Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD
2005-01-01
Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390
Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong
2017-09-01
Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.
Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials
Brown, Scott A.; Surman, Sherri L.; Sealy, Robert; Jones, Bart G.; Slobod, Karen S.; Branum, Kristen; Lockey, Timothy D.; Howlett, Nanna; Freiden, Pamela; Flynn, Patricia; Hurwitz, Julia L.
2010-01-01
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of ‘original antigenic sin’ is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans. PMID:20407589
Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C C; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon; Horn, Cynthia
2013-08-01
Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.
Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C. C.; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon
2013-01-01
Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6′-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB. PMID:23740922
Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases
2006-08-01
of these cells by boosting. DNA vaccines are good priming agents since they are internalised by antigen presenting cells and can induce antigen...presentation via both MHC class I and class II, thereby inducing both cytotoxic T lymphocytes and type 1-helper T lymphocytes. Successful boosting agents ...assessing prime-boost vaccine combinations for protection against infectious agents . • In a number of prime - boost studies, the inclusion of growth
Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina
2012-09-07
Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B
2016-05-13
Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.
Buglione-Corbett, Rachel; Pouliot, Kimberly; Marty-Roix, Robyn; West, Kim; Wang, Shixia; Lien, Egil; Lu, Shan
2013-01-01
In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general. PMID:24019983
Keefer, Michael C.; Frey, Sharon E.; Elizaga, Marnie; Metch, Barbara; De Rosa, Stephen C.; Barroso, Paulo F.; Tomaras, Georgia; Cardinali, Massimo; Goepfert, Paul; Kalichman, Artur; Philippon, Valérie; McElrath, M. Juliana; Jin, Xia; Ferrari, Guido; Defawe, Olivier D.; Mazzara, Gail P.; Montefiori, David; Pensiero, Michael; Panicali, Dennis L.; Corey, Lawrence
2011-01-01
We evaluated replication-defective poxvirus vectors (modified vaccinia Ankara [MVA] and fowlpox [FPV]) in a homologous and heterologous vector prime-boost vaccination regimen containing matching HIV inserts (MVA-HIV and FPV-HIV) given at months 0, 1, 3, 5 and 7 in 150 healthy HIV-negative vaccinia-naïve participants. FPV-HIV alone was poorly immunogenic, while the high dose (109 pfu/2ml) of MVA-HIV alone elicited maximal responses after two injections: CD4+ and CD8+ T-cell responses in 26/55 (47.3%) and 5/60 (8.3%) of participants, respectively and IFN-γ ELISpot responses in 28/62 (45.2%). The infrequent CD8+ T-cell responses following MVA-HIV priming were boosted only by the heterologous (FPV-HIV) construct in 14/27 [51.9%] of participants post-4th vaccination. Alternatively, HIV envelope-specific binding antibodies were demonstrated in approximately two-thirds of recipients of the homologous boosting regimen, but in less than 20% of subjects after the heterologous vector boost. Thus, a heterologous poxvirus vector prime-boost regimen can induce an HIV-specific CD8+ T-cell and CD4+ T-cell responses, which may be an important feature of an optimal regimen for preventive HIV vaccination. PMID:21216311
Fu, Yuan-Hui; He, Jin-Sheng; Wang, Xiao-Bo; Zheng, Xian-Xian; Wu, Qiang; Xie, Can; Zhang, Mei; Wei, Wei; Tang, Qian; Song, Jing-Dong; Qu, Jian-Guo; Hong, Tao
2010-04-23
Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice. 2010 Elsevier Inc. All rights reserved.
Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.
Mire, Chad E; Geisbert, Joan B; Marzi, Andrea; Agans, Krystle N; Feldmann, Heinz; Geisbert, Thomas W
2013-01-01
Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed in the prime-boost approach can provide protection against BEBOV using an abbreviated regimen, which may have utility in outbreak settings.
Jayakumar, Asha; Castilho, Tiago M; Park, Esther; Goldsmith-Pestana, Karen; Blackwell, Jenefer M; McMahon-Pratt, Diane
2011-06-01
Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective. Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease. Heterologous prime - boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses. Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that CD8 T cells should be targeted for the development of a vaccine against infection caused by Leishmania (Viannia) parasites. Further, TLR1/2 modulation may be useful in vaccines where CD8 T cell responses are critical.
Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya
2017-01-01
ABSTRACT The consequences of the 2013–16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks. PMID:27925844
Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya
2017-02-01
The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.
Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C
2016-01-01
Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.
Venkatraman, Navin; Anagnostou, Nicholas; Bliss, Carly; Bowyer, Georgina; Wright, Danny; Lövgren-Bengtsson, Karin; Roberts, Rachel; Poulton, Ian; Lawrie, Alison; Ewer, Katie; V S Hill, Adrian
2017-10-27
The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chiuppesi, Flavia; Wussow, Felix; Scharf, Louise; Contreras, Heidi; Gao, Han; Meng, Zhuo; Nguyen, Jenny; Barry, Peter A; Bjorkman, Pamela J; Diamond, Don J
2017-01-01
Since neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) pentamer complex (PC) potently block HCMV host cell entry, anti-PC NAb induction is thought to be important for a vaccine formulation to prevent HCMV infection. By developing a vaccine strategy based on soluble PC protein and using a previously generated Modified Vaccinia Ankara vector co-expressing all five PC subunits (MVA-PC), we compared HCMV NAb induction by homologous immunization using prime-boost vaccine regimen employing only PC protein or MVA-PC and heterologous immunization using prime-boost combinations of PC protein and MVA-PC. Utilizing a recently isolated anti-PC NAb, we produced highly pure soluble PC protein that displayed conformational and linear neutralizing epitopes, interfered with HCMV entry, and was recognized by antibodies induced by HCMV during natural infection. Mice vaccinated by different immunization routes with the purified PC protein in combination with a clinically approved adjuvant formulation elicited high-titer and durable HCMV NAb. While MVA-PC and soluble PC protein either alone or in combination elicited robust HCMV NAb, significantly different potencies of these vaccine approaches were observed in dependence on immunization schedule. Using only two immunizations, vaccination with MVA-PC alone or prime-boost combinations of MVA-PC and PC protein was significantly more effective in stimulating HCMV NAb than immunization with PC protein alone. In contrast, with three immunizations, NAb induced by soluble PC protein either alone or combined with two boosts of MVA-PC increased to levels that exceeded NAb titer stimulated by MVA-PC alone. These results provide insights into the potency of soluble protein and MVA to elicit NAb by the HCMV PC via homologous and heterologous prime-boost immunization, which may contribute to develop clinically deployable vaccine strategies to prevent HCMV infection.
Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš
2011-12-01
The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Rosa, Stephen C.; Thomas, Evan P.; Bui, John; Huang, Yunda; deCamp, Allan; Morgan, Cecilia; Kalams, Spyros; Tomaras, Georgia D.; Akondy, Rama; Ahmed, Rafi; Lau, Chuen-Yen; Graham, Barney S.; Nabel, Gary J.; McElrath, M. Juliana
2011-01-01
Many candidate HIV vaccines are designed to primarily elicit T-cell responses. Although repeated immunization with the same vaccine boosts antibody responses, the benefit for T-cell responses is ill-defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T-cell responses, but increases gp140 antibody responses ten-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8+ T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4+ and CD8+ T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts, and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination. PMID:21844392
de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M
2009-10-01
A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.
Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin
2018-01-01
Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results of potency, breadth, and safety demonstrated in the mouse model support further studies in higher animal models for clinical relevance.
You, Qingrui; Wu, Yongge; Wu, Yang; Wei, Wei; Wang, Changyong; Jiang, Dehua; Yu, Xianghui; Zhang, Xizhen; Wang, Yong; Tang, Zhijiao; Jiang, Chunlai; Kong, Wei
2012-11-01
To evaluate regimens using bacillus Calmette-Guérin (BCG) or recombinant BCG (rBCG) overexpressing Ag85B for priming, followed by boosting with a modified vaccinia virus Ankara strain (MVA) and/or adenovirus vector (AD) expressing an Ag85B-ESAT6 fusion protein. Cellular and humoral immune responses were determined after subcutaneous vaccination, which was employed to trigger systemic immunity against intravenous infection in a mouse model of tuberculosis (TB). Bacterial loads and lung histology were evaluated. The relative IgG2a and IgG1 antibody levels indicated that the viral-vectored vaccines generated a T-helper type 1 (Th1)-biased response after two doses of viral boost vaccinations. Boosting BCG-primed mice with viral vaccines induced a Th1 immune response that included both CD4 and CD8 T-cells generating antigen-specific interferon-gamma (IFN-γ) and CD8 T cytotoxic activity. Only mice vaccinated with two different viral boosters after BCG priming exhibited a significant reduction in bacterial burden in the lung after challenge. Histology examinations confirmed the attenuation of lung damage and more compact granulomas. After mycobacteria priming, boosting with AD85B-E6 followed by MVA85B-E6 afforded better protection than the reverse order of administration of the viral vectors. This study demonstrates the potential of multiple heterologous viral booster vaccines, although the exact correlates of protection and optimal regimens should be further investigated for the rational design of future vaccine strategies. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou
2006-08-01
Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.
Kim, Shin-Hee; Samal, Siba K
2017-07-24
Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sirisereewan, Chaitawat; Nedumpun, Teerawut; Kesdangsakonwut, Sawang; Woonwong, Yonlayong; Kedkovid, Roongtham; Arunorat, Jirapat; Thanawongnuwech, Roongroje; Suradhat, Sanipa
2017-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is one of the most important swine pathogens, and causes a major economic impact worldwide. Recently, a new variant type 2 PRRSV, highly pathogenic PRRSV (HP-PRRSV) has emerged and continued to circulate in Southeast Asia region. Currently, commercially available PRRSV vaccines, modified live PRRS vaccines (MLV) are not able to provide complete protection against HP-PRRSV and been reported to induce negative immunomodulatory effects. Interestingly, a novel DNA vaccine was developed and successfully used to improve PRRSV-specific immune responses following MLV vaccination. To investigate the efficacy of a heterologous DNA-MLV prime-boost immunization against the HP-PRRSV infection, an experimental vaccinated-challenged study was conducted. Two-week-old, PRRSV-seronegative, crossbred pigs (5-8 pigs/group) were allocated into 5 groups. At day -14 (D-14), the treatment group (DNA-MLV) was immunized with a DNA vaccine encoding PRRSV-truncated nucleocapsid protein (pORF7t), followed by a commercial modified live type 2 PRRS vaccine (MLV) at D0. The other groups included the group that received PBS at D-14 followed by MLV at D0 (MLV), pORF7t at D-14 (DNA), PBS at D0 (PBS) and the negative control group. At D42, all groups, except the negative control group, were challenged with HP-PRRSV (strain 10PL1). The results demonstrated that pigs that received MLV, regardless of the DNA priming, exhibited less clinical signs and faster viral clearance. Following HP-PRRSV challenge, the DNA-MLV group exhibited improved PRRSV-specific immunity, as observed by increased neutralizing antibody titers and PRRSV-specific IFN-γ production, and reduced IL-10 and PRRSV-specific Treg productions. However, neither the prime-boost immunization nor the MLV was able to induce complete clinical protection against HP-PRRSV infection. In conclusion, improved immunological responses, but not clinical protection, were achieved by DNA-MLV prime-boost immunization. This study highlights the potential use of heterologous prime-boost vaccination regimen, where DNA can be incorporated with other vaccine candidates, for improving anti-PRRSV immunity that may eventually lead induction of complete PRRSV protection. Copyright © 2016 Elsevier B.V. All rights reserved.
Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Amara, Rama Rao; Plikaytis, Bonnie B.; Posey, James E.; Sable, Suraj B.
2016-01-01
Heterologous prime–boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32–52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime–Apa-subunit-boost strategy compared to Apa-subunit-prime–BCG-boost approach. However, parenteral BCG-prime–Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime–boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime–boost regimens against tuberculosis in humans. PMID:27173443
USDA-ARS?s Scientific Manuscript database
Previous work in small animal laboratory models of tuberculosis have shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacille Calmette-Guerin (BCG) to prime and Modified Vaccinia Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad8...
De Filette, Marina; Soehle, Silke; Ulbert, Sebastian; Richner, Justin; Diamond, Michael S.; Sinigaglia, Alessandro; Barzon, Luisa; Roels, Stefan; Lisziewicz, Julianna; Lorincz, Orsolya; Sanders, Niek N.
2014-01-01
West Nile virus (WNV) is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI) covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime – boost regime) with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical). In parallel a heterologous boost with purified recombinant WNV envelope (E) protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection. PMID:24503579
Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L
2017-04-01
Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.
de Alencar, Bruna C. G.; Persechini, Pedro M.; Haolla, Filipe A.; de Oliveira, Gabriel; Silverio, Jaline C.; Lannes-Vieira, Joseli; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bruna-Romero, Oscar; Rodrigues, Mauricio M.
2009-01-01
A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871
Jaramillo Ortiz, José Manuel; Del Médico Zajac, María Paula; Zanetti, Flavia Adriana; Molinari, María Paula; Gravisaco, María José; Calamante, Gabriela; Wilkowsky, Silvina Elizabeth
2014-08-06
In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes. The best vaccination scheme was achieved with a prime of protein cocktail and a boost with the recombinant virus. This scheme induced high level of specific IgG antibodies and secreted IFN and a high degree of activation of IFNγ(+) CD4(+) and CD8(+) specific T cells. This is the first report in which a novel vaccine candidate was constructed based on a rationally designed multi-antigen and evaluated in a prime-boost regime, optimizing the immune response necessary for protection against bovine babesiosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald
2015-01-01
HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.
Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald
2015-01-01
HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation. PMID:25856308
Nolan, Terry; Izurieta, Patricia; Lee, Bee-Wah; Chan, Poh Chong; Marshall, Helen; Booy, Robert; Drame, Mamadou; Vaughn, David W.
2014-01-01
Background. Protecting young children from pandemic influenza should also reduce transmission to susceptible adults, including pregnant women. Methods. An open study assessed immunogenicity and reactogenicity of a heterologous booster dose of A/turkey/Turkey/1/2005(H5N1)-AS03B (AS03B is an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion [5.93 mg tocopherol]) in infants and children aged 6 to < 36 months that was given 6 months following 2-dose primary vaccination with A/Indonesia/05/2005(H5N1)-AS03B. Vaccines contained 1.9 µg of hemagglutinin antigen and AS03B. Hemagglutinin inhibition (HI) responses, microneutralization titers, and antineuraminidase antibody levels were assessed for 6 months following the booster vaccination. Results. For each age stratum (defined on the basis of the subject's age at first vaccination as 6 to < 12 months, 12 to < 24 months, and 24 to < 36 months) and overall (n = 113), European influenza vaccine licensure criteria were fulfilled for responses to A/turkey/Turkey/1/2005(H5N1) 10 days following the booster vaccination. Local pain and fever increased with consecutive doses. Anamnestic immune responses were demonstrated for HI, neutralizing, and antineuraminidase antibodies against vaccine-homologous/heterologous strains. Antibody responses to vaccine-homologous/heterologous strains persisted in all children 6 months following the booster vaccination. Conclusions. Prevaccination of young children with a clade 2 strain influenza A(H5N1) AS03-adjuvanted vaccine followed by heterologous booster vaccination boosted immune responses to the homologous strain and a related clade, with persistence for at least 6 months. The results support a prime-boost vaccination approach in young children for pandemic influenza preparedness. Clinical Trials Registration. NCT01323946. PMID:24973461
Solanki, Amit Kumar; Bhatia, Bharati; Kaushik, Himani; Deshmukh, Sachin K; Dixit, Aparna; Garg, Lalit C
2017-07-01
Clostridium perfringens beta toxin (CPB) is the primary pathogenic factor responsible for necrotic enteritis in sheep, cattle and humans. Owing to rapid progression of the disease, vaccination is the only possible recourse to avoid high mortality in animal farms and huge economic losses. The present study reports evaluation of a cpb gene-based DNA vaccine encoding the beta toxin of C. perfringens with homologous as well as heterologous booster strategy. Immunization strategy employing heterologous booster with heat-inactivated rCPB mounted stronger immune response when compared to that generated by homologous booster. Antibody isotyping and cytokine ELISA demonstrated the immune response to be Th1-biased mixed immune response. While moderate protection of immunized BALB/c and C57BL/6 mice against rCPB challenge was observed with homologous booster strategy, heterologous booster strategy led to complete protection. Thus, beta toxin-based DNA vaccine using the heterologous prime-boosting strategy was able to generate better immune response and conferred greater degree of protection against high of dose rCPB challenge than homologous booster regimen, making it an effective vaccination approach against C. perfringens beta toxin.
Jiang, George; Shi, Meng; Conteh, Solomon; Richie, Nancy; Banania, Glenna; Geneshan, Harini; Valencia, Anais; Singh, Priti; Aguiar, Joao; Limbach, Keith; Kamrud, Kurt I.; Rayner, Jonathan; Smith, Jonathan; Bruder, Joseph T.; King, C. Richter; Tsuboi, Takafumi; Takeo, Satoru; Endo, Yaeta; Doolan, Denise L.; Richie, Thomas L.; Weiss, Walter R.
2009-01-01
Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost. PMID:19668343
Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C
2013-01-01
The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.
Blanco, Jorge C G; Boukhvalova, Marina S; Pletneva, Lioubov M; Shirey, Kari Ann; Vogel, Stefanie N
2014-03-14
We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin
2018-01-01
Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results of potency, breadth, and safety demonstrated in the mouse model support further studies in higher animal models for clinical relevance. PMID:29449842
Gillard, Paul; Chu, Daniel Wai Sing; Hwang, Shinn-Jang; Yang, Pan-Chyr; Thongcharoen, Prasert; Lim, Fong Seng; Dramé, Mamadou; Walravens, Karl; Roman, François
2014-03-15
The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross-clade anamnestic antibody responses were observed after one dose of AS03A-H5N1 heterologous booster vaccine given at Month 6, 12, or 36 after priming, suggesting that AS03A-adjuvanted H5N1 vaccines may provide highly flexible prime-boost schedules. Although immunogenicity decreased with time, vaccinated populations could potentially be protected for up to three years after vaccination, which is likely to far exceed the peak of the a pandemic.
Spencer, Alexandra J.; Cottingham, Matthew G.; Jenks, Jennifer A.; Longley, Rhea J.; Capone, Stefania; Colloca, Stefano; Folgori, Antonella; Cortese, Riccardo; Nicosia, Alfredo; Bregu, Migena; Hill, Adrian V. S.
2014-01-01
The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required. PMID:24945248
Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A
2006-07-01
The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.
Safety and Immunogenicity of ChAd63 and MVA ME-TRAP in West African Children and Infants
Afolabi, Muhammed O; Tiono, Alfred B; Adetifa, Uche J; Yaro, Jean Baptiste; Drammeh, Abdoulie; Nébié, Issa; Bliss, Carly; Hodgson, Susanne H; Anagnostou, Nicholas A; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Tamara, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mirielle; Njie-Jobe, Jainaba; Diarra, Amidou; Duncan, Christopher JA; Cortese, Riccardo; Nicosia, Alfredo; Roberts, Rachel; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampman, Beate; Bejon, Philip; Imoukhuede, Egeruan B; Ewer, Katie J; Hill, Adrian VS; Bojang, Kalifa; Sirima, Sodiomon B
2016-01-01
Malaria remains a significant global health burden and a vaccine would make a substantial contribution to malaria control. Chimpanzee Adenovirus 63 Modified Vaccinia Ankara Multiple epitope thrombospondin adhesion protein (ME-TRAP) and vaccination has shown significant efficacy against malaria sporozoite challenge in malaria-naive European volunteers and against malaria infection in Kenyan adults. Infants are the target age group for malaria vaccination; however, no studies have yet assessed T-cell responses in children and infants. We enrolled 138 Gambian and Burkinabe children in four different age-groups: 2–6 years old in The Gambia; 5–17 months old in Burkina Faso; 5–12 months old, and also 10 weeks old, in The Gambia; and evaluated the safety and immunogenicity of Chimpanzee Adenovirus 63 Modified Vaccinia Ankara ME-TRAP heterologous prime-boost immunization. The vaccines were well tolerated in all age groups with no vaccine-related serious adverse events. T-cell responses to vaccination peaked 7 days after boosting with Modified Vaccinia Ankara, with T-cell responses highest in 10 week-old infants. Heterologous prime-boost immunization with Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara ME-TRAP was well tolerated in infants and children, inducing strong T-cell responses. We identify an approach that induces potent T-cell responses in infants, which may be useful for preventing other infectious diseases requiring cellular immunity. PMID:27109630
Jiang, Wenbo; Wang, Shuangshuang; Chen, Honglin; Ren, Huanhuan; Huang, Xun; Wang, Guiqin; Chen, Ling; Chen, Zhiwei
2017-01-01
ABSTRACT Current seasonal influenza vaccines are efficacious when vaccine strains are matched with circulating strains. However, they do not protect antigenic variants and newly emerging pandemic and outbreak strains. Thus, there is a critical need for developing so-called “universal” vaccines that protect against all influenza viruses. In the present study, we developed a bivalent heterologous DNA virus-like particle prime-boost vaccine strategy. We show that mice immunized with this vaccine were broadly protected against lethal challenge from group 1 (H1, H5, and H9) and group 2 (H3 and H7) viruses, with 94% aggregate survival. To determine the immune correlates of protection, we performed passive immunizations and in vitro assays. We show that this vaccine elicited antibody responses that bound HA from group 1 (H1, H2, H5, H6, H8, H9, H11, and H12) and group 2 (H3, H4, H7, H10, H14, and H15) and neutralized homologous and intrasubtypic H5 and H7 and heterosubtypic H1 viruses and hemagglutinin-specific CD4 and CD8 T cell responses. As a result, passive immunization with immune sera fully protected mice against H5, H7, and H1 challenge, whereas with both immune sera and T cells the mice survived heterosubtypic H3 and H9 challenge. Thus, it appears that (i) neutralizing antibodies alone fully protect against homologous and intrasubtypic H5 and H7 and (ii) neutralizing and binding antibodies are sufficient to protect against heterosubtypic H1, (iii) but against heterosubtypic H3 and H9, binding antibodies and T cells are required for complete survival. We believe that this vaccine regimen could potentially be a candidate for a “universal” influenza vaccine. IMPORTANCE Influenza virus infection is global health problem. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. However, these vaccines do not protect antigenic variants and newly emerging pandemic and outbreak strains. Because of this, there is an urgent need to develop so-called “universal” influenza vaccines that can protect against both current and future influenza strains. In the present study, we developed a bivalent heterologous prime-boost vaccine strategy. We show that a bivalent vaccine regimen elicited broad binding and neutralizing antibody and T cell responses that conferred broad protection against diverse challenge viruses in mice, suggesting that this bivalent prime-boost strategy could practically be a candidate for a “universal” influenza vaccine. PMID:28179535
Davtyan, H; Mkrtichyan, M; Movsesyan, N; Petrushina, I; Mamikonyan, G; Cribbs, DH; Agadjanyan, MG; Ghochikyan, A
2010-01-01
Recently, we reported that a DNA vaccine, composed of three copies of a self B cell epitope of amyloid-β (Aβ42) and the foreign T-cell epitope, Pan DR epitope (PADRE), generated strong anti-Aβ immune responses in wild-type and amyloid precursor protein transgenic animals. Although DNA vaccines have several advantages over peptide–protein vaccines, they induce lower immune responses in large animals and humans compared with those in mice. The focus of this study was to further enhance anti-Aβ11 immune responses by developing an improved DNA vaccination protocol of the prime–boost regimen, in which the priming step would use DNA and the boosting step would use recombinant protein. Accordingly, we generated DNA and recombinant protein-based epitope vaccines and showed that priming with DNA followed by boosting with a homologous recombinant protein vaccine significantly increases the anti-Aβ antibody responses and do not change the immunoglobulin G1 (IgG1) profile of humoral immune responses. Furthermore, the antibodies generated by this prime–boost regimen were long-lasting and possessed a higher avidity for binding with an Aβ42 peptide. Thus, we showed that a heterologous prime–boost regimen could be an effective protocol for developing a potent Alzheimer’s disease (AD) vaccine. PMID:19865176
Frey, Sharon E.; Graham, Irene; Mulligan, Mark J.; Edupuganti, Srilatha; Jackson, Lisa A.; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L.; Spearman, Paul; Hill, Heather; Wolff, Mark
2011-01-01
Background. The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). Methods. The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18–49 years of age. Results. Two doses of vaccine were required to induce antibody titers ≥1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. Conclusions. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053 PMID:21282194
Sedegah, Martha; Brice, Gary T.; Rogers, William O.; Doolan, Denise L.; Charoenvit, Yupin; Jones, Trevor R.; Majam, Victoria F.; Belmonte, Arnel; Lu, Minh; Belmonte, Maria; Carucci, Daniel J.; Hoffman, Stephen L.
2002-01-01
The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 μg of p PyCSP plus 30 μg of pGM-CSF) or low-dose (1 μg of p PyCSP plus 1 μg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8+-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-γ) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8+ T cells. In contrast, the memory CD8+-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8+ T cells, but at the single-cell level it produced significantly higher levels of IFN-γ than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system. PMID:12065488
Gangadhara, Sailaja; Kwon, Young-Man; Jeeva, Subbiah; Quan, Fu-Shi; Wang, Baozhong; Moss, Bernard; Compans, Richard W; Amara, Rama Rao; Jabbar, M Abdul; Kang, Sang-Moo
2017-12-19
Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.
Hall, Lindsay J.; Clare, Simon; Pickard, Derek; Clark, Simon O.; Kelly, Dominic L.F.; Ghany, Moataz Abd El; Hale, Christine; Dietrich, Jes; Andersen, Peter; Marsh, Philip D.; Dougan, Gordon
2009-01-01
A recombinant Salmonella enterica serovar Typhimurium (S. Typhimurium) vaccine strain was constructed that stably expressed the Mycobacterium tuberculosis fusion antigen Ag85B–ESAT6 from the chromosome. Live oral vaccination of mice with the Salmonella/Ag85B–ESAT6 strain generated a potent anti-Ag85B–ESAT6 TH1 response with high antibody titres with a IgG2a-bias and significant IFN-γ production lasting over a 120-day period. When mice primed with the Salmonella/Ag85B–ESAT6 vaccine were mucosally boosted with the Ag85B–ESAT6 antigen and adjuvant the IFN-γ responses increased markedly. To determine the protective efficacy of this vaccine strain, guinea pigs were immunised and followed for a 30-week period after aerosol challenge with M. tuberculosis. The heterologous prime-boost strategy of live Salmonella vaccine followed by a systemic boost of antigen and adjuvant reduced the levels of M. tuberculosis bacteria in the lungs and spleen to the same extent as BCG. Additionally, this vaccination regimen was observed to be statistically equivalent in terms of protection to immunisation with BCG. Thus, live oral priming with the recombinant Salmonella/Ag85B–ESAT6 and boosting with Ag85B–ESAT6 plus the adjuvant LTK63 represents an effective mucosal vaccination regimen. PMID:19755145
Boyd, Amy C.; Ruiz-Hernandez, Raul; Peroval, Marylene Y.; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V.; Hill, Adrian V.S.; Gilbert, Sarah C.; Butter, Colin
2013-01-01
Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP + M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP + M1 and a secondary vaccination with MVA-NP + M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938
Bauer, Asli; Podola, Lilli; Mann, Philipp; Missanga, Marco; Haule, Antelmo; Sudi, Lwitiho; Nilsson, Charlotta; Kaluwa, Bahati; Lueer, Cornelia; Mwakatima, Maria; Munseri, Patricia J; Maboko, Leonard; Robb, Merlin L; Tovanabutra, Sodsai; Kijak, Gustavo; Marovich, Mary; McCormack, Sheena; Joseph, Sarah; Lyamuya, Eligius; Wahren, Britta; Sandström, Eric; Biberfeld, Gunnel; Hoelscher, Michael; Bakari, Muhammad; Kroidl, Arne; Geldmacher, Christof
2017-09-15
Prime-boost vaccination strategies against HIV-1 often include multiple variants for a given immunogen for better coverage of the extensive viral diversity. To study the immunologic effects of this approach, we characterized breadth, phenotype, function, and specificity of Gag-specific T cells induced by a DNA-prime modified vaccinia virus Ankara (MVA)-boost vaccination strategy, which uses mismatched Gag immunogens in the TamoVac 01 phase IIa trial. Healthy Tanzanian volunteers received three injections of the DNA-SMI vaccine encoding a subtype B and AB-recombinant Gag p37 and two vaccinations with MVA-CMDR encoding subtype A Gag p55 Gag-specific T-cell responses were studied in 42 vaccinees using fresh peripheral blood mononuclear cells. After the first MVA-CMDR boost, vaccine-induced gamma interferon-positive (IFN-γ + ) Gag-specific T-cell responses were dominated by CD4 + T cells ( P < 0.001 compared to CD8 + T cells) that coexpressed interleukin-2 (IL-2) (66.4%) and/or tumor necrosis factor alpha (TNF-α) (63.7%). A median of 3 antigenic regions were targeted with a higher-magnitude median response to Gag p24 regions, more conserved between prime and boost, compared to those of regions within Gag p15 (not primed) and Gag p17 (less conserved; P < 0.0001 for both). Four regions within Gag p24 each were targeted by 45% to 74% of vaccinees upon restimulation with DNA-SMI-Gag matched peptides. The response rate to individual antigenic regions correlated with the sequence homology between the MVA- and DNA Gag-encoded immunogens ( P = 0.04, r 2 = 0.47). In summary, after the first MVA-CMDR boost, the sequence-mismatched DNA-prime MVA-boost vaccine strategy induced a Gag-specific T-cell response that was dominated by polyfunctional CD4 + T cells and that targeted multiple antigenic regions within the conserved Gag p24 protein. IMPORTANCE Genetic diversity is a major challenge for the design of vaccines against variable viruses. While including multiple variants for a given immunogen in prime-boost vaccination strategies is one approach that aims to improve coverage for global virus variants, the immunologic consequences of this strategy have been poorly defined so far. It is unclear whether inclusion of multiple variants in prime-boost vaccination strategies improves recognition of variant viruses by T cells and by which mechanisms this would be achieved, either by improved cross-recognition of multiple variants for a given antigenic region or through preferential targeting of antigenic regions more conserved between prime and boost. Engineering vaccines to induce adaptive immune responses that preferentially target conserved antigenic regions of viral vulnerability might facilitate better immune control after preventive and therapeutic vaccination for HIV and for other variable viruses. Copyright © 2017 American Society for Microbiology.
2014-01-01
Background The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. Methods This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. Results After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. Conclusions In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross-clade anamnestic antibody responses were observed after one dose of AS03A-H5N1 heterologous booster vaccine given at Month 6, 12, or 36 after priming, suggesting that AS03A-adjuvanted H5N1 vaccines may provide highly flexible prime–boost schedules. Although immunogenicity decreased with time, vaccinated populations could potentially be protected for up to three years after vaccination, which is likely to far exceed the peak of the a pandemic. PMID:24628789
Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke
2015-10-05
RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo
2017-11-01
Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.
Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L.; Pinter, Abraham; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.
2016-01-01
ABSTRACT Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. PMID:27440894
Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L; Pinter, Abraham; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Hu, Shiu-Lok
2016-10-01
Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Im, Eung-Jun; Saubi, Narcís; Virgili, Goretti; Sander, Clare; Teoh, Denise; Gatell, Jose M.; McShane, Helen; Joseph, Joan; Hanke, Tomáš
2007-01-01
Most children in Africa receive their vaccine against tuberculosis at birth. Those infants born to human immunodeficiency virus type 1 (HIV-1)-positive mothers are at high risk of acquiring HIV-1 infection through breastfeeding in the first weeks of their lives. Thus, the development of a vaccine which would protect newborns against both of these major global killers is a logical yet highly scientifically, ethically, and practically challenging aim. Here, a recombinant lysine auxotroph of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a BCG strain that is safer than those currently used and expresses an African HIV-1 clade-derived immunogen, was generated and shown to be stable and to induce durable, high-quality HIV-1-specific CD4+- and CD8+-T-cell responses. Furthermore, when the recombinant BCG vaccine was used in a priming-boosting regimen with heterologous components, the HIV-1-specific responses provided protection against surrogate virus challenge, and the recombinant BCG vaccine alone protected against aerosol challenge with M. tuberculosis. Thus, inserting an HIV-1-derived immunogen into the scheduled BCG vaccine delivered at or soon after birth may prime HIV-1-specific responses, which can be boosted by natural exposure to HIV-1 in the breast milk and/or by a heterologous vaccine such as recombinant modified vaccinia virus Ankara delivering the same immunogen, and decrease mother-to-child transmission of HIV-1 during breastfeeding. PMID:17596303
Genetic cancer vaccines: current status and perspectives.
Aurisicchio, Luigi; Ciliberto, Gennaro
2012-08-01
The recent approval of the first therapeutic cancer vaccine by the US Regulatory Agency represents a breakthrough event in the history of cancer treatment. The past scepticism towards this type of therapeutic intervention is now replaced by great expectations. The field is now moving towards the development of alternative vaccination technologies, which are capable of generating stronger, more durable and efficient immune responses against specific tumour-associated antigens (TAAs) in combination with cheaper and more standardised manufacturing. In this context, genetic vaccines are emerging among the most promising methodologies. Several evidences point to combinations of different genetic immunisation modalities (heterologous prime/boost) as a powerful approach to induce superior immune responses and achieve greater clinical efficacy. In this review, we provide an overview of the current status of development of genetic cancer vaccines with particular emphasis on adenoviral vector prime/DNA boost vaccination schedules. We believe that therapeutic genetic cancer vaccines have the strong potential to become an established therapeutic modality for cancer in next coming years, in a manner similar to what have now become monoclonal antibodies.
Recombinant modified vaccinia virus Ankara-based malaria vaccines.
Sebastian, Sarah; Gilbert, Sarah C
2016-01-01
A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.
Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine
2016-08-01
is safe and well tolerated, but does not elicit a sufficient immune response. The objectives of this project are to conduct studies in non -human...injection for enhancing TVDV in non -human primates. Specific Aim 2: Develop an improved dengue vaccine using a heterologous prime boost approach...not elicit a sufficient immune response. The objectives of this project are to conduct studies in non -human primates to enhance the immunogenicity of
Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn
2009-08-01
Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.
Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H.; Bliss, Carly M.; Duncan, Christopher J. A.; Collins, Katharine A.; Garcia Knight, Miguel A.; Kimani, Eva; Anagnostou, Nicholas A.; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C.; Spencer, Alexandra J.; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K.; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M.; Nicosia, Alfredo; Imoukhuede, Egeruan B.; Bejon, Philip; Urban, Britta C.; Flanagan, Katie L.; Ewer, Katie J.; Chilengi, Roma; Hill, Adrian V. S.; Bojang, Kalifa
2013-01-01
Background Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). Methodology We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. Results ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). Conclusions ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Trial Registration Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430 PMID:23526949
Ogwang, Caroline; Afolabi, Muhammed; Kimani, Domtila; Jagne, Ya Jankey; Sheehy, Susanne H; Bliss, Carly M; Duncan, Christopher J A; Collins, Katharine A; Garcia Knight, Miguel A; Kimani, Eva; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Spencer, Alexandra J; Soipei, Peninah; Mueller, Jenny; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Gantlett, Katherine; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Urban, Britta C; Flanagan, Katie L; Ewer, Katie J; Chilengi, Roma; Hill, Adrian V S; Bojang, Kalifa
2013-01-01
Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.
Brandsma, Janet L.; Shlyankevich, Mark; Su, Yuhua; Zelterman, Daniel; Rose, John K.; Buonocore, Linda
2009-01-01
Persistent infection with high-risk human papillomaviruses (HPVs) is the greatest risk factor for the development of HPV-associated cancers. In this study rabbits bearing persistent and potentially malignant papillomas were used to test the efficacy of vaccination with a recombinant DNA and/or vesicular stomatitis virus (VSV) targeting the cottontail rabbit papillomavirus (CRPV) E6 protein. Immune responses were primed with either vector and boosted twice with the homologous or heterologous E6 vector. Over the course of 18 weeks, E6 vaccination reduced papilloma volumes to one third the volume in the controls, and the rabbits boosted with an heterologous vector tended to mount stronger responses. Small and medium-sized papillomas responded significantly but only slightly better than large papillomas. Finally the initial papilloma burden per rabbit, ranging from <100 mm3 to >1000 mm3, was not prognostic of antitumor efficacy. In summary both E6 vaccines elicited significant therapeutic immunity, and their sequential use tended to be advantageous. PMID:19615481
Asbach, Benedikt; Kliche, Alexander; Köstler, Josef; Perdiguero, Beatriz; Esteban, Mariano; Jacobs, Bertram L.; Montefiori, David C.; LaBranche, Celia C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Landucci, Gary; Forthal, Donald N.; Seaman, Michael S.; Hawkins, Natalie; Self, Steven G.; Sato, Alicia; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, James; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Francis, Jesse; Galmin, Lindsey; Ding, Song; Heeney, Jonathan L.; Pantaleo, Giuseppe
2016-01-01
ABSTRACT In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8+ and CD4+ T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols. PMID:26865719
Crank, Michelle C; Wilson, Eleanor M P; Novik, Laura; Enama, Mary E; Hendel, Cynthia S; Gu, Wenjuan; Nason, Martha C; Bailer, Robert T; Nabel, Gary J; McDermott, Adrian B; Mascola, John R; Koup, Richard A; Ledgerwood, Julie E; Graham, Barney S
2016-01-01
VRC 012 was a Phase I study of a prototype recombinant adenoviral-vector serotype-35 (rAd35) HIV vaccine, the precursor to two recently published clinical trials, HVTN 077 and 083. On the basis of prior evaluation of multiclade rAd5 HIV vaccines, Envelope A (EnvA) was selected as the standard antigen for a series of prototype HIV vaccines to compare various vaccine platforms. In addition, prior studies of rAd5-vectored vaccines suggested pre-existing human immunity may be a confounding factor in vaccine efficacy. rAd35 is less seroprevalent across human populations and was chosen for testing alone and in combination with a rAd5-EnvA vaccine in the present two-part phase I study. First, five subjects each received a single injection of 109, 1010, or 1011 particle units (PU) of rAd35-EnvA in an open-label, dose-escalation study. Next, 20 Ad5/Ad35-seronegative subjects were randomized to blinded, heterologous prime-boost schedules combining rAd5-EnvA and rAd35-EnvA with a three month interval. rAd35-EnvA was given at 1010 or 1011 PU to ten subjects each; all rAd5-EnvA injections were 1010 PU. EnvA-specific immunogenicity was assessed four weeks post-injection. Solicited reactogenicity and clinical safety were followed after each injection. Vaccinations were well tolerated at all dosages. Antibody responses measured by ELISA were detected at 4 weeks in 30% and 50% of subjects after single doses of 1010 or 1011 PU rAd35, respectively, and in 89% after a single rAd5-EnvA 1010 PU injection. EnvA-specific IFN-γ ELISpot responses were detected at four weeks in 0%, 70%, and 50% of subjects after the respective rAd35-EnvA dosages compared to 89% of subjects after rAd5. T cell responses were higher after a single rAd5-EnvA 1010 PU injection than after a single rAd35-EnvA 1010 PU injection, and humoral responses were low after a single dose of either vector. Of those completing the vaccine schedule, 100% of rAd5-EnvA recipients and 90% of rAd35-EnvA recipients had both T cell and humoral responses after boosting with the heterologous vector. ELISpot response magnitude was similar in both regimens and comparable to a single dose of rAd5. A trend toward more robust CD8 T cell responses using rAd5-EnvA prime and rAd35-EnvA boost was observed. Humoral response magnitude was also similar after either heterologous regimen, but was several fold higher than after a single dose of rAd5. Adverse events (AEs) related to study vaccines were in general mild and limited to one episode of hematuria, Grade two. Activated partial thromboplastin time (aPTT) AEs were consistent with an in vitro effect on the laboratory assay for aPTT due to a transient induction of anti-phospholipid antibody, a phenomenon that has been reported in other adenoviral vector vaccine trials. Limitations of the rAd vaccine vectors, including the complex interactions among pre-existing adenoviral immunity and vaccine-induced immune responses, have prompted investigators to include less seroprevalent vectors such as rAd35-EnvA in prime-boost regimens. The rAd35-EnvA vaccine described here was well tolerated and immunogenic. While it effectively primed and boosted antibody responses when given in a reciprocal prime-boost regimen with rAd5-EnvA using a three-month interval, it did not significantly improve the frequency or magnitude of T cell responses above a single dose of rAd5. The humoral and cellular immunogenicity data reported here may inform future vaccine and study design. ClinicalTrials.gov NCT00479999.
Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K
2014-01-01
We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meador, Lydia R.
Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viralmore » vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.« less
Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia
2016-11-15
HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S
2015-12-22
Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jia, Qingmei; Bowen, Richard; Dillon, Barbara Jane; Masleša-Galić, Saša; Chang, Brennan T; Kaidi, Austin C; Horwitz, Marcus A
2018-05-03
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family. PMID:29462200
Langley, Joanne M; Frenette, Louise; Jeanfreau, Robert; Halperin, Scott A; Kyle, Michael; Chu, Laurence; McNeil, Shelly; Dramé, Mamadou; Moris, Philippe; Fries, Louis; Vaughn, David W
2015-01-15
Highly pathogenic avian influenza A/H5N1 viruses continue to circulate in birds and infect humans causing serious illness and death. In this randomized, observer-blinded study, adults ≥18 years of age (n=841) received 3.75 or 7.5 μg hemagglutinin antigen (HA) of an AS03-adjuvanted (AS03A or AS03B) A/Indonesia/5/2005 H5N1 (subclade 2.1) vaccine (priming), followed by the same HA dose of AS03-adjuvanted A/turkey/Turkey/1/05 H5N1 (clade 2.2) influenza vaccine as a booster 6 or 18 months after priming; an unprimed group received placebo at Day 0, and 3.75 μg HA of AS03A-adjuvanted booster vaccine at 6 and 18 months. Antibody responses were assessed by hemagglutination-inhibition assay (HI). Microneutralization (MN) antibody and cellular immunoassays were assessed in a subset of participants. Geometric mean titers (GMTs) and seroconversion rates (SCRs) were higher in primed vs. unprimed subjects against the booster strain 10 days following booster vaccination at month 6 and month 18. After the booster at 18 months, the lower limit of the 97.5% confidence interval for the difference in SCR and GMT ratios between primed and unprimed subjects was >15% and >2.0, respectively, fulfilling the primary endpoint criteria for superiority against the booster strain. MN and cellular immune responses corresponded with the immunogenicity seen in HI measures. Adults primed with a dose-sparing oil-in-water adjuvanted H5N1 subclade vaccine had rapid and durable antibody responses to a heterologous subclade boosting vaccine given 6 or 18 months later. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of replication-deficient adenovirus malaria vaccines.
Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith
2017-03-01
Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.
Bakari, Muhammad; Aboud, Said; Nilsson, Charlotta; Francis, Joel; Buma, Deus; Moshiro, Candida; Aris, Eric A.; Lyamuya, Eligius F.; Janabi, Mohamed; Godoy-Ramirez, Karina; Joachim, Agricola; Polonis, Victoria R.; Bråve, Andreas; Earl, Patricia; Robb, Merlin; Marovich, Mary; Wahren, Britta; Pallangyo, Kisali; Biberfeld, Gunnel; Mhalu, Fred; Sandström, Eric
2016-01-01
Background We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. Methods Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1 mg intradermally (id), n = 20, or 3.8 mg intramuscularly (im), n = 20, or placebo, n = 20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (108 pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. Results The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8+ and CD4+ T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01 AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher and broader cell-mediated immune responses to Env after HIV-MVA boost compared to a higher HIV-DNA priming dose given im. Three HIV-DNA priming immunizations followed by two HIV-MVA boosts efficiently induced Env-antibody responses. PMID:21864626
Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto
2016-01-01
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.
Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong
2017-09-10
The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C
2014-08-21
Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.
Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.
2014-01-01
Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082
Emmer, Kristel L; Wieczorek, Lindsay; Tuyishime, Steven; Molnar, Sebastian; Polonis, Victoria R; Ertl, Hildegund C J
2016-10-23
Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.
Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines
Zhang, Min; Herrero, Miguel A.; Acosta, Francisco J.; Tsuji, Moriya
2018-01-01
Vaccination with radiation-attenuated sporozoites has been shown to induce CD8+ T cell-mediated protection against pre-erythrocytic stages of malaria. Empirical evidence suggests that successive inoculations often improve the efficacy of this type of vaccines. An initial dose (prime) triggers a specific cellular response, and subsequent inoculations (boost) amplify this response to create a robust CD8+ T cell memory. In this work we propose a model to analyze the effect of T cell dynamics on the performance of prime-boost vaccines. This model suggests that boost doses and timings should be selected according to the T cell response elicited by priming. Specifically, boosting during late stages of clonal contraction would maximize T cell memory production for vaccines using lower doses of irradiated sporozoites. In contrast, single-dose inoculations would be indicated for higher vaccine doses. Experimental data have been obtained that support theoretical predictions of the model. PMID:29329308
Human Immunodeficiency Virus Vaccine Trials
O’Connell, Robert J.; Kim, Jerome H.; Corey, Lawrence; Michael, Nelson L.
2012-01-01
More than 2 million AIDS-related deaths occurred globally in 2008, and more than 33 million people are living with HIV/AIDS. Despite promising advances in prevention, an estimated 2.7 million new HIV infections occurred in that year, so that for every two patients placed on combination antiretroviral treatment, five people became infected. The pandemic poses a formidable challenge to the development, progress, and stability of global society 30 years after it was recognized. Experimental preventive HIV-1 vaccines have been administered to more than 44,000 human volunteers in more than 187 separate trials since 1987. Only five candidate vaccine strategies have been advanced to efficacy testing. The recombinant glycoprotein (rgp)120 subunit vaccines, AIDSVAX B/B and AIDSVAX B/E, and the Merck Adenovirus serotype (Ad)5 viral-vector expressing HIV-1 Gag, Pol, and Nef failed to show a reduction in infection rate or lowering of postinfection viral set point. Most recently, a phase III trial that tested a heterologous prime-boost vaccine combination of ALVAC-HIV vCP1521 and bivalent rgp120 (AIDSVAX B/E) showed 31% efficacy in protection from infection among community-risk Thai participants. A fifth efficacy trial testing a DNA/recombinant(r) Ad5 prime-boost combination is currently under way. We review the clinical trials of HIV vaccines that have provided insight into human immunogenicity or efficacy in preventing HIV-1 infection. PMID:23209178
Ruane, D; Do, Y; Brane, L; Garg, A; Bozzacco, L; Kraus, T; Caskey, M; Salazar, A; Trumpheller, C; Mehandru, S
2016-09-01
Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.
Kimani, Domtila; Jagne, Ya Jankey; Cox, Momodou; Kimani, Eva; Bliss, Carly M; Gitau, Evelyn; Ogwang, Caroline; Afolabi, Muhammed O; Bowyer, Georgina; Collins, Katharine A; Edwards, Nick; Hodgson, Susanne H; Duncan, Christopher J A; Spencer, Alexandra J; Knight, Miguel G; Drammeh, Abdoulie; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Soipei, Peninah; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Chilengi, Roma; Bojang, Kalifa; Flanagan, Katie L; Hill, Adrian V S; Urban, Britta C; Ewer, Katie J
2014-01-01
To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4+ and CD8+ T cells with the frequency of CD8+ IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population. PMID:24930599
Dabral, Neha; Martha-Moreno-Lafont; Sriranganathan, Nammalwar; Vemulapalli, Ramesh
2014-01-01
Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4(+) and CD8(+) T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 10(9), 10(10) and 10(11) CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 10(11) CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.
Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C
2006-11-30
Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.
Li, Junwei; Arévalo, Maria T; Chen, Yanping; Chen, Shan; Zeng, Mingtao
2014-10-01
Antigenic drift and shift of influenza viruses require frequent reformulation of influenza vaccines. In addition, seasonal influenza vaccines are often mismatched to the epidemic influenza strains. This stresses the need for a universal influenza vaccine. BALB/c mice were vaccinated with the trivalent live attenuated (LAIV; FluMist) or inactivated (TIV; FluZone) influenza vaccines and challenged with PR8 (H1N1), FM/47 (H1N1), or HK/68 (H3N2) influenza virus. Cytokines and antibody responses were tested by ELISA. Furthermore, different LAIV dosages were applied in BALB/c mice. LAIV vaccinated mice were also depleted of T-cells and challenged with PR8 virus. LAIV induced significant protection against challenge with the non-vaccine strain PR8 influenza virus. Furthermore, protective immunity against PR8 was dose-dependent. Of note, interleukin 2 and interferon gamma cytokine secretion in the lung alveolar fluid were significantly elevated in mice vaccinated with LAIV. Moreover, T-cell depletion of LAIV vaccinated mice compromised protection, indicating that T-cell-mediated immunity is required. In contrast, passive transfer of sera from mice vaccinated with LAIV into naïve mice failed to protect against PR8 challenge. Neutralization assays in vitro confirmed that LAIV did not induce cross-strain neutralizing antibodies against PR8 virus. Finally, we showed that three doses of LAIV also provided protection against challenge with two additional heterologous viruses, FM/47 and HK/68. These results support the potential use of the LAIV as a universal influenza vaccine under a prime-boost vaccination regimen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vergara-Alert, Júlia; Fernández-Bellon, Hugo; Busquets, Núria; Alcántara, Gabriel; Delclaux, María; Pizarro, Bienvenido; Sánchez, Celia; Sánchez, Azucena; Majó, Natàlia; Darji, Ayub
2011-01-01
In 2005, European Commission directive 2005/744/EC allowed controlled vaccination against avian influenza (AI) virus of valuable avian species housed in zoos. In 2006, 15 Spanish zoos and wildlife centers began a vaccination program with a commercial inactivated H5N9 vaccine. Between November 2007 and May 2008, birds from 10 of these centers were vaccinated again with a commercial inactivated H5N3 vaccine. During these campaigns, pre- and postvaccination samples from different bird orders were taken to study the response against AI virus H5 vaccines. Sera prior to vaccinations with both vaccines were examined for the presence of total antibodies against influenza A nucleoprotein (NP) by a commercial competitive enzyme-linked immunosorbent assay (cELISA). Humoral responses to vaccination were evaluated using a hemagglutination inhibition (HI) assay. In some taxonomic orders, both vaccines elicited comparatively high titers of HI antibodies against H5. Interestingly, some orders, such as Psittaciformes, which did not develop HI antibodies to either vaccine formulation when used alone, triggered notable HI antibody production, albeit in low HI titers, when primed with H5N9 and during subsequent boosting with the H5N3 vaccine. Vaccination with successive heterologous vaccines may represent the best alternative to widely protect valuable and/or endangered bird species against highly pathogenic AI virus infection. PMID:21430124
Vergara-Alert, Júlia; Fernández-Bellon, Hugo; Busquets, Núria; Alcántara, Gabriel; Delclaux, María; Pizarro, Bienvenido; Sánchez, Celia; Sánchez, Azucena; Majó, Natàlia; Darji, Ayub
2011-05-01
In 2005, European Commission directive 2005/744/EC allowed controlled vaccination against avian influenza (AI) virus of valuable avian species housed in zoos. In 2006, 15 Spanish zoos and wildlife centers began a vaccination program with a commercial inactivated H5N9 vaccine. Between November 2007 and May 2008, birds from 10 of these centers were vaccinated again with a commercial inactivated H5N3 vaccine. During these campaigns, pre- and postvaccination samples from different bird orders were taken to study the response against AI virus H5 vaccines. Sera prior to vaccinations with both vaccines were examined for the presence of total antibodies against influenza A nucleoprotein (NP) by a commercial competitive enzyme-linked immunosorbent assay (cELISA). Humoral responses to vaccination were evaluated using a hemagglutination inhibition (HI) assay. In some taxonomic orders, both vaccines elicited comparatively high titers of HI antibodies against H5. Interestingly, some orders, such as Psittaciformes, which did not develop HI antibodies to either vaccine formulation when used alone, triggered notable HI antibody production, albeit in low HI titers, when primed with H5N9 and during subsequent boosting with the H5N3 vaccine. Vaccination with successive heterologous vaccines may represent the best alternative to widely protect valuable and/or endangered bird species against highly pathogenic AI virus infection.
Williams, Ann; Hatch, Graham J; Clark, Simon O; Gooch, Karen E; Hatch, Kim A; Hall, Graham A; Huygen, Kris; Ottenhoff, Tom H M; Franken, Kees L M C; Andersen, Peter; Doherty, T Mark; Kaufmann, Stefan H E; Grode, Leander; Seiler, Peter; Martin, Carlos; Gicquel, Brigitte; Cole, Stewart T; Brodin, Priscille; Pym, Alexander S; Dalemans, Wilfried; Cohen, Joe; Lobet, Yves; Goonetilleke, Nilu; McShane, Helen; Hill, Adrian; Parish, Tanya; Smith, Debbie; Stoker, Neil G; Lowrie, Douglas B; Källenius, Gunilla; Svenson, Stefan; Pawlowski, Andrzej; Blake, Karen; Marsh, Philip D
2005-01-01
The TB Vaccine Cluster project funded by the EU Fifth Framework programme aims to provide novel vaccines against tuberculosis that are suitable for evaluation in humans. This paper describes the studies of the protective efficacy of vaccines in a guinea pig aerosol-infection model of primary tuberculosis. The objective was to conduct comparative evaluations of vaccines that had previously demonstrated efficacy in other animal models. Groups of 6 guinea pigs were immunized with vaccines provided by the relevant EU Vaccine Cluster partners. Survival over 17 or 26 weeks was used as the principal measure of vaccine efficacy following aerosol challenge with H37Rv. Counts of mycobacteria in lungs and spleens, and histopathological changes in the lungs, were also used to provide evidence of protection. A total of 24 vaccines were evaluated in 4 experiments each of a different design. A heterologous prime-boost strategy of DNA and MVA, each expressing Ag85A and a fusion protein of ESAT-6 and Ag85B in adjuvant, protected the guinea pigs to the same extent as BCG. Genetically modified BCG vaccines and boosted BCG strategies also protected guinea pigs to the same extent as BCG but not statistically significantly better. A relatively high aerosol-challenge dose and evaluation over a protracted time post-challenge allowed superior protection over BCG to be demonstrated by BCG boosted with MVA and fowl pox vectors expressing Ag85A.
Ferreira, Camila Pontes; Cariste, Leonardo Moro; Santos Virgílio, Fernando Dos; Moraschi, Barbara Ferri; Monteiro, Caroline Brandão; Vieira Machado, Alexandre M.; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Menin Ruiz, Pedro Luiz; Ribeiro, Daniel Araki; Lannes-Vieira, Joseli; Lopes, Marcela de Freitas; Rodrigues, Mauricio Martins; de Vasconcelos, José Ronnie Carvalho
2017-01-01
Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells. PMID:29081775
GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.
Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G
2014-01-01
The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.
Malaria vaccines: past, present and future.
von Seidlein, Lorenz; Bejon, Philip
2013-12-01
The currently available malaria control tools have allowed malaria elimination in many regions but there remain many regions where malaria control has made little progress. A safe and protective malaria vaccine would be a huge asset for malaria control. Despite the many challenges, efforts continue to design and evaluate malaria vaccine candidates. These candidates target different stages in the life cycle of Plasmodia. The most advanced vaccine candidates target the pre-erythrocytic stages in the life cycle of the parasite and include RTS,S/AS01, which has progressed through clinical development to the stage that it may be licensed in 2015. Attenuated whole-parasite vaccine candidates are highly protective, but there are challenges to manufacture and to administration. Cellular immunity is targeted by the prime-boost approach. Priming vectors trigger only modest responses but these are focused on the recombinant antigen. Boosting vectors trigger strong but broad non-specific responses. The heterologous sequence produces strong immunological responses to the recombinant antigen. Candidates that target the blood stages of the parasite have to result in an immune response that is more effective than the response to an infection to abort or control the infection of merozoites and hence disease. Finally, the sexual stages of the parasite offer another target for vaccine development, which would prevent the transmission of malaria. Today it seems unlikely that any candidate targeting a single antigen will provide complete protection against an organism of the complexity of Plasmodium. A systematic search for vaccine targets and combinations of antigens may be a more promising approach.
Bioterrorism Preparedness for Infectious Disease Proposal
2006-01-01
Schnell at Thomas Jefferson University investigating a rhabdovirus prime/boost strategy designed to induce both cellular and humoral immune responses...helper cells [3], a novel dendritic cell based HIV vaccine [11], and use of IL-7 [18] and rhabdovirus prime/boost strategy [7]. Dr. Q Yu has been...of humoral immune responses to HIV envelope antigens following rhabdovirus prime/boost vaccine and after STI (J. Kim). More recent initiatives
Pan, Zhiming; Zhang, Xiaoming; Geng, Shizhong; Fang, Qiang; You, Meng; Zhang, Lei; Jiao, Xinan; Liu, Xiufan
2010-04-01
H5N1 highly pathogenic avian influenza virus (HPAIV) has posed a great threat not only for the poultry industry but also for human health. However, an effective vaccine to provide a full spectrum of protection is lacking in the poultry field. In the current study, a novel prime-boost vaccination strategy against H5N1 HPAIV was developed: chickens were first orally immunized with a hemagglutinin (HA) DNA vaccine delivered by attenuated Salmonella enterica serovar Typhimurium, and boosting with a killed vaccine followed. Chickens in the combined vaccination group but not in single vaccination and control groups were completely protected against disease following H5N1 HPAIV intranasal challenge, with no clinical signs and virus shedding. Chickens in the prime-boost group also generated significantly higher serum hemagglutination inhibition (HI) titers and intestinal mucosal IgA titers against avian influenza virus (AIV) and higher host immune cellular responses than those from other groups before challenge. These results demonstrated that the prime-boost vaccination strategy provides an effective way to prevent and control H5N1 highly pathogenic avian influenza virus.
Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata
2018-01-01
Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.
Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto
2017-05-31
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Omosa-Manyonyi, Gloria; Mpendo, Juliet; Ruzagira, Eugene; Kilembe, William; Chomba, Elwyn; Roman, François; Bourguignon, Patricia; Koutsoukos, Marguerite; Collard, Alix; Voss, Gerald; Laufer, Dagna; Stevens, Gwynn; Hayes, Peter; Clark, Lorna; Cormier, Emmanuel; Dally, Len; Barin, Burc; Ackland, Jim; Syvertsen, Kristen; Zachariah, Devika; Anas, Kamaal; Sayeed, Eddy; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Fast, Patricia; Priddy, Frances
2015-01-01
Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445 PMID:25961283
Jegaskanda, Sinthujan; Mason, Rosemarie D; Andrews, Sarah F; Wheatley, Adam K; Zhang, Ruijun; Reynoso, Glennys V; Ambrozak, David R; Santos, Celia P; Luke, Catherine J; Matsuoka, Yumiko; Brenchley, Jason M; Hickman, Heather D; Talaat, Kawsar R; Permar, Sallie R; Liao, Hua-Xin; Yewdell, Jonathan W; Koup, Richard A; Roederer, Mario; McDermott, Adrian B; Subbarao, Kanta
2018-05-01
Pandemic live attenuated influenza vaccines (pLAIV) prime subjects for a robust neutralizing antibody response upon subsequent administration of a pandemic inactivated subunit vaccine (pISV). However, a difference was not detected in H5-specific memory B cells in the peripheral blood between pLAIV-primed and unprimed subjects prior to pISV boost. To investigate the mechanism underlying pLAIV priming, we vaccinated groups of 12 African green monkeys (AGMs) with H5N1 pISV or pLAIV alone or H5N1 pLAIV followed by pISV and examined immunity systemically and in local draining lymph nodes (LN). The AGM model recapitulated the serologic observations from clinical studies. Interestingly, H5N1 pLAIV induced robust germinal center B cell responses in the mediastinal LN (MLN). Subsequent boosting with H5N1 pISV drove increases in H5-specific B cells in the axillary LN, spleen, and circulation in H5N1 pLAIV-primed animals. Thus, H5N1 pLAIV primes localized B cell responses in the MLN that are recalled systemically following pISV boost. These data provide mechanistic insights for the generation of robust humoral responses via prime-boost vaccination. IMPORTANCE We have previously shown that pandemic live attenuated influenza vaccines (pLAIV) prime for a rapid and robust antibody response on subsequent administration of inactivated subunit vaccine (pISV). This is observed even in individuals who had undetectable antibody (Ab) responses following the initial vaccination. To define the mechanistic basis of pLAIV priming, we turned to a nonhuman primate model and performed a detailed analysis of B cell responses in systemic and local lymphoid tissues following prime-boost vaccination with pLAIV and pISV. We show that the nonhuman primate model recapitulates the serologic observations from clinical studies. Further, we found that pLAIVs induced robust germinal center B cell responses in the mediastinal lymph node. Subsequent boosting with pISV in pLAIV-primed animals resulted in detection of B cells in the axillary lymph nodes, spleen, and peripheral blood. We demonstrate that intranasally administered pLAIV elicits a highly localized germinal center B cell response in the mediastinal lymph node that is rapidly recalled following pISV boost into germinal center reactions at numerous distant immune sites. Copyright © 2018 American Society for Microbiology.
Runge, Solveig; Olbert, Marita; Herden, Christiane; Malberg, Sara; Römer-Oberdörfer, Angela; Staeheli, Peter; Rubbenstroth, Dennis
2017-01-23
Avian bornaviruses are causative agents of proventricular dilatation disease (PDD), a chronic neurologic and often fatal disorder of psittacines including endangered species. To date no causative therapy or immunoprophylaxis is available. Our previous work has shown that viral vector vaccines can delay the course of homologous bornavirus challenge infections but failed to protect against PDD when persistent infection was not prevented. The goal of this study was to refine our avian bornavirus vaccination and infection model to better represent natural bornavirus infections in order to achieve full protection against a heterologous challenge infection. We observed that parrot bornavirus 2 (PaBV-2) readily infected cockatiels (Nymphicus hollandicus) by combined intramuscular and subcutaneous injection with as little as 10 2.7 foci-forming units (ffu) per bird, whereas a 500-fold higher dose of the same virus administered via peroral and oculonasal route did not result in persistent infection. These results indicated that experimental bornavirus challenge infections with this virus should be performed via the parenteral route. Prime-boost vaccination of cockatiels with Newcastle disease virus (NDV) and modified vaccinia virus Ankara (MVA) vectors expressing the nucleoprotein and phosphoprotein genes of PaBV-4 substantially blocked bornavirus replication following parenteral challenge infection with 10 3.5 ffu of heterologous PaBV-2. Only two out of six vaccinated birds had very low viral levels detectable in a few organs. As a consequence, only one vaccinated bird developed mild PDD-associated microscopic lesions, while mock-vaccinated controls were not protected against PaBV-2 infection and inflammation. Our results demonstrate that NDV and MVA vector vaccines can protect against invasive heterologous bornavirus challenge infections and subsequent PDD. These vector vaccines represent a promising tool to combat avian bornaviruses in psittacine populations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ishola, David A; Andrews, Nick; Waight, Pauline; Yung, Chee-Fu; Southern, Jo; Bai, Xilian; Findlow, Helen; Matheson, Mary; England, Anna; Hallis, Bassam; Findlow, Jamie; Borrow, Ray; Miller, Elizabeth
2015-08-01
Protection after meningococcal C (MenC) conjugate (MCC) vaccination in early childhood is short-lived. Boosting with a quadrivalent vaccine in teenage years, a high-risk period for MenC disease, should protect against additional serogroups but might compromise MenC response. The carrier protein in the primary MCC vaccine determines the response to MCC booster in toddlers, but the relationship between primary vaccine and booster given later is unclear. This study compared responses to a CRM-conjugated or tetanus toxoid (TT)-conjugated MenACWY vaccine in teenagers primed with different MCC vaccines at preschool age. Ninety-three teenagers (16-19 years), who were previously randomized at age 3-6 years to receive single-dose MCC-CRM or MCC-TT, were randomized to receive either MenACWY-CRM or MenACWY-TT booster. Serum bactericidal antibodies (SBA, protective titer ≥ 8) were measured before, 1 month and 6 or 9 months after boosting. Preboosting, MCC-TT-primed teenagers had significantly higher MenC SBA titers than those MCC-CRM-primed (P = 0.02). Postboosting, both MenACWY vaccines induced protective SBA titers to all 4 serogroups in most participants (≥ 98% at 1 month and ≥ 90% by 9 months postboost). The highest MenC SBA titers were seen in those MCC-TT-primed and MenACWY-TT-boosted [geometric mean titer (GMT) ~ 22,000] followed by those boosted with MenACWY-CRM irrespective of priming (GMT ~ 12,000) and then those MCC-CRM-primed and MenACWY-TT-boosted (GMT ~ 5500). The estimated postbooster MenC SBA decline beyond 1 month was ~40% as time since booster doubles. Both vaccines were well tolerated with no attributable serious adverse events. Both MenACWY vaccines safely induced protective sustained antibody responses against all targeted serogroups in MCC-primed teenagers.
Bliss, Carly M; Drammeh, Abdoulie; Bowyer, Georgina; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Edwards, Nick J; Tarama, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mireille; Njie-Jobe, Jainaba; Diarra, Amidou; Afolabi, Muhammed O; Tiono, Alfred B; Yaro, Jean Baptiste; Adetifa, Uche J; Hodgson, Susanne H; Anagnostou, Nicholas A; Roberts, Rachel; Duncan, Christopher J A; Cortese, Riccardo; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampmann, Beate; Imoukhuede, Egeruan B; Sirima, Sodiomon B; Bojang, Kalifa; Hill, Adrian V S; Nébié, Issa; Ewer, Katie J
2017-02-01
Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8 + T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8 + and CD4 + T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
[Anti-influenza vaccination in animals].
Bublot, M
2009-01-01
Until recently, Influenza was considered as a veterinary problem in avian, swine and horse only. New influenza strains able to infect and cause a disease in dogs and cats emerged these last six years. The most widely used influenza veterinary vaccines are the inactivated adjuvanted vaccines which are based on whole or split virus. New technologies have allowed the development of new generation vaccines including modified-live and vector vaccines. Modified-live influenza vaccines are available for horses only but they are in development in other species. Vector vaccines are already in use in chickens (replicative fowlpox vector) and in horses (non-replicative canarypox vector). These vaccines induce a rapid cellular and humoral immunity. Experimental studies have also shown that these vector vaccines are protective in other domestic species. These vector vaccines are compatible with the "DIVA" strategy which consists in differentiating infected from vaccinated animals and which allows disease eradication. The successive use of vector and inactivated vaccines (heterologous "prime-boost") induces a superior protective immunity in domestic poultry and constitutes a promising strategy for the control of H5N1 infection.
Nicholas, B L; Brennan, F R; Hamilton, W D O; Wakelin, D
2003-06-02
Expression of a 17-mer peptide sequence from canine parvovirus expressed on cowpea mosaic virus (CPMV) to form chimaeric virus particles (CVPs) creates vaccine antigens that elicit strong anti-peptide immune responses in mice. Systemic (subcutaneous, s.c.) immunisation and boosting with such CVP constructs produces IgG(2a) serum antibody responses, while mucosal (intranasal, i.n.) immunisation and boosting elicits intestinal IgA responses. Combinations of systemic and mucosal routes for priming and boosting immunisations were used to examine their influence on the level, type and location of immune response generated to one of these constructs (CVP-1). In all cases, s.c. administration, whether for immunisation or boosting, generated a Th1-biased response, reflected in a predominantly IgG(2a) serum antibody isotype and secretion of IFN-gamma from in vitro-stimulated lymphocytes. Serum antibody responses were greatest in animals primed and boosted subcutaneously, and least in mucosally vaccinated mice. The i.n. exposure also led to IFN-gamma release from in vitro-stimulated cells, but serum IgG(2a) was significantly elevated only in mice primed intranasally and boosted subcutaneously. Peptide- and wild-type CPMV-specific IgA responses in gut lavage fluid were greatest in animals exposed mucosally and least in those primed and boosted subcutaneously or primed subcutaneously and boosted orally. Lymphocytes from immunised mice proliferated in response to in vitro stimulation with CPMV but not with peptide. The predominant secretion of IFN-gamma from all immunising/boosting combinations indicates that the route of vaccination and challenge does not alter the Th1 bias of the response to CVP constructs. However, optimal serum and intestinal antibody responses were achieved by combining s.c. and i.n. administration.
Cervantes-Villagrana, Alberto R.; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno
2018-01-01
The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0–89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. PMID:23196205
Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane
2012-01-01
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343
Conserved Elements Vaccine for HIV | NCI Technology Transfer Center | TTC
Researchers at the National Cancer Institute (NCI) developed a DNA vaccine using conserved elements of HIV-1 Gag, administered in a prime-boost vaccination protocol. Two of the HIV Gag CE DNA vectors have been tested in a rhesus macaque model. Priming with the Gag CE vaccine and boosting with full length Gag DNA showed increased immune responses when compared to vaccination with Gag alone. Researchers seek licensing and/or co-development research collaborations for development this DNA vaccine.
Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens.
Tatsis, Nia; Lasaro, Marcio O; Lin, Shih-Wen; Haut, Larissa H; Xiang, Zhi Q; Zhou, Dongming; Dimenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J; Silvestri, Guido; Ertl, Hildegund C; Betts, Michael R
2009-05-15
In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with preexisting neutralizing Abs against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here, we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee-derived Ad vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the chimpanzee-derived Ad vectors induced higher T and B cell responses than did repeated immunizations with the AdHu5 vector, especially in AdHu5-preexposed macaques.
Huang, Yi-Ting; Liao, Jia-Teh; Yen, Li-Chen; Chang, Yung-Kun; Lin, Yi-Ling; Liao, Ching-Len
2015-09-11
To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.
Murphy, Sean C.; Kas, Arnold; Stone, Brad C.; Bevan, Michael J.
2013-01-01
Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins. PMID:23530242
Shen, Xiaoying; Basu, Rahul; Sawant, Sheetal; Beaumont, David; Kwa, Sue Fen; LaBranche, Celia; Seaton, Kelly E; Yates, Nicole L; Montefiori, David C; Ferrari, Guido; Wyatt, Linda S; Moss, Bernard; Alam, S Munir; Haynes, Barton F; Tomaras, Georgia D; Robinson, Harriet L
2017-12-15
An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4 + T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4 + T cell responses. IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with recombinant gp120 protein or MVA-expressed gp140 to enhance antibody responses elicited by the GOVX-B11 DNA prime-MVA boost vaccine. We found that both types of immunogen boosts enhanced potentially protective antibody responses, whereas the gp120 protein boosts also increased CD4 + T cell responses. Our data provide important information for HIV vaccine designs that aim for effective and balanced humoral and T cell responses. Copyright © 2017 Shen et al.
Erra, Elina O; Askling, Helena Hervius; Yoksan, Sutee; Rombo, Lars; Riutta, Jukka; Vene, Sirkka; Lindquist, Lars; Vapalahti, Olli; Kantele, Anu
2013-12-17
The inactivated Vero cell-derived vaccine (JE-VC, IXIARO) has replaced the traditional mouse brain-derived preparations (JE-MB) in travelers' vaccinations against Japanese encephalitis. We showed recently that a single JE-VC dose efficiently boosts immunity in JE-MB-primed vaccinees, and that JE-VC elicits cross-protective immunity against non-vaccine genotypes, including the emerging genotype I. While these studies only provided short-term data, the present investigation evaluates the longevity of seroprotection in the same volunteers. The study comprised 48 travelers who had received (1) JE-VC primary series, (2) JE-MB primary series followed by a single JE-VC booster dose, or (3) JE-MB primary series and a single JE-MB booster dose. Serum samples were collected two years after the last vaccine dose, and evaluated with the plaque-reduction neutralization test against seven Japanese encephalitis virus strains representing genotypes I-IV. PRNT50 titers ≥ 10 were considered protective. Two years after the primary series with JE-VC, 87-93% of the vaccinees proved to be cross-protected against test strains representing genotypes II-IV and 73% against those of genotype I. After a single homologous or heterologous booster dose to JE-MB-primed subjects, the two-year seroprotection rates against genotype I-IV strains were 89-100%. After JE-VC primary series, seroprotection appeared to wane first against genotype I. The first booster should not be delayed beyond two years. In JE-MB-primed subjects, a single JE-VC booster provided cross-protective immunity against genotype I-IV strains in almost all vaccinees, suggesting an interval of two years or even longer for the second booster. These data further support the use of a single JE-VC dose for boosting JE-MB immunity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Xing, Zhou; McFarland, Christine T; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMurray, David N
2009-06-10
Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n), AdAg85A intramuscularly (i.m), BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb). At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.
Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.
Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J
2015-12-16
Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. Published by Elsevier Ltd.
Iyer, Smita S; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P; Sabula, Michael J; Labranche, Celia C; Reddy, Pradeep B J; Tomaras, Georgia D; Montefiori, David C; Moss, Bernard; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A; Amara, Rama Rao
2016-10-01
The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Richert, Laura; Doussau, Adélaïde; Lelièvre, Jean-Daniel; Arnold, Vincent; Rieux, Véronique; Bouakane, Amel; Lévy, Yves; Chêne, Geneviève; Thiébaut, Rodolphe
2014-02-26
Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.
Britton, Gary; MacDonald, Douglas C; Brown, Jeremy S; Collins, Mary K; Goodman, Anna L
2015-01-01
Although bacillus Calmette–Guérin (BCG) is an established vaccine with excellent efficacy against disseminated Mycobacterium tuberculosis infection in young children, efficacy in adults suffering from respiratory tuberculosis (TB) is suboptimal. Prime-boost viral vectored vaccines have been shown to induce effective immune responses and lentivectors (LV) have been shown to improve mucosal immunity in the lung. A mucosal boost to induce local immunogenicity is also referred to as a ‘pull’ in a prime and pull approach, which has been found to be a promising vaccine strategy. The majority of infants worldwide receive BCG immunization through current vaccine protocols. We therefore aimed to investigate the role of a boost (or pull) immunization with an LV vaccine expressing the promising TB antigen (Ag85A). We immunized BALB/c mice subcutaneously with BCG or an LV vaccine expressing a nuclear factor-κB activator vFLIP together with Ag85A (LV vF/85A), then boosted with intranasal LV vF/85A. Prime and pull immunization with LV85A induced significantly enhanced CD8+ and CD4+ T-cell responses in the lung, but did not protect against intranasal BCG challenge. In contrast, little T-cell response in the lung was seen when the prime vaccine was BCG, and intranasal vF/85A provided no additional protection against mucosal BCG infection. Our study demonstrates that not all LV prime and pull approaches may be successful against TB in man and careful antigen and immune activator selection is therefore required. PMID:26095282
Approaches to Preventative and Therapeutic HIV vaccines
Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence
2016-01-01
Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884
Pierantoni, Angiolo; Esposito, Maria Luisa; Ammendola, Virginia; Napolitano, Federico; Grazioli, Fabiana; Abbate, Adele; del Sorbo, Mariarosaria; Siani, Loredana; D’Alise, Anna Morena; Taglioni, Alessandra; Perretta, Gemma; Siccardi, Antonio; Soprana, Elisa; Panigada, Maddalena; Thom, Michelle; Scarselli, Elisa; Folgori, Antonella; Colloca, Stefano; Taylor, Geraldine; Cortese, Riccardo; Nicosia, Alfredo; Capone, Stefania; Vitelli, Alessandra
2015-01-01
Respiratory Syncytial Virus (RSV) is a leading cause of severe respiratory disease in infants and the elderly. No vaccine is presently available to address this major unmet medical need. We generated a new genetic vaccine based on chimpanzee Adenovirus (PanAd3-RSV) and Modified Vaccinia Ankara RSV (MVA-RSV) encoding the F, N, and M2-1 proteins of RSV, for the induction of neutralizing antibodies and broad cellular immunity. Because RSV infection is restricted to the respiratory tract, we compared intranasal (IN) and intramuscular (M) administration for safety, immunogenicity, and efficacy in different species. A single IN or IM vaccination completely protected BALB/c mice and cotton rats against RSV replication in the lungs. However, only IN administration could prevent infection in the upper respiratory tract. IM vaccination with MVA-RSV also protected cotton rats from lower respiratory tract infection in the absence of detectable neutralizing antibodies. Heterologous prime boost with PanAd3-RSV and MVA-RSV elicited high neutralizing antibody titers and broad T-cell responses in nonhuman primates. In addition, animals primed in the nose developed mucosal IgA against the F protein. In conclusion, we have shown that our vectored RSV vaccine induces potent cellular and humoral responses in a primate model, providing strong support for clinical testing. PMID:26015988
Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno
2013-01-11
The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reyes-del Valle, Jorge; de la Fuente, Cynthia; Turner, Mallory A.; Springfeld, Christoph; Apte-Sengupta, Swapna; Frenzke, Marie E.; Forest, Amelie; Whidby, Jillian; Marcotrigiano, Joseph; Rice, Charles M.
2012-01-01
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination. PMID:22896607
Researchers are testing a prime-and-boost approach to safely direct the immune system to kill tumor cells that express brachyury, a protein expressed in high levels in some cancers. A new clinical trial is testing an experimental vaccine in patients whose cancers have not responded to standard treatments.
Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses.
Rollier, Christine S; Hill, Adrian V S; Reyes-Sandoval, Arturo
2016-08-31
Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai
2014-10-01
To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. © 2014 John Wiley & Sons Ltd.
Yang, Enzhuo; Gu, Jin; Wang, Feifei; Wang, Honghai; Shen, Hongbo; Chen, Zheng W
2016-04-01
Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xiaoyan; Wang, Jian-Ping; Rao, Xiao-Mei; Price, Janet E; Zhou, Heshan S; Lachman, Lawrence B
2005-01-01
Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.
Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens1
Tatsis, Nia; Lasaro, Marcio O.; Lin, Shih-Wen; Xiang, Zhi Q.; Zhou, Dongming; DiMenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J.; Silvestri, Guido; Ertl, Hildegund C.; Betts, Michael R.
2009-01-01
In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with pre-existing neutralizing antibodies against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee derived Ad (AdC) vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the AdC vectors induced higher T and B cell responses than repeated immunizations with the AdHu5 vector especially in AdHu5-pre-exposed macaques. PMID:19414814
2013-03-26
virus (IIV) vaccine (dose 0.5 mL intramuscularly, purchased in Thailand from Sanofi Pasteur). Both vaccines contained the three strains for the 2009/10...H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial. 5a. CONTRACT NUMBER...reported by WHO since 2003 [1]. Current seasonal trivalent influenza vaccines rely on predicted antigens based on the previous season’s circulating
Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S
2015-06-22
There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lakhashe, Samir K.; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B.; DiPasquale, Janet M.; Hemashettar, Girish; Yoon, John K.; Rasmussen, Robert A.; Yang, Feng; Lee, Sandra J.; Montefiori, David C.; Novembre, Francis J.; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R.; Robert-Guroff, Marjorie; Johnson, Welkin E.; Lieberman, Judy; Ruprecht, Ruth M.
2011-01-01
We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus >90%; these RM also had strong SIV Gag-specific proliferation of CD8+ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4+ T cells; the latter have been implicated as preferential virus targets in-vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. PMID:21693155
Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M
2011-08-05
We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon
2017-09-01
Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.
Letellier, Carine; Boxus, Mathieu; Rosar, Laurent; Toussaint, Jean-François; Walravens, Karl; Roels, Stefan; Meyer, Gilles; Letesson, Jean-Jacques; Kerkhofs, Pierre
2008-09-02
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in both cattle and young children. Despite the development of vaccines against bovine (B)RSV, incomplete protection and exacerbation of subsequent RSV disease have occurred. In order to circumvent these problems, calves were vaccinated with the nucleocapsid protein, known to be a major target of CD8(+) T cells in cattle. This was performed according to a DNA prime-protein boost strategy. The results showed that DNA vaccination primed a specific T-cell-mediated response, as indicated by both a lymphoproliferative response and IFN-gamma production. These responses were enhanced after protein boost. After challenge, mock-vaccinated calves displayed gross pneumonic lesions and viral replication in the lungs. In contrast, calves vaccinated by successive administrations of plasmid DNA and protein exhibited protection against the development of pneumonic lesions and the viral replication in the BAL fluids and the lungs. The protection correlated to the cell-mediated immunity and not to the antibody response.
Lin, Yinling; Kwon, Taewoo; Polo, John; Zhu, Yi-Fei; Coates, Stephen; Crawford, Kevin; Dong, Christine; Wininger, Mark; Hall, John; Selby, Mark; Coit, Doris; Medina-Selby, Angelica; McCoin, Colin; Ng, Philip; Drane, Debbie; Chien, David; Han, Jang; Vajdy, Michael; Houghton, Michael
2008-01-01
Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen. PMID:18508900
Wang, Guiqin; Yin, Renfu; Zhou, Paul; Ding, Zhuang
2017-01-01
Hemagglutinin (HA) head has long been considered to be able to elicit only a narrow, strain-specific antibody response as it undergoes rapid antigenic drift. However, we previously showed that a heterologous prime-boost strategy, in which mice were primed twice with DNA encoding HA and boosted once with virus-like particles (VLP) from an H5N1 strain A/Thailand/1(KAN)-1/2004 (noted as TH DDV), induced anti-head broad cross-H5 neutralizing antibody response. To explain why TH DDV immunization could generate such breadth, we systemically compared the neutralization breadth and potency between TH DDV sera and immune sera elicited by TH DDD (three times of DNA immunizations), TH VVV (three times of VLP immunizations), TH DV (one DNA prime plus one VLP boost) and TK DDV (plasmid DNA and VLP derived from another H5N1 strain, A/Turkey/65596/2006). Then we determined the antigenic sites (AS) on TH HA head and the key residues of the main antigenic site. Through the comparison of different regiments, we found that the combination of the immunization with the sequence close to the consensus sequence and two DNA prime plus one VLP boost caused that TH DDV immunization generate broad neutralizing antibodies. Antigenic analysis showed that TH DDV, TH DV, TH DDD and TH VVV sera recognize the common antigenic site AS1. Antibodies directed to AS1 contribute to the largest proportion of the neutralizing activity of these immune sera. Residues 188 and 193 in AS1 are the key residues which are responsible for neutralization breadth of the immune sera. Interestingly, residues 188 and 193 locate in classical antigen sites but are relatively conserved among the 16 tested strains and 1,663 HA sequences from NCBI database. Thus, our results strongly indicate that it is feasible to develop broad cross-H5 influenza vaccines against HA head. PMID:28542275
Ami, Yasushi; Izumi, Yasuyuki; Matsuo, Kazuhiro; Someya, Kenji; Kanekiyo, Masaru; Horibata, Shigeo; Yoshino, Naoto; Sakai, Koji; Shinohara, Katsuaki; Matsumoto, Sohkichi; Yamada, Takeshi; Yamazaki, Shudo; Yamamoto, Naoki; Honda, Mitsuo
2005-10-01
Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.
Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke
2013-01-01
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066
Hanke, Tomas; Samuel, Rachel V.; Blanchard, Tom J.; Neumann, Veronica C.; Allen, Todd M.; Boyson, Jon E.; Sharpe, Sally A.; Cook, Nicola; Smith, Geoffrey L.; Watkins, David I.; Cranage, Martin P.; McMichael, Andrew J.
1999-01-01
DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8+ lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed. PMID:10438842
Chege, Gerald K; Burgers, Wendy A; Stutz, Helen; Meyers, Ann E; Chapman, Rosamund; Kiravu, Agano; Bunjun, Rubina; Shephard, Enid G; Jacobs, William R; Rybicki, Edward P; Williamson, Anna-Lise
2013-05-01
We previously reported that a recombinant pantothenate auxotroph of Mycobacterium bovis BCG expressing human immunodeficiency virus type 1 (HIV-1) subtype C Gag (rBCGpan-Gag) efficiently primes the mouse immune system for a boost with a recombinant modified vaccinia virus Ankara (rMVA) vaccine. In this study, we further evaluated the immunogenicity of rBCGpan-Gag in a nonhuman primate model. Two groups of chacma baboons were primed or mock primed twice with either rBCGpan-Gag or a control BCG. Both groups were boosted with HIV-1 Pr55(gag) virus-like particles (Gag VLPs). The magnitude and breadth of HIV-specific cellular responses were measured using a gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay, and the cytokine profiles and memory phenotypes of T cells were evaluated by polychromatic flow cytometry. Gag-specific responses were detected in all animals after the second inoculation with rBCGpan-Gag. Boosting with Gag VLPs significantly increased the magnitude and breadth of the responses in the baboons that were primed with rBCGpan-Gag. These responses targeted an average of 12 Gag peptides per animal, compared to an average of 3 peptides per animal for the mock-primed controls. Robust responses of Gag-specific polyfunctional T cells capable of simultaneously producing IFN-γ, tumor necrosis alpha (TNF-α), and interleukin-2 (IL-2) were detected in the rBCGpan-Gag-primed animals. Gag-specific memory T cells were skewed toward a central memory phenotype in both CD4(+) and CD8(+) T cell populations. These data show that the rBCGpan-Gag prime and Gag VLP boost vaccine regimen is highly immunogenic, inducing a broad and polyfunctional central memory T cell response. This report further indicates the feasibility of developing a BCG-based HIV vaccine that is safe for childhood HIV immunization.
Le, Dung T; Wang-Gillam, Andrea; Picozzi, Vincent; Greten, Tim F; Crocenzi, Todd; Springett, Gregory; Morse, Michael; Zeh, Herbert; Cohen, Deirdre; Fine, Robert L; Onners, Beth; Uram, Jennifer N; Laheru, Daniel A; Lutz, Eric R; Solt, Sara; Murphy, Aimee Luck; Skoble, Justin; Lemmens, Ed; Grous, John; Dubensky, Thomas; Brockstedt, Dirk G; Jaffee, Elizabeth M
2015-04-20
GVAX pancreas, granulocyte-macrophage colony-stimulating factor-secreting allogeneic pancreatic tumor cells, induces T-cell immunity to cancer antigens, including mesothelin. GVAX is administered with low-dose cyclophosphamide (Cy) to inhibit regulatory T cells. CRS-207, live-attenuated Listeria monocytogenes-expressing mesothelin, induces innate and adaptive immunity. On the basis of preclinical synergy, we tested prime/boost vaccination with GVAX and CRS-207 in pancreatic adenocarcinoma. Previously treated patients with metastatic pancreatic adenocarcinoma were randomly assigned at a ratio of 2:1 to two doses of Cy/GVAX followed by four doses of CRS-207 (arm A) or six doses of Cy/GVAX (arm B) every 3 weeks. Stable patients were offered additional courses. The primary end point was overall survival (OS) between arms. Secondary end points were safety and clinical response. A total of 90 patients were treated (arm A, n = 61; arm B, n = 29); 97% had received prior chemotherapy; 51% had received ≥ two regimens for metastatic disease. Mean number of doses (± standard deviation) administered in arms A and B were 5.5 ± 4.5 and 3.7 ± 2.2, respectively. The most frequent grade 3 to 4 related toxicities were transient fevers, lymphopenia, elevated liver enzymes, and fatigue. OS was 6.1 months in arm A versus 3.9 months in arm B (hazard ratio [HR], 0.59; P = .02). In a prespecified per-protocol analysis of patients who received at least three doses (two doses of Cy/GVAX plus one of CRS-207 or three of Cy/GVAX), OS was 9.7 versus 4.6 months (arm A v B; HR, 0.53; P = .02). Enhanced mesothelin-specific CD8 T-cell responses were associated with longer OS, regardless of treatment arm. Heterologous prime/boost with Cy/GVAX and CRS-207 extended survival for patients with pancreatic cancer, with minimal toxicity. © 2015 by American Society of Clinical Oncology.
Le, Dung T.; Wang-Gillam, Andrea; Picozzi, Vincent; Greten, Tim F.; Crocenzi, Todd; Springett, Gregory; Morse, Michael; Zeh, Herbert; Cohen, Deirdre; Fine, Robert L.; Onners, Beth; Uram, Jennifer N.; Laheru, Daniel A.; Lutz, Eric R.; Solt, Sara; Murphy, Aimee Luck; Skoble, Justin; Lemmens, Ed; Grous, John; Dubensky, Thomas; Brockstedt, Dirk G.; Jaffee, Elizabeth M.
2015-01-01
Purpose GVAX pancreas, granulocyte-macrophage colony-stimulating factor–secreting allogeneic pancreatic tumor cells, induces T-cell immunity to cancer antigens, including mesothelin. GVAX is administered with low-dose cyclophosphamide (Cy) to inhibit regulatory T cells. CRS-207, live-attenuated Listeria monocytogenes–expressing mesothelin, induces innate and adaptive immunity. On the basis of preclinical synergy, we tested prime/boost vaccination with GVAX and CRS-207 in pancreatic adenocarcinoma. Patients and Methods Previously treated patients with metastatic pancreatic adenocarcinoma were randomly assigned at a ratio of 2:1 to two doses of Cy/GVAX followed by four doses of CRS-207 (arm A) or six doses of Cy/GVAX (arm B) every 3 weeks. Stable patients were offered additional courses. The primary end point was overall survival (OS) between arms. Secondary end points were safety and clinical response. Results A total of 90 patients were treated (arm A, n = 61; arm B, n = 29); 97% had received prior chemotherapy; 51% had received ≥ two regimens for metastatic disease. Mean number of doses (± standard deviation) administered in arms A and B were 5.5 ± 4.5 and 3.7 ± 2.2, respectively. The most frequent grade 3 to 4 related toxicities were transient fevers, lymphopenia, elevated liver enzymes, and fatigue. OS was 6.1 months in arm A versus 3.9 months in arm B (hazard ratio [HR], 0.59; P = .02). In a prespecified per-protocol analysis of patients who received at least three doses (two doses of Cy/GVAX plus one of CRS-207 or three of Cy/GVAX), OS was 9.7 versus 4.6 months (arm A v B; HR, 0.53; P = .02). Enhanced mesothelin-specific CD8 T-cell responses were associated with longer OS, regardless of treatment arm. Conclusion Heterologous prime/boost with Cy/GVAX and CRS-207 extended survival for patients with pancreatic cancer, with minimal toxicity. PMID:25584002
Wise, Megan C.; Hutnick, Natalie A.; Pollara, Justin; Myles, Devin J. F.; Williams, Constance; Yan, Jian; LaBranche, Celia C.; Khan, Amir S.; Sardesai, Niranjan Y.; Montefiori, David; Barnett, Susan W.; Zolla-Pazner, Susan; Ferrari, Guido
2015-01-01
ABSTRACT The search for an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine remains a pressing need. The moderate success of the RV144 Thai clinical vaccine trial suggested that vaccine-induced HIV-1-specific antibodies can reduce the risk of HIV-1 infection. We have made several improvements to the DNA platform and have previously shown that improved DNA vaccines alone are capable of inducing both binding and neutralizing antibodies in small-animal models. In this study, we explored how an improved DNA prime and recombinant protein boost would impact HIV-specific vaccine immunogenicity in rhesus macaques (RhM). After DNA immunization with either a single HIV Env consensus sequence or multiple constructs expressing HIV subtype-specific Env consensus sequences, we detected both CD4+ and CD8+ T-cell responses to all vaccine immunogens. These T-cell responses were further increased after protein boosting to levels exceeding those of DNA-only or protein-only immunization. In addition, we observed antibodies that exhibited robust cross-clade binding and neutralizing and antibody-dependent cellular cytotoxicity (ADCC) activity after immunization with the DNA prime-protein boost regimen, with the multiple-Env formulation inducing a more robust and broader response than the single-Env formulation. The magnitude and functionality of these responses emphasize the strong priming effect improved DNA immunogens can induce, which are further expanded upon protein boost. These results support further study of an improved synthetic DNA prime together with a protein boost for enhancing anti-HIV immune responses. IMPORTANCE Even with effective antiretroviral drugs, HIV remains an enormous global health burden. Vaccine development has been problematic in part due to the high degree of diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a relevant HIV vaccine will likely need to induce broad cellular and humoral responses from a simple vaccine regimen due to the resource-limited setting in which the HIV pandemic is most rampant. DNA vaccination lends itself well to increasing the amount of diversity included in a vaccine due to the ease of manufacturing multiple plasmids and formulating them as a single immunization. By increasing the number of Envs within a formulation, we were able to show an increased breadth of responses as well as improved functionality induced in a nonhuman primate model. This increased breadth could be built upon, leading to better coverage against circulating strains with broader vaccine-induced protection. PMID:26085155
On the efficacy of malaria DNA vaccination with magnetic gene vectors.
Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L
2013-05-28
We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.
Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana
2015-05-01
Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.
2010-01-01
vaccines primed rhesus maca - ques for an immune response to a tetravalent live attenuated virus (TLAV) vaccine. An initial experiment was performed in 16...and 4 and no measurable increase for DENV 1. These two experiments clearly demonstrated that rhesus maca - ques could be successfully immunized and
Wu, Yunpu; Yang, Dawei; Xu, Bangfeng; Liang, Wenhua; Sui, Jinyu; Chen, Yan; Yang, Huanliang; Chen, Hualan; Wei, Ping; Qiao, Chuanling
2017-11-01
Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs. Copyright © 2017 Elsevier B.V. All rights reserved.
Baden, Lindsey R; Karita, Etienne; Mutua, Gaudensia; Bekker, Linda-Gail; Gray, Glenda; Page-Shipp, Liesl; Walsh, Stephen R; Nyombayire, Julien; Anzala, Omu; Roux, Surita; Laher, Fatima; Innes, Craig; Seaman, Michael S; Cohen, Yehuda Z; Peter, Lauren; Frahm, Nicole; McElrath, M Juliana; Hayes, Peter; Swann, Edith; Grunenberg, Nicole; Grazia-Pau, Maria; Weijtens, Mo; Sadoff, Jerry; Dally, Len; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Dolin, Raphael; Fast, Patricia; Barouch, Dan H; Laufer, Dagna S
2016-03-01
A prophylactic HIV-1 vaccine is a global health priority. To assess a novel vaccine platform as a prophylactic HIV-1 regimen. Randomized, double-blind, placebo-controlled trial. Both participants and study personnel were blinded to treatment allocation. (ClinicalTrials.gov: NCT01215149). United States, East Africa, and South Africa. Healthy adults without HIV infection. 2 HIV-1 vaccines (adenovirus serotype 26 with an HIV-1 envelope A insert [Ad26.EnvA] and adenovirus serotype 35 with an HIV-1 envelope A insert [Ad35.Env], both administered at a dose of 5 × 1010 viral particles) in homologous and heterologous combinations. Safety and immunogenicity and the effect of baseline vector immunity. 217 participants received at least 1 vaccination, and 210 (>96%) completed follow-up. No vaccine-associated serious adverse events occurred. All regimens were generally well-tolerated. All regimens elicited humoral and cellular immune responses in nearly all participants. Preexisting Ad26- or Ad35-neutralizing antibody titers had no effect on vaccine safety and little effect on immunogenicity. In both homologous and heterologous regimens, the second vaccination significantly increased EnvA antibody titers (approximately 20-fold from the median enzyme-linked immunosorbent assay titers of 30-300 to 3000). The heterologous regimen of Ad26-Ad35 elicited significantly higher EnvA antibody titers than Ad35-Ad26. T-cell responses were modest and lower in East Africa than in South Africa and the United States. Because the 2 envelope inserts were not identical, the boosting responses were complex to interpret. Durability of the immune responses elicited beyond 1 year is unknown. Both vaccines elicited significant immune responses in all populations. Baseline vector immunity did not significantly affect responses. Second vaccinations in all regimens significantly boosted EnvA antibody titers, although vaccine order in the heterologous regimen had a modest effect on the immune response. International AIDS Vaccine Initiative, National Institutes of Health, Ragon Institute, Crucell Holland.
Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.
2014-01-01
Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120
Dolzhikova, I. V.; Zubkova, O. V.; Tukhvatulin, A. I.; Dzharullaeva, A. S.; Tukhvatulina, N. M.; Shcheblyakov, D. V.; Shmarov, M. M.; Tokarskaya, E. A.; Simakova, Y. V.; Egorova, D. A.; Scherbinin, D. N.; Tutykhina, I. L.; Lysenko, A. A.; Kostarnoy, A. V.; Gancheva, P. G.; Ozharovskaya, T. A.; Belugin, B. V.; Kolobukhina, L. V.; Pantyukhov, V. B.; Syromyatnikova, S. I.; Shatokhina, I. V.; Sizikova, T. V.; Rumyantseva, I. G.; Andrus, A. F.; Boyarskaya, N. V.; Voytyuk, A. N.; Babira, V. F.; Volchikhina, S. V.; Kutaev, D. A.; Bel'skih, A. N.; Zhdanov, K. V.; Zakharenko, S. M.; Borisevich, S. V.; Logunov, D. Y.; Naroditsky, B. S.; Gintsburg, A. L.
2017-01-01
ABSTRACT Ebola hemorrhagic fever, also known as Ebola virus disease or EVD, is one of the most dangerous viral diseases in humans and animals. In this open-label, dose-escalation clinical trial, we assessed the safety, side effects, and immunogenicity of a novel, heterologous prime-boost vaccine against Ebola, which was administered in 2 doses to 84 healthy adults of both sexes between 18 and 55 years. The vaccine consists of live-attenuated recombinant vesicular stomatitis virus (VSV) and adenovirus serotype-5 (Ad5) expressing Ebola envelope glycoprotein. The most common adverse event was pain at the injection site, although no serious adverse events were reported. The vaccine did not significantly impact blood, urine, and immune indices. Seroconversion rate was 100 %. Antigen-specific IgG geometric mean titer at day 42 was 3,277 (95 % confidence interval 2,401–4,473) in volunteers immunized at full dose. Neutralizing antibodies were detected in 93.1 % of volunteers immunized at full dose, with geometric mean titer 20. Antigen-specific response in peripheral blood mononuclear cells was also detected in 100 % of participants, as well as in CD4+ and CD8+ T cells in 82.8 % and 58.6 % of participants vaccinated at full dose, respectively. The data indicate that the vaccine is safe and induces strong humoral and cellular immune response in up to 100 % of healthy adult volunteers, and provide a rationale for testing efficacy in Phase III trials. Indeed, the strong immune response to the vaccine may elicit long-term protection. This trial was registered with grls.rosminzdrav.ru (No. 495*), and with zakupki.gov.ru (No. 0373100043215000055). PMID:28152326
Dolzhikova, I V; Zubkova, O V; Tukhvatulin, A I; Dzharullaeva, A S; Tukhvatulina, N M; Shcheblyakov, D V; Shmarov, M M; Tokarskaya, E A; Simakova, Y V; Egorova, D A; Scherbinin, D N; Tutykhina, I L; Lysenko, A A; Kostarnoy, A V; Gancheva, P G; Ozharovskaya, T A; Belugin, B V; Kolobukhina, L V; Pantyukhov, V B; Syromyatnikova, S I; Shatokhina, I V; Sizikova, T V; Rumyantseva, I G; Andrus, A F; Boyarskaya, N V; Voytyuk, A N; Babira, V F; Volchikhina, S V; Kutaev, D A; Bel'skih, A N; Zhdanov, K V; Zakharenko, S M; Borisevich, S V; Logunov, D Y; Naroditsky, B S; Gintsburg, A L
2017-03-04
Ebola hemorrhagic fever, also known as Ebola virus disease or EVD, is one of the most dangerous viral diseases in humans and animals. In this open-label, dose-escalation clinical trial, we assessed the safety, side effects, and immunogenicity of a novel, heterologous prime-boost vaccine against Ebola, which was administered in 2 doses to 84 healthy adults of both sexes between 18 and 55 years. The vaccine consists of live-attenuated recombinant vesicular stomatitis virus (VSV) and adenovirus serotype-5 (Ad5) expressing Ebola envelope glycoprotein. The most common adverse event was pain at the injection site, although no serious adverse events were reported. The vaccine did not significantly impact blood, urine, and immune indices. Seroconversion rate was 100 %. Antigen-specific IgG geometric mean titer at day 42 was 3,277 (95 % confidence interval 2,401-4,473) in volunteers immunized at full dose. Neutralizing antibodies were detected in 93.1 % of volunteers immunized at full dose, with geometric mean titer 20. Antigen-specific response in peripheral blood mononuclear cells was also detected in 100 % of participants, as well as in CD4+ and CD8+ T cells in 82.8 % and 58.6 % of participants vaccinated at full dose, respectively. The data indicate that the vaccine is safe and induces strong humoral and cellular immune response in up to 100 % of healthy adult volunteers, and provide a rationale for testing efficacy in Phase III trials. Indeed, the strong immune response to the vaccine may elicit long-term protection. This trial was registered with grls.rosminzdrav.ru (No. 495*), and with zakupki.gov.ru (No. 0373100043215000055).
Khanam, Saima; Rajendra, Pilankatta; Khanna, Navin; Swaminathan, Sathyamangalam
2007-02-15
Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective tetravalent dengue vaccines.
Clark, Simon; Lanni, Faye; Marinova, Dessislava; Rayner, Emma; Martin, Carlos; Williams, Ann
2017-09-01
The need for an effective vaccine against human tuberculosis has driven the development of different candidates and vaccination strategies. Novel live attenuated vaccines are being developed that promise greater safety and efficacy than BCG against tuberculosis. We combined BCG with the vaccine MTBVAC to evaluate whether the efficacy of either vaccine would be affected upon revaccination. In a well-established guinea pig model of aerosol infection with Mycobacterium tuberculosis, BCG and MTBVAC delivered via various prime-boost combinations or alone were compared. Efficacy was determined by a reduction in bacterial load 4 weeks after challenge. Efficacy data suggests MTBVAC-associated immunity is longer lasting than that of BCG when given as a single dose. Long and short intervals between BCG prime and MTBVAC boost resulted in improved efficacy in lungs, compared with BCG given alone. A shorter interval between MTBVAC prime and BCG boost resulted in improved efficacy in lungs, compared with BCG given alone. A longer interval resulted in protection equivalent to that of BCG given alone. These data indicate that, rather than boosting the waning efficacy of BCG, a vaccination schedule involving a combination of the 2 vaccines yielded stronger immunity to M. tuberculosis infection. This work supports development of MTBVAC use as a revaccination strategy to improve on the effects of BCG in vaccinated people living in tuberculosis-endemic countries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Graham, Victoria A.; Bewley, Kevin R.; Dennis, Mike; Taylor, Irene; Funnell, Simon G. P.; Bate, Simon R.; Steeds, Kimberley; Tipton, Thomas; Bean, Thomas; Hudson, Laura; Atkinson, Deborah J.; McLuckie, Gemma; Charlwood, Melanie; Roberts, Allen D. G.; Vipond, Julia
2013-01-01
To support the licensure of a new and safer vaccine to protect people against smallpox, a monkeypox model of infection in cynomolgus macaques, which simulates smallpox in humans, was used to evaluate two vaccines, Acam2000 and Imvamune, for protection against disease. Animals vaccinated with a single immunization of Imvamune were not protected completely from severe and/or lethal infection, whereas those receiving either a prime and boost of Imvamune or a single immunization with Acam2000 were protected completely. Additional parameters, including clinical observations, radiographs, viral load in blood, throat swabs, and selected tissues, vaccinia virus-specific antibody responses, immunophenotyping, extracellular cytokine levels, and histopathology were assessed. There was no significant difference (P > 0.05) between the levels of neutralizing antibody in animals vaccinated with a single immunization of Acam2000 (132 U/ml) and the prime-boost Imvamune regime (69 U/ml) prior to challenge with monkeypox virus. After challenge, there was evidence of viral excretion from the throats of 2 of 6 animals in the prime-boost Imvamune group, whereas there was no confirmation of excreted live virus in the Acam2000 group. This evaluation of different human smallpox vaccines in cynomolgus macaques helps to provide information about optimal vaccine strategies in the absence of human challenge studies. PMID:23658452
Sun, Xiangjie; Belser, Jessica A.; Pulit-Penaloza, Joanna A.; Creager, Hannah M.; Guo, Zhu; Jefferson, Stacie N.; Liu, Feng; York, Ian A.; Stevens, James; Maines, Taronna R.; Jernigan, Daniel B.; Katz, Jacqueline M.; Levine, Min Z.; Tumpey, Terrence M.
2018-01-01
Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g. AS03, MF59) have been shown to be safe, immunogenic, and able to induce broad immune responses in clinical trials, providing strong scientific support for vaccine stockpiling. However, whether such vaccines can provide protection from infection with emerging, antigenically distinct clades of H5 viruses has not been adequately addressed. Here, we selected two AS03-adjuvanted H5N1 vaccines from the US national prepandemic influenza vaccine stockpile and assessed whether the 2004–05 vaccines could provide protection against a 2014 highly pathogenic avian influenza (HPAI) H5N2 virus (A/northern pintail/Washington/40964/2014), a clade 2.3.4.4 virus responsible for mass culling of poultry in North America. Ferrets received two doses of adjuvanted vaccine containing 7.5 μg of hemagglutinin (HA) from A/Vietnam/1203/2004 (clade 1) or A/Anhui/1/2005 (clade 2.3.4) virus either in a homologous or heterologous prime-boost vaccination regime. We found that both vaccination regimens elicited robust antibody responses against the 2004–05 vaccine viruses and could reduce virus-induced morbidity and viral replication in the lower respiratory tract upon heterologous challenge despite the low level of cross-reactive antibody titers to the challenge H5N2 virus. This study supports the value of existing stockpiled 2004–05 influenza H5N1 vaccines, combined with AS03-adjuvant for early use in the event of an emerging pandemic with H5N2-like clade 2.3.4.4 viruses. PMID:28554058
Im, Eung-Jun; Nkolola, Joseph P; di Gleria, Kati; McMichael, Andrew J; Hanke, Tomás
2006-10-01
As a part of a long-term effort to develop vaccine against HIV-1 clade A inducing protective T cell responses in humans, we run mutually complementing studies in humans and non-human primates (NHP) with the aim to maximize vaccine immunogenicity. The candidate vaccine under development has four components, pTHr.HIVA and pTH.RENTA DNA, and modified vaccinia virus Ankara (MVA).HIVA and MVA.RENTA, delivered in a heterologous DNA prime-MVA boost regimen. While the HIVA (Gag/epitopes) components have been tested in NHP and over 300 human subjects, we plan to test in humans the RENTA (reverse transcriptase, gp41, Nef, Tat) vaccines designed to broaden HIVA-induced responses in year 2007. Here, we investigated the four-component vaccine long-term immunogenicity in Mamu-A*01-positive rhesus macaques and demonstrated that the vaccine-induced T cells were multi-specific, multi-functional, readily proliferated to recall peptides and were circulating in the peripheral blood of vaccine recipients over 1 year after vaccine administration. The consensus clade A-elicited T cells recognized 50% of tested epitope variants from other HIV-1 clades. Thus, the DNA-MVA/HIVA-RENTA vaccine induced memory T cells of desirable characteristics and similarities to those induced in humans by HIVA vaccines alone; however, single-clade vaccines may not elicit sufficiently cross-reactive responses.
Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa.
Nkolola, J P; Wee, E G-T; Im, E-J; Jewell, C P; Chen, N; Xu, X-N; McMichael, A J; Hanke, T
2004-07-01
For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.
Green, C A; Scarselli, E; Voysey, M; Capone, S; Vitelli, A; Nicosia, A; Cortese, R; Thompson, A J; Sande, C S; de Lara, Catherine; Klenerman, P; Pollard, A J
2015-01-01
Introduction Respiratory syncytial virus (RSV) infection causes respiratory disease throughout life, with infants and the elderly at risk of severe disease and death. RSV001 is a phase 1 (first-in-man), open-label, dose-escalation, clinical trial of novel genetic viral-vectored vaccine candidates PanAd3-RSV and modified vaccinia virus Ankara (MVA)-RSV. The objective of RSV001 is to characterise the (primary objective) safety and (secondary objective) immunogenicity of these vaccines in healthy younger and older adults. Methods and analysis Heterologous and homologous ‘prime’/boost combinations of PanAd3-RSV and single-dose MVA-RSV are evaluated in healthy adults. 40 healthy adults aged 18–50 years test one of four combinations of intramuscular (IM) or intranasal (IN) PanAd3-RSV prime and IM PanAd3 or IM MVA-RSV boost vaccination, starting at a low dose for safety. The following year an additional 30 healthy adults aged 60–75 years test either a single dose of IM MVA-RSV, one of three combinations of IN or IM PanAd3-RSV prime and PanAd3-RSV or MVA-RSV boost vaccination used in younger volunteers, and a non-vaccinated control group. Study participants are self-selected volunteers who satisfy the eligibility criteria and are assigned to study groups by sequential allocation. Safety assessment includes the daily recording of solicited and unsolicited adverse events for 1 week after vaccination, as well as visit (nursing) observations and safety bloods obtained at all scheduled attendances. Laboratory measures of RSV-specific humoral and cellular immune responses after vaccination will address the secondary end points. All study procedures are performed at the Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Oxford, UK. Ethics and dissemination RSV001 has clinical trial authorisation from the Medicines and Healthcare Products Regulatory Agency (MHRA) and ethics approval from NRES Berkshire (reference 13/SC/0023). All study procedures adhere to International Conference on Harmonisation (ICH) Good Clinical Practice guidelines. The results of the trial are to be published in peer-reviewed journals, conferences and academic forums. Trial registration number NCT01805921. PMID:26510727
Bagley, Kenneth C.; Lewis, George K.; Fouts, Timothy R.
2011-01-01
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques. PMID:21508173
Bagley, Kenneth C; Lewis, George K; Fouts, Timothy R
2011-06-01
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.
Baillie, Leslie W.J.; Rodriguez, Ana L.; Moore, Stephen; Atkins, Helen S.; Feng, Chiguang; Nataro, James P.; Pasetti, Marcela F.
2008-01-01
We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [1]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax. PMID:18805452
Wijesundara, Danushka K.; Ranasinghe, Charani; Jackson, Ronald J.; Lidbury, Brett A.; Parish, Christopher R.; Quah, Benjamin J. C.
2014-01-01
Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting. PMID:25170620
Wijesundara, Danushka K; Ranasinghe, Charani; Jackson, Ronald J; Lidbury, Brett A; Parish, Christopher R; Quah, Benjamin J C
2014-01-01
Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.
Ramirez, Karina; Ditamo, Yanina; Galen, James E.; Baillie, Les W. J.; Pasetti, Marcela F.
2010-01-01
The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-γ-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin-neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life. PMID:20619377
Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Zhao, Chunxia; Makarova, Natalia; Dmitriev, Igor; Curiel, David T.; Blackwell, Jerry; Moreno, Alberto
2016-01-01
An ideal malaria vaccine should target several stages of the parasite life cycle and induce anti-parasite and anti-disease immunity. We have reported a Plasmodium yoelii chimeric multi-stage recombinant protein (PyLPC/RMC), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1). This chimeric protein elicits protective immunity, mediated by CD4+ T cells and neutralizing antibodies. However, experimental evidence from pre-erythrocytic vaccine candidates and irradiated sporozoites has shown that CD8+ T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8+ T cell responses. The human adenovirus serotype 5 (Ad5) has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing antibodies in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing antibodies. Furthermore, we implemented heterologous adenovirus/protein immunization regimens which include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrate that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development. PMID:27574299
Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir
2012-11-01
Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p < 0.005) after intravaginal HSV-2 challenge. Polyfunctional CD8(+) T cells, producing IFN-γ, TNF-α, and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8(+) T cell response was significantly compromised in the absence of the adapter MyD88 (p = 0.0001). Taken together, these findings indicate that targeting of the vaginal mucosa with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8(+) T cell protective immunity against sexually transmitted herpes infection and disease.
Baillie, Leslie W J; Rodriguez, Ana L; Moore, Stephen; Atkins, Helen S; Feng, Chiguang; Nataro, James P; Pasetti, Marcela F
2008-11-11
We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [Stokes MG, Titball RW, Neeson BN, et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun 2007;75(April (4)):1827-34]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax.
Niqueux, Eric; Guionie, Olivier; Amelot, Michel; Jestin, Véronique
2013-08-28
Vaccination protocols were evaluated in one-day old Muscovy ducklings, using an experimental Newcastle disease recombinant vaccine (vNDV-H5) encoding an optimized synthetic haemagglutinin gene from a clade 2.2.1 H5N1 highly pathogenic (HP) avian influenza virus (AIV), either as a single administration or as a boost following a prime inoculation with a fowlpox vectored vaccine (vFP89) encoding a different H5 HP haemagglutinin from an Irish H5N8 strain. These vaccination schemes did not induce detectable levels of serum antibodies in HI test using a clade 2.2.1 H5N1 antigen, and only induced H5 ELISA positive response in less than 10% of vaccinated ducks. However, following challenge against a clade 2.2.1 HPAIV, both protocols afforded full clinical protection at six weeks of age, and full protection against mortality at nine weeks. Only the prime-boost vaccination (vFP89+vNDV-H5) was still fully protecting Muscovy ducks against disease and mortality at 12 weeks of age. Reduction of oropharyngeal shedding levels was also constantly observed from the onset of the follow-up at 2.5 or three days post-infection in vaccinated ducks compared to unvaccinated controls, and was significantly more important for vFP89+vNDV-H5 vaccination than for vNDV-H5 alone. Although the latter vaccine is shown immunogenic in one-day old Muscovy ducks, the present work is original in demonstrating the high efficacy of the successive administration of two different vector vaccines encoding two different H5 in inducing lasting protection (at least similar to the one induced by an inactivated reassortant vaccine, Re-5). In addition, such a prime-boost schedule allows implementation of a DIVA strategy (to differentiate vaccinated from infected ducks) contrary to Re-5, involves easy practice on the field (with injection at the hatchery and mass vaccination later on), and should avoid eventual interference with NDV maternally derived antibodies. Last, the HA insert could be updated according to the epidemiological situation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Joseph, SK; Ramaswamy, K
2013-01-01
The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679
Gorse, Geoffrey J; Newman, Mark J; deCamp, Allan; Hay, Christine Mhorag; De Rosa, Stephen C; Noonan, Elizabeth; Livingston, Brian D; Fuchs, Jonathan D; Kalams, Spyros A; Cassis-Ghavami, Farah L
2012-05-01
We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins.
Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R; Robinson, Harriet L
2012-11-01
Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection.
Lynch, Rebecca M; Yamamoto, Takuya; McDermott, Adrian B
2013-07-01
Here we highlight the latest advances in HIV vaccine concepts that will expand our knowledge on how to elicit effective acquisition-prevention and/or control of simian immunodeficiency virus (SIV) replication in the nonhuman primate (NHP) model. In the context of the promising analyses from the RV144 Thai Trial and the effective control of SIV replication exerted by rhCMV-(SIV) elicited EM CD8 T cells, the HIV field has recently shifted toward vaccine concepts that combine protection from acquisition with effective control of SIV replication. Current studies in the NHP model have demonstrated the efficacy of HIV-neutralizing antibodies via passive transfer, the potential importance of the CD4 Tfh subset, the ability to effectively model the RV144 vaccine trial and the capacity of an Ad26 prime and modified vaccinia Ankara virus boost to elicit Env-specific antibody and cellular responses that both limit acquisition and control heterologous SIVmac251 challenge. The latest work in the NHP model suggests that the next generation HIV-1 vaccines should aim to provoke a comprehensive adaptive immune response for both prevention of SIV acquisition as well as control of replication in breakthrough infection.
Carollo, Maria; Pandolfi, Elisabetta; Tozzi, Alberto Eugenio; Buisman, Anne-Marie; Mascart, Françoise; Ausiello, Clara Maria
2014-04-11
The resurgence of pertussis suggests the need for greater efforts in understanding the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of humoral and B-cell memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac(®) vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa(®) (Infanrix) (GlaxoSmithKline Biologicals). We evaluated the specific immune responses in the two groups of children, 5 years after primary vaccination by measuring the persistence of IgG and antibody secreting cells (ASC) specific for vaccine antigens. Part of the enrolled children received only primary vaccination, while others had the pre-school boost dose. A similar level of antigen-specific IgG and ASC was found in Infanrix and Hexavac vaccinated children. The mean IgG levels were significantly higher in children that received the pre-school boost as compared with children that did not receive the boost dose. A longer persistence after the pre-school boost of IgG-Pertussis Toxin (PT) and IgG-pertactin levels was observed in Infanrix primed children, but it was not statistically significant. More than 80% of children presented a positive ASC B memory response. Around 50% of children still presented protective IgG-PT levels which are reduced to 36% in no-boosted children. The pre-school booster dose restores the percentage of protected children above 50%. In conclusion our data underline the importance of giving a booster dose 5 years after primary vaccination and suggest the need for a new vaccine able to induce a long lasting protective response. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stark, Felicity C.; McCluskie, Michael J.; Krishnan, Lakshmi
2016-01-01
Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection. PMID:27869670
Jia, Qingmei; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A
2017-06-19
A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis (Mtb) 30 kDa major secretory protein (r30/Ag85B) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated Lm vectors, rLm Δ actA (LmI), rLm Δ actA Δ inlB (LmII), and rLm Δ actA Δ inlB prfA * (LmIII), we constructed five rLm30 vaccine candidates expressing the r30 linked in-frame to the Lm Listeriolycin O signal sequence and driven by the hly promoter (h30) or linked in-frame to the ActA N-terminus and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm expressing r30 via a constitutively active prfA * regulon (rLmIII/a30) expressed the greatest amount of r30 in broth culture, all five rLm vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T-cells expressing the three cytokines of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) ( P < 0.001) and splenic and lung CD8+ T-cells expressing IFN-γ ( P < 0.0001). In mice and guinea pigs, rLmIII/a30 and rLmI/h30 vaccines were generally more potent booster vaccines than r30 in adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized Mtb ( P <0.01). Copyright © 2017 American Society for Microbiology.
Pegu, Poonam; Helmus, Ruth; Gupta, Phalguni; Tarwater, Patrick; Caruso, Lori; Shen, Chengli; Ross, Ted; Chen, Yue
2011-12-01
The lower gastrointestinal tract is a major mucosal site of HIV entry and initial infection. Thus, the induction of strong cellular immune responses at this mucosal site will be an important feature of an effective HIV vaccine. We have used a novel prime-boost vaccination approach to induce immune responses at mucosal sites. Orally delivered recombinant Clostridium perfringens expressing HIV-1 gag (Cp-Gag) was evaluated for induction of HIV-1 Gag specific T cell responses in a prime-boost model with intranasal inoculation of HIV-1 virus like particles (VLP). HIV-1 specific cellular immune responses in both the effector (Lamina propria) and inductive sites (Peyer's patches) of the gastrointestinal (GI) tract were significantly higher in mice immunized using Cp-Gag and VLPs in a prime-boost approach compared to mice immunized with either Cp-Gag or VLPs alone. Such cellular immune response was found to be mediated by both CD8(+) and CD4(+) T cells. Such a strong mucosal immune response could be very useful in developing a mucosal vaccine against HIV-1.
Bhuju, Sabin; Aranday-Cortes, Elihu; Villarreal-Ramos, Bernardo; Xing, Zhou; Singh, Mahavir; Vordermeier, H Martin
2012-12-01
Bovine tuberculosis (bTB) is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.
Lee, D-H; Kwon, J-S; Lee, H-J; Lee, Y-N; Hur, W; Hong, Y-H; Lee, J-B; Park, S-Y; Choi, I-S; Song, C-S
2011-05-01
The frequent economic losses incurred with H9N2 low pathogenic avian influenza viruses (LPAI) infection have raised serious concerns for the poultry industry. A 1-dose regimen with inactivated H9N2 LPAI vaccine could not prevent vaccinated poultry from becoming infected and from shedding wild viruses. A study was conducted to determine whether a 2-dose regimen of inactivated H9N2 LPAI vaccine could enhance the immunologic response in chickens. Such gel-primed and mineral oil-boosted regimen has produced encouraging results associated with improved immune responses to an H9N2 LPAI. This strategy could be cost effective and helpful for preventing avian influenza virus in the poultry industry.
Gillard, Paul; Caplanusi, Adrian; Knuf, Markus; Roman, François; Walravens, Karl; Moris, Philippe; Dramé, Mamadou; Schwarz, Tino F.
2012-01-01
Please cite this paper as: Gillard et al. (2012) An assessment of prime‐boost vaccination schedules with AS03A‐adjuvanted prepandemic H5N1 vaccines: a randomized study in European adults. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00349.x. Background Long‐term persistence of immune response and safety of an H5N1 prepandemic influenza vaccine adjuvanted with AS03 (an α‐tocopherol oil‐in‐water emulsion‐based adjuvant system) was evaluated using various prime‐boost schedules that mimicked potential pandemic scenarios (NCT00430521). Methods Five hundred and twelve healthy adults aged 18–60 years received primary vaccination with one or two doses (0, 21 days schedule) of the A/Vietnam/1194/2004 H5N1 vaccine followed by a booster dose (A/Vietnam/1194/2004 or A/Indonesia/05/2005 strain) six or twelve months later across eight randomized groups. Immunogenicity results by hemagglutination inhibition [HI] assay, microneutralization assay, and the cell‐mediated immune response (CMI) are reported here for the four groups boosted at Month 12. Results A one‐dose‐adjuvanted primary administration followed 12 months later by a single‐adjuvanted booster dose containing a heterologous vaccine strain met or exceeded all US and European criteria for both strains. Increasing the interval between the first and second dose (from 21 days to 12 months) resulted in stronger cross‐reactive immune responses against the A/Indonesia/05/2005 strain. The HI antibody response against the two strains persisted for 6 months after the booster dose irrespective of the booster vaccine’s strain. The neutralizing antibody responses and the CMI observed in the study population paralleled the HI immune response. Overall, the vaccine had a clinically acceptable safety profile. Conclusion The H5N1 vaccine in this study allowed for flexibility in the time interval between primary and booster vaccination and the use of a heterologous strain without impacting the strength of the humoral and cellular immune response to both vaccine strains. PMID:22405557
Lahey, Timothy; Laddy, Dominick; Hill, Krystal; Schaeffer, Jacqueline; Hogg, Alison; Keeble, James; Dagg, Belinda; Ho, Mei Mei; Arbeit, Robert D.; von Reyn, C. Fordham
2016-01-01
Background The development of a novel tuberculosis vaccine is a leading global health priority. SRL172, an inactivated, whole-cell mycobacterial vaccine, was safe, immunogenic and reduced the incidence of culture-confirmed tuberculosis in a phase III trial in HIV-infected and BCG immunized adults in Tanzania. Here we describe the immunogenicity and protective efficacy of DAR-901, a booster vaccine against tuberculosis manufactured from the same seed strain using a new scalable method. Methods We evaluated IFN-γ responses by ELISpot and antibody responses by enzyme linked immunosorbent assay in C57BL/6 and BALB/c mice after three doses of DAR-901. In an aerosol challenge model, we evaluated the protective efficacy of the DAR-901 booster in C57BL/6 mice primed with BCG and boosted with two doses of DAR-901 at 4 dosage levels in comparison with homologous BCG boost. Results DAR-901 vaccination elicited IFN-γ responses to mycobacterial antigen preparations derived from both DAR-901 and Mycobacterium tuberculosis. DAR-901 immunization enhanced antibody responses to DAR-901 but not Mycobacterium tuberculosis lysate or purified protein derivative. Among animals primed with BCG, boosting with DAR-901 at 1 mg provided greater protection against aerosol challenge than a homologous BCG boost (lungs P = 0.036, spleen P = 0.028). Conclusions DAR-901 induces cellular and humoral immunity and boosts protection from M. tuberculosis compared to a homologous BCG boost. PMID:27997597
Xiao, Yuhong; Aldaz-Carroll, Lydia; Ortiz, Alexandra M.; Whitbeck, J. Charles; Alexander, Edward; Lou, Huan; Davis, J. Heather L.; Braciale, Thomas J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Isaacs, Stuart N.
2007-01-01
The heightened concern about the intentional release of variola virus has led to the need to develop safer smallpox vaccines. While subunit vaccine strategies are safer than live virus vaccines, subunit vaccines have been hampered by the need for multiple boosts to confer optimal protection. Here we developed a protein-based subunit vaccine strategy that provides rapid protection in mouse models of orthopoxvirus infections after a prime and single boost. Mice vaccinated with vaccinia virus envelope proteins from the mature virus (MV) and extracellular virus (EV) adjuvanted with CpG-ODN and alum were protected from lethal intranasal challenge with vaccinia virus and the mouse-specific ectromelia virus. Organs from mice vaccinated with three proteins (A33, B5 and L1) and then sacrificed after challenge contained significantly lower titers of virus when compared to control groups of mice that were not vaccinated or that received sub-optimal formulations of the vaccine. Sera from groups of mice obtained prior to challenge had neutralizing activity against the MV and also inhibited comet formation indicating anti-EV activity. Long-term partial protection was also seen in mice challenged with vaccinia virus 6 months after initial vaccinations. Thus, this work represents a step toward the development of a practical subunit smallpox vaccine. PMID:17098336
Mazumder, Saumyabrata; Maji, Mithun; Ali, Nahid
2011-01-01
Background Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice. Methodology/Principal Findings Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo. Conclusion Our results define the immunopotentiating effect of MPL-TDM on protein Ag encapsulated in a controlled release system against experimental VL. PMID:22206029
Kapczynski, Darrell R; Pantin-Jackwood, Mary J; Spackman, Erica; Chrzastek, Klaudia; Suarez, David L; Swayne, David E
2017-11-01
From December 2014 to June 2015, a novel H5 Eurasian A/goose/Guangdong (Gs/GD) lineage clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in US history resulting in mortality or culling of greater than 48 million poultry. The outbreak renewed interest in developing intervention strategies, including vaccines, for these newly emergent HPAI viruses. In these studies, several existing H5 vaccines or vaccine seed strains with varying genetic relatedness (85-100%) to the 2.3.4.4 HPAI viruses were evaluated for protection in poultry. Chickens received a single dose of either an inactivated whole H5 AI vaccine, or a recombinant fowl poxvirus or turkey herpesvirus-vectored vaccines with H5 AI hemagglutinin gene inserts followed by challenge with either a U.S. wild bird H5N8 (A/gyrfalcon/Washington/40188-6/2014) or H5N2 (A/northern pintail/Washington/40964/2014) clade 2.3.4.4 isolate. Results indicate that most inactivated H5 vaccines provided 100% protection from lethal effects of H5N8 or H5N2 challenge. In contrast, the recombinant live vectored vaccines only provided partial protection which ranged from 40 to 70%. Inactivated vaccine groups, in general, had lower number of birds shedding virus and at lower virus titers then the recombinant vaccine groups. Interestingly, prechallenge antibody titers using the HPAI challenge viruses as antigen in heterologous vaccine groups were typically low (≤2 log 2 ), yet the majority of these birds survived challenge. Taken together, these studies suggest that existing vaccines when used in a single immunization strategy may not provide adequate protection in poultry against the 2.3.4.4 HPAI viruses. Updating the H5 hemagglutinin to be genetically closer to the outbreak virus and/or using a prime-boost strategy may be necessary for optimal protection. Published by Elsevier Ltd.
Stickings, Paul; Peyre, Marisa; Coombes, Laura; Muller, Sylviane; Rappuoli, Rino; Del Giudice, Giuseppe; Partidos, Charalambos D; Sesardic, Dorothea
2008-04-01
Transcutaneous immunization (TCI) capitalizes on the accessibility and immunocompetence of the skin, elicits protective immunity, simplifies vaccine delivery, and may be particularly advantageous when frequent boosting is required. In this study we examined the potential of TCI to boost preexisting immune responses to diphtheria in mice. The cross-reacting material (CRM(197)) of diphtheria toxin was used as the boosting antigen and was administered alone or together with either one of two commonly used mucosal adjuvants, cholera toxin (CT) and a partially detoxified mutant of heat-labile enterotoxin of Escherichia coli (LTR72). We report that TCI with CRM(197) significantly boosted preexisting immune responses elicited after parenteral priming with aluminum hydroxide-adsorbed diphtheria toxoid (DTxd) vaccine. In the presence of LTR72 as an adjuvant, toxin-neutralizing antibody titers were significantly higher than those elicited by CRM(197) alone and were comparable to the functional antibody levels induced after parenteral booster immunization with the adsorbed DTxd vaccine. Time course study showed that high levels of toxin-neutralizing antibodies persisted for at least 14 weeks after the transcutaneous boost. In addition, TCI resulted in a vigorous antigen-specific proliferative response in all groups of mice boosted with the CRM(197) protein. These findings highlight the promising prospect of using booster administrations of CRM(197) via the transcutaneous route to establish good herd immunity against diphtheria.
Lakhashe, Samir K; Byrareddy, Siddappa N; Zhou, Mingkui; Bachler, Barbara C; Hemashettar, Girish; Hu, Shiu-Lok; Villinger, Francois; Else, James G; Stock, Shannon; Lee, Sandra J; Vargas-Inchaustegui, Diego A; Cofano, Egidio Brocca; Robert-Guroff, Marjorie; Johnson, Welkin E; Polonis, Victoria R; Forthal, Donald N; Loret, Erwann P; Rasmussen, Robert A; Ruprecht, Ruth M
2014-11-12
We sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. This SHIV strain exhibits many properties of transmitted HIV-1, such as tier 2 phenotype (relatively difficult to neutralize), exclusive CCR5 tropism, and gradual disease progression in infected RMs. Since no human AIDS vaccine recipient is likely to encounter an HIV-1 strain that exactly matches the immunogens, we immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low-level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter
2015-01-01
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002
Liu, Xue-lan; Shan, Wen-jie; Xu, Shan-shan; Zhang, Jin-jing; Xu, Fa-zhi; Xia, Sheng-lin; Dai, Yin
2015-09-01
The heterologous epitope-peptide from different viruses may represent an attractive candidate vaccine. In order to evaluate the role of cell-permeable peptide (PEP-1) and Ii-Key moiety from the invariant chain (Ii) of MHC on the heterologous peptide chimeras, we linked the two vehicles to hybrid epitopes on the VP2 protein (aa197-209) of the infectious bursal disease virus and HN protein (aa345-353) of the Newcastle disease virus. The chimeric vaccines were prepared and injected into mice. The immune effects were measured by indirect ELISA. The results showed that the vehicle(s) could significantly boost immune effects against the heterologous epitope peptide. The Ii-Key-only carrier induced more effective immunological responses, compared with the PEP-1 and Ii-Key hybrid vehicle. The carrier-peptide hybrids all showed strong colocalization with major histocompatibility complex (MHC) class II molecules compared with the epitope-peptide (weakly-binding) after co-transfection into 293T cells. Together, our results lay the groundwork for designing new hybrid vaccines based on Ii-Key and/or PEP-1 peptides. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Ahmad, Gul; Zhang, Weidong; Torben, Workineh; Haskins, Chad; Diggs, Sue; Noor, Zahid; Le, Loc
2009-01-01
Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis. PMID:19809833
Munseri, Patricia J; Kroidl, Arne; Nilsson, Charlotta; Joachim, Agricola; Geldmacher, Christof; Mann, Philipp; Moshiro, Candida; Aboud, Said; Lyamuya, Eligius; Maboko, Leonard; Missanga, Marco; Kaluwa, Bahati; Mfinanga, Sayoki; Podola, Lilly; Bauer, Asli; Godoy-Ramirez, Karina; Marovich, Mary; Moss, Bernard; Hoelscher, Michael; Gotch, Frances; Stöhr, Wolfgang; Stout, Richard; McCormack, Sheena; Wahren, Britta; Mhalu, Fred; Robb, Merlin L; Biberfeld, Gunnel; Sandström, Eric; Bakari, Muhammad
2015-01-01
Intradermal priming with HIV-1 DNA plasmids followed by HIV-1MVA boosting induces strong and broad cellular and humoral immune responses. In our previous HIVIS-03 trial, we used 5 injections with 2 pools of HIV-DNA at separate sites for each priming immunization. The present study explores whether HIV-DNA priming can be simplified by reducing the number of DNA injections and administration of combined versus separated plasmid pools. In this phase IIa, randomized trial, priming was performed using 5 injections of HIV-DNA, 1000 μg total dose, (3 Env and 2 Gag encoding plasmids) compared to two "simplified" regimens of 2 injections of HIV-DNA, 600 μg total dose, of Env- and Gag-encoding plasmid pools with each pool either administered separately or combined. HIV-DNA immunizations were given intradermally at weeks 0, 4, and 12. Boosting was performed intramuscularly with 108 pfu HIV-MVA at weeks 30 and 46. 129 healthy Tanzanian participants were enrolled. There were no differences in adverse events between the groups. The proportion of IFN-γ ELISpot responders to Gag and/or Env peptides after the second HIV-MVA boost did not differ significantly between the groups primed with 2 injections of combined HIV-DNA pools, 2 injections with separated pools, and 5 injections with separated pools (90%, 97% and 97%). There were no significant differences in the magnitude of Gag and/or Env IFN-γ ELISpot responses, in CD4+ and CD8+ T cell responses measured as IFN-γ/IL-2 production by intracellular cytokine staining (ICS) or in response rates and median titers for binding antibodies to Env gp160 between study groups. A simplified intradermal vaccination regimen with 2 injections of a total of 600 μg with combined HIV-DNA plasmids primed cellular responses as efficiently as the standard regimen of 5 injections of a total of 1000 μg with separated plasmid pools after boosting twice with HIV-MVA. World Health Organization International Clinical Trials Registry Platform PACTR2010050002122368.
Jackson, Ronald J; Worley, Matthew; Trivedi, Shubhanshi; Ranasinghe, Charani
2014-09-29
We have established that the efficacy of a heterologous poxvirus vectored HIV vaccine, fowlpox virus (FPV)-HIV gag/pol prime followed by attenuated vaccinia virus (VV)-HIV gag/pol booster immunisation, is strongly influenced by the cytokine milieu at the priming vaccination site, with endogenous IL-13 detrimental to the quality of the HIV specific CD8+ T cell response induced. We have now developed a novel HIV vaccine that co-expresses a C-terminal deletion mutant of the mouse IL-4, deleted for the essential tyrosine (Y119) required for signalling. In our vaccine system, the mutant IL-4C118 can bind to IL-4 type I and II receptors with high affinity, and transiently prevent the signalling of both IL-4 and IL-13 at the vaccination site. When this IL-4C118 adjuvanted vaccine was used in an intranasal rFPV/intramuscular rVV prime-boost immunisation strategy, greatly enhanced mucosal/systemic HIV specific CD8+ T cells with higher functional avidity, expressing IFN-γ, TNF-α and IL-2 and greater protective efficacy were detected. Surprisingly, the IL-4C118 adjuvanted vaccines also induced robust long-lived HIV gag-specific serum antibody responses, specifically IgG1 and IgG2a. The p55-gag IgG2a responses induced were of a higher magnitude relative to the IL-13Rα2 adjuvant vaccine. More interestingly, our recently tested IL-13Rα2 adjuvanted vaccine which only inhibited IL-13 activity, even though induced excellent high avidity HIV-specific CD8+ T cells, had a detrimental impact on the induction of gag-specific IgG2a antibody immunity. Our observations suggest that (i) IL-4 cell-signalling in the absence of IL-13 retarded gag-specific antibody isotype class switching, or (ii) IL-13Rα2 signalling was involved in inducing good gag-specific B cell immunity. Thus, we believe our novel IL-4R antagonist adjuvant strategy offers great promise not only for HIV-1 vaccines, but also against a range of chronic infections where sustained high quality mucosal and systemic T and B cell immunity are required for protection. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir
2012-01-01
Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p < 0.005), following intravaginal HSV-2 challenge. Polyfunctional CD8+ T cells, producing IFN-γ, TNF-α and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8+ T cell response was significantly compromised in the absence of the adaptor myeloid differentiation factor 88 (MyD88) (p = 0.0001). Taken together, these findings indicate that targeting the VM with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8+ T cell protective immunity against sexually transmitted herpes infection and disease. PMID:23018456
Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.
2013-01-01
Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. Trial Registration ClinicalTrials.govNCT00870987. PMID:23457473
A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen
Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano
2015-01-01
In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses. PMID:26208356
Jia, Qingmei; Horwitz, Marcus A.
2018-01-01
Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed “Foshay” vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals—especially mice—but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated—but not killed or subunit—vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development—safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt, capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins. PMID:29868510
Khattar, Sunil K; DeVico, Anthony L; LaBranche, Celia C; Panda, Aruna; Montefiori, David C; Samal, Siba K
2016-02-01
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John
2007-11-28
Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly immunogenic without adverse effect in mice and both attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection and conferred protection against subsequent challenge. Further studies of the present vaccine in naturally infected animals and humans are indicated.
Selinger, Christian; Strbo, Natasa; Gonzalez, Louis; Aicher, Lauri; Weiss, Jeffrey M.; Law, G. Lynn; Palermo, Robert E.; Vaccari, Monica; Franchini, Genoveffa; Podack, Eckhard R.
2014-01-01
Using whole-blood transcriptional profiling, we investigated differences in the host response to vaccination and challenge in a rhesus macaque AIDS vaccine trial. Samples were collected from animals prior to and after vaccination with live, irradiated vaccine cells secreting the modified endoplasmic reticulum chaperone gp96-Ig loaded with simian immunodeficiency virus (SIV) peptides, either alone or in combination with a SIV-gp120 protein boost. Additional samples were collected following multiple low-dose rectal challenges with SIVmac251. Animals in the boosted group had a 73% reduced risk of infection. Surprisingly, few changes in gene expression were observed during the vaccination phase. Focusing on postchallenge comparisons, in particular for protected animals, we identified a host response signature of protection comprised of strong interferon signaling after the first challenge, which then largely abated after further challenges. We also identified a host response signature, comprised of early macrophage-mediated inflammatory responses, in animals with undetectable viral loads 5 days after the first challenge but with unusually high viral titers after subsequent challenges. Statistical analysis showed that prime-boost vaccination significantly lowered the probability of infection in a time-consistent manner throughout several challenges. Given that humoral responses in the prime-boost group were highly significant prechallenge correlates of protection, the strong innate signaling after the first challenge suggests that interferon signaling may enhance vaccine-induced antibody responses and is an important contributor to protection from infection during repeated low-dose exposure to SIV. PMID:25274805
Stark, Felicity C; McCluskie, Michael J; Krishnan, Lakshmi
2016-11-17
Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8⁺ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8⁺ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8⁺ T cell response of up to 45% of all circulating CD8⁺ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8⁺ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8⁺ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62 low ) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8⁺ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.
Wysocki, Jacek; Brzostek, Jerzy; Konior, Ryszard; Panzer, Falko G.; François, Nancy A.; Ravula, Sudheer M.; Kolhe, Devayani A.; Song, Yue; Dieussaert, Ilse; Schuerman, Lode; Borys, Dorota
2017-01-01
ABSTRACT To investigate long-term antibody persistence following the administration of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV), we present results of 2 follow-up studies assessing antibody persistence following 2 3+1 schedules up to 4 (NCT00624819 – Study A) and 5 years (NCT00891176 – Study B) post-booster vaccination. In Study A, antibody persistence was measured one, 2 and 4 years post-booster in children previously primed and boosted with PHiD-CV, or primed with the 7-valent pneumococcal conjugate vaccine (7vCRM) and boosted with either PHiD-CV or 7vCRM. In Study B, PHiD-CV was co-administered with meningococcal vaccines, and pneumococcal antibody persistence was measured 2, 3 and 5 years post-booster. An age-matched control group, unvaccinated against Streptococcus pneumoniae, was enrolled in Study A, allowing assessment of immunologic memory by administration of one dose of PHiD-CV to both primed (4 years post-booster) and unprimed 6-year-old children. Four years post-booster (Study A), antibody concentrations and opsonophagocytic activity (OPA) titers remained higher compared to the pre-booster timepoint, with no major differences between the 3 primed groups. Antibody persistence was also observed in Study B, with minimal differences between groups. The additional PHiD-CV dose administered 4 years post-booster in Study A elicited more robust immune responses in primed children than in unprimed children. Long-term serotype-specific antibody persistence and robust immunologic memory responses observed in these 2 studies suggest induction of long-term protection against pneumococcal disease after PHiD-CV vaccination. PMID:27736293
Wysocki, Jacek; Brzostek, Jerzy; Konior, Ryszard; Panzer, Falko G; François, Nancy A; Ravula, Sudheer M; Kolhe, Devayani A; Song, Yue; Dieussaert, Ilse; Schuerman, Lode; Borys, Dorota
2017-03-04
To investigate long-term antibody persistence following the administration of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV), we present results of 2 follow-up studies assessing antibody persistence following 2 3+1 schedules up to 4 (NCT00624819 - Study A) and 5 years (NCT00891176 - Study B) post-booster vaccination. In Study A, antibody persistence was measured one, 2 and 4 years post-booster in children previously primed and boosted with PHiD-CV, or primed with the 7-valent pneumococcal conjugate vaccine (7vCRM) and boosted with either PHiD-CV or 7vCRM. In Study B, PHiD-CV was co-administered with meningococcal vaccines, and pneumococcal antibody persistence was measured 2, 3 and 5 years post-booster. An age-matched control group, unvaccinated against Streptococcus pneumoniae, was enrolled in Study A, allowing assessment of immunologic memory by administration of one dose of PHiD-CV to both primed (4 years post-booster) and unprimed 6-year-old children. Four years post-booster (Study A), antibody concentrations and opsonophagocytic activity (OPA) titers remained higher compared to the pre-booster timepoint, with no major differences between the 3 primed groups. Antibody persistence was also observed in Study B, with minimal differences between groups. The additional PHiD-CV dose administered 4 years post-booster in Study A elicited more robust immune responses in primed children than in unprimed children. Long-term serotype-specific antibody persistence and robust immunologic memory responses observed in these 2 studies suggest induction of long-term protection against pneumococcal disease after PHiD-CV vaccination.
Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan
2011-01-01
We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216
Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F
2018-04-15
A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.
Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan
2006-02-01
Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.
Baker, Steven F.; Martínez-Sobrido, Luis
2014-01-01
ABSTRACT The effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, new approaches for influenza vaccines that can trigger effective CD8 T cell responses have not been extensively explored. We report here the generation of single-cycle infectious influenza virus that lacks a functional hemagglutinin (HA) gene on an X31 genetic background and demonstrate its potential for triggering protective CD8 T cell immunity against heterologous influenza virus challenge. In vitro, X31-sciIV can infect MDCK cells, but infectious virions are not produced unless HA is transcomplemented. In vivo, intranasal immunization with X31-sciIV does not cause any clinical symptoms in mice but generates influenza-specific CD8 T cells in lymphoid (mediastinal lymph nodes and spleen) and nonlymphoid tissues, including lung and bronchoalveolar lavage fluid, as measured by H2-Db NP366 and PA224 tetramer staining. In addition, a significant proportion of X31-sciIV-induced antigen-specific respiratory CD8 T cells expressed VLA-1, a marker that is associated with heterologous influenza protection. Further, these influenza-specific CD8 T cells produce antiviral cytokines when stimulated with NP366 and PA224 peptides, indicating that CD8 T cells triggered by X31-sciIV are functional. When challenged with a lethal dose of heterologous PR8 virus, X31-sciIV-primed mice were fully protected from death. However, when CD8 T cells were depleted after priming or before priming, mice could not effectively control virus replication or survive the lethal challenge, indicating that X31-sciIV-induced memory CD8 T cells mediate the heterologous protection. Thus, our results demonstrate the potential for sciIV as a CD8 T cell-inducing vaccine. IMPORTANCE One of the challenges for influenza prevention is the existence of multiple influenza virus subtypes and variants and the fact that new strains can emerge yearly. Numerous studies have indicated that the effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, influenza vaccines that can trigger effective CD8 T cell responses for heterologous protection have not been developed. We report here the generation of an X31 (H3N2) virus-derived single-cycle infectious influenza virus, X31-sciIV. A one-dose immunization with X31-sciIV is capable of inducing functional influenza virus-specific CD8 T cells that can be recruited into respiratory tissues and provide protection against lethal heterologous challenge. Without these cells, protection against lethal challenge was essentially lost. Our data indicate that an influenza vaccine that primarily relies on CD8 T cells for protection could be developed. PMID:25100831
Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.
2007-01-01
Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect. PMID:17957247
Ford, Tom; Wenden, Claire; Mbekeani, Alison; Dally, Len; Cox, Josephine H; Morin, Merribeth; Winstone, Nicola; Hill, Adrian V S; Gilmour, Jill; Ewer, Katie J
2017-04-04
Ex vivo functional immunoassays such as ELISpot and intracellular cytokine staining (ICS) by flow cytometry are crucial tools in vaccine development both in the identification of novel immunogenic targets and in the immunological assessment of samples from clinical trials. Cryopreservation and subsequent thawing of PBMCs via validated processes has become a mainstay of clinical trials due to processing restrictions inherent in the disparate location and capacity of trial centres, and also in the need to standardize biological assays at central testing facilities. Logistical and financial requirement to batch process samples from multiple study timepoints are also key. We used ELISpot and ICS assays to assess antigen-specific immunogenicity in blood samples taken from subjects enrolled in a phase II malaria heterologous prime-boost vaccine trial and showed that the freeze thaw process can result in a 3-5-fold reduction of malaria antigen-specific IFNγ-producing CD3 + CD4 + effector populations from PBMC samples taken post vaccination. We have also demonstrated that peptide responsive CD8 + T cells are relatively unaffected, as well as CD4 + T cell populations that do not produce IFNγ. These findings contribute to a growing body of data that could be consolidated and synthesised as guidelines for clinical trials with the aim of increasing the efficiency of vaccine development pipelines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Saljoughian, Noushin; Taheri, Tahereh; Zahedifard, Farnaz; Taslimi, Yasaman; Doustdari, Fatemeh; Bolhassani, Azam; Doroud, Delaram; Azizi, Hiva; Heidari, Kazem; Vasei, Mohammad; Namvar Asl, Nabiollah; Papadopoulou, Barbara; Rafati, Sima
2013-01-01
Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL. PMID:23638195
Winstone, Nicola; Wilson, Aaron J.; Morrow, Gavin; Boggiano, Cesar; Chiuchiolo, Maria J.; Lopez, Mary; Kemelman, Marina; Ginsberg, Arielle A.; Mullen, Karl; Coleman, John W.; Wu, Chih-Da; Narpala, Sandeep; Ouellette, Ian; Dean, Hansi J.; Lin, Feng; Sardesai, Niranjan Y.; Cassamasa, Holly; McBride, Dawn; Felber, Barbara K.; Pavlakis, George N.; Schultz, Alan; Hudgens, Michael G.; King, C. Richter; Zamb, Timothy J.; Parks, Christopher L.; McDermott, Adrian B.
2011-01-01
DNA priming has previously been shown to elicit augmented immune responses when administered by electroporation (EP) or codelivered with a plasmid encoding interleukin-12 (pIL-12). We hypothesized that the efficacy of a DNA prime and recombinant adenovirus 5 boost vaccination regimen (DNA/rAd5) would be improved when incorporating these vaccination strategies into the DNA priming phase, as determined by pathogenic simian immunodeficiency virus SIVmac239 challenge outcome. The whole SIVmac239 proteome was delivered in 5 separate DNA plasmids (pDNA-SIV) by EP with or without pIL-12, followed by boosting 4 months later with corresponding rAd5-SIV vaccine vectors. Remarkably, after repeated low-dose SIVmac239 mucosal challenge, we demonstrate 2.6 and 4.4 log reductions of the median SIV peak and set point viral loads in rhesus macaques (RMs) that received pDNA-SIV by EP with pIL-12 compared to the median peak and set point viral loads in mock-immunized controls (P < 0.01). In 5 out of 6 infected RMs, strong suppression of viremia was observed, with intermittent “blips” in virus replication. In 2 RMs, we could not detect the presence of SIV RNA in tissue and lymph nodes, even after 13 viral challenges. RMs immunized without pIL-12 demonstrated a typical maximum of 1.5 log reduction in virus load. There was no significant difference in the overall magnitude of SIV-specific antibodies or CD8 T-cell responses between groups; however, pDNA delivery by EP with pIL-12 induced a greater magnitude of SIV-specific CD4 T cells that produced multiple cytokines. This vaccine strategy is relevant for existing vaccine candidates entering clinical evaluation, and this model may provide insights into control of retrovirus replication. PMID:21734035
Hulot, Sandrine L.; Korber, Bette; Giorgi, Elena E.; Vandergrift, Nathan; Saunders, Kevin O.; Balachandran, Harikrishnan; Mach, Linh V.; Lifton, Michelle A.; Pantaleo, Giuseppe; Tartaglia, Jim; Phogat, Sanjay; Jacobs, Bertram; Kibler, Karen; Perdiguero, Beatriz; Gomez, Carmen E.; Esteban, Mariano; Rosati, Margherita; Felber, Barbara K.; Pavlakis, George N.; Parks, Robert; Lloyd, Krissey; Sutherland, Laura; Scearce, Richard; Letvin, Norman L.; Seaman, Michael S.; Alam, S. Munir; Montefiori, David; Liao, Hua-Xin; Haynes, Barton F.
2015-01-01
ABSTRACT An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4+ and CD8+ T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses. PMID:25855741
Bartelt, Luther A.; Bolick, David T.; Kolling, Glynis L.; Zaenker, Edna I.; Lara, Ana M.; Noronha, Francisco Jose; Cowardin, Carrie A.; Moore, John H.; Turner, Jerrold R.; Warren, Cirle A.; Buck, Gregory A.; Guerrant, Richard L.
2016-01-01
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. PMID:27467505
IL-17 Contributes to Cell-Mediated Defense against Pulmonary Yersinia pestis Infection1
Lin, Jr-Shiuan; Kummer, Lawrence W.; Szaba, Frank M.; Smiley, Stephen T.
2010-01-01
Pneumonic plague is one of the world’s most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. Here we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance, but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17-producing CD4 T cells. Interestingly, the vast majority of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNFα, and many produce IL-17, TNFα and IFNγ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses. PMID:21172869
Barnett, Susan W; Burke, Brian; Sun, Yide; Kan, Elaine; Legg, Harold; Lian, Ying; Bost, Kristen; Zhou, Fengmin; Goodsell, Amanda; Zur Megede, Jan; Polo, John; Donnelly, John; Ulmer, Jeffrey; Otten, Gillis R; Miller, Christopher J; Vajdy, Michael; Srivastava, Indresh K
2010-06-01
We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.
Lambracht-Washington, Doris; Qu, Bao-xi; Fu, Min; Anderson, Larry D; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N
2013-01-15
Immunotherapy has the potential to provide a possible treatment therapy to prevent or delay Alzheimer disease. In a clinical trial (AN1792) in which patients received this immunotherapy and received active Aβ1-42 peptide immunizations, treatment was stopped when 6% of patients showed signs of meningoencephalitis. Follow up on these patients led to the conclusion that the antibody response was beneficial in removing Aβ1-42 from brain but an accompanying inflammatory Th1 T cell response was harmful. As a safe alternative treatment targeting the same self protein, Aβ1-42, in brain, we and others are working on a DNA Aβ1-42 immunization protocol as the immune response to DNA immunizations differs in many aspects from immunizations with peptide antigens. Because the immune response to DNA vaccination has different kinetics and has a significantly lower antibody production, we evaluated two different prime boost regimens, Aβ1-42 DNA prime/Aβ1-42 peptide boost and Aβ1-42 peptide prime/Aβ1-42 DNA boost for their effectiveness in antibody production and possible side effects due to inflammatory T cell responses. While both boost regimes significantly enhanced the specific antibody production with comparable antibody concentrations, the absence of the Aβ1-42 T cell response (no proliferation and no cytokine production) is consistent with our previous findings using this DNA Aβ1-42 trimer immunization and greatly enhances the safety aspect for possible clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J
2017-02-28
A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma.
Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.
2017-01-01
A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma. PMID:28178658
Improved Anti-Treg Vaccination Targeting Foxp3 Efficiently Decreases Regulatory T Cells in Mice.
Mousavi Niri, Neda; Memarnejadian, Arash; Pilehvar-Soltanahmadi, Younes; Agha Sadeghi, Mohammadreza; Mahdavi, Mehdi; Kheshtchin, Nasim; Arab, Samaneh; Namdar, Afshin; Jadidi, Farhad; Zarghami, Nosratollah; Hajati, Jamshid
2016-09-01
The critical role of regulatory T (Treg) cells in dampening immune responses against tumor cells is apparent. Therefore, several methods have been introduced for eliminating Treg. Among them, inducing immune responses against Treg cells expressing Foxp3 transcription factor is a hopeful approach to decrease the frequency of Tregs. In current study, we used the chimeric FoxP3-Fc(IgG) fusion construct/protein to effectively stimulate the immune responses against Treg cells. Previously constructed FoxP3-Fc(IgG) DNA vaccine and its protein counterpart were injected into C57BL/6 mice in a prime/boost regimen. After 2 weeks, the mice were killed to measure the frequency of Tregs in their spleens, as well as analyze their specific cytokine production, T-cell proliferation, and CD8 T-cell cytotoxicity against FoxP3 protein. FACS analysis of FoxP3 CD4 cells in splenocytes revealed the efficiency of FoxP3 DNA-prime protein-boost strategy to decrease the Treg cells and further showed considerable superiority of Fc(IgG) fusion strategy. This significant reduction in Treg frequency was also concomitant with higher FoxP3-specific CTL and Th1 responses in FoxP3-Fc vaccinated animals. Prime/boost vaccination against FoxP3 in addition to enhanced antigen presentation by means of Fc fusion strategy could be successfully considered for Treg depletion studies. Validity of this approach should be experimentally tested in preclinical tumor models.
Boosting of HIV-1 Neutralizing Antibody Responses by a Distally Related Retroviral Envelope Protein
Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E.; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena
2014-01-01
Our knowledge of the binding sites for neutralizing antibodies (NAbs) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B-cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). Here we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and SIV Envs. Heterologous NAb titres, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of antibody binding reactivity revealed preferential recognition of the C1, C2, V2, V3 and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. PMID:24829409
Romano, Marta; Huygen, Kris
2012-12-01
Apart from better diagnostics and new anti-microbial drugs, an effective vaccine for tuberculosis is urgently needed to halt this poverty-related disease, afflicting millions of people worldwide. After a general introduction on the global threat of tuberculosis, the pros and cons of the existing M. bovis BCG vaccine are discussed. As the correlates of protection against tuberculosis remain largely unknown, new findings in biomarker research are described. Next, an update on the ongoing Phase I and Phase II clinical trials is given. Finally, some of the most promising novel pre-clinical developments using live attenuated vaccines, sub-unit vaccines, prime-boost strategies, and new vaccination routes are discussed. The field has made considerable progress and 12 vaccine candidates have now actually entered Phase I or Phase IIa and IIb clinical trials. It is argued that the variable protection conferred by the existing BCG vaccine against reactivation of latent TB is caused not only by waning of its efficacy with time but also by its weak induction of MHC class I restricted responses. Prime-boost strategies based on the actual BCG vaccine may not be sufficient to overcome this hurdle. The use of plasmid DNA vaccination might offer a solution.
Efficacy and synergy of live-attenuated and inactivated influenza vaccines in young chickens
Jang, Hyesun; Elaish, Mohamed; KC, Mahesh; Abundo, Michael C.; Ghorbani, Amir; Lee, Chang-Won
2018-01-01
Outbreaks of novel highly pathogenic avian influenza viruses have been reported in poultry species in the United States since 2014. These outbreaks have proven the limitations of biosecurity control programs, and new tools are needed to reinforce the current avian influenza control arsenal. Some enzootic countries have implemented inactivated influenza vaccine (IIV) in their control programs, but there are serious concerns that a long-term use of IIV without eradication may result in the selection of novel antigenically divergent strains. A broadly protective vaccine is needed, such as live-attenuated influenza vaccine (LAIV). We showed in our previous studies that pc4-LAIV (a variant that encodes a C-terminally truncated NS1 protein) can provide significant protection against heterologous challenge virus in chickens vaccinated at 2–4 weeks of age through upregulation of innate and adaptive immune responses. The current study was conducted to compare the performances of pc4-LAIV and IIV in young chickens vaccinated at 1 day of age. A single dose of pc4-LAIV was able to induce stronger innate and mucosal IgA responses and protect young immunologically immature chickens better than a single dose of IIV. Most importantly, when 1-day-old chickens were intranasally primed with pc4-LAIV and subcutaneously boosted with IIV three weeks later, they showed a rapid, robust, and highly cross-reactive serum antibody response and a high level of mucosal IgA antibody response. This vaccination regimen warrants further optimization to increase its range of protection. PMID:29624615
USDA-ARS?s Scientific Manuscript database
Inactivated and fowlpox (FP)-vectored vaccines have been used to control avian influenza (AI) in poultry. In endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of several immunogenicity and efficacy studies ...
Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Diouf, Ababacar; Galaway, Francis; de Graaf, Hans; Brendish, Nathan J.; Poulton, Ian D.; Griffiths, Oliver J.; Edwards, Nick J.; Jin, Jing; Labbé, Geneviève M.; Alanine, Daniel G.W.; Siani, Loredana; Di Marco, Stefania; Roberts, Rachel; Green, Nicky; Berrie, Eleanor; Ishizuka, Andrew S.; Nielsen, Carolyn M.; Bardelli, Martino; Partey, Frederica D.; Ofori, Michael F.; Barfod, Lea; Wambua, Juliana; Murungi, Linda M.; Osier, Faith H.; Biswas, Sumi; McCarthy, James S.; Minassian, Angela M.; Ashfield, Rebecca; Viebig, Nicola K.; Nugent, Fay L.; Douglas, Alexander D.; Wright, Gavin J.; Faust, Saul N.; Hill, Adrian V.S.; Long, Carole A.; Lawrie, Alison M.; Draper, Simon J.
2017-01-01
The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen — a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing. PMID:29093263
Zhang, Haihong; Liu, Chenlu; Zhang, Fangfang; Geng, Fei; Xia, Qiu; Lu, Zhenzhen; Xu, Ping; Xie, Yu; Wu, Hui; Yu, Bin; Wu, Jiaxin; Yu, Xianghui; Kong, Wei
2016-05-23
MUC1 and survivin are ideal tumor antigens. Although many cancer vaccines targeting survivin or MUC1 have entered clinical trials, no vaccine combining MUC1 and survivin have been reported. Due to tumor heterogeneity, vaccines containing a combination of antigens may have improved efficacy and coverage of a broader spectrum of cancer targets. Here, cellular responses and anti-tumor activities induced by a combination of DNA vaccine targeting MUC1 and survivin (MS) were evaluated. Results showed that CTL activity and inhibition of tumor growth were obviously enhanced in mice immunized with the combined vaccine in a protection assay. However, in order to enhance the therapeutic effect in the treatment assay, a recombinant adenovirus (rAd) vaccine expressing MUC1 and survivin (Ad-MS) was used as a booster following the DNA vaccine prime. Meanwhile, IL-2 promoting T cell proliferation was used as an immunoadjuvant for the DNA vaccine. Results showed that the CTL activity response to the DNA vaccine was enhanced nearly 200% when boosted by the rAd vaccine and was further enhanced by nearly 60% when combined with the IL-2 adjuvant. Therefore, DNA prime combined with rAd boost and IL-2 (MS/IL2/Ad-MS) adjuvant was considered as the best strategy and further evaluated. Multiple cytokines promoting cellular immune responses were shown to be greatly enhanced in mice immunized with MS/IL2/Ad-MS. Moreover, in the treatment assay, the tumor inhibition rate of MS/IL2/Ad-MS reached up to 50.1%, which may be attributed to the enhancement of immune responses and reduction of immunosuppressive factors in tumor-bearing mice. These results suggested that immunization with the combination vaccine targeting MUC1 and survivin using a DNA prime-rAd boost strategy along with IL-2 adjuvant may be an effective method for breaking through immune tolerance to tumors expressing these antigens with potential therapeutic benefits in melanoma cancer. Copyright © 2016. Published by Elsevier Ltd.
Richard, Katharina; Mann, Barbara J.; Qin, Aiping; Barry, Eileen M.; Ernst, Robert K.
2017-01-01
ABSTRACT Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo. Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains. PMID:28077440
Shollenberger, Lisa M; Bui, Cac T; Paterson, Yvonne; Nyhoff, Lindsay; Harn, Donald A
2013-11-19
In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhancing the Immune Response to Recombinant Plague Antigens
2006-05-01
Wakelin. 2003. Effect of priming/booster immunisation protocols on immune response to canine parvovirus peptide induced by vaccination with a chimaeric...onset, the high mortality, and the rapid spread of the disease. Immunization against aerosolized plague presents a particular challenge for vaccine ...homologous boosting at increasing the magnitude and/or duration of the antibody response. 15. SUBJECT TERMS Biological warfare, vaccine , adjuvant
Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea
2018-01-16
Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.
Morello, Christopher S; Levinson, Michael S; Kraynyak, Kimberly A; Spector, Deborah H
2011-04-01
To date, no vaccine that is safe and effective against herpes simplex virus 2 (HSV-2) disease has been licensed. In this study, we evaluated a DNA prime-formalin-inactivated-HSV-2 (FI-HSV2) boost vaccine approach in the guinea pig model of acute and recurrent HSV-2 genital disease. Five groups of guinea pigs were immunized and intravaginally challenged with HSV-2. Two groups were primed with plasmid DNAs encoding the secreted form of glycoprotein D2 (gD2t) together with two genes required for viral replication, either the helicase (UL5) and DNA polymerase (UL30) genes or the single-stranded DNA binding protein (UL29) and primase (UL52) genes. Both DNA-primed groups were boosted with FI-HSV2 formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Two additional groups were primed with the empty backbone plasmid DNA (pVAX). These two groups were boosted with MPL and alum (MPL-alum) together with either formalin-inactivated mock HSV-2 (FI-Mock) or with FI-HSV2. The final group was immunized with gD2t protein in MPL-alum. After challenge, 0/9 animals in the group primed with UL5, UL30, and gD2t DNAs and all 10 animals in the mock-immunized control group (pVAX-FI-Mock) developed primary lesions. All mock controls developed recurrent lesions through day 100 postchallenge. Only 1 guinea pig in the group primed with pVAX DNA and boosted with FI-HSV2 (pVAX-FI-HSV2 group) and 2 guinea pigs in the group primed with UL5, UL30, and gD2t DNAs and boosted with FI-HSV2 (UL5, UL30, gD2t DNA-FI-HSV2 group) developed recurrent lesions. Strikingly, the UL5, UL30, gD2t DNA-FI-HSV2 group showed a 97% reduction in recurrent lesion days compared with the mock controls, had the highest reduction in days with recurrent disease, and contained the lowest mean HSV-2 DNA load in the dorsal root ganglia.
Cost-effectiveness of novel vaccines for tuberculosis control: a decision analysis study
2011-01-01
Background The development of a successful new tuberculosis (TB) vaccine would circumvent many limitations of current diagnostic and treatment practices. However, vaccine development is complex and costly. We aimed to assess the potential cost effectiveness of novel vaccines for TB control in a sub-Saharan African country - Zambia - relative to the existing strategy of directly observed treatment, short course (DOTS) and current level of bacille Calmette-Guérin (BCG) vaccination coverage. Methods We conducted a decision analysis model-based simulation from the societal perspective, with a 3% discount rate and all costs expressed in 2007 US dollars. Health outcomes and costs were projected over a 30-year period, for persons born in Zambia (population 11,478,000 in 2005) in year 1. Initial development costs for single vaccination and prime-boost strategies were prorated to the Zambian share (0.398%) of global BCG vaccine coverage for newborns. Main outcome measures were TB-related morbidity, mortality, and costs over a range of potential scenarios for vaccine efficacy. Results Relative to the status quo strategy, a BCG replacement vaccine administered at birth, with 70% efficacy in preventing rapid progression to TB disease after initial infection, is estimated to avert 932 TB cases and 422 TB-related deaths (prevention of 199 cases/100,000 vaccinated, and 90 deaths/100,000 vaccinated). This would result in estimated net savings of $3.6 million over 30 years for 468,073 Zambians born in year 1 of the simulation. The addition of a booster at age 10 results in estimated savings of $5.6 million compared to the status quo, averting 1,863 TB cases and 1,011 TB-related deaths (prevention of 398 cases/100,000 vaccinated, and of 216 deaths/100,000 vaccinated). With vaccination at birth alone, net savings would be realized within 1 year, whereas the prime-boost strategy would require an additional 5 years to realize savings, reflecting a greater initial development cost. Conclusions Investment in an improved TB vaccine is predicted to result in considerable cost savings, as well as a reduction in TB morbidity and TB-related mortality, when added to existing control strategies. For a vaccine with waning efficacy, a prime-boost strategy is more cost-effective in the long term. PMID:21269503
Nkolola, Joseph P; Peng, Hanqin; Settembre, Ethan C; Freeman, Michael; Grandpre, Lauren E; Devoy, Colleen; Lynch, Diana M; La Porte, Annalena; Simmons, Nathaniel L; Bradley, Ritu; Montefiori, David C; Seaman, Michael S; Chen, Bing; Barouch, Dan H
2010-04-01
The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.
Grunenberg, Nicole A.; Sanchez, Brittany J.; Seaton, Kelly E.; Ferrari, Guido; Moody, M. Anthony; Frahm, Nicole; Montefiori, David C.; Hay, Christine M.; Goepfert, Paul A.; Baden, Lindsey R.; Robinson, Harriet L.; Yu, Xuesong; Gilbert, Peter B.; McElrath, M. Juliana; Huang, Yunda; Tomaras, Georgia D.
2017-01-01
Background A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Methods Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. Results All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. Conclusion This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. Trial registration ClinicalTrials.gov NCT01571960 PMID:28727817
Buchbinder, Susan P; Grunenberg, Nicole A; Sanchez, Brittany J; Seaton, Kelly E; Ferrari, Guido; Moody, M Anthony; Frahm, Nicole; Montefiori, David C; Hay, Christine M; Goepfert, Paul A; Baden, Lindsey R; Robinson, Harriet L; Yu, Xuesong; Gilbert, Peter B; McElrath, M Juliana; Huang, Yunda; Tomaras, Georgia D
2017-01-01
A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. ClinicalTrials.gov NCT01571960.
Roberts, Lydia M; Wehrly, Tara D; Crane, Deborah D; Bosio, Catharine M
2017-05-02
Francisella tularensis subsp. tularensis strain SchuS4 (Ftt) is a highly virulent intracellular bacterium. Inhalation of 10 or fewer organisms results in an acute and potentially lethal disease called pneumonic tularemia. Ftt infections occur naturally in the U.S. and Ftt was developed as a bioweapon. Thus, there is a need for vaccines that protect against this deadly pathogen. Although a live vaccine strain of Francisella tularensis (LVS) exists, LVS fails to generate long-lived protective immunity against modest challenge doses of Ftt. We recently identified an important role for high avidity CD4 + T cells in short-term protection and hypothesized that expanding this pool of cells would improve overall vaccine efficacy with regard to longevity and challenge dose. In support of our hypothesis, application of a prime/boost vaccination strategy increased the pool of high avidity CD4 + T cells which correlated with improved survival following challenge with either increased doses of virulent Ftt or at late time points after vaccination. In summary, we demonstrate that both epitope selection and vaccination strategies that expand antigen-specific T cells correlate with superior immunity to Ftt as measured by survival. Copyright © 2017. Published by Elsevier Ltd.
Pace, David; Khatami, Ameneh; Attard-Montalto, Simon; Voysey, Merryn; Finn, Adam; Faust, Saul N; Heath, Paul T; Borrow, Ray; Snape, Matthew D; Pollard, Andrew J
2016-12-07
Use of a polysaccharide vaccine challenge to demonstrate immunologic memory after priming with capsular group C meningococcal conjugate vaccines (MenCC) risks induction of immunologic hyporesponsiveness. For this reason, MenCC vaccines are now used as probes of immunologic memory, however, no studies have demonstrated their ability to distinguish primed from unprimed children. This study was part of a randomised controlled trial investigating the immunogenicity of a booster dose of the combined Haemophilus influenzae type b and MenC-tetanus toxoid vaccine (Hib-MenC-TT) in infants receiving reduced dose MenCC vaccine priming schedules (one MenC-CRM/MenC-TT or two MenC-CRM vaccine doses) compared with an unprimed group. Antibody kinetics were studied in a subset of 269 children by measuring changes in the MenC serum bactericidal antibody, using rabbit complement, (MenC rSBA) titres and MenC specific IgG memory B-cells before and at 6 and 28days following the 12month booster vaccination. At 6days after the 12monthMenCC vaccine, the rise in MenC rSBA titres and MenC specific IgG memory B-cells of the primed groups were significantly higher than the infant MenCC naïve group. Participants primed with one MenC-TT dose had the highest increase in MenC rSBA titres compared with all other groups. The MenC rSBA titres at the 28th compared with the 6th day after boosting was significantly higher in those primed with a single MenC-TT/MenC-CRM vaccine in infancy compared with those who were not primed or who were primed with two doses of the MenC-CRM vaccine. Immunologic memory can be demonstrated by a MenCC booster vaccination but is affected by the type and number of MenCC doses used for infant priming. The MenC rSBA responses can be used to demonstrate successful immunologic priming. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein.
Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena
2014-06-15
Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. Copyright © 2014 by The American Association of Immunologists, Inc.
Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula
2015-01-01
Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection.
Teixeira, Lais H.; Tararam, Cibele A.; Lasaro, Marcio O.; Camacho, Ariane G. A.; Ersching, Jonatan; Leal, Monica T.; Herrera, Sócrates; Bruna-Romero, Oscar; Soares, Irene S.; Nussenzweig, Ruth S.; Ertl, Hildegund C. J.; Nussenzweig, Victor
2014-01-01
Plasmodium vivax is the most widespread and the second most prevalent malaria-causing species in the world. Current measures used to control the transmission of this disease would benefit from the development of an efficacious vaccine. In the case of the deadly parasite P. falciparum, the recombinant RTS,S vaccine containing the circumsporozoite antigen (CSP) consistently protects 30 to 50% of human volunteers against infection and is undergoing phase III clinical trials in Africa with similar efficacy. These findings encouraged us to develop a P. vivax vaccine containing the three circulating allelic forms of P. vivax CSP. Toward this goal, we generated three recombinant bacterial proteins representing the CSP alleles, as well as a hybrid polypeptide called PvCSP-All-CSP-epitopes. This hybrid contains the conserved N and C termini of P. vivax CSP and the three variant repeat domains in tandem. We also generated simian and human recombinant replication-defective adenovirus vectors expressing PvCSP-All-CSP-epitopes. Mice immunized with the mixture of recombinant proteins in a formulation containing the adjuvant poly(I·C) developed high and long-lasting serum IgG titers comparable to those elicited by proteins emulsified in complete Freund's adjuvant. Antibody titers were similar in mice immunized with homologous (protein-protein) and heterologous (adenovirus-protein) vaccine regimens. The antibodies recognized the three allelic forms of CSP, reacted to the repeated and nonrepeated regions of CSP, and recognized sporozoites expressing the alleles VK210 and VK247. The vaccine formulations described in this work should be useful for the further development of an anti-P. vivax vaccine. PMID:24478093
Gilbert, Peter B.; Grove, Douglas; Gabriel, Erin; Huang, Ying; Gray, Glenda; Hammer, Scott M.; Buchbinder, Susan P.; Kublin, James; Corey, Lawrence; Self, Steven G.
2012-01-01
Five preventative HIV vaccine efficacy trials have been conducted over the last 12 years, all of which evaluated vaccine efficacy (VE) to prevent HIV infection for a single vaccine regimen versus placebo. Now that one of these trials has supported partial VE of a prime-boost vaccine regimen, there is interest in conducting efficacy trials that simultaneously evaluate multiple prime-boost vaccine regimens against a shared placebo group in the same geographic region, for accelerating the pace of vaccine development. This article proposes such a design, which has main objectives (1) to evaluate VE of each regimen versus placebo against HIV exposures occurring near the time of the immunizations; (2) to evaluate durability of VE for each vaccine regimen showing reliable evidence for positive VE; (3) to expeditiously evaluate the immune correlates of protection if any vaccine regimen shows reliable evidence for positive VE; and (4) to compare VE among the vaccine regimens. The design uses sequential monitoring for the events of vaccine harm, non-efficacy, and high efficacy, selected to weed out poor vaccines as rapidly as possible while guarding against prematurely weeding out a vaccine that does not confer efficacy until most of the immunizations are received. The evaluation of the design shows that testing multiple vaccine regimens is important for providing a well-powered assessment of the correlation of vaccine-induced immune responses with HIV infection, and is critically important for providing a reasonably powered assessment of the value of identified correlates as surrogate endpoints for HIV infection. PMID:23181167
Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo
2004-01-26
Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.
Neeson, Paul; Boyer, Jean; Kumar, Sanjeev; Lewis, Mark G.; Veazey, Lennox MattiasRon; Weiner, David; Paterson, Yvonne
2006-01-01
In this study in Rhesus macaques, we tested whether IL-12 or IL-15 in a DNA prime-oral Listeria boost amplifies the SIV-Gag specific CD8 mucosal response. SIV-specific CD8 T cells were demonstrated in the peripheral blood (PB) in all test vaccine groups, but not the control group. SIV Gag-specific CD8 T cells in the PB expressed α4β7 integrin, the gut-homing receptor; a minor subset co-express αEβ7 integrin. SIV Gag-specific CD8 T cells were also detected in the gut tissue, intraepithelial (IEL) and lamina propria lymphocytes (LPL) of the duodenum and ileum. These cells were characterized by high levels of β7 integrin expression and a predominance of the effector memory phenotype. Neither Il-12 nor IL-15 amplified the frequency of SIV-specific CD8 T cells in the gut. Thus, the DNA prime oral Listeria boost strategy induced a mucosal SIV-Gag specific CD8 T cell response characterized by expression of the α4β7 integrin gut-homing receptor. PMID:16904153
Mealey, Robert H.; Leib, Steven R.; Littke, Matt H.; Wagner, Bettina; Horohov, David W.; McGuire, Travis C.
2009-01-01
Effective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not. In particular, DNA-based vaccines have had limited success in inducing CTL responses against intracellular pathogens in the horse. We hypothesized that priming with a codon-optimized plasmid encoding EIAV Gag p15/p26 with co-administration of a plasmid encoding an equine IL-2/IgG fusion protein as a molecular adjuvant, followed by boosting with a vaccinia vector expressing Gag p15/p26, would induce protective Gag-specific CTL responses. Although the regimen induced Gag-specific CTL in four of seven vaccinated horses, CTL were not detected until after the vaccinia boost, and protective effects were not observed in EIAV challenged vaccinates. Unexpectedly, vaccinates had significantly higher viral loads and more severe clinical disease, associated with the presence of vaccine-induced CTL. It was concluded that 1.) further optimization of the timing and route of DNA immunization was needed for efficient CTL priming in vivo, 2.) co-administration of the IL-2/IgG plasmid did not enhance CTL priming by the Gag p15/p26 plasmid, 3.) vaccinia vectors are useful for lentivirus-specific CTL induction in the horse, 4.) Gag-specific CTL alone are either insufficient or a more robust Gag-specific CTL response is needed to limit EIAV viremia and clinical disease, and 5.) CTL-inducing vaccines lacking envelope immunogens can result in lentiviral disease enhancement. Although the mechanisms for enhancement associated with this vaccine regimen remain to be elucidated, these results have important implications for development of lentivirus T cell vaccines. PMID:19368787
Wang, Jiong; Hilchey, Shannon P.; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J.; Treanor, John J.; Sangster, Mark Y.
2018-01-01
Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity. PMID:29641537
Wang, Jiong; Hilchey, Shannon P; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J; Treanor, John J; Sangster, Mark Y; Zand, Martin S
2018-01-01
Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity.
Li, Yi-Ping; Kang, Hye Na; Babiuk, Lorne A; Liu, Qiang
2006-01-01
AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays. RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations. PMID:17131474
Knuf, Markus; Pankow-Culot, Heidemarie; Grunert, Detlef; Rapp, Michael; Panzer, Falko; Köllges, Ralph; Fanic, Aurélie; Habib, Ahsan; Borys, Dorota; Dieussaert, Ilse; Schuerman, Lode
2012-01-01
Induction of immunologic memory was assessed following primary vaccination with 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV). Infants were randomized (1:1) to receive 3 doses of PHiD-CV or 7vCRM (7-valent CRM197-conjugated pneumococcal conjugate vaccine [PCV]) at 2, 3, and 4 months of age followed by 23-valent pneumococcal polysaccharide vaccine (23vPS) booster dose at 11 to 14 months of age. Pneumococcal geometric mean antibody concentrations (GMCs) and opsonophagocytic activity (OPA) geometric mean titers were measured. Postprimary immune responses were consistent with those in previous PHiD-CV and 7vCRM studies. Following 23vPS boosting, vaccine serotype-specific antibody GMCs increased 6.5- to 33.3-fold and 4.8- to 32.2-fold versus prebooster in the PHiD-CV and 7vCRM groups, respectively. Postbooster OPA titers increased 2.8- to 38.8-fold and 2.6- to 58.9-fold, respectively. Postbooster antibody GMCs exceeded postprimary levels but, for some serotypes, postbooster OPA geometric mean titers were lower than postprimary in both groups. An additional dose of the same PCV received for priming was administered to 52 children aged 46 to 50 months, resulting in higher responses versus postprimary vaccination for all serotypes, but not always higher than post-23vPS booster. Induction of immunologic memory following PHiD-CV priming was confirmed. Additional PCV boosting in 4-year-olds did not provide strong evidence of hyporesponsiveness induced by previous 23vPS boosting. However, our results did not rule out depletion of the memory B cell pool following 23vPS vaccination, resulting in subsequent attenuated immune responses, and therefore support the use of PCV rather than 23vPS for booster vaccination in the second year of life.
Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.
Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael
2004-01-26
The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.
Nossal, G J V
2011-12-30
Vaccines of the future can be divided into three broad groups, namely those of the near future (<10 years); the medium-term future (10-19 years); and the long-term future (20-50 years). For the near future, there is some "low hanging fruit" which is clearly on the horizon, such as a Vi-conjugate vaccine for typhoid or a protein-based vaccine for Neisseria meningitidis serogroup B. Just slightly more distant will be vaccines for shigellosis and a common protein vaccine for Streptococcus pneumoniae. Also in this group, but not as far advanced, will be a vaccine for Group A streptococcus. I place vaccines for the "big three", malaria, tuberculosis and HIV/AIDS in the medium term basket. The sporozoite malaria vaccine RTS-S is closest, but surely a definitive malaria vaccine will also require antigens from other stages of the life cycle. A tuberculosis vaccine will be either a re-engineered BCG; or a molecular vaccine with several protein antigens; or one based on prime-boost strategies. What will delay this is the high cost of clinical trials. For HIV/AIDS, the partial success of the Sanofi-Pasteur prime-boost vaccine has given some hope. I still place much faith in antibody-based vaccines and especially on mimotopes of the env transitional state assumed after initial CD4 binding. Monoclonal antibodies are also leading us in interesting directions. Longer term, the vaccine approach will be successful for autoimmune diseases, e.g. juvenile diabetes and coeliac disease. Cancer vaccines are also briefly surveyed. Adjunct issues needing to be addressed include more extensive combinations; alternate delivery systems; and more intelligently designed adjuvants based on knowledge of the innate immune system. Copyright © 2011. Published by Elsevier Ltd.
Duehr, James; Wohlbold, Teddy John; Oestereich, Lisa; Chromikova, Veronika; Amanat, Fatima; Rajendran, Madhusudan; Gomez-Medina, Sergio; Mena, Ignacio; tenOever, Benjamin R; García-Sastre, Adolfo; Basler, Christopher F; Munoz-Fontela, Cesar; Krammer, Florian
2017-08-15
Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2 -/- mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro , suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity. IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies, including two antibodies with broad cross-reactivity to all known ebolavirus species. The antibodies were raised using a heterologous DNA-viral vector prime-boost regimen, resulting in a high proportion of cross-reactive antibodies (25%). Similar vaccination regimens have been used successfully to induce broad protection against influenza viruses in humans, and our limited data indicate that this might be a useful strategy for filovirus vaccines as well. Several of our antibodies showed protective efficacy when tested in a novel murine challenge model and may be developed into future therapeutics. Copyright © 2017 American Society for Microbiology.
Duehr, James; Wohlbold, Teddy John; Oestereich, Lisa; Chromikova, Veronika; Amanat, Fatima; Gomez-Medina, Sergio; Mena, Ignacio; tenOever, Benjamin R.; García-Sastre, Adolfo; Basler, Christopher F.
2017-01-01
ABSTRACT Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2−/− mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro, suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro. Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity. IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies, including two antibodies with broad cross-reactivity to all known ebolavirus species. The antibodies were raised using a heterologous DNA-viral vector prime-boost regimen, resulting in a high proportion of cross-reactive antibodies (25%). Similar vaccination regimens have been used successfully to induce broad protection against influenza viruses in humans, and our limited data indicate that this might be a useful strategy for filovirus vaccines as well. Several of our antibodies showed protective efficacy when tested in a novel murine challenge model and may be developed into future therapeutics. PMID:28592526
2018-01-01
ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. PMID:29386289
Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K
2018-04-15
African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. Copyright © 2018 Jancovich et al.
Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.
2013-01-01
Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298
Lennemann, Nicholas J.; Herbert, Andrew S.; Brouillette, Rachel; Rhein, Bethany; Bakken, Russell A.; Perschbacher, Katherine J.; Cooney, Ashley L.; Miller-Hunt, Catherine L.; Ten Eyck, Patrick; Biggins, Julia; Olinger, Gene; Dye, John M.
2017-01-01
ABSTRACT The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success. IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy. PMID:28615211
Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter
2015-03-02
Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.
Dean, G; Whelan, A; Clifford, D; Salguero, F J; Xing, Z; Gilbert, S; McShane, H; Hewinson, R G; Vordermeier, M; Villarreal-Ramos, B
2014-03-05
There is a requirement for vaccines or vaccination strategies that confer better protection against TB than the current live attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine for use in cattle. Boosting with recombinant viral vectors expressing mycobacterial proteins, such as Ag85A, has shown a degree of promise as a strategy for improving on the protection afforded by BCG. Experiments in small animal models have indicated that broadening the immune response to include mycobacterial antigens other than Ag85A, such as Rv0288, induced by boosting with Ad5 constructs has a direct effect on the protection afforded against TB. Here, we compared the immunogenicity and protection against challenge with M. bovis afforded by boosting BCG-vaccinated cattle with a human type 5 (Ad5)-based vaccine expressing the mycobacterial antigens Ag85A (Ad5-85A); or Ag85A, Rv0251, Rv0287 and Rv0288 (Ad5-TBF); or with protein TBF emulsified in adjuvant (Adj-TBF). Boosting with TBF broaden the immune response. The kinetics of Ad5-TBF and Adj-TBF were shown to be different, with effector T cell responses from the latter developing more slowly but being more durable than those induced by Ad5-TBF. No increase in protection compared to BCG alone was afforded by Ad5-TBF or Adj-TBF by gross pathology or bacteriology. Using histopathology, as a novel parameter of protection, we show that boosting BCG vaccinated cattle with Ad5-85A induced significantly better protection than BCG alone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Yin, Yuelan; Lian, Kai; Zhao, Dan; Tao, Chengwu; Chen, Xiang; Tan, Weijun; Wang, Xiaobo; Xu, Zhengzhong; Hu, Maozhi; Rao, Yan; Zhou, Xiaohui; Pan, Zhiming; Zhang, Xiaoming; Jiao, Xin'an
2017-01-01
Deaths associated with tuberculosis (TB) is rising and accounted for 1.4 million deaths in 2015 many of which were due to drug-resistant bacteria. Vaccines represent an important medical intervention, but the current Bacilli Calmette-Guerin (BCG) vaccine is not ideal for the protection of teenagers and adults. Therefore, a safe and effective vaccine is urgently needed. In this study, we designed a novel vaccine using an attenuated Listeria monocytogenes strain carrying fusion antigen FbpB-ESAT-6 (rLM) and characterized its safety and protective efficacy against Mycobacterium tuberculosis ( M.tb ) infection in mice. Compared to the wild type strain yzuLM4 and parental strain LMΔ actA/plcB (LM1-2), the virulence of rLM was significantly reduced as judged by its infectious kinetics and LD 50 dose. Further characterization of intravenous immunization showed that prime-boost vaccination significantly increased the levels of Th1 cytokines (IFN-γ, IL-17, and IL-6), and enhanced cytotoxic T lymphocyte (CTL) CTLs activity, suggesting that rLM could elicit potent Th1/Th17 responses. More importantly, rLM significantly conferred the protection against M.tb H37Rv challenge. Collectively, our findings indicated that rLM is a novel and useful tool to prevent M.tb infection, and can be potentially be used to boost BCG-primed immunity.
Cho, Michael W.; Kim, Young B.; Lee, Myung K.; Gupta, Kailash C.; Ross, Will; Plishka, Ron; Buckler-White, Alicia; Igarashi, Tatsuhiko; Theodore, Ted; Byrum, Russ; Kemp, Chris; Montefiori, David C.; Martin, Malcolm A.
2001-01-01
The great difficulty in eliciting broadly cross-reactive neutralizing antibodies (NAbs) against human immunodeficiency virus type 1 (HIV-1) isolates has been attributed to several intrinsic properties of their viral envelope glycoprotein, including its complex quaternary structure, extensive glycosylation, and marked genetic variability. Most previously evaluated vaccine candidates have utilized envelope glycoprotein from a single virus isolate. Here we compare the breadth of NAb and protective immune response following vaccination of pigtailed macaques with envelope protein(s) derived from either single or multiple viral isolates. Animals were challenged with Simian/human immunodeficiency virus strain DH12 (SHIVDH12) following priming with recombinant vaccinia virus(es) expressing gp160(s) and boosting with gp120 protein(s) from (i) LAI, RF, 89.6, AD8, and Bal (Polyvalent); (ii) LAI, RF, 89.6, AD8, Bal, and DH12 (Polyvalent-DH12); (iii) 89.6 (Monovalent-89.6); and (iv) DH12 (Monovalent-DH12). Animals in the two polyvalent vaccine groups developed NAbs against more HIV-1 isolates than those in the two monovalent vaccine groups (P = 0.0054). However, the increased breadth of response was directed almost entirely against the vaccine strains. Resistance to SHIVDH12 strongly correlated with the level of NAbs directed against the virus on the day of challenge (P = 0.0008). Accordingly, the animals in the Monovalent-DH12 and Polyvalent-DH12 vaccine groups were more resistant to the SHIVDH12 challenge than the macaques immunized with preparations lacking a DH12 component (viz. Polyvalent and Monovalent-89.6) (P = 0.039). Despite the absence of any detectable NAb, animals in the Polyvalent vaccine group, but not those immunized with Monovalent-89.6, exhibited markedly lower levels of plasma virus than those in the control group, suggesting a superior cell-mediated immune response induced by the polyvalent vaccine. PMID:11160726
Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard
2016-09-07
Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula
2015-01-01
Introduction Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Methods Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Results Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. Conclusion In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection. PMID:26010355
Hodgson, Susanne H; Ewer, Katie J; Bliss, Carly M; Edwards, Nick J; Rampling, Thomas; Anagnostou, Nicholas A; de Barra, Eoghan; Havelock, Tom; Bowyer, Georgina; Poulton, Ian D; de Cassan, Simone; Longley, Rhea; Illingworth, Joseph J; Douglas, Alexander D; Mange, Pooja B; Collins, Katharine A; Roberts, Rachel; Gerry, Stephen; Berrie, Eleanor; Moyle, Sarah; Colloca, Stefano; Cortese, Riccardo; Sinden, Robert E; Gilbert, Sarah C; Bejon, Philip; Lawrie, Alison M; Nicosia, Alfredo; Faust, Saul N; Hill, Adrian V S
2015-04-01
Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. NCT01623557. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection.
Kim, Yeu-Chun; Lee, Su-Hwa; Choi, Won-Hyung; Choi, Hyo-Jick; Goo, Tae-Won; Lee, Ju-Hie; Quan, Fu-Shi
2016-12-01
A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p < 0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.
Scherließ, Regina; Ajmera, Ankur; Dennis, Mike; Carroll, Miles W; Altrichter, Jens; Silman, Nigel J; Scholz, Martin; Kemter, Kristina; Marriott, Anthony C
2014-04-17
Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion, utilising the SPS formulation technology, spray-drying and terminal sterilisation of influenza A(H1N1)pdm09 split virus vaccine is feasible. Findings indicate the potential utility of such formulated vaccines e.g. for needle-free vaccination routes and delivery to countries with uncertain cold chain facilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Morello, Christopher S; Kraynyak, Kimberly A; Levinson, Michael S; Chen, Zhijiang; Lee, Kuo-Fen; Spector, Deborah H
2012-10-12
Herpes Simplex Virus Type 2 (HSV-2) infection can result in life-long recurrent genital disease, asymptomatic virus shedding, and transmission. No vaccine to date has shown significant protection clinically. Here, we used a mouse model of genital HSV-2 infection to test the efficacy of a vaccine consisting of whole, formalin-inactivated HSV-2 (FI-HSV2) formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Vaccine components were administered alone or as a prime-boost immunization together with DNA vaccines encoding a truncated glycoprotein D2 (gD2t) and two conserved HSV-2 genes necessary for virus replication, UL5 (DNA helicase) and UL30 (DNA polymerase). Our results show: (1) compared with mock immunized controls, mice immunized with FI-HSV2 plus MPL/alum consistently showed protection against disease burden and total viral shedding while the mice immunized with gD2t protein with MPL/alum did not; (2) protection against genital disease and viral replication correlated with the type of boost in a prime-boost immunization with little advantage afforded by a DNA prime; (3) intramuscular (i.m.) immunization with FI-HSV2 in MPL/Alhydrogel adjuvant provided nearly complete protection against vaginal HSV-2 shedding after a lethal intravaginal (i.vag.) short-term challenge and long-term rechallenge; (4) single formulation immunization with DNA vaccines, FI-HSV2, and MPL in an aluminum phosphate (Adju-Phos) adjuvant did not increase protection relative to FI-HSV2/MPL/Adju-Phos alone; and (5) addition of MPL/alum to the FI-HSV2 was required for optimal protection against disease, viral replication, and latent virus load in the dorsal root ganglia (DRG). Most notably, an optimized vaccine formulation of FI-HSV2 MPL/Alhydrogel given i.m. completely protected against detectable vaginal HSV-2 shedding in the majority of animals and HSV-2 latent DNA in the DRG of all animals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Baz, Mariana; Luke, Catherine J; Cheng, Xing; Jin, Hong; Subbarao, Kanta
2013-01-01
The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting. PMID:23726847
Belyakov, I M; Ahlers, J D
2011-01-01
Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.
Achenbach, Chad J; Assoumou, Lambert; Deeks, Steven G; Wilkin, Timothy J; Berzins, Baiba; Casazza, Joseph P; Lambert-Niclot, Sidonie; Koup, Richard A; Costagliola, Dominique; Calvez, Vincent; Katlama, Christine; Autran, Brigitte; Murphy, Robert L
2015-03-01
Achievement of a cure for HIV infection might need reactivation of latent virus and improvement of HIV-specific immunity. As an initial step, in this trial we assessed the effect of antiretroviral therapy intensification and immune modulation with a DNA prime and recombinant adenovirus 5 (rAd5) boost vaccine. In this multicentre, randomised, open-label, non-comparative, phase 2 clinical trial, we enrolled eligible adults 18-70 years of age with chronic HIV-1 infection on suppressive antiretroviral therapy with current CD4 count of at least 350 cells per μL and HIV DNA between 10 and 1000 copies per 10(6) peripheral blood mononuclear cells. After an 8 week lead-in of antiretroviral intensification therapy (standard dose raltegravir and dose-adjusted maraviroc based on baseline antiretroviral therapy), patients were randomly assigned (1:1) to receive antiretroviral therapy intensification alone or intensification plus injections of HIV DNA prime vaccine (4 mg VRC-HIVDNA016-00-VP) at weeks 8, 12, and 16, followed by HIV rAd5 boost vaccine (10(10) particle units of VRC-HIVADV014-00-VP) at week 32. Randomisation was computer generated in permuted blocks of six and was stratified by study site. The primary endpoint was a 0·5 log10 or greater decrease in HIV DNA in peripheral blood mononuclear cells at week 56. This study is registered with ClinicalTrials.gov, number NCT00976404. Between Nov 29, 2010, and Oct 28, 2011, we enrolled 28 eligible patients from three academic HIV clinics in the USA. After the 8 week lead-in of antiretroviral intensification therapy, 14 patients were randomly assigned to continue antiretroviral therapy intensification alone and 14 to intensification plus vaccine. Enrolled participants had median CD4 count of 636 cells per μL, median HIV DNA 170 copies per 10(6) peripheral blood mononuclear cells, and duration of antiretroviral therapy of 13 years. The median amount of HIV DNA did not change significantly between baseline and week 56 in the antiretroviral therapy intensification plus vaccine group. One participant in the antiretroviral therapy intensification alone group reached the primary endpoint, with 0·55 log10 decrease in HIV DNA in peripheral blood mononuclear cells. Both treatments were well tolerated. No severe or systemic reactions to vaccination occurred, and five serious adverse events were recorded during the study, most of which resolved spontaneously or were judged unrelated to study treatments. Antiretroviral therapy intensification followed by DNA prime and rAd5 boost vaccine did not significantly increase HIV expression or reduce the latent HIV reservoir. A multifaceted approach that includes stronger activators of HIV expression and novel immune modulators will probably be needed to reduce the latent HIV reservoir and allow for long-term control in patients off antiretroviral therapy. Objectif Recherche Vaccin SIDA (ORVACS). Copyright © 2015 Elsevier Ltd. All rights reserved.
Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G; Heidari, Shirin; Wolf, Hans; Frachette, Marie-Joelle; Bieler, Kurt; Sheppard, Neil; Harari, Alexandre; Bart, Pierre-Alexandre; Liljeström, Peter; Wagner, Ralf; Pantaleo, Giuseppe; Heeney, Jonathan L
2009-06-01
Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4(+) and CD8(+) T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-gamma, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-gamma T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.
Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S.; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G.; Heidari, Shirin; Wolf, Hans; Frachette, Marie-Joelle; Bieler, Kurt; Sheppard, Neil; Harari, Alexandre; Bart, Pierre-Alexandre; Liljeström, Peter; Wagner, Ralf; Pantaleo, Giuseppe; Heeney, Jonathan L.
2009-01-01
Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-γ) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4+ and CD8+ T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-γ, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-γ T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved. PMID:19321612
Gupta, Shivali; Garg, Nisha J.
2015-01-01
In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. PMID:25951312
The Human Immunodeficiency Virus (HIV) vaccine trial, RV144, employed a priming Canarypox-based vector, ALVAC-HIV, along with a boost composed of segments of the HIV envelope protein, gp120, with the adjuvant alum. Results from the trial suggested the vaccine provided protection and, because of the importance of antibodies to that protection, using an adjuvant that could
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin
Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasalmore » prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8{sup +} T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.« less
Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie
2011-01-01
An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487
Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka
2017-01-01
African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.
Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine
Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka
2017-01-01
African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911
Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.
2015-01-01
Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523
Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A
2015-09-29
The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
2013-02-14
immunization, was severe (Grade 3), preventing daily activities . Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum...administering a drug selectively active against blood stage parasites such as chloroquine [4,5]. While the immunological mechanisms underlying the...promoter sequence activated within the host cell. Alternatively, the genes are inserted into a viral vector, which efficiently transports the DNA into
Foerster, Tessa; Streck, André Felipe; Speck, Stephanie; Selbitz, Hans-Joachim; Lindner, Thomas; Truyen, Uwe
2016-06-01
Inactivated whole-virus vaccines against porcine parvovirus (PPV) can prevent disease but not infection and virus shedding after heterologous virus challenge. Here, we showed that the same is true for a homologous challenge. Pregnant sows were vaccinated with an experimental inactivated vaccine based on PPV strain 27a. They were challenged on day 40 of gestation with the virulent porcine parvovirus PPV-27a from which the vaccine was prepared (homologous challenge). On day 90 of gestation, the fetuses from vaccinated sows were protected against disease, while the fetuses of the non-vaccinated sows (control group) exhibited signs of parvovirus disease. All gilts, whether vaccinated or not vaccinated, showed a boost of PPV-specific antibodies indicative of virus infection and replication. Low DNA copy numbers, but not infectious virus, could be demonstrated in nasal or rectal swabs of immunized sows, but high copy numbers of challenge virus DNA as well as infectious virus could both be demonstrated in non-vaccinated sows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Reiner; Suh, You-Suk; Sauermann, Ulrike
2009-01-20
We investigated the immunogenicity and efficacy of a bimodal prime/boost vaccine regimen given by various routes in the Simian immunodeficiency virus (SIV) rhesus monkey model for AIDS. Twelve animals were immunized with SIV DNA-vectors followed by the application of a recombinant adenovirus (rAd5) expressing the same genes either intramuscularly (i.m.) or by oropharyngeal spray. The second rAd5-application was given i.m. All vaccinees plus six controls were challenged orally with SIVmac239 12 weeks post-final immunization. Both immunization strategies induced strong SIV Gag-specific IFN-{gamma} and T-cell proliferation responses and mediated a conservation of CD4{sup +} memory T-cells and a reduction of viralmore » load during peak viremia following infection. Interestingly, the mucosal group was superior to the systemic group regarding breadth and strength of SIV-specific T-cell responses and exhibited lower vector specific immune responses. Therefore, our data warrant the inclusion of mucosal vector application in a vaccination regimen which makes it less invasive and easier to apply.« less
Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.; ...
2016-01-06
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less
Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys
Letvin, Norman L.; Rao, Srinivas S.; Montefiori, David C.; Seaman, Michael S.; Sun, Yue; Lim, So-Yon; Yeh, Wendy W.; Asmal, Mohammed; Gelman, Rebecca S.; Shen, Ling; Whitney, James B.; Seoighe, Cathal; Lacerda, Miguel; Keating, Sheila; Norris, Philip J.; Hudgens, Michael G.; Gilbert, Peter B.; Buzby, Adam P.; Mach, Linh V.; Zhang, Jinrong; Balachandran, Harikrishnan; Shaw, George M.; Schmidt, Stephen D.; Todd, John-Paul; Dodson, Alan; Mascola, John R.; Nabel, Gary J.
2013-01-01
The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was an about one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01–negative monkeys challenged with SIVsmE660, no CD8+ T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4+ T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanism of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies. PMID:21543722
Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.
Letvin, Norman L; Rao, Srinivas S; Montefiori, David C; Seaman, Michael S; Sun, Yue; Lim, So-Yon; Yeh, Wendy W; Asmal, Mohammed; Gelman, Rebecca S; Shen, Ling; Whitney, James B; Seoighe, Cathal; Lacerda, Miguel; Keating, Sheila; Norris, Philip J; Hudgens, Michael G; Gilbert, Peter B; Buzby, Adam P; Mach, Linh V; Zhang, Jinrong; Balachandran, Harikrishnan; Shaw, George M; Schmidt, Stephen D; Todd, John-Paul; Dodson, Alan; Mascola, John R; Nabel, Gary J
2011-05-04
The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01-negative monkeys challenged with SIVsmE660, no CD8(+) T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4(+) T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.
Klausberger, Miriam; Tscheliessnig, Rupert; Neff, Silke; Nachbagauer, Raffael; Wohlbold, Teddy John; Wilde, Monika; Palmberger, Dieter; Krammer, Florian; Jungbauer, Alois; Grabherr, Reingard
2016-01-01
Significant genetic variability in the head region of the influenza A hemagglutinin, the main target of current vaccines, makes it challenging to develop a long-lived seasonal influenza prophylaxis. Vaccines based on the conserved hemagglutinin stalk domain might provide broader cross-reactive immunity. However, this region of the hemagglutinin is immunosubdominant to the head region. Peptide-based vaccines have gained much interest as they allow the immune system to focus on relevant but less immunogenic epitopes. We developed a novel influenza A hemagglutinin-based display platform for H1 hemagglutinin stalk peptides that we identified in an epitope mapping assay using human immune sera and synthetic HA peptides. Flow cytometry and competition assays suggest that the identified stalk sequences do not recapitulate the epitopes of already described broadly neutralizing stalk antibodies. Vaccine constructs displaying 25-mer stalk sequences provided up to 75% protection from lethal heterologous virus challenge in BALB/c mice and induced antibody responses against the H1 hemagglutinin. The developed platform based on a vaccine antigen has the potential to be either used as stand-alone or as prime-vaccine in combination with conventional seasonal or pandemic vaccines for the amplification of stalk-based cross-reactive immunity in humans or as platform to evaluate the relevance of viral peptides/epitopes for protection against influenza virus infection.
Chege, Gerald K; Burgers, Wendy A; Müller, Tracey L; Gray, Clive M; Shephard, Enid G; Barnett, Susan W; Ferrari, Guido; Montefiori, David; Williamson, Carolyn; Williamson, Anna-Lise
2017-02-07
Successful future HIV vaccines are expected to generate an effective cellular and humoral response against the virus in both the peripheral blood and mucosal compartments. We previously reported the development of DNA-C and MVA-C vaccines based on HIV-1 subtype C and demonstrated their immunogenicity when given in a DNA prime-MVA boost combination in a nonhuman primate model. In the current study, rhesus macaques previously vaccinated with a DNA-C and MVA-C vaccine regimen were re-vaccinated 3.5years later with MVA-C followed by a protein vaccine based on HIV-1 subtype C envelope formulated with MF59 adjuvant (gp140Env/MF59), and finally a concurrent boost with both vaccines. A single MVA-C re-vaccination elicited T cell responses in all animals similar to previous peak responses, with 4/7 demonstrating responses >1000 SFU/10 6 PBMC. In contrast to an Env/MF59-only vaccine, concurrent boosting with MVA-C and Env/MF59 induced HIV-specific cellular responses in multiple mucosal associated lymph nodes in 6/7 animals, with high magnitude responses in some animals. Both vaccine regimens induced high titer Env-specific antibodies with ADCC activity, as well as neutralization of Tier 1 viruses and modest Tier 2 neutralization. These data demonstrate the feasibility of inducing HIV-specific immunity in the blood and mucosal sites of viral entry by means of DNA and poxvirus-vectored vaccines, in combination with a HIV envelope-based protein vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mayer, Kenneth H.; Elizaga, Marnie L.; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C.; Sato, Alicia; Gu, Niya; Tomaras, Georgia D.; Tucker, Timothy; Barnett, Susan W.; Mkhize, Nonhlanhla N.; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise
2016-01-01
A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 109 PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4+ T-cell and CD8+ T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4+ T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4+ T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.) PMID:27098021
Pittman, Phillip R; Fisher, Diana; Quinn, Xiaofei; Schmader, Trevor; Barrera-Oro, Julio G
2013-10-17
We describe the Bacillus anthracis protective antigen IgG antibody response and the B. anthracis lethal toxin neutralization activity to a delayed dose of anthrax vaccine adsorbed (AVA, BioThrax(®)) using validated assays. 373 individuals received 1, 2, or 3 priming doses, 18-24 months afterward, they received a delayed dose of AVA. Overall, 23.6% of subjects showed detectable anti-PA IgG before the boost, compared to 99.2% (P<0.0001) 28 days after the boost. Geometric mean anti-PA IgG concentration (GMC) was 1.66 μg/mL before and 887.82 μg/mL after the boost (P<0.0001). The proportion of individuals with four-fold increase in GMC following the boost ranged from 93.8% to 100%. Robust anti-PA IgG levels and B. anthracis lethal toxin neutralization activity are induced when an AVA dose is delayed as long as two years. These data support continuing with the vaccination schedule when a dose is delayed as long as two years rather than restarting the series. Published by Elsevier Ltd.
Zwaveling, Sander; Ferreira Mota, Sandra C; Nouta, Jan; Johnson, Mark; Lipford, Grayson B; Offringa, Rienk; van der Burg, Sjoerd H; Melief, Cornelis J M
2002-07-01
Peptide-based vaccines aimed at the induction of effective T cell responses against established cancers have so far only met with limited clinical success and clearly need to be improved. In a preclinical model of human papillomavirus (HPV)16-induced cervical cancer we show that prime-boost vaccinations with the HPV16-derived 35 amino-acid long peptide E7(43-77), containing both a CTL epitope and a Th epitope, resulted in the induction of far more robust E7-specific CD8(+) T cell responses than vaccinations with the minimal CTL epitope only. We demonstrate that two distinct mechanisms are responsible for this effect. First, vaccinations with the long peptide lead to the generation of E7-specific CD4(+) Th cells. The level of the induced E7-specific CD8(+) T cell response proved to be dependent on the interactions of these Th cells with professional APC. Second, we demonstrate that vaccination with the long peptide and dendritic cell-activating agents resulted in a superior induction of E7-specific CD8(+) T cells, even when T cell help was excluded. This suggests that, due to its size, the long peptide was preferably endocytosed, processed, and presented by professional APCs. Moreover, the efficacy of this superior HPV-specific T cell induction was demonstrated in therapeutic prime-boost vaccinations in which the long peptide admixed with the dendritic cell-activating adjuvant oligodeoxynucleotide-CpG resulted in the eradication of large, established HPV16-expressing tumors. Because the vaccine types used in this study are easy to prepare under good manufacturing practice conditions and are safe to administer to humans, these data provide important information for future clinical trials.
Chit, Ayman; Zivaripiran, Hossein; Shin, Thomas; Lee, Jason K. H.; Tomovici, Antigona; Macina, Denis; Johnson, David R.; Decker, Michael D.; Wu, Jianhong
2018-01-01
Background Acellular pertussis vaccine studies postulate that waning protection, particularly after the adolescent booster, is a major contributor to the increasing US pertussis incidence. However, these studies reported relative (ie, vs a population given prior doses of pertussis vaccine), not absolute (ie, vs a pertussis vaccine naïve population) efficacy following the adolescent booster. We aim to estimate the absolute protection offered by acellular pertussis vaccines. Methods We conducted a systematic review of acellular pertussis vaccine effectiveness (VE) publications. Studies had to comply with the US schedule, evaluate clinical outcomes, and report VE over discrete time points. VE after the 5-dose childhood series and after the adolescent sixth-dose booster were extracted separately and pooled. All relative VE estimates were transformed to absolute estimates. VE waning was estimated using meta-regression modeling. Findings Three studies reported VE after the childhood series and four after the adolescent booster. All booster studies reported relative VE (vs acellular pertussis vaccine-primed population). We estimate initial childhood series absolute VE is 91% (95% CI: 87% to 95%) and declines at 9.6% annually. Initial relative VE after adolescent boosting is 70% (95% CI: 54% to 86%) and declines at 45.3% annually. Initial absolute VE after adolescent boosting is 85% (95% CI: 84% to 86%) and declines at 11.7% (95% CI: 11.1% to 12.3%) annually. Interpretation Acellular pertussis vaccine efficacy is initially high and wanes over time. Observational VE studies of boosting failed to recognize that they were measuring relative, not absolute, VE and the absolute VE in the boosted population is better than appreciated. PMID:29912887
Penkert, Rhiannon R; Young, Neal S; Surman, Sherri L; Sealy, Robert E; Rosch, Jason; Dormitzer, Philip R; Settembre, Ethan C; Chandramouli, Sumana; Wong, Susan; Hankins, Jane S; Hurwitz, Julia L
2017-06-22
Parvovirus B19 infections are typically mild in healthy individuals, but can be life threatening in individuals with sickle cell disease (SCD). A Saccharomyces cerevisiae-derived B19 VLP vaccine, now in pre-clinical development, is immunogenic in wild type mice when administered with the adjuvant MF59. Because SCD alters the immune response, we evaluated the efficacy of this vaccine in a mouse model for SCD. Vaccinated mice with SCD demonstrated similar binding and neutralizing antibody responses to those of heterozygous littermate controls following a prime-boost-boost regimen. Due to the lack of a mouse parvovirus B19 challenge model, we employed a natural mouse pathogen, Sendai virus, to evaluate SCD respiratory tract responses to infection. Normal mucosal and systemic antibody responses were observed in these mice. Results demonstrate that mice with SCD can respond to a VLP vaccine and to a respiratory virus challenge, encouraging rapid development of the B19 vaccine for patients with SCD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C
2015-01-01
Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854
Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C
2016-02-01
Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.
The Human Immunodeficiency Virus (HIV) vaccine trial, RV144, employed a priming Canarypox-based vector, ALVAC-HIV, along with a boost composed of segments of the HIV envelope protein, gp120, with the adjuvant alum. Results from the trial suggested the vaccine provided protection and, because of the importance of antibodies to that protection, using an adjuvant that could elicit a stronger immune response might improve efficacy.
Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M
2016-01-01
The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.
Hamad, Mustafa; Amen, Omar; Mahmoud, Mohamed; Hassanin, Ola; Saif-Edin, Mostafa
2018-06-01
Avian influenza (AI) vaccines are widely used to control and eliminate the ongoing avian influenza virus epidemic in Egypt. A strict vaccination policy with inactivated AI vaccines has been widely applied, however the virus still circulating, evolving and causing great negative impact to the poultry sector in Egypt. Therefore, an updated poultry vaccination policy using different vaccine technologies might be valuable as an innovative additional control strategy of AIV in Egypt. In the present study, the effectiveness of different avian influenza (AI) vaccination schedules was evaluated in 300 commercial layer chicks (ISA White) using either the oil-emulsion baculovirus-H5-prototype vaccine (baculovirus-H5 prototype) or turkey herpesvirus (HVT) vector vaccine containing the hemagglutinin (HA) gene from H5N1 strain (rHVT-H5), applied alone or in combination and in different settings. Vaccination with either two injections of the baculovirus-H5 prototype, a single injection of rHVT-H5 or priming with rHVT-H5 at 1 day old followed by boosting with the baculovirus-H5 prototype induced AI-HI protective antibody responses starting as early as 3 to 4 weeks of age and lasting up to the end of the rearing period (16 weeks). A single vaccination with the baculovirus-H5 prototype did not generate a protective antibody titre for the entire rearing period. Furthermore, the present study elucidated that vaccination once or twice with the baculovirus-H5 vaccine prototype activated the chicken interferon-alpha (Ch-IFN-alpha) signalling pathway via transduction of antiviral components, e.g., Mx1 and IRF7. Birds immunized once with rHVT-H5 at 1 day old did not show activation of the Mx1 and IRF7 transcripts; however, following boosting with the baculovirus-H5 prototype vaccine, up-regulation of Mx1 and IRF7 was observed. Based on our findings, it can be concluded that either reinforcement with two injections of the baculovirus-H5 prototype or prime-boost vaccination (rHVT-H5 at 1 day old followed by the baculovirus-H5 prototype vaccine at 8 days old) is a successful strategy to induce both innate and humoral immune responses and could be recommended for the layer production sector over the entire rearing period, especially in AI-endemic areas.
Malkevitch, Nina V; Patterson, L Jean; Aldrich, M Kristine; Wu, Yichen; Venzon, David; Florese, Ruth H; Kalyanaraman, V S; Pal, Ranajit; Lee, Eun Mi; Zhao, Jun; Cristillo, Anthony; Robert-Guroff, Marjorie
2006-09-15
Previously, priming with replication-competent adenovirus-SIV multigenic vaccines and boosting with envelope subunits strongly protected 39% of rhesus macaques against rectal SIV(mac251) challenge. To evaluate protection durability, eleven of the protected and two SIV-infected unimmunized macaques that controlled viremia were re-challenged rectally with SIV(mac251). Strong protection was observed in 8/11 vaccinees, including two exhibiting <50 SIV RNA copies. Decreased viremia compared to naïve controls was observed in the other three. The SIV-infected unimmunized macaques modestly controlled viremia but exhibited CD4 counts < or =200, unlike the protected macaques. Durable protection was associated with significantly increased SIV-specific ELISPOT responses and lymphoproliferative responses to p27 at re-challenge. After CD8 depletion, 2 of 8 re-challenged, protected vaccinees maintained <50 SIV RNA copies; SIV RNA emerged in 6. Re-appearance of CD8 cells and restoration of SIV-specific cellular immunity coincided with viremia suppression. Overall, cellular immunity induced by vaccination and/or low-level, inapparent viremia post-first SIV(mac251) challenge, was associated with durable protection against re-challenge.
Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T
2017-07-03
A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malouli, Daniel; Hansen, Scott G.; Nakayasu, Ernesto S.
The tegument phosphoprotein pp65 (UL83) is the most abundant virion protein in human cytomegalovirus (HCMV). Since pp65 is immunodominant in persistently infected individuals, subunit vaccines against HCMV often include pp65 as T cell stimulatory component. Although HCMV pp65 is non-essential for viral growth in vitro it is thought to have an important role in primary and persistent infection since pp65 displays multiple immunomodulatory functions. To determine whether pp65 is required for infection and to evaluate its role in natural and vaccination-induced immunity we generated a rhesus CMV lacking both homologues, pp65a (Rh111) and pp65b (Rh112). Lack of pp65 resulted inmore » a slight growth defect in vitro and an increase of defective particle formation. However, most pp65-deleted virions in the supernatant were phenotypically normal and proteomics analysis revealed that the ratios of the remaining viral proteins were largely unchanged. RhCMV Δpp65ab was able to persistently infect CMV-negative rhesus macaques (RM) and to super-infect RM previously infected with CMV. To determine whether T cells against pp65 are essential for protection against CMV, we challenged Δpp65ab-infected animals with RhCMV ΔUS2-11, a viral recombinant that lacks inhibitors of MHC-I antigen presentation and is thus unable to overcome CMV-specific T cell immunity. Despite a complete lack of pp65-specific T cells, Δpp65ab protected against ΔUS2-11 challenge suggesting that pp65-specific T cells are not essential for T cell immunity against CMV. Using the same approach we further demonstrate that pp65b-specific T cells, induced by heterologous prime/boost vaccination, are not sufficient to protect against ΔUS2-11 challenge. Our data provides a new approach to test the efficacy of subunit vaccine candidates and suggest that pp65 vaccines are insufficient to induce a T cell response that recapitulates the protective effect of natural infection.« less
Aparicio-Burgos, José E.; Ochoa-García, Laucel; Zepeda-Escobar, José Antonio; Gupta, Shivali; Dhiman, Monisha; Martínez, José Simón; de Oca-Jiménez, Roberto Montes; Arreola, Margarita Val; Barbabosa-Pliego, Alberto; Vázquez-Chagoyán, Juan C.; Garg, Nisha Jain
2011-01-01
Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States. Methods We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology. Results Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations. Conclusions Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease. PMID:21625470
Kammoun, Hana; Roux, Xavier; Raze, Dominique; Debrie, Anne-Sophie; De Filette, Marina; Ysenbaert, Tine; Mielcarek, Nathalie; Saelens, Xavier; Fiers, Walter; Locht, Camille
2013-01-01
Background Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. Methodology/Principal Findings We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA) and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. Conclusions/Significance Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza. PMID:23555631
USDA-ARS?s Scientific Manuscript database
We previously demonstrated that chickens primed with a recombinant Newcastle disease virus LaSota (rLS) expressing the S2 gene of infectious bronchitis virus (IBV) and boosted with an attenuated IBV Massachusetts (Mass)-type vaccine were protected against IBV Arkansas (Ark)-type virulent challenge. ...
Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice.
Alvarez, M Lucrecia; Pinyerd, Heidi L; Crisantes, Jason D; Rigano, M Manuela; Pinkhasov, Julia; Walmsley, Amanda M; Mason, Hugh S; Cardineau, Guy A
2006-03-24
Yersinia pestis, the causative agent of plague, is an extremely virulent bacterium but there are no approved vaccines for protection against it. Our goal was to produce a vaccine that would address: ease of delivery, mucosal efficacy, safety, rapid scalability, and cost. We developed a novel production and delivery system for a plague vaccine of a Y. pestis F1-V antigen fusion protein expressed in tomato. Immunogenicity of the F1-V transgenic tomatoes was confirmed in mice that were primed subcutaneously with bacterially-produced F1-V and boosted orally with transgenic tomato fruit. Expression of the plague antigens in fruit allowed producing an oral vaccine candidate without protein purification and with minimal processing technology.
Amemiya, Kei; Meyers, Jennifer L; Rogers, Taralyn E; Fast, Randy L; Bassett, Anthony D; Worsham, Patricia L; Powell, Bradford S; Norris, Sarah L; Krieg, Arthur M; Adamovicz, Jeffrey J
2009-04-06
The current U.S. Department of Defense candidate plague vaccine is a fusion between two Yersinia pestis proteins: the F1 capsular protein, and the low calcium response (Lcr) V-protein. We hypothesized that an immunomodulator, such as CpG oligodeoxynucleotide (ODN)s, could augment the immune response to the plague F1-V vaccine in a mouse model for plague. CpG ODNs significantly augmented the antibody response and efficacy of a single dose of the plague vaccine in murine bubonic and pneumonic models of plague. In the latter study, we also found an overall significant augmentation the immune response to the individual subunits of the plague vaccine by CpG ODN 2006. In a long-term, prime-boost study, CpG ODN induced a significant early augmentation of the IgG response to the vaccine. The presence of CpG ODN induced a significant increase in the IgG2a subclass response to the vaccine up to 5 months after the boost. Our studies showed that CpG ODNs significantly augmented the IgG antibody response to the plague vaccine, which increased the probability of survival in murine models of plague (P<0.0001).
Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R.; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J. Ignacio; Esteban, Mariano
2012-01-01
With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8+ T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria. PMID:22529915
Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano
2012-01-01
With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.
Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J
2016-01-01
Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.
Dhakal, Santosh; Hiremath, Jagadish; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Binjawadagi, Basavaraj; Goodman, Jonathan; Tabynov, Kairat; Krakowka, Steven; Narasimhan, Balaji; Lee, Chang Won; Renukaradhya, Gourapura J
2017-02-10
Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
The future of human DNA vaccines
Li, Lei; Saade, Fadi; Petrovsky, Nikolai
2012-01-01
DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including “epigenetics” and “omics” approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans PMID:22981627
Naked DNA Immunization for Prevention of Prostate Cancer in a Dunning Rat Prostate Tumor Model
2005-06-01
immunized with H PSA-T or H PSMA-T developed antibodies against the target antigen. In contrast, immunization with the "secreted" vaccines, HPSMA-S or...HPSA-S resulted in production of antibodies against the target antigen. The antibodies were of mixed (Thl and Th2) type (IgGl and IgG2a). When priming...was performed with the "truncated" version of the vaccines (H PSMA-T or H PSA-T), however and boosting with the "secreted" ones, the antibodies were
Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio
2007-02-01
Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.
Roy-Ghanta, Sumita; Van der Most, Robbert; Li, Ping; Vaughn, David W.
2014-01-01
Background. Prior receipt of a trivalent seasonal influenza vaccine (TIV) can affect hemagglutination inhibition (HI) antibody responses to pandemic influenza vaccines. We investigated the effect of TIV priming on humoral responses to AS03-adjuvanted and nonadjuvanted A(H1N1)pdm09 vaccines, the role of AS03 on cell-mediated immune (CMI) responses, and vaccine safety. Methods. Healthy adults (aged 19–40 years) were randomized 1:1:1:1 to receive TIV or saline followed 4 months later by 2 doses, 3 weeks apart, of adjuvanted or nonadjuvanted A(H1N1)pdm09 vaccine and followed up to study end (day 507). Pre- and postvaccination responses of HI and neutralizing antibody, CD4+/CD8+ T cells, memory B cells, and plasmablasts were assessed. Results. Ninety-nine of the 133 participants enrolled completed the study. No vaccine-related serious adverse events were recorded. In TIV-primed participants, A(H1N1)pdm09-specific antibody and CD4+ T-cell and memory B-cell responses to the pandemic vaccine tended to be diminished. Vaccine adjuvantation led to increased responses of vaccine-homologous and -heterologous HI and neutralizing antibodies and CD4+ T cells, homologous memory B cells, and plasmablasts. Conclusions. In healthy adults, prior TIV administration decreased humoral and CMI responses to A(H1N1)pdm09 vaccine. Adjuvantation of A(H1N1)pdm09 antigen helped to overcome immune interference between the influenza vaccines. No safety concerns were observed. Registration. Clinical Trials.gov identifier NCT00707967. PMID:24864125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre
2007-01-20
The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNAmore » in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.« less
Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment.
Ferguson, Neil M; Rodríguez-Barraquer, Isabel; Dorigatti, Ilaria; Mier-Y-Teran-Romero, Luis; Laydon, Daniel J; Cummings, Derek A T
2016-09-02
The first approved dengue vaccine has now been licensed in six countries. We propose that this live attenuated vaccine acts like a silent natural infection in priming or boosting host immunity. A transmission dynamic model incorporating this hypothesis fits recent clinical trial data well and predicts that vaccine effectiveness depends strongly on the age group vaccinated and local transmission intensity. Vaccination in low-transmission settings may increase the incidence of more severe "secondary-like" infection and, thus, the numbers hospitalized for dengue. In moderate transmission settings, we predict positive impacts overall but increased risks of hospitalization with dengue disease for individuals who are vaccinated when seronegative. However, in high-transmission settings, vaccination benefits both the whole population and seronegative recipients. Our analysis can help inform policy-makers evaluating this and other candidate dengue vaccines. Copyright © 2016, American Association for the Advancement of Science.
Nilsson, Charlotta; Hejdeman, Bo; Godoy-Ramirez, Karina; Tecleab, Teghesti; Scarlatti, Gabriella; Bråve, Andreas; Earl, Patricia L; Stout, Richard R; Robb, Merlin L; Shattock, Robin J; Biberfeld, Gunnel; Sandström, Eric; Wahren, Britta
2015-01-01
We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. International Standard Randomised Controlled Trial Number (ISRCTN) 60284968.
Nilsson, Charlotta; Hejdeman, Bo; Godoy-Ramirez, Karina; Tecleab, Teghesti; Scarlatti, Gabriella; Bråve, Andreas; Earl, Patricia L.; Stout, Richard R.; Robb, Merlin L.; Shattock, Robin J.; Biberfeld, Gunnel; Sandström, Eric; Wahren, Britta
2015-01-01
Background We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. Methods HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. Results The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. Conclusion Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. Trial Registration International Standard Randomised Controlled Trial Number (ISRCTN) 60284968 PMID:26121679
Neonatal Immunization: Rationale, Current State, and Future Prospects.
Whittaker, Elizabeth; Goldblatt, David; McIntyre, Peter; Levy, Ofer
2018-01-01
Infections take their greatest toll in early life necessitating robust approaches to protect the very young. Here, we review the rationale, current state, and future research directions for one such approach: neonatal immunization. Challenges to neonatal immunization include natural concern about safety as well as a distinct neonatal immune system that is generally polarized against Th1 responses to many stimuli such that some vaccines that are effective in adults are not in newborns. Nevertheless, neonatal immunization could result in high-population penetration as birth is a reliable point of healthcare contact, and offers an opportunity for early protection of the young, including preterm newborns who are deficient in maternal antibodies. Despite distinct immunity and reduced responses to some vaccines, several vaccines have proven safe and effective at birth. While some vaccines such as polysaccharide vaccines have little effectiveness at birth, hepatitis B vaccine can prime at birth and requires multiple doses to achieve protection, whereas the live-attenuated Bacille Calmette-Guérin (BCG), may offer single shot protection, potentially in part via heterologous ("non-specific") beneficial effects. Additional vaccines have been studied at birth including those directed against pertussis, pneumococcus, Haemophilus influenza type B and rotavirus providing important lessons. Current areas of research in neonatal vaccinology include characterization of early life immune ontogeny, heterogeneity in and heterologous effects of BCG vaccine formulations, applying systems biology and systems serology, in vitro platforms that model age-specific human immunity and discovery and development of novel age-specific adjuvantation systems. These approaches may inform, de-risk, and accelerate development of novel vaccines for use in early life. Key stakeholders, including the general public, should be engaged in assessing the opportunities and challenges inherent to neonatal immunization.
Neonatal Immunization: Rationale, Current State, and Future Prospects
Whittaker, Elizabeth; Goldblatt, David; McIntyre, Peter; Levy, Ofer
2018-01-01
Infections take their greatest toll in early life necessitating robust approaches to protect the very young. Here, we review the rationale, current state, and future research directions for one such approach: neonatal immunization. Challenges to neonatal immunization include natural concern about safety as well as a distinct neonatal immune system that is generally polarized against Th1 responses to many stimuli such that some vaccines that are effective in adults are not in newborns. Nevertheless, neonatal immunization could result in high-population penetration as birth is a reliable point of healthcare contact, and offers an opportunity for early protection of the young, including preterm newborns who are deficient in maternal antibodies. Despite distinct immunity and reduced responses to some vaccines, several vaccines have proven safe and effective at birth. While some vaccines such as polysaccharide vaccines have little effectiveness at birth, hepatitis B vaccine can prime at birth and requires multiple doses to achieve protection, whereas the live-attenuated Bacille Calmette–Guérin (BCG), may offer single shot protection, potentially in part via heterologous (“non-specific”) beneficial effects. Additional vaccines have been studied at birth including those directed against pertussis, pneumococcus, Haemophilus influenza type B and rotavirus providing important lessons. Current areas of research in neonatal vaccinology include characterization of early life immune ontogeny, heterogeneity in and heterologous effects of BCG vaccine formulations, applying systems biology and systems serology, in vitro platforms that model age-specific human immunity and discovery and development of novel age-specific adjuvantation systems. These approaches may inform, de-risk, and accelerate development of novel vaccines for use in early life. Key stakeholders, including the general public, should be engaged in assessing the opportunities and challenges inherent to neonatal immunization. PMID:29670610
Ault, Alida; Zajac, Alyse M.; Kong, Wing-Pui; Gorres, J. Patrick; Royals, Michael; Wei, Chih-Jen; Bao, Saran; Yang, Zhi-yong; Reedy, Stephanie E.; Sturgill, Tracy L.; Page, Allen E.; Donofrio-Newman, Jennifer; Adams, Amanda A.; Balasuriya, Udeni B.R.; Horohov, David W.; Chambers, Thomas M.; Nabel, Gary J.; Rao, Srinivas S.
2012-01-01
Equine influenza A (H3N8) virus is a leading cause of infectious respiratory disease in horses causing widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, requiring constant re-evaluation of current vaccines and development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against multiple strains and require frequent boosts. Ongoing research into new vaccine technologies, including gene-based vaccines, aims to increase the neutralization potency, breadth, and duration of protective immunity of new or existing vaccines. In these hypothesis-generating experiments, we demonstrate that a DNA vaccine expressing the hemagglutinin protein of equine H3N8 influenza virus generates homologous and heterologous immune responses, and protects against clinical disease and viral replication following homologous H3N8 infection in horses. Furthermore, we demonstrate that a needle-free delivery device is as efficient and effective as conventional parenteral injection using a needle and syringe. The observed trends in this study drive the hypothesis that DNA vaccines offer a safe, effective, and promising alternative approach for veterinary vaccines against influenza, and applicable to combat equine influenza. PMID:22449425
Viegas, Edna Omar; Tembe, Nelson; Nilsson, Charlotta; Meggi, Bindiya; Maueia, Cremildo; Augusto, Orvalho; Stout, Richard; Scarlatti, Gabriella; Ferrari, Guido; Earl, Patricia L; Wahren, Britta; Andersson, Sören; Robb, Merlin L; Osman, Nafissa; Biberfeld, Gunnel; Jani, Ilesh; Sandström, Eric
2017-11-27
We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 10 8 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.
Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine
Fuery, Angela; Richmond, Peter C.; Currie, Andrew J.
2015-01-01
Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men) C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT) carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA) assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months) were significantly associated with post-boost (13 months) SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months) and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12. Conclusion: Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming. PMID:26191794
Sedegah, Martha; Hollingdale, Michael R; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Huang, Jun; Abot, Esteban; Limbach, Keith; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E; Villasante, Eileen
2015-01-01
We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.
Shrestha, Bimmi; Ng, Terry; Chu, Hsien-Jue; Noll, Michelle; Diamond, Michael S
2008-04-07
West Nile virus (WNV) is a mosquito borne, neurotropic flavivirus that causes a severe central nervous system (CNS) infection in humans and animals. Although commercial vaccines are available for horses, none is currently approved for human use. In this study, we evaluated the efficacy and mechanism of immune protection of two candidate WNV vaccines in mice. A formalin-inactivated WNV vaccine induced higher levels of specific and neutralizing antibodies compared to a DNA plasmid vaccine that produces virus-like particles. Accordingly, partial and almost complete protection against a highly stringent lethal intracranial WNV challenge were observed in mice 60 days after single dose immunization with the DNA plasmid and inactivated virus vaccines, respectively. In mice immunized with a single dose of DNA plasmid or inactivated vaccine, antigen-specific CD8(+) T cells were induced and contributed to protective immunity as acquired or genetic deficiencies of CD8(+) T cells lowered the survival rates. In contrast, in boosted animals, WNV-specific antibody titers were higher, survival rates after challenge were greater, and an absence of CD8(+) T cells did not appreciably affect mortality. Overall, our experiments suggest that in mice, both inactivated WNV and DNA plasmid vaccines are protective after two doses, and the specific contribution of antibody and CD8(+) T cells to vaccine immunity against WNV is modulated by the prime-boost strategy.
Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.
Zhou, Yan; Sullivan, Nancy J
2015-08-01
The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.
Popova, P Yu; Mikshis, N I
2016-01-01
Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.
Stoyanov, Cristina T; Boscardin, Silvia B; Deroubaix, Stephanie; Barba-Spaeth, Giovanna; Franco, David; Nussenzweig, Ruth S; Nussenzweig, Michel; Rice, Charles M
2010-06-23
The live-attenuated yellow fever vaccine (YF17D) is one of the safest and most effective vaccines available today. Here, YF17D was genetically altered to express the circumsporozoite protein (CSP) from the murine malarial parasite Plasmodium yoelii. Reconstituted recombinant virus was viable and exhibited robust CSP expression. Immunization of naïve mice resulted in extensive proliferation of adoptively transferred CSP-specific transgenic CD8(+) T-cells. A single immunization of naïve mice with recombinant YF17D resulted in robust production of IFN-gamma by CD8(+) T-cells and IFN-gamma and IL-2 by CD4(+) T-cells. A prime-boost regimen consisting of recombinant virus followed by a low-dose of irradiated sporozoites conferred protection against challenge with P. yoelii. Taken together, these results show that recombinant YF17D can efficiently express CSP in culture, and prime a protective immune response in vivo. (c) 2010 Elsevier Ltd. All rights reserved.
Gauger, Phillip C; Vincent, Amy L; Loving, Crystal L; Lager, Kelly M; Janke, Bruce H; Kehrli, Marcus E; Roth, James A
2011-03-24
Influenza is an economically important respiratory disease affecting swine world-wide with potential zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically distinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the increased rate of genetic change and a potential lack of cross-protection between vaccine strains and circulating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were administered an inactivated H1N2 vaccine with a human-like (δ-cluster) H1 six and three weeks before challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions. Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pandemic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do not share cross-reacting HI or SN antibodies. Published by Elsevier Ltd.
Yang, Ji-Rong; Chen, Chih-Yuan; Kuo, Chuan-Yi; Cheng, Chieh-Yu; Lee, Min-Shiuh; Cheng, Ming-Chu; Yang, Yu-Chih; Wu, Chia-Ying; Wu, Ho-Sheng; Liu, Ming-Tsan; Hsiao, Pei-Wen
2016-02-01
Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development. Copyright © 2015 Elsevier B.V. All rights reserved.
Joseph, Sarah; Quinn, Killian; Greenwood, Aldona; Cope, Alethea V.; McKay, Paul F.; Hayes, Peter J.; Kopycinski, Jakub T.; Gilmour, Jill; Miller, Aleisha N.; Geldmacher, Christof; Nadai, Yuka; Ahmed, Mohamed I. M.; Montefiori, David C.; Dally, Len; Bouliotis, George; Lewis, David J. M.; Tatoud, Roger; Wagner, Ralf; Esteban, Mariano; Shattock, Robin J.; McCormack, Sheena; Weber, Jonathan
2017-01-01
There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen. PMID:28275375
Salem, Mohamed L.; Díaz-Montero, C. Marcela; Al-Khami, Amir A.; El-Naggar, Sabry A.; Naga, Osama; Montero, Alberto J.; Khafagy, Ahmed; Cole, David J.
2011-01-01
Recent preclinical studies suggest that vaccination following adoptive transfer of CD8+ T cells into a lymphopenic host can augment the therapeutic antitumor responses of the transferred cells. However, the mechanism by which the lymphopenic microenvironment benefits Ag-specific CD8+ T cell responses remains elusive. We show herein that induction of lymphodepletion by a single 4 mg cyclophosphamide (CTX) treatment induces a marked expansion of immature dendritic cells (DCs) in the peripheral blood on days 8–16 post-CTX (termed restoration phase). In vitro, these DCs were functional, because they showed normal phagocytosis and effective Ag presentation capability upon activation. In vivo, administration of the TLR3 agonist poly(I:C) at the peak of DC expansion (day 12 postlymphopenia) induced inflammatory cytokine production and increases in the number of activated DCs in lymph nodes. Importantly, boosting with gp10025–33 melanoma peptide combined with poly(I:C) 12 days after an initial priming with the same regimen significantly increased the expansion and the antitumor efficacy of adoptively transferred pmel-1 CD8+ T cells. These responses were abrogated after depletion of activated DCs during Ag boosting. In conclusion, our data show that CTX treatment induces, during the restoration phase, expansion of immature DCs, which are functional and can be exploited in vivo to foster more effective antitumor adoptive immunotherapy strategies. PMID:19201856
USDA-ARS?s Scientific Manuscript database
Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has spread throu...
Options and obstacles for designing a universal influenza vaccine.
Jang, Yo Han; Seong, Baik Lin
2014-08-18
Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine.
Options and Obstacles for Designing a Universal Influenza Vaccine
Jang, Yo Han; Seong, Baik Lin
2014-01-01
Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine. PMID:25196381
Archer, B. G.; Dierks, R. E.
1968-01-01
Heterologous antirabies serum is commonly used in the treatment of persons exposed to rabies. However, the high incidence of serum sickness which accompanies its use has prompted work to develop a homologous human product. As human antirabies serum is expensive and difficult to obtain in large quantities, a series of experiments was done on guinea-pigs to test the effects of homologous and heterologous antirabies serum. Similar amounts of homologous and heterologous antisera administered to guinea-pigs produced similar circulating neutralization titres one day later. The homologous antibody titres, however, decreased more slowly than the heterologous antibody titres. When homologous antiserum was given, followed by duck-embryo rabies vaccine, an apparent response to the vaccine was suppressed or delayed longer than when heterologous antiserum and vaccine were administered. However, when homologous antiserum was given with suckling-mouse-brain vaccine, of a much higher potency, the response to vaccine was apparent in the presence of a passive titre of 1:120. If a similar relationship is seen in man with the use of a homologous antirabies product, it will be essential to use high potency vaccines or alter the established vaccination schedules in order to overcome the inherent interference problems. PMID:5303907
Simmons, Monika; Porter, Kevin R; Hayes, Curtis G; Vaughn, David W; Putnak, Robert
2006-10-01
We evaluated three nonreplicating dengue virus type 2 (DENV-2) vaccines: (i) a DNA vaccine containing the prM-E gene region (D), (ii) a recombinant subunit protein vaccine containing the B domain (i.e., domain III) of the E protein as a fusion with the Escherichia coli maltose-binding protein (R), and (iii) a purified inactivated virus vaccine (P). Groups of four rhesus macaques each were primed once and boosted twice using seven different vaccination regimens. After primary vaccination, enzyme-linked immunosorbent assay (ELISA) antibody levels increased most rapidly for groups inoculated with the P and DP combination, and by 1 month after the second boost, ELISA titers were similar for all groups. The highest plaque reduction neutralization test (PRNT) titers were seen in those groups that received the DR/DR/DR combination (geometric mean titer [GMT], 510), the P/P/P vaccine (GMT, 345), the DP/DP/DP combination (GMT, 287), and the R/R/R vaccine (GMT, 200). The next highest titers were seen in animals that received the D/R/R vaccine (GMT, 186) and the D/P/P vaccine (GMT, 163). Animals that received the D/D/D vaccine had the lowest neutralizing antibody titer (GMT, 49). Both ELISA and PRNT titers declined at variable rates. The only significant protection from viremia was observed in the P-vaccinated animals (mean of 0.5 days), which also showed the highest antibody concentration, including antibodies to NS1, and highest antibody avidity at the time of challenge.
The future of human DNA vaccines.
Li, Lei; Saade, Fadi; Petrovsky, Nikolai
2012-12-31
DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.
Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc
2008-03-25
This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.
Breard, Emmanuel; Belbis, Guillaume; Viarouge, Cyril; Nomikou, Kyriaki; Haegeman, Andy; De Clercq, Kris; Hudelet, Pascal; Hamers, Claude; Moreau, Francis; Lilin, Thomas; Durand, Benoit; Mertens, Peter; Vitour, Damien; Sailleau, Corinne; Zientara, Stéphan
2015-01-15
Eradication of bluetongue virus is possible, as has been shown in several European countries. New serotypes have emerged, however, for which there are no specific commercial vaccines. This study addressed whether heterologous vaccines would help protect against 2 serotypes. Thirty-seven sheep were randomly allocated to 7 groups of 5 or 6 animals. Four groups were vaccinated with commercial vaccines against BTV strains 2, 4, and 9. A fifth positive control group was given a vaccine against BTV-8. The other 2 groups were unvaccinated controls. Sheep were then challenged by subcutaneous injection of either BTV-16 (2 groups) or BTV-8 (5 groups). Taken together, 24/25 sheep from the 4 experimental groups developed detectable antibodies against the vaccinated viruses. Furthermore, sheep that received heterologous vaccines showed significantly reduced viraemia and clinical scores for BTV-16 when compared to unvaccinated controls. Reductions in clinical signs and viraemia among heterologously vaccinated sheep were not as common after challenge with BTV-8. This study shows that heterologous protection can occur, but that it is difficult to predict if partial or complete protection will be achieved following inactivated-BTV vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.
A 2020 vision for vaccines against HIV, tuberculosis and malaria.
Rappuoli, Rino; Aderem, Alan
2011-05-26
Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.
Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders
2017-11-17
The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.
Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys
Reed, Steven G.; Coler, Rhea N.; Dalemans, Wilfried; Tan, Esterlina V.; DeLa Cruz, Eduardo C.; Basaraba, Randall J.; Orme, Ian M.; Skeiky, Yasir A. W.; Alderson, Mark R.; Cowgill, Karen D.; Prieels, Jean-Paul; Abalos, Rodolfo M.; Dubois, Marie-Claude; Cohen, Joe; Mettens, Pascal; Lobet, Yves
2009-01-01
The development of a vaccine for tuberculosis requires a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. We evaluated Mtb72F formulated in AS02A in the cynomolgus monkey model. The vaccine was immunogenic and caused no adverse reactions. When monkeys were immunized with bacillus Calmette–Guérin (BCG) and then boosted with Mtb72F in AS02A, protection superior to that afforded by using BCG alone was achieved, as measured by clinical parameters, pathology, and survival. We observed long-term survival and evidence of reversal of disease progression in monkeys immunized with the prime-boost regimen. Antigen-specific responses from protected monkeys receiving BCG and Mtb72F/AS02A had a distinctive cytokine profile characterized by an increased ratio between 3 Th1 cytokines, IFN-γ, TNF, and IL-2 and an innate cytokine, IL-6. To our knowledge, this is an initial report of a vaccine capable of inducing long-term protection against tuberculosis in a nonhuman primate model, as determined by protection against severe disease and death, and by other clinical and histopathological parameters. PMID:19188599
A New Genetic Vaccine Platform Based on an Adeno-Associated Virus Isolated from a Rhesus Macaque ▿
Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H.; Bell, Peter; Somanathan, Suryanarayan; Wilson, James M.
2009-01-01
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8+ T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8+ T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses. PMID:19812149
Maeto, Cynthia; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, María Magdalena
2014-01-01
Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.
Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.
Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay
2013-06-28
Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Diversion of HIV-1 Vaccine-induced Immunity by gp41-Microbiota Cross-reactive Antibodies
Williams, Wilton B; Liao, Hua-Xin; Moody, M. Anthony; Kepler, Thomas B.; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M.; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E.; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C.; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, Julie; Mascola, John R.; Koup, Richard A; Corey, Lawrence; Nabel, Gary J.; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S.; Baden, Lindsey R.; Tomaras, Georgia D.; Haynes, Barton F.
2015-01-01
A HIV-1 DNA prime-recombinant Adenovirus Type 5 (rAd5) boost vaccine failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells was to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies (mAbs) were non-neutralizing, and frequently polyreactive with host and environmental antigens including intestinal microbiota (IM). Next generation sequencing of an IGHV repertoire prior to vaccination revealed an Env-IM cross-reactive Ab that was clonally-related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. PMID:26229114
Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine.
Kreutzfeld, Oriana; Müller, Katja; Matuschewski, Kai
2017-01-01
Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.
Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo
2010-04-01
Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.
Liu, Zhihua; Li, Min; Liu, Haitao
2018-01-01
Zika virus (ZIKV) has caused great public concerns due to its recent large outbreaks and a close association with microcephaly in fetus and Guillain-Barre syndrome in adults. Rapid development of vaccines against ZIKV is a public health priority. To this end, we have constructed and purified recombinant ZIKV envelope protein using both prokaryotic and eukaryotic expression systems, and then tested their immunogenicity and protective efficacy in immune competent mice. Both protein immunogens elicited humoral and cellular immune responses, and protected immune competent mice from ZIKV challenge in vivo. These products could be further evaluated either as stand-alone vaccine candidate, or used in a prime-and-boost regimen with other forms of ZIKV vaccine. PMID:29590178
Prevention of bubonic and pneumonic plague using plant-derived vaccines.
Alvarez, M Lucrecia; Cardineau, Guy A
2010-01-01
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1-V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.
Gabitzsch, Elizabeth S; Balint-Junior, Joseph P; Xu, Younong; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Karl, Julie; Weinhold, Kent J; Paessler, Slobodan; Jones, Frank R
2012-11-26
Anti-vector immunity mitigates immune responses induced by recombinant adenovirus vector vaccines, limiting their prime-boost capabilities. We have developed a novel gene delivery and expression platform (Ad5 [E1-, E2b-]) that induces immune responses despite pre-existing and/or developed concomitant Ad5 immunity. In the present study, we evaluated if this new Ad5 platform could overcome the adverse condition of pre-existing Ad5 immunity to induce effective immune responses in prime-boost immunization regimens against two different infectious diseases in the same animal. Ad5 immune rhesus macaques (RM) were immunized multiple times with the Ad5 [E1-, E2b-] platform expressing antigens from simian immunodeficiency virus (SIV). Immunized RM developed cell-mediated immunity against SIV antigens Gag, Pol, Nef and Env as well as antibody against Env. Vaccinated and vector control RMs were challenged intra-rectally with homologous SIVmac239. During a 7-week follow-up, there was perturbation of SIV load in some immunized RM. At 7 weeks post-challenge, eight immunized animals (53%) did not have detectable SIV, compared to two RM controls (13%) (P<0.02; log-rank Mantel-Cox test). There was no correlation of protective MHC contributing to infection control. The RM without detectable circulating SIV, now hyper immune to Ad5, were then vaccinated with the same Ad5 [E1-, E2b-] platform expressing H1N1 influenza hemagglutinin (HA). Thirty days post Ad5 [E1-, E2b-]-HA vaccination, significant levels of influenza neutralizing antibody were induced in all animals that increased after an Ad5 [E1-, E2b-]-HA homologous boost. These data demonstrate the versatility of this new vector platform to immunize against two separate disease targets in the same animal despite the presence of immunity against the delivery platform, permitting homologous repeat immunizations with an Ad5 gene delivery platform. Copyright © 2012 Elsevier Ltd. All rights reserved.
Phillpotts, R J; Wright, A J
1999-02-26
Vaccination with TC-83 virus produced solid protection against subcutaneous challenge with Venezuelan equine encephalitis (VEEV) viruses from homologous and heterologous serogroups, but breakthrough infection and disease occurred after airborne challenge. Breakthrough occurred more often with time after vaccination, and was more frequent with epizootic, homologous serogroup 1A/B viruses than with enzootic, heterologous serogroup viruses. A decrease in VEEV-specific IgA levels in the respiratory tract of vaccinated mice may explain the increased frequency of breakthrough with time after vaccination. However increased breakthrough with the highly virulent homologous serogroup 1A/B viruses (compared to less virulent viruses from heterologous serogroups) may be a consequence of their greater ability to invade the brain via the olfactory neuroepithelium and olfactory nerve.
Poteet, Ethan; Lewis, Phoebe; Li, Feng; Zhang, Sheng; Gu, Jianhua; Chen, Changyi; Ho, Sam On; Do, Thai; Chiang, SuMing; Fujii, Gary; Yao, Qizhi
2015-01-01
HIV virus-like particles (VLPs) present the HIV envelope protein in its native conformation, providing an ideal vaccine antigen. To enhance the immunogenicity of the VLP vaccine, we sought to improve upon two components; the route of administration and the additional adjuvant. Using HIV VLPs, we evaluated sub-cheek as a novel route of vaccine administration when combined with other conventional routes of immunization. Of five combinations of distinct prime and boost sequences, which included sub-cheek, intranasal, and intradermal routes of administration, intranasal prime and sub-cheek boost (IN+SC) resulted in the highest HIV-specific IgG titers among the groups tested. Using the IN+SC regimen we tested the adjuvant VesiVax Conjugatable Adjuvant Lipid Vesicles (CALV) + monophosphoryl lipid A (MPLA) at MPLA concentrations of 0, 7.5, 12.5, and 25 μg/dose in combination with our VLPs. Mice that received 12.5 or 25 μg/dose MPLA had the highest concentrations of Env-specific IgG2c (20.7 and 18.4 μg/ml respectively), which represents a Th1 type of immune response in C57BL/6 mice. This was in sharp contrast to mice which received 0 or 7.5 μg MPLA adjuvant (6.05 and 5.68 μg/ml of IgG2c respectively). In contrast to IgG2c, MPLA had minor effects on Env-specific IgG1; therefore, 12.5 and 25 μg/dose of MPLA induced the optimal IgG1/IgG2c ratio of 1.3. Additionally, the percentage of germinal center B cells increased significantly from 15.4% in the control group to 31.9% in the CALV + 25 μg MPLA group. These mice also had significantly more IL-2 and less IL-4 Env-specific CD8+ T cells than controls, correlating with an increased percentage of Env-specific central memory CD4+ and CD8+ T cells. Our study shows the strong potential of IN+SC as an efficacious route of administration and the effectiveness of VLPs combined with MPLA adjuvant to induce Env specific Th1-oriented HIV-specific immune responses. PMID:26312747
Yeast Surface-Displayed H5N1 Avian Influenza Vaccines
Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey
2016-01-01
Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309
[Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].
Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie
2012-07-01
To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.
Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F
2015-08-14
An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. Copyright © 2015, American Association for the Advancement of Science.
Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.
2016-01-01
The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849
Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej
2017-01-01
The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of H5 subtype-specific neutralizing antibodies in anti-influenza immunity and a novel correlate of protection are indicated. PMID:28212428
Lyke, Kirsten E; Ishizuka, Andrew S; Berry, Andrea A; Chakravarty, Sumana; DeZure, Adam; Enama, Mary E; James, Eric R; Billingsley, Peter F; Gunasekera, Anusha; Manoj, Anita; Li, Minglin; Ruben, Adam J; Li, Tao; Eappen, Abraham G; Stafford, Richard E; Kc, Natasha; Murshedkar, Tooba; Mendoza, Floreliz H; Gordon, Ingelise J; Zephir, Kathryn L; Holman, LaSonji A; Plummer, Sarah H; Hendel, Cynthia S; Novik, Laura; Costner, Pamela J M; Saunders, Jamie G; Berkowitz, Nina M; Flynn, Barbara J; Nason, Martha C; Garver, Lindsay S; Laurens, Matthew B; Plowe, Christopher V; Richie, Thomas L; Graham, Barney S; Roederer, Mario; Sim, B Kim Lee; Ledgerwood, Julie E; Hoffman, Stephen L; Seder, Robert A
2017-03-07
A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 10 5 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls ( P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.
Berry, Neil; Ham, Claire; Mee, Edward T.; Rose, Nicola J.; Mattiuzzo, Giada; Jenkins, Adrian; Page, Mark; Elsley, William; Robinson, Mark; Smith, Deborah; Ferguson, Deborah; Towers, Greg; Almond, Neil; Stebbings, Richard
2011-01-01
Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system. PMID:21853072
Thisyakorn, Usa; Chokephaibulkit, Kulkanya; Kosalaraksa, Pope; Benjaponpitak, Suwat; Pancharoen, Chitsanu; Chuenkitmongkol, Sunate
2014-01-01
The current study examined the safety and immunogenicity of 23-valent pneumococcal capsular polysaccharide vaccine (Pneumo23® [PPV23], Sanofi Pasteur) as a booster dose in 12- to 18-month-old children primed with heptavalent pneumococcal vaccine (PCV7; Prevnar®, Pfizer). This was a randomized, observer-blinded, 2-arm, controlled, multicenter phase III study performed in Thailand to assess and describe the immunogenicity and safety of PPV23 as a booster dose in children who had received the 3 primary doses of PCV7, the pneumococcal vaccine available during the study period. Children primed with 3 doses of PCV7 were randomized 1:1 to receive a booster immunization with PPV23 or PCV7. Pneumococcal antibody concentrations were measured by enzyme-linked immunosorbent assay and functional antibody levels by multiplex opsonophagocytosis assay on day 30. A total of 339 children were enrolled. Geometric mean serum antibody concentrations against serotypes common to PCV7 and PPV23 (4, 6B, 9V, 14, 18C, 19F, and 23F) increased in both groups but they were higher for serotypes 4, 9V, 18C, and 19F in the PPV23 group. Opsonization indices increased in both groups for all measured serotypes (1, 6B, 14, 19A, and 23F) and were higher for serotypes 6B, 14, and 23F in the PCV7 group and for serotypes 1 and 19A in PPV23 group. Solicited reactions and unsolicited adverse events were similar in the 2 groups and generally mild and transient. No treatment-related serious adverse events were reported. These results confirm that boosting with PPV23 is immunogenic and well tolerated in healthy toddlers primed with PCV7. PMID:25424793
Mooney, Alaina J.; Gabbard, Jon D.; Li, Zhuo; Dlugolenski, Daniel A.; Johnson, Scott K.
2017-01-01
ABSTRACT Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses. PMID:28931689
Li, Rongcheng; Li, Chang Gui; Li, Yanping; Liu, Youping; Zhao, Hong; Chen, Xiaoling; Kuriyakose, Sherine; Van Der Meeren, Olivier; Hardt, Karin; Hezareh, Marjan; Roy-Ghanta, Sumita
2016-03-14
Replacing live-attenuated oral poliovirus vaccines (OPV) with inactivated poliovirus vaccines (IPV) is part of the global strategy to eradicate poliomyelitis. China was declared polio-free in 2000 but continues to record cases of vaccine-associated-poliomyelitis and vaccine-derived-poliovirus outbreaks. Two pilot safety studies and two larger immunogenicity trials evaluated the non-inferiority of IPV (Poliorix™, GSK Vaccines, Belgium) versus OPV in infants and booster vaccination in toddlers primed with either IPV or OPV in China. In pilot safety studies, 25 infants received 3-dose IPV primary vaccination (Study A, www.clinicaltrial.gov NCT00937404) and 25 received an IPV booster after priming with three OPV doses (Study B, NCT01021293). In the randomised, controlled immunogenicity and safety trial (Study C, NCT00920439), infants received 3-dose primary vaccination with IPV (N=541) or OPV (N=535) at 2,3,4 months of age, and a booster IPV dose at 18-24 months (N=470, Study D, NCT01323647: extension of study C). Blood samples were collected before and one month post-dose-3 and booster. Reactogenicity was assessed using diary cards. Serious adverse events (SAEs) were captured throughout each study. Study A and B showed that IPV priming and IPV boosting (after OPV) was safe. Study C: One month post-dose-3, all IPV and ≥ 98.3% OPV recipients had seroprotective antibody titres towards each poliovirus type. The immune response elicited by IPV was non-inferior to Chinese OPV. Seroprotective antibody titres persisted in ≥ 94.7% IPV and ≥ 96.1% OPV recipients at 18-24 months (Study D). IPV had a clinically acceptable safety profile in all studies. Grade 3 local and systemic reactions were uncommon. No SAEs were related to IPV administration. Trivalent IPV is non-inferior to OPV in terms of seroprotection (in the Chinese vaccination schedule) in infant and toddlers, with a clinically acceptable safety profile. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The effects of strain heterology on the epidemiology of equine influenza in a vaccinated population.
Park, A. W.; Wood, J. L. N.; Daly, J. M.; Newton, J. R.; Glass, K.; Henley, W.; Mumford, J. A.; Grenfell, B. T.
2004-01-01
We assess the effects of strain heterology (strains that are immunologically similar but not identical) on equine influenza in a vaccinated population. Using data relating to individual animals, for both homologous and heterologous vaccinees, we estimate distributions for the latent and infectious periods, quantify the risk of becoming infected in terms of the quantity of cross-reactive antibodies to a key surface protein of the virus (haemagglutinin) and estimate the probability of excreting virus (i.e. becoming infectious) given that infection has occurred. The data suggest that the infectious period, the risk of becoming infected (for a given vaccine-induced level of cross-reactive antibodies) and the probability of excreting virus are increased for heterologously vaccinated animals when compared with homologously vaccinated animals. The data are used to parameterize a modified susceptible, exposed, infectious and recovered/resistant (SEIR) model, which shows that these relatively small differences combine to have a large effect at the population level, where populations of heterologous vaccinees face a significantly increased risk of an epidemic occurring. PMID:15306299
Ho, Ping-Yueh; Chen, Yao-Chung; Maekawa, Shun; Hu, Hsiang-Hui; Tsai, An-Wei; Chang, Yung-Fu; Wang, Pei-Chi; Chen, Shih-Chu
2018-07-01
A reverse vaccinology-based survey of potent antigens associated with fish nocardiosis was conducted using the largemouth bass, Micropterus salmoides, with an aim to develop subunit vaccines. The antigens selected from the virulent strain Nocardia seriolae 961113 include the gene products of NGL2579 (GAPDH), NGL5701 (MMP), NGL4377 (OCTase), NGL4486 (ABC transporter), NGL3372 (LLE), NGL3388 (GHf10), NGL6627 (Antigen-85), NGL6696 (Esterase), and NGL6936 (CBP). These antigens were heterologously expressed in E. coli BL21 (DE3) for recombinant protein production. Then fish were vaccinated was these antigens, boosted at 2 weeks, and challenged with N. seriolae at 6 weeks after vaccination. The relative protection survival assay revealed high and significant protection efficacies of 94.45, 50.00, and 44.45 in fish that received the NGL3388 (GHf10), NGL6936 (CBP), and NGL3372 (LLE) vaccines, respectively. There were no apparent relationships or differences in tissue lesions among the administered vaccines. The serum titers against the bacterial preparations were higher for all vaccinated groups than for the control group at 4 weeks after immunization. However, no significant difference in serum titer was found at 6 weeks after immunization. The results of this study demonstrate that subunit vaccines against fish nocardiosis have differential effects, but are highly promising for nocardial prophylaxis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kwa, Suefen; Lai, Lilin; Gangadhara, Sailaja; Siddiqui, Mariam; Pillai, Vinod B; Labranche, Celia; Yu, Tianwei; Moss, Bernard; Montefiori, David C; Robinson, Harriet L; Kozlowski, Pamela A; Amara, Rama Rao
2014-09-01
It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed CD40L in a membrane-bound form, along with SIV antigens, in a nucleic acid (DNA) vector. We tested the immunogenicity and efficacy of the CD40L-adjuvanted vaccine in macaques using a heterologous mucosal SIV infection. The CD40L-adjuvanted vaccine enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV T cell responses and improved protection. These results demonstrate that VLP-membrane-bound CD40L serves as a novel adjuvant for an HIV vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Harnessing the beneficial heterologous effects of vaccination
Goodridge, Helen S.; Ahmed, S. Sohail; Curtis, Nigel; Kollmann, Tobias R.; Levy, Ofer; Netea, Mihai G.; Pollard, Andrew J.; van Crevel, Reinout; Wilson, Christopher B.
2016-01-01
Clinical evidence strongly suggests that certain live vaccines, in particular Bacille Calmette–Guérin (BCG) and measles vaccines, can reduce all-cause mortality, likely via protection against non-targeted pathogens in addition to the targeted pathogen. The underlying mechanisms are currently unknown. We discuss how heterologous lymphocyte activation and innate immune memory could promote protection beyond the intended target pathogen and consider how vaccinologists could leverage heterologous immunity to improve outcomes in vulnerable populations, in particular the very young and the elderly. PMID:27157064
Ake, Julie A; Schuetz, Alexandra; Pegu, Poonam; Wieczorek, Lindsay; Eller, Michael A; Kibuuka, Hannah; Sawe, Fredrick; Maboko, Leonard; Polonis, Victoria; Karasavva, Nicos; Weiner, David; Sekiziyivu, Arthur; Kosgei, Josphat; Missanga, Marco; Kroidl, Arne; Mann, Philipp; Ratto-Kim, Silvia; Anne Eller, Leigh; Earl, Patricia; Moss, Bernard; Dorsey-Spitz, Julie; Milazzo, Mark; Laissa Ouedraogo, G; Rizvi, Farrukh; Yan, Jian; Khan, Amir S; Peel, Sheila; Sardesai, Niranjan Y; Michael, Nelson L; Ngauy, Viseth; Marovich, Mary; Robb, Merlin L
2017-11-27
We report the first-in-human safety and immunogenicity evaluation of PENNVAX-G DNA/modified vaccinia Ankara-Chiang Mai double recombinant (MVA-CMDR) prime-boost human immuonodeficiency virus (HIV) vaccine, with intramuscular DNA delivery by either Biojector 2000 needle-free injection system (Biojector) or CELLECTRA electroporation device. Healthy, HIV-uninfected adults were randomized to receive 4 mg of PENNVAX-G DNA delivered intramuscularly by Biojector or electroporation at baseline and week 4 followed by intramuscular injection of 108 plaque forming units of MVA-CMDR at weeks 12 and 24. The open-label part A was conducted in the United States, followed by a double-blind, placebo-controlled part B in East Africa. Solicited and unsolicited adverse events were recorded, and immune responses were measured. Eighty-eight of 100 enrolled participants completed all study injections, which were generally safe and well tolerated, with more immediate, but transient, pain in the electroporation group. Cellular responses were observed in 57% of vaccine recipients tested and were CD4 predominant. High rates of binding antibody responses to CRF01_AE antigens, including gp70 V1V2 scaffold, were observed. Neutralizing antibodies were detected in a peripheral blood mononuclear cell assay, and moderate antibody-dependent, cell-mediated cytotoxicity activity was demonstrated. The PVG/MVA-CMDR HIV-1 vaccine regimen is safe and immunogenic. Substantial differences in safety or immunogenicity between modes of DNA delivery were not observed. NCT01260727. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Hatcher, Christopher L.; Mott, Tiffany M.; Muruato, Laura A.; Sbrana, Elena
2016-01-01
Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. PMID:27271739
Bacillus atrophaeus inactivated spores as a potential adjuvant for veterinary rabies vaccine.
Oliveira-Nascimento, L; Caricati, A T P; Abdulack-Lopes, F; Neves, L C M; Caricati, C P; Penna, T C V; Stephano, M A
2012-05-14
Rabies is a viral encephalitis, nearly always fatal, but preventable through vaccines. Rabid animal bite is the prime transmission act, while veterinary vaccination is one of the best strategies for rabies general prevention. Aluminum compounds and saponin are the commercial adjuvants used for this vaccine nowadays. Nevertheless, aluminum compounds can provoke undesired side effects and saponin has a narrow activity range without toxicity. B. atrophaeus inactivated spores (BAIS), with or without saponin, were then used as an alternative to boost the inactivated rabies virus response. BAIS was as effective as saponin in augmenting antibody titers, but combination of both adjuvants doubled the titers raised by them individually. The combined adjuvant formulation maintained viability for 21 months when stored at 4-8°C. Overall, BAIS was demonstrated as a viable alternative to commercial adjuvants, while its combination with saponin resulted in even higher vaccine potency with good stability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Progress in HIV vaccine development
Hsu, Denise C.; O'Connell, Robert J.
2017-01-01
ABSTRACT An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising. PMID:28281871
Feng, Ganzhu; Jiang, Qingtao; Xia, Mei; Lu, Yanlai; Qiu, Wen; Zhao, Dan; Lu, Liwei; Peng, Guangyong; Wang, Yingwei
2013-01-01
Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice. PMID:23637790
Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.
2016-01-01
Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642
Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K
2016-07-01
Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Perrett, K P; John, T M; Jin, C; Kibwana, E; Yu, L-M; Curtis, N; Pollard, A J
2014-04-01
Protection against Haemophilus influenzae type b (Hib), a rapidly invading encapsulated bacteria, is dependent on maintenance of an adequate level of serum antibody through early childhood. In many countries, Hib vaccine booster doses have been implemented after infant immunization to sustain immunity. We investigated the long-term persistence of antibody and immunological memory in primary-school children following infant (with or without booster) Hib vaccination. Anti-polyribosylribitol phosphate (PRP) immunoglobulin G (IgG) concentration and the frequency of circulating Hib-specific memory B cells were measured before a booster of a Hib-serogroup C meningococcal (MenC) conjugate vaccine and again 1 week, 1 month, and 1 year after the booster in 250 healthy children aged 6-12 years in an open-label phase 4 clinical study. Six to 12 years following infant priming with 3 doses of Hib conjugate vaccine, anti-PRP IgG geometric mean concentrations were 3.11 µg/mL and 0.71 µg/mL and proportions with anti-PRP IgG ≥1.0 µg/mL were 79% and 43% in children who had or had not, respectively, received a fourth Hib conjugate vaccine dose (mean age, 3.9 years). Higher baseline and post-Hib-MenC booster responses (anti-PRP IgG and memory B cells) were found in younger children and in those who had received a fourth Hib dose. Sustained Hib conjugate vaccine-induced immunity in children is dependent on time since infant priming and receipt of a booster. Understanding the relationship between humoral and cellular immunity following immunization with conjugate vaccines may direct vaccine design and boosting strategies to sustain individual and population immunity against encapsulated bacteria in early childhood. Clinical Trials Registration ISRCTN728588998.
Co-occurrence frequency evaluated with large language corpora boosts semantic priming effects.
Brunellière, Angèle; Perre, Laetitia; Tran, ThiMai; Bonnotte, Isabelle
2017-09-01
In recent decades, many computational techniques have been developed to analyse the contextual usage of words in large language corpora. The present study examined whether the co-occurrence frequency obtained from large language corpora might boost purely semantic priming effects. Two experiments were conducted: one with conscious semantic priming, the other with subliminal semantic priming. Both experiments contrasted three semantic priming contexts: an unrelated priming context and two related priming contexts with word pairs that are semantically related and that co-occur either frequently or infrequently. In the conscious priming presentation (166-ms stimulus-onset asynchrony, SOA), a semantic priming effect was recorded in both related priming contexts, which was greater with higher co-occurrence frequency. In the subliminal priming presentation (66-ms SOA), no significant priming effect was shown, regardless of the related priming context. These results show that co-occurrence frequency boosts pure semantic priming effects and are discussed with reference to models of semantic network.
Karan, Dev
2017-10-13
We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Thomas, Justin C; O'Hara, Joanne M; Hu, Lei; Gao, Fei P; Joshi, Sangeeta B; Volkin, David B; Brey, Robert N; Fang, Jianwen; Karanicolas, John; Mantis, Nicholas J; Middaugh, C Russell
2013-04-01
There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.
Wang, Shixia; Chou, Te-hui; Hackett, Anthony; Efros, Veronica; Wang, Yan; Han, Dong; Wallace, Aaron; Chen, Yuxin; Hu, Guangnan; Liu, Shuying; Clapham, Paul; Arthos, James; Montefiori, David; Lu, Shan
2017-01-01
ABSTRACT Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes. PMID:28933684
Carter, Donald M.; Darby, Christopher A.; Lefoley, Bradford C.; Crevar, Corey J.; Alefantis, Timothy; Oomen, Raymond; Anderson, Stephen F.; Strugnell, Tod; Cortés-Garcia, Guadalupe; Vogel, Thorsten U.; Parrington, Mark; Kleanthous, Harold
2016-01-01
ABSTRACT One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCE Universal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head-based strategy that elicits antibodies against many H1 strains that have undergone genetic drift and has potential as a “subtype universal” vaccine. Nine HA COBRA candidates were developed, and these vaccines were used alone, in cocktails or in prime-boost combinations. The most effective regimens elicited the broadest hemagglutination inhibition (HAI) response against a panel of H1N1 viruses isolated over the past 100 years. This is the first report describing a COBRA-based HA vaccine strategy that elicits a broadly reactive response against seasonal and pandemic H1N1 isolates. PMID:26912624
Joachim, Agricola; Munseri, Patricia J; Nilsson, Charlotta; Bakari, Muhammad; Aboud, Said; Lyamuya, Eligius F; Tecleab, Teghesti; Liakina, Valentina; Scarlatti, Gabriella; Robb, Merlin L; Earl, Patricia L; Moss, Bernard; Wahren, Britta; Mhalu, Fred; Ferrari, Guido; Sandstrom, Eric; Biberfeld, Gunnel
2017-08-01
We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.
Kesavardhana, Sannula; Das, Raksha; Citron, Michael; Datta, Rohini; Ecto, Linda; Srilatha, Nonavinakere Seetharam; DiStefano, Daniel; Swoyer, Ryan; Joyce, Joseph G.; Dutta, Somnath; LaBranche, Celia C.; Montefiori, David C.; Flynn, Jessica A.; Varadarajan, Raghavan
2017-01-01
A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses. PMID:27879316
Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas
2016-02-19
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Jeong, Jiwoon; Kim, Seeun; Park, Changhoon; Park, Kee Hwan; Kang, Ikjae; Park, Su-Jin; Chae, Chanhee
2018-04-28
This study evaluated porcine reproductive and respiratory syndrome virus (PRRSV)-2 modified live virus (MLV) vaccine against heterologous single and dual challenge of Korean PRRSV-1 and PRRSV-2. Pigs were administered PRRSV-2 MLV vaccine intramuscularly at 21 days of age and inoculated intranasally with both genotypes at 56 days of age. Vaccination of pigs with PRRSV-2 MLV vaccine resulted in reduction of viral loads of both PRRSV-1 and PRRSV-2 after heterologous single and dual challenge with PRRSV-1 and PRRSV-2. In addition, pigs vaccinated with PRRSV-2 MLV vaccine exhibited higher frequencies of PRRSV-1 and PRRSV-2 specific interferon-γ secreting cells (IFN-γ-SC) and showed a significant reduction in lung lesions and PRRSV nucleic acid within the lung lesions after single and dual challenge compared with unvaccinated challenged pigs. Taken together these results demonstrated that vaccination of pigs with PRRSV-2 is efficacious in protecting growing pigs from respiratory disease against heterologous single and dual PRRSV-1 and PRRSV-2 challenge. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Sedegah, Martha; Hollingdale, Michael R.; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Kim, Yohan; Peters, Bjoern; Sette, Alessandro; Huang, Jun; McGrath, Shannon; Abot, Esteban; Limbach, Keith; Shi, Meng; Soisson, Lorraine; Diggs, Carter; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E.; Villasante, Eileen; Richie, Thomas L.
2014-01-01
Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines. PMID:25211344
Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark
2017-12-01
Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses. Copyright © 2017 American Society for Microbiology.
Rostad, Christina A; Stobart, Christopher C; Todd, Sean O; Molina, Samuel A; Lee, Sujin; Blanco, Jorge C G; Moore, Martin L
2018-03-15
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, and an effective vaccine is not yet available. We previously generated an RSV live-attenuated vaccine (LAV) candidate, DB1, which was attenuated by a low-fusion subgroup B F protein (BAF) and codon-deoptimized nonstructural protein genes. DB1 was immunogenic and protective in cotton rats but lacked thermostability and stability of the prefusion conformation of F compared to strains with the line19F gene. We hypothesized that substitution of unique residues from the thermostable A2-line19F strain could thermostabilize DB1 and boost its immunogenicity. We therefore substituted 4 unique line19F residues into the BAF protein of DB1 by site-directed mutagenesis and rescued the recombinant virus, DB1-QUAD. Compared to DB1, DB1-QUAD had improved thermostability at 4°C and higher levels of prefusion F as measured by enzyme-linked immunosorbent assays (ELISAs). DB1-QUAD was attenuated in normal human bronchial epithelial cells, in BALB/c mice, and in cotton rats but grew to wild-type titers in Vero cells. In mice, DB1-QUAD was highly immunogenic and generated significantly higher neutralizing antibody titers to a panel of RSV A and B strains than did DB1. DB1-QUAD was also efficacious against wild-type RSV challenge in mice and cotton rats. Thus, substitution of unique line19F residues into RSV LAV DB1 enhanced vaccine thermostability, incorporation of prefusion F, and immunogenicity and generated a promising vaccine candidate that merits further investigation. IMPORTANCE We boosted the thermostability and immunogenicity of an RSV live-attenuated vaccine candidate by substituting 4 unique residues from the RSV line19F protein into the F protein of the heterologous vaccine strain DB1. The resultant vaccine candidate, DB1-QUAD, was thermostable, attenuated in vivo , highly immunogenic, and protective against RSV challenge in mice and cotton rats. Copyright © 2018 American Society for Microbiology.
Lindh, Ingrid; Bråve, Andreas; Hallengärd, David; Hadad, Ronza; Kalbina, Irina; Strid, Åke; Andersson, Sören
2014-04-25
During early infection with human immunodeficiency virus type 1 (HIV-1), there is a rapid depletion of CD4(+) T-cells in the gut-associated lymphoid tissue (GALT) in the gastrointestinal tract. Therefore, immediate protection at these surfaces is of high priority for the development of an HIV-1 vaccine. Thus, transgenic plants expressing HIV-1 antigens, which are exposed to immune competent cells in the GALT during oral administration, can be interesting as potential vaccine candidates. In the present study, we used two HIV-1 p24 antigen-expressing transgenic plant systems, Arabidopsis thaliana and Daucus carota, in oral immunization experiments. Both transgenic plant systems showed a priming effect in mice and induced humoral immune responses, which could be detected as anti-p24-specific IgG in sera after an intramuscular p24 protein boost. Dose-dependent antigen analyses using transgenic A. thaliana indicated that low p24 antigen doses were superior to high p24 antigen doses. Copyright © 2014. Published by Elsevier Ltd.
Lazarus, Rajeka; Kelly, Sarah; Snape, Matthew D.; Vandermeulen, Corinne; Voysey, Merryn; Hoppenbrouwers, Karel; Hens, Annick; Van Damme, Pierre; Pepin, Stephanie; Leroux-Roels, Isabel; Leroux-Roels, Geert; Pollard, Andrew J.
2016-01-01
Avian influenza continues to circulate and remains a global health threat not least because of the associated high mortality. In this study antibody persistence, booster vaccine response and cross-clade immune response between two influenza A(H5N1) vaccines were compared. Participants aged over 18-years who had previously been immunized with a clade 1, A/Vietnam vaccine were re-immunized at 6-months with 7.5 μg of the homologous strain or at 22-months with a clade 2, alum-adjuvanted, A/Indonesia vaccine. Blood sampled at 6, 15 and 22-months after the primary course was used to assess antibody persistence. Antibody concentrations 6-months after primary immunisation with either A/Vietnam vaccine 30 μg alum-adjuvanted vaccine or 7.5 μg dose vaccine were lower than 21-days after the primary course and waned further with time. Re-immunization with the clade 2, 30 μg alum-adjuvanted vaccine confirmed cross-clade reactogenicity. Antibody cross-reactivity between A(H5N1) clades suggests that in principle a prime-boost vaccination strategy may provide both early protection at the start of a pandemic and improved antibody responses to specific vaccination once available. Trial Registration: ClinicalTrials.gov NCT00415129 PMID:27814377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Min; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062
Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AALmore » and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.« less
Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections.
Zhu, Liangquan; Feng, Yu; Zhang, Ge; Jiang, Hui; Zhang, Zhen; Wang, Nan; Ding, Jiabo; Suo, Xun
2016-01-12
Brucellosis is a wide spread zoonotic disease that causes abortion and infertility in mammals and leads to debilitating, febrile illness in humans. Brucella abortus, Brucella melitensis and Brucella suis are the major pathogenic species to humans. Vaccination with live attenuated B. suis strain 2 (S2) vaccine is an essential and critical component in the control of brucellosis in China. The S2 vaccine is very effective in preventing brucellosis in goats, sheep, cattle and swine. However, there are still debates outside of China whether the S2 vaccine is able to provide protection against heterologous virulent Brucella species. We investigated the residual virulence, immunogenicity and protective efficacy of the S2 vaccine in BALB/c mice by determining bacteria persistence in spleen, serum antibody response, cellular immune response and protection against a heterologous virulent challenge. The S2 vaccine was of low virulence as there were no bacteria recovered in spleen four weeks post vaccination. The vaccinated mice developed Brucella-specific IgG in 2-3 weeks, and a burst production of IFN-γ at one week as well as a two-fold increase in TNF-α production. The S2 vaccine protected mice from a virulent challenge by B. melitensis M28, B. abortus 2308 and B. suis S1330, and the S2 vaccinated mice did not develop any clinical signs or tissue damage. Our study demonstrated that the S2 vaccine is of low virulence, stimulates good humoral and cellular immunity and protects animals against infection by heterologous, virulent Brucella species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer
Kaufman, Howard L; Kim-Schulze, Seunghee; Manson, Kelledy; DeRaffele, Gail; Mitcham, Josephine; Seo, Kang Seok; Kim, Dae Won; Marshall, John
2007-01-01
Purpose An open-label Phase 1 study of recombinant prime-boost poxviruses targeting CEA and MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability and obtain preliminary data on immune response and survival. Patients and methods Ten patients with advanced pancreatic cancer were treated on a Phase I clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA) and mucin-1 (MUC-1) with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM) (PANVAC-V) and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F). Patients were primed with PANVAC-V followed by three booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter. Monthly booster vaccinations for up to 12 months were provided for patients without progressive disease. Peripheral blood was collected before, during and after vaccinations for immune analysis. Results The most common treatment-related adverse events were mild injection-site reactions. Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell responses were observed in 5 out of 8 evaluable patients (62.5%). Median overall survival was 6.3 months and a significant increase in overall survival was noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; P = .002). Conclusion Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific immune responses in patients with advanced pancreatic cancer. PMID:18039393
Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E
2016-03-01
Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P < 0.05). Neither rHVT-H5/2.2 nor standard HVT vaccine could be detected in samples collected from multiple tissues at different time points, indicting minimal levels of viral replication. In conclusion, although a minor effect on survival was observed, this study demonstrates the suboptimal protection with the rHVT-H5/2.2 vaccine given alone in Pekin ducks against H5N1 HPAI viruses and only a minor additive effect on virus shedding reduction when used with an inactivated vaccine in a prime-boost regime.
Flanagan, Katie L; Plebanski, Magdalena
2017-01-01
Vaccines have heterologous effects on the immune system, leading to altered susceptibility to a range of pathogens, and possibly allergy and autoimmunity. Effects are often sex-differential. This review discusses the evidence, mechanisms and public health implications of the non-specific effects of vaccines (NSEs). Areas covered: This article firstly discusses the World Health Organization systematic review of the evidence for sex-differential heterologous effects of vaccines, and further PubMed indexed studies on NSEs on susceptibility to infectious diseases, allergy, autoimmunity and malignancy in animals and humans. Potential immunological mechanisms are evaluated, including sex-differential effects. Finally it describes how advances in systems biology might be applied to study such effects. Expert commentary: This section points out the need to understand immune mechanisms in order to exploit beneficial vaccine effects, and diminish deleterious ones. It suggests analysis of vaccine effects by sex is important, and discusses the future for personalised vaccines that take these effects into account.
Improving the MVA Vaccine Potential by Deleting the Viral Gene Coding for the IL-18 Binding Protein
Pascutti, María Fernanda; Rodríguez, Ana María; Maeto, Cynthia; Perdiguero, Beatriz; Gómez, Carmen E.; Esteban, Mariano; Calamante, Gabriela; Gherardi, María Magdalena
2012-01-01
Background Modified Vaccinia Ankara (MVA) is an attenuated strain of Vaccinia virus (VACV) currently employed in many clinical trials against HIV/AIDS and other diseases. MVA still retains genes involved in host immune response evasion, enabling its optimization by removing some of them. The aim of this study was to evaluate cellular immune responses (CIR) induced by an IL-18 binding protein gene (C12L) deleted vector (MVAΔC12L). Methodology/Principal Findings BALB/c and C57BL/6 mice were immunized with different doses of MVAΔC12L or MVA wild type (MVAwt), then CIR to VACV epitopes in immunogenic proteins were evaluated in spleen and draining lymph nodes at acute and memory phases (7 and 40 days post-immunization respectively). Compared with parental MVAwt, MVAΔC12L immunization induced a significant increase of two to three-fold in CD8+ and CD4+ T-cell responses to different VACV epitopes, with increased percentage of anti-VACV cytotoxic CD8+ T-cells (CD107a/b+) during the acute phase of the response. Importantly, the immunogenicity enhancement was also observed after MVAΔC12L inoculation with different viral doses and by distinct routes (systemic and mucosal). Potentiation of MVA's CIR was also observed during the memory phase, in correlation with a higher protection against an intranasal challenge with VACV WR. Of note, we could also show a significant increase in the CIR against HIV antigens such as Env, Gag, Pol and Nef from different subtypes expressed from two recombinants of MVAΔC12L during heterologous DNA prime/MVA boost vaccination regimens. Conclusions/Significance This study demonstrates the relevance of IL-18 bp contribution in the immune response evasion during MVA infection. Our findings clearly show that the deletion of the viral IL-18 bp gene is an effective approach to increase MVA vaccine efficacy, as immunogenicity improvements were observed against vector antigens and more importantly to HIV antigens. PMID:22384183
Duan, Susu; Meliopoulos, Victoria A.; McClaren, Jennifer L.; Guo, Xi-Zhi J.; Sanders, Catherine J.; Smallwood, Heather S.; Webby, Richard J.; Schultz-Cherry, Stacey L.; Doherty, Peter C.; Thomas, Paul G.
2015-01-01
The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent KbPB1703, DbPA224, and DbNP366 epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines. PMID:25668410
Meek, Stephanie M; Williams, Matthew A
2018-02-13
While CD8⁺ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4⁺ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP 61-80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4⁺ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4⁺ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4⁺ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4⁺ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4⁺ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.
Unsolved Puzzles Surrounding HCV Immunity: Heterologous Immunity Adds Another Dimension.
Agrawal, Babita; Singh, Shakti; Gupta, Nancy; Li, Wen; Vedi, Satish; Kumar, Rakesh
2017-07-27
Chronic infection with hepatitis C virus (HCV) afflicts 3% of the world's population and can lead to serious and late-stage liver diseases. Developing a vaccine for HCV is challenging because the correlates of protection are uncertain and traditional vaccine approaches do not work. Studies of natural immunity to HCV in humans have resulted in many enigmas. Human beings are not immunologically naïve because they are continually exposed to various environmental microbes and antigens, creating large populations of memory T cells. Heterologous immunity occurs when this pool of memory T cells cross-react against a new pathogen in an individual. Such heterologous immunity could influence the outcome when an individual is infected by a pathogen. We have recently made an unexpected finding that adenoviruses, a common environmental pathogen and an experimental vaccine vector, can induce robust cross-reactive immune responses against multiple antigens of HCV. Our unique finding of previously uncharacterized heterologous immunity against HCV opens new avenues to understand HCV pathogenesis and develop effective vaccines.
Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses.
Bråve, Andreas; Nyström, Sanna; Roos, Anna-Karin; Applequist, Steven E
2011-03-01
Plasmid DNA vaccination using skin electroporation (EP) is a promising method able to elicit robust humoral and CD8(+) T-cell immune responses while limiting invasiveness of delivery. However, there is still only limited data available on the induction of CD4(+) T-cell immunity using this method. Here, we compare the ability of homologous prime/boost DNA vaccinations by skin EP and intramuscular (i.m.) injection to elicit immune responses by cytokine enzyme-linked immunosorbent spot (ELISPOT) assay, as well as study the complexity of CD4(+) T-cell responses to the human immunodeficiency virus antigen Gag, using multiparamater flow cytometry. We find that DNA vaccinations by skin EP and i.m. injection are capable of eliciting both single- and poly-functional vaccine-specific CD4(+) T cells. However, although DNA delivered by skin EP was administered at a five-fold lower dose it elicited significant increases in the magnitude of multiple-cytokine producers compared with i.m. immunization suggesting that the skin EP could provide greater poly-functional T-cell help, a feature associated with successful immune defense against infectious agents.
Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G
2016-08-01
Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2013-01-01
Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113
Park, Changhoon; Choi, Kyuhyung; Jeong, Jiwoon; Chae, Chanhee
2015-05-15
The objective of the present study was to determine the cross-protection of a new type 2 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccine against heterologous type 1 PRRSV challenge in growing pigs. The mean rectal temperature and respiratory score was significantly (P<0.05) lower in vaccinated challenged pigs than in unvaccinated challenged pigs. Vaccination of pigs with type 2 PRRSV reduced the levels of type 1 PRRSV viremia after challenge with type 1 PRRSV. Vaccinated challenged pigs had significantly (P<0.05) higher frequency of interferon-γ secreting cells and lower levels of interleukin-10 compared to unvaccinated challenged pigs. Vaccination of pigs with the type 2 PRRSV effectively reduced the macroscopic and microscopic lung lesion and the type 1 PRRSV antigens within lung lesions in vaccinated challenged pigs. This study demonstrates partial cross-protection of a new type 2 PRRSV modified live vaccine against heterologous type 1 PRRSV challenge in growing pigs. Copyright © 2015 Elsevier B.V. All rights reserved.
A human papillomavirus type 16 vaccine by oral delivery of L1 protein.
Sasagawa, Toshiyuki; Tani, Mayuko; Basha, Walid; Rose, Robert C; Tohda, Hideki; Giga-Hama, Yuko; Azar, Khadijeh K; Yasuda, Hideyo; Sakai, Akemi; Inoue, Masaki
2005-06-01
To establish an edible HPV16 vaccine, we constructed a recombinant HPV16 L1-expressing Schizosaccharomyces pombe yeast strain (HPV16L1 yeast). A preliminary study revealed that freeze-dried yeast cells could be delivered safely, and were digested in the mouse intestine. The freeze-dried HPV16 L1 yeast was administered orally as an edible vaccine, with or without the mucosal adjuvant heat-labile toxin LT (R192G), to 18 female BALB/c mice. After the third immunization, none of the mice that received the edible HPV16 vaccine showed specific antibody responses, whereas all of the positive controls that were administered intranasally with 5 microg of HPV16-virus-like particles (VLP) had serum IgG, and genital IgA and IgG that reacted with HPV16-VLP in enzyme-linked immunosorbent assays (ELISAs). When a suboptimal dose (1 microg) of HPV16-VLP was administered to all the mice, including the negative control mice, 50% of the mice that were pre-immunized with the edible HPV16 vaccine showed positive serum IgG responses, while none of the negative controls showed any response. Vaginal IgG and IgA antibodies were also elicited in 33 and 39%, respectively, of the mice that were given with the edible HPV16 vaccine and the intranasal boost. All of the antibodies reacted more strongly to intact HPV16-VLP than to denatured HPV16-L1 protein suggesting that the edible vaccine primes for antibody responses against conformation-dependent epitopes. The inclusion of adjuvant in the vaccine formulation marginally increased the genital IgA response (P=0.06). HPV16-L1 protein in the yeast might induce tolerance in the vaccinated animals that could be recovered by intranasal boosting with a suboptimal dose of HPV-VLP. This freeze-dried yeast system may be useful as an oral delivery of HPV 16 L1 protein.
Gordon, Shari N.; Doster, Melvin N; Kines, Rhonda C.; Keele, Brandon F; Cofano, Egidio Brocca; Guan, Yongjun; Pegu, Poonam; Liyanage, Namal P.M.; Vaccari, Monica; Cuburu, Nicolas; Buck, Christopher B.; Ferrari, Guido; Montefiori, David; Piatak, Mike; Lifson, Jeffrey D; Xenophontos, Anastasia M.; Venzon, David; Robert-Guroff, Marjorie; Graham, Barney S.; Lowy, Douglas R.; Schiller, John T.; Franchini, Genoveffa
2015-01-01
The human papilloma virus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of non human primates and mice. Intra-vaginal vaccination with HPV-PsVs expressing SIV genes, combined with an intra-muscular gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with intramuscular immunization with ALVAC-SIV vaccines, followed by intra-vaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T-cells in the female genital tract. Using a stringent repeated low dose intra-vaginal challenge with the highly pathogenic SIVmac251, we show that while these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High avidity antibody responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, while virus levels in mucosal tissues were inversely correlated with anti-envelope CD4+T-cell responses. CD8+T-cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8+T-cells in virus control. This study highlights the importance of CD8+ cells and anti-envelope CD4+ T-cell in curtailing virus replication and anti-envelope V1/V2 antibodies in preventing SIVmac251 acquisition. PMID:25398324
Ersland, Karen; Pick-Jacobs, John C.; Gern, Benjamin H.; Frye, Christopher A.; Sullivan, Thomas D.; Brennan, Meghan B.; Filutowicz, Hanna I.; O'Brien, Kevin; Korthauer, Keegan D.; Schultz-Cherry, Stacey; Klein, Bruce S.
2012-01-01
CD4+ T cells are the key players of vaccine resistance to fungi. The generation of effective T cell-based vaccines requires an understanding of how to induce and maintain CD4+ T cells and memory. The kinetics of fungal antigen (Ag)-specific CD4+ T cell memory development has not been studied due to the lack of any known protective epitopes and clonally restricted T cell subsets with complementary T cell receptors (TCRs). Here, we investigated the expansion and function of CD4+ T cell memory after vaccination with transgenic (Tg) Blastomyces dermatitidis yeasts that display a model Ag, Eα-mCherry (Eα-mCh). We report that Tg yeast led to Eα display on Ag-presenting cells and induced robust activation, proliferation, and expansion of adoptively transferred TEa cells in an Ag-specific manner. Despite robust priming by Eα-mCh yeast, antifungal TEa cells recruited and produced cytokines weakly during a recall response to the lung. The addition of exogenous Eα-red fluorescent protein (RFP) to the Eα-mCh yeast boosted the number of cytokine-producing TEa cells that migrated to the lung. Thus, model epitope expression on yeast enables the interrogation of Ag presentation to CD4+ T cells and primes Ag-specific T cell activation, proliferation, and expansion. However, the limited availability of model Ag expressed by Tg fungi during T cell priming blunts the downstream generation of effector and memory T cells. PMID:22124658
Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina
2013-01-01
Chagas’ disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general. PMID:23527169
Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina
2013-01-01
Chagas' disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8(+) T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8(+) cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.
Singanallur, N B; Pacheco, J M; Arzt, J; Stenfeldt, C; Fosgate, G T; Rodriguez, L; Vosloo, W
2017-09-01
Potency tests for commercial oil-adjuvanted foot-and-mouth disease (FMD) vaccines are usually carried out in cattle, using a full dose (2 ml) of vaccine and homologous virus challenge. However, in sheep the recommended vaccine dose is half of the cattle dose (1 ml) and most vaccines have not been potency tested for this species, especially with heterologous viruses. To determine the efficacy of a high potency (>6PD 50 ) FMD virus (FMDV) O1Manisa vaccine in sheep, we carried out a study using a heterologous FMDV (FMDV O/SKR/2010 - Mya-98 strain) challenge. Groups of seven animals each were vaccinated with 2×, 1×, 1/2× or 1/4× dose (2 ml, 1 ml, 0.5 ml or 0.25 ml respectively) and challenged at 7 days post vaccination (dpv). Only 3 of the 7 sheep in the group vaccinated with 2 ml were protected. With 2 additional groups, receiving double or single doses and challenged at 14 dpv, 4 of 7 sheep were protected in each group. None of the sheep had measurable neutralising antibodies against the vaccine or challenge virus at 7 dpv. However, all vaccinated animals challenged at 14 dpv had a homologous neutralising response against FMDV O1 Manisa on the day of challenge and all but one animal also had a heterologous response to FMDV O/SKR/2010. Infectious FMDV and viral RNA could be found in nasal swabs between 1 and 6 days post challenge (dpc) in most vaccinated sheep, but those vaccinated with higher doses or challenged at 14 dpv showed significant decreases in the level of FMDV detection. Intermittent virus shedding was noticed between 1 and 35 dpc in all vaccinated groups, but persistent infection could be demonstrated only in 4 sheep (20%). This study showed that at the recommended dose, a high potency (>6 PD 50 ) FMDV O1Manisa vaccine does not protect sheep against a heterologous challenge at 7 dpv. However, partial protection was observed when a double dose was used at 7 dpv or when double or single dose vaccinated sheep were challenged at 14 dpv. Copyright © 2017 Elsevier B.V. All rights reserved.
Pobre, Karl; Tashani, Mohamed; Ridda, Iman; Rashid, Harunor; Wong, Melanie; Booy, Robert
2014-03-14
With the availability of newer conjugate vaccines, immunization schedules have become increasingly complex due to the potential for unpredictable immunologic interference such as 'carrier priming' and 'carrier induced epitopic suppression'. Carrier priming refers to an augmented antibody response to a carbohydrate portion of a glycoconjugate vaccine in an individual previously primed with the carrier protein. This review aims to provide a critical evaluation of the available data on carrier priming (and suppression) and conceptualize ways by which this phenomenon can be utilized to strengthen vaccination schedules. We conducted this literature review by searching well-known databases to date to identify relevant studies, then extracted and synthesized the data on carrier priming of widely used conjugate polysaccharide vaccines, such as, pneumococcal conjugate vaccine (PCV), meningococcal conjugate vaccine (MenCV) and Haemophilus influenzae type b conjugate vaccines (HibV). We found evidence of carrier priming with some conjugate vaccines, particularly HibV and PCV, in both animal and human models but controversy surrounds MenCV. This has implications for the immunogenicity of conjugate polysaccharide vaccines following the administration of tetanus-toxoid or diphtheria-toxoid containing vaccine (such as DTP). Available evidence supports a promising role for carrier priming in terms of maximizing the immunogenicity of conjugate vaccines and enhancing immunization schedule by making it more efficient and cost effective. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Taeyeon; Park, Changhoon; Choi, Kyuhyung; Jeong, Jiwoon; Kang, Ikjae; Park, Su-Jin; Chae, Chanhee
2015-06-01
The objective of the present study was to compare the efficacy of two commercial type 1 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccines against heterologous type 1 and type 2 PRRSV challenge in growing pigs. Vaccination with a type 1 PRRSV vaccine reduced the level of viremia after type 1 PRRSV challenge but did not reduce the level of viremia after the type 2 PRRSV challenge in pigs. Increased levels of interleukin-10 (IL-10) stimulated by type 2 PRRSV coincided with the low numbers of type 2 PRRSV-specific interferon gamma-secreting cells (IFN-γ-SC) in vaccinated pigs after type 2 PRRSV challenge, whereas low levels of IL-10 stimulated by type 1 PRRSV coincided with high numbers of type 1 PRRSV-specific IFN-γ-SC in vaccinated pigs after type 1 PRRSV challenge. Additionally, vaccination with the type 1 PRRSV vaccine effectively reduced the lung lesions and type 1 PRRSV nucleic acids in type 1 PRRSV-challenged pigs but did not reduce lung lesions and type 2 PRRSV nucleic acids in type 2 PRRSV-challenged pigs. There were no significant differences between two commercial type 1 PRRSV vaccines against type 1 and type 2 PRRSV challenge based on virological results, immunological responses, and pathological outcomes. This study demonstrates that vaccinating pigs with the type 1 PRRSV vaccine provides partial protection against respiratory disease with heterologous type 1 PRRSV challenge but no protection with heterologous type 2 PRRSV challenge. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice.
Soleimanpour, Saman; Farsiani, Hadi; Mosavat, Arman; Ghazvini, Kiarash; Eydgahi, Mohammad Reza Akbari; Sankian, Mojtaba; Sadeghian, Hamid; Meshkat, Zahra; Rezaee, Seyed Abdolrahim
2015-12-01
Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.
Approaches to achieve high-level heterologous protein production in plants.
Streatfield, Stephen J
2007-01-01
Plants offer an alternative to microbial fermentation and animal cell cultures for the production of recombinant proteins. For protein pharmaceuticals, plant systems are inherently safer than native and even recombinant animal sources. In addition, post-translational modifications, such as glycosylation, which cannot be achieved with bacterial fermentation, can be accomplished using plants. The main advantage foreseen for plant systems is reduced production costs. Plants should have a particular advantage for proteins produced in bulk, such as industrial enzymes, for which product pricing is low. In addition, edible plant tissues are well suited to the expression of vaccine antigens and pharmaceuticals for oral delivery. Three approaches have been followed to express recombinant proteins in plants: expression from the plant nuclear genome; expression from the plastid genome; and expression from plant tissues carrying recombinant plant viral sequences. The most important factor in moving plant-produced heterologous proteins from developmental research to commercial products is to ensure competitive production costs, and the best way to achieve this is to boost expression. Thus, considerable research effort has been made to increase the amount of recombinant protein produced in plants. This research includes molecular technologies to increase replication, to boost transcription, to direct transcription in tissues suited for protein accumulation, to stabilize transcripts, to optimize translation, to target proteins to subcellular locations optimal for their accumulation, and to engineer proteins to stabilize them. Other methods include plant breeding to increase transgene copy number and to utilize germplasm suited to protein accumulation. Large-scale commercialization of plant-produced recombinant proteins will require a combination of these technologies.
Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A
2009-07-16
Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.
Welliver, Robert C; Oomens, Antonius; Wolf, Roman; Papin, James; Ivanov, Vadim; Preno, Alisha; Staats, Rachel; Piedra, Pedro; Yu, Zhongxin
2017-01-01
Abstract Background RSV bronchiolitis is the most common cause of hospitalization of infants in the US, and may lead to the development of long-term airway disease. Inactivated vaccines may lead to enhanced disease, while replicating vaccines have caused unacceptable degrees of illness, and may revert back to wild type. We developed an RSV vaccine lacking the gene for the M protein (Mnull RSV). The M protein is responsible for reassembly of the virus after it infects cells and expresses its proteins. Infant baboons vaccinated intranasally (IN) with Mnull RSV develop serum neutralizing antibody (NA) responses, but the virus does not replicate. Methods 2-week-old baboons (n = 12) were primed IN with 107 vaccine units of Mnull RSV or a control preparation, and a similar booster dose was given 4 weeks later. Mnull RSV vaccination did not cause tachypnea, airway inflammation or other signs of illness when compared with sham-vaccinated controls. Two weeks after boosting, all infants were challenged intratracheally with human RSV A2. We continuously monitored respiratory rates and levels of overall activity. On various days following challenge, we obtained BAL fluids for leukocyte counts and degree of virus replication, and evaluated alveolar-arterial oxygen gradients (A-a O2). Results Vaccinated animals (vs. unvaccinated controls) had lower respiratory rates (P = 0.0014), improved A-a O2 (P = 0.0063) and reduced viral replication (P = 0.0014). Activity scores were higher in vaccine recipients than in unvaccinated animals. Vaccine recipients also were primed for earlier serum and secretory neutralizing antibody responses, and greater airway lymphocyte responses. Airway lymphocyte numbers (but not antibody responses) were associated with lower respiratory rates and reduced viral replication (P < 0.01). Conclusion Vaccination intranasally with Mnull RSV protected infant baboons against an RSV challenge without causing respiratory disease or enhanced illness, and is a promising candidate for use in human infants. Lymphocyte responses to vaccination may play an equal or greater role in protection against RSV infection than antibody responses. Disclosures All authors: No reported disclosures.
Kim, Eun; Okada, Kaori; Beeler, Judy A.; Crim, Roberta L.; Piedra, Pedro A.; Gilbert, Brian E.
2014-01-01
ABSTRACT The lack of a vaccine against respiratory syncytial virus (RSV) is a challenging and serious gap in preventive medicine. Herein, we characterize the immunogenicity of an adenovirus serotype 5-based RSV vaccine encoding the fusion (F) protein (Ad5.RSV-F) and the protection provided following immunization with Ad5.RSV-F and assess its potential for producing enhanced disease in a cotton rat (CR) model. Animals were immunized intranasally (i.n.) and/or intramuscularly (i.m.) and subsequently challenged with RSV/A/Tracy (i.n.) to assess protection. Robust immune responses were seen in CRs vaccinated with Ad5.RSV-F given i.m. or i.n., and these responses correlated with reduced replication of the virus in noses and lungs after challenge. Neutralizing antibody responses following immunization with a single dose of Ad5.RSV-F at 1 × 1011 viral particles (v.p.) elicited antibody titers 64- to 256-fold greater than those seen after natural infection. CRs boosted with Ad5.RSV-F i.n. 28 days after an i.m. dose also had significant increases in neutralizing antibody titers. Antibody affinity for different F-protein antigenic sites revealed substantial differences between antibodies elicited by Ad5.RSV-F and those seen after RSV infection; differences in antibody profiles were also seen between CRs given Ad5.RSV-F i.m. and CRs given Ad5.RSV-F i.n. Ad5.RSV-F priming did not result in enhanced disease following live-virus challenge, in contrast to the histopathology seen in CRs given the formalin-inactivated RSV/A/Burnett vaccine. IMPORTANCE Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infection in infants and young children and a serious health threat in the immunocompromised and the elderly. Infection severity increased in children in an immunization trial, hampering the over 4-decade-long quest for a successful RSV vaccine. In this study, we show that a genetically engineered RSV-F-encoding adenoviral vector provides protective immunity against RSV challenge without enhanced lung disease in cotton rats (CRs). CRs were vaccinated under a number of different regimens, and the immunity induced by the recombinant adenoviral RSV vaccine administered by use of an intramuscular prime-intranasal boost regimen may provide the best protection for young infants and children at risk of RSV infection, since this population is naive to adenoviral preformed immunity. Overall, this report describes a potential RSV vaccine candidate that merits further evaluation in a phase I clinical study in humans. PMID:24574396
Libraty, Daniel H.; Zhang, Lei; Woda, Marcia; Acosta, Luz P.; Obcena, AnaMae; Brion, Job D.; Capeding, Rosario Z.
2014-01-01
Neonatal Bacille Calmette Guérin (BCG) vaccination has been reported to have beneficial effects beyond preventing infantile tuberculous meningitis and miliary disease. We hypothesized that BCG vaccine given at birth would enhance T-helper 1 (Th1) immune responses to the first vaccines given later in infancy. We conducted a nested case-control study of neonatal BCG vaccination and its heterologous Th1 immune effects in 2–3 months old infants. BCG vaccination at birth was associated with an increased frequency of interferon-γ (IFN-γ) producing spot-forming cells (SFC) to tetanus toxoid 2–3 months later. The frequency of IFN-γ producing SFC to polioviruses 1–3 also trended higher among infants who received BCG vaccination at birth. The frequency of IFN-γ+/tumor necrosis factor-α (TNF-α)+CD45RO+CD4+ T-cells upon stimulation with phorbol myristate acetate (PMA)/Ionomycin was higher in 2–3 months old infants who received BCG vaccination at birth compared to those who did not. The circulating frequency of forkhead box P3 (FoxP3)+ CD45RO+ regulatory CD4+ T-cells also trended lower in these infants. Neonatal BCG vaccination is associated with heterologous Th1 immune effects 2–3 months later. PMID:24611083
Libraty, Daniel H; Zhang, Lei; Woda, Marcia; Acosta, Luz P; Obcena, Anamae; Brion, Job D; Capeding, Rosario Z
2014-01-01
Neonatal Bacille Calmette Guérin (BCG) vaccination has been reported to have beneficial effects beyond preventing infantile tuberculous meningitis and miliary disease. We hypothesized that BCG vaccine given at birth would enhance T-helper 1 (Th1) immune responses to the first vaccines given later in infancy. We conducted a nested case-control study of neonatal BCG vaccination and its heterologous Th1 immune effects in 2-3 months old infants. BCG vaccination at birth was associated with an increased frequency of interferon-γ (IFN-γ) producing spot-forming cells (SFC) to tetanus toxoid 2-3 months later. The frequency of IFN-γ producing SFC to polioviruses 1-3 also trended higher among infants who received BCG vaccination at birth. The frequency of IFN-γ+/tumor necrosis factor-α (TNF-α)+CD45RO+CD4+ T-cells upon stimulation with phorbol myristate acetate (PMA)/Ionomycin was higher in 2-3 months old infants who received BCG vaccination at birth compared to those who did not. The circulating frequency of forkhead box P3 (FoxP3)+ CD45RO+ regulatory CD4+ T-cells also trended lower in these infants. Neonatal BCG vaccination is associated with heterologous Th1 immune effects 2-3 months later.
Khalil, Syed Muaz; Tonkin, Daniel R.; Mattocks, Melissa D.; Snead, Andrew T.; Johnston, Robert E.; White, Laura J.
2014-01-01
Dengue viruses (DENV1-4) cause 390 million clinical infections every year, several hundred thousand of which progress to severe hemorrhagic and shock syndromes. Preexisting immunity resulting from a previous DENV infection is the major risk factor for severe dengue during secondary heterologous infections. During primary infections in infants, maternal antibodies pose an analogous risk. At the same time, maternal antibodies are likely to prevent induction of endogenous anti-DENV antibodies in response to current live, attenuated virus (LAV) vaccine candidates. Any effective early life dengue vaccine has to overcome maternal antibody interference (leading to ineffective vaccination) and poor induction of antibody responses (increasing the risk of severe dengue disease upon primary infection). In a previous study, we demonstrated that a non-propagating Venezuelan equine encephalitis virus replicon expression vector (VRP), expressing the ectodomain of DENV E protein (E85), overcomes maternal interference in a BALB/c mouse model. We report here that a single immunization with a tetravalent VRP vaccine induced NAb and T-cell responses to each serotype at a level equivalent to the monovalent vaccine components, suggesting that this vaccine modality can overcome serotype interference. Furthermore, neonatal immunization was durable and could be boosted later in life to further increase NAb and T-cell responses. Although the neonatal immune response was lower in magnitude than responses in adult BALB/c mice, we demonstrate that VRP vaccines generated protective immunity from a lethal challenge after a single neonatal immunization. In summary, VRP vaccines expressing DENV antigens were immunogenic and protective in neonates, and hence are promising candidates for safe and effective vaccination in early life. PMID:24882043
Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter
2012-04-01
Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.
ERIC Educational Resources Information Center
Segaert, Katrien; Kempen, Gerard; Petersson, Karl Magnus; Hagoort, Peter
2013-01-01
Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal…
Percopo, Caroline M.; Dyer, Kimberly D.; Garcia-Crespo, Katia E.; Gabryszewski, Stanislaw J.; Shaffer, Arthur L.; Domachowske, Joseph B.; Rosenberg, Helene F.
2014-01-01
We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice (PVM), a property known as heterologous immunity. Lactobacillus-priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. As B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, here we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway immunoglobulins IgG, IgA and IgM and lung tissues with dense, B cell (B220+) enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of bronchus-associated lymphoid tissue. No B cells were detected in lung tissue of Lactobacillus-primed B-cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway immunoglobulins. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-gamma, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, L. plantarum-primed, B-cell deficient μMT and Jh mice were fully protected from an otherwise lethal PVM infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection. PMID:24748495
Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F
2014-06-01
We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.
Patent data mining: a tool for accelerating HIV vaccine innovation.
Clark, K; Cavicchi, J; Jensen, K; Fitzgerald, R; Bennett, A; Kowalski, S P
2011-05-31
Global access to advanced vaccine technologies is challenged by the interrelated components of intellectual property (IP) management strategies, technology transfer (legal and technical) capabilities and the capacity necessary for accelerating R&D, commercialization and delivery of vaccines. Due to a negative association with the management of IP, patents are often overlooked as a vast resource of freely available, information akin to scientific journals as well as business and technological information and trends fundamental for formulating policies and IP management strategies. Therefore, a fundamental step towards facilitating global vaccine access will be the assembly, organization and analysis of patent landscapes, to identify the amount of patenting, ownership (assignees) and fields of technology covered. This is critical for making informed decisions (e.g., identifying licensees, building research and product development collaborations, and ascertaining freedom to operate). Such information is of particular interest to the HIV vaccine community where the HIV Vaccine Enterprise, have voiced concern that IP rights (particularly patents and trade secrets) may prevent data and materials sharing, delaying progress in research and development of a HIV vaccine. We have compiled and analyzed a representative HIV vaccine patent landscape for a prime-boost, DNA/adenoviral vaccine platform, as an example for identifying obstacles, maximizing opportunities and making informed IP management strategy decisions towards the development and deployment of an efficacious HIV vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lessons from HIV-1 vaccine efficacy trials.
Excler, Jean-Louis; Michael, Nelson L
2016-11-01
Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan
2016-07-19
Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M
2014-05-01
Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.
TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation
Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.
2014-01-01
Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Honda; R Wang; W Kong
Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, M.; Robinson, H.; Wang, R.
Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less
Recent advances in vaccine development for herpes simplex virus types I and II.
Coleman, Jeffrey L; Shukla, Deepak
2013-04-01
Despite recent advances in vaccine design and strategies, latent infection with herpes simplex virus (HSV) remains a formidable challenge. Approaches involving live-attenuated viruses and inactivated viral preparations were popular throughout the twentieth century. In the past ten years, many vaccine types, both prophylactic or therapeutic, have contained a replication-defective HSV, viral DNA or glycoproteins. New research focused on the mechanism of immune evasion by the virus has involved developing vaccines with various gene deletions and manipulations combined with the use of new and more specific adjuvants. In addition, new "prime-boost" methods of strengthening the vaccine efficacy have proven effective, but there have also been flaws with some recent strategies that appear to have compromised vaccine efficacy in humans. Given the complicated lifecycle of HSV and its unique way of spreading from cell-to-cell, it can be concluded that the development of an ideal vaccine needs new focus on cell-mediated immunity, better understanding of the latent viral genome and serious consideration of gender-based differences in immunity development among humans. This review summarizes recent developments made in the field and sheds light on some potentially new ways to conquer the problem including development of dual-action prophylactic microbicides that prohibit viral entry and, in addition, induce a strong antigen response.
Oral immunization of mice with live Pneumocystis murina protects against Pneumocystis pneumonia
Samuelson, Derrick R.; de la Rua, Nicholas M.; Charles, Tysheena P.; Ruan, Sanbao; Taylor, Christopher M.; Blanchard, Eugene E.; Luo, Meng; Ramsay, Alistair J.; Shellito, Judd E.; Welsh, David A.
2016-01-01
Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients; particularly those infected with human immunodeficiency virus. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 days post infection even after CD4+ T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD11b+ macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Further, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared to control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. Our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection. PMID:26864029
Evaluation of the efficacy of an autogenous Escherichia coli vaccine in broiler breeders.
Li, Lili; Thøfner, Ida; Christensen, Jens Peter; Ronco, Troels; Pedersen, Karl; Olsen, Rikke H
2017-06-01
In poultry production Escherichia coli autogenous vaccines are often used. However, the efficacy of autogenous E. coli vaccinations has not been evaluated experimentally in chickens after start of lay. The aim of the present study was to evaluate the protective effect of an autogenous E. coli vaccine in broiler breeders. Three groups of 28-week-old broiler breeders (unvaccinated, vaccinated once and twice, respectively) were challenged with a homologous E. coli strain (same strain as included in the vaccine) or a heterologous challenge strain in an experimental ascending model. The clinical outcome was most pronounced in the unvaccinated group; however, the vast majority of chickens in the vaccinated groups had severe pathological manifestations similar to findings in the unvaccinated group after challenge with a homologous as well as a heterologous E. coli strain. Although significant titre rises in IgY antibodies were observed in the twice vaccinated group, antibodies did not confer significant protection in terms of pathological impact. Neither could transfer of maternal-derived antibodies to offspring be demonstrated. In conclusion, with the use of the present model for ascending infection, significant protection of an autogenous E. coli vaccine against neither a homologous nor a heterologous E. coli challenge could not be documented.
Kerekov, Nikola S; Ivanova, Iva I; Mihaylova, Nikolina M; Nikolova, Maria; Prechl, Jozsef; Tchorbanov, Andrey I
2014-10-01
Highly purified, subunit, or synthetic viral antigens are known to be weakly immunogenic and potentate only the antibody, rather than cell-mediated immune responses. An alternative approach for inducing protective immunity with small viral peptides would be the direct targeting of viral epitopes to the immunocompetent cells by DNA vaccines encoding antibody fragments specific to activating cell surface co-receptor molecules. Here, we are exploring as a new genetic vaccine, a DNA chimeric molecule encoding a T and B cell epitope-containing influenza A virus hemagglutinin peptide joined to sequences encoding a single-chain variable fragment antibody fragment specific for the costimulatory B cell complement receptors 1 and 2. This recombinant DNA molecule was inserted into eukaryotic expression vector and used as a naked DNA vaccine in WT and CR1/2 KO mice. The intramuscular administration of the DNA construct resulted in the in vivo expression of an immunogenic chimeric protein, which cross-links cell surface receptors on influenza-specific B cells. The DNA vaccination was followed by prime-boosting with the protein-engineered replica of the DNA construct, thus delivering an activation intracellular signal. Immunization with an expression vector containing the described construct and boosting with the protein chimera induced a strong anti-influenza cytotoxic response, modulation of cytokine profile, and a weak antibody response in Balb/c mice. The same immunization scheme did not result in generation of influenza-specific response in mice lacking the target receptor, underlining the molecular adjuvant effect of receptor targeting.
van Lier, Alies; Lugnér, Anna; Opstelten, Wim; Jochemsen, Petra; Wallinga, Jacco; Schellevis, François; Sanders, Elisabeth; de Melker, Hester; van Boven, Michiel
2015-10-01
Varicella zoster virus (VZV) is the etiological agent of varicella and herpes zoster (HZ). It has been hypothesised that immune boosting of latently infected persons by contact with varicella reduces the probability of HZ. If true, universal varicella vaccination may increase HZ incidence due to reduced VZV circulation. To inform decision-making, we conduct cost-effectiveness analyses of varicella vaccination, including effects on HZ. Effects of varicella vaccination are simulated with a dynamic transmission model, parameterised with Dutch VZV seroprevalence and HZ incidence data, and linked to an economic model. We consider vaccination scenarios that differ by whether or not they include immune boosting, and reactivation of vaccine virus. Varicella incidence decreases after introduction of vaccination, while HZ incidence may increase or decrease depending on whether or not immune boosting is present. Without immune boosting, vaccination is expected to be cost-effective or even cost-saving. With immune boosting, vaccination at 95% coverage is not expected to be cost-effective, and may even cause net health losses. Cost-effectiveness of varicella vaccination depends strongly on the impact on HZ and the economic time horizon. Our findings reveal ethical dilemmas as varicella vaccination may result in unequal distribution of health effects between generations.
Richie, Thomas L.; Charoenvit, Yupin; Wang, Ruobing; Epstein, Judith E.; Hedstrom, Richard C.; Kumar, Sanjai; Luke, Thomas C.; Freilich, Daniel A.; Aguiar, Joao C.; Sacci, Jr., John B.; Sedegah, Martha; Nosek, Jr., Ronald A.; De La Vega, Patricia; Berzins, Mara P.; Majam, Victoria F.; Abot, Esteban N.; Ganeshan, Harini; Richie, Nancy O.; Banania, Jo Glenna; Baraceros, Maria Fe B.; Geter, Tanya G.; Mere, Robin; Bebris, Lolita; Limbach, Keith; Hickey, Bradley W.; Lanar, David E.; Ng, Jennifer; Shi, Meng; Hobart, Peter M.; Norman, Jon A.; Soisson, Lorraine A.; Hollingdale, Michael R.; Rogers, William O.; Doolan, Denise L.; Hoffman, Stephen L.
2012-01-01
When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines. PMID:23151451
Morozova, O V; Bakhvalova, V N; Potapova, O F; Grishechkin, A E; Isaeva, E I; Aldarov, K V; Klinov, D V; Vorovich, M F
2014-05-23
Among three main subtypes of the tick-borne encephalitis virus (TBEV), the Siberian subtype is currently dominant in a majority of the endemic regions of Russia. However, inactivated vaccines are based on TBEV strains of the heterologous Far Eastern or the European subtypes isolated 40-77 years ago. To analyze the efficacy of the available vaccines against currently prevailing TBEV isolates of the Siberian subtype, mice were immunized subcutaneously three times (one group per each vaccine). The expression of seven cytokine genes was determined using RT-PCR. Sera were studied using homologous and heterologous ELISA, hemagglutination inhibition (HI) and neutralization tests with TBEV strains of the Far Eastern, Siberian and European subtypes. Cross-protective efficacy of the vaccines was evaluated with the TBEV strain 2689 of Siberian subtype isolated from an ixodid tick from the Novosibirsk, South-Western Siberia, Russia in 2010. The cytokine gene expression profile indicates a predominantly Th2 response due to exogenous antigen presentation. Titers for homologous combinations of vaccine strain and strain in ELISA, HI and neutralization tests exceeded those for heterologous antigen-antibody pairs. Despite antibody detection by means of ELISA, HI and neutralization tests, the mouse protection afforded by the vaccines differed significantly. Complete protection of mice challenged with 100 LD50 virus of the Siberian subtype was induced by the vaccine "Encevir" ("Microgen", Tomsk, Russia). The minimal immunization doze (MID50) of "Encevir" protecting 50% of the mice was less than 0.0016 ml. Partial protective effect of vaccines produced in Moscow, Russia and Austria revealed MID50 within recommended intervals (0.001-0.017 ml). However, the MID50 for the vaccine "Encepur" (Novartis, Germany) 0.04 ml exceeded acceptable limits with total loss of mice immunized with vaccine diluted 32, 100 and 320 fold. These results suggest regular evaluation of TBEV vaccines in regions where heterologous virus subtypes prevail. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alami Chentoufi, Aziz; Kritzer, Elizabeth; Yu, David M.; Nesburn, Anthony B.; BenMohamed, Lbachir
2012-01-01
The best hope of controlling the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) pandemic is the development of an effective vaccine. However, in spite of several clinical trials, starting as early as 1920s, no vaccine has been proven sufficiently safe and efficient to warrant commercial development. In recent years, great strides in cellular and molecular immunology have stimulated creative efforts in controlling herpes infection and disease. However, before moving towards new vaccine strategy, it is necessary to answer two fundamental questions: (i) why past herpes vaccines have failed? (ii) Why the majority of HSV seropositive individuals (i.e., asymptomatic individuals) are naturally “protected” exhibiting few or no recurrent clinical disease, while other HSV seropositive individuals (i.e., symptomatic individuals) have frequent ocular, orofacial, and/or genital herpes clinical episodes? We recently discovered several discrete sets of HSV-1 symptomatic and asymptomatic epitopes recognized by CD4+ and CD8+ T cells from seropositive symptomatic versus asymptomatic individuals. These asymptomatic epitopes will provide a solid foundation for the development of novel herpes epitope-based vaccine strategy. Here we provide a brief overview of past clinical vaccine trials, outline current progress towards developing a new generation “asymptomatic” clinical herpes vaccines, and discuss future mucosal “asymptomatic” prime-boost vaccines that could optimize local protective immunity. PMID:22548113
Oral immunization with hepatitis B surface antigen expressed in transgenic plants
Kong, Qingxian; Richter, Liz; Yang, Yu Fang; Arntzen, Charles J.; Mason, Hugh S.; Thanavala, Yasmin
2001-01-01
Oral immunogenicity of recombinant hepatitis B surface antigen (HBsAg) derived from yeast (purified product) or in transgenic potatoes (uncooked unprocessed sample) was compared. An oral adjuvant, cholera toxin, was used to increase immune responses. Transgenic plant material containing HBsAg was the superior means of both inducing a primary immune response and priming the mice to respond to a subsequent parenteral injection of HBsAg. Electron microscopy of transgenic plant samples revealed evidence that the HBsAg accumulated intracellularly; we conclude that natural bioencapsulation of the antigen may provide protection from degradation in the digestive tract until plant cell degradation occurs near an immune effector site in the gut. The correlate of protection from hepatitis B virus infection is serum antibody titers induced by vaccination; the protective level in humans is 10 milliunits/ml or greater. Mice fed HBsAg-transgenic potatoes produced HBsAg-specific serum antibodies that exceeded the protective level and, on parenteral boosting, generated a strong long-lasting secondary antibody response. We have also shown the effectiveness of oral delivery by using a parenteral prime-oral boost immunization schedule. The demonstrated success of oral immunization for hepatitis B virus with an “edible vaccine” provides a strategy for contributing a means to achieve global immunization for hepatitis B prevention and eradication. PMID:11553782
Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice.
Zheng, Nuoyan; Xia, Ran; Yang, Cuiping; Yin, Bojiao; Li, Yin; Duan, Chengguo; Liang, Liming; Guo, Huishan; Xie, Qi
2009-08-06
Vaccines produced in plant systems are safe and economical; however, the extensive application of plant-based vaccines is mainly hindered by low expression levels of heterologous proteins in plant systems. Here, we demonstrated that the post-transcriptional gene silencing suppressor p19 protein from tomato bushy stunt virus substantially enhanced the transient expression of recombinant SARS-CoV nucleocapsid (rN) protein in Nicotiana benthamiana. The rN protein in the agrobacteria-infiltrated plant leaf accumulated up to a concentration of 79 microg per g fresh leaf weight at 3 days post infiltration. BALB/c mice were intraperitoneally vaccinated with pre-treated plant extract emulsified in Freund's adjuvant. The rN protein-specific IgG in the mouse sera attained a titer about 1:1,800 following three doses of immunization, which suggested effective B-cell maturation and differentiation in mice. Antibodies of the subclasses IgG1 and IgG2a were abundantly present in the mouse sera. During vaccination of rN protein, the expression of IFN-gamma and IL-10 was evidently up-regulated in splenocytes at different time points, while the expression of IL-2 and IL-4 was not. Up to now, this is the first study that plant-expressed recombinant SARS-CoV N protein can induce strong humoral and cellular responses in mice.
Liechtenstein, Therese; Perez-Janices, Noemi; Blanco-Luquin, Idoia; Goyvaerts, Cleo; Schwarze, Julia; Dufait, Ines; Lanna, Alessio; Ridder, Mark De; Guerrero-Setas, David; Breckpot, Karine; Escors, David
Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo . Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities.
Liechtenstein, Therese; Perez-Janices, Noemi; Blanco-Luquin, Idoia; Goyvaerts, Cleo; Schwarze, Julia; Dufait, Ines; Lanna, Alessio; Ridder, Mark De; Guerrero-Setas, David; Breckpot, Karine; Escors, David
2014-01-01
Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo. Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities. PMID:25954597
Albrecht, Mark T; Livingston, Brian D; Pesce, John T; Bell, Matt G; Hannaman, Drew; Keane-Myers, Andrea M
2012-07-06
Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined. Published by Elsevier Ltd.
Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David
2015-04-01
Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. © 2015.
Wyatt, Linda S; Xiao, Wei; Americo, Jeffrey L; Earl, Patricia L; Moss, Bernard
2017-06-06
Viruses are used as expression vectors for protein synthesis, immunology research, vaccines, and therapeutics. Advantages of poxvirus vectors include the accommodation of large amounts of heterologous DNA, the presence of a cytoplasmic site of transcription, and high expression levels. On the other hand, competition of approximately 200 viral genes with the target gene for expression and immune recognition may be disadvantageous. We describe a vaccinia virus (VACV) vector that uses an early promoter to express the bacteriophage T7 RNA polymerase; has the A23R intermediate transcription factor gene deleted, thereby restricting virus replication to complementing cells; and has a heterologous gene regulated by a T7 promoter. In noncomplementing cells, viral early gene expression and DNA replication occurred normally but synthesis of intermediate and late proteins was prevented. Nevertheless, the progeny viral DNA provided templates for abundant expression of heterologous genes regulated by a T7 promoter. Selective expression of the Escherichia coli lac repressor gene from an intermediate promoter reduced transcription of the heterologous gene specifically in complementing cells, where large amounts might adversely impact VACV replication. Expression of heterologous proteins mediated by the A23R deletion vector equaled that of a replicating VACV, was higher than that of a nonreplicating modified vaccinia virus Ankara (MVA) vector used for candidate vaccines in vitro and in vivo , and was similarly immunogenic in mice. Unlike the MVA vector, the A23R deletion vector still expresses numerous early genes that can restrict immunogenicity as demonstrated here by the failure of the prototype vector to induce interferon alpha. By deleting immunomodulatory genes, we anticipate further improvements in the system. IMPORTANCE Vaccines provide an efficient and effective way of preventing infectious diseases. Nevertheless, new and better vaccines are needed. Vaccinia virus, which was used successfully as a live vaccine to eradicate smallpox, has been further attenuated and adapted as a recombinant vector for immunization against other pathogens. However, since the initial description of this vector system, only incremental improvements largely related to safety have been implemented. Here we described novel modifications of the platform that increased expression of the heterologous target gene and decreased expression of endogenous vaccinia virus genes while providing safety by preventing replication of the candidate vaccine except in complementing cells used for vector propagation. Copyright © 2017 Wyatt et al.
Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh
2015-01-15
Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.
van der Lee, Saskia; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie
2018-01-04
Duration of protection against pertussis is shorter in adolescents who have been immunized with acellular pertussis (aP) in infancy compared with adolescents who received whole-cell pertussis (wP) vaccines in infancy, which is related to immune responses elicited by these priming vaccines. To better understand differences in vaccine induced immunity, we determined pertussis, diphtheria, and tetanus (DTaP) vaccine antigen-specific IgG subclass responses in wP- and aP-primed children before and after two successive DTaP booster vaccinations. Blood samples were collected in a cross-sectional study from wP- or aP-primed children before and 1 month after the pre-school DTaP booster vaccination at age 4 years. Blood samples were collected from two different wP- and aP-primed groups of children before, 1 month and 1 year after an additional pre-adolescent Tdap booster at age 9 years. IgG subclass levels against the antigens included in the DTaP vaccine have been determined with fluorescent-bead-based multiplex immunoassays. At 4 years of age, the IgG4 proportion and concentration for pertussis, diphtheria and tetanus vaccine antigens were significantly higher in aP-primed children compared with wP-primed children. IgG4 concentrations further increased upon the two successive booster vaccinations at 4 and 9 years of age in both wP- and aP-primed children, but remained significantly higher in aP-primed children. The pertussis vaccinations administered in the primary series at infancy determine the vaccine antigen-specific IgG subclass profiles, not only against the pertussis vaccine antigens, but also against the co-administered diphtheria and tetanus vaccine antigens. These profiles did not change after DTaP booster vaccinations later in childhood. The different immune response with high proportions of specific IgG4 in some aP-primed children may contribute to a reduced protection against pertussis. ISRCTN65428640; ISRCTN64117538; NTR4089. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Ligia A.; Viscidi, Raphael; Harro, Clayton D.
Human papillomavirus-like particles (HPV VLP) are candidate vaccines that have shown to be efficacious in reducing infection and inducing robust antiviral immunity. Neutralizing antibodies generated by vaccination are largely type-specific, but little is known about the type-specificity of cellular immune responses to VLP vaccination. To determine whether vaccination with HPV-16 L1VLP induces cellular immunity to heterologous HPV types (HPV-18, HPV-31, and HPV-53), we examined proliferative and cytokine responses in vaccine (n = 11) and placebo (n = 5) recipients. Increased proliferative and cytokine responses to heterologous types were observed postvaccination in some individuals. The proportion of women responding to heterologousmore » types postvaccination (36%-55%) was lower than that observed in response to HPV-16 (73%). Response to HPV-16 VLP predicted response to other types. The strongest correlations in response were observed between HPV-16 and HPV-31, consistent with their phylogenetic relatedness. In summary, PBMC from HPV-16 VLP vaccine recipients can respond to L1VLP from heterologous HPV types, suggesting the presence of conserved T cell epitopes.« less
Lynch, Heather E.; Stewart, Shelley M.; Kepler, Thomas B.; Sempowski, Gregory D.; Alam, S. Munir
2014-01-01
Establishment of humoral immunity against pathogens is dependent on events that occur in the germinal center and the subsequent induction of high-affinity neutralizing antibodies. Quantitative assays that allow monitoring of affinity maturation and duration of antibody responses can provide useful information regarding the efficacy of vaccines and adjuvants. Using an anthrax protective antigen (rPA) and alum model antigen/adjuvant system, we describe a methodology for monitoring antigen-specific serum antibody concentration and avidity by surface plasmon resonance during primary and secondary immune responses. Our analyses showed that following a priming dose in mice, rPA-specific antibody concentration and avidity increases over time and reaches a maximal response in about six weeks, but gradually declines in the absence of antigenic boost. Germinal center reactions were observed early with maximal development achieved during the primary response, which coincided with peak antibody avidity responses to primary immunization. Boosting with antigen resulted in a rapid increase in rPA-specific antibody concentration and five-fold increase in avidity, which was not dependent on sustained GC development. The described methodology couples surface plasmon resonance-based plasma avidity measurements with germinal center analysis and provides a novel way to monitor humoral responses that can play a role in facilitating vaccine and adjuvant development. PMID:24316020
DNAVaxDB: the first web-based DNA vaccine database and its data analysis
2014-01-01
Since the first DNA vaccine studies were done in the 1990s, thousands more studies have followed. Here we report the development and analysis of DNAVaxDB (http://www.violinet.org/dnavaxdb), the first publically available web-based DNA vaccine database that curates, stores, and analyzes experimentally verified DNA vaccines, DNA vaccine plasmid vectors, and protective antigens used in DNA vaccines. All data in DNAVaxDB are annotated from reliable resources, particularly peer-reviewed articles. Among over 140 DNA vaccine plasmids, some plasmids were more frequently used in one type of pathogen than others; for example, pCMVi-UB for G- bacterial DNA vaccines, and pCAGGS for viral DNA vaccines. Presently, over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB. While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell. The DNA vaccine priming, other vaccine boosting vaccination regimen has been widely used to induce protection against infection of different pathogens such as HIV. Parasitic and cancer DNA vaccines were also systematically analyzed. User-friendly web query and visualization interfaces are available in DNAVaxDB for interactive data search. To support data exchange, the information of DNA vaccines, plasmids, and protective antigens is stored in the Vaccine Ontology (VO). DNAVaxDB is targeted to become a timely and vital source of DNA vaccines and related data and facilitate advanced DNA vaccine research and development. PMID:25104313
Pallister, Jackie A; Klein, Reuben; Arkinstall, Rachel; Haining, Jessica; Long, Fenella; White, John R; Payne, Jean; Feng, Yan-Ru; Wang, Lin-Fa; Broder, Christopher C; Middleton, Deborah
2013-07-16
Nipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%. Ferrets were vaccinated with 4, 20 or 100 μg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum. Ferrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome - but not virus - was recovered from nasal secretions of one ferret given 20 μg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response. We have previously shown that ferrets vaccinated with 4, 20 or 100 μg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months post-vaccination, with data supporting only localised and self-limiting virus replication in 2 of 5 animals. These results augur well for acceptability of the vaccine to industry.
Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.
2008-01-01
The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410
Cargnelutti, Diego Esteban; Salomón, María Cristina; Celedon, Verónica; García Bustos, María Fernanda; Morea, Gastón; Cuello-Carrión, Fernando Darío; Scodeller, Eduardo Alberto
2016-02-01
A proper adjuvant has a relevant role in vaccine formulations to generate an effective immune response. In this study, total Leishmania antigen (TLA) formulated with Montanide ISA 763 or R848 as adjuvants were evaluated as a first generation Leishmania vaccine in a murine model. Immunization protocols were tested in BALB/c mice with a subcutaneous prime/boost regimen with an interval of 3 weeks. Mice immunized with unadjuvanted TLA and phosphate-buffered saline (PBS) served as control groups. On Day 21 and Day 36 of the protocol, we evaluated the humoral immune response induced by each formulation. Fifteen days after the boost, the immunized mice were challenged with 1 × 10(5) promastigotes of Leishmania (Leishmania) amazonensis in the right footpad (RFP). The progress of the infection was followed for 10 weeks; at the end of this period, histopathological studies were performed in the RFP. Vaccines formulated with Montanide ISA 763 generated an increase in the production of immunoglobulin G (IgG; p < 0.05) compared with the control group. There were no statistically significant differences in IgG1 production between the study groups. However, immunization with TLA-Montanide ISA 763 resulted in an increase in IgG2a compared to the unadjuvanted control (p < 0.001). Also noteworthy was the fact that a significant reduction in swelling and histopathological damage of the RFP was recorded with the Montanide ISA 763 formulation. We conclude that the immunization of BALB/c mice with a vaccine formulated with TLA and Montanide ISA 763 generated a protective immune response against L. (L.) amazonensis, characterized by an intense production of IgG2a. Copyright © 2014. Published by Elsevier B.V.
Issues in women's participation in a phase III community HIV vaccine trial in Thailand.
Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Khamboonruang, Chirasak; Kunasol, Prayura; Suntharasamai, Pravan; Pungpak, Swangjai; Vanijanonta, Sirivan; Bussaratid, Valai; Maek-A-Nantawat, Wirach; Dhitavat, Jittima; Thongcharoen, Prasert; Pawarana, Rungrawee; Sabmee, Yupa; Benenson, Mike W; Morgan, Patricia; O'Connell, Robert J; Kim, Jerome
2013-11-01
To assess qualities and outcomes of women participating in a large, community-based HIV vaccine trial, the present study was conducted among female participants of the RV 144 prime-boost trial in Thailand from 2003 to 2009. Qualities of participation refer to complete vaccination, retention, and status change. Outcomes of participation refer to incident rate, adverse event, and participation impact event. A total of 6,334 (38.6%) women participated in the trial, of whom about 50% were classified as low risk and 11% as high risk. About 85% of participants completed four vaccinations and 76% were included in the per-protocol analysis of the on-time vaccination schedule. More women (88%) completed 42 months follow-up compared with men (85%). Women aged 21 and above had more adverse events compared to younger age groups. More women (5%) compared with men (3%) reported participation impact events (PIEs). High-risk women had more PIEs and a higher infection rate compared to the low-risk group. Complete vaccination and retention on last follow-up were more common in married women aged above 21, and being a housewife. Female volunteers showed the same qualities and outcomes of participation as males in the HIV vaccine trial. There was no statistically significant difference in vaccine efficacy between men and women, especially among the high-risk and married women. The study highlighted the important behavioral, social, and cultural issues that could be considered for future HIV vaccine trial designs.
Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter
2004-02-01
An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.
Palmer, Gene A.; Brogdon, Jennifer L.; Constant, Stephanie L.; Tattersall, Peter
2004-01-01
An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th1 immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4+ T cells. PMID:14722265
Khattar, Sunil K; Samal, Sweety; Devico, Anthony L; Collins, Peter L; Samal, Siba K
2011-10-01
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.
Rosario, Maximillian; Hopkins, Richard; Fulkerson, John; Borthwick, Nicola; Quigley, Máire F.; Joseph, Joan; Douek, Daniel C.; Greenaway, Hui Yee; Venturi, Vanessa; Gostick, Emma; Price, David A.; Both, Gerald W.; Sadoff, Jerald C.; Hanke, Tomáš
2010-01-01
Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration. PMID:20375158
Hua, Ying; Jiao, Yue-Ying; Ma, Yao; Peng, Xiang-Lei; Fu, Yuan-Hui; Zheng, Yan-Peng; Hong, Tao; He, Jin-Sheng
2016-11-01
Human respiratory syncytial virus (RSV) can cause serious infection in the lower respiratory tract, especially in infants, young children, the elderly and the immunocompromised population worldwide. Previous study demonstrated the polypeptide (amino acids 148-198) of RSV attachment (G) glycoprotein, corresponding to the central conserved region and encompassing CX3C chemokine motif, could induce antibodies and protection from RSV challenge in mice [1,2]. In this study, we evaluated the immune efficacy of the recombinant DNA vaccine of pVAX1/3G 148-198 encoding RSV G protein polypeptide. RSV specific serum IgG antibodies with neutralizing activity were stimulated following prime-boost immunization of pVAX1/3G 148-198 intramuscularly, and the ratio of IgG2a/IgG1 was 4.93, indicating a Th1 biased immune response. After challenged intranasally with RSV Long, the vaccinated mice showed both decreased lung RSV titers, pulmonary inflammation and body weight loss. The results suggest that pVAX1/3G 148-198 DNA vaccine may be an effective RSV vaccine candidate, and deserves further exploration. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C
2015-10-27
The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative. Copyright © 2015 Chua et al.
Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun
2017-01-01
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage. PMID:28929089
Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination.
Boyer, J D; Ugen, K E; Wang, B; Agadjanyan, M; Gilbert, L; Bagarazzi, M L; Chattergoon, M; Frost, P; Javadian, A; Williams, W V; Refaeli, Y; Ciccarelli, R B; McCallus, D; Coney, L; Weiner, D B
1997-05-01
Novel approaches for the generation of more effective vaccines for HIV-1 are of significant importance. In this report we analyze the immunogenicity and efficacy of an HIV-1 DNA vaccine encoding env, rev and gag/pol in a chimpanzee model system. The immunized animals developed specific cellular and humoral immune responses. Animals were challenged with a heterologous chimpanzee titered stock of HIV-1 SF2 virus and followed for 48 weeks after challenge. Polymerase chain reaction coupled with reverse transcription (RT-PCR) results indicated infection in the control animal, whereas those animals vaccinated with the DNA constructs were protected from the establishment of infection. These studies serve as an important benchmark for the use of DNA vaccine technology for the production of protective immune responses.
Ackerman, Margaret; Saunders, Kevin O.; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Michael, Nelson L.; O’Connell, Robert J.; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Phogat, Sanjay; Alam, S. Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S.; Montefiori, David C.; Harrison, Stephen C.; Haynes, Barton F.
2017-01-01
The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6–8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. Trial Registration: ClinicalTrials.gov NCT01435135 PMID:28235027
Easterhoff, David; Moody, M Anthony; Fera, Daniela; Cheng, Hao; Ackerman, Margaret; Wiehe, Kevin; Saunders, Kevin O; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Kim, Jerome; Michael, Nelson L; O'Connell, Robert J; Excler, Jean-Louis; Robb, Merlin L; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Tartaglia, James; Phogat, Sanjay; Kepler, Thomas B; Alam, S Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S; Montefiori, David C; Tomaras, Georgia D; Harrison, Stephen C; Haynes, Barton F
2017-02-01
The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6-8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. ClinicalTrials.gov NCT01435135.
Panagioti, Eleni; Boon, Louis; Arens, Ramon; van der Burg, Sjoerd H.
2017-01-01
There is an imperative need for effective preventive vaccines against human cytomegalovirus as it poses a significant threat to the immunologically immature, causing congenital disease, and to the immune compromised including transplant recipients. In this study, we examined the efficacy of synthetic long peptides (SLPs) as a CD4+ and CD8+ T cell-eliciting preventive vaccine approach against mouse CMV (MCMV) infection. In addition, the use of agonistic OX40 antibodies to enhance vaccine efficacy was explored. Immunocompetent C57BL/6 mice were vaccinated in a prime-boost vaccination regiment with SLPs comprising various MHC class I- and II-restricted peptide epitopes of MCMV-encoded antigens. Enforced OX40 stimulation resulted in superior MCMV-specific CD4+ as CD8+ T cell responses when applied during booster SLP vaccination. Vaccination with a mixture of SLPs containing MHC class II epitopes and OX40 agonistic antibodies resulted in a moderate reduction of the viral titers after challenge with lytic MCMV infection. Markedly, the combination of SLP vaccines containing both MHC class I and II epitopes plus OX40 activation during booster vaccination resulted in polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD4+ and CD8+ T cell responses that were even higher in magnitude when compared to those induced by the virus, and this resulted in the best containment of virus dissemination. Our results show that the induction of strong T cell responses can be a fundamental component in the design of vaccines against persistent viral infections. PMID:28265272
Homologous and heterologous protection of nonhuman primates by Ebola and Sudan virus-like particles.
Warfield, Kelly L; Dye, John M; Wells, Jay B; Unfer, Robert C; Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Swenson, Dana L; Bavari, Sina; Aman, M Javad
2015-01-01
Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.
Otrashevskaia, E V; Krasil'nikov, I V; Ignat'ev, G M
2010-01-01
Postvaccination immunity was studied in the children and teenagers without a history of clinical mumps infection, who had been immunized with the Leningrad-3 mumps vaccine. The level of specific lgG in ELISA and that and spectrum of their neutralizing activity against a vaccine strain and three heterologous mumps virus (MV) strains (genotypes A, C, and H) were measured. The investigation included 151 sera from the vaccinees aged 3 to 17 years, possessing the detectable specific IgG titers in ELISA and the detectable neutralizing titers against the vaccine strain. 97.4% of the vaccinees had neutralizing activity against 1-3 heterologous MV strains. A preponderance of neutralizing titers against heterologous MV strains by 1-log2 in some sera (6.5-32.5 depending on age) was most likely to suggest that the vaccinees' had been in contact with these virus strains in the past. In our investigation, a combination of positive IgG titers and neutralizing titers against the vaccine strain 2-log2 or higher provided the protection of the vaccinated children and teenagers against the symptomatic infection. There was a pronounced buster effect of the second immunization and a drop in the neutralizing activity of the sera from the vaccinated children and adolescents over time after the first and second immunization.
Homologous and Heterologous Protection of Nonhuman Primates by Ebola and Sudan Virus-Like Particles
Warfield, Kelly L.; Dye, John M.; Wells, Jay B.; Unfer, Robert C.; Holtsberg, Frederick W.; Shulenin, Sergey; Vu, Hong; Swenson, Dana L.; Bavari, Sina; Aman, M. Javad
2015-01-01
Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components. PMID:25793502
Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J
2012-12-01
The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.
Deming, Damon; Sheahan, Timothy; Heise, Mark; Yount, Boyd; Davis, Nancy; Sims, Amy; Suthar, Mehul; Harkema, Jack; Whitmore, Alan; Pickles, Raymond; West, Ande; Donaldson, Eric; Curtis, Kristopher; Johnston, Robert; Baric, Ralph
2006-01-01
Background In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. Methods and Findings Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV–challenged mice. VRP-N–induced pathology presented at day 4, peaked around day 7, and persisted through day 14, and was likely mediated by cellular immune responses. Conclusions This study identifies gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations. The availability of a SARS-CoV virus bearing heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine efficacy against zoonotic strains, the most likely source of future outbreaks. PMID:17194199
Rafferty, Ellen; McDonald, Wade; Qian, Weicheng; Osgood, Nathaniel D; Doroshenko, Alexander
2018-01-01
Biological interactions between varicella (chickenpox) and herpes zoster (shingles), two diseases caused by the varicella zoster virus (VZV), continue to be debated including the potential effect on shingles cases following the introduction of universal childhood chickenpox vaccination programs. We investigated how chickenpox vaccination in Alberta impacts the incidence and age-distribution of shingles over 75 years post-vaccination, taking into consideration a variety of plausible theories of waning and boosting of immunity. We developed an agent-based model representing VZV disease, transmission, vaccination states and coverage, waning and boosting of immunity in a stylized geographic area, utilizing a distance-based network. We derived parameters from literature, including modeling, epidemiological, and immunology studies. We calibrated our model to the age-specific incidence of shingles and chickenpox prior to vaccination to derive optimal combinations of duration of boosting (DoB) and waning of immunity. We conducted paired simulations with and without implementing chickenpox vaccination. We computed the count and cumulative incidence rate of shingles cases at 10, 25, 50, and 75 years intervals, following introduction of vaccination, and compared the difference between runs with vaccination and without vaccination using the Mann-Whitney U-test to determine statistical significance. We carried out sensitivity analyses by increasing and lowering vaccination coverage and removing biological effect of boosting. Chickenpox vaccination led to a decrease in chickenpox cases. The cumulative incidence of chickenpox had dropped from 1,254 cases per 100,000 person-years pre chickenpox vaccination to 193 cases per 100,000 person-years 10 years after the vaccine implementation. We observed an increase in the all-ages shingles cumulative incidence at 10 and 25 years post chickenpox vaccination and mixed cumulative incidence change at 50 and 75 years post-vaccination. The magnitude of change was sensitive to DoB and ranged from an increase of 22-100 per 100,000 person-years at 10 years post-vaccination for two and seven years of boosting respectively ( p < 0.001). At 75 years post-vaccination, cumulative incidence ranged from a decline of 70 to an increase of 71 per 100,000 person-years for two and seven years of boosting respectively ( p < 0.001). Sensitivity analyses had a minimal impact on our inferences except for removing the effect of boosting. Our model demonstrates that over the longer time period, there will be a reduction in shingles incidence driven by the depletion of the source of shingles reactivation; however in the short to medium term some age cohorts may experience an increase in shingles incidence. Our model offers a platform to further explore the relationship between chickenpox and shingles, including analyzing the impact of different chickenpox vaccination schedules and cost-effectiveness studies.
Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation.
Kim, Eun; Erdos, Geza; Huang, Shaohua; Kenniston, Thomas; Falo, Louis D; Gambotto, Andrea
2016-11-01
Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV) has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E) fused to the T4 fibritin foldon trimerization domain (Efl). The subunit vaccine was delivered intradermally through carboxymethyl cellulose microneedle array (MNA). The immunogenicity of these two vaccines, named Ad5.ZIKV-Efl and ZIKV-rEfl, was tested in C57BL/6 mice. Prime/boost immunization regimen was associated with induction of a ZIKV-specific antibody response, which provided neutralizing immunity. Moreover, protection was evaluated in seven-day-old pups after virulent ZIKV intraperitoneal challenge. Pups born to mice immunized with Ad5.ZIKV-Efl were all protected against lethal challenge infection without weight loss or neurological signs, while pups born to dams immunized with MNA-ZIKV-rEfl were partially protected (50%). No protection was seen in pups born to phosphate buffered saline-immunized mice. This study illustrates the preliminary efficacy of the E ZIKV antigen vaccination in controlling ZIKV infectivity, providing a promising candidate vaccine and antigen format for the prevention of Zika virus disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Kwon, Ji-Sun; Yoon, Jungsoon; Kim, Yeon-Jung; Kang, Kyuho; Woo, Sunje; Jung, Dea-Im; Song, Man Ki; Kim, Eun-Ha; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jihye; Lee, Jeewon; Yoon, Yeup; Shin, Eui-Cheol; Youn, Jin-Won
2014-08-01
Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell-based vaccine, but the narrow breadth of T-cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T-cell immunodominance hierarchy in humans in an experimental setting, influenza-primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN-γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T-cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV-NP + PA showed improved protection. Taken together, a vaccinia-based influenza vaccine expressing conserved internal proteins improved the breadth of influenza-specific T-cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A
2010-04-01
Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.
Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys.
Barouch, Dan H; Liu, Jinyan; Li, Hualin; Maxfield, Lori F; Abbink, Peter; Lynch, Diana M; Iampietro, M Justin; SanMiguel, Adam; Seaman, Michael S; Ferrari, Guido; Forthal, Donald N; Ourmanov, Ilnour; Hirsch, Vanessa M; Carville, Angela; Mansfield, Keith G; Stablein, Donald; Pau, Maria G; Schuitemaker, Hanneke; Sadoff, Jerald C; Billings, Erik A; Rao, Mangala; Robb, Merlin L; Kim, Jerome H; Marovich, Mary A; Goudsmit, Jaap; Michael, Nelson L
2012-01-04
Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIV(SME543) Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIV(MAC251) challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.
Otrashevskaia, A V; Bukin, E K; Krasil'nikov, I V; Ignat'ev, G M
2011-01-01
The level and spectrum of humoral specific immunity were studied in 60 volunteers immunized with Russian mumps vaccine. Specific IgG levels were measured by enzyme immunoassay (EIA) and neutralization test using the Leningrad-3 (L-3) mumps virus (MV) vaccine strain and 5 heterologous MV strains of various genotypes (A, B, C, D, and H). The maximum functional activity of antibodies was recorded at an average of 18 months postvaccination. Within 3 years after vaccination, starting at 6 months, specific IgG neutralized all 6 MV strains having varying activity in relation to the genotype. Neutralizing titers (NT) against the L-3 strain were 1.3-1.7-fold higher than those against heterologous MV strains throughout the follow-up. Despite a tendency towards lower specific IgG levels, within 3 years postvaccination, EIA IgG titers remained to be 2.5 -log, L-3 strain HT were -log, or more, and the titers against 5 heterologous MV strains were 2 -log2 or more in all the volunteers.
Syntactic priming during sentence comprehension: evidence for the lexical boost.
Traxler, Matthew J; Tooley, Kristen M; Pickering, Martin J
2014-07-01
Syntactic priming occurs when structural information from one sentence influences processing of a subsequently encountered sentence (Bock, 1986; Ledoux et al., 2007). This article reports 2 eye-tracking experiments investigating the effects of a prime sentence on the processing of a target sentence that shared aspects of syntactic form. The experiments were designed to determine the degree to which lexical overlap between prime and target sentences produced larger effects, comparable to the widely observed "lexical boost" in production experiments (Pickering & Branigan, 1998; Pickering & Ferreira, 2008). The current experiments showed that priming effects during online comprehension were in fact larger when a verb was repeated across the prime and target sentences (see also Tooley et al., 2009). The finding of larger priming effects with lexical repetition supports accounts under which syntactic form representations are connected to individual lexical items (e.g., Tomasello, 2003; Vosse & Kempen, 2000, 2009). PsycINFO Database Record (c) 2014 APA, all rights reserved.
McCormack, Sheena; Stöhr, Wolfgang; Barber, Tristan; Bart, Pierre-Alexandre; Harari, Alexandre; Moog, Christiane; Ciuffreda, Donatella; Cellerai, Cristina; Cowen, Miranda; Gamboni, Romilda; Burnet, Séverine; Legg, Ken; Brodnicki, Elizabeth; Wolf, Hans; Wagner, Ralf; Heeney, Jonathan; Frachette, Marie-Joëlle; Tartaglia, Jim; Babiker, Abdel; Pantaleo, Giuseppe; Weber, Jonathan
2008-06-13
The aim of this randomised controlled trial was to see if the addition of 4 mg/ml DNA-C priming given by the intramuscular route at weeks 0 and 4 to NYVAC-C at weeks 20 and 24, safely increased the proportion of participants with HIV-specific T-cell responses measured by the interferon (IFN)-gamma ELISpot assay at weeks 26 and/or 28 compared to NYVAC-C alone. Although 2 individuals discontinued after the first DNA-C due to adverse events (1 vaso-vagal; 1 transient, asymptomatic elevation in alanine transaminase), the vaccines were well tolerated. Three others failed to complete the regimen (1 changed her mind; 2 lost to follow-up). Of the 35 that completed the regimen 90% (18/20) in the DNA-C group had ELISpot responses compared to 33% (5/15) that received NYVAC-C alone (p=0.001). Responses were to envelope in the majority (21/23). Of the 9 individuals with responses to envelope and other peptides, 8 were in the DNA-C group. These promising results suggest that DNA-C was an effective priming agent, that merits further investigation.
Corbeil, S.; LaPatra, S.E.; Anderson, E.D.; Kurath, G.
2000-01-01
The efficacy of a DNA vaccine containing the glycoprotein gene of infectious hematopoietic necrosis virus (IHNV), a rhabdovirus affecting trout and salmon, was investigated. The minimal dose of vaccine required, the protection against heterologous strains, and the titers of neutralizing antibodies produced were used to evaluate the potential of the vaccine as a control pharmaceutical. Results indicated that a single dose of as little as 1–10 ng of vaccine protected rainbow trout fry against waterborne challenge by IHNV. An optimal dose of 100 ng per fish was selected to assure strong protection under various conditions. Neutralizing antibody titers were detected in fish vaccinated with concentrations of DNA ranging from 5 to 0.01 μg. Furthermore, the DNA vaccine protected fish against a broad range of viral strains from different geographic locations, including isolates from France and Japan, suggesting that the vaccine could be used worldwide. A single dose of this DNA vaccine induced protection in fish at a lower dose than is usually reported in mammalian DNA vaccine studies.
Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy
2008-08-15
Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.
USDA-ARS?s Scientific Manuscript database
Vaccine associated enhanced respiratory disease (VAERD) has been described in pigs vaccinated with whole-inactivated influenza virus (WIV) following infection with heterologous influenza A virus (IAV). WIV vaccination elicits production of cross-reactive, non-neutralizing antibody to the challenge I...
Magini, Diletta; Giovani, Cinzia; Mangiavacchi, Simona; Maccari, Silvia; Cecchi, Raffaella; Ulmer, Jeffrey B.; De Gregorio, Ennio; Geall, Andrew J.; Brazzoli, Michela; Bertholet, Sylvie
2016-01-01
Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. PMID:27525409
Identification of Pertussis-Specific Effector Memory T Cells in Preschool Children
Schure, Rose-Minke; Öztürk, Kemal; Berbers, Guy; Sanders, Elisabeth; van Twillert, Inonge; Carollo, Maria; Mascart, Françoise; Ausiello, Clara M.; van Els, Cecile A. C. M.; Smits, Kaat; Buisman, Anne-Marie
2015-01-01
Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4+ and CD8+ T-cell fractions (CFSEdim) were higher in aP- than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4+ effector memory cells (CD45RA− CCR7−) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4+ and CD8+ effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age. PMID:25787136
Geldhof, Marc F; Van Breedam, Wander; De Jong, Ellen; Lopez Rodriguez, Alfonso; Karniychuk, Uladzimir U; Vanhee, Merijn; Van Doorsselaere, Jan; Maes, Dominiek; Nauwynck, Hans J
2013-12-27
The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in pigs of all ages. Despite the frequent use of vaccines to maintain PRRSV immunity in sows, little is known on how the currently used vaccines affect the immunity against currently circulating and genetically divergent PRRSV variants in PRRSV-immune sows, i.e. sows that have a pre-existing PRRSV-specific immunity due to previous infection with or vaccination against the virus. Therefore, this study aimed to assess the capacity of commercially available attenuated/inactivated PRRSV vaccines and autogenous inactivated PRRSV vaccines - prepared according to a previously optimized in-house protocol - to boost the antibody immunity against currently circulating PRRSV variants in PRRSV-immune sows. PRRSV isolates were obtained from 3 different swine herds experiencing PRRSV-related problems, despite regular vaccination of gilts and sows against the virus. In a first part of the study, the PRRSV-specific antibody response upon booster vaccination with commercial PRRSV vaccines and inactivated farm-specific PRRSV vaccines was evaluated in PRRSV-immune, non-pregnant replacement sows from the 3 herds. A boost in virus-neutralizing antibodies against the farm-specific isolate was observed in all sow groups vaccinated with the corresponding farm-specific inactivated vaccines. Use of the commercial attenuated EU type vaccine boosted neutralizing antibodies against the farm-specific isolate in sows derived from 2 farms, while use of the commercial attenuated NA type vaccine did not boost farm-specific virus-neutralizing antibodies in any of the sow groups. Interestingly, the commercial inactivated EU type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 1 farm. In the second part of the study, a field trial was performed at one of the farms to evaluate the booster effect of an inactivated farm-specific vaccine and a commercial attenuated EU-type vaccine in immune sows at 60 days of gestation. The impact of this vaccination on maternal immunity and on the PRRSV infection pattern in piglets during their first weeks of life was evaluated. Upon vaccination with the farm-specific inactivated vaccine, a significant increase in farm-specific virus-neutralizing antibodies was detected in all sows. Virus-neutralizing antibodies were also transferred to the piglets via colostrum and were detectable in the serum of these animals until 5 weeks after parturition. In contrast, not all sows vaccinated with the commercial attenuated vaccine showed an increase in farm-specific virus-neutralizing antibodies and the piglets of this group generally had lower virus-neutralizing antibody titers. Interestingly, the number of viremic animals (i.e. animals that have infectious virus in their bloodstream) was significantly lower among piglets of both vaccinated groups than among piglets of mock-vaccinated sows and this at least until 9 weeks after parturition. The results of this study indicate that inactivated farm-specific PRRSV vaccines and commercial attenuated vaccines can be useful tools to boost PRRSV-specific (humoral) immunity in sows and reduce viremia in weaned piglets. Copyright © 2013 Elsevier B.V. All rights reserved.
Laguía-Becher, Melina; Martín, Valentina; Kraemer, Mauricio; Corigliano, Mariana; Yacono, María L; Goldman, Alejandra; Clemente, Marina
2010-07-15
Codon optimization and subcellular targeting were studied with the aim to increase the expression levels of the SAG178-322 antigen of Toxoplasma gondii in tobacco leaves. The expression of the tobacco-optimized and native versions of the SAG1 gene was explored by transient expression from the Agrobacterium tumefaciens binary expression vector, which allows targeting the recombinant protein to the endoplasmic reticulum (ER) and the apoplast. Finally, mice were subcutaneously and orally immunized with leaf extracts-SAG1 and the strategy of prime boost with rSAG1 expressed in Escherichia coli was used to optimize the oral immunization with leaf extracts-SAG1. Leaves agroinfiltrated with an unmodified SAG1 gene accumulated 5- to 10-fold more than leaves agroinfiltrated with a codon-optimized SAG1 gene. ER localization allowed the accumulation of higher levels of native SAG1. However, no significant differences were observed between the mRNA accumulations of the different versions of SAG1. Subcutaneous immunization with leaf extracts-SAG1 (SAG1) protected mice against an oral challenge with a non-lethal cyst dose, and this effect could be associated with the secretion of significant levels of IFN-gamma. The protection was increased when mice were ID boosted with rSAG1 (SAG1+boost). This group elicited a significant Th1 humoral and cellular immune response characterized by high levels of IFN-gamma. In an oral immunization assay, the SAG1+boost group showed a significantly lower brain cyst burden compared to the rest of the groups. Transient agroinfiltration was useful for the expression of all of the recombinant proteins tested. Our results support the usefulness of endoplasmic reticulum signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The results showed that this plant-produced protein has potential for use as vaccine and provides a potential means for protecting humans and animals against toxoplasmosis.
Emergent lineages of mumps virus suggest the need for a polyvalent vaccine.
May, Meghan; Rieder, Courtney A; Rowe, Rebecca J
2018-01-01
Mumps outbreaks among vaccinated patients have become increasingly common in recent years. While there are multiple conditions driving this re-emergence, convention has suggested that these outbreaks are associated with waning immunity rather than vaccine escape. Molecular evidence from both the ongoing American and Dutch outbreaks in conjunction with recent structural biology studies challenge this convention, and suggest that emergent lineages of mumps virus exhibit key differences in antigenic epitopes from the vaccine strain employed: Jeryl-Lynn 5. The American and Dutch 2016-2017 outbreak lineages were examined using computational biology through the lens of diversity in immunogenic epitopes. Findings are discussed and the laboratory evidence indicating neutralization of heterologous mumps strains by serum from vaccinated individuals is reviewed. Taken together, it is concluded that the number of heterologous epitopes occurring in mumps virus in conjunction with waning immunity is facilitating small outbreaks in vaccinated patients, and that consideration of a polyvalent mumps vaccine is warranted. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Saadatian-Elahi, Mitra; Aaby, Peter; Shann, Frank; Netea, Mihai G; Levy, Ofer; Louis, Jacques; Picot, Valentina; Greenberg, Michael; Warren, William
2016-07-25
The heterologous or non-specific effects (NSEs) of vaccines, at times defined as "off-target effects" suggest that they can affect the immune response to organisms other than their pathogen-specific intended purpose. These NSEs have been the subject of clinical, immunological and epidemiological studies and are increasingly recognized as an important biological process by a growing group of immunologists and epidemiologists. Much remain to be learned about the extent and underlying mechanisms for these effects. The conference "Off-target effects of vaccination" held in Annecy-France (June 8-10 2015) intended to take a holistic approach drawing from the fields of immunology, systems biology, epidemiology, bioinformatics, public health and regulatory science to address fundamental questions of immunological mechanisms, as well as translational questions about vaccines NSEs. NSE observations were examined using case-studies on live attenuated vaccines and non-live vaccines followed by discussion of studies of possible biological mechanisms. Some possible pathways forward in the study of vaccines NSE were identified and discussed by the expert group. Copyright © 2016.
A high ratio of IC31® adjuvant to antigen is necessary for H4 TB vaccine immunomodulation
Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H
2015-01-01
A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor. PMID:25997147
A high ratio of IC31(®) adjuvant to antigen is necessary for H4 TB vaccine immunomodulation.
Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H
2015-01-01
A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor.
Patel, Vainav; Jalah, Rashmi; Kulkarni, Viraj; Valentin, Antonio; Rosati, Margherita; Alicea, Candido; von Gegerfelt, Agneta; Huang, Wensheng; Guan, Yongjun; Keele, Brandon F; Bess, Julian W; Piatak, Michael; Lifson, Jeffrey D; Williams, William T; Shen, Xiaoying; Tomaras, Georgia D; Amara, Rama R; Robinson, Harriet L; Johnson, Welkin; Broderick, Kate E; Sardesai, Niranjan Y; Venzon, David J; Hirsch, Vanessa M; Felber, Barbara K; Pavlakis, George N
2013-02-19
We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4(+) effector memory, and postchallenge CD8(+) transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.
Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting.
Penn-Nicholson, Adam; Geldenhuys, Hennie; Burny, Wivine; van der Most, Robbert; Day, Cheryl L; Jongert, Erik; Moris, Philippe; Hatherill, Mark; Ofori-Anyinam, Opokua; Hanekom, Willem; Bollaerts, Anne; Demoitie, Marie-Ange; Kany Luabeya, Angelique Kany; De Ruymaeker, Evi; Tameris, Michele; Lapierre, Didier; Scriba, Thomas J
2015-07-31
Vaccination that prevents tuberculosis (TB) disease, particularly in adolescents, would have the greatest impact on the global TB epidemic. Safety, reactogenicity and immunogenicity of the vaccine candidate M72/AS01E was evaluated in healthy, HIV-negative adolescents in a TB endemic region, regardless of Mycobacterium tuberculosis (M.tb) infection status. In a phase II, double-blind randomized, controlled study (NCT00950612), two doses of M72/AS01E or placebo were administered intramuscularly, one month apart. Participants were followed-up post-vaccination, for 6 months. M72-specific immunogenicity was evaluated by intracellular cytokine staining analysis of T cells and NK cells by flow cytometry. No serious adverse events were recorded. M72/AS01E induced robust T cell and antibody responses, including antigen-dependent NK cell IFN-γ production. CD4 and CD8 T cell responses were sustained at 6 months post vaccination. Irrespective of M.tb infection status, vaccination induced a high frequency of M72-specific CD4 T cells expressing multiple combinations of Th1 cytokines, and low level IL-17. We observed rapid boosting of immune responses in M.tb-infected participants, suggesting natural infection acts as a prime to vaccination. The clinically acceptable safety and immunogenicity profile of M72/AS01E in adolescents living in an area with high TB burden support the move to efficacy trials. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting
Penn-Nicholson, Adam; Geldenhuys, Hennie; Burny, Wivine; van der Most, Robbert; Day, Cheryl L.; Jongert, Erik; Moris, Philippe; Hatherill, Mark; Ofori-Anyinam, Opokua; Hanekom, Willem
2018-01-01
Background Vaccination that prevents tuberculosis (TB) disease, particularly in adolescents, would have the greatest impact on the global TB epidemic. Safety, reactogenicity and immunogenicity of the vaccine candidate M72/AS01E was evaluated in healthy, HIV-negative adolescents in a TB endemic region, regardless of Mycobacterium tuberculosis (M.tb) infection status. Methods In a phase II, double-blind randomized, controlled study (NCT00950612), two doses of M72/AS01E or placebo were administered intramuscularly, one month apart. Participants were followed-up post-vaccination, for 6 months. M72-specific immunogenicity was evaluated by intracellular cytokine staining analysis of T cells and NK cells by flow cytometry. Results No serious adverse events were recorded. M72/AS01E induced robust T cell and antibody responses, including antigen-dependent NK cell IFN-γ production. CD4 and CD8 T cell responses were sustained at 6 months post vaccination. Irrespective of M.tb infection status, vaccination induced a high frequency of M72-specific CD4 T cells expressing multiple combinations of Th1 cytokines, and low level IL-17. We observed rapid boosting of immune responses in M.tb-infected participants, suggesting natural infection acts as a prime to vaccination. Conclusions The clinically acceptable safety and immunogenicity profile of M72/AS01E in adolescents living in an area with high TB burden support the move to efficacy trials. PMID:26072017
da Costa, Adeliane Castro; Costa-Júnior, Abadio de Oliveira; de Oliveira, Fábio Muniz; Nogueira, Sarah Veloso; Rosa, Joseane Damaceno; Resende, Danilo Pires; Kipnis, André; Junqueira-Kipnis, Ana Paula
2014-01-01
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials. PMID:25398087
Rocke, Tonie E; Pussini, Nicola; Smith, Susan R; Williamson, Judy; Powell, Bradford; Osorio, Jorge E
2010-01-01
Baits containing recombinant raccoon poxvirus (RCN) expressing plague antigens (fraction 1 [F1] and a truncated form of the V protein-V307) were offered for voluntary consumption several times over the course of several months to a group of 16 black-tailed prairie dogs (Cynomys ludovicianus). For comparison, another group of prairie dogs (n = 12) was injected subcutaneously (SC) (prime and boost) with 40 microg of F1-V fusion protein absorbed to alum, a vaccine-adjuvant combination demonstrated to elicit immunity to plague in mice and other mammals. Control animals received baits containing RCN without the inserted antigen (n = 8) or injected diluent (n = 7), and as there was no difference in their survival rates by Kaplan-Meier analysis, all of them were combined into one group in the final analysis. Mean antibody titers to Yersinia pestis F1 and V antigen increased (p < 0.05) in the vaccinated groups compared to controls, but titers were significantly higher (p < 0.0001) in those receiving injections of F1-V fusion protein than in those orally vaccinated with RCN-based vaccine. Interestingly, upon challenge with approximately 70,000 cfu of virulent Y. pestis, oral vaccination resulted in survival rates that were significantly higher (p = 0.025) than the group vaccinated by injection with F1-V fusion protein and substantially higher (p < 0.0001) than the control group. These results demonstrate that oral vaccination of prairie dogs using RCN-based plague vaccines provides significant protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous flea bites.
Kapczynski, Darrell R; Esaki, Motoyuki; Dorsey, Kristi M; Jiang, Haijun; Jackwood, Mark; Moraes, Mauro; Gardin, Yannick
2015-02-25
Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. Published by Elsevier Ltd.
Metcalfe, Hannah J; Biffar, Lucia; Steinbach, Sabine; Guzman, Efrain; Connelley, Tim; Morrison, Ivan; Vordermeier, H Martin; Villarreal-Ramos, Bernardo
2018-05-11
There is a need to improve the efficacy of the BCG vaccine against human and bovine tuberculosis. Previous data showed that boosting bacilli Calmette-Guerin (BCG)-vaccinated cattle with a recombinant attenuated human type 5 adenovirally vectored subunit vaccine (Ad5-85A) increased BCG protection and was associated with increased frequency of Ag85A-specific CD4 + T cells post-boosting. Here, the capacity of Ag85A-specific CD4 + T cell lines - derived before and after viral boosting - to interact with BCG-infected macrophages was evaluated. No difference before and after boosting was found in the capacity of these Ag85A-specific CD4 + T cell lines to restrict mycobacterial growth, but the secretion of IL-10 in vitro post-boost increased significantly. Furthermore, cell lines derived post-boost had no statistically significant difference in the secretion of pro-inflammatory cytokines (IL-1β, IL-12, IFNγ or TNFα) compared to pre-boost lines. In conclusion, the protection associated with the increased number of Ag85A-specific CD4 + T cells restricting mycobacterial growth may be associated with anti-inflammatory properties to limit immune-pathology. Copyright © 2018 Department for Environment Food and Rural Affairs. Published by Elsevier Ltd.. All rights reserved.
Landman, W J M; van Eck, J H H
2017-12-01
Autogenous Escherichia coli vaccines to prevent the E. coli peritonitis syndrome (EPS) in laying hens are often used in the field, although their effectiveness has not been demonstrated yet. Therefore, in this study, which consisted of two experiments, their efficacy was assessed. In the first experiment, the EPS-inducing ability of three E. coli isolates originating from bone marrow of hens that died due to EPS and with different Pulsed-Field Gel Electrophoresis patterns, was examined by intravenous inoculation of the isolates in 17-week-old brown layers. Based on the results one isolate was chosen for the preparation of the vaccines and for homologous challenge and another one for heterologous challenge performed in the second experiment. In the named experiment, groups of laying hens which had been vaccinated intramuscularly at 14 and 18 weeks of age with inactivated vaccine either formulated as aqueous suspension or as water-in-oil emulsion were homologously or heterologously challenged per aerosol at 30 weeks of age. The vaccines contained ≥10 8.2 formaldehyde-inactivated colony-forming units (cfu) of E. coli per hen dose in 0.5 ml. The estimated E. coli challenge dose uptake ranged from 10 5.8 to 10 6.5 cfu per hen. Groups consisted of 18 hens each and were housed in separate isolators from 27 weeks of age. Control groups were included in this experiment, which was ended eight days after challenge. Vaccinations had no effect on body growth and both vaccine types induced (almost) complete protection against homologous challenge, while protection against heterologous challenge was inconclusive.
Effectiveness of pertussis vaccination and duration of immunity
Schwartz, Kevin L.; Kwong, Jeffrey C.; Deeks, Shelley L.; Campitelli, Michael A.; Jamieson, Frances B.; Marchand-Austin, Alex; Stukel, Therese A.; Rosella, Laura; Daneman, Nick; Bolotin, Shelly; Drews, Steven J.; Rilkoff, Heather; Crowcroft, Natasha S.
2016-01-01
Background: A resurgence of pertussis cases among both vaccinated and unvaccinated people raises questions about vaccine effectiveness over time. Our objective was to study the effectiveness of the pertussis vaccine and characterize the effect of waning immunity and whole-cell vaccine priming. Methods: We used the test-negative design, a nested case–control study with test-negative individuals as controls. We constructed multivariable logistic regression models to estimate odds ratios (ORs). Vaccine effectiveness was calculated as (1 – OR) × 100. We assessed waning immunity by calculating the odds of developing pertussis per year since last vaccination and evaluated the relative effectiveness of priming with acellular versus whole-cell vaccine. Results: Between Dec. 7, 2009, and Mar. 31, 2013, data on 5867 individuals (486 test-positive cases and 5381 test-negative controls) were available for analysis. Adjusted vaccine effectiveness was 80% (95% confidence interval [CI] 71% to 86%) at 15–364 days, 84% (95% CI 77% to 89%) at 1–3 years, 62% (95% CI 42% to 75%) at 4–7 years and 41% (95% CI 0% to 66%) at 8 or more years since last vaccination. We observed waning immunity with the acellular vaccine, with an adjusted OR for pertussis infection of 1.27 (95% CI 1.20 to 1.34) per year since last vaccination. Acellular, versus whole-cell, vaccine priming was associated with an increased odds of pertussis (adjusted OR 2.15, 95% CI 1.30 to 3.57). Interpretation: We observed high early effectiveness of the pertussis vaccine that rapidly declined as time since last vaccination surpassed 4 years, particularly with acellular vaccine priming. Considering whole-cell vaccine priming and/or boosters in pregnancy to optimize pertussis control may be prudent. PMID:27672225
Moravec, Tomas; Schmidt, Monica A; Herman, Eliot M; Woodford-Thomas, Terry
2007-02-19
The B subunit of the heat labile toxin of enterotoxigenic Escherichia coli (LTB) was used as a model immunogen for production in soybean seed. LTB expression was directed to the endoplasmic reticulum (ER) of seed storage parenchyma cells for sequestration in de novo synthesized inert protein accretions derived from the ER. Pentameric LTB accumulated to 2.4% of the total seed protein at maturity and was stable in desiccated seed. LTB-soybean extracts administered orally to mice induced both systemic IgG and IgA, and mucosal IgA antibody responses, and was particularly efficacious when used in a parenteral prime-oral gavage boost immunization strategy. Sera from immunized mice blocked ligand binding in vitro and immunized mice exhibited partial protection against LT challenge. Moreover, soybean-expressed LTB stimulated the antibody response against a co-administered antigen by 500-fold. These results demonstrate the utility of soybean as an efficient production platform for vaccines that can be used for oral delivery.
Stylianou, E; Griffiths, K L; Poyntz, H C; Harrington-Kandt, R; Dicks, M D; Stockdale, L; Betts, G; McShane, H
2015-11-27
A replication-deficient chimpanzee adenovirus expressing Ag85A (ChAdOx1.85A) was assessed, both alone and in combination with modified vaccinia Ankara also expressing Ag85A (MVA85A), for its immunogenicity and protective efficacy against a Mycobacterium tuberculosis (M.tb) challenge in mice. Naïve and BCG-primed mice were vaccinated or boosted with ChAdOx1.85A and MVA85A in different combinations. Although intranasally administered ChAdOx1.85A induced strong immune responses in the lungs, it failed to consistently protect against aerosol M.tb challenge. In contrast, ChAdOx1.85A followed by MVA85A administered either mucosally or systemically, induced strong immune responses and was able to improve the protective efficacy of BCG. This vaccination regime has consistently shown superior protection over BCG alone and should be evaluated further. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Waag, David M; England, Marilyn J; Bolt, Christopher R; Williams, Jim C
2008-10-01
Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 microg, followed by a booster dose of 30 microg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection.
Waag, David M.; England, Marilyn J.; Bolt, Christopher R.; Williams, Jim C.
2008-01-01
Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 μg, followed by a booster dose of 30 μg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection. PMID:18701647
USDA-ARS?s Scientific Manuscript database
Whole inactivated virus (WIV) vaccines are widely used in the swine industry to reduce clinical disease against homologous influenza A virus (IAV) infection. In pigs experimentally challenged with antigenically distinct heterologous IAV of the same hemagglutinin subtype, WIV vaccinates have been sho...