CPT), b) soil sampling and c) installation of full- screened observation wells; 3) multilevel measurement of geochemical parameters and groundwater

  5. Effect of Hierarchical, Multi-Scale Heterogeneity on Long-Term Nitrate Transport in a Deep Vadose Zone

    NASA Astrophysics Data System (ADS)

    Harter, T.; Botros, F.

    2008-12-01<