Sample records for heterostructure point defect

  1. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    NASA Astrophysics Data System (ADS)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  2. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures

    DOE PAGES

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; ...

    2016-12-14

    Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less

  3. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen

    Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less

  4. Epitaxial Growths of m-Plane AlGaN/GaN and AlInN/GaN Heterostructures Applicable for Normally-Off Mode High Power Field Effect Transistors on Freestanding GaN Substrates

    DTIC Science & Technology

    2011-08-17

    cathodoluminescence (CL), and Hall effect measurement. We will disclose how structural and point defects affect the internal quantum efficiency. We have a complete...18. S. F. Chichibu, A. Uedono, T. Onuma, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. Nakamura, “Impact of Point Defects on the Luminescence...A. Uedono, “Major impacts of point defects and impurities on the carrier recombination dynamics in AlN,” Appl. Phys. Lett. 97(20), 201904 (2010

  5. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Fong, Dillon D.; Herbert, F. William

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  6. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE PAGES

    Chen, Yan; Fong, Dillon D.; Herbert, F. William; ...

    2018-04-17

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  7. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  8. Dynamic defect correlations dominate activated electronic transport in SrTiO 3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  9. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  10. Amplified emission and modified spectral features in an opal hetero-structure mediated by passive defect mode localization

    NASA Astrophysics Data System (ADS)

    Rout, Dipak; Kumar, Govind; Vijaya, R.

    2018-01-01

    A photonic crystal hetero-structure consisting of a passive planar defect of SiO2 thin film sandwiched between two identical opals grown by inward growing self-assembly method using Rhodamine-B dye-doped polystyrene microspheres is studied for the characteristics of dye emission. The optical properties and the defect mode characteristics of the hetero-structure are studied from the reflection and transmission measurements. Laser-induced fluorescence from the hetero-structure showed amplified and spectrally narrowed emission compared to the photonic crystal emphasizing the role of the defect mode and distributed feedback. The enhanced emission is also complemented by the reduction in fluorescence decay time in the case of the hetero-structure in comparison to the 3D photonic crystals.

  11. Electronic structure and STM images simulation of defects on hBN/ black-phosphorene heterostructures: A theoretical study

    NASA Astrophysics Data System (ADS)

    Ospina, D. A.; Cisternas, E.; Duque, C. A.; Correa, J. D.

    2018-03-01

    By first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials.

  12. Mitigating Structural Defects in Droop-Minimizing InGaN/GaN Quantum Well Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhibo; Chesin, Jordan; Singh, Akshay

    2016-12-01

    Modern commercial InGaN/GaN blue LEDs continue to suffer from efficiency droop, a reduction in efficiency with increasing drive current. External quantum efficiency (EQE) typically peaks at low drive currents (< 10 A cm 2) and drops monotonically at higher current densities, falling to <85% of the peak EQE at a drive current of 100 A cm 2. Mitigating droop-related losses will yield tremendous gains in both luminous efficacy (lumens/W) and cost (lumens/$). Such improvements are critical for continued large-scale market penetration of LED technologies, particularly in high-power and high flux per unit area applications. However, device structures that reduce droopmore » typically require higher indium content and are accompanied by a corresponding degradation in material quality which negates the droop improvement via enhanced Shockley-Read-Hall (SRH) recombination. In this work, we use advanced characterization techniques to identify and classify structural defects in InGaN/GaN quantum well (QW) heterostructures that share features with low-droop designs. Using aberration-corrected scanning transmission electron microscopy (C s-STEM), we find the presence of severe well width fluctuations (WWFs) in a number of low droop device architectures. However, the presence of WWFs does not correlate strongly with external quantum efficiency nor defect densities measured via deep level optical spectroscopy (DLOS). Hence, performance losses in the heterostructures of interest are likely dominated by nanoscale point or interfacial defects rather than large-scale extended defects.« less

  13. Determination of defect content and defect profile in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Garcia, J. A.; Plazaola, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2011-01-01

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  14. Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures.

    PubMed

    Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-28

    Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2.

  15. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.

    2001-05-01

    Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skupov, A. V., E-mail: skav10@mail.ru

    TRISQD software is developed for the computer simulation of processes in which radiation defects are formed under the corpuscular irradiation of semiconductor heterostructures with lenticular nanoinclusions of various shapes. The computer program is used to study defect-formation processes in p-i-n diodes with the i region having a built-in 20-period lattice of self-assembled Ge(Si) nanoislands formed under irradiation with high-energy neutrons. It is found that the fraction of Ge(Si) nanoislands in which point radiation defects are formed under the impact of atomic-displacement cascades is ≤3% of their total number in the lattice. More than 94% of the defects are localized inmore » the bulk of the p, n, and i regions of the diode and in silicon layers that separate sheets of Ge(Si) nanoislands.« less

  17. Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy

    DOE PAGES

    Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig; ...

    2016-11-01

    Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.

  18. Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig

    Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.

  19. Computational simulation of subatomic-resolution AFM and STM images for graphene/hexagonal boron nitride heterostructures with intercalated defects

    NASA Astrophysics Data System (ADS)

    Lee, Junsu; Kim, Minjung; Chelikowsky, James R.; Kim, Gunn

    2016-07-01

    Using ab initio density functional calculations, we predict subatomic-resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) images of vertical heterostructures of graphene/hexagonal boron nitride (h-BN) with an intercalated metal atom (Li, K, Cr, Mn, Co, or Cu), and study the effects of the extrinsic metal defect on the interfacial coupling. We find that the structural deformation of the graphene/h-BN layer caused by the metal defect strongly affects the AFM images, whereas orbital hybridization between the metal defect and the graphene/h-BN layer characterizes the STM images.

  20. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D

    2017-05-01

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-01

    Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  2. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.

    Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects havemore » a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.« less

  3. Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.

    2011-08-01

    We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2× the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.

  4. Electron trapping in the photo-induced conductivity decay in GaAs/SnO2 heterostructure

    NASA Astrophysics Data System (ADS)

    de Freitas Bueno, Cristina; de Andrade Scalvi, Luis Vicente

    2018-06-01

    The decay of photo-induced conductivity is measured for GaAs/SnO2 heterostructure, after illumination with appropriate wavelength. The top oxide layer is deposited by sol-gel-dip-coating and doped with Eu3+, and the GaAs bottom layer is deposited by resistive evaporation. It shows quite unusual behavior since the decay rate gets slower as the temperature is raised. The trapping by intrabandgap defects in the SnO2 top layer is expected, but a GaAs/SnO2 interface arrest becomes also evident, mainly for temperatures below 100 K. Concerning the SnO2 layer, trapping by different defects is possible, due to the observed distinct capture time range. Besides Eu3+ centers and oxygen vacancies, this sort of heterostructure also leads to Eu3+ agglomerate areas in the SnO2 top layer surface, which may contribute for electron scattering. The electrical behavior reported here aims to contribute for the understanding of the electrical transport mechanisms which, combined with emission from Eu3+ ions from the top layer of the heterostructure, opens new possibilities for optoelectronic devices because samples in the form of films are desirable for circuit integration. The modeling of the photo-induced decay data yields the capture barrier in the range 620-660 meV, and contributes for the defect rules on the electrical properties of this heterostructure.

  5. Bottom-up photonic crystal approach with top-down defect and heterostructure fine-tuning.

    PubMed

    Ding, Tao; Song, Kai; Clays, Koen; Tung, Chen-Ho

    2010-03-16

    We combine the most efficient (chemical) approach toward three-dimensional photonic crystals with the most convenient (physical) technique for creating non-close-packed crystalline structures. Self-assembly of colloidal particles in artificial opals is followed by a carefully tuned plasma etching treatment. By covering the resulting top layer of more open structure with original dense opal, embedded defect layers and heterostructures can be conveniently designed for advanced photonic band gap and band edge engineering.

  6. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaunbrecher, Katherine N.; National Renewable Energy Laboratory, Golden, Colorado 80401; Kuciauskas, Darius

    Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have amore » zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.« less

  7. Effect of annealing on microstructure evolution in CoFeB/MgO/CoFeB heterostructures by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Lu, Xiang-An; Zhao, Zhi-Duo; Li, Ming-Hua; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Zhang, Jing-Yan; Yu, Guang-Hua

    2013-09-01

    As one of the most powerful tools for investigation of defects of materials, positron annihilation spectroscopy was employed to explore the thermal effects on the film microstructure evolution in CoFeB/MgO/CoFeB heterostructures. It is found that high annealing temperature can drive vacancy defects agglomeration and ordering acceleration in the MgO barrier. Meanwhile, another important type of defects, vacancy clusters, which are formed via the agglomeration of vacancy defects in the MgO barrier after annealing, still exists inside the MgO barrier. All these behaviors in the MgO barrier could potentially impact the overall performance in MgO based magnetic tunnel junctions.

  8. Determining oxide trapped charges in Al2O3 insulating films on recessed AlGaN/GaN heterostructures by gate capacitance transients measurements

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Greco, Giuseppe; Schilirò, Emanuela; Iucolano, Ferdinando; Lo Nigro, Raffaella; Roccaforte, Fabrizio

    2018-05-01

    This letter presents time-dependent gate-capacitance transient measurements (C–t) to determine the oxide trapped charges (N ot) in Al2O3 films deposited on recessed AlGaN/GaN heterostructures. The C–t transients acquired at different temperatures under strong accumulation allowed to accurately monitor the gradual electron trapping, while hindering the re-emission by fast traps that may affect conventional C–V hysteresis measurements. Using this method, an increase of N ot from 2 to 6 × 1012 cm‑2 was estimated between 25 and 150 °C. The electron trapping is ruled by an Arrhenius dependence with an activation energy of 0.12 eV which was associated to points defects present in the Al2O3 films.

  9. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy.

    PubMed

    Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F

    2015-11-01

    Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.

  10. Structure and Properties of VO2 and Titanium Dioxide Based Epitaxial Heterostructures Integrated with Silicon and Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Bayati, Mohammad Reza

    The main focus of this study was placed on structure-property correlation in TiO2 and VO2 based epitaxial heterostructures where the photochemical and electrical properties were tuned through microstructural engineering. In the framework of domain matching epitaxy, epitaxial growth of TiO2 and VO2 heterostructures on different substrates were explained. The theta-2theta and ϕ scan X-ray diffraction measurements and detailed high resolution electron microscopy studies corroborated our understanding of the epitaxial growth and the crystallographic arrangement across the interfaces. The influence of the laser and substrate variables on structural characteristics of the films was investigated using X-ray photoelectron spectroscopy, room temperature photoluminescence spectroscopy, and UV-Vis spectrophotometry. In addition, morphological studies were performed by atomic force microscopy. Photochemical properties of the heterostructures were assessed through measuring surface wettability characteristics and photocatalytic reaction rate constant of degradation of 4-chlorophenol under ultraviolet and visible irradiations. We also studied electrical properties employing 4-probe measurement technique. The effect of post treatment processes, such as vacuum annealing and laser treatment, on structure and properties was investigated as well. The role of point defects and deviation from the stoichiometry on photochemical and electrical properties was addressed. In this research, TiO2 epilayers with controlled phase structure, defect content, and crystallographic alignments were grown on sapphire and silicon substrates. Integration with silicon was achieved using cubic and tetragonal yttria-stabilized zirconia buffer layers. I was able to tune the phase structure of the TiO2 based heterostructures from pure rutile to pure anatase and establish an epitaxial relationship across the interfaces in each case. These heterostructures were used for two different purposes. First, their application in environmental remediation was taken into account. The photochemical efficiency of the samples was evaluated under ultraviolet and visible illuminations. I was able to establish a correlation between the growth conditions and the photocatalytic activity of single crystalline TiO 2 thin films. Visible-light-responsive TiO2 films were fabricated via vacuum annealing of the samples where point defects, namely oxygen vacancies and titanium interstitial, are surmised to play a critical role. An ultrafast switching was observed in wetting characteristics of the single crystalline rutile TiO2 films from a hydrophobic state to a superhydrophilic state by single pulsed excimer laser annealing. It was observed that the laser annealing almost doubles the photocatalytic efficiency of the anatase epitaxial thin films. I was able to measure the photochemical properties of the rutile and the anatase TiO2 heterostructures in a controlled way due to the single crystalline nature of the films. Second, the rutile TiO2 epilayers with different out-of-plane orientations were deposited and used as a platform for VO2 based epitaxial heterostructures with the aim of manipulating of microstructure and electrical properties of the VO 2 films. Vanadium dioxide (VO2) is an interesting material due to the abrupt change in electrical resistivity and infrared transmittance at about 68 °C. The transition temperature can be tuned through microstructural engineering. It was the idea behind using rutile TiO2 with different crystallographic orientations as a template to tune the semiconductor to metal transition characteristics of the VO2 top layer. I successfully grew VO2(001), VO2(100), and VO2(2¯01) epitaxial thin films on TiO2(100)/c-sapphire, TiO2(101)/r-sapphire, and TiO2(001)/ m-sapphire platforms, respectively. It was observed that tetragonal phase of VO2 was stabilized at lower temperatures leading to a significant decrease in the semiconductor to metal transition temperature. In other words, we were able to tune the transition temperature of the VO 2 epitaxial heterostructures. This achievement introduces the VO 2 based single crystalline heterostructures as a promising candidate for a wide range of applications where different transition temperatures are required. The epitaxial relationships were established and atomic arrangement across the interfaces was studied in detail.

  11. Point Defects and Grain Boundaries in Rotationally Commensurate MoS 2 on Epitaxial Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaolong; Balla, Itamar; Bergeron, Hadallia

    2016-03-28

    With reduced degrees of freedom, structural defects are expected to play a greater role in two-dimensional materials in comparison to their bulk counterparts. In particular, mechanical strength, electronic properties, and chemical reactivity are strongly affected by crystal imperfections in the atomically thin limit. Here, ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) are employed to interrogate point and line defects in monolayer MoS2 grown on epitaxial graphene (EG) at the atomic scale. Five types of point defects are observed with the majority species showing apparent structures that are consistent with vacancy and interstitial models. The total defect densitymore » is observed to be lower than MoS2 grown on other substrates and is likely attributed to the van der Waals epitaxy of MoS2 on EG. Grain boundaries (GBs) with 30° and 60° tilt angles resulting from the rotational commensurability of MoS2 on EG are more easily resolved by STM than atomic force microscopy at similar scales due to the enhanced contrast from their distinct electronic states. For example, band gap reduction to ~0.8 and ~0.5 eV is observed with STS for 30° and 60° GBs, respectively. In addition, atomic resolution STM images of these GBs are found to agree well with proposed structure models. This work offers quantitative insight into the structure and properties of common defects in MoS2 and suggests pathways for tailoring the performance of MoS2/graphene heterostructures via defect engineering.« less

  12. Positrons as interface-sensitive probes of polar semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Makkonen, I.; Snicker, A.; Puska, M. J.; Mäki, J.-M.; Tuomisto, F.

    2010-07-01

    Group-III nitrides in their wurtzite crystal structure are characterized by large spontaneous polarization and significant piezoelectric contributions in heterostructures formed of these materials. Polarization discontinuities in polar heterostructures grown along the (0001) direction result in huge built-in electric fields on the order of megavolt per centimeter. We choose the III-nitride heterostructures as archetypal representatives of polar heterostructures formed of semiconducting or insulating materials and study the behavior of positrons in these structures using first-principles electronic-structure theory supported by positron annihilation experiments for bulk systems. The strong electric fields drive positrons close to interfaces, which is clearly seen in the predicted momentum distributions of annihilating electron-positron pairs as changes relative to the constituent bulk materials. Implications of the effect to positron defect studies of polar heterostructures are addressed.

  13. Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure

    NASA Astrophysics Data System (ADS)

    Hu, Chung-An; Liu, Jia-Wei; Wu, Chien-Jang; Yang, Tzong-Jer; Yang, Su-Lin

    2013-03-01

    Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure (PCH) are theoretically investigated. The considered structure is (12)NS(21)N, in which both layers 1 and 2 are dielectrics, layer S is a high-temperature superconducting layer, and N is the stack number. The defect mode is analyzed based on the transmission spectrum calculated by using the transfer matrix method. It is found that, in the normal incidence, the defect mode existing in the host PCH of (12)N(21)N will be blue-shifted as the thickness of layer S increases. In addition, the defect mode is also blue-shifted for both TE and TM modes in the case of oblique incidence. The embedded superconducting thin film plays the role of tuning agent for the defect mode of PCH. As a result, the proposed structure can be designed as a tunable narrowband transmission filter which could be of technical use in the optoelectronic applications.

  14. Study of defects in an electroresistive Au/La2/3Sr1/3MnO3/SrTiO3(001) heterostructure by positron annihilation

    NASA Astrophysics Data System (ADS)

    Ferragut, R.; Dupaquier, A.; Brivio, S.; Bertacco, R.; Egger, W.

    2011-09-01

    Defects in an ultrathin Au/La2/3Sr1/3MnO3/SrTiO3 (Au/LSMO/STO) heterostructure displaying electroresistive behavior were studied using variable energy positron annihilation spectroscopy. Vacancy-like defects were found to be the dominant positron traps in the LSMO and STO thin perovskite oxides with a number density >1017 cm-3 and 2 × 1017 cm-3 in the STO substrate. High defect density was revealed by strong positron trapping at the Au/LSMO interface. Oxygen deficiency in LSMO would be the main source of these traps. Besides, a low density of sub-nano voids of ˜6 Å was found in the substrate and in the thin LSMO/STO films.

  15. Degradation sources in GaAs--AlGaAs double-heterostructure lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, R.; Nakashima, H.; Kishino, S.

    1975-07-01

    Several sources of the dark-line defect (DLD) that causes rapid degradation of GaAs-AlGaAs double-heterostructure (DH) lasers have been identified by means of photoluminescence (PL) topography and a laser-induced degradation technique. All the sources that have been identified correspond to crystal defects, among which dark-spot defects (DSD) that are native to as-grown wafers are found to be most important. The growth and propagation processes of DLDs and DSDs have also been investigated. These defects are found to be highly mobile under high-intensity laser pumping. The correlation between the substrate dislocations and the DSDs has been examined by etching and x-ray topography.more » Although most DSDs correspond to etch-pits in epilayers, they are not always correlated with substrate dislocations. (auth)« less

  16. Photonic slab heterostructures based on opals

    NASA Astrophysics Data System (ADS)

    Palacios-Lidon, Elisa; Galisteo-Lopez, Juan F.; Juarez, Beatriz H.; Lopez, Cefe

    2004-09-01

    In this paper the fabrication of photonic slab heterostructures based on artificial opals is presented. The innovated method combines high-quality thin-films growing of opals and silica infiltration by Chemical Vapor Deposition through a multi-step process. By varying structure parameters, such as lattice constant, sample thickness or refractive index, different heterostructures have been obtained. The optical study of these systems, carried out by reflectance and transmittance measurements, shows that the prepared samples are of high quality further confirmed by Scanning Electron Microscopy micrographs. The proposed novel method for sample preparation allows a high control of the involved structure parameters, giving the possibility of tunning their photonic behavior. Special attention in the optical response of these materials has been addressed to the study of planar defects embedded in opals, due to their importance in different photonic fields and future technological applications. Reflectance and transmission measurements show a sharp resonance due to localized states associated with the presence of planar defects. A detailed study of the defect mode position and its dependance on defect thickness and on the surrounding photonic crystal is presented as well as evidence showing the scalability of the problem. Finally, it is also concluded that the proposed method is cheap and versatile allowing the preparation of opal-based complex structures.

  17. Theoretical study of optical properties of anti phase domains in GaP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tea, E., E-mail: etea.contact@gmail.com; FOTON INSA-Rennes; Vidal, J.

    III-V/Si heterostructures are currently investigated for silicon photonics and solar energy conversion. In particular, dilute nitride alloy GaAsPN grown on a GaP/Si platform exhibits lattice match with Si and an optimal band gap configuration for tandem solar cell devices. However, monolithic “coherent” growth of the GaP thin layer on Si suffers from the nucleation of extended structural defects, which can hamper device operation as well as the GaP/Si interface level and through their propagation inside the overall heterostructure. However, the effect of such structural defects on optical and transport properties is actually not well understood in details. In this letter,more » we investigate the anti phase domains defect (also called inversion domains) by means of ab initio calculations giving insights into the alteration of optical and transport properties of GaP due to the defective GaP/Si interface.« less

  18. Crystal structure of stacking faults in InGaAs/InAlAs/InAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trunkin, I. N.; Presniakov, M. Yu.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com

    Stacking faults and dislocations in InGaAs/InAlAs/InAs heterostructures have been studied by electron microscopy. The use of different techniques of transmission electron microscopy (primarily, highresolution dark-field scanning transmission electron microscopy) has made it possible to determine the defect structure at the atomic level.

  19. Study on ion implantation conditions in fabricating compressively strained Si/relaxed Si1-xCx heterostructures using the defect control by ion implantation technique

    NASA Astrophysics Data System (ADS)

    Arisawa, You; Sawano, Kentarou; Usami, Noritaka

    2017-06-01

    The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.

  20. Oxygen vacancies: The origin of n -type conductivity in ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  1. Channeling techniques to study strains and defects in heterostructures and multi quantum wells

    NASA Astrophysics Data System (ADS)

    Pathak, A. P.; Dhamodaran, S.; Sathish, N.

    2005-08-01

    The importance and advantages of heterostructures and Quantum Wells (QWs) in device technology has made research challenging due to lack of direct techniques for their characterization. Particularly the characterization of strain and defects at the interfaces has become important due to their dominance in the electrical and optical properties of materials and devices. RBSiC has been used to study variety of defects in single crystalline materials, for nearly four decades now. Channeling based experiments play a crucial role in giving depth information of strain and defects. Ion beams are used for both material characterizations as well as for modifications. Hence it is also possible to monitor the modifications online, which are discussed in detail. In the present work, Swift Heavy Ion (SHI) modification of III-V semiconductor heterostnictures and MQWs and the results of subsequent strain measurements by RBSiC in initially strained as well as lattice matched systems are discussed. We find that the compressive strain decreases due to SHI irradiation and a tensile strain is induced in an initially lattice matched system. The incident ion fluence dependence of strain modifications in the heterostructures will also be discussed. The use of high energy channeling for better sensitivity of strain measurements in low mismatch materials will be discussed in detail. Wherever possible, a comparison of results with those obtained by other techniques like HRXRD is given.

  2. Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures

    NASA Astrophysics Data System (ADS)

    George, Chandramohan; Genovese, Alessandro; Qiao, Fen; Korobchevskaya, Kseniya; Comin, Alberto; Falqui, Andrea; Marras, Sergio; Roig, Anna; Zhang, Yang; Krahne, Roman; Manna, Liberato

    2011-11-01

    We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains.We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains. Electronic supplementary information (ESI) available: TEM/HRTEM images of (i) aliquots at the earliest stages of the growth of Au-FexOy HSs; (ii) Au-FexOy HSs synthesized at low DDAB concentrations; (iii) spherical iron oxide nanocrystals synthesized under the same conditions as the HSs, but in the absence of Au seeds; (iv) Au-FexOy urchin like nanostructures, also after attempts to leach out Au; (v) Au-FexOy HSs after treatment with hydrazine; (vi) FexOy HSs after Au leaching from Au-FexOy HSs; additional optical absorption spectra; additional I-V curves, also from films made of Au-FexOy dumbbells; and additional SEM images; vii) X-ray diffraction (XRD) pattern of a sample of Au-FexOy HSs. See DOI: 10.1039/c1nr10768b

  3. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures

    DOE PAGES

    Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.; ...

    2017-02-20

    From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less

  4. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.

    From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less

  5. Ferroelectricity in Pb 1+δZrO 3 Thin Films

    DOE PAGES

    Gao, Ran; Reyes-Lillo, Sebastian E.; Xu, Ruijuan; ...

    2017-07-16

    Antiferroelectric PbZrO 3 is being considered for a wide range of applications where the competition between centrosymmetric and noncentrosymmetric phases is important to the response. Here, we focus on the epitaxial growth of PbZrO 3 thin films and understanding the chemistry structure coupling in Pb 1+δ ZrO 3 (δ = 0, 0.1, 0.2). High-quality, single-phase Pb 1+δZrO 3 films are synthesized via pulsed-laser deposition. Though no significant lattice parameter change is observed in X-ray studies, electrical characterization reveals that while the PbZrO 3 and Pb 1.1ZrO 3 heterostructures remain intrinsically antiferroelectric, the Pb 1.2ZrO 3 heterostructures exhibit a hysteresis loopmore » indicative of ferroelectric response. Furthermore X-ray scattering studies reveal strong quarter-order diffraction peaks in PbZrO 3 and Pb 1.1ZrO 3 heterostructures indicative of antiferroelectricity, while no such peaks are observed for Pb 1.2ZrO 3 heterostructures. Density functional theory calculations suggest the large cation nonstoichiometry is accommodated by incorporation of antisite Pb-Zr defects, which drive the Pb 1.2ZrO 3 heterostructures to a ferroelectric phase with R3c symmetry. In the end, stabilization of metastable phases in materials via chemical nonstoichiometry and defect engineering enables a novel route to manipulate the energy of the ground state of materials and the corresponding material properties.« less

  6. Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Gong, Y.; Mills, K.; Swaminathan, V.; Ajayan, P. M.; Shirodkar, S.; Kaxiras, E.

    2016-03-01

    A detailed study of the excitation dependence of the photoluminescence (PL) from monolayers of MoS2 and WS2/MoS2 heterostructures grown by chemical vapor deposition on Si substrates has revealed that the luminescence from band edge excitons from MoS2 monolayers shows a linear dependence on excitation intensity for both above band gap and resonant excitation conditions. In particular, a band separated by ∼55 meV from the A exciton, referred to as the C band, shows the same linear dependence on excitation intensity as the band edge excitons. A band similar to the C band has been previously ascribed to a trion, a charged, three-particle exciton. However, in our study the C band does not show the 3/2 power dependence on excitation intensity as would be expected for a three-particle exciton. Further, the PL from the MoS2 monolayer in a bilayer WS2/MoS2 heterostructure, under resonant excitation conditions where only the MoS2 absorbs the laser energy, also revealed a linear dependence on excitation intensity for the C band, confirming that its origin is not due to a trion but instead a bound exciton, presumably of an unintentional impurity or a native point defect such as a sulfur vacancy. The PL from the WS2/MoS2 heterostructure, under resonant excitation conditions also showed additional features which are suggested to arise from the interface states at the heteroboundary. Further studies are required to clearly identify the origin of these features.

  7. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  8. Voltage-impulse-induced dual-range nonvolatile magnetization modulation in metglas/PZT heterostructure

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoli; Su, Hua; Zhang, Huaiwu; Sun, Nian X.

    2016-11-01

    Dual-range, nonvolatile magnetization modulation induced by voltage impulses was investigated in the metglas/lead zirconate titanate (PZT) heterostructure at room temperature. The heterostructure was obtained by bonding a square metglas ribbon on the top electrode of the PZT substrate, which contained defect dipoles resulting from acceptor doping. The PZT substrate achieved two strain hysteretic loops with the application of specific voltage impulse excitation modes. Through strain-mediated magnetoelectric coupling between the metglas ribbon and the PZT substrate, two strain hysteretic loops led to a dual-range nonvolatile magnetization modulation in the heterostructure. Reversible and stable voltage-impulse-induced nonvolatile modulation in the ferromagnetic resonance field and magnetic hysteresis characteristics were also realized. This method provides a promising approach in reducing energy consumption in magnetization modulation and other related devices.

  9. Screening mechanisms at polar oxide heterointerfaces

    DOE PAGES

    Hong, Seungbum; Nakhmanson, Serge M.; Fong, Dillon D.

    2016-06-16

    The interfaces of polar oxide heterostructures can display electronic properties unique from the oxides they border, as they require screening from either internal or external sources of charge. The screening mechanism depends on a variety of factors, including the band structure at the interface, the presence of point defects or adsorbates, whether or not the oxide is ferroelectric, and whether or not an external field is applied. In this review, we discuss both theoretical and experimental aspects of different screening mechanisms, giving special emphasis to ways in which the mechanism can be altered to provide novel or tunable functionalities. Wemore » begin with a theoretical introduction to the problem and highlight recent progress in understanding the impact of point defects on polar interfaces. Different case studies are then discussed, for both the high thickness regime, where interfaces must be screened and each interface can be considered separately, and the low thickness regime, where the degree and nature of screening can be manipulated and the interfaces are close enough to interact. As a result, we end with a brief outlook toward new developments in this rapidly progressing field.« less

  10. Molecular-Beam Epitaxial Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures.

    DTIC Science & Technology

    1985-06-24

    research , and perhaps the most far-reaching one * A GaP -on-Si transistor was achieved, vastly better than any previous or concurrent effort towards this...the numerous conceptual and technological developments that had accumulated during the research . e) Defects in GaP -on-Si(211) Layers. With the help...Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures Final Report by A Herbert Kroemer June 1985 -..2-- U. S. Army Research

  11. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  12. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  13. Wafer bonded epitaxial templates for silicon heterostructures

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcubera I [Paris, FR

    2008-03-11

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  14. Wafer bonded epitaxial templates for silicon heterostructures

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)

    2008-01-01

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  15. Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yao; National Institute for Materials Science, Tsukuba, Ibaraki 305-0044; Sun, Huabin

    2015-05-15

    The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, whichmore » influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.« less

  16. Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Jiayu; Lin, Li; Huang, Guang-Yao; Kang, N.; Zhang, Jincan; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.

    2018-02-01

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly 0 ° -twisted G/h-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately 3000 cm2 V-1 s-1 at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry with the presence of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/h-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/h-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/h-BN heterostructures.

  17. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.

    PubMed

    Liu, Baodan; Yang, Bing; Yuan, Fang; Liu, Qingyun; Shi, Dan; Jiang, Chunhai; Zhang, Jinsong; Staedler, Thorsten; Jiang, Xin

    2015-12-09

    In this work, we demonstrate a new strategy to create WZ-GaN/3C-SiC heterostructure nanowires, which feature controllable morphologies. The latter is realized by exploiting the stacking faults in 3C-SiC as preferential nucleation sites for the growth of WZ-GaN. Initially, cubic SiC nanowires with an average diameter of ∼100 nm, which display periodic stacking fault sections, are synthesized in a chemical vapor deposition (CVD) process to serve as the core of the heterostructure. Subsequently, hexagonal wurtzite-type GaN shells with different shapes are grown on the surface of 3C-SiC wire core. In this context, it is possible to obtain two types of WZ-GaN/3C-SiC heterostructure nanowires by means of carefully controlling the corresponding CVD reactions. Here, the stacking faults, initially formed in 3C-SiC nanowires, play a key role in guiding the epitaxial growth of WZ-GaN as they represent surface areas of the 3C-SiC nanowires that feature a higher surface energy. A dedicated structural analysis of the interfacial region by means of high-resolution transmission electron microscopy (HRTEM) revealed that the disordering of the atom arrangements in the SiC defect area promotes a lattice-matching with respect to the WZ-GaN phase, which results in a preferential nucleation. All WZ-GaN crystal domains exhibit an epitaxial growth on 3C-SiC featuring a crystallographic relationship of [12̅10](WZ-GaN) //[011̅](3C-SiC), (0001)(WZ-GaN)//(111)(3C-SiC), and d(WZ-GaN(0001)) ≈ 2d(3C-SiC(111)). The approach to utilize structural defects of a nanowire core to induce a preferential nucleation of foreign shells generally opens up a number of opportunities for the epitaxial growth of a wide range of semiconductor nanostructures which are otherwise impossible to acquire. Consequently, this concept possesses tremendous potential for the applications of semiconductor heterostructures in various fields such as optics, electrics, electronics, and photocatalysis for energy harvesting and environment processing.

  18. Robust electromagnetic absorption by graphene/polymer heterostructures

    NASA Astrophysics Data System (ADS)

    Lobet, Michaël; Reckinger, Nicolas; Henrard, Luc; Lambin, Philippe

    2015-07-01

    Polymer/graphene heterostructures present good shielding efficiency against GHz electromagnetic perturbations. Theory and experiments demonstrate that there is an optimum number of graphene planes, separated by thin polymer spacers, leading to maximum absorption for millimeter waves Batrakov et al (2014 Sci. Rep. 4 7191). Here, electrodynamics of ideal polymer/graphene multilayered material is first approached with a well-adapted continued-fraction formalism. In a second stage, rigorous coupled wave analysis is used to account for the presence of defects in graphene that are typical of samples produced by chemical vapor deposition, namely microscopic holes, microscopic dots (embryos of a second layer) and grain boundaries. It is shown that the optimum absorbance of graphene/polymer multilayers does not weaken to the first order in defect concentration. This finding testifies to the robustness of the shielding efficiency of the proposed absorption device.

  19. Branch-point energies and the band-structure lineup at Schottky contacts and heterostrucures

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2011-06-01

    Empirical branch-point energies of Si, the group-III nitrides AlN, GaN, and InN, and the group-II and group-III oxides MgO, ZnO, Al2O3 and In2O3 are determined from experimental valance-band offsets of their heterostructures. For Si, GaN, and MgO, these values agree with the branch-point energies obtained from the barrier heights of their Schottky contacts. The empirical branch-point energies of Si and the group-III nitrides are in very good agreement with results of previously published calculations using quite different approaches such as the empirical tight-binding approximation and modern electronic-structure theory. In contrast, the empirical branch-point energies of the group-II and group-III oxides do not confirm the respective theoretical results. As at Schottky contacts, the band-structure lineup at heterostructures is also made up of a zero-charge-transfer term and an intrinsic electric-dipole contribution. Hence, valence-band offsets are not equal to the difference of the branch-point energies of the two semiconductors forming the heterostructure. The electric-dipole term may be described by the electronegativity difference of the two solids in contact. A detailed analysis of experimental Si Schottky barrier heights and heterostructure valence-band offsets explains and proves these conclusions.

  20. Rashba-type spin splitting and the electronic structure of ultrathin Pb/MoTe2 heterostructure

    NASA Astrophysics Data System (ADS)

    Du, X.; Wang, Z. Y.; Huang, G. Q.

    2016-11-01

    The spin-polarized band structures of the Pb(111)/MoTe2 heterostructure are studied by the first-principles calculations. Due to strong spin-orbit coupling and space inversion asymmetry, large Rashba spin splitting of electronic bands appears in this hybrid system. The spin splitting is completely out-of-plane and opposite at \\bar{K} and {\\bar{K}}\\prime points. Rashba spin splitting also appears along the in-plane momentum direction around the \\bar{{{Γ }}} point due to the existence of surface potential gradient induced by charge transfer at interface. Furthermore, our calculations show that the spin-polarized bands closely approach the Fermi level in Pb/MoTe2 heterostructure, showing that this heterostructure may be a good candidate in valleytronics or spintronics.

  1. Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes

    NASA Astrophysics Data System (ADS)

    Hussain, Laiq; Karimi, Mohammad; Berg, Alexander; Jain, Vishal; Borgström, Magnus T.; Gustafsson, Anders; Samuelson, Lars; Pettersson, Håkan

    2017-12-01

    Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed.

  2. Photoinduced doping in heterostructures of graphene and boron nitride.

    PubMed

    Ju, L; Velasco, J; Huang, E; Kahn, S; Nosiglia, C; Tsai, Hsin-Zon; Yang, W; Taniguchi, T; Watanabe, K; Zhang, Y; Zhang, G; Crommie, M; Zettl, A; Wang, F

    2014-05-01

    The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.

  3. Optimization of the defects and the nonradiative lifetime of GaAs/AlGaAs double heterostructures

    NASA Astrophysics Data System (ADS)

    Cevher, Z.; Folkes, P. A.; Hier, H. S.; VanMil, B. L.; Connelly, B. C.; Beck, W. A.; Ren, Y. H.

    2018-04-01

    We used Raman scattering and time-resolved photoluminescence spectroscopy to investigate the molecular-beam-epitaxy (MBE) growth parameters that optimize the structural defects and therefore the internal radiative quantum efficiency of MBE-grown GaAs/AlGaAs double heterostructures (DH). The DH structures were grown at two different temperatures and three different As/Ga flux ratios to determine the conditions for an optimized structure with the longest nonradiative minority carrier lifetime. Raman scattering measurements show an improvement in the lattice disorder in the AlGaAs and GaAs layers as the As/Ga flux ratio is reduced from 40 to 15 and as the growth temperature is increased from 550 to 595 °C. The optimized structure is obtained with the As/Ga flux ratio equal to 15 and the substrate temperature 595 °C. This is consistent with the fact that the optimized structure has the longest minority carrier lifetime. Moreover, our Raman studies reveal that incorporation of a distributed Bragg reflector layer between the substrate and DH structures significantly reduces the defect density in the subsequent epitaxial layers.

  4. Carrier quenching in InGaP/GaAs double heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Nathan P., E-mail: nathan.p.wells@aero.org; Driskell, Travis U.; Hudson, Andrew I.

    2015-08-14

    Photoluminescence measurements on a series of GaAs double heterostructures demonstrate a rapid quenching of carriers in the GaAs layer at irradiance levels below 0.1 W/cm{sup 2} in samples with a GaAs-on-InGaP interface. These results indicate the existence of non-radiative defect centers at or near the GaAs-on-InGaP interface, consistent with previous reports showing the intermixing of In and P when free As impinges on the InGaP surface during growth. At low irradiance, these defect centers can lead to sub-ns carrier lifetimes. The defect centers involved in the rapid carrier quenching can be saturated at higher irradiance levels and allow carrier lifetimes tomore » reach hundreds of nanoseconds. To our knowledge, this is the first report of a nearly three orders of magnitude decrease in carrier lifetime at low irradiance in a simple double heterostructure. Carrier quenching occurs at irradiance levels near the integrated Air Mass Zero (AM0) and Air Mass 1.5 (AM1.5) solar irradiance. Additionally, a lower energy photoluminescence band is observed both at room and cryogenic temperatures. The temperature and time dependence of the lower energy luminescence is consistent with the presence of an unintentional InGaAs or InGaAsP quantum well that forms due to compositional mixing at the GaAs-on-InGaP interface. Our results are of general interest to the photovoltaic community as InGaP is commonly used as a window layer in GaAs based solar cells.« less

  5. DX centers in indium aluminum arsenide heterostructures

    NASA Astrophysics Data System (ADS)

    Sari, Huseyin

    DX centers are point defects observed in many n-type doped III-V compound semi conductors. They have unique properties, which include large differences between their optical and thermal ionization energies, and a temperature dependence of the capture cross-sections. As a result of these properties DX centers exhibit a reduction in free carrier concentration and a large persistent photoconductivity (PPC) effect. DX centers also lead to a shift in the threshold voltage of modulation doped field effect transistors (MODFET) structures, at low temperatures. Most of the studies on this defect have been carried out on the Ga xAl1-xAs material system. However, to date there is significantly less work on DX centers in InxAl1-xAs compounds. This is partly due to difficulties associated with the growth of defect free materials other than lattice matched In0.52Al 0.48As on InP and partly because the energy level of the DX center is in resonance with the conduction band in In0.52Al0.48As. The purpose of this dissertation is to extend the DX center investigation to InAlAs compounds, primarily in the indirect portion of the InAlAs bandgap. In this work the indium composition dependence of the DX centers in In xAl1-xAs/InyGa1-yAs-based heterostructure is studied experimentally. Different InxAl 1-xAs epitaxial layers with x = 0.10, x = 0.15, x = 0.20, and x = 0.34 in a MODFET-like heterostructure were grown by Molecular Beam Epitaxy (MBE) on (001) GaAs substrates. In order to compensate the lattice mismatch between epitaxial layers and their substrates, step-graded buffer layers with indium composition increments of x = 0.10, every 2000 A, were used. For the samples grown with different indium contents Hall measurements as a function of both temperature and different cooling biases were performed in order to determine their carrier concentrations. A self consistent Poisson-Schrodinger numerical software is used to model the heterostructures. With the help of this numerical model and the grand canonical ensemble (GCE) the energy levels of the DX centers relative to the conduction band edge were estimated. The optical properties of the DX centers were also investigated using a 1.0 mum thick, Si-doped bulk-like GaAlAs epitaxial layer grown by MBE on a GaAs substrate. A conductivity modulation experiment using a stripe-patterned mask has been performed at 77°K. A conductivity difference, up to 10 4 along parallel and perpendicular directions relative to the stripes, has been measured. The difference in conductivity is a result of the large PPC effect of the DX centers and clearly indicates the localized nature of these deep levels.

  6. Challenges and opportunities of ZnO-related single crystalline heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozuka, Y.; Tsukazaki, A.; PRESTO, Japan Science and Technology Agency

    2014-03-15

    Recent technological advancement in ZnO heterostructures has expanded the possibility of device functionalities to various kinds of applications. In order to extract novel device functionalities in the heterostructures, one needs to fabricate high quality films and interfaces with minimal impurities, defects, and disorder. With employing molecular-beam epitaxy and single crystal ZnO substrates, the density of residual impurities and defects can be drastically reduced and the optical and electrical properties have been dramatically improved for the ZnO films and heterostructures with Mg{sub x}Zn{sub 1-x}O. Here, we overview such recent technological advancement from various aspects of application. Towards optoelectronic devices such asmore » a light emitter and a photodetector in an ultraviolet region, the development of p-type ZnO and the fabrication of excellent Schottky contact, respectively, have been subjected to intensive studies for years. For the former, the fine tuning of the growth conditions to make Mg{sub x}Zn{sub 1-x}O as intrinsic as possible has opened the possibilities of making p-type Mg{sub x}Zn{sub 1-x}O through NH{sub 3} doping method. For the latter, conducting and transparent polymer films spin-coated on Mg{sub x}Zn{sub 1-x}O was shown to give almost ideal Schottky junctions. The wavelength-selective detection can be realized with varying the Mg content. From the viewpoint of electronic devices, two-dimensional electrons confined at the Mg{sub x}Zn{sub 1-x}O/ZnO interfaces are promising candidate for quantum devices because of high electron mobility and strong electron-electron correlation effect. These wonderful features and tremendous opportunities in ZnO-based heterostructures make this system unique and promising in oxide electronics and will lead to new quantum functionalities in optoelectronic devices and electronic applications with lower energy consumption and high performance.« less

  7. Design for a broad non-transmission band gap of three-color filters using photonic heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Guan, Huihuan; Han, Peide; Li, Yuping; Zhang, Caili

    2013-01-01

    The bandgap characteristics of one-dimensional (1D) photonic crystal (PC) heterostructures containing defects are studied using the transfer matrix method. The key is to search for the best combination style for different 1D PCs to form heterostructures containing Si/MgF2 multilayer films. The non-transmission range over the entire visible range can be enlarged substantially, and the phenomenon of three-color PC filters in blue-green-red light can be realized by adjusting the repeat cycle counts of various PCs. With perfect omnidirectional and high peak transmission three-color filters for the electric magnetic (TE) mode, this optimization design opens a promising way to fabricate three-color PC filters with a wide non-transmission range in the visible range, which can be applied to white LEDs.

  8. III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Zaluzec, Nestor J.; García, R. Edwin; Stach, Eric A.; Sands, Timothy D.

    2010-08-01

    Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {11¯01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to ˜20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 °C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.

  9. In situ degradation studies of two-dimensional WSe₂-graphene heterostructures.

    PubMed

    Wang, B; Eichfield, S M; Wang, D; Robinson, J A; Haque, M A

    2015-09-14

    Heterostructures of two-dimensional materials can be vulnerable to thermal degradation due to structural and interfacial defects as well as thermal expansion mismatch, yet a systematic study does not exist in the literature. In this study, we investigate the degradation of freestanding WSe2-graphene heterostructures due to heat and charge flow by performing in situ experiments inside a transmission electron microscope. Experimental results show that purely thermal loading requires higher temperatures (>850 °C), about 150 °C higher than that under combined electrical and thermal loading. In both cases, selenium is the first element to decompose and migration of silicon atoms from the test structure to the freestanding specimen initiates rapid degradation through the formation of tungsten disilicide and silicon carbide. The role of the current flow is to enhance the migration of silicon from the sample holder and to knock-out the selenium atoms. The findings of this study provide fundamental insights into the degradation of WSe2-graphene heterostructures and inspire their application in electronics for use in harsh environments.

  10. Signatures of Phonon and Defect-Assisted Tunneling in Planar Metal-Hexagonal Boron Nitride-Graphene Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2016-12-14

    Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene (or graphite) electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported. The tunneling conductance, dI/dV, at low voltages is relatively weak, with a strong enhancement reproducibly observed to occur at around |V| ≈ 50 mV. While the weak tunneling at low energies is attributed to the absence of substantial overlap, in momentum space, of the metal and graphene Fermi surfaces, the enhancement at higher energies signals the onset of inelastic processes in which phonons in the heterostructure provide the momentum necessary to link the Fermi surfaces. Pronounced peaks in the second derivative of the tunnel current, d 2 I/dV 2 , are observed at voltages where known phonon modes in the tunnel junction have a high density of states. In addition, features in the tunneling conductance attributed to single electron charging of nanometer-scale defects in the boron nitride are also observed in these devices. The small electronic density of states of graphene allows the charging spectra of these defect states to be electrostatically tuned, leading to "Coulomb diamonds" in the tunneling conductance.

  11. Electroluminescence dependence on the organic thickness in ZnO nano rods/Alq3 heterostructure devices.

    PubMed

    Kan, Pengzhi; Wang, Yongsheng; Zhao, Suling; Xu, Zheng; Wang, Dawei

    2011-04-01

    ZnO nanorods are synthesised by a hydrothermal method on ITO glass. Their crystallization and morphology are detected by XRD and SEM, respectively. The results show that the ZnO nanorod array has grown primarily along a direction aligned perpendicular to the ITO substrate. The average height and diameter of the nanorods is about 130 nm and 30 nm, respectively. Then ZnO nano rods/Alq3 heterostructure LEDs are prepared by thermal evaporation of Alq3 molecules. The thicknesses of the Alq3 layers are 130 nm, 150 nm, 170 nm and 190 nm, respectively. The electroluminescence of the devices is detected under different DC bias voltages. The exciton emission of Alq3 is detected in all devices. When the thickness of Alq3 is 130 nm, the UV electroluminescence of ZnO is around 382 nm, and defect emissions around 670 nm and 740 nm are detected. Defect emissions of ZnO nanorods are prominent. When the thickness of Alq3 increases to over 170 nm, it is difficult to observe defect emissions from the ZnO nano rods. In such devices, the exciton emission of Alq3 is more prominent than other emissions under different bias voltage.

  12. A correlation between the defect states and yellow luminescence in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2017-07-01

    AlGaN/GaN heterostructures are investigated by performing complementary spectroscopic measurements under novel experimental configurations. Distinct features related to the band edge of AlGaN and GaN layers are clearly observed in surface photovoltage spectroscopy (SPS) spectra. A few more SPS features, which are associated with defects in GaN, are also identified by performing the pump-probe SPS measurements. SPS results are strongly corroborated by the complementary photoluminescence and photoluminescence excitation (PLE) measurements. A correlation between the defect assisted SPS features and yellow luminescence (YL) peak is established by performing pump-probe SPS and PLE measurements. It is found that CN-ON donor complex is responsible for the generation of YL peak in our sample. Further, the deep trap states are found to be present throughout the entire GaN epilayer. It is also noticed that the deep trap states lying at the GaN/Fe-GaN interface make a strong contribution to the YL feature. A phenomenological model is proposed to explain the intensity dependence of the YL feature and the corresponding SPS features in a pump-probe configuration, where a reasonable agreement between the numerical simulations and experimental results is achieved.

  13. Organic heterostructures deposited by MAPLE on AZO substrate

    NASA Astrophysics Data System (ADS)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Stanculescu, F.; Iftimie, S.; Girtan, M.; Popescu-Pelin, G.; Socol, G.

    2017-09-01

    Organic heterostructures based on poly(3-hexylthiophene) (P3HT) and fullerene (C60) as blends or multilayer were deposited on Al:ZnO (AZO) by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The AZO layers were obtained by Pulsed Laser Deposition (PLD) on glass substrate, the high quality of the films being reflected by the calculated figure of merit. The organic heterostructures were investigated from morphological, optical and electrical point of view by atomic force microscopy (AFM), UV-vis spectroscopy, photoluminescence (PL) and current-voltage (I-V) measurements, respectively. The increase of the C60 content in the blend heterostructure has as result a high roughness. Compared with the multilayer heterostructure, those based on blends present an improvement in the electrical properties. Under illumination, the highest current value was recorded for the heterostructure based on the blend with the higher C60 amount. The obtained results showed that MAPLE is a useful technique for the deposition of the organic heterostructures on AZO as transparent conductor electrode.

  14. Search for effective spin injection heterostructures based on half-metal Heusler alloys/gallium arsenide semiconductors: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Sivakumar, Chockalingam

    Efficient electrical spin injection from half-metal (HM) electrodes into semiconducting (SC) channel material is a desirable aspect in spintronics, but a challenging one. Half-metals based on the Heusler alloy family are promising candidates as spin sources due to their compatibility with compound SCs, and very high Curie temperatures. Numerous efforts were made in the past two decades to grow atomically abrupt interfaces between HM_Heusler and SC heterostructures. However, diffusion of magnetic impurities into the semiconductor, defects and disorder near the interface, and formation of reacted phases were great challenges. A number of theoretical efforts were undertaken to understand the role of such material defects in destroying the half-metallicity and also to propose promising half-metal/SC heterostructures based on first principles. This dissertation summarizes the investigations undertaken to decode the complexity of, and to understand the various physical properties of, a number of real-world Heusler/SC heterostructure samples, based on the ab initio density functional theory (DFT) approach. In addition, it summarizes various results from the first principles-based search for promising half-metal/SC heterostructures. First, I present results from DFT-based predictive models of actual Co 2MnSi (CMS)/GaAs heterostructures grown in (001) texture. I investigate the physical, chemical, electronic, and magnetic properties to understand the complexity of these structures and to pinpoint the origin of interfacial effects, when present. Based on the investigations of such models, I discuss the utility of those actual samples in spintronic applications. Next, I summarise the results from an ab initio DFT-based survey of 6 half-Heusler half-metal/GaAs heterostructure models in (110) texture, since compound semiconductors such as GaAs have very long spin lifetime in (110) layering. I show 3 half-Heusler alloys (CoVAs, NiMnAs, and RhFeGe), that when interfaced with GaAs(110), fully preserve the half-metallicity at the interface. Finally, I show the advantages of inserting half-Heusler SCs, particularly CoTiAs and CoTiSb, as spacers in between CMS/GaAs systems in (110) layering. Based on DFT calculations, I show that CoTiAs is a promising spacer that could enhance the perpendicular magnetic anisotropy in CMS, while preserving the important half-metallic character at the heterojunctions between CMS/CoTiAs/GaAs(110). This spacer could also serve to prevent in-diffusion of magnetic impurities into the channel material.

  15. Characterization and modeling of low energy ion-induced damage in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Hui

    1997-11-01

    Low energy ion-induced damage (sub-keV) created during dry etching processes can extend quite deeply into materials. A systematic study on the deep penetration of dry etch-induced damage is necessary to improve device performance and helpful in further understanding the nature of defect propagation in semiconductors. In this study, a phenomenological model of dry etching damage that includes both effects of ion channeling and defect diffusion has been developed. It underscores that in addition to ion channeling, enhanced defect diffusion also plays an important role in establishing the damage profile. Further, the enhanced diffusion of dry etch- induced damage was experimentally observed for the first time by investigating the influences of concurrent above- bandgap laser illumination and low energy Ar+ ion bombardment on the damage profiles of GaAs/AlGaAs and InP-GaAs/InP heterostructures. The results indicate that non-radiative recombination of electron and hole pairs at defect sites is responsible for the observed radiation enhanced diffusion. DLTS measurements are also employed to characterize the nature of the enhanced diffusion in n-GaAs and reveal that a major component of the ion- induced defects is associated with primary point defects. Using the better understanding of the damage propagation in dry etched materials, a thin layer of low temperature grown GaAs (~200A) was utilized to stop defect propagation during dry etching process. This approach has been successfully applied to reduce ion damage that would occur during the formation of a dry-etch gate recess of a high electron mobility transistor. Finally, some future experiments are proposed and conceptually described, which would further clarify some of the many outstanding issues in the understanding and mitigation of etch- induced damage.

  16. Structural variations in indium tin tellurides and their thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Neudert, Lukas; Schwarzmüller, Stefan; Schmitzer, Silvia; Schnick, Wolfgang; Oeckler, Oliver

    2018-02-01

    Indium-doped tin tellurides are promising and thoroughly investigated thermoelectric materials. Due to the low solubility of In2Te3 in SnTe and vice versa, samples with the nominal composition (SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.75 consist of a defect-rocksalt-type Sn-rich and a defect-sphalerite-type In-rich phase which are endotaxially intergrown and form nanoscale heterostructures. Such nanostructures are kinetically inert and become more pronounced with increasing overall In content. The vacancies often show short-range ordering. These phenomena are investigated by temperature-dependent X-ray diffraction and HRTEM as well as STEM with element mapping by X-ray spectroscopy. The combination of real-structure effects leads to very low lattice thermal conductivity from room temperature up to 500 °C. Thermoelectric figures of merit ZT of heterostructured materials with x = 0.136 reach ZT values up to 0.55 at 400 °C.

  17. Effect of lattice mismatch on the magnetic properties of nanometer-thick La0.9Ba0.1MnO3 (LBM) films and LBM/BaTiO3/LBM heterostructures

    NASA Astrophysics Data System (ADS)

    Mirzadeh Vaghefi, P.; Baghizadeh, A.; Willinger, M.; Lourenço, A. A. C. S.; Amaral, V. S.

    2017-12-01

    Oxide multiferroic thin films and heterostructures offer a wide range of properties originated from intrinsic coupling between lattice strain and nanoscale magnetic/electronic ordering. La0.9Ba0.1MnO3 (LBM) thin-films and LBM/BaTiO3/LBM (LBMBT) heterostructures were grown on single crystalline [100] silicon and [0001] Al2O3 using RF magnetron sputtering to study the effect of crystallinity and induced lattice mismatch in the film on magnetic properties of deposited films and heterostructures. The thicknesses of the films on Al2O3 and Si are 70 and 145 nm, respectively, and for heterostructures are 40/30/40 nm on both substrates. The microstructure of the films, state of strain and growth orientations was studied by XRD and microscopy techniques. Interplay of microstructure, strain and magnetic properties is further investigated. It is known that the crystal structure of substrates and imposed tensile strain affect the physical properties; i.e. magnetic behavior of the film. The thin layer grown on Al2O3 substrate shows out-of-plane compressive strain, while Si substrate induces tensile strain on the deposited film. The magnetic transition temperatures (Tc) of the LBM film on the Si and Al2O3 substrates are found to be 195 K and 203 K, respectively, slightly higher than the bulk form, 185 K. The LBMBT heterostructure on Si substrate shows drastic decrease in magnetization due to produced defects created by diffusion of Ti ions into magnetic layer. Meanwhile, the Tc in LBMBTs increases in respect to other studied single layers and heterostructure, because of higher tensile strain induced at the interfaces.

  18. Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces.

    PubMed

    Zannier, Valentina; Rossi, Francesca; Dubrovskii, Vladimir G; Ercolani, Daniele; Battiato, Sergio; Sorba, Lucia

    2018-01-10

    The possibility to expand the range of material combinations in defect-free heterostructures is one of the main motivations for the great interest in semiconductor nanowires. However, most axial nanowire heterostructures suffer from interface compositional gradients and kink formation, as a consequence of nanoparticle-nanowire interactions during the metal-assisted growth. Understanding such interactions and how they affect the growth mode is fundamental to achieve a full control over the morphology and the properties of nanowire heterostructures for device applications. Here we demonstrate that the sole parameter affecting the growth mode (straight or kinked) of InP segments on InAs nanowire stems by the Au-assisted method is the nanoparticle composition. Indeed, straight InAs-InP nanowire heterostructures are obtained only when the In/Au ratio in the nanoparticles is low, typically smaller than 1.5. For higher In content, the InP segments tend to kink. Tailoring the In/Au ratio by the precursor fluxes at a fixed growth temperature enables us to obtain straight and radius-uniform InAs-InP nanowire heterostructures (single and double) with atomically sharp interfaces. We present a model that is capable of describing all the experimentally observed phenomena: straight growth versus kinking, the stationary nanoparticle compositions in pure InAs and InAs-InP nanowires, the crystal phase trends, and the interfacial abruptness. By taking into account different nanowire/nanoparticle interfacial configurations (forming wetting or nonwetting monolayers in vertical or tapered geometry), our generalized model provides the conditions of nanoparticle stability and abrupt heterointerfaces for a rich variety of growth scenarios. Therefore, our results provide a powerful tool for obtaining high quality InAs-InP nanowire heterostructures with well-controlled properties and can be extended to other material combinations based on the group V interchange.

  19. SWCNT-MoS2 -SWCNT Vertical Point Heterostructures.

    PubMed

    Zhang, Jin; Wei, Yang; Yao, Fengrui; Li, Dongqi; Ma, He; Lei, Peng; Fang, Hehai; Xiao, Xiaoyang; Lu, Zhixing; Yang, Juehan; Li, Jingbo; Jiao, Liying; Hu, Weida; Liu, Kaihui; Liu, Kai; Liu, Peng; Li, Qunqing; Lu, Wei; Fan, Shoushan; Jiang, Kaili

    2017-02-01

    A vertical point heterostructure (VPH) is constructed by sandwiching a two-dimensional (2D) MoS 2 flake with two cross-stacked metallic single-walled carbon nanotubes. It can be used as a field-effect transistor with high on/off ratio and a light detector with high spatial resolution. Moreover, the hybrid 1D-2D-1D VPHs open up new possibilities for nanoelectronics and nano-optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantum engineering of transistors based on 2D materials heterostructures

    NASA Astrophysics Data System (ADS)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  1. Quantum engineering of transistors based on 2D materials heterostructures.

    PubMed

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  2. Shot noise at the quantum point contact in InGaAs heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishihara, Yoshitaka; Nakamura, Shuji; Ono, Teruo

    2013-12-04

    We study the shot noise at a quantum point contact (QPC) fabricated in an InGaAs/InGaAsP heterostructure, whose conductance can be electrically tuned by the gate voltages. Shot noise suppression is observed at the conductance plateau of N(2e{sup 2}/h) (N = 4,5,and 6), which indicates the coherent quantized channel formation in the QPC. The electron heating effect generated at the QPC explains the deviation of the observed Fano factor from the theory.

  3. Enhancing elastic stress relaxation in SiGe/Si heterostructures by Si pillar necking

    NASA Astrophysics Data System (ADS)

    Isa, F.; Salvalaglio, M.; Arroyo Rojas Dasilva, Y.; Jung, A.; Isella, G.; Erni, R.; Timotijevic, B.; Niedermann, P.; Gröning, P.; Montalenti, F.; von Känel, H.

    2016-10-01

    We demonstrate that the elastic stress relaxation mechanism in micrometre-sized, highly mismatched heterostructures may be enhanced by employing patterned substrates in the form of necked pillars, resulting in a significant reduction of the dislocation density. Compositionally graded Si1-xGex crystals were grown by low energy plasma enhanced chemical vapour deposition, resulting in tens of micrometres tall, three-dimensional heterostructures. The patterned Si(001) substrates consist of micrometre-sized Si pillars either with the vertical {110} or isotropically under-etched sidewalls resulting in narrow necks. The structural properties of these heterostructures were investigated by defect etching and transmission electron microscopy. We show that the dislocation density, and hence the competition between elastic and plastic stress relaxation, is highly influenced by the shape of the substrate necks and their proximity to the mismatched epitaxial material. The SiGe dislocation density increases monotonically with the crystal width but is significantly reduced by the substrate under-etching. The drop in dislocation density is interpreted as a direct effect of the enhanced compliance of the under-etched Si pillars, as confirmed by the three-dimensional finite element method simulations of the elastic energy distribution.

  4. Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dhar, J. C.; Mondal, A.; Singh, N. K.; Chattopadhyay, K. K.

    2013-05-01

    The glancing angle deposition technique has been employed to synthesize SiOx-TiO2 heterostructure nanowire (NW) arrays on indium tin oxide (ITO) coated glass substrate. A field emission gun scanning electron microscopic image shows that the average diameter of the NWs is ˜50 nm. Transmission electron microscopy images show the formation of heterostructure NWs, which consist of ˜180 nm SiOx and ˜210 nm long TiO2. The selected-area electron diffraction shows the amorphous nature of the synthesized NWs, which was also confirmed by X-ray diffraction method. The main band absorption edges at 3.5 eV were found for both the SiOx-TiO2 and TiO2 NW arrays on ITO coated glass plate from optical absorption measurement. Ti3+ defect related sub-band gap transition at 2.5 eV was observed for TiO2 NWs, whereas heterostructure NWs revealed the SiOx optical band gap related transition at ˜2.2 eV. Two fold improved photon absorption as well as five times photoluminescence emission enhancement were observed for the SiOx-TiO2 multilayer NWs compared to TiO2 NWs.

  5. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Liu, Yang; Zhang, Jing-Yan; Sun, Li; Ding, Lei; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Yu, Guang-Hua

    2012-08-01

    To reveal thermal effects on the film quality/microstructure evolution and the resulted magnetoresistance (MR) ratio in MgO/NiFe/MgO heterostructures, positron annihilation spectroscopy studies have been performed. It is found that the ionic interstitials in the MgO layers recombine with the nearby vacancies at lower annealing temperatures (200-300 °C) and lead to a slow increase in sample MR. Meanwhile, vacancy defects agglomeration/removal and ordering acceleration in MgO will occur at higher annealing temperatures (450-550 °C) and the improved MgO and MgO/NiFe interfaces microstructure are responsible for the observed significant MR enhancement.

  6. Strain field mapping of dislocations in a Ge/Si heterostructure.

    PubMed

    Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen

    2013-01-01

    Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.

  7. Large Area and Depth-Profiling Dislocation Imaging and Strain Analysis in Si/SiGe/Si Heterostructures

    DTIC Science & Technology

    2014-01-01

    of the defect trapping state ( Higgs & Kittler, 2441994), the temperature dependence of c is determined by the 245temperature dependence of lifetime...Lett 65(22), 2804–2806. 397KITTLER, M., ULHAQBOUILLET, C. & HIGGS , V. (1995). Influence of 398copper contamination on recombination activity of misfit

  8. Identification of the spatial location of deep trap states in AlGaN/GaN heterostructures by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.

    2017-12-01

    Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.

  9. Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; García, J. A.; Plazaola, F.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2007-05-01

    We present a method, based on positron annihilation spectroscopy, to obtain information on the defect depth profile of layers grown over high-quality substrates. We have applied the method to the case of ZnO layers grown on sapphire, but the method can be very easily generalized to other heterostructures (homostructures) where the positron mean diffusion length is small enough. Applying the method to the ratio of W and S parameters obtained from Doppler broadening measurements, W/S plots, it is possible to determine the thickness of the layer and the defect profile in the layer, when mainly one defect trapping positron is contributing to positron trapping at the measurement temperature. Indeed, the quality of such characterization is very important for potential technological applications of the layer.

  10. The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes

    PubMed Central

    2011-01-01

    Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested. PMID:21878100

  11. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.

    2018-01-01

    Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.

  12. Piezoelectric nanogenerators based on ZnO and M13 Bacteriophage nanostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Kim, Kyujungg; Hong, Suck Won; Oh, Jin-Woo; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-09-01

    Recently, the portable and wearable electronic devices, operated in the power range of microwatt to miliwatt, become available thank to the nanotechnology development and become an essential element for a comfortable life. Our recent research interest mainly focuses on the fabrication of piezoelectric nanogenerators based on smart nanomaterials such as zinc oxide novel nanostructure, M13 bacteriophage. In this talk, we present a simple strategy for fabricating the freestanding ZnO nanorods/graphene/ZnO nanorods double sided heterostructures. The characterization of the double sided heterostructures by using SEM, and Raman scattering spectroscopy reveals the key process and working mechanism of a formation of the heterostructure. The mechanism is discussed in detail in term of the decomposed seed layer and the vacancy defect of graphene. The approach consists of a facile one-step fabrication process and could achieve ZnO coverage with a higher number density than that of the epitaxial single heterostructure. The resulting improvement in the number density of nanorods has a direct beneficial effect on the double side heterostructured nanogenerator performance. The total output voltage and current density are improved up to 2 times compared to those of a single heterostructure due to the coupling of the piezoelectric effects from both upward and downward grown nanorods. The facile one-step fabrication process suggests that double sided heterostructures would improve the performance of electrical and optoelectrical device, such as touch pad, pressure sensor, biosensor and dye-sensitized solar cells. Further, ioinspired nanogenerators based on vertically aligned phage nanopillars are inceptively demonstrated. Vertically aligned phage nanopillars enable not only a high piezoelectric response but also a tuneable piezoelectricity. Piezoelectricity is also modulated by tuning of the protein's dipoles in each phage. The sufficient electrical power from phage nanopillars thus holds promise for the development of self-powered implantable and wearable electronics.

  13. Spatial charge inhomogeneity and defect states in topological Dirac semimetal thin films of Na3Bi

    PubMed Central

    Edmonds, Mark T.; Collins, James L.; Hellerstedt, Jack; Yudhistira, Indra; Gomes, Lídia C.; Rodrigues, João N. B.; Adam, Shaffique; Fuhrer, Michael S.

    2017-01-01

    Topological Dirac semimetals (TDSs) are three-dimensional analogs of graphene, with carriers behaving like massless Dirac fermions in three dimensions. In graphene, substrate disorder drives fluctuations in Fermi energy, necessitating construction of heterostructures of graphene and hexagonal boron nitride (h-BN) to minimize the fluctuations. Three-dimensional TDSs obviate the substrate and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. We map the potential fluctuations in TDS Na3Bi using a scanning tunneling microscope. The rms potential fluctuations are significantly smaller than the thermal energy room temperature (ΔEF,rms = 4 to 6 meV = 40 to 70 K) and comparable to the highest-quality graphene on h-BN. Surface Na vacancies produce a novel resonance close to the Dirac point with surprisingly large spatial extent and provide a unique way to tune the surface density of states in a TDS thin-film material. Sparse defect clusters show bound states whose occupation may be changed by applying a bias to the scanning tunneling microscope tip, offering an opportunity to study a quantum dot connected to a TDS reservoir. PMID:29291249

  14. Spin cat state generation for quadrupolar nuclei in semiconductor quantum dots or defect centers

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun

    Implementing spin-based quantum information encoding schemes in semiconductors has a high priority. The so-called cat codes offer a paradigm that enables hardware-efficient error correction. Their inauguration to semiconductor-based nuclear magnetic resonance framework hinges upon the realization of coherent spin states (CSS). In this work, we show how the crucial superpositions of CSS can be generated for the nuclear spins. This is through the intrinsic electric quadrupole interaction involving a critical role by the biaxiality term that is readily available, as in strained heterostructures of semiconductors, or defect centers having nearby quadrupolar spins. The persistence of the cat states is achieved using a rotation pulse so as to harness the underlying fixed points of the classical Hamiltonian. We classify the two distinct types as polar- and equator-bound over the Bloch sphere with respect to principal axes. Their optimal performance as well as sensitivity under numerous parameter deviations are analyzed. Finally, we present how these modulo-2 cat states can be extended to modulo-4 by a three-pulse scheme. This work was supported by TUBITAK, The Scientific and Technological Research Council of Turkey through the project No. 114F409.

  15. Nanostructuring of conduction channels in (In,Ga)As-InP heterostructures: Overcoming carrier generation caused by Ar ion milling

    NASA Astrophysics Data System (ADS)

    Hortelano, V.; Weidlich, H.; Semtsiv, M. P.; Masselink, W. T.; Ramsteiner, M.; Jahn, U.; Biermann, K.; Takagaki, Y.

    2018-04-01

    Nanometer-sized channels are fabricated in (In,Ga)As-InP heterostructures using Ar ion milling. The ion milling causes spontaneous creation of nanowires, and moreover, electrical conduction of the surface as carriers is generated by sputtering-induced defects. We demonstrate a method to restore electrical isolation in the etched area that is compatible with the presence of the nanochannels. We remove the heavily damaged surface layer using a diluted HCl solution and subsequently recover the crystalline order in the moderately damaged part by annealing. We optimize the HCl concentration to make the removal stop on its own before reaching the conduction channel part. The lateral depletion in the channels is shown to be almost absent.

  16. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip

    NASA Astrophysics Data System (ADS)

    Pankratov, E. L.; Bulaeva, E. A.

    2015-11-01

    In this paper, we introduce an approach to increase integration rate of bipolar heterotransistors. The approach based on doping of required parts of heterostructure by diffusion or implantation and optimization of annealing of dopant and/or radiation defects. As simplification of the considered approach to increase integration rate we consider possibility to used common collector.

  17. Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Gonzalez Debs, Mariam

    The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.

  18. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb 0.33V 2O 5 heterostructures

    DOE PAGES

    Milleville, Christopher C.; Pelcher, Kate E.; Sfeir, Matthew Y.; ...

    2016-02-15

    For solar energy conversion, not only must a semiconductor absorb incident solar radiation efficiently but also its photoexcited electron—hole pairs must further be separated and transported across interfaces. Charge transfer across interfaces requires consideration of both thermodynamic driving forces as well as the competing kinetics of multiple possible transfer, cooling, and recombination pathways. In this work, we demonstrate a novel strategy for extracting holes from photoexcited CdSe quantum dots (QDs) based on interfacing with β-Pb 0.33V 2O 5 nanowires that have strategically positioned midgap states derived from the intercalating Pb 2+ ions. Unlike midgap states derived from defects or dopants,more » the states utilized here are derived from the intrinsic crystal structure and are thus homogeneously distributed across the material. CdSe/β-Pb 0.33V 2O 5 heterostructures were assembled using two distinct methods: successive ionic layer adsorption and reaction (SILAR) and linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by the transfer of electrons to the conduction band of β-Pb 0.33V 2O 5 nanowires and holes to the midgap states of β-Pb 0.33V 2O 5 nanowires. Holes were transferred on time scales less than 1 ps, whereas electrons were transferred more slowly on time scales of ~2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V 2O 5 nanowires (wherein midgap states are absent), only electron transfer was observed. Interestingly, electron transfer was readily achieved for CdSe QDs interfaced with V 2O 5 nanowires by the SILAR method; however, for interfaces incorporating molecular linkers, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Furthermore, transient absorbance decay traces reveal longer excited-state lifetimes (1–3 μs) for CdSe/β-Pb 0.33V 2O 5 heterostructures relative to bare β-Pb 0.33V 2O 5 nanowires (0.2 to 0.6 μs); the difference is attributed to surface passivation of intrinsic surface defects in β-Pb 0.33V 2O 5 upon interfacing with CdSe.« less

  19. Formation and characterization of Ta2O5/TaOx films formed by O ion implantation

    NASA Astrophysics Data System (ADS)

    Ruffell, S.; Kurunczi, P.; England, J.; Erokhin, Y.; Hautala, J.; Elliman, R. G.

    2013-07-01

    Ta2O5/TaOx (oxide/suboxide) heterostructures are fabricated by high fluence O ion-implantation into deposited Ta films. The resultant films are characterized by depth profiling X-ray photoelectron spectroscopy (XPS), cross-sectional transmission electron microscopy (XTEM), four-point probe, and current-voltage and capacitance-voltage measurements. The measurements show that Ta2O5/TaOx oxide/suboxide heterostructures can be fabricated with the relative thicknesses of the layers controlled by implantation energy and fluence. Electrical measurements show that this approach has promise for high volume manufacturing of resistive switching memory devices based on oxide/suboxide heterostructures.

  20. Dopant diffusion and segregation in semiconductor heterostructures: Part III, diffusion of Si into GaAs

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Gösele, U. M.; Tan, T. Y.

    We have mentioned previously that in the third part of the present series of papers, a variety of n-doping associated phenomena will be treated. Instead, we have decided that this paper, in which the subject treated is diffusion of Si into GaAs, shall be the third paper of the series. This choice is arrived at because this subject is a most relevent heterostructure problem, and also because of space and timing considerations. The main n-type dopant Si in GaAs is amphoteric which may be incorporated as shallow donor species SiGa+ and as shallow acceptor species SiAs-. The solubility of SiAs- is much lower than that of SiGa+ except at very high Si concentration levels. Hence, a severe electrical self-compensation occurs at very high Si concentrations. In this study we have modeled the Si distribution process in GaAs by assuming that the diffusing species is SiGa+ which will convert into SiAs- in accordance with their solubilities and that the point defect species governing the diffusion of SiGa+ are triply-negatively-charged Ga vacancies VGa3-. The outstanding features of the Si indiffusion profiles near the Si/GaAs interface have been quantitatively explained for the first time. Deposited on the GaAs crystal surface, the Si source material is a polycrystalline Si layer which may be undoped or n+-doped using As or P. Without the use of an As vapor phase in the ambient, the As- and P-doped source materials effectively render the GaAs crystals into an As-rich composition, which leads to a much more efficient Si indiffusion process than for the case of using undoped source materials which maintains the GaAs crystals in a relatively As-poor condition. The source material and the GaAs crystal together form a heterostructure with its junction influencing the electron distribution in the region, which, in turn, affects the Si indiffusion process prominently.

  1. An AlGaN Core-Shell Tunnel Junction Nanowire Light-Emitting Diode Operating in the Ultraviolet-C Band.

    PubMed

    Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z

    2017-02-08

    To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.

  2. Multifunctional epitaxial systems on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO{sub 3}, VO{sub 2}, NiO, and TiO{sub 2} as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.« less

  3. Gallium nitride heterostructures on 3D structured silicon.

    PubMed

    Fündling, Sönke; Sökmen, Unsal; Peiner, Erwin; Weimann, Thomas; Hinze, Peter; Jahn, Uwe; Trampert, Achim; Riechert, Henning; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas

    2008-10-08

    We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth. For that a special low temperature inductively coupled plasma etching process has been developed. InGaN/GaN multi-quantum-well structures have been incorporated into the pillars. We found a pronounced dependence of the morphology of the GaN structures on the size and pitch of the pillars. Spatially resolved optical properties of the structures are analysed by cathodoluminescence.

  4. Band-gap corrected density functional theory calculations for InAs/GaSb type II superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Zhang, Yong

    2014-12-07

    We performed pseudopotential based density functional theory (DFT) calculations for GaSb/InAs type II superlattices (T2SLs), with bandgap errors from the local density approximation mitigated by applying an empirical method to correct the bulk bandgaps. Specifically, this work (1) compared the calculated bandgaps with experimental data and non-self-consistent atomistic methods; (2) calculated the T2SL band structures with varying structural parameters; (3) investigated the interfacial effects associated with the no-common-atom heterostructure; and (4) studied the strain effect due to lattice mismatch between the two components. This work demonstrates the feasibility of applying the DFT method to more exotic heterostructures and defect problemsmore » related to this material system.« less

  5. Passivation of InP heterojunction bipolar transistors by strain controlled plasma assisted electron beam evaporated hafnium oxide

    NASA Astrophysics Data System (ADS)

    Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.

    2012-01-01

    We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.

  6. Comparative study of LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H.-U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity and microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of the deposition technique for perovskite oxides.

  7. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    PubMed

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  8. Decoupled electron and phonon transports in hexagonal boron nitride-silicene bilayer heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yongqing; Pei, Qing-Xiang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Gang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg

    2016-02-14

    Calculations based on the density functional theory and empirical molecular dynamics are performed to investigate interlayer interaction, electronic structure and thermal transport of a bilayer heterostructure consisting of silicene and hexagonal boron nitride (h-BN). In this heterostructure, the two layers are found to interact weakly via a non-covalent binding. As a result, the Dirac cone of silicene is preserved with the Dirac cone point being located exactly at the Fermi level, and only a small amount of electrons are transferred from h-BN to silicene, suggesting that silicene dominates the electronic transport. Molecular dynamics calculation results demonstrate that the heat currentmore » along h-BN is six times of that along silicene, suggesting that h-BN dominates the thermal transport. This decoupled role of h-BN and silicene in thermal and electronic transport suggests that the BN-silicene bilayer heterostructure is promising for thermoelectric applications.« less

  9. Modeling the effects of strain profiles and defects on precessional magnetic switching in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Chavez, Andres C.; Kundu, Auni A.; Lynch, Christopher S.; Carman, Gregory P.

    2018-03-01

    Strain-mediated multiferroic heterostructures relying on fast 180° precessional magnetic switching have been proposed as a pathway for energy efficient and high density memory/logic devices. However, proper device performance requires precisely timed high frequency ( GHz) voltage pulses dependent on the magnetization dynamics of the structure. In turn, the dynamic response of the device is greatly influenced by the device geometry, strain amplitude, and strain rate. Hence, we study the effects of increasing the voltage amplitude and application rate on the in-plane magnetization dynamics of a single-domain CoFeB ellipse (100 nm x 80 nm x 6 nm) on a 500 nm thick PZT substrate in addition to studying defects in the geometry. Both a coupled micromagnetics, electrostatics and elastodynamics finite element model and a conventional micromagnetics software was used to study the strain-induced magnetic response of the CoFeB ellipse. Both models predict increased 90° magnetic reorientation speed with increased strain amplitude and rate. However, the fully-coupled model predicts slower reorientation and incoherency in comparison to the uncoupled model. This occurs because the fully-coupled model can capture the expected strain gradients of a fabricated device while the micromagnetics model can only represent uniform strain states. Additional studies which introduce geometric defects result in faster precessional motion under the same strain amplitude and rate. This is attributed to localized changes in the magnetization that influence neighboring regions via exchange and demagnetization effects. The results of these studies can help design better devices that will be less sensitive to defects and voltage applications for future strain-mediated multiferroic devices.

  10. Near-Infrared Intersubband Photodetection in GaN/AlN Nanowires.

    PubMed

    Lähnemann, Jonas; Ajay, Akhil; Den Hertog, Martien I; Monroy, Eva

    2017-11-08

    Intersubband optoelectronic devices rely on transitions between quantum-confined electron levels in semiconductor heterostructures, which enables infrared (IR) photodetection in the 1-30 μm wavelength window with picosecond response times. Incorporating nanowires as active media could enable an independent control over the electrical cross-section of the device and the optical absorption cross-section. Furthermore, the three-dimensional carrier confinement in nanowire heterostructures opens new possibilities to tune the carrier relaxation time. However, the generation of structural defects and the surface sensitivity of GaAs nanowires have so far hindered the fabrication of nanowire intersubband devices. Here, we report the first demonstration of intersubband photodetection in a nanowire, using GaN nanowires containing a GaN/AlN superlattice absorbing at 1.55 μm. The combination of spectral photocurrent measurements with 8-band k·p calculations of the electronic structure supports the interpretation of the result as intersubband photodetection in these extremely short-period superlattices. We observe a linear dependence of the photocurrent with the incident illumination power, which confirms the insensitivity of the intersubband process to surface states and highlights how architectures featuring large surface-to-volume ratios are suitable as intersubband photodetectors. Our analysis of the photocurrent characteristics points out routes for an improvement of the device performance. This first nanowire based intersubband photodetector represents a technological breakthrough that paves the way to a powerful device platform with potential for ultrafast, ultrasensitive photodetectors and highly efficient quantum cascade emitters with improved thermal stability.

  11. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: High-performance 1.3-μm InGaAsP/InP heterostructures formed by two-phase liquid epitaxy

    NASA Astrophysics Data System (ADS)

    Novotný, J.; Procházková, O.; Šrobár, F.; Zelinka, J.

    1988-11-01

    A description is given of a two-phase liquid epitaxy method used to grow InGaAsP/InP heterostructures intended for injection lasers emitting in the 1.3-μm range. A study was made of heterostructures of three types: double, with an additional quaternary layer (λ approx 1.1 μm) adjoining the active layer; with two quaternary layers between the active layer and the InP confining layers. The configuration with two flanking quaternary layers was found to be the best from the point of view of the threshold current density, optical output power, and reproducibility.

  12. Quantum well intermixing of indium gallium arsenide(phosphorus)/indium phosphorus heterostructures

    NASA Astrophysics Data System (ADS)

    Haysom, Joan E.

    This thesis studies several aspects of the interdiffusion of InGaAs(P)/InP quantum well (QW) heterostructures, from the fundamental defect mechanisms, through optimization of processing parameters, to novel device applications. Conclusions from each of these areas have been drawn which further the scientific understanding and the manufacturability of the technique. The thermal stability of a series of different wafers is studied to highlight how poor quality of growth can cause increased interdiffusion, and to review the requirements for achieving repeatable annealing. Purposeful and controlled interdiffusion is accomplished through the introduction of excess defects into layers above the QWs, which during a subsequent anneal, diffuse through the QWs and enhance interdiffusion of atoms of the QWs with atoms of the barriers. These excess defects are introduced using two different techniques, via growth at low temperatures (LT) using chemical beam epitaxy (CBE), and via implantation of phosphorus ions. The CBE LT growth technique is new, and reported for the first time in this thesis. Characterization of the as-grown layers leads us to believe that they have an excess of phosphorus. The diffusion rate of the mobile defects which cause the intermixing is also measured, and the interdiffusion is shown to occur predominantly on the group-V sublattice. Due to many similarities between this and the results of the implantation technique, it is proposed that these mobile defects are the same for both intermixing approaches, and that the behaviour can be explained by a phosphorus interstitial mechanism. Annealing recipes for the implantation-induced technique are optimized, and the sample-to-sample reproducibility of the blueshift for this method was found to be quite good (standard deviations of ˜6 meV on blueshifts of ˜70 meV). The lateral selectivity and refractive index changes are characterized, and used in combination to create novel buried waveguide devices.

  13. Co3O4-x-Carbon@Fe2-yCoyO3 Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction.

    PubMed

    Xu, Wangwang; Xie, Weiwei; Wang, Ying

    2017-08-30

    Hollow heterostructured nanomaterials have received tremendous interest in new-generation electrocatalyst applications. However, the design and fabrication of such materials remain a significant challenge. In this work, we present Co 3 O 4-x -carbon@Fe 2-y Co y O 3 heterostructural hollow polyhedrons that have been fabricated by facile thermal treatment followed by solution-phase growth for application as efficient oxygen evolution reaction (OER) electrocatalysts. Starting from a single ZIF-67 hollow polyhedron, a novel complex structured composite material constructed from Co 3 O 4-x nanocrystallite-embedded carbon matrix embedded with Fe 2-y Co y O 3 nanowires was successfully prepared. The Co 3 O 4-x nanocrystallite with oxygen vacancies provides both heterogeneous nucleation sites and growth platform for Fe 2-y Co y O 3 nanowires. The resultant heterostructure combines the advantages of Fe 2-y Co y O 3 nanowires with the large surface area and surface defects of Co 3 O 4-x nanocrystallite, resulting in improved electrocatalytic activity and electrical conductivity. As a result, such novel heterostructured OER electrocatalysts exhibit much lower onset potential (1.52 V) and higher current density (70 mA/cm 2 at 1.7 V) than Co 3 O 4-x -carbon hollow polyhedrons (onset 1.55 V, 35 mA/cm 2 at 1.7 V) and pure Co 3 O 4 hollow polyhedrons (onset 1.62 V, 5 mA/cm 2 at 1.7 V). Furthermore, the design and synthesis of metal-organic framework (MOF)-derived nanomaterials in this work offer new opportunities for developing novel and efficient electrocatalysts in electrochemical devices.

  14. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Calculation of the yield of fault-free laser diodes from the characteristics of the (100)InP substrate material used in epitaxial double heterostructures

    NASA Astrophysics Data System (ADS)

    Baerwolff, A.; Enders, P.; Knauer, A.; Linke, D.; Zeimer, U.

    1988-11-01

    It is shown that the yield of fault-free laser diodes is related to the density and distribution of dislocations in the substrate. A method is described for visualization of etch pits and of their relationship to defects in the substrate.

  15. Defect observations of Ni/AlGaN/GaN Schottky contacts on Si substrates using scanning internal photoemission microscopy

    NASA Astrophysics Data System (ADS)

    Shiojima, Kenji; Konishi, Hiroaki; Imadate, Hiroyoshi; Yamaoka, Yuya; Matsumoto, Kou; Egawa, Takashi

    2018-04-01

    We have demonstrated the use of scanning internal photoemission microscopy (SIPM) to characterize crystal defects in an AlGaN/GaN heterostructure grown on Si substrates. SIPM enabled the visualization of unusually grown regions owing to cracking of the Si substrates. In these regions, photocurrent was large, which was consistent with leaky current-voltage characteristics. We also found smaller photoyield regions, which may originate from the Al-rich AlGaN regions on hillocks. We confirmed the usefulness of SIPM for investigating the inhomogeneity of crystal quality and electrical characteristics from macroscopic viewpoints.

  16. Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalskiy, V. A., E-mail: kovalva@iptm.ru; Vergeles, P. S.; Eremenko, V. G.

    2014-12-08

    An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at themore » buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.« less

  17. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  18. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.

    PubMed

    Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho

    2015-08-12

    Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

  19. Rashba effect and enriched spin-valley coupling in Ga X /M X2 (M = Mo, W; X = S, Se, Te) heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyun; Schwingenschlögl, Udo

    2018-04-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional Ga X /MX 2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between Ga X and MX 2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K' valleys (out-of-plane spin direction) makes Ga X /MX 2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.

  20. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

    PubMed Central

    Baiutti, Federico; Christiani, Georg

    2014-01-01

    Summary In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2− xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control. PMID:24995148

  1. Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects.

    PubMed

    Pala, M G; Baltazar, S; Martins, F; Hackens, B; Sellier, H; Ouisse, T; Bayot, V; Huant, S

    2009-07-01

    We study scanning gate microscopy (SGM) in open quantum rings obtained from buried semiconductor InGaAs/InAlAs heterostructures. By performing a theoretical analysis based on the Keldysh-Green function approach we interpret the radial fringes observed in experiments as the effect of randomly distributed charged defects. We associate SGM conductance images with the local density of states (LDOS) of the system. We show that such an association cannot be made with the current density distribution. By varying an external magnetic field we are able to reproduce recursive quasi-classical orbits in LDOS and conductance images, which bear the same periodicity as the Aharonov-Bohm effect.

  2. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  3. Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces.

    PubMed

    Corfdir, Pierre; Li, Hong; Marquardt, Oliver; Gao, Guanhui; Molas, Maciej R; Zettler, Johannes K; van Treeck, David; Flissikowski, Timur; Potemski, Marek; Draxl, Claudia; Trampert, Achim; Fernández-Garrido, Sergio; Grahn, Holger T; Brandt, Oliver

    2018-01-10

    In semiconductor quantum-wire heterostructures, interface roughness leads to exciton localization and to a radiative decay rate much smaller than that expected for structures with flat interfaces. Here, we uncover the electronic and optical properties of the one-dimensional extended defects that form at the intersection between stacking faults and inversion domain boundaries in GaN nanowires. We show that they act as crystal-phase quantum wires, a novel one-dimensional quantum system with atomically flat interfaces. These quantum wires efficiently capture excitons whose radiative decay gives rise to an optical doublet at 3.36 eV at 4.2 K. The binding energy of excitons confined in crystal-phase quantum wires is measured to be more than twice larger than that of the bulk. As a result of their unprecedented interface quality, these crystal-phase quantum wires constitute a model system for the study of one-dimensional excitons.

  4. III-V heterostructure tunnel field-effect transistor.

    PubMed

    Convertino, C; Zota, C B; Schmid, H; Ionescu, A M; Moselund, K E

    2018-07-04

    The tunnel field-effect transistor (TFET) is regarded as one of the most promising solid-state switches to overcome the power dissipation challenge in ultra-low power integrated circuits. TFETs take advantage of quantum mechanical tunneling hence exploit a different current control mechanism compared to standard MOSFETs. In this review, we describe state-of-the-art development of TFET both in terms of performances and of materials integration and we identify the main remaining technological challenges such as heterojunction defects and oxide/channel interface traps causing trap-assisted-tunneling (TAT). Mesa-structures, planar as well as vertical geometries are examined. Conductance slope analysis on InAs/GaSb nanowire tunnel diodes are reported, these two-terminal measurements can be relevant to investigate the tunneling behavior. A special focus is dedicated to III-V heterostructure TFET, as different groups have recently shown encouraging results achieving the predicted sub-thermionic low-voltage operation.

  5. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    PubMed

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paskiewicz, Deborah M.; Sichel-Tissot, Rebecca; Karapetrova, Evguenia

    The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO 3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10 7 , the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering,more » we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. Finally, the synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.« less

  7. III–V heterostructure tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Convertino, C.; Zota, C. B.; Schmid, H.; Ionescu, A. M.; Moselund, K. E.

    2018-07-01

    The tunnel field-effect transistor (TFET) is regarded as one of the most promising solid-state switches to overcome the power dissipation challenge in ultra-low power integrated circuits. TFETs take advantage of quantum mechanical tunneling hence exploit a different current control mechanism compared to standard MOSFETs. In this review, we describe state-of-the-art development of TFET both in terms of performances and of materials integration and we identify the main remaining technological challenges such as heterojunction defects and oxide/channel interface traps causing trap-assisted-tunneling (TAT). Mesa-structures, planar as well as vertical geometries are examined. Conductance slope analysis on InAs/GaSb nanowire tunnel diodes are reported, these two-terminal measurements can be relevant to investigate the tunneling behavior. A special focus is dedicated to III–V heterostructure TFET, as different groups have recently shown encouraging results achieving the predicted sub-thermionic low-voltage operation.

  8. Growth of heterostructures on InAs for high mobility device applications

    NASA Astrophysics Data System (ADS)

    Contreras-Guerrero, R.; Wang, S.; Edirisooriya, M.; Priyantha, W.; Rojas-Ramirez, J. S.; Bhuwalka, K.; Doornbos, G.; Holland, M.; Oxland, R.; Vellianitis, G.; Van Dal, M.; Duriez, B.; Passlack, M.; Diaz, C. H.; Droopad, R.

    2013-09-01

    The growth of heterostructures lattice matched to InAs(100) substrates for high mobility electronic devices has been investigated. The oxide removal process and homoepitaxial nucleation depends on the deposition parameters to avoid the formation of surface defects that can propagate through the structure during growth which can result in degraded device performance. The growth parameters for InAs homoepitaxy were found to be within an extremely narrow range when using As4 with a slight increase using As2. High structural quality lattice matched AlAsxSb1-x buffer layer was grown on InAs(100) substrates using a digital growth technique with the AlAs mole fraction adjusted by varying the incident As flux. Using the AlAsxSb1-x buffer layer, the transport properties of thin InAs channel layers were determined on conducting native substrates.

  9. Topological interface states in the natural heterostructure (PbSe)5(Bi2Se3 )6 with BiPb defects

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Bihlmayer, Gustav; Blügel, Stefan; Segawa, Kouji; Ando, Yoichi; Oguchi, Tamio

    2018-01-01

    We study theoretically the electronic band structure of (PbSe) 5(Bi2Se3 )6, which consists of an ordinary insulator PbSe and a topological insulator Bi2Se3 . The first-principles calculations show that this material has a gapped Dirac-cone energy dispersion inside the bulk, which originates from the topological states of Bi2Se3 layers encapsulated by PbSe layers. Furthermore, we calculate the band structures of (BixPb1 -xSe )5(Bi2Se3 )6 with BiPb antisite defects included in the PbSe layers. The result shows that a high density of BiPb defects can exist in real materials, consistent with the experimentally estimated x of more than 30%. The BiPb defects strongly modify the band alignment between Bi2Se3 and PbSe layers, while the topological interface states of Bi2Se3 are kept as a gapped Dirac-cone-like dispersion.

  10. Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Huihui; Gao, Feng; Dai, Mingjin; Jia, Dechang; Zhou, Yu; Hu, Pingan

    2017-03-01

    Two-dimensional (2D) layered materials, such as graphene, hexagonal boron nitride (h-BN), molybdenum disulfide (MoS{}2 ), have attracted tremendous interest due to their atom-thickness structures and excellent physical properties. h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface, being free of dangling bonds and surface charge traps, especially the large-band-gap insulativity. h-BN involved vertical heterostructures have been widely exploited during the past few years. Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance, and provide further possibilities for device engineering. Besides, a series of intriguing physical phenomena are observed in certain vertical heterostructures, such as superlattice potential induced replication of Dirac points, band gap tuning, Hofstadter butterfly states, gate-dependent pseudospin mixing. Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN, and review the novel properties as well as the potential applications of the heterostructures composed of h-BN. Project supported by the National Natural Science Foundation of China (Nos. 61390502, 21373068), the National Basic Research Program of China (No. 2013CB632900), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51521003), and the Self-Planned Task of State Key Laboratory of Robotics and System (No. SKLRS201607B).

  11. Tunable electronic structure in stained two dimensional van der Waals g-C2N/XSe2 (X = Mo, W) heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Z. D.; Wang, X. C.; Mi, W. B.

    2017-10-01

    The electronic structure of the strained g-C2N/XSe2 (X=Mo, W) van der Waals heterostructures are investigated by first-principles calculations. The g-C2N/MoSe2 heterostructure is an indirect band gap semiconductor at a strain from 0% to 8%, where its band gap is 0.66, 0.61, 0.73, 0.60 and 0.33 eV. At K point, the spin splitting is 186, 181, 39, 13 and 9 meV, respectively. For g-C2N/WSe2 heterostructures, the band gap is 0.32, 0.37, 0.42, 0.45 and 0.36 eV, and the conduction band minimum is shifted from Г-M region to K-Г region as the strain increases from 0% to 8%. Its spin splitting monotonically decreases as a strain raises to 8%, which is 445, 424, 261, 111 and 96 meV, respectively. Moreover, at a strain less than 4%, the conduction band mainly comes from g-C2N, but it comes from XSe2 (X=Mo, W) above 6%. Our results show that the g-C2N/XSe2 heterostructures have tunable electronic structures, which makes it a potential candidate for novel electronic devices.

  12. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingbo

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La 2NiO 4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La 0.6Sr 0.4) 0.95Co 0.2Fe 0.8O 3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove themore » enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO 2 & La 2-xNiO 4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.« less

  13. Evaluation of Surface Cleaning of Si(211) for Molecular-Beam Epitaxy Deposition of Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Jaime-Vasquez, M.; Jacobs, R. N.; Benson, J. D.; Stoltz, A. J.; Almeida, L. A.; Bubulac, L. O.; Chen, Y.; Brill, G.

    2010-07-01

    We report an assessment of the reproducibility of the HF cleaning process and As passivation prior to the nucleation of ZnTe on the Si(211) surface using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. Observations suggest full H coverage of the Si(211) surface with mostly monohydride and small amounts of dihydride states, and that F is uniformly distributed across the top layer as a physisorbed species. Variations in major contaminants are observed across the Si surface and at the CdTe-ZnTe/Si interface. Defects act as getters for impurities present on the Si surface, and some are buried under the CdTe/ZnTe heterostructure. Overall, the data show evidence of localized concentration of major impurities around defects, supporting the hypothesis of a physical model explaining the electrical activation of defects in long-wave infrared (LWIR) HgCdTe/CdTe/Si devices.

  14. Efficient Visible-Light-Driven Z-Scheme Overall Water Splitting Using a MgTa2O(6-x)N(y)/TaON Heterostructure Photocatalyst for H2 Evolution.

    PubMed

    Chen, Shanshan; Qi, Yu; Hisatomi, Takashi; Ding, Qian; Asai, Tomohiro; Li, Zheng; Ma, Su Su Khine; Zhang, Fuxiang; Domen, Kazunari; Li, Can

    2015-07-13

    An (oxy)nitride-based heterostructure for powdered Z-scheme overall water splitting is presented. Compared with the single MgTa2O(6-x)N(y) or TaON photocatalyst, a MgTa2O(6-x)N(y)/TaON heterostructure fabricated by a simple one-pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt-loaded MgTa2O(6-x)N(y)/TaON as a H2-evolving photocatalyst, a Z-scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8% at 420 nm was constructed (PtO(x)-WO3 and IO3(-)/I(-) pairs were used as an O2-evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt-TaON or Pt-MgTa2O(6-x)N)y) as a H2-evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z-scheme overall water splitting systems ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Role of confinements on the melting of Wigner molecules in quantum dots

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dyuti; Filinov, Alexei V.; Ghosal, Amit; Bonitz, Michael

    2016-03-01

    We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder. Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids". An intriguing signature of weakening liquidity with increasing temperature, T, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting". Our analyses carry serious implications for a variety of experiments on many-particle systems - semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.

  16. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.

    PubMed

    Mante, Pierre-Adrien; Huang, Yu-Ru; Yang, Szu-Chi; Liu, Tzu-Ming; Maznev, Alexei A; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2015-02-01

    Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy

    PubMed Central

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-01-01

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems. PMID:26563740

  18. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    PubMed

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  19. Directional interlayer spin-valley transfer in two-dimensional heterostructures

    DOE PAGES

    Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...

    2016-12-14

    Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less

  20. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering

    DOE PAGES

    Koirala, Nikesh; Han, Myung -Geun; Brahlek, Matthew; ...

    2015-11-19

    Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In 2Se 3/(Bi 0.5In 0.5) 2Se 3 heterostructure, we introduce a quantum generation of Bi 2Se 3 films with an order of magnitude enhanced mobilities than before. Furthermore, this scheme has led to the first observation of the quantum Hallmore » effect in Bi 2Se 3.« less

  1. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Maultzsch, Janina

    2018-04-01

    Based on ab initio theoretical calculations of the optical spectra of vertical heterostructures of MoSe2 (or MoS2) and WSe2 sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the A excitons of MoSe2 and WSe2 with a significant binding energy on the order of 250 meV for the first excitons in the series. At the same time, we predict from accurate many-body G0W0 calculations that crystallographically aligned MoSe2/WSe2 heterostructures exhibit an indirect fundamental band gap. Due to the type-II nature of the MoSe2/WSe2 heterostructure, the indirect transition and the exciton Rydberg series corresponding to a direct transition exhibit a distinct interlayer nature with spatial charge separation of the coupled electrons and holes. Our calculations confirm the recent experimental observation of a doublet nature of the long-lived states in photoluminescence spectra of Mo X2/W Y2 heterostructures, and we attribute these two contributions to momentum-direct interlayer excitons at the K point of the hexagonal Brillouin zone and to momentum-indirect excitons at the indirect fundamental band gap. Our calculations further suggest a noticeable effect of stacking order on the electronic band gaps and on the peak energies of the interlayer excitons and their oscillation strengths.

  2. Tuning Coupling Behavior of Stacked Heterostructures Based on MoS2, WS2, and WSe2

    PubMed Central

    Wang, Fang; Wang, Junyong; Guo, Shuang; Zhang, Jinzhong; Hu, Zhigao; Chu, Junhao

    2017-01-01

    The interlayer interaction of vertically stacked heterojunctions is very sensitive to the interlayer spacing, which will affect the coupling between the monolayers and allow band structure modulation. Here, with the aid of density functional theory (DFT) calculations, an interesting phenomenon is found that MoS2-WS2, MoS2-WSe2, and WS2-WSe2 heterostructures turn into direct-gap semiconductors from indirect-gap semiconductors with increasing the interlayer space. Moreover, the electronic structure changing process with interlayer spacing of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 is different from each other. With the help of variable-temperature spectral experiment, different electronic transition properties of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 have been demonstrated. The transition transformation from indirect to direct can be only observed in the MoS2-WS2 heterostructure, as the valence band maximum (VBM) at the Γ point in the MoS2-WSe2 and WS2-WSe2 heterostructure is less sensitive to the interlayer spacing than those from the MoS2-WS2 heterostructure. The present work highlights the significance of the temperature tuning in interlayer coupling and advance the research of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 based device applications. PMID:28303932

  3. Optical Studies of Semiconductor Heterostructures: Measurements of Tunneling Times, and Studies of Strained Superlattices.

    NASA Astrophysics Data System (ADS)

    Jackson, Michael Kevin

    1991-05-01

    This thesis describes experimental optical studies of semiconductor heterostructures. The topic is introduced in Chapter 1. In Chapter 2 we describe measurements of tunneling escape times for carriers photoexcited in the quantum well of an undoped GaAs/AlAs/GaAs/AlAs/GaAs double -barrier heterostructure. The first experimental measurements of the tunneling escape times for both electrons and heavy holes were made using the two-beam technique of photoluminescence excitation correlation spectroscopy (PECS). Heavy holes were observed to escape much more rapidly than expected from a simple one-band calculation of the heavy-hold tunneling escape time. This can be explained by considering a four -band model for holes. Calculations indicate that mixing of the quantum well heavy- and light-hole levels, due to dispersion in the plane of the quantum well, can lead to significantly faster heavy hole escape at the experimental carrier densities and temperatures. Chapter 3 describes a study of the effect of indirect (X-point) levels in the AlAs barriers on the tunneling escape of electrons in undoped double-barrier heterostructures. The X-point levels affect the escape of photoexcited electrons in devices where the energy of the electron state confined in the GaAs quantum well is nearly equal to, or higher than, that of the X-point levels in the AlAs barriers. In Chapter 4, we present time-resolved photoluminescence and photocurrent studies of electrically biased double -barrier heterostructures. Studies of the photoluminescence indicate that transport of photoexcited carriers from the electrodes into the quantum well occurs. The PECS technique has been extended to a study of photocurrents in these devices; results indicate that this technique may be useful for the study of devices that cannot be studied with photoluminescence. Chapter 5 describes a study of the accomodation of lattice mismatch in CdTe/ZnTe strained layer superlattices. Using resonance Raman scattering, the energies of the ZnTe-like phonons were determined in a series of superlattices. The ZnTe-like phonon energies decrease with increasing average CdTe content, indicative of the increasing strain of the ZnTe layers, and in agreement with calculations assuming a free-standing superlattice.

  4. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Song, Qichen; Zhao, Weiwei

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  5. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE PAGES

    Li, Mingda; Song, Qichen; Zhao, Weiwei; ...

    2017-11-01

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  6. Hydrodynamic pumping of a quantum Fermi liquid in a semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Heremans, J. J.; Kantha, D.; Chen, H.; Govorov, A. O.

    2003-03-01

    We present experimental results for a pumping mechanism observed in mesoscopic structures patterned on two-dimensional electron systems in GaAs/AlGaAs heterostructures. The experiments are performed at low temperatures, in the ballistic regime. The effect is observed as a voltage or current signal corresponding to carrier extraction from sub-micron sized apertures, when these apertures are swept by a beam of ballistic electrons. The carrier extraction, phenomenologically reminiscent of the Bernoulli pumping effect in classical fluids, has been observed in various geometries. We ascertained linearity between measured voltage and injected current in all experiments, thereby excluding rectification effects. The linear response, however, points to a fundamental difference from the Bernoulli effect in classical liquids, where the response is nonlinear and quadratic in terms of the velocity. The temperature dependence of the effect will also be presented. We thank M. Shayegan (Princeton University) for the heterostructure growth, and acknowledge support from NSF DMR-0094055.

  7. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  8. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less

  9. Light-matter interaction in transition metal dichalcogenides and their heterostructures

    NASA Astrophysics Data System (ADS)

    Wurstbauer, Ursula; Miller, Bastian; Parzinger, Eric; Holleitner, Alexander W.

    2017-05-01

    The investigation of two-dimensional (2D) van der Waals materials is a vibrant, fast-moving and still growing interdisciplinary area of research. These materials are truly 2D crystals with strong covalent in-plane bonds and weak van der Waals interaction between the layers, and have a variety of different electronic, optical and mechanical properties. Transition metal dichalcogenides are a very prominent class of 2D materials, particularly the semiconducting subclass. Their properties include bandgaps in the near-infrared to the visible range, decent charge carrier mobility together with high (photo-) catalytic and mechanical stability, and exotic many-body phenomena. These characteristics make the materials highly attractive for both fundamental research as well as innovative device applications. Furthermore, the materials exhibit a strong light-matter interaction, providing a high sunlight absorbance of up to 15% in the monolayer limit, strong scattering cross section in Raman experiments, and access to excitonic phenomena in van der Waals heterostructures. This review focuses on the light-matter interaction in MoS2, WS2, MoSe2 and WSe2, which is dictated by the materials’ complex dielectric functions, and on the multiplicity of studying the first-order phonon modes by Raman spectroscopy to gain access to several material properties such as doping, strain, defects and temperature. 2D materials provide an interesting platform for stacking them into van der Waals heterostructures without the limitation of lattice mismatch, resulting in novel devices for applications but also to enable the study of exotic many-body interaction phenomena such as interlayer excitons. Future perspectives of semiconducting transition metal dichalcogenides and their heterostructures for applications in optoelectronic devices will be examined, and routes to study emergent fundamental problems and many-body quantum phenomena under excitations with photons will be discussed.

  10. Ion channeling study of defects in compound crystals using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.

    2014-08-01

    Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.

  11. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    PubMed

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  12. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe{sub 2}/MoS{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane

    2016-05-09

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give themore » monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.« less

  14. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2016-04-01

    The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  15. Single-Crystalline SrRuO 3 Nanomembranes: A Platform for Flexible Oxide Electronics

    DOE PAGES

    Paskiewicz, Deborah M.; Sichel-Tissot, Rebecca; Karapetrova, Evguenia; ...

    2016-12-11

    The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO 3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10 7 , the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering,more » we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. Finally, the synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.« less

  16. Development of a multi-space constrained density functional theory approach and its application to graphene-based vertical transistors

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    We have been developing a multi-space-constrained density functional theory approach for the first-principles calculations of nano-scale junctions subjected to non-equilibrium conditions and charge transport through them. In this presentation, we apply the method to vertically-stacked graphene/hexagonal boron nitride (hBN)/graphene Van der Waals heterostructures in the context of tunneling transistor applications. Bias-dependent changes in energy level alignment, wavefunction hybridization, and current are extracted. In particular, we compare quantum transport properties of single-layer (graphene) and infinite (graphite) electrode limits on the same ground, which is not possible within the traditional non-equilibrium Green function formalism. The effects of point defects within hBN on the current-voltage characteristics will be also discussed. Global Frontier Program (2013M3A6B1078881), Nano-Material Technology Development Programs (2016M3A7B4024133, 2016M3A7B4909944, and 2012M3A7B4049888), and Pioneer Program (2016M3C1A3906149) of the National Research Foundation.

  17. Technique for producing highly planar Si/SiO0.64Ge0.36/Si metal-oxide-semiconductor field effect transistor channels

    NASA Astrophysics Data System (ADS)

    Grasby, T. J.; Parry, C. P.; Phillips, P. J.; McGregor, B. M.; Morris, , R. J. H.; Braithwaite, G.; Whall, T. E.; Parker, E. H. C.; Hammond, R.; Knights, A. P.; Coleman, P. G.

    1999-03-01

    Si/Si0.64Ge0.36/Si heterostructures have been grown at low temperature (450 °C) to avoid the strain-induced roughening observed for growth temperatures of 550 °C and above. The electrical properties of these structures are poor, and thought to be associated with grown-in point defects as indicated in positron annihilation spectroscopy. However, after an in situ annealing procedure (800 °C for 30 min) the electrical properties dramatically improve, giving an optimum 4 K mobility of 2500 cm2 V-1 s-1 for a sheet density of 6.2×1011 cm-2. The low temperature growth yields highly planar interfaces, which are maintained after anneal as evidenced from transmission electron microscopy. This and secondary ion mass spectroscopy measurements demonstrate that the metastably strained alloy layer can endure the in situ anneal procedure necessary for enhanced electrical properties. Further studies have shown that the layers can also withstand a 120 min thermal oxidation at 800 °C, commensurate with metal-oxide-semiconductor device fabrication.

  18. Characterization of GaSb/InAs type II infrared detectors at very long wavelengths: carrier scattering at defect clusters

    NASA Astrophysics Data System (ADS)

    Kitchin, M. R.; Jaros, M.

    2003-06-01

    We report a systematic study into carrier scattering by isovalent defects within GaSb/InAs superlattices. The heterostructure system which we investigate has attracted recent interest as the active region of a photodetector for very long wavelength infrared (VLWIR) (⩾12 μm) radiation. To achieve our objective, we employed models of the electronic band structure and scattering cross-section. We considered isolated, substitutional defects at each atom site throughout the unit cell in turn and found that the scattering magnitude generally follows the carrier envelope function, being greatest where the overlap of charge with the defect is highest. We scrutinized the contribution of lattice relaxation around defects to the overall scattering, by comparing calculations where this effect was, in turn, included and excluded. We identified some anomalous contributions of relaxation to both qualitative and quantitative features of the cross-section. Physical mechanisms to explain these effects must be arrived at in order to attain satisfactory characterization of these materials, highlighting the need for both microscopic models and further research. Additional modelling of islands of such defects indicated that the cross-section is proportional to the square of the number of constituent atoms, for both carrier types (holes and electrons) and each defect type. This article demonstrates important links between key growth issues and the dynamical properties of these novel semiconductor devices.

  19. Parameters Free Computational Characterization of Defects in Transition Metal Oxides with Diffusion Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando

    Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  20. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling

    NASA Astrophysics Data System (ADS)

    Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong

    2018-04-01

    We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.

  1. Experimental evidences of quantum confined 2D indirect excitons in single barrier GaAs/AlAs/GaAs heterostructure using photocapacitance at room temperature

    NASA Astrophysics Data System (ADS)

    Bhunia, Amit; Singh, Mohit Kumar; Galvão Gobato, Y.; Henini, Mohamed; Datta, Shouvik

    2018-01-01

    We investigated excitonic absorptions in a GaAs/AlAs/GaAs single barrier heterostructure using both photocapacitance and photocurrent spectroscopies at room temperature. Photocapacitance spectra show well defined resonance peaks of indirect excitons formed around the Γ-AlAs barrier. Unlike DC-photocurrent spectra, frequency dependent photocapacitance spectra interestingly red shift, sharpen up, and then decrease with increasing tunneling at higher biases. Such dissimilarities clearly point out that different exciton dynamics govern these two spectral measurements. We also argue why such quantum confined dipoles of indirect excitons can have thermodynamically finite probabilities to survive even at room temperature. Finally, our observations demonstrate that the photocapacitance technique, which was seldom used to detect excitons in the past, is useful for selective detection and experimental tuning of relatively small numbers (˜1011/cm2) of photo-generated indirect excitons having large effective dipole moments in this type of quasi-two dimensional heterostructures.

  2. Carrier Decay and Diffusion Dynamics in Single-Crystalline CdTe as seen via Microphotoluminescence

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Alberi, Kirstin; Zhang, Yong-Hang

    2015-03-01

    The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetimes in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4x10-5 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices. We acknowledge the financial support of the Department of Energy Office of Science under Grant No. DE-AC36-08GO28308.

  3. Design and fabrication of 6.1-.ANG. family semiconductor devices using semi-insulating A1Sb substrate

    DOEpatents

    Sherohman, John W [Livermore, CA; Coombs, III, Arthur W.; Yee, Jick Hong [Livermore, CA; Wu, Kuang Jen J [Cupertino, CA

    2007-05-29

    For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.

  4. Chemistry and Defects in Semiconductor Heterostructures. Materials Research Society Symposium Proceedings. Volume 148

    DTIC Science & Technology

    1990-05-01

    Pennington:The Electrochemical Society), p. 54 1. 12. A. Hiraki , in Proceedings of the Symosium on Thin Film Interfaces and Reactions, J.EE. Baglin...Biefeld, l.J. Fritz and T.E. Zipperian, Nucl. Inst. Meth. B7/8 (1985)453. 2. M. Sekoguchi, T. Taguchi and A. Hiraki , Nucl. Instr. and Meth. B37/38...1989)728 3. Y. Kawakami, T. Taguchi and A. Hiraki , J. Cryst. Growth 89 (1988)331. 4. D.F. Welch. G.W. Wicks and L. F. Eastman, Appl. Phys. Lett. 46

  5. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    PubMed

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  6. Defect States in InP/InGaAs/InP Heterostructures by Current-Voltage Characteristics and Deep Level Transient Spectroscopy.

    PubMed

    Vu, Thi Kim Oanh; Lee, Kyoung Su; Lee, Sang Jun; Kim, Eun Kyu

    2018-09-01

    We studied defect states in In0.53Ga0.47As/InP heterojunctions with interface control by group V atoms during metalorganic chemical vapor (MOCVD) deposition. From deep level transient spectroscopy (DLTS) measurements, two defects with activation energies of 0.28 eV (E1) and 0.15 eV (E2) below the conduction band edge, were observed. The defect density of E1 for In0.53Ga0.47As/InP heterojunctions with an addition of As and P atoms was about 1.5 times higher than that of the heterojunction added P atom only. From the temperature dependence of current- voltage characteristics, the thermal activation energies of In0.53Ga0.47As/InP of heterojunctions were estimated to be 0.27 and 0.25 eV, respectively. It appeared that the reverse light current for In0.53Ga0.47As/InP heterojunction added P atom increased only by illumination of a 940 nm-LED light source. These results imply that only the P addition at the interface can enhance the quality of InGaAs/InP heterojunction.

  7. Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures

    NASA Astrophysics Data System (ADS)

    Shojaei, B.; McFadden, A. P.; Pendharkar, M.; Lee, J. S.; Flatté, M. E.; Palmstrøm, C. J.

    2018-06-01

    In an ideal InAs/GaSb bilayer of appropriate dimension, in-plane electron and hole bands overlap and hybridize, and a topologically nontrivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb (001) bilayers was studied by observing the temperature and magnetic-field dependence of the resistance of a dual-gated heterostructure gate-tuned through the inverted to normal gap regimes. Conduction with the electronic structure tuned to the inverted (predicted topological) regime and the Fermi level in the hybridization gap was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated that the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction with the electronic structure tuned to the predicted topological insulator (TI) regime and the Fermi level in the hybridization gap was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system, and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved.

  8. Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials.

    PubMed

    Joiner, Corey A; Campbell, Philip M; Tarasov, Alexey A; Beatty, Brian R; Perini, Chris J; Tsai, Meng-Yen; Ready, William J; Vogel, Eric M

    2016-04-06

    Tunneling devices based on vertical heterostructures of graphene and other 2D materials can overcome the low on-off ratios typically observed in planar graphene field-effect transistors. This study addresses the impact of processing conditions on two-dimensional materials in a fully integrated heterostructure device fabrication process. In this paper, graphene-molybdenum disulfide-graphene tunneling heterostructures were fabricated using only large-area synthesized materials, unlike previous studies that used small exfoliated flakes. The MoS2 tunneling barrier is either synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or synthesized directly on CVD graphene. The presence of graphene was shown to have no impact on the quality of the grown MoS2. The thickness uniformity of MoS2 grown on graphene and SiO2 was found to be 1.8 ± 0.22 nm. XPS and Raman spectroscopy are used to show how the MoS2 synthesis process introduces defects into the graphene structure by incorporating sulfur into the graphene. The incorporation of sulfur was shown to be greatly reduced in the absence of molybdenum suggesting molybdenum acts as a catalyst for sulfur incorporation. Tunneling simulations based on the Bardeen transfer Hamiltonian were performed and compared to the experimental tunneling results. The simulations show the use of MoS2 as a tunneling barrier suppresses contributions to the tunneling current from the conduction band. This is a result of the observed reduction of electron conduction within the graphene sheets.

  9. TiO2 nanocrystals decorated Z-schemed core-shell CdS-CdO nanorod arrays as high efficiency anodes for photoelectrochemical hydrogen generation.

    PubMed

    Li, Chia-Hsun; Hsu, Chan-Wei; Lu, Shih-Yuan

    2018-07-01

    TiO 2 nanocrystals decorated core-shell CdS-CdO nanorod arrays, TiO 2 @CdO/CdS NR, were fabricated as high efficiency anodes for photoelctrochemical hydrogen generation. The novel sandwich heterostructure was constructed from first growth of CdS nanorod arrays on a fluorine doped tin oxide (FTO) substrate with a hydrothermal process, followed by in situ generation of CdO thin films of single digit nanometers from the CdS nanorod surfaces through thermal oxidation, and final decoration of TiO 2 nanocrystals of 10-20 nm via a successive ionic layer absorption and reaction process. The core-shell CdS-CdO heterostructure possesses a Z-scheme band structure to enhance interfacial charge transfer, facilitating effective charge separation to suppress electron-hole recombination within CdS for much improved current density generation. The final decoration of TiO 2 nanocrystals passivates surface defects and trap states of CdO, further suppressing surface charge recombination for even higher photovoltaic conversion efficiencies. The photoelectrochemical performances of the plain CdS nanorod array were significantly improved with the formation of the sandwich heterostructure, achieving a photo current density of 3.2 mA/cm 2 at 1.23 V (vs. RHE), a 141% improvement over the plain CdS nanorod array and a 32% improvement over the CdO/CdS nanorod array. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Sublattice reversal in GaAs/Ge/GaAs (113)B heterostructures and its application to THz emitting devices based on a coupled multilayer cavity

    NASA Astrophysics Data System (ADS)

    Lu, Xiangmeng; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro

    2018-04-01

    We fabricated a coupled multilayer cavity with a GaAs/Ge/GaAs sublattice reversal structure for terahertz emission application. Sublattice reversal in GaAs/Ge/GaAs was confirmed by comparing the anisotropic etching profile of an epitaxial sample with those of reference (113)A and (113)B GaAs substrates. The interfaces of GaAs/Ge/GaAs were evaluated at the atomic level by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX) mapping. Defect-free GaAs/Ge/GaAs heterostructures were observed in STEM images and the sublattice lattice was directly seen through atomic arrangements in EDX mapping. A GaAs/AlAs coupled multilayer cavity with a sublattice reversal structure was grown on the (113)B GaAs substrate after the confirmation of sublattice reversal. Smooth GaAs/AlAs interfaces were formed over the entire region of the coupled multilayer cavity structure both below and above the Ge layer. Two cavity modes with a frequency difference of 2.9 THz were clearly observed.

  11. Beyond spatial correlation effect in micro-Raman light scattering: An example of zinc-blende GaN/GaAs hetero-interface

    NASA Astrophysics Data System (ADS)

    Ning, J. Q.; Zheng, C. C.; Zheng, L. X.; Xu, S. J.

    2015-08-01

    Spatially resolved Raman light scattering experiments were performed on a zinc-blende GaN/GaAs heterostructure with confocal micro-Raman scattering technique under the backscattering geometric configuration. By varying the illumination spot locations across the heterostructure interface, we found that the Raman light scattering spectral features change remarkably. The interface effect on the GaAs substrate manifested as a much broader lineshape of the transverse optical (TO) phonon mode. Two kinds of broadening mechanisms, namely, spatial correlation induced wave-vector relaxation effect and lattice-mismatch strain + compositional intermixing effect, have been identified. The former leads to the broadening of the TO mode at the low-energy side, whereas the latter accounts for the broadening at the high-energy side. The diffuse light scattering from the highly defective nucleation layer of GaN was found to produce a broad scattering background of the GaN TO mode. The methodology and conclusions of the present work could be applicable to Raman spectroscopic studies on other material interfaces.

  12. Theoretical performance of mid wavelength HgCdTe(1 0 0) heterostructure infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.

    2017-11-01

    The paper presents a theoretical study of the p+BpnN+ design based on HgCdTe(1 0 0) layers, which significantly improves the performance of detectors optimized for the mid-wave infrared spectral range. p+BpnN+ design combines the concept of a high impedance photoconductor with double layer hetero-junction device. Zero valence band offset approximation throughout the p+Bpn heterostructure allows flow of only minority holes generated in the absorber, what in a combination with n-N+ exclusion junction provides the Auger suppression. Modeling shows that by applying a low doping active layer, it is possible to achieve an order of magnitude lower dark current densities than those determined by ;Rule 07;. A key to its success is a reduction of Shockley-Read-Hall centers associated with native defects, residual impurities and misfit dislocations. Reduction of metal site vacancies below 1012 cm-3 and dislocation density to 105 cm-2 allow to achieve a background limited performance at 250 K. If the background radiation can be reduced, operation with a three- or four-stage thermo-electric-cooler may be possible.

  13. Size-Independent Exciton Localization Efficiency in Colloidal CdSe/CdS Core/Crown Nanosheet Type-I Heterostructures.

    PubMed

    Li, Qiuyang; Wu, Kaifeng; Chen, Jinquan; Chen, Zheyuan; McBride, James R; Lian, Tianquan

    2016-03-22

    CdSe/CdS core/crown nanoplatelet type I heterostructures are a class of two-dimensional materials with atomically precise thickness and many potential optoelectronic applications. It remains unclear how the precise thickness and lack of energy disorder affect the properties of exciton transport in these materials. By steady-state photoluminescence excitation spectroscopy and ultrafast transient absorption spectroscopy, we show that in five CdSe/CdS core/crown structures with the same core and increasing crown size (with thickness of ∼1.8 nm, width of ∼11 nm, and length from 20 to 40 nm), the crown-to-core exciton localization efficiency is independent of crown size and increases with photon energy above the band edge (from 70% at 400 nm to ∼100% at 370 nm), while the localization time increases with the crown size. These observations can be understood by a model that accounts for the competition of in-plane exciton diffusion and selective hole trapping at the core/crown interface. Our findings suggest that the exciton localization efficiency can be further improved by reducing interfacial defects.

  14. Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO 3/NdGaO 3 heterostructures

    DOE PAGES

    Dong, Yongqi; Xu, Haoran; Luo, Zhenlin; ...

    2017-05-16

    The effect of gate voltage polarity on the behavior of NdNiO 3 epitaxial thin films during ionic liquid gating is studied using in situ synchrotron X-ray techniques. We show that while negative biases have no discernible effect on the structure or composition of the films, large positive gate voltages result in the injection of a large concentration of oxygen vacancies (similar to 3%) and pronounced lattice expansion (0.17%) in addition to a 1000-fold increase in sheet resistance at room temperature. Despite the creation of large defect densities, the heterostructures exhibit a largely reversible switching behavior when sufficient time is providedmore » for the vacancies to migrate in and out of the thin film surface. The results confirm that electrostatic gating takes place at negative gate voltages for p-type complex oxides while positive voltages favor the electrochemical reduction of Ni 3+. Switching between positive and negative gate voltages therefore involves a combination of electronic and ionic doping processes that may be utilized in future electrochemical transistors.« less

  15. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure.

    PubMed

    Wang, Fang; Cheng, Yong Zhi; Wang, Xian; Zhang, Yi Nan; Nie, Yan; Gong, Rong Zhou

    2018-06-27

    In this paper, we present a high-efficiency narrow band filter (NBF) based on quasi-one-dimensional photonic crystal (PC) with a mirror symmetric heterostructure. Similarly to the Fabry-Perot-like resonance cavity, the alternately-arranged dielectric layers on both sides act as the high reflectance and the junction layers used as the defect mode of the quasi-one-dimensional PC, which can be designed as a NBF. The critical conditions for the narrow pass band with high transmittance are demonstrated and analyzed by simulation and experiment. The simulation results indicate that the transmission peak of the quasi-one-dimensional PC-based NBF is up to 95.99% at the telecommunication wavelength of 1550 nm, which agrees well with the experiment. Furthermore, the influences of the periodicity and thickness of dielectric layers on the transmission properties of the PC-based NBF also have been studied numerically. Due to its favorable properties of PC-based NBF, it is can be found to have many potential applications, such as detection, sensing, and communication.

  16. Review of - SiC wide-bandgap heterostructure properties as an alternate semiconductor material

    NASA Astrophysics Data System (ADS)

    Rajput Priti, J.; Patankar, Udayan S.; Koel, Ants; Nitnaware, V. N.

    2018-05-01

    Silicon substance (is also known as Quartz) is an abundant in nature and the electrical properties it exhibits, plays a vital role in developing its usage in the field of semiconductor. More than decades we can say that Silicon has shown desirable signs but at the later parts it has shown some research potential for development of alternative material as semiconductor devices. This need has come to light as we started scaling down in size of the Silicon material and up in speed. This semiconductor material started exhibiting several fundamental physical limits that include the minimum gate oxide thickness and the maximum saturation velocity of carriers which determines the operation frequency. Though the alternative semiconductors provide some answers (such as III-V's for high speed devices) for a path to skirt these problems, there also may be some ways to extend the life of silicon itself. Two paths are used as for alternative semiconductors i.e alternative gate dielectrics and silicon-based heterostructures. The SiC material has some strength properties under different conditions and find out the defects available in the material.

  17. Intersubband spectroscopy of ZnO/ZnMgO quantum wells grown on m-plane ZnO substrates for quantum cascade device applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quach, Patrick; Jollivet, Arnaud; Isac, Nathalie; Bousseksou, Adel; Ariel, Frédéric; Tchernycheva, Maria; Julien, François H.; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hierro, Adrián.; Le Biavan, Nolwenn; Hugues, Maxime; Chauveau, Jean-Michel

    2017-03-01

    Quantum cascade (QC) lasers opens new prospects for powerful sources operating at THz frequencies. Up to now the best THz QC lasers are based on intersubband emission in GaAs/AlGaAs quantum well (QW) heterostructures. The maximum operating temperature is 200 K, which is too low for wide-spread applications. This is due to the rather low LO-phonon energy (36 meV) of GaAs-based materials. Indeed, thermal activation allows non-radiative path through electron-phonon interaction which destroys the population inversion. Wide band gap materials such as ZnO have been predicted to provide much higher operating temperatures because of the high value of their LO-phonon energy. However, despite some observations of intersubband absorption in c-plane ZnO/ZnMgO quantum wells, little is known on the fundamental parameters such as the conduction band offset in such heterostructures. In addition the internal field inherent to c-plane grown heterostuctures is an handicap for the design of QC lasers and detectors. In this talk, we will review a systematic investigation of ZnO/ZnMgO QW heterostructures with various Mg content and QW thicknesses grown by plasma molecular beam epitaxy on low-defect m-plane ZnO substrates. We will show that most samples exhibit TM-polarized intersubband absorption at room temperature linked either to bound-to-quasi bound inter-miniband absorption or to bound-to bound intersubband absorption depending on the Mg content of the barrier material. This systematic study allows for the first time to estimate the conduction band offset of ZnO/ZnMgO heterostructures, opening prospects for the design of QC devices operating at THz frequencies. This was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement #665107.

  18. Fabrication of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) Heterostructures and Study of Current-Voltage, Capacitance-Voltage and Room-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.

    2018-01-01

    Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.

  19. Chemically Tunable, All-Inorganic-Based White-Light Emitting 0D-1D Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Shiyu; Zhou, Yuchen; Zou, Shihui

    In this study, we initially created one-dimensional (1D) Mn2+-doped ZnS (ZnS: Mn) nanowires (NWs) with a unique optical signature. Specifically, these nanostructures coupled (i) ZnS defect-related self-activated emission spanning from wavelengths of 400 nm to 500 nm with (ii) Mn2+ dopant-induced emission centered at ~580 nm. These doped ZnS nanostructures were initially fabricated for the first time via a template-based co-precipitation approach followed by a post-synthesis annealing process. We subsequently formed novel 1D - zero-dimensional (0D) heterostructures incorporating ZnS: Mn NWs and AET (2-amino-ethanethiol) - CdSe quantum dots (QDs) by assembling annealed ZnS: Mn NWs with AET- capped CdSe QDsmore » as building blocks via a simple technique, involving physical sonication and stirring. Optical analyses of our heterostructures were consistent with charge (hole) and energy transfer-induced quenching of ZnS self-activated emission coupled with hole transfer-related quenching of Mn2+ emission by the QDs. The CdSe QD emission itself was impacted by competing charge (electron) and energy transfer processes occurring between the underlying ZnS host and the immobilized CdSe QDs. Chromaticity analysis revealed the significance of controlling both QD coverage density and Mn2+ dopant ratios in predictably influencing the observed color of our all-inorganic heterostructures. For example, white-light emitting behavior was especially prominent in composites, simultaneously characterized by (i) a 2.22% Mn2+ doping level and (ii) a molar compositional ratio of [ZnS: Mn2+]: [AET-capped CdSe QDs]) of 1: 1.5. Moreover, using these independent chemical ‘knobs’, we have been able to reliably tune for a significant shift within our composites from ‘cold-white’ (9604 K) to ‘warm-white’ (4383 K) light emission.« less

  20. Chemically Tunable, All-Inorganic-Based White-Light Emitting 0D-1D Heterostructures

    DOE PAGES

    Yue, Shiyu; Zhou, Yuchen; Zou, Shihui; ...

    2017-08-21

    In this study, we initially created one-dimensional (1D) Mn2+-doped ZnS (ZnS: Mn) nanowires (NWs) with a unique optical signature. Specifically, these nanostructures coupled (i) ZnS defect-related self-activated emission spanning from wavelengths of 400 nm to 500 nm with (ii) Mn2+ dopant-induced emission centered at ~580 nm. These doped ZnS nanostructures were initially fabricated for the first time via a template-based co-precipitation approach followed by a post-synthesis annealing process. We subsequently formed novel 1D - zero-dimensional (0D) heterostructures incorporating ZnS: Mn NWs and AET (2-amino-ethanethiol) - CdSe quantum dots (QDs) by assembling annealed ZnS: Mn NWs with AET- capped CdSe QDsmore » as building blocks via a simple technique, involving physical sonication and stirring. Optical analyses of our heterostructures were consistent with charge (hole) and energy transfer-induced quenching of ZnS self-activated emission coupled with hole transfer-related quenching of Mn2+ emission by the QDs. The CdSe QD emission itself was impacted by competing charge (electron) and energy transfer processes occurring between the underlying ZnS host and the immobilized CdSe QDs. Chromaticity analysis revealed the significance of controlling both QD coverage density and Mn2+ dopant ratios in predictably influencing the observed color of our all-inorganic heterostructures. For example, white-light emitting behavior was especially prominent in composites, simultaneously characterized by (i) a 2.22% Mn2+ doping level and (ii) a molar compositional ratio of [ZnS: Mn2+]: [AET-capped CdSe QDs]) of 1: 1.5. Moreover, using these independent chemical ‘knobs’, we have been able to reliably tune for a significant shift within our composites from ‘cold-white’ (9604 K) to ‘warm-white’ (4383 K) light emission.« less

  1. Correlation of magnetoelectric coupling in multiferroic BaTiO{sub 3}-BiFeO{sub 3} superlattices with oxygen vacancies and antiphase octahedral rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, Michael, E-mail: mlorenz@physik.uni-leipzig.de; Schwinkendorf, Peter; Grundmann, Marius

    2015-01-05

    Multiferroic (BaTiO{sub 3}-BiFeO{sub 3}) × 15 multilayer heterostructures show high magnetoelectric (ME) coefficients α{sub ME} up to 24 V/cm·Oe at 300 K. This value is much higher than that of a single-phase BiFeO{sub 3} reference film (α{sub ME} = 4.2 V/cm·Oe). We found clear correlation of ME coefficients with increasing oxygen partial pressure during growth. ME coupling is highest for lower density of oxygen vacancy-related defects. Detailed scanning transmission electron microscopy and selected area electron diffraction microstructural investigations at 300 K revealed antiphase rotations of the oxygen octahedra in the BaTiO{sub 3} single layers, which are an additional correlated defect structure of the multilayers.

  2. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  3. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  4. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  5. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE PAGES

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  6. Spatially-resolved studies on the role of defects and boundaries in electronic behavior of 2D materials

    NASA Astrophysics Data System (ADS)

    Hus, Saban M.; Li, An-Ping

    2017-08-01

    Two-dimensional (2D) materials are intrinsically heterogeneous. Both localized defects, such as vacancies and dopants, and mesoscopic boundaries, such as surfaces and interfaces, give rise to compositional or structural heterogeneities. The presence of defects and boundaries can break lattice symmetry, modify the energy landscape, and create quantum confinement, leading to fascinating electronic properties different from the ;ideal; 2D sheets. This review summarizes recent progress in understanding the roles of defects and boundaries in electronic, magnetic, thermoelectric, and transport properties of 2D layered materials. The focus is on the understanding of correlation of atomic-scale structural information with electronic functions by interrogating heterogeneities individually. The materials concerned are graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (hBN), and topological insulators (TIs). The experimental investigations benefit from new methodologies and techniques in scanning tunneling microscopy (STM), including spin-polarized STM, scanning tunneling potentiometry (STP), scanning tunneling thermopower microscopy, and multi-probe STM. The experimental effort is complemented by the computational and theoretical approaches, capable of discriminating between closely competing states and achieving the length scales necessary to bridge across features such as local defects and complex heterostructures. The goal is to provide a general view of current understanding and challenges in studying the heterogeneities in 2D materials and to evaluate the potential of controlling and exploiting these heterogeneities for novel functionalities and electron devices.

  7. Capacitive coupling in hybrid graphene/GaAs nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonet, Pauline, E-mail: psimonet@phys.ethz.ch; Rössler, Clemens; Krähenmann, Tobias

    2015-07-13

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure canmore » detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials.« less

  8. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity

    PubMed Central

    2012-01-01

    Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their ‘condensation’ fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films. Heteroepitaxial Si p–i–n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed. By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk germanium (not organized in an array of quantum dots). The excess conductivity is not observed in the structures with the Ge coverage less than 8 Å. When a Ge/Si(001) sample is cooled down the conductivity of the heterostructure decreases. PMID:22824144

  9. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V; Storozhevykh, Mikhail S; Chapnin, Valery A; Chizh, Kirill V; Uvarov, Oleg V; Kalinushkin, Victor P; Zhukova, Elena S; Prokhorov, Anatoly S; Spektor, Igor E; Gorshunov, Boris P

    2012-07-23

    : Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films.Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed.By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk germanium (not organized in an array of quantum dots). The excess conductivity is not observed in the structures with the Ge coverage less than 8 Å. When a Ge/Si(001) sample is cooled down the conductivity of the heterostructure decreases.

  10. Surface-Charge-Mediated Formation of H-TiO2 @Ni(OH)2 Heterostructures for High-Performance Supercapacitors.

    PubMed

    Ke, Qingqing; Guan, Cao; Zhang, Xiao; Zheng, Minrui; Zhang, Yong-Wei; Cai, Yongqing; Zhang, Hua; Wang, John

    2017-02-01

    An electrochemically favorable Ni(OH) 2 with porously hierarchical structure and ultrathin nanosheets in a core-shell structure H-TiO 2 @Ni(OH) 2 is achieved through modulating the surface chemical activity of TiO 2 by hydrogenation, which creates a defect-rich surface of TiO 2 , thereby facilitating the subsequent nucleation and growth of Ni(OH) 2 . These configuration-tailored H-TiO 2 @Ni(OH) 2 core-shell nanowires exhibit a superior electrochemical performance and good flexibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Erbium Doped Quantum Dot and Si:O and Plasmon Resonance Enabled Quantum Dot Nanoscale Lasers

    DTIC Science & Technology

    2009-08-31

    electroluminescence has to be coupled with a high-Q cavity for lasing. Alq3 PEDOT:PSS ITO — • MEHPPV +PbSe QDs . • •A iz^————— Gold (Au...PEDOT:PSS on the ITO anode and Alq3 /Ca/Al cathode. The inset is a SEM image of the L3 defect photonic crystal microcavity in silicon. Outer air holes at...consisting of tris(8-hydroxyquinoline)aluminum ( Alq3 ), calcium, and aluminum. The device heterostructure is schematically shown in Fig. 5(a). The ITO

  12. Study on the intrinsic defects in tin oxide with first-principles method

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  13. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas

    2013-07-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation-dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested.

  14. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  15. On-stack two-dimensional conversion of MoS2 into MoO3

    NASA Astrophysics Data System (ADS)

    Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin

    2017-03-01

    Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.

  16. Core-shell solar cell fabrication using heterostructure of ZnO-nanowires arrays decorated with sputtered CdTe-nanoparticles

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Elaheh; Dehghan Nayeri, Fatemeh; Ghoranneviss, Mahmood

    2018-03-01

    Core-shell heterostructures of ZnO-NWs/CdTe-NPs were fabricated through covering ZnO-NWs arrays using CdTe-NPs and the room temperature RF magnetron sputtering method. The influence of different CdTe-NPs deposition time (5, 20, 40 and 60 min) on the physical properties of core-shell heterostructures were investigated. In order to achieve the highest coverage level and a wide range of optical absorption at a visible range for a ZnO-NWs/CdTe-NPs (60 min) array, FTO/ZnO-NWs/CdTe-NPs (60 min)/Ni/Au core-shell solar cells were used. Solar cell fabrication was performed by soaking the samples in a saturated CdCl2 solution in methanol and a post-annealing treatment at 400 °C for 1 h in air which led to grain growth, the passivation of deep level defects, and the decrease of stacking faults. Short-circuit current and power conversion efficiency of the fabricated cell under illumination with visible light AM1.5 (100 mW cm-2) were 13.3 mA cm-2 and 3.41%, respectively. It was found that introducing a thin interfacial layer of CdSe to the configuration (FTO/ZnO-NWs/CdSe (10 nm)/CdTe-NPs (60 min)/Ni/Au) led to a 5.58% enhancement of photovoltaic performance of the solar cell (20.9 mA cm-2), which is 63.6% more than that of the same configuration without CdSe.

  17. Defect quasi Fermi level control-based CN reduction in GaN: Evidence for the role of minority carriers

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Kaess, Felix; Tweedie, James; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko

    2017-10-01

    Compensating point defect reduction in wide bandgap semiconductors is possible by above bandgap illumination based defect quasi Fermi level (dQFL) control. The point defect control technique employs excess minority carriers that influence the dQFL of the compensator, increase the corresponding defect formation energy, and consequently are responsible for point defect reduction. Previous studies on various defects in GaN and AlGaN have shown good agreement with the theoretical model, but no direct evidence for the role of minority carriers was provided. In this work, we provide direct evidence for the role of minority carriers in reducing point defects by studying the predicted increase in work done against defect (CN-1) formation with the decrease in the Fermi level (free carrier concentration) in Si doped GaN at a constant illumination intensity. Comparative defect photoluminescence measurements on illuminated and dark regions of GaN show an excellent quantitative agreement with the theory by exhibiting a greater reduction in yellow luminescence attributed to CN-1 at lower doping, thereby providing conclusive evidence for the role of the minority carriers in Fermi level control-based point defect reduction.

  18. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation

  19. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and

  20. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  1. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  2. Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers.

    PubMed

    Higashitarumizu, Naoki; Ishikawa, Yasuhiko

    2017-09-04

    Enhanced direct-gap light emission is reported for Si-capped n + -Ge layers on Si after post-growth rapid cyclic annealing (RCA), and impact of non-radiative recombination (NRR) at the Ge/Si interface is discussed toward Ge/Si double heterostructure (DH) lasers. P-doped n + -Ge layer (1 × 10 19 cm -3 , 400 nm) is grown on Si by ultra-high vacuum chemical vapor deposition, followed by a growth of Si capping layer (5 nm) to form a Si/Ge/Si DH structure. Post-growth RCA to eliminate defects in Ge is performed in N 2 at temperatures between 900°C and 780°C, where the annealing time is minimized to be 5 s in each RCA cycle to prevent an out-diffusion of P dopants from the Ge surface. Direct-gap photoluminescence (PL) intensity at 1.6 µm increases with the RCA cycles up to 40, although the threading dislocation density in Ge is not reduced after 3 cycles in the present condition. The PL enhancement is ascribed to the suppression of NRR at the Ge/Si interface, where an intermixed SiGe alloy is formed. For Ge/Si DH lasers, NRR at the Ge/Si interface is found to have a significant impact on the threshold current density Jth. In order to achieve Jth on the order of 1 kA/cm 2 , similar to III-V lasers, the interface recombination velocity S is required below 10 3 cm/s in spite of S as large as 10 5 cm/s at the ordinary defect-rich Ge/Si interface.

  3. Freedom from band-gap slavery: from diode lasers to quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Capasso, Federico

    2010-02-01

    Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. )

  4. Nanoscale electrical and structural modification induced by rapid thermal oxidation of AlGaN/GaN heterostructures.

    PubMed

    Greco, Giuseppe; Fiorenza, Patrick; Giannazzo, Filippo; Alberti, Alessandra; Roccaforte, Fabrizio

    2014-01-17

    In this paper, the structural and electrical modifications induced, in the nanoscale, by a rapid thermal oxidation process on AlGaN/GaN heterostructures, are investigated. A local rapid oxidation (900 ° C in O2, 10 min) localized under the anode region of an AlGaN/GaN diode enabled a reduction of the leakage current with respect to a standard Schottky contact. The insulating properties of the near-surface oxidized layer were probed by a nanoscale electrical characterization using scanning probe microscopy techniques. The structural characterization indicated the formation of a thin uniform oxide layer on the surface, with preferential oxidation paths along V-shaped defects penetrating through the AlGaN/GaN interface. The oxidation process resulted in an expansion of the lattice parameters due to the incorporation of oxygen atoms, accompanied by an increase of the crystal mosaicity. As a consequence, a decrease of the sheet carrier density of the two-dimensional electron gas and a positive shift of the threshold voltage are observed. The results provide useful insights for a possible future integration of rapid oxidation processes during GaN device fabrication.

  5. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang

    2018-02-01

    AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.

  6. 2D Crystal heterostructures properties and growth by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xing, Grace Huili

    Two-dimensional (2D) crystals such as transition metal dichalcogenides (TMDs) along with other families of layered materials including graphene, SnSe2, GaSe, BN etc, has attracted intense attention from the scientific community. One monolayer of such materials represent the thinnest ``quantum wells''. These layered materials typically possess an in-plane hexagonal crystal structure, and can be stacked together by interlayer van der Waals interactions. Therefore, it is possible to create novel heterostructures by stacking materials with large lattice mismatches and different properties, for instance, superconductors (NbSe2) , metals, semi-metals (graphene), semiconductors (MoS2) and insulators (BN). Numerous novel material properties and device concepts have been discovered, proposed and demonstrated lately. However, the low internal photoluminescence efficiency (IPE, <1%) and low carrier mobility observed in the 2D semiconductors suggest strongly that the materials under investigation today most likely suffer from a high concentration of defects. In this talk, I will share our progress and the challenges we face in terms of preparing, characterizing these 2D crystals as well as pursuing their applications. This work has been supported in part by NSF, AFOSR and LEAST, one of the STARnet centers.

  7. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.

    2016-04-28

    The impact of proton irradiation on the threshold voltage (V{sub T}) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of V{sub T} was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 10{sup 14} cm{sup −2}. Silvaco Atlas simulations of V{sub T} shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different V{sub T} dependences on protonmore » irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed V{sub T} shifts. The proton irradiation induced V{sub T} shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.« less

  8. Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolyarov, Maxim A.; Liu, Guanxiong; Balandin, Alexander A., E-mail: balandin@ee.ucr.edu

    2015-07-13

    We have investigated low-frequency 1/f noise in the boron nitride–graphene–boron nitride heterostructure field-effect transistors on Si/SiO{sub 2} substrates (f is a frequency). The device channel was implemented with a single layer graphene encased between two layers of hexagonal boron nitride. The transistors had the charge carrier mobility in the range from ∼30 000 to ∼36 000 cm{sup 2}/Vs at room temperature. It was established that the noise spectral density normalized to the channel area in such devices can be suppressed to ∼5 × 10{sup −9 }μm{sup 2 }Hz{sup −1}, which is a factor of ×5 – ×10 lower than that in non-encapsulated graphene devices on Si/SiO{sub 2}. The physicalmore » mechanism of noise suppression was attributed to screening of the charge carriers in the channel from traps in SiO{sub 2} gate dielectric and surface defects. The obtained results are important for the electronic and optoelectronic applications of graphene.« less

  9. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications

    DOE PAGES

    Lin, Zhong; McCreary, Amber; Briggs, Natalie; ...

    2016-12-08

    The rise of two-dimensional (2D) materials research took place following the isolation of graphene in 2004. These new 2D materials include transition metal dichalcogenides, mono-elemental 2D sheets, and several carbide- and nitride-based materials. The number of publications related to these emerging materials has been drastically increasing over the last five years. Thus, through this comprehensive review, we aim to discuss the most recent groundbreaking discoveries as well as emerging opportunities and remaining challenges. This review starts out by delving into the improved methods of producing these new 2D materials via controlled exfoliation, metal organic chemical vapor deposition, and wet chemicalmore » means. Here we look into recent studies of doping as well as the optical properties of 2D materials and their heterostructures. Recent advances towards applications of these materials in 2D electronics are also reviewed, and include the tunnel MOSFET and ways to reduce the contact resistance for fabricating high-quality devices. Finally, several unique and innovative applications recently explored are discussed as well as perspectives of this exciting and fast moving field.« less

  10. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    NASA Astrophysics Data System (ADS)

    Cecchi, S.; Gatti, E.; Chrastina, D.; Frigerio, J.; Müller Gubler, E.; Paul, D. J.; Guzzi, M.; Isella, G.

    2014-03-01

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si1-xGex buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si1-xGex layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach.

  11. LEDs based upon AlGaInP heterostructures with multiple quantum wells: comparison of fast neutrons and gamma-quanta irradiation

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Orlova, K. N.; Simonova, A. V.

    2018-05-01

    The paper presents the research results of watt and volt characteristics of LEDs based upon AlGaInP heterostructures with multiple quantum wells in the active region. The research is completed for LEDs (emission wavelengths 624 nm and 590 nm) under irradiation by fast neutron and gamma-quanta in passive powering mode. Watt-voltage characteristics in the average and high electron injection areas are described as a power function of the operating voltage. It has been revealed that the LEDs transition from average electron injection area to high electron injection area occurs by overcoming the transition area. It disappears as it get closer to the limit result of the irradiation LEDs that is low electron injection mode in the entire supply voltage range. It has been established that the gamma radiation facilitates initial defects restructuring only 42% compared to 100% when irradiation is performed by fast neutrons. Ratio between measured on the boundary between low and average electron injection areas current value and the contribution magnitude of the first stage LEDs emissive power reducing is established. It is allows to predict LEDs resistance to irradiation by fast neutrons and gamma rays.

  12. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    PubMed

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  13. Van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties.

    PubMed

    Ben Aziza, Zeineb; Henck, Hugo; Pierucci, Debora; Silly, Mathieu G; Lhuillier, Emmanuel; Patriarche, Gilles; Sirotti, Fausto; Eddrief, Mahmoud; Ouerghi, Abdelkarim

    2016-10-07

    Stacking two-dimensional materials in so-called van der Waals (vdW) heterostructures, like the combination of GaSe and graphene, provides the ability to obtain hybrid systems which are suitable to design optoelectronic devices. Here, we report the structural and electronic properties of the direct growth of multilayered GaSe by Molecular beam Epitaxy (MBE) on graphene. Reflection high-energy electron diffraction (RHEED) images exhibited sharp streaky features indicative of high quality GaSe layer produced via a vdW epitaxy. Micro-Raman spectroscopy showed that, after the vdW hetero-interface formation, the Raman signature of pristine graphene is preserved. However, the GaSe film tuned the charge density of graphene layer by shifting the Dirac point by about 80 meV toward lower binding energies, attesting an electron transfer from graphene to GaSe. Angle-resolved photoemission spectroscopy (ARPES) measurements showed that the maximum of the valence band of few layers of GaSe are located at the Γ point at a binding energy of about -0.73 eV relatively to the Fermi level (p-type doping). From the ARPES measurements, a hole effective mass defined along the ΓM direction and equal to about m*/m0 = -1.1 was determined. By coupling the ARPES data with high resolution X-ray photoemission spectroscopy (HR-XPS) measurements, the Schottky interface barrier height was estimated to be 1.2 eV. These findings allow deeper understanding of the interlayer interactions and the electronic structure of GaSe/graphene vdW heterostructure.

  14. Lasing and Longitudinal Cavity Modes in Photo-Pumped Deep Ultraviolet AlGaN Heterostructures

    DTIC Science & Technology

    2013-04-29

    of the structures were intentionally doped. The AlGaN composition was determined by triple -axis high-resolution X-ray diffraction measurements. Cross...threshold can be achieved on single crystal AlN substrates. This achievement serves as a starting point towards realizing electrically pumped sub-300 nm UV

  15. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices

    PubMed Central

    Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco

    2014-01-01

    The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1−xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge. PMID:28788537

  16. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices.

    PubMed

    Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco

    2014-03-04

    The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi 1-x Sb x , and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

  17. Structural modulation of nanowire interfaces grown over selectively disrupted single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Garratt, E.; Nikoobakht, B.

    2015-08-01

    Recent breakthroughs in deterministic approaches to the fabrication of nanowire arrays have demonstrated the possibility of fabricating such networks using low-cost scalable methods. In this regard, we have developed a scalable growth platform for lateral fabrication of nanocrystals with high precision utilizing lattice match and symmetry. Using this planar architecture, a number of homo- and heterostructures have been demonstrated including ZnO nanowires grown over GaN. The latter combination produces horizontal, epitaxially formed crystals aligned in the plane of the substrate containing a very low number of intrinsic defects. We use such ordered structures as model systems in the interests of gauging the interfacial structural dynamics in relation to external stimuli. Nanosecond pulses of focused ion beams are used to slightly modify the substrate surface and selectively form lattice disorders in the path of nanowire growth to examine the nanocrystal, namely: its directionality and lattice defects. High resolution electron microscopies are used to reveal some interesting structural effects; for instance, a minimum threshold of surface defects that can divert nanowires. We also discuss data indicating formation of surface strains and show their mitigation during the growth process.

  18. Effective scheme to determine accurate defect formation energies and charge transition levels of point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing

    2017-12-01

    We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.

  19. Elastic dipoles of point defects from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  20. Spatially Resolved Nano-Scale Characterization of Electronic States in SrTiO3(001) Surfaces by STM/STS

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro

    2012-02-01

    We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on TiO2-terminated SrTiO3(001) thin film surfaces. The conductance map exhibited electronic modulations that were completely different from the surface structure. We also found that the electronic modulations were strongly dependent on temperature and the density of atomic defects associated with oxygen vacancies. These results suggest the existence of strongly correlated two-dimensional electronic states near the SrTiO3 surface, implying the importance of electron correlation at the interfaces of SrTiO3-related heterostructures.

  1. Identification of microscopic hole-trapping mechanisms in nitride semiconductors

    DOE PAGES

    John L. Lyons; Krishnaswamy, Karthik; Luke Gordon; ...

    2015-12-17

    Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. As a result, using Schrodinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps.

  2. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  3. Strain-Engineered Nanomembrane Substrates for Si/SiGe Heterostructures

    NASA Astrophysics Data System (ADS)

    Sookchoo, Pornsatit

    For Group IV materials, including silicon, germanium, and their alloys, although they are most widely used in the electronics industry, the development of photonic devices is hindered by indirect band gaps and large lattice mismatches. Thus, any heterostructures involving Si and Ge (4.17% lattice mismatch) are subject to plastic relaxation by dislocation formation in the heterolayers. These defects make many devices impossible and at minimum degrade the performance of those that are possible. Fabrication using elastic strain engineering in Si/SiGe nanomembranes (NMs) is an approach that is showing promise to overcome this limitation. A key advantage of such NM substrates over conventional bulk substrates is that they are relaxed elastically and therefore free of dislocations that occur in the conventional fabrication of SiGe substrates, which are transferred to the epilayers and roughen film interfaces. In this thesis, I use the strain engineering of NMs or NM stacks to fabricate substrates for the epitaxial growth of many repeating units of Si/SiGe heterostructure, known as a 'superlattice', by the elastic strain sharing of a few periods of the repeating unit of Si/SiGe heterolayers or a Si/SiGe/Si tri-layer structure. In both cases, the process begins with the epitaxial growth of Si/SiGe heterolayers on silicon-on-insulator (SOI), where each layer thickness is designed to stay below its kinetic critical thickness for the formation of dislocations. The heterostructure NMs are then released by etching of the SiO2 sacrificial layer in hydrofluoric acid. The resulting freestanding NMs are elastically relaxed by the sharing of strain between the heterolayers. The NMs can be bonded in-place to their host substrate or transferred to another host substrate for the subsequent growth of many periods of superlattice film. The magnitude of strain sharing in these freestanding NMs is influenced by their layer thicknesses and layer compositions. As illustrated in this dissertation, strain-engineering of such NMs can provide the enabling basis for improved Group IV optoelectronic devices.

  4. Theoretical investigation into negative differential resistance characteristics of resonant tunneling diodes based on lattice-matched and polarization-matched AlInN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Rong, Taotao; Yang, Lin-An; Yang, Lin; Hao, Yue

    2018-01-01

    In this work, we report an investigation of resonant tunneling diodes (RTDs) with lattice-matched and polarization-matched AlInN/GaN heterostructures using the numerical simulation. Compared with the lattice-matched AlInN/GaN RTDs, the RTDs based on polarization-matched AlInN/GaN hetero-structures exhibit symmetrical conduction band profiles due to eliminating the polarization charge discontinuity, which achieve the equivalence of double barrier transmission coefficients, thereby the relatively high driving current, the high symmetry of current density, and the high peak-to-valley current ratio (PVCR) under the condition of the positive and the negative sweeping voltages. Simulations show that the peak current density approaches 1.2 × 107 A/cm2 at the bias voltage of 0.72 V and the PVCR approaches 1.37 at both sweeping voltages. It also shows that under the condition of the same shallow energy level, when the trap density reaches 1 × 1019 cm-3, the polarization-matched RTDs still have acceptable negative differential resistance (NDR) characteristics, while the NDR characteristics of lattice-matched RTDs become irregular. After introducing the deeper energy level of 1 eV into the polarization-matched and lattice-matched RTDs, 60 scans are performed under the same trap density. Simulation results show that the degradation of the polarization-matched RTDs is 22%, while lattice-matched RTDs have a degradation of 55%. It can be found that the polarization-matched RTDs have a greater defect tolerance than the lattice-matched RTDs, which is beneficial to the available manufacture of actual terahertz RTD devices.

  5. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  6. Role of pre-existing point defects on primary damage production and amorphization in silicon carbide (β-SiC)

    NASA Astrophysics Data System (ADS)

    Sahoo, Deepak Ranjan; Szlufarska, Izabela; Morgan, Dane; Swaminathan, Narasimhan

    2018-01-01

    Molecular dynamics simulations of displacement cascades were conducted to study the effect of point defects on the primary damage production in β-SiC. Although all types of point defects and Frenkel pairs were considered, Si interstitials and Si Frenkel pairs were unstable and hence excluded from the cascade studies. Si (C) vacancies had the maximum influence, enhancing C (Si) antisites and suppressing C interstitial production, when compared to the sample without any defects. The intracascade recombination mechanisms, in the presence of pre-existing defects, is explored by examining the evolution of point defects during the cascade. To ascertain the role of the unstable Si defects on amorphization, simulations involving explicit displacements of Si atoms were conducted. The dose to amorphization with only Si displacements was much lower than what was observed with only C displacements. The release of elastic energy accumulated due to Si defects, is found to be the amorphizing mechanism.

  7. Quaternary BeMgZnO by plasma-enhanced molecular beam epitaxy for BeMgZnO/ZnO heterostructure devices

    NASA Astrophysics Data System (ADS)

    Ullah, M. B.; Toporkov, M.; Avrutin, V.; Özgür, Ü.; Smith, D. J.; Morkoç, H.

    2017-02-01

    We investigated the crystal structure, growth kinetics and electrical properties of BeMgZnO/ZnO heterostructures grown by Molecular Beam Epitaxy (MBE). Transmission Electron Microscopy (TEM) studies revealed that incorporation of Mg into the BeZnO solid solution eliminates the high angle grain boundaries that are the major structural defects in ternary BeZnO. The significant improvement of x-ray diffraction intensity from quaternary BeMgZnO alloy compared to ternary BeZnO was attributed to the reduction of lattice strain, which is present in the latter due to the large difference of covalent radii between Be and Zn (1.22 Å for Zn, 0.96 Å for Be). Incorporation of Mg, which has a larger covalent radius of 1.41Å, reduced the strain in BeMgZnO thin films and also enhanced Be incorporation on lattice sites in the wurtzite lattice. The Zn/(Be + Mg) ratio necessary to obtain single-crystal O-polar BeMgZnO on (0001) GaN/sapphire templates was found to increase with increasing substrate temperature:3.9, 6.2, and 8.3 at substrate temperatures of 450°C, 475°C, and 500°C, respectively. Based on analysis of photoluminescence spectra from Be0.03MgyZn0.97-yO and evolution of reflection high-energy electron diffraction patterns observed in situ during the MBE growth, it has been deduced that more negative formation enthalpy of MgO compared to ZnO and the increased surface mobility of Mg adatoms at elevated substrate temperatures give rise to the nucleation of a MgO-rich wurtzite phase at relatively low Zn/(Be + Mg) ratios. We have demonstrated both theoretically and experimentally that the incorporation of Be into the barrier in Zn-polar BeMgZnO/ZnO and O-polar ZnO/BeMgZnO polarization doped heterostructures allows the alignment of piezoelectric polarization vector with that of spontaneous polarization due to the change of strain sign, thus increasing the amount of net polarization. This made it possible to achieve Zn-polar BeMgZnO/ZnO heterostructures grown on GaN/sapphire templates with two-dimensional electron gas densities substantially exceeding those in Zn-polar MgZnO/ZnO and O-polar ZnO/MgZnO heterostructures with similar Mg content.

  8. Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods.

    PubMed

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Heilmann, Martin; Yang, Jianfeng; Dai, Xi; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2016-11-23

    Using advanced two-photon excitation confocal microscopy, associated with time-resolved spectroscopy, we characterize InGaN/GaN multiple quantum wells on nanorod heterostructures and demonstrate the passivation effect of a KOH treatment. High-quality InGaN/GaN nanorods were fabricated using nanosphere lithography as a candidate material for light-emitting diode devices. The depth- and time-resolved characterization at the nanoscale provides detailed carrier dynamic analysis helpful for understanding the optical properties. The nanoscale spatially resolved images of InGaN quantum well and defects were acquired simultaneously. We demonstrate that nanorod etching improves light extraction efficiency, and a proper KOH treatment has been found to reduce the surface defects efficiently and enhance the luminescence. The optical characterization techniques provide depth-resolved and time-resolved carrier dynamics with nanoscale spatially resolved mapping, which is crucial for a comprehensive and thorough understanding of nanostructured materials and provides novel insight into the improvement of materials fabrication and applications.

  9. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun [Orinda, CA; Shakouri, Ali [Santa Cruz, CA; Sands, Timothy D [Moraga, CA; Yang, Peidong [Berkeley, CA; Mao, Samuel S [Berkeley, CA; Russo, Richard E [Walnut Creek, CA; Feick, Henning [Kensington, CA; Weber, Eicke R [Oakland, CA; Kind, Hannes [Schaffhausen, CH; Huang, Michael [Los Angeles, CA; Yan, Haoquan [Albany, CA; Wu, Yiying [Albany, CA; Fan, Rong [El Cerrito, CA

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  10. Methods Of Fabricating Nanosturctures And Nanowires And Devices Fabricated Therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2006-02-07

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  11. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2010-11-16

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  12. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2018-01-30

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  13. Impurity-induced disorder in III-nitride materials and devices

    DOEpatents

    Wierer, Jr., Jonathan J; Allerman, Andrew A

    2014-11-25

    A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

  14. Identifying and counting point defects in carbon nanotubes.

    PubMed

    Fan, Yuwei; Goldsmith, Brett R; Collins, Philip G

    2005-12-01

    The prevailing conception of carbon nanotubes and particularly single-walled carbon nanotubes (SWNTs) continues to be one of perfectly crystalline wires. Here, we demonstrate a selective electrochemical method that labels point defects and makes them easily visible for quantitative analysis. High-quality SWNTs are confirmed to contain one defect per 4 microm on average, with a distribution weighted towards areas of SWNT curvature. Although this defect density compares favourably to high-quality, silicon single-crystals, the presence of a single defect can have tremendous electronic effects in one-dimensional conductors such as SWNTs. We demonstrate a one-to-one correspondence between chemically active point defects and sites of local electronic sensitivity in SWNT circuits, confirming the expectation that individual defects may be critical to understanding and controlling variability, noise and chemical sensitivity in SWNT electronic devices. By varying the SWNT synthesis technique, we further show that the defect spacing can be varied over orders of magnitude. The ability to detect and analyse point defects, especially at very low concentrations, indicates the promise of this technique for quantitative process analysis, especially in nanoelectronics development.

  15. Manipulation of Magnetic Textures in Thin Films and Devices

    NASA Astrophysics Data System (ADS)

    Tolley, Robert Douglas

    Control and manipulation of magnetic textures is promising for the development of next-generation data storage, memory and processing technologies. Towards this goal, domain wall manipulation in two materials systems are presented here and thoroughly evaluated. Domain walls in ferrimagnetic Cobalt-Terbium alloys and multilayers are created, moved and stabilized via thermal gradients and a static magnetic field and exploit the unique properties of the system across the magnetic compensation point. The response of the systems to thermal gradients is observed via Kerr microscopy and used to determine the positioning of domain walls within patterned devices. Magnetic skyrmions are discovered in thin-film multilayered stacks using an Pt/Co/Os/Pt heterostructures where the thin Osmium layer is used to break interfacial symmetry and enhance the Dzyaloshinskii-Moriya interaction. The resulting skyrmions are manipulated using temperature, magnetic field, and electric current, and special attention is paid to their motion and nucleation behavior. Skyrmions are observed to be formed by low applied currents from nucleation sites and by collapse of stripe textures. Patterned wires allow for the observation of skyrmion nucleation behavior in free space, as well as defect sites, and real-time Kerr microscopy imaging is presented of skyrmion and stripe dynamics. These systems are evaluated from a perspective of their growth, patterning, measurement, and the novel behavior of the magnetic textures.

  16. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; McWhinney, Hylton G.; Shi Wenwu

    2011-06-15

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N{sub 2}-rich (O{sub 2}-lean) environment between 125 and 750 deg.more » C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: {yields} Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. {yields} Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. {yields} CNTs in heterostructures decompose between 600 and 750 deg. C in N{sub 2}-rich atmosphere. {yields} Metallic species in heterostructures were oxidized at higher temperatures.« less

  17. Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao; Wang, Zhizhe; Xu, Shengrui; Chen, Dazheng; Bao, Weimin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue

    2017-11-01

    High quality InAlN/InGaN/InAlN/InGaN double channel heterostructures were proposed and grown by metal organic chemical vapor deposition. Benefiting from the adoption of the pulsed growth method and Two-Step AlN interlayer, the material quality and interface characteristics of the double channel heterostructures are satisfactory. The results of the temperature-dependent Hall effect measurement indicated that the transport properties of the double channel heterostructures were superior to those of the traditional single channel heterostructures in the whole test temperature range. Meanwhile, the sheet resistance of the double channel heterostructures reached 218.5 Ω/□ at 300 K, which is the record of InGaN-based heterostructures. The good transport properties of the InGaN double channel heterostructures are beneficial to improve the performance of the microwave power devices based on nitride semiconductors.

  18. New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials.

    PubMed

    Zhu, Tiejun; Hu, Lipeng; Zhao, Xinbing; He, Jian

    2016-07-01

    Defects and defect engineering are at the core of many regimes of material research, including the field of thermoelectric study. The 60-year history of V 2 VI 3 thermoelectric materials is a prime example of how a class of semiconductor material, considered mature several times, can be rejuvenated by better understanding and manipulation of defects. This review aims to provide a systematic account of the underexplored intrinsic point defects in V 2 VI 3 compounds, with regard to (i) their formation and control, and (ii) their interplay with other types of defects towards higher thermoelectric performance. We herein present a convincing case that intrinsic point defects can be actively controlled by extrinsic doping and also via compositional, mechanical, and thermal control at various stages of material synthesis. An up-to-date understanding of intrinsic point defects in V 2 VI 3 compounds is summarized in a (χ, r)-model and applied to elucidating the donor-like effect. These new insights not only enable more innovative defect engineering in other thermoelectric materials but also, in a broad context, contribute to rational defect design in advanced functional materials at large.

  19. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  20. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  1. Superfluid Densities in Superconducting/Ferromagnetic (Nb/NiV/Nb) Heterostructures

    NASA Astrophysics Data System (ADS)

    Hinton, Michael; Peters, Brian; Hauser, Adam; Meyer, Julia; Yang, Fengyuan; Lemberger, Thomas

    2011-03-01

    Superfluid density measurements allow us to probe the superconducting structure of thin films below Tc with remarkable detail. They yield information not only of the inherent robustness of the superconducting state, but also about the homogeneity of the sample and possible ``hidden'' transitions at temperatures lower than the initial Tc . For this reason multiple transitions in superconducting heterostructures are revealed to us. We use superfluid density measurements on Nb/ Ni 0.95 V0.05 /Nb trilayers to study the interplay between two superconducting films separated by the destructive proximity effects of a ferromagnet. We show there are trilayers with strong coupling, which produces a single transition, that become decoupled to the point of separation into two transitions as the ferromagnetic layer thickness increases. We discuss the difficulties in observing the second transition in σ1 , while obvious in λ-2 .

  2. Electric field modulation of Schottky barrier height in graphene/MoSe{sub 2} van der Waals heterointerface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sata, Yohta; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp, E-mail: tmachida@iis.u-tokyo.ac.jp; Morikawa, Sei

    2015-07-13

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe{sub 2} van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe{sub 2} exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe{sub 2} vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10{sup 5}. These results point to the potential high performance ofmore » the graphene/MoSe{sub 2} vdW heterostructure for electronics applications.« less

  3. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    PubMed

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  4. An open canvas--2D materials with defects, disorder, and functionality.

    PubMed

    Zou, Xiaolong; Yakobson, Boris I

    2015-01-20

    CONSPECTUS: While some exceptional properties are unique to graphene only (its signature Dirac-cone gapless dispersion, carrier mobility, record strength), other features are common to other two-dimensional materials. The broader family "beyond graphene" offers greater choices to be explored and tailored for various applications. Transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), and 2D layers of pure elements, like phosphorus or boron, can complement or even surpass graphene in many ways and uses, ranging from electronics and optoelectronics to catalysis and energy storage. Their availability greatly relies on chemical vapor deposition growth of large samples, which are highly polycrystalline and include interfaces such as edges, heterostructures, and grain boundaries, as well as dislocations and point defects. These imperfections do not always degrade the material properties, but they often bring new physics and even useful functionality. It turns particularly interesting in combination with the sheer openness of all 2D sheets, fully exposed to the environment, which, as we show herein, can change and tune the defect structures and consequently all their qualities, from electronic levels, conductivity, magnetism, and optics to structural mobility of dislocations and catalytic activities. In this Account, we review our progress in understanding of various defects. We begin by expressing the energy of an arbitrary graphene edge analytically, so that the environment is regarded by "chemical phase shift". This has profound implications for graphene and carbon nanotube growth. Generalization of this equation to heteroelemental BN gives a method to determine the energy for arbitrary edges of BN, depending on the partial chemical potentials. This facilitates the tuning of the morphology and electronic and magnetic properties of pure BN or hybrid BN|C systems. Applying a similar method to three-atomic-layer TMDCs reveals more diverse edge structures for thermodynamically stable flakes. Moreover, CVD samples show new types of edge reconstruction, providing insight into the nonequilibrium growth process. Combining dislocation theory with first-principles computations, we could predict the dislocation cores for BN and TMDC and reveal their variable chemical makeup. This lays the foundation for the unique sensitivity to ambient conditions. For example, partial occupation of the defect states for dislocations in TMDCs renders them intrinsically magnetic. The exchange coupling between electrons from neighboring dislocations in grain boundaries further makes them half-metallic, which may find its applications in spintronics. Finally, brief discussion of monoelemental 2D-layer phosphorus and especially the structures and growth routes of 2D boron shows how theoretical assessment can help the quest for new synthetic routes.

  5. Effect of point defects and disorder on structural phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toulouse, J.

    1997-06-01

    Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less

  6. Electronic properties of ZnPSe3-MoS2 Van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2018-04-01

    We present a comparative study of electronic properties of ZnPSe3-MoS2 heterostructure using GGA-PBE functional and DFT-D2 method within the framework of density functional theory (DFT). Electronic band structure for the considered heterostructure shows a direct band gap semiconducting character. A decrease in band gap is observed with the heterostructuring as compared to their constituent pristine monolayers. The alignment of valance band maxima and conduction band minima on different layers in heterostructure indicate the physical separation of charge carriers. A work function of 5.31 eV has been calculated for ZnPSe3-MoS2 heterostructure. These results provide a physical basis for the potential applications of these ZnPSe3-MoS2 heterostructure in optoelectronic devices.

  7. Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao

    Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less

  8. Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy

    DOE PAGES

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; ...

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less

  9. EDITORIAL: Photonic Crystal Devices

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pallab K.

    2007-05-01

    The engineering of electromagnetic modes at optical frequencies in artificial dielectric structures with periodic and random variation of the refractive index, enabling control of the radiative properties of the materials and photon localization, was first proposed independently by Yablonovitch and John in 1987. It is possible to control the flow of light in the periodic dielectric structures, known as photonic crystals (PC). As light waves scatter within the photonic crystal, destructive interference cancels out light of certain wavelengths, thereby forming a photonic bandgap, similar to the energy bandgap for electron waves in a semiconductor. Photons whose energies lie within the gap cannot propagate through the periodic structure. This property can be used to make a low-loss cavity. If a point defect, such as one or more missing periods, is introduced into the periodic structure a region is obtained within which the otherwise forbidden wavelengths can be locally trapped. This property can be used to realize photonic microcavities. Similarly, a line of defects can serve as a waveguide. While the realization of three-dimensional (3D) photonic crystals received considerable attention initially, planar two-dimensional (2D) structures are currently favoured because of their relative ease of fabrication. 2D photonic crystal structures provide most of the functionality of 3D structures. These attributes have generated worldwide research and development of sub-μm and μm size active and passive photonic devices such as single-mode and non- classical light sources, guided wave devices, resonant cavity detection, and components for optical communication. More recently, photonic crystal guided wave devices are being investigated for application in microfludic and biochemical sensing. Photonic crystal devices have been realized with bulk, quantum well and quantum dot active regions. The Cluster of articles in this issue of Journal of Physics D: Applied Physics provides a glimpse of some of the most recent advances in the application of photonic crystals. The modelling of PC defect-mode cavities are described by Zhou et al. Ye and co-authors describe the concept and realization of a novel 3D silicon-based spiral PC. It is, in fact, the only article on 3D PCs. The design and realization of ultra-high Q heterostructure PC nanocavities are described by Song and co-authors. The concept of self-collimation of light in PCs and its applications are presented by Prather and co-workers. Experimental and numerical studies on the negative refraction related phenomenon in 2D PCs are the subject of the next article by Ozbay and co-authors. The emerging subject of slow light generation, control and propagation in PCs is presented in the next two articles by Baba and Mori and by Krauss. Finally, the progress made in the development of PC microcavity lasers and electrically injected microcavity light emitters and arrays is described, respectively, by O'Brien et al and by Chakravarty et al. It is hoped that readers will get a sense of the exciting developments and the possibilities presented by heterostructure photonic crystals and their devices from reading the articles in this Cluster.

  10. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Alnoor, Hatim; Pozina, Galia; Khranovskyy, Volodymyr; Liu, Xianjie; Iandolo, Donata; Willander, Magnus; Nur, Omer

    2016-04-01

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (˜575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.

  11. Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony

    2018-05-01

    Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.

  12. Identification of dopant-induced point defects and their effect on the performance of CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gul, Rubi; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; Didic, Václav; Egarievwe, Stephen U.; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.

    2016-09-01

    In our prior research we investigated room-temperature radiation detectors (CZT, CMT, CdMgTe, CTS, among other compound semiconductors) for point defects related to different dopants and impurities. In this talk we will report on our most recent research on newly grown CZT crystals doped with In, In+Al, In+Ni, and In+Sn. The main focus will be on the study of dopant-induced point defects using deep-level current transient spectroscopy (i-DLTS). In addition the performance, ? product, gamma-ray spectral response and internal electric field of the detectors were measured and correlated with the dopant-induced point defects and their concentrations. Characterization of the detectors was carried out using i-DLTS for the point defects, Pockels effect for the internal electric-field distribution, and γ-ray spectroscopy for the spectral properties.

  13. Study of point- and cluster-defects in radiation-damaged silicon

    NASA Astrophysics Data System (ADS)

    Donegani, Elena M.; Fretwurst, Eckhart; Garutti, Erika; Klanner, Robert; Lindstroem, Gunnar; Pintilie, Ioana; Radu, Roxana; Schwandt, Joern

    2018-08-01

    Non-ionising energy loss of radiation produces point defects and defect clusters in silicon, which result in a significant degradation of sensor performance. In this contribution results from TSC (Thermally Stimulated Current) defect spectroscopy for silicon pad diodes irradiated by electrons to fluences of a few 1014 cm-2 and energies between 3.5 and 27 MeV for isochronal annealing between 80 and 280∘C, are presented. A method based on SRH (Shockley-Read-Hall) statistics is introduced, which assumes that the ionisation energy of the defects in a cluster depends on the fraction of occupied traps. The difference of ionisation energy of an isolated point defect and a fully occupied cluster, ΔEa, is extracted from the TSC data. For the VOi (vacancy-oxygen interstitial) defect ΔEa = 0 is found, which confirms that it is a point defect, and validates the method for point defects. For clusters made of deep acceptors the ΔEa values for different defects are determined after annealing at 80∘C as a function of electron energy, and for the irradiation with 15 MeV electrons as a function of annealing temperature. For the irradiation with 3.5 MeV electrons the value ΔEa = 0 is found, whereas for the electron energies of 6-27 MeV ΔEa > 0. This agrees with the expected threshold of about 5 MeV for cluster formation by electrons. The ΔEa values determined as a function of annealing temperature show that the annealing rate is different for different defects. A naive diffusion model is used to estimate the temperature dependencies of the diffusion of the defects in the clusters.

  14. Interfacial coupling and polarization of perovskite ABO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Wu, Lijun; Wang, Zhen; Zhang, Bangmin; Yu, Liping; Chow, G. M.; Tao, Jing; Han, Myung-Geun; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Zhu, Yimei

    2017-02-01

    Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. In this article, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) films and La0.67Sr0.33MnO3 (LSMO) films of various thicknesses on SrTiO3 (STO) substrate. In particular, using atomically resolved imaging and electron energy-loss spectroscopy (EELS), we measured interface related local lattice distortion, BO6 octahedral rotation and cation-anion displacement induced polarization. In the very thin PSMO film, an unexpected interface-induced ferromagnetic polaronic insulator phase was observed during the cubic-to-tetragonal phase transition of the substrate STO, due to the enhanced electron-phonon interaction and atomic disorder in the film. On the other hand, for the very thin LSMO films we observed a remarkably deep polarization in non-ferroelectric STO substrate near the interface. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by an electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties of transition metal oxides.

  15. Phonon-Mediated Colossal Magnetoresistance in Graphene/Black Phosphorus Heterostructures.

    PubMed

    Liu, Yanpeng; Yudhistira, Indra; Yang, Ming; Laksono, Evan; Luo, Yong Zheng; Chen, Jianyi; Lu, Junpeng; Feng, Yuan Ping; Adam, Shaffique; Loh, Kian Ping

    2018-06-13

    There is a huge demand for magnetoresistance (MR) sensors with high sensitivity, low energy consumption, and room temperature operation. It is well-known that spatial charge inhomogeneity due to impurities or defects introduces mobility fluctuations in monolayer graphene and gives rise to MR in the presence of an externally applied magnetic field. However, to realize a MR sensor based on this effect is hampered by the difficulty in controlling the spatial distribution of impurities and the weak magnetoresistance effect at the monolayer regime. Here, we fabricate a highly stable monolayer graphene-on-black phosphorus (G/BP) heterostructure device that exhibits a giant MR of 775% at 9 T magnetic field and 300 K, exceeding by far the MR effects from devices made from either monolayer graphene or few-layer BP alone. The positive MR of the G/BP device decreases when the temperature is lowered, indicating a phonon-mediated process in addition to scattering by charge impurities. Moreover, a nonlocal MR of >10 000% is achieved for the G/BP device at room temperature due to an enhanced flavor Hall effect induced by the BP channel. Our results show that electron-phonon coupling between 2D material and a suitable substrate can be exploited to create giant MR effects in Dirac semimetals.

  16. Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials.

    PubMed

    Wang, Feng; Wang, Zhenxing; Jiang, Chao; Yin, Lei; Cheng, Ruiqing; Zhan, Xueying; Xu, Kai; Wang, Fengmei; Zhang, Yu; He, Jun

    2017-09-01

    2D layered semiconducting materials (2DLSMs) represent the thinnest semiconductors, holding many novel properties, such as the absence of surface dangling bonds, sizable band gaps, high flexibility, and ability of artificial assembly. With the prospect of bringing revolutionary opportunities for electronic and optoelectronic applications, 2DLSMs have prospered over the past twelve years. From materials preparation and property exploration to device applications, 2DLSMs have been extensively investigated and have achieved great progress. However, there are still great challenges for high-performance devices. In this review, we provide a brief overview on the recent breakthroughs in device optimization based on 2DLSMs, particularly focussing on three aspects: device configurations, basic properties of channel materials, and heterostructures. The effects from device configurations, i.e., electrical contacts, dielectric layers, channel length, and substrates, are discussed. After that, the affect of the basic properties of 2DLSMs on device performance is summarized, including crystal defects, crystal symmetry, doping, and thickness. Finally, we focus on heterostructures based on 2DLSMs. Through this review, we try to provide a guide to improve electronic and optoelectronic devices of 2DLSMs for achieving practical device applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantum point contact displacement transducer for a mechanical resonator at sub-Kelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji

    Highly sensitive displacement transduction of a 1.67 MHz mechanical resonator with a quantum point contact (QPC) formed in a GaAs heterostructure is demonstrated. By positioning the QPC at the point of maximum mechanical strain on the resonator and operating at 80 mK, a displacement responsivity of 3.81 A/m is measured, which represents a two order of magnitude improvement on the previous QPC based devices. By further analyzing the QPC transport characteristics, a sub-Poisson-noise-limited displacement sensitivity of 25 fm/Hz{sup 1/2} is determined which corresponds to a position resolution that is 23 times the standard quantum limit.

  18. Tuning the properties of an MgO layer for spin-polarized electron transport

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua

    2014-08-01

    The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.

  19. Controlled drive-in and precipitation of hydrogen during plasma hydrogenation of silicon using a thin compressively strained SiGe layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okba, F.; Departement Optique et Mecanique de Precision, Faculte des Sciences de l'Ingenieur, Universite Ferhat Abbas, Setif 19000; Cherkashin, N.

    2010-07-19

    We have quantitatively studied by transmission electron microscopy the growth kinetics of platelets formed during the continuous hydrogenation of a Si substrate/SiGe/Si heterostructure. We have evidenced and explained the massive transfer of hydrogen from a population of platelets initially generated in the upper Si layer by plasma hydrogenation towards a population of larger platelets located in the SiGe layer. We demonstrate that this type of process can be used not only to precisely localize the micro-cracks, then the fracture line at a given depth but also to 'clean' the top layer from pre-existing defects.

  20. Thermal Stability of Pseudomorphic In(x)Ga(1-x)As/In(y)Al(1-y)As/InP heterostructures

    DTIC Science & Technology

    1993-04-22

    structure. Pseudomorphic layers of nAlAs with co= n - After the first anneal, R = 67%. We performed additional parable mismatch were also characterized by...MiAbi,,%,b, w*am.¶0’ (004) 00Afl’%,A 0 .A. dwd,u,(004) 500 A in, oAl. ,oAs -: .2w %r,•.& s *ae It GW 0 50 105s,1 n (e u~f ’• T ’ o"....... . .. I5 o...1989). S10 0 •---1 [21 J. W. Matthews and A. E. Blakeslee, "Defects in epitaxial multilayers," J. CrPt. Growth 27, 118 (1974). (80003 M. Tacano, Y

  1. Local dynamic nuclear polarization using quantum point contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L.

    1994-08-15

    We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.

  2. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

    PubMed Central

    Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  3. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy.

    PubMed

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.

  4. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy

    PubMed Central

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-01-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. PMID:27152356

  5. The generation and accumulation of interstitial atoms and vacancies in alloys with L1{sub 2} superstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantyukhova, Olga, E-mail: Pantyukhova@list.ru; Starenchenko, Vladimir, E-mail: star@tsuab.ru; Starenchenko, Svetlana, E-mail: sve-starenchenko@yandex.ru

    2016-01-15

    The dependences of the point defect concentration (interstitial atoms and vacancies) on the deformation degree were calculated for the L1{sub 2} alloys with the high and low antiphase boundaries (APB) energy in terms of the mathematical model of the work and thermal strengthening of the alloys with the L1{sub 2} structure; the concentration of the point defects generated and annihilated in the process of deformation was estimated. It was found that the main part of the point defects generating during plastic deformation annihilates, the residual density of the deformation point defects does not exceed 10{sup −5}.

  6. Native point defects in MoS2 and their influences on optical properties by first principles calculations

    NASA Astrophysics Data System (ADS)

    Saha, Ashim Kumar; Yoshiya, Masato

    2018-03-01

    Stability of native point defect species and optical properties are quantitatively examined through first principles calculations in order to identify possible native point defect species in MoS2 and its influences on electronic structures and resultant optical properties. Possible native point defect species are identified as functions of thermodynamic environment and location of Fermi-level in MoS2. It is found that sulphur vacancies can be introduced more easily than other point defect species which will create impurity levels both in bandgap and in valence band. Additionally, antisite Mo and/or Mo vacancies can be created depending on chemical potential of sulphur, both of which will create impurity levels in bandgap and in valence band. Those impurity levels result in pronounced photon absorption in visible light region, though each of these point defects alone has limited impact on the optical properties unless their concentration remained low. Thus, attention must be paid when intentional impurity doping is made to MoS2 to avoid unwanted modification of optical properties of MoS2. Those impurity may enable further exploitation of photovoltaic energy conversion at longer wavelength.

  7. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    NASA Astrophysics Data System (ADS)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  8. On the validity of the amphoteric-defect model in gallium arsenide and a criterion for Fermi-level pinning by defects

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Tan, T. Y.

    1995-10-01

    Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.

  9. Design of lateral heterostructure from arsenene and antimonene

    NASA Astrophysics Data System (ADS)

    Sun, Qilong; Dai, Ying; Ma, Yandong; Yin, Na; Wei, Wei; Yu, Lin; Huang, Baibiao

    2016-09-01

    Lateral heterostructures fabricated by two-dimensional building blocks have opened up exciting realms in material science and device physics. Identifying suitable materials for creating such heterostructures is urgently needed for the next-generation devices. Here, we demonstrate a novel type of seamless lateral heterostructures with excellent stabilities formed within pristine arsenene and antimonene. We find that these heterostructures could possess direct and reduced energy gaps without any modulations. Moreover, the highly coveted type-II alignment and the high carrier mobility are also identified, marking the enhanced quantum efficiency. The tensile strain can result in efficient bandgap engineering. Besides, the proposed critical condition for favored direct energy gaps would have a guiding significance on the subsequent works. Generally, our predictions not only introduce new vitality into lateral heterostructures, enriching available candidate materials in this field, but also highlight the potential of these lateral heterostructures as appealing materials for future devices.

  10. A 3D Laser Profiling System for Rail Surface Defect Detection

    PubMed Central

    Li, Qingquan; Mao, Qingzhou; Zou, Qin

    2017-01-01

    Rail surface defects such as the abrasion, scratch and peeling often cause damages to the train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance for the safety of railway transportation. In the past few decades, automatic rail defect detection has been studied; however, most developed methods use optic-imaging techniques to collect the rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data. For automatic defect detection, first, the deviation between the measured profile and a standard rail model profile is computed for each laser-imaging profile, and the points with large deviations are marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm is proposed to register the point sets of the measured profile with the standard rail model profile, and the registration precision is improved to the sub-millimeter level. Second, all of the measured profiles are combined together to form the rail surface through a high-precision positioning process with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate defect regions using the K-means clustering. At last, the candidate defect regions are classified by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed laser-profiling system in rail surface defect detection and classification. PMID:28777323

  11. Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Benítez, L. Antonio; Sierra, Juan F.; Savero Torres, Williams; Arrighi, Aloïs; Bonell, Frédéric; Costache, Marius V.; Valenzuela, Sergio O.

    2018-03-01

    A large enhancement in the spin-orbit coupling of graphene has been predicted when interfacing it with semiconducting transition metal dichalcogenides. Signatures of such an enhancement have been reported, but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and tungsten or molybdenum disulphide (WS2, MoS2). We observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, being largest when the spins point out of the graphene plane. This indicates that the strong spin-valley coupling in the transition metal dichalcogenide is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials.

  12. First-principles calculations and model analysis of plasmon excitations in graphene and graphene/hBN heterostructure

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Ren, Xinguo; He, Lixin

    2017-10-01

    Plasmon excitations in free-standing graphene and graphene/hexagonal boron nitride (hBN) heterostructure are studied using linear-response time-dependent density functional theory within the random phase approximation. Within a single theoretical framework, we examine both the plasmon dispersion behavior and lifetime (linewidth) of Dirac and π plasmons on an equal footing. Particular attention is paid to the influence of the hBN substrate and the anisotropic effect. Furthermore, a model-based analysis indicates that the correct dispersion behavior of π plasmons should be ωπ(q ) =√{Eg2+β ql} for small q 's, where Eg is the band gap at the M point in the Brillouin zone, and β is a fitting parameter. This model is radically different from previous proposals, but in good agreement with our calculated results from first principles.

  13. A Computational Framework for Automation of Point Defect Calculations

    NASA Astrophysics Data System (ADS)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; Lany, Stephan; Stevanovic, Vladan; National Renewable Energy Laboratory, Golden, Colorado 80401 Collaboration

    A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3as test examples, we demonstrate the package capabilities and validate the methodology. We believe that a robust automated tool like this will enable the materials by design community to assess the impact of point defects on materials performance. National Renewable Energy Laboratory, Golden, Colorado 80401.

  14. Point defect weakened thermal contraction in monolayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Xian-Hu; Department of Physics, University of Science and Technology of China, Hefei; USTC-CityU Joint Advanced Research Centre, Suzhou 215123

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitudemore » and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.« less

  15. Interplay of point defects, biaxial strain, and thermal conductivity in homoepitaxial SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Wiedigen, S.; Kramer, T.; Feuchter, M.; Knorr, I.; Nee, N.; Hoffmann, J.; Kamlah, M.; Volkert, C. A.; Jooss, Ch.

    2012-02-01

    Separating out effects of point defects and lattice strain on thermal conductivity is essential for improvement of thermoelectric properties of SrTiO3. We study relations between defects generated during deposition, induced lattice strain, and their impact on thermal conductivity κ in homoepitaxial SrTiO3 films prepared by ion-beam sputtering. Lowering the deposition temperature gives rise to lattice expansion by enhancement of point defect density which increases the hardness of the films. Due to a fully coherent substrate-film interface, the lattice misfit induces a large biaxial strain. However, we can show that the temperature dependence of κ is mainly sensitive on the defect concentration.

  16. Nanoscale interfacial defect shedding in a growing nematic droplet.

    PubMed

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  17. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    NASA Astrophysics Data System (ADS)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  18. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms.

    PubMed

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-05

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  19. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    NASA Astrophysics Data System (ADS)

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  20. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    PubMed Central

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials. PMID:28053307

  1. Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Shan, Junjie; Li, Jinhua; Chu, Xueying; Xu, Mingze; Jin, Fangjun; Fang, Xuan; Wei, Zhipeng; Wang, Xiaohua

    2018-06-01

    Semiconductor heterostructures based on transition metal dichalcogenides provide a broad platform to research two-dimensional nanomaterials and design atomically thin devices for fundamental and applied interests. The MoS2/WS2 heterostructure was prepared on SiO2/Si substrate by chemical vapor deposition (CVD) in our research. And the optical properties of the heterostructure was characterized by Raman and photoluminescence (PL) spectroscopy. The similar 2 orders of magnitude decrease of PL intensity in MoS2/WS2 heterostructures was tested, which is attribute to the electrical and optical modulation effects are connected with the interfacial charge transfer between MoS2 and WS2 films. Using MoS2/WS2 heterostructure as channel material of the phototransistor, we demonstrated over 50 folds enhanced photoresponsivity of multilayer MoS2 field-effect transistor. The results indicate that the MoS2/WS2 films can be a promising heterostructure material to enhance the photoresponse characteristics of MoS2-based phototransistors.

  2. The Interface Influence in TiN/SiN x Multilayer Nanocomposite Under Irradiation

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Safronov, I. V.; Kvasov, N. T.; Remnev, G. E.; Shimanski, V. I.

    2018-01-01

    The paper focuses on studying the kinetics of radiation-induced point defects formed in TiN/SiN x multilayer nanocomposites with account of their generation, diffusion recombination, and the influence of sinks functioning as interfaces. In order to describe the kinetics in nanocrystalline TiN and amorphous SiN x phases, a finite-difference method is used to solve the system of balance kinetic equations for absolute defect concentrations depending on the spatiotemporal variables. A model of the disclination-dislocation interface structure is used to study the absorption of radiation-induced point defects on the boundaries in created stress fields. It is shown that the interface effectively absorbs point defects in these phases of TiN/SiN x multilayer nanocomposite, thereby reducing their amount within the space between phases. This behavior of point defects partially explains a mechanism of the radiation resistance in this type of nanocomposites.

  3. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy.

    PubMed

    Johnson, Jared M; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo

    2017-01-01

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga 2 O 3 and SrTiO 3 , we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High-quality LaVO 3 films as solar energy conversion material

    DOE PAGES

    Zhang, Hai -Tian; Brahlek, Matthew; Ji, Xiaoyu; ...

    2017-03-21

    Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency. With use of the self-regulated growth kinetics in hybrid molecular beam epitaxy, this obstacle can be overcome. High-quality, stoichiometric LaVO 3 films were grown withmore » defect densities of in-gap states up to 2 orders of magnitude lower compared to the films in the literature, and a factor of 3 lower than LaVO 3 bulk single crystals. Photoconductivity measurements revealed a significant photoresponsivity increase as high as tenfold of stoichiometric LaVO 3 films compared to their nonstoichiometric counterparts. Furthermore, this work marks a critical step toward the realization of high-performance Mott insulator solar cells beyond conventional semiconductors.« less

  5. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Pillet, J. C.; Pierre, F.; Jalabert, D.

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed

  6. High-Quality LaVO3 Films as Solar Energy Conversion Material.

    PubMed

    Zhang, Hai-Tian; Brahlek, Matthew; Ji, Xiaoyu; Lei, Shiming; Lapano, Jason; Freeland, John W; Gopalan, Venkatraman; Engel-Herbert, Roman

    2017-04-12

    Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron-hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron-electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency. With use of the self-regulated growth kinetics in hybrid molecular beam epitaxy, this obstacle can be overcome. High-quality, stoichiometric LaVO 3 films were grown with defect densities of in-gap states up to 2 orders of magnitude lower compared to the films in the literature, and a factor of 3 lower than LaVO 3 bulk single crystals. Photoconductivity measurements revealed a significant photoresponsivity increase as high as tenfold of stoichiometric LaVO 3 films compared to their nonstoichiometric counterparts. This work marks a critical step toward the realization of high-performance Mott insulator solar cells beyond conventional semiconductors.

  7. Interfacial Charge-Carrier Trapping in CH3NH3PbI3-Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy.

    PubMed

    Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-06-02

    The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

  8. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  9. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE PAGES

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...

    2017-10-10

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  10. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Iandolo, Donata; Willander, Magnus

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealedmore » by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (∼575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.« less

  11. Point defects in CdTe xSe 1-x crystals grown from a Te-rich solution for applications in detecting radiation

    DOE PAGES

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  12. Use of Isobestic and Isoemission Points in Absorption and Luminescence Spectra for Study of the Transformation of Radiation Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Stupak, A. P.; Runets, L. P.

    2015-03-01

    Isobestic and isoemission points are recorded in the combined absorption and luminescence spectra of two types of radiation defects involved in complex processes consisting of several simultaneous parallel and sequential reactions. These points are observed if a constant sum of two terms, each formed by the product of the concentration of the corresponding defect and a characteristic integral coefficient associated with it, is conserved. The complicated processes involved in the transformation of radiation defects in lithium fluoride are studied using these points. It is found that the ratio of the changes in the concentrations of one of the components and the reaction product remains constant in the course of several simultaneous reactions.

  13. Characterization of point defects in monolayer arsenene

    NASA Astrophysics Data System (ADS)

    Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence

    2018-06-01

    Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.

  14. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad

    In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.

  15. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGES

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; ...

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less

  16. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less

  17. Mg2Sn heterostructures on Si(111) substrate

    NASA Astrophysics Data System (ADS)

    Dózsa, L.; Galkin, N. G.; Pécz, B.; Osváth, Z.; Zolnai, Zs.; Németh, A.; Galkin, K. N.; Chernev, I. M.; Dotsenko, S. A.

    2017-05-01

    Thin un-doped and Al doped polycrystalline Mg-stannide films consisting mainly of Mg2Sn semiconductor phase have been grown by deposition of Sn-Mg multilayers on Si(111) p-type wafers at room temperature and annealing at 150 °C. Rutherford backscattering measurement spectroscopy (RBS) were used to determine the amount of Mg and Sn in the structures. Raman spectroscopy has shown the layers contain Mg2Sn phase. Cross sectional transmission electron microscopy (XTEM) measurements have identified Mg2Sn nanocrystallites in hexagonal and cubic phases without epitaxial orientation with respect to the Si(111) substrate. Significant oxygen concentration was found in the layer both by RBS and TEM. The electrical measurements have shown laterally homogeneous conductivity in the grown layer. The undoped Mg2Sn layers show increasing resistivity with increasing temperature indicating the scattering process dominates the resistance of the layers, i.e. large concentration of point defects was generated in the layer during the growth process. The Al doped layer shows increase of the resistance at low temperature caused by freeze out of free carriers in the Al doped Mg2Sn layer. The measurements indicate the necessity of protective layer grown over the Mg2Sn layers, and a short time delay between sample preparation and cross sectionalTEM analysis, since the unprotected layer is degraded by the interaction with the ambient.

  18. Bulk and edge spin transport in topological magnon insulators

    NASA Astrophysics Data System (ADS)

    Rückriegel, Andreas; Brataas, Arne; Duine, Rembert A.

    2018-02-01

    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin current driven through a normal metal |topological magnon insulator |normal metal heterostructure by a spin accumulation imbalance between the metals, with and without random lattice defects. We show that bulk and edge transport are characterized by different length scales. This results in a characteristic system size where the magnon transport crosses over from being bulk dominated for small systems to edge dominated for larger systems. These findings are generic and relevant for topological transport in systems of nonconserved bosons.

  19. Optical properties of metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, emitting light in the 1250–1400-nm spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.

    It is demonstrated that metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, which emit light in the 1250–1400 nm spectral range, can be fabricated by molecular-beam epitaxy. The structural and optical properties of the heterostructures are studied by X-ray diffraction analysis, transmission electron microscopy, and the photoluminescence method. Comparative analysis of the integrated photoluminescence intensity of the heterostructures and a reference sample confirm the high efficiency of radiative recombination in the heterostructures. It is confirmed by transmission electron microscopy that dislocations do not penetrate into the active region of the metamorphic heterostructures, where the radiative recombination of carriers occurs.

  20. Charge transfer in crystalline germanium/monolayer MoS 2 heterostructures prepared by chemical vapor deposition

    DOE PAGES

    Lin, Yung-Chen; Bilgin, Ismail; Ahmed, Towfiq; ...

    2016-09-21

    Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. There have been recent changes in new research areas related to 2D/2D heterostructures. But, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here also wemore » report a novel heterostructure composed of Ge and monolayer MoS 2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS 2. The electrical characteristics of Ge and MoS 2 in the Ge/MoS 2 heterostructure were remarkably different from those of isolated Ge and MoS 2. The field-effect conductivity type of the monolayer MoS 2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS 2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.« less

  1. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    NASA Astrophysics Data System (ADS)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  2. A review on III-V core-multishell nanowires: growth, properties, and applications

    NASA Astrophysics Data System (ADS)

    Royo, Miquel; De Luca, Marta; Rurali, Riccardo; Zardo, Ilaria

    2017-04-01

    This review focuses on the emerging field of core-multishell (CMS) semiconductor nanowires (NWs). In these kinds of wires, a NW grown vertically on a substrate acts as a template for the coaxial growth of two or more layers wrapped around it. Thanks to the peculiar geometry, the strain is partially released along the radial direction, thus allowing the creation of fascinating heterostructures, even based on lattice mismatched materials that would hardly grow in a planar geometry. Enabling the unique bridging of the 1D nature of NWs with the exciting properties of 2D heterostructures, these novel systems are becoming attractive for material science, as well as fundamental and applied physics. We will focus on NWs made of III-V and III-V-based alloys as they represent a model system in which present growth techniques have reached a high degree of control on the material structural properties, and many physical properties have been assessed, from both the theoretical and experimental points of view. In particular, we provide an overview on the growth methods and structural properties of CMS NWs, on the modulation doping mechanisms enabled by these heterostructures, on the effects of a magnetic field, and on the phononic and optical properties typical of CMS NWs. Moreover, we review the main technological applications based on these systems, such as optoelectronic and photovoltaic devices.

  3. Characterization of High Ge Content SiGe Heterostructures and Graded Alloy Layers Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Heyd, A. R.; Alterovitz, S. A.; Croke, E. T.

    1995-01-01

    Si(x)Ge(1-x)heterostructures on Si substrates have been widely studied due to the maturity of Si technology. However, work on Si(x)Ge)1-x) heterostructures on Ge substrates has not received much attention. A Si(x)Ge(1-x) layer on a Si substrate is under compressive strain while Si(x)Ge(1-x) on Ge is under tensile strain; thus the critical points will behave differently. In order to accurately characterize high Ge content Si(x)Ge(1-x) layers the energy shift algorithm used to calculate alloy compositions, has been modified. These results have been used along with variable angle spectroscopic ellipsometry (VASE) measurements to characterize Si(x)Ge(1-x)/Ge superlattices grown on Ge substrates. The results agree closely with high resolution x-ray diffraction measurements made on the same samples. The modified energy shift algorithm also allows the VASE analysis to be upgraded in order to characterize linearly graded layers. In this work VASE has been used to characterize graded Si(x)Ge(1-x) layers in terms of the total thickness, and the start and end alloy composition. Results are presented for a 1 micrometer Si(x)Ge(1-x) layer linearly graded in the range 0.5 less than or equal to x less than or equal to 1.0.

  4. Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.

    PubMed

    Paudel, Hari P; Leuenberger, Michael N

    2014-02-26

    Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.

  5. A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor.

    PubMed

    Madrigal, Carlos A; Branch, John W; Restrepo, Alejandro; Mery, Domingo

    2017-10-02

    Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%.

  6. A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor

    PubMed Central

    Branch, John W.

    2017-01-01

    Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%. PMID:28974037

  7. Optically inactive defects in monolayer and bilayer phosphorene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Huang, Ling-yi; Zhang, Xu; Zhang, Mingliang; Lu, Gang

    2018-05-01

    Many-body excitonic effect is crucial in two-dimensional (2D) materials and can significantly impact their optoelectronic properties. Because defects are inevitable in 2D materials, understanding how they influence the optical and excitonic properties of the 2D materials is of significant scientific and technological importance. Here we focus on intrinsic point defects in monolayer and bilayer phosphorene and examine whether and how their optoelectronic properties may be modified by the defects. Based on large-scale first-principles calculations, we have systematically explored the optical and excitonic properties of phosphorene in the presence and absence of the point defects. We find that the optical properties of bilayer phosphorene depend on the stacking order of the layers. More importantly, we reveal that the dominant point defects in few-layer phosphorene are optically inactive, which renders phosphorene particularly attractive in optoelectronic applications.

  8. Real-Time Optical Monitoring and Simulations of Gas Phase Kinetics in InN Vapor Phase Epitaxy at High Pressure

    NASA Technical Reports Server (NTRS)

    Dietz, Nikolaus; Woods, Vincent; McCall, Sonya D.; Bachmann, Klaus J.

    2003-01-01

    Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film both in terms of extended defect formation and chemical integrity of the interface. The initial nucleation process also defines the film quality during the later stages of film growth. The growth of emerging new materials heterostructures such as InN or In-rich Ga(x)In(1-x)N require deposition methods operating at higher vapor densities due to the high thermal decomposition pressure in these materials. High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical vapor deposition or etching experiments. Because of the difficulty with maintaining stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy than for InP, InAs and InSb. Also, no information exists regarding the partial pressures of nitrogen and phosphorus along the liquidus surfaces of mixed-anion alloys of InN, of which the InN(x)P(1-x) system is the most interesting option. A miscibility gap is expected for InN(x)P(1-x) pseudobinary solidus compositions, but its extent is not established at this point by experimental studies under near equilibrium conditions. The extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric single phase surface composition for materials that are characterized by large thermal decomposition pressures at optimum processing temperatures.

  9. Characterization of Local Carrier Dynamics in AlN and AlGaN Films using High Spatial- and Time-resolution Cathodoluminescence Spectroscopy

    DTIC Science & Technology

    2012-10-12

    21/2012 Abstract: In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in...quantitatively understood as functions of structural / point defect and impurity concentrations (crystal imperfections). However, only few papers [5...NOTES 14. ABSTRACT In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in wide bandgap

  10. Modeling a distribution of point defects as misfitting inclusions in stressed solids

    NASA Astrophysics Data System (ADS)

    Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.

    2014-05-01

    The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.

  11. Graphene/blue-phosphorus heterostructure as potential anode materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Kaimin; Tang, Ting; Wu, Shiyun; Zhang, Zhiyuan

    2018-01-01

    The first-principles calculations based on density functional theory (DFT) have been implemented to investigate the graphene/blue-phosphorus (G/BP) heterostructure as potential anode material for SIBs. The adsorption and diffusion behaviors of sodium (Na) in G/BP heterostructure and the effect of external electric field on Na adsorption have been investigated. The results indicate that G/BP heterostructure with Na adsorption is metallic due to Na incorporation, which is of benefit for electronic conductivity as anode material. The results show that the design of G/BP heterostructure is an efficient scheme to enhance the Na adsorption in G/BP without affecting the high mobility of Na in the G/BP heterostructure surface. The present work demonstrates that the external electric field can effectively modulate the adsorption of Na, and the adsorption behavior of Na is more sensitive to the external electric field when E > 0.10 V Å-1 in G/BP heterostructure. The Mulliken population analysis and DOS calculations have been performed to explore the charge transfer and the interaction between Na and G/BP.

  12. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    DOE PAGES

    Yu, Yifei; Hu, Shi; Su, Liqin; ...

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of themore » two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.« less

  13. Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTi O3

    NASA Astrophysics Data System (ADS)

    Asa, M.; Vinai, G.; Hart, J. L.; Autieri, C.; Rinaldi, C.; Torelli, P.; Panaccione, G.; Taheri, M. L.; Picozzi, S.; Cantoni, M.

    2018-03-01

    Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/BaTi O3 heterostructures grown on SrTi O3 (100) substrates. Chromium thin films (1-2 nm thickness) are deposited by molecular beam epitaxy on the BaTi O3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTi O3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with C r2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-C r2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.

  14. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.

    PubMed

    Reid, Kemar R; McBride, James R; Freymeyer, Nathaniel J; Thal, Lucas B; Rosenthal, Sandra J

    2018-02-14

    Thick-shell (>5 nm) InP-ZnSe colloidal quantum dots (QDs) grown by a continuous-injection shell growth process are reported. The growth of a thick crystalline shell is attributed to the high temperature of the growth process and the relatively low lattice mismatch between the InP core and ZnSe shell. In addition to a narrow ensemble photoluminescence (PL) line-width (∼40 nm), ensemble and single-particle emission dynamics measurements indicate that blinking and Auger recombination are reduced in these heterostructures. More specifically, high single-dot ON-times (>95%) were obtained for the core-shell QDs, and measured ensemble biexciton lifetimes, τ 2x ∼ 540 ps, represent a 7-fold increase compared to InP-ZnS QDs. Further, high-resolution energy dispersive X-ray (EDX) chemical maps directly show for the first time significant incorporation of indium into the shell of the InP-ZnSe QDs. Examination of the atomic structure of the thick-shell QDs by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals structural defects in subpopulations of particles that may mitigate PL efficiencies (∼40% in ensemble), providing insight toward further synthetic refinement. These InP-ZnSe heterostructures represent progress toward fully cadmium-free QDs with superior photophysical properties important in biological labeling and other emission-based technologies.

  15. La interstitial defect-induced insulator-metal transition in the oxide heterostructures LaAl O3 /SrTi O3

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Ming; Feng, Yuan Ping; Rusydi, Andrivo

    2017-11-01

    Perovskite oxide interfaces have attracted tremendous research interest for their fundamental physics and promising all-oxide electronic applications. Here, based on first-principles calculations, we propose a surface La interstitial promoted interface insulator-metal transition in LaAl O3 /SrTi O3 (110). Compared with surface oxygen vacancies, which play a determining role on the insulator-metal transition of LaAl O3 /SrTi O3 (001) interfaces, we find that surface La interstitials can be more experimentally realistic and accessible for manipulation and more stable in an ambient atmospheric environment. Interestingly, these surface La interstitials also induce significant spin-splitting states with a Ti dy z/dx z character at a conducting LaAl O3 /SrTi O3 (110) interface. On the other hand, for insulating LaAl O3 /SrTi O3 (110) (<4 unit cells LaAl O3 thickness), a distortion between La (Al) and O atoms is found at the LaAl O3 side, partially compensating the polarization divergence. Our results reveal the origin of the metal-insulator transition in LaAl O3 /SrTi O3 (110) heterostructures, and also shed light on the manipulation of the superior properties of LaAl O3 /SrTi O3 (110) for different possibilities in electronic and magnetic applications.

  16. Luminescence properties of defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael A.; Morkoç, Hadis

    2005-03-01

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of other impurities, such as C, Si, H, O, Be, Mn, Cd, etc., on the luminescence properties of GaN are also reviewed. Further, atypical luminescence lines which are tentatively attributed to the surface and structural defects are discussed. The effect of surfaces and surface preparation, particularly wet and dry etching, exposure to UV light in vacuum or controlled gas ambient, annealing, and ion implantation on the characteristics of the defect-related emissions is described.

  17. One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α -M o2C

    NASA Astrophysics Data System (ADS)

    Qiao, Jia-Bin; Gong, Yue; Zuo, Wei-Jie; Wei, Yi-Cong; Ma, Dong-Lin; Yang, Hong; Yang, Ning; Qiao, Kai-Yao; Shi, Jin-An; Gu, Lin; He, Lin

    2017-05-01

    Assembling different two-dimensional (2D) crystals, covering a very broad range of properties, into van der Waals (vdW) heterostructures enables unprecedented possibilities for combining the best of different ingredients in one objective material. So far, metallic, semiconducting, and insulating 2D crystals have been used successfully in making functional vdW heterostructures with properties by design. Here, we expand 2D superconducting crystals as a building block of vdW hererostructures. One-step growth of large-scale high-quality vdW heterostructures of graphene and 2D superconducting α -M o2C by using chemical vapor deposition is reported. The superconductivity and its 2D nature of the heterostructures are characterized by our scanning tunneling microscopy measurements. This adds 2D superconductivity, the most attractive property of condensed matter physics, to vdW heterostructures.

  18. Oxygen vacancies promoted interfacial charge carrier transfer of CdS/ZnO heterostructure for photocatalytic hydrogen generation.

    PubMed

    Xie, Ying Peng; Yang, Yongqiang; Wang, Guosheng; Liu, Gang

    2017-10-01

    The solid-state Z-scheme trinary/binary heterostructures show the advantage of utilizing the high-energy photogenerated charge carriers in photocatalysis. However, the key factors controlling such Z-scheme in the binary heterostructures are still unclear. In this paper, we showed that oxygen vacancies could act as an interface electron transfer mediator to promote the direct Z-scheme charge transfer process in binary semiconductor heterostructures of CdS/ZnS. Increasing the concentration of surface oxygen vacancies of ZnO crystal can greatly enhance photocatalytic hydrogen generation of CdS/ZnO heterostructure. This was attributed to the strengthened direct Z-scheme charge transfer process in CdS/ZnO, as evidenced by steady-state/time-resolved photoluminescence spectroscopy and selective photodeposition of metal particles on the heterostructure. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    PubMed Central

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-01-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. PMID:27126101

  20. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis

    PubMed Central

    Wang, Pengtang; Zhang, Xu; Zhang, Jin; Wan, Sheng; Guo, Shaojun; Lu, Gang; Yao, Jianlin; Huang, Xiaoqing

    2017-01-01

    Comprising abundant interfaces, multicomponent heterostructures can integrate distinct building blocks into single entities and yield exceptional functionalities enabled by the synergistic components. Here we report an efficient approach to construct one-dimensional metal/sulfide heterostructures by directly sulfuring highly composition-segregated platinum-nickel nanowires. The heterostructures possess a high density of interfaces between platinum-nickel and nickel sulfide components, which cooperate synergistically towards alkaline hydrogen evolution reaction. The platinum-nickel/nickel sulfide heterostructures can deliver a current density of 37.2 mA cm−2 at an overpotential of 70 mV, which is 9.7 times higher than that of commercial Pt/C. The heterostructures also offer enhanced stability revealed by long-term chronopotentiometry measurements. The present work highlights a potentially powerful interface-engineering strategy for designing multicomponent heterostructures with advanced performance in hydrogen evolution reaction and beyond. PMID:28239145

  1. Electronic transport and photovoltaic properties in Bi2Sr2Co2Oyepitaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Hai-Zhong; Gu, Lin; Yang, Zhen-Zhong; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Le; Jin, Kui-Juan; Lu, Hui-Bin; Wang, Can; Ge, Chen; He, Meng; Yang, Guo-Zhen

    2013-08-01

    Epitaxial heterostructures constructed from the thermoelectric cobalt Bi2Sr2Co2Oy thin films and SrTiO3 as well as SrTi0.993Nb0.007O3 substrates were fabricated by pulsed-laser deposition. The scanning transmission electron microscopy results confirm that the heterostructures are epitaxial, with sharp and coherent interfaces. The temperature-dependent electrical transport properties and the Hall effects were systematically investigated. The Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 p-n heterostructure exhibits good rectifying current-voltage characteristics over a wide temperature range. A strong photovoltaic effect was observed in the Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 heterostructure, with the temperature-dependent photovoltage being systematically investigated. The present work shows a great potential of this new heterostructures as photoelectric devices.

  2. System-size convergence of point defect properties: The case of the silicon vacancy

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Mostofi, Arash A.

    2011-07-01

    We present a comprehensive study of the vacancy in bulk silicon in all its charge states from 2+ to 2-, using a supercell approach within plane-wave density-functional theory, and systematically quantify the various contributions to the well-known finite size errors associated with calculating formation energies and stable charge state transition levels of isolated defects with periodic boundary conditions. Furthermore, we find that transition levels converge faster with respect to supercell size when only the Γ-point is sampled in the Brillouin zone, as opposed to a dense k-point sampling. This arises from the fact that defect level at the Γ-point quickly converges to a fixed value which correctly describes the bonding at the defect center. Our calculated transition levels with 1000-atom supercells and Γ-point only sampling are in good agreement with available experimental results. We also demonstrate two simple and accurate approaches for calculating the valence band offsets that are required for computing formation energies of charged defects, one based on a potential averaging scheme and the other using maximally-localized Wannier functions (MLWFs). Finally, we show that MLWFs provide a clear description of the nature of the electronic bonding at the defect center that verifies the canonical Watkins model.

  3. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE PAGES

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; ...

    2018-02-13

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  4. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    NASA Astrophysics Data System (ADS)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; Yu, Guodong; Canning, Andrew; Haranczyk, Maciej; Asta, Mark; Hautier, Geoffroy

    2018-05-01

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.

  5. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory DFT), have found widespread use in the calculation of point defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT)more » to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  6. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  7. Line and point defects in nonlinear anisotropic solids

    NASA Astrophysics Data System (ADS)

    Golgoon, Ashkan; Yavari, Arash

    2018-06-01

    In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with distributed line and point defects. In particular, we determine the stress fields of (i) a parallel cylindrically symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media, (ii) a cylindrically symmetric distribution of parallel wedge disclinations in an infinite orthotropic medium, (iii) a distribution of edge dislocations in an orthotropic medium, and (iv) a spherically symmetric distribution of point defects in a transversely isotropic spherical ball.

  8. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less

  9. A DFT study on the failure mechanism of Al2O3 film by various point defects in solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Hui; Chen, Bao; Jin, Ying; Sun, Dong-Bai

    2018-03-01

    The defects on oxide film surface are very important, and they would occur when the film is peeled or scratched. The periodic DFT calculations have been performed on Al2O3 surface to model the influences of various point-defects. Three kinds of point defect surfaces (vacancy, inversion, substitution) are considered, and the molecular H2O dissociation and the transition state are calculated. The predicted formation energy of O vacancy is 8.30 eV, whereas that corresponding to the formation of Al vacancy is found to be at least a 55% larger. On the vacancy point defect surfaces, upward H2O molecule surfaces prefer to occur chemical reaction, leading the surfaces to be hydroxylated. And then the D-Cl-substitution-Al surface is corroded, which suggests a Cl adsorption induced failure mechanism of the oxide film. At last, the process of H2O dissociation on the OH-substitution-Al surfaces with four or five transition paths are discussed.

  10. AlGaN/GaN heterostructures with an AlGaN layer grown directly on reactive-ion-etched GaN showing a high electron mobility (>1300 cm2 V-1 s-1)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Makino, Shinya; Kanatani, Keito; Kuzuhara, Masaaki

    2018-04-01

    In this study, the metal-organic-vapor-phase-epitaxial growth behavior and electrical properties of AlGaN/GaN structures prepared by the growth of an AlGaN layer on a reactive-ion-etched (RIE) GaN surface without regrown GaN layers were investigated. The annealing of RIE-GaN surfaces in NH3 + H2 atmosphere, employed immediately before AlGaN growth, was a key process in obtaining a clean GaN surface for AlGaN growth, that is, in obtaining an electron mobility as high as 1350 cm2 V-1 s-1 in a fabricated AlGaN/RIE-GaN structure. High-electron-mobility transistors (HEMTs) were successfully fabricated with AlGaN/RIE-GaN wafers. With decreasing density of dotlike defects observed on the surfaces of AlGaN/RIE-GaN wafers, both two-dimensional electron gas properties of AlGaN/RIE-GaN structures and DC characteristics of HEMTs were markedly improved. Since dotlike defect density was markedly dependent on RIE lot, rather than on growth lot, surface contaminations of GaN during RIE were believed to be responsible for the formation of dotlike defects and, therefore, for the inferior electrical properties.

  11. Charge carrier transfer in tungsten disulfide—black phosphorus heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Siqi; He, Dawei; Wang, Yongsheng; Zhang, Xinwu; He, Jiaqi

    2017-11-01

    Photocarrier dynamics in tungsten disulfide—black phosphorus (BP) heterostructures were studied by time-resolved differential reflection measurements. The heterostructures were fabricated by stacking together monolayer WS2 and BP flakes that are both fabricated by mechanical exfoliation. Efficient and ultrafast transfer of photocarriers from WS2 to BP flakes was observed. This confirms the type-I band alignment of WS2/BP heterostructures that was predicted by theory. Accompanied with the photocarrier interlayer transfer process from WS2 to BP flakes, the change of the absorption of WS2 persists for several nanoseconds. These results promote the consciousness about the carrier dynamics of interlayer transfer process in van der Waals heterostructures and its application in optoelectronic devices.

  12. Impurity-induced states in superconducting heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.

    2018-04-01

    Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.

  13. Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko

    2017-12-01

    A theoretical framework that provides a quantitative relationship between point defect formation energies and growth process parameters is presented. It enables systematic point defect reduction by chemical potential control in metalorganic chemical vapor deposition (MOCVD) of III-nitrides. Experimental corroboration is provided by a case study of C incorporation in GaN. The theoretical model is shown to be successful in providing quantitative predictions of CN defect incorporation in GaN as a function of growth parameters and provides valuable insights into boundary phases and other impurity chemical reactions. The metal supersaturation is found to be the primary factor in determining the chemical potential of III/N and consequently incorporation or formation of point defects which involves exchange of III or N atoms with the reservoir. The framework is general and may be extended to other defect systems in (Al)GaN. The utility of equilibrium formalism typically employed in density functional theory in predicting defect incorporation in non-equilibrium and high temperature MOCVD growth is confirmed. Furthermore, the proposed theoretical framework may be used to determine optimal growth conditions to achieve minimum compensation within any given constraints such as growth rate, crystal quality, and other practical system limitations.

  14. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.

    PubMed

    Huang, Bolong

    2016-05-11

    We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits to doping energy and explain photostimulated luminescence in terms of native point defects.

  15. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    NASA Astrophysics Data System (ADS)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  16. Preparation and characterization of BiFeO3/La0.7Sr0.3MnO3 heterostructure grown on SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Chenwei; Zhou, Chaochao; Chen, Changle

    2017-09-01

    In this paper, BiFeO3/La0.7Sr0.3MnO3 heterostructure is fabricated on the SrTiO (100) substrate using the pulsed laser deposition method (PLD). Magnetization hystersis loops of the BiFeO3/La0.7Sr0.3MnO3 heterostructure are obtained at 300 K and 80 K. The heterostructure exhibits evident ferromagnetic characteristic at both room temperature and 80 K. At 80 K, magnetization of the heterostructure is stronger than room temperature magnetic measure. The temperature dependence of resistance of the heterostructure with different currents is also studied. With different currents, there appears to be a peak resistance about 180 K. When I is 50 uA, ΔR is 68.4%. And when I is 100 uA, ΔR is 79.3%. The BiFeO3/La0.7Sr0.3MnO3 heterostructure exhibits a positive colossal magnetoresistance (MR) effect over a temperature range of 80-300 K. In our heterostructure, maximum magnetic resistance appears in 210 K, and MR = 44.34%. Mechanism analysis of the leakage current at room temperature shows that the leakage current is the interface-limited Schottky emission, but not dominated by the Poole-Frenkel emission or SCLC.

  17. A computational framework for automation of point defect calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  18. A computational framework for automation of point defect calculations

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...

    2017-01-13

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  19. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  20. TiO{sub 2} nanobelts with a uniform coating of g-C{sub 3}N{sub 4} as a highly effective heterostructure for enhanced photocatalytic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xing; Jin, Meimei; Dong, Huaqing

    2014-12-15

    A novel g-C{sub 3}N{sub 4}/TiO{sub 2} nanobelt (NB) heterostructure was successfully designed and prepared. The as-prepared g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructure exhibited high photocatalytic activity not only in the photodegradation of Rhodamine B (RhB) but also in photocatalytic H{sub 2} production. The g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructure with a mass ratio of 1:1 demonstrated the best performance in the photodegradation of RhB, whereas a mass ratio of 3:1 demonstrated the highest H{sub 2} production rate of 46.6 μmol h{sup −1} in photocatalytic H{sub 2} production. We conclude that the synergistic effect between g-C{sub 3}N{sub 4} and TiO{sub 2}more » NBs promotes the photogenerated carrier separation in space. This valuable insight into the rational architectural design of nanostructure-based photocatalysts is expected to shed light on other photocatalytic reaction systems in the future. - Graphical abstract: A novel strategy to fabricate the g-C{sub 3}N{sub 4}/TiO{sub 2} nanobelt (NB) heterostructures was reported. The g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructures exhibited highly effective photocatalytic activities for photodegradation of Rhodamine B and H{sub 2} production. - Highlights: • A novel strategy to fabricate the g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructures was reported. • The heterostructure exhibited high catalytic activity in photodegradation of RhB. • The heterostructure showed good H{sub 2} productivity in photocatalytic water splitting. • The synergistic effect between g-C{sub 3}N{sub 4} and TiO{sub 2} NBs are important. • This study shows that the heterostructure can be an effective photocatalyst.« less

  1. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    NASA Astrophysics Data System (ADS)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  2. NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Zhan; Xie, Yong; Wang, Haolin; Wu, Ruixue; Nan, Tang; Zhan, Yongjie; Sun, Jing; Jiang, Teng; Zhao, Ying; Lei, Yimin; Yang, Mei; Wang, Weidong; Zhu, Qing; Ma, Xiaohua; Hao, Yue

    2017-08-01

    Transition metal dichalcogenides (TMDs) have attracted considerable interest for exploration of next-generation electronics and optoelectronics in recent years. Fabrication of in-plane lateral heterostructures between TMDs has opened up excellent opportunities for engineering two-dimensional materials. The creation of high quality heterostructures with a facile method is highly desirable but it still remains challenging. In this work, we demonstrate a one-step growth method for the construction of high-quality MoS2-WS2 in-plane heterostructures. The synthesis was carried out using ambient pressure chemical vapor deposition (APCVD) with the assistance of sodium chloride (NaCl). It was found that the addition of NaCl played a key role in lowering the growth temperatures, in which the Na-containing precursors could be formed and condensed on the substrates to reduce the energy of the reaction. As a result, the growth regimes of MoS2 and WS2 are better matched, leading to the formation of in-plane heterostructures in a single step. The heterostructures were proved to be of high quality with a sharp and clear interface. This newly developed strategy with the assistance of NaCl is promising for synthesizing other TMDs and their heterostructures.

  3. Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.

    2018-04-01

    In this paper, the electronic properties and Schottky contact in graphene/MoS2 (G/MoS2) heterostructure under an applied electric field are investigated by means of the density functional theory. It can be seen that the electronic properties of the G/MoS2 heterostructure are preserved upon contacting owing to the weak van der Waals interaction. We found that the n-type Schottky contact is formed in the G/MoS2 heterostructure with the Schottky barrier height of 0.49 eV. Furthermore, both Schottky contact and Schottky barrier height in the G/MoS2 heterostructure could be controlled by the applied electric field. If a positive electric field of 4 V/nm is applied to the system, a transformation from the n-type Schottky contact to the p-type one was observed, whereas the system keeps an n-type Schottky contact when a negative electric field is applied. Our results may provide helpful information to design, fabricate, and understand the physics mechanism in the graphene-based two-dimensional van der Waals heterostructures like as G/MoS2 heterostructure.

  4. Proximity effect in superconductor/ferromagnet hetero-structures as a function of interface properties

    NASA Astrophysics Data System (ADS)

    Sarmiento, Julio; Patino, Edgar J.

    2014-03-01

    Superconductor/ferromagnet heterostructures are currently a subject of strong research due to novel phenomena resulting from the proximity effect. Among the most investigated ones are the oscillations of the critical temperature as function of the ferromagnet thickness. The oscillatory behavior of Tc is theoretically explained as to be result of the generation of the FFLO (Fulde-Ferrel-Larkin-Ovchinnikov) state of Cooper pairs under the presence of the exchange field of the ferromagnet. With the advancement of experimental techniques for S/F bilayers growth new questions regarding the effect of the interface transparency can to be addressed. For instance the influence of the interface roughness on the proximity effect. For studying this phenomenon Nb/Co and Nb/Cu/Co samples were sputtered on SiO2 substrates with different roughness. Characterization of these samples show a significant variation of Tc with the interface roughness. This results point towards a possible relationship between transparency and roughness of the interface. Proyecto Semilla Facultad de Ciencias Universidad de los Andes.

  5. MoO3/nano-Si heterostructure based highly sensitive and acetone selective sensor prototype: a key to non-invasive detection of diabetes.

    PubMed

    Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh

    2018-07-06

    This paper presents the development of an extremely sensitive and selective acetone sensor prototype which can be used as a platform for non-invasive diabetes detection through exhaled human breath. The miniaturized sensors were produced in high yield with the use of standard microfabrication processes. The sensors were based on a heterostructure composed of MoO 3 and nano-porous silicon (NPS). Features like acetone selective, enhanced sensor response and 0.5 ppm detection limit were observed upon introduction of MoO 3 on the NPS. The sensors were found to be repeatable and stable for almost 1 year, as tested under humid conditions at room temperature. It was inferred that the interface resistance of MoO 3 and NPS played a key role in the sensing mechanism. With the use of breath analysis and lab-on-chip, medical diagnosis procedures can be simplified and provide solutions for point-of-care testing.

  6. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure.

    PubMed

    Kjaergaard, M; Nichele, F; Suominen, H J; Nowak, M P; Wimmer, M; Akhmerov, A R; Folk, J A; Flensberg, K; Shabani, J; Palmstrøm, C J; Marcus, C M

    2016-09-29

    Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e 2 /h, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.

  7. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    NASA Astrophysics Data System (ADS)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  8. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications.

    PubMed

    Kong, Biao; Selomulya, Cordelia; Zheng, Gengfeng; Zhao, Dongyuan

    2015-11-21

    Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.

  9. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure

    PubMed Central

    Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.

    2016-01-01

    Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems. PMID:27682268

  10. Strongly enhanced Rashba splittings in an oxide heterostructure: A tantalate monolayer on BaHfO 3

    DOE PAGES

    Kim, Minsung; Ihm, Jisoon; Chung, Suk Bum

    2016-09-22

    In the two-dimensional electron gas emerging at the transition metal oxide surface and interface, various exotic electronic ordering and topological phases can become experimentally more accessible with the stronger Rashba spin-orbit interaction. Here, we present a promising route to realize significant Rashba-type band splitting using a thin film heterostructure. Based on first-principles methods and analytic model analyses, a tantalate monolayer on BaHfO 3 is shown to host two-dimensional bands originating from Ta t 2g states with strong Rashba spin splittings, nearly 10% of the bandwidth, at both the band minima and saddle points. An important factor in this enhanced splittingmore » is the significant t 2g–e g interband coupling, which can generically arise when the inversion symmetry is maximally broken due to the strong confinement of the 2DEG on a transition metal oxide surface. Here, our results could be useful in realizing topological superconductivity at oxide surfaces.« less

  11. Ferroelectric-Driven Performance Enhancement of Graphene Field-Effect Transistors Based on Vertical Tunneling Heterostructures.

    PubMed

    Yuan, Shuoguo; Yang, Zhibin; Xie, Chao; Yan, Feng; Dai, Jiyan; Lau, Shu Ping; Chan, Helen L W; Hao, Jianhua

    2016-12-01

    A vertical graphene heterostructure field-effect transistor (VGHFET) using an ultrathin ferroelectric film as a tunnel barrier is developed. The heterostructure is capable of providing new degrees of tunability and functionality via coupling between the ferroelectricity and the tunnel current of the VGHFET, which results in a high-performance device. The results pave the way for developing novel atomic-scale 2D heterostructures and devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  13. DFT study on the interfacial properties of vertical and in-plane BiOI/BiOIO3 hetero-structures.

    PubMed

    Dai, Wen-Wu; Zhao, Zong-Yan

    2017-04-12

    Composite photocatalysts with hetero-structures usually favor the effective separation of photo-generated carriers. In this study, BiOIO 3 was chosen to form a hetero-structure with BiOI, due to its internal polar field and good lattice matching with BiOI. The interfacial properties and band offsets were focused on and analyzed in detail by DFT calculations. The results show that the charge depletion and accumulation mainly occur in the region near the interface. This effect leads to an interfacial electric field and thus, the photo-generated electron-hole pairs can be easily separated and transferred along opposite directions at the interface, which is significant for the enhancement of the photocatalytic activity. Moreover, according to the analysis of band offsets, the vertical BiOI/BiOIO 3 belongs to the type-II hetero-structure, while the in-plane BiOI/BiOIO 3 belongs to the type-I hetero-structure. The former type of hetero-structure has more favorable effects to enhance the photocatalytic activity of BiOI than that of the latter type of hetero-structure. In the case of the vertical BiOI/BiOIO 3 hetero-structure, photo-generated electrons can move from the conduction band of BiOI to that of BiOIO 3 , while holes can move from the valence band of BiOIO 3 to that of BiOI under solar radiation. In addition, the introduced internal electric field functions as a selector that can promote the separation of photo-generated carriers, resulting in the higher photocatalytic quantum efficiency. These findings illustrate the underlying mechanism for the reported experiments, and can be used as a basis for the design of novel highly efficient composite photocatalysts with hetero-structures.

  14. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination

    PubMed Central

    Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-01-01

    Background One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. Material and Methods 60 human mandibular premolars with curvatures between 30–49° and radii between 2–4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Results Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) (P<0.05). The ProTaper Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system (P<0.05). Conclusions Rotary instrumentation systems often generate root defects, but the ProTaper NEXT system generated fewer dentinal defects than the ProTaper Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words:Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture. PMID:29167712

  15. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. Copyright © 2016, American Association for the Advancement of Science.

  16. Defect states of complexes involving a vacancy on the boron site in boronitrene

    NASA Astrophysics Data System (ADS)

    Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.

    2011-12-01

    First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.

  17. Accelerated defect visualization of microelectronic systems using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2018-04-01

    The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  18. Dextrocardia

    MedlinePlus

    Cyanotic heart defect - dextrocardia; Congenital heart defect - dextrocardia; Birth defect - dextrocardia ... During the early weeks of pregnancy, the baby’s heart develops. Sometimes, it turns so that it points ...

  19. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Di; Baek, David J.; Hong, Seung Sae

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-solublemore » Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.« less

  20. A Facile Route for Patterned Growth of Metal-Insulator Carbon Lateral Junction through One-Pot Synthesis.

    PubMed

    Park, Beomjin; Park, Jaesung; Son, Jin Gyeong; Kim, Yong-Jin; Yu, Seong Uk; Park, Hyo Ju; Chae, Dong-Hun; Byun, Jinseok; Jeon, Gumhye; Huh, Sung; Lee, Seoung-Ki; Mishchenko, Artem; Hyun, Seung; Lee, Tae Geol; Han, Sang Woo; Ahn, Jong-Hyun; Lee, Zonghoon; Hwang, Chanyong; Novoselov, Konstantin S; Kim, Kwang S; Hong, Byung Hee; Kim, Jin Kon

    2015-08-25

    Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of graphene/amorphous carbon (a-C) heterostructures from a solid source of polystyrene via selective photo-cross-linking process. Graphene is successfully grown from neat polystyrene regions, while patterned cross-linked polystyrene regions turn into a-C because of a large difference in their thermal stability. Since the electrical resistance of a-C is at least 2 orders of magnitude higher than that for graphene, the charge transport in graphene/a-C heterostructure occurs through the graphene region. Measurement of the quantum Hall effect in graphene/a-C lateral heterostructures clearly confirms the reliable quality of graphene and well-defined graphene/a-C interface. The direct synthesis of patterned graphene from polymer pattern could be further exploited to prepare versatile heterostructures.

  1. MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chi; Xie, Xiuqiang; Anasori, Babak

    Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less

  2. Luminance mechanisms in green organic light-emitting devices fabricated utilizing tris(8-hydroxyquinoline)aluminum/4,7-diphenyl-1, 10-phenanthroline multiple heterostructures acting as an electron transport layer.

    PubMed

    Choo, Dong Chul; Seo, Su Yul; Kim, Tae Whan; Jin, You Young; Seo, Ji Hyun; Kim, Young Kwan

    2010-05-01

    The electrical and the optical properties in green organic light-emitting devices (OLEDs) fabricated utilizing tris(8-hydroxyquinoline)aluminum (Alq3)/4,7-diphenyl-1,10-phenanthroline (BPhen) multiple heterostructures acting as an electron transport layer (ETL) were investigated. The operating voltage of the OLEDs with a multiple heterostructure ETL increased with increasing the number of the Alq3/BPhen heterostructures because more electrons were accumulated at the Alq3/BPhen heterointerfaces. The number of the leakage holes existing in the multiple heterostructure ETL of the OLEDs at a low voltage range slightly increased due to an increase of the internal electric field generated from the accumulated electrons at the Alq3/BPhen heterointerface. The luminance efficiency of the OLEDs with a multiple heterostructure ETL at a high voltage range became stabilized because the increase of the number of the heterointerface decreased the quantity of electrons accumulated at each heterointerface.

  3. Interlayer electron-phonon coupling in WSe2/hBN heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Suh, Joonki; Shi, Zhiwen; Chen, Bin; Fan, Xi; Kam, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wu, Junqiao; Wang, Feng

    2017-02-01

    Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures. Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures. In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications.

  4. MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries

    DOE PAGES

    Chen, Chi; Xie, Xiuqiang; Anasori, Babak; ...

    2018-01-02

    Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less

  5. Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V

    2012-01-31

    Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays andmore » allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.« less

  6. Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance.

    PubMed

    Zhang, Kai; Ding, Jia; Lou, Zheng; Chai, Ruiqing; Zhong, Mianzeng; Shen, Guozhen

    2017-10-19

    Heterostructured ZnS/InP nanowires, composed of single-crystalline ZnS nanowires coated with a layer of InP shell, were synthesized via a one-step chemical vapor deposition process. As-grown heterostructured ZnS/InP nanowires exhibited an ultrahigh I on /I off ratio of 4.91 × 10 3 , a high photoconductive gain of 1.10 × 10 3 , a high detectivity of 1.65 × 10 13 Jones and high response speed even in the case of very weak ultraviolet light illumination (1.87 μW cm -2 ). The values are much higher than those of previously reported bare ZnS nanowires owing to the formation of core/shell heterostructures. Flexible ultraviolet photodetectors were also fabricated with the heterostructured ZnS/InP nanowires, which showed excellent mechanical flexibility, electrical stability and folding endurance besides excellent photoresponse properties. The results elucidated that the heterostructured ZnS/InP nanowires could find good applications in next generation flexible optoelectronic devices.

  7. Ballistic-electron-emission spectroscopy of Al{sub x}Ga{sub 1{minus}x}As/GaAs heterostructures: Conduction-band offsets, transport mechanisms, and band-structure effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShea, J.J.; Brazel, E.G.; Rubin, M.E.

    1997-07-01

    We report an extensive investigation of semiconductor band-structure effects in single-barrier Al{sub x}Ga{sub 1{minus}x}As/GaAs heterostructures using ballistic-electron-emission spectroscopy (BEES). The transport mechanisms in these single-barrier structures were studied systematically as a function of temperature and Al composition over the full compositional range (0{le}x{le}1). The initial ({Gamma}) BEES thresholds for Al{sub x}Ga{sub 1{minus}x}As single barriers with 0{le}x{le}0.42 were extracted using a model which includes the complete transmission probability of the metal-semiconductor interface and the semiconductor heterostructure. Band offsets measured by BEES are in good agreement with previous measurements by other techniques which demonstrates the accuracy of this technique. BEES measurements atmore » 77 K give the same band-offset values as at room temperature. When a reverse bias is applied to the heterostructures, the BEES thresholds shift to lower voltages in good agreement with the expected bias-induced band-bending. In the indirect band-gap regime ({ital x}{gt}0.45), spectra show a weak ballistic-electron-emission microscopy current contribution due to intervalley scattering through Al{sub x}Ga{sub 1{minus}x}As {ital X} valley states. Low-temperature spectra show a marked reduction in this intervalley current component, indicating that intervalley phonon scattering at the GaAs/Al{sub x}Ga{sub 1{minus}x}As interface produces a significant fraction of this{ital X} valley current. A comparison of the BEES thresholds with the expected composition dependence of the Al{sub x}Ga{sub 1{minus}x}As {Gamma}, {ital L}, and {ital X} points yields good agreement over the entire composition range. {copyright} {ital 1997} {ital The American Physical Society}« less

  8. Characterization of oxygen defects in diamond by means of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Thiering, Gergő; Gali, Adam

    2016-09-01

    Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.

  9. FIBER OPTICS: Role of point defects in the photosensitivity of hydrogen-loaded phosphosilicate glass

    NASA Astrophysics Data System (ADS)

    Larionov, Yu V.

    2010-08-01

    It is shown that point defect modifications in hydrogen-loaded phosphosilicate glass (PSG) do not play a central role in determining its photosensitivity. Photochemical reactions that involve a two-step point defect modification and pre-exposure effect are incapable of accounting for photoinduced refractive index changes. It seems likely that a key role in UV-induced refractive index modifications is played by structural changes in the PSG network. Experimental data are presented that demonstrate intricate network rearrangement dynamics during UV exposure of PSG.

  10. Effects of artificially produced defects on film thickness distribution in sliding EHD point contacts

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Wedeven, L. D.

    1981-01-01

    The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.

  11. A fabrication guide for planar silicon quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2018-04-01

    We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.

  12. Nanoheteroepitaxy of gallium arsenide on strain-compliant silicon-germanium nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Hock-Chun; Gong, Xiao; Yeo, Yee-Chia

    Heterogeneous integration of high-quality GaAs on Si-based substrates using a selective migration-enhanced epitaxy (MEE) of GaAs on strain-compliant SiGe nanowires was demonstrated for the first time. The physics of compliance in nanoscale heterostructures was captured and studied using finite-element simulation. It is shown that nanostructures can provide additional substrate compliance for strain relief and therefore contribute to the formation of defect-free GaAs on SiGe. Extensive characterization using scanning electron microscopy and cross-sectional transmission electron microscopy was performed to illustrate the successful growth of GaAs on SiGe nanowire. Raman and Auger electron spectroscopy measurements further confirmed the quality of the GaAsmore » grown and the high growth selectivity of the MEE process.« less

  13. Imaging atomic-level random walk of a point defect in graphene

    NASA Astrophysics Data System (ADS)

    Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.

    2014-05-01

    Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.

  14. Insight into point defects and impurities in titanium from first principles

    NASA Astrophysics Data System (ADS)

    Nayak, Sanjeev K.; Hung, Cain J.; Sharma, Vinit; Alpay, S. Pamir; Dongare, Avinash M.; Brindley, William J.; Hebert, Rainer J.

    2018-03-01

    Titanium alloys find extensive use in the aerospace and biomedical industries due to a unique combination of strength, density, and corrosion resistance. Decades of mostly experimental research has led to a large body of knowledge of the processing-microstructure-properties linkages. But much of the existing understanding of point defects that play a significant role in the mechanical properties of titanium is based on semi-empirical rules. In this work, we present the results of a detailed self-consistent first-principles study that was developed to determine formation energies of intrinsic point defects including vacancies, self-interstitials, and extrinsic point defects, such as, interstitial and substitutional impurities/dopants. We find that most elements, regardless of size, prefer substitutional positions, but highly electronegative elements, such as C, N, O, F, S, and Cl, some of which are common impurities in Ti, occupy interstitial positions.

  15. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  16. Native point defects in GaSb

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-01

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  17. Broadband mixing of $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less

  18. Broadband mixing of [Formula: see text]-symmetric and [Formula: see text]-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer.

    PubMed

    Özgün, Ege; Serebryannikov, Andriy E; Ozbay, Ekmel; Soukoulis, Costas M

    2017-11-14

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enabling [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.

  19. Broadband mixing of $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases in photonic heterostructures with a one-dimensional loss/gain bilayer

    DOE PAGES

    Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel; ...

    2017-11-14

    Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less

  20. Defect assistant band alignment transition from staggered to broken gap in mixed As/Sb tunnel field effect transistor heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.; Jain, N.; Vijayaraghavan, S.

    2012-11-01

    The compositional dependence of effective tunneling barrier height (E{sub beff}) and defect assisted band alignment transition from staggered gap to broken gap in GaAsSb/InGaAs n-channel tunnel field effect transistor (TFET) structures were demonstrated by x-ray photoelectron spectroscopy (XPS). High-resolution x-ray diffraction measurements revealed that the active layers are internally lattice matched. The evolution of defect properties was evaluated using cross-sectional transmission electron microscopy. The defect density at the source/channel heterointerface was controlled by changing the interface properties during growth. By increasing indium (In) and antimony (Sb) alloy compositions from 65% to 70% in In{sub x}Ga{sub 1-x}As and 60% to 65%more » in GaAs{sub 1-y}Sb{sub y} layers, the E{sub beff} was reduced from 0.30 eV to 0.21 eV, respectively, with the low defect density at the source/channel heterointerface. The transfer characteristics of the fabricated TFET device with an E{sub beff} of 0.21 eV show 2 Multiplication-Sign improvement in ON-state current compared to the device with E{sub beff} of 0.30 eV. On contrary, the value of E{sub beff} was decreased from 0.21 eV to -0.03 eV due to the presence of high defect density at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. As a result, the band alignment was converted from staggered gap to broken gap, which leads to 4 orders of magnitude increase in OFF-state leakage current. Therefore, a high quality source/channel interface with a properly selected E{sub beff} and well maintained low defect density is necessary to obtain both high ON-state current and low OFF-state leakage in a mixed As/Sb TFET structure for high-performance and lower-power logic applications.« less

  1. Heterostructure of ferromagnetic and ferroelectric materials with magneto-optic and electro-optic effects

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)

    2012-01-01

    A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.

  2. Imaging interfacial electrical transport in graphene–MoS{sub 2} heterostructures with electron-beam-induced-currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E. R., E-mail: ewhite@physics.ucla.edu; Kerelsky, Alexander; Hubbard, William A.

    2015-11-30

    Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS{sub 2} heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrentmore » collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.« less

  3. Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations

    NASA Astrophysics Data System (ADS)

    Yuan, Junhui; Yu, Niannian; Wang, Jiafu; Xue, Kan-Hao; Miao, Xiangshui

    2018-04-01

    The successful fabrication of two-dimensional lateral heterostructures (LHS's) has opened up unprecedented opportunities in material science and device physics. It is therefore highly desirable to search for more suitable materials to create such heterostructures for next-generation devices. Here, we investigate a novel lateral heterostructure composed of monolayer ZrS2 and HfS2 based on density functional theory. The phonon dispersion and ab initio molecular dynamics analysis indicate its good kinetic and thermodynamic stability. Remarkably, we find that these lateral heterostructures exhibit an indirect to direct bandgap transition, in contrast to the intrinsic indirect bandgap nature of ZrS2 and HfS2. The type-II alignment and chemical bonding across the interline have also been revealed. The tensile strain is proved to be an efficient way to modulate the band structure. Finally, we further discuss other three stable lateral heterostructures: (ZrSe2)2(HfSe2)2 LHS, (ZrS2)2(ZrSe2)2 LHS and (HfS2)2(HfSe2)2 LHS. Generally, the lateral heterostructures of monolayer ZrS2 and HfS2 are of excellent electrical properties, and may find potential applications for future electronic devices.

  4. Lateral topological crystalline insulator heterostructure

    NASA Astrophysics Data System (ADS)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  5. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.

    PubMed

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-08-16

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.

  6. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  7. Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications.

    PubMed

    Wu, Yen-Ting; Huang, Chun-Wei; Chiu, Chung-Hua; Chang, Chia-Fu; Chen, Jui-Yuan; Lin, Ting-Yi; Huang, Yu-Ting; Lu, Kuo-Chang; Yeh, Ping-Hung; Wu, Wen-Wei

    2016-02-10

    Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated β-Pt2Si/Si/θ-Ni2Si, β-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

  8. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study.

    PubMed

    Pinheiro, Antonio L B; Soares, Luiz G P; Cangussú, Maria Cristina T; Santos, Nicole R S; Barbosa, Artur Felipe S; Silveira Júnior, Landulfo

    2012-09-01

    We studied peaks of calcium hydroxyapatite (CHA) and protein and lipid CH groups in defects grafted with mineral trioxide aggregate (MTA) treated or not with LED irradiation, bone morphogenetic proteins and guided bone regeneration. A total of 90 rats were divided into ten groups each of which was subdivided into three subgroups (evaluated at 15, 21 and 30 days after surgery). Defects were irradiated with LED light (wavelength 850 ± 10 nm) at 48-h intervals for 15 days. Raman readings were taken at the surface of the defects. There were no statistically significant differences in the CHA peaks among the nonirradiated defects at any of the experimental time-points. On the other hand, there were significant differences between the defects filled with blood clot and the irradiated defects at all time-points (p < 0.001, p = 0.02, p < 0.001). There were significant differences between the mean peak CHA in nonirradiated defects at all the experimental time-points (p < 0.01). The mean peak of the defects filled with blood clot was significantly different from that of the defects filled with MTA (p < 0.001). There were significant differences between the defects filled with blood clot and the irradiated defects (p < 0.001). The results of this study using Raman spectral analysis indicate that infrared LED light irradiation improves the deposition of CHA in healing bone grafted or not with MTA.

  9. Defect stability in thorium monocarbide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping

    2015-09-01

    The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  10. Physics of SrTiO3-based heterostructures and nanostructures: a review.

    PubMed

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2017-08-30

    1 Overview 1 1.1 Introduction 1 1.1.1 Oxide growth techniques are rooted in search for high-Tc superconductors 2 1.1.2 First reports of interface conductivity 2 1.2 2D physics 2 1.3 Emergent properties of oxide heterostructures and nanostructures 3 1.4 Outline 3 2 Relevant properties of SrTiO3 3 2.1 Structural properties and transitions 3 2.2 Ferroelectricity, Paraelectricity and Quantum Paraelectricity 4 2.3 Electronic structure 5 2.4 Defects 6 2.4.1 Oxygen vacancies 6 2.4.2 Terraces 7 2.5 Superconductivity 7 3 SrTiO3-based heterostructures and nanostructures 8 3.1 Varieties of heterostructures 8 3.1.1 SrTiO3 only 9 3.1.2 LaAlO3/SrTiO3 9 3.1.3 Other heterostructures formed with SrTiO3 10 3.2 Thin-film growth 10 3.2.1 Substrates 10 3.2.2 SrTiO3 surface treatment 11 3.2.3 Pulsed Laser Deposition 11 3.2.4 Atomic Layer Deposition 13 3.2.5 Molecular Beam Epitaxy 14 3.2.6 Sputtering 15 3.3 Device Fabrication 15 3.3.1 "Conventional" photolithography - Thickness Modulation, hard masks, etc. 15 3.3.2 Ion beam irradiation 16 3.3.3 Conductive-AFM lithography 16 4 Properties and phase diagram of LaAlO3/SrTiO3 16 4.1 Insulating state 16 4.2 Conducting state 17 4.2.1 Confinement thickness (the depth profile of the 2DEG) 17 4.3 Metal-insulator transition and critical thickness 18 4.3.1 Polar catastrophe ( electronic reconstruction) 18 4.3.2 Oxygen Vacancies 19 4.3.3 Interdiffusion 20 4.3.4 Polar Interdiffusion + oxygen vacancies + antisite pairs 20 4.3.5 Role of surface adsorbates 21 4.3.6 Hidden FE like distortion - Strain induced instability 21 4.4 Structural properties and transitions 21 4.5 Electronic band structure 22 4.5.1 Theory 22 4.5.2 Experiment 23 4.5.3 Lifshitz transition 24 4.6 Defects, doping, and compensation 25 4.7 Magnetism 25 4.7.1 Experimental evidence 25 4.7.2 Two types of magnetism 27 4.7.3 Ferromagnetism 27 4.7.4 Metamagnetism 28 4.8 Superconductivity 28 4.9 Optical properties 29 4.9.1 Photoluminesce experiments 29 4.9.2 Second Harmonic Generation 29 4.10 Coexistence of superconductivity and magnetism 30 4.11 Magnetic and conducting phases 30 5 Quantum transport in LaAlO3/SrTiO3 heterostructures and microstructures 31 5.1 2D transport 31 5.2 Inhomogeneous Transport 31 5.3 Anisotropic Magnetoresistance 32 5.4 Spin-orbit coupling 32 5.5 Anomalous Hall Effect 34 5.6 Shubnikov-de Haas (SdH) Oscillation 35 5.7 Quantum Hall Effect 37 5.8 Spintronic Effects 38 6 Quantum transport in LaAlO3/SrTiO3 nanostructures 39 6.1 Quasi-1D Superconductivity 39 6.2 Universal conductance fluctuations 40 6.3 Dissipationless Electronic Waveguides 40 6.4 Superconducting Quantum Interference Devices (SQUID) 41 6.5 Electron pairing without superconductivity 41 6.6 Tunable Electron-Electron Interaction 42 7 Outlook 43 7.1 Outstanding physics questions 43 7.1.1 Polar catastrophe (not) 43 7.1.2 Coexistence of phases 43 7.1.3 Novel superconducting states (e.g., FFLO, other pairing symmetries) 43 7.1.4 Magnetism mechanism 43 7.1.5 Exotic phases (eg. Majorana physics) 43 7.1.6 Luttinger liquids 44 7.2 Future applications 44 7.2.1 Spintronics 44 7.2.2 Quantum simulation 44 7.2.3 Qubits/quantum computing 44 7.2.4 Sensing 44 8 Figures 45 9 Reference 6. © 2017 IOP Publishing Ltd.

  11. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukrittanon, Supanee; Liu, Ren; Pan, Janet L.

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in themore » GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.« less

  12. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE.

    PubMed

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  13. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    NASA Astrophysics Data System (ADS)

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; Pan, Janet L.; Jungjohann, K. L.; Tu, Charles W.; Dayeh, Shadi A.

    2016-08-01

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  14. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    DOE PAGES

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; ...

    2016-08-07

    Here, we report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We also show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface andmore » in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. Finally, we present performance benefits of dilute nitride microwire solar cells and show that it can be achieved by further tuning of the epitaxial quality of the underlying materials.« less

  15. C@SiNW/TiO2 Core-Shell Nanoarrays with Sandwiched Carbon Passivation Layer as High Efficiency Photoelectrode for Water Splitting

    PubMed Central

    Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K.; Shelke, Manjusha V.

    2014-01-01

    One-dimensional heterostructure nanoarrays are efficiently promising as high performance electrodes for photo electrochemical (PEC) water splitting applications, wherein it is highly desirable for the electrode to have a broad light absorption, efficient charge separation and redox properties as well as defect free surface with high area suitable for fast interfacial charge transfer. We present highly active and unique photoelectrode for solar H2 production, consisting of silicon nanowires (SiNWs)/TiO2 core-shell structures. SiNWs are passivated to reduce defect sites and protected against oxidation in air or water by forming very thin carbon layer sandwiched between SiNW and TiO2 surfaces. This carbon layer decreases recombination rates and also enhances the interfacial charge transfer between the silicon and TiO2. A systematic investigation of the role of SiNW length and TiO2 thickness on photocurrent reveals enhanced photocurrent density up to 5.97 mA/cm2 at 1.0 V vs.NHE by using C@SiNW/TiO2 nanoarrays with photo electrochemical efficiency of 1.17%. PMID:24810865

  16. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects

    NASA Astrophysics Data System (ADS)

    Yuan, Zhipeng; Cui, Hongbao; Guo, Xuefeng

    2017-01-01

    Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C 11-C 11, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics. Project supported by the National Natural Science Foundation of China (Nos. 51301063, 51571086) and the Talent Introduction Foundation of Henan Polytechnic University (No. Y-2009).

  17. Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering.

    PubMed

    Tan, Yang; Ma, Linan; Gao, Zhibin; Chen, Ming; Chen, Feng

    2017-04-12

    Raman enhancement on a flat nonmetallic surface has attracted increasing attention, ever since the discovery of graphene enhanced Raman scattering. Recently, diverse two-dimensional layered materials have been applied as a flat surface for the Raman enhancement, attributed to different mechanisms. Looking beyond these isolated materials, atomic layers can be reassembled to design a heterostructure stacked layer by layer with an arbitrary chosen sequence, which allows the flow of charge carriers between neighboring layers and offers novel functionalities. Here, we demonstrate the heterostructure as a novel Raman enhancement platform. The WSe 2 (W) monolayer and graphene (G) were stacked together to form a heterostructure with an area of 10 mm × 10 mm. Heterostructures with different stacked structuress are used as platforms for the enhanced Raman scattering, including G/W, W/G, G/W/G/W, and W/G/G/W. On the surface of the heterostructure, the intensity of the Raman scattering is much stronger compared with isolated layers, using the copper phthalocyanine (CuPc) molecule as a probe. It is found that the Raman enhancement effect on heterostructures depends on stacked methods. Phonon modes of CuPc have the strongest enhancement on G/W. W/G and W/G/G/W have a stronger enhancement than that on the isolated WSe 2 monolayer, while lower than the graphene monolayer. The G/W/G/W/substrate demonstrated a comparable Raman enhancement effect than the G/W/substrate. These differences are due to the different interlayer couplings in heterostructures related to electron transition probability rates, which are further proved by first-principle calculations and probe-pump measurements.

  18. Electronic Transport in Ultrathin Heterostructures.

    DTIC Science & Technology

    1981-10-01

    heterostructures, superlattices, diffusion-enhanced disorder, transport properties, molecular beam epitaxy (MBE), photoluminescence, optical absorption...tion of single and multilayer GatlAs/GaAs heterostructures by metalorganic chemical vapor deposition (MJCVD) and molecular beam epitaxy (MBE) has...fundamental nature of these clusters and their relevance to other epitaxial techniques such as molecular beam epitaxy (MBE). To further varify or

  19. CdSe/beta-Pb0.33V2O5 heterostructures: Nanoscale semiconductor interfaces with tunable energetic configurations for solar energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Milleville, Christopher C.

    This dissertation focuses on the formation and characterization of semiconductor heterostructures, consisting of light-harvesting cadmium selenide quantum dots (CdSe QDs) and single crystalline lead vanadium oxide nanowires (β-Pb0.33V2O5 NWs), for the purpose of excited-state charge transfer and photocatalytic production of solar fuels. We reported two distinct routes for assembling CdSe/β-Pb0.33V2O5 heterostructures: linker-assisted assembly (LAA) mediated by a bifunctional ligand and successive ionic layer adsorption and reaction (SILAR). In the former case, the thiol end of a molecular linker, cysteine (Cys) is found to bind to the QD surface, whereas a protonated amine moiety interacts electrostatically with the negatively charged NW surface. In the alternative SILAR route, the surface coverage of CdSe on the β-Pb0.33V2O5 NWs is tuned by varying the number of successive precipitation cycles. Hard X-ray photoelectron spectroscopy (HAXPES) measurements revealed that the mid-gap states of β-Pb0.33V2O5 NWs are closely overlapped in energy with the valence band edges of CdSe QDs, suggesting that hole transfer from the valence band of CdSe into the mid-gap states is possible. Preliminary evidence of hole transfer was obtained through photoluminescence quenching experiments. Steady-state and time-resolved photoluminescence measurements on Cys-CdSe dispersions, mixed dispersions of Cys-CdSe QDs and β-Pb0.33V¬2O5 NWs, and mixed dispersions of Cys-CdS QDs and V2O5 revealed a greater extent of quenching of the emission of Cys-CdSe QDs by β Pb0.33V¬2O5 relative to V2O5. V2O5, devoid of mid-gap states, is unable to accept holes from CdSe and therefore should not quench emission to the same extent as β-Pb0.33V¬2O5. The additional quenching was dynamic, consistent with a mechanism involving the transfer of photogenerated holes from CdSe QDs to the mid-gap states of β Pb0.33V2O5. Transient absorption spectroscopy (TA) was used to probe the dynamics of interfacial charge transfer of CdSe/β-Pb0.33V¬2O5 and CdSe/V2O5 heterostructures. TA measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by a transfer of electrons to the conduction band of β-Pb0.33V¬2O5 and holes to the mid-gap states of β-Pb0.33V¬2O5. Ultrafast transient absoprtion measurements revealed that holes actually transferred before electrons, on time scales of ca. 2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V2O5, only electron transfer was observed. In addition, electron transfer was readily achieved for SILAR-prepared heterostructures; however, for LAA-prepared heterostructures, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Transient absorbance decay traces revealed longer excited-state lifetimes (1-3 μs) for CdSe/β Pb0.33V2O5 heterostructures relative to bare β-Pb0.33V2O5 NWs (0.2 to 0.6 μs); the difference was attributed to surface passivation of intrinsic surface defects in β-Pb0.33V2O5 upon interfacing with CdSe. In an effort to improve the energetic offset in QD/β-Pb0.33V2O5 heterostructures, cadmium sulfide (CdS) QDs were used in place of CdSe QDs. X-ray photoelectron spectroscopy (XPS) valence band spectra of CdS/β-Pb0.33V2O5 and CdSe/β-Pb0.33V2O5 revealed a greater binding energy onset for CdS compared to CdSe. Binding energy onsets of 1.33 (± 0.03) and 0.92 (± 0.02) eV were determined for Cys-CdS/β Pb0.33V2O5 and Cys-CdSe/β Pb0.33V2O5, respectively; suggesting a 0.41 (±0.04) eV decrease in the free energy (ΔG) needed for hole transfer from the valence band edge of the QDs to the mid-gap states. Linear sweep voltammetry was employed to measure the photocatalytic activity of CdSe/β Pb0.33V2O5 heterostructures in electrolytes containing ascorbic acid as a sacrificial proton donor. Preliminary photoelectrochemical measurements on CdSe/β-Pb0.33V2O5 electrodes revealed reductive photocurrents at applied potentials ca. 450 mV positive of the dark proton reduction onset. Importantly, no reductive photocurrents were measured on bare β-Pb0.33V2O5 electrodes. These results are consistent with a mechanism in which photoinduced hole transfer from CdSe QDs to the mid-gap states of β Pb0.33V2O5 NWs facilitates the reduction of protons, as the charge-separated state allows proton reduction to compete with exciton recombination. This avenue of research is ongoing.

  20. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g-1.

    PubMed

    Kim, Dongheun; Li, Nan; Sheehan, Chris J; Yoo, Jinkyoung

    2018-04-26

    Si/Ge core/shell nanowire heterostructures have been expected to provide high energy and power densities for lithium ion battery anodes due to the large capacity of Si and the high electrical and ionic conductivities of Ge. Although the battery anode performances of Si/Ge core/shell nanowire heterostructures have been characterized, the degradation of Si/Ge core/shell nanowire heterostructures has not been thoroughly investigated. Here we report the compositional and structural changes of the Si/Ge core/shell nanowire heterostructure over cycling of lithiation and delithiation at different charging rates. The Si/Ge core/shell nanowire heterostructure holds the core and shell structure at a charging rate of 0.8 A g-1 up to 50 cycles. On the other hand, compositional intermixing and loss of Si occur at a charging rate of 20 A g-1 within 50 cycles. The operation condition-dependent degradation provides a new aspect of materials research for the development of high performance lithium ion battery anodes with a long cycle life.

  1. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  2. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers

    DOE PAGES

    Lu, Di; Baek, David J.; Hong, Seung Sae; ...

    2016-09-12

    Here, the ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals 1, 2, 3, 4, 5, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality 6, 7, 8, 9 and emergent phenomena, as seen in perovskite heterostructures 10, 11, 12. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general methodmore » to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds 13, 14.« less

  3. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  4. Self-assembly of electronically abrupt borophene/organic lateral heterostructures

    PubMed Central

    Liu, Xiaolong; Wei, Zonghui; Balla, Itamar; Mannix, Andrew J.; Guisinger, Nathan P.; Luijten, Erik; Hersam, Mark C.

    2017-01-01

    Two-dimensional boron sheets (that is, borophene) have recently been realized experimentally and found to have promising electronic properties. Because electronic devices and systems require the integration of multiple materials with well-defined interfaces, it is of high interest to identify chemical methods for forming atomically abrupt heterostructures between borophene and electronically distinct materials. Toward this end, we demonstrate the self-assembly of lateral heterostructures between borophene and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). These lateral heterostructures spontaneously form upon deposition of PTCDA onto submonolayer borophene on Ag(111) substrates as a result of the higher adsorption enthalpy of PTCDA on Ag(111) and lateral hydrogen bonding among PTCDA molecules, as demonstrated by molecular dynamics simulations. In situ x-ray photoelectron spectroscopy confirms the weak chemical interaction between borophene and PTCDA, while molecular-resolution ultrahigh-vacuum scanning tunneling microscopy and spectroscopy reveal an electronically abrupt interface at the borophene/PTCDA lateral heterostructure interface. As the first demonstration of a borophene-based heterostructure, this work will inform emerging efforts to integrate borophene into nanoelectronic applications. PMID:28261662

  5. Strong spin-orbit splitting and magnetism of point defect states in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Li, Wun-Fan; Fang, Changming; van Huis, Marijn A.

    2016-11-01

    The spin-orbit coupling (SOC) effect has been known to be profound in monolayer pristine transition metal dichalcogenides (TMDs). Here we show that point defects, which are omnipresent in the TMD membranes, exhibit even stronger SOC effects and change the physics of the host materials drastically. In this article we chose the representative monolayer WS2 slabs from the TMD family together with seven typical types of point defects including monovacancies, interstitials, and antisites. We calculated the formation energies of these defects, and studied the effect of spin-orbit coupling (SOC) on the corresponding defect states. We found that the S monovacancy (VS) and S interstitial (adatom) have the lowest formation energies. In the case of VS and both of the WS and WS 2 antisites, the defect states exhibit strong splitting up to 296 meV when SOC is considered. Depending on the relative position of the defect state with respect to the conduction band minimum (CBM), the hybrid functional HSE will either increase the splitting by up to 60 meV (far from CBM), or decrease the splitting by up to 57 meV (close to CBM). Furthermore, we found that both the WS and WS 2 antisites possess a magnetic moment of 2 μB localized at the antisite W atom and the neighboring W atoms. The dependence of SOC on the orientation of the magnetic moment for the WS and WS 2 antisites is discussed. All these findings provide insights in the defect behavior under SOC and point to possibilities for spintronics applications for TMDs.

  6. Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures

    DOE PAGES

    Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.; ...

    2017-06-19

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less

  7. Superthin Solar Cells Based on AIIIBV/Ge Heterostructures

    NASA Astrophysics Data System (ADS)

    Pakhanov, N. A.; Pchelyakov, O. P.; Vladimirov, V. M.

    2017-11-01

    A comparative analysis of the prospects of creating superthin, light-weight, and highly efficient solar cells based on AIIIBV/InGaAs and AIIIBV/Ge heterostructures is performed. Technological problems and prospects of each variant are discussed. A method of thinning of AIIIBV/Ge heterostructures with the use of an effective temporary carrier is proposed. The method allows the process to be performed almost with no risk of heterostructure fracture, thinning of the Ge junction down to several tens of micrometers (or even several micrometers), significant enhancement of the yield of good structures, and also convenient and reliable transfer of thinned solar cells to an arbitrary light and flexible substrate. Such a technology offers a possibility of creating high-efficiency thin and light solar cells for space vehicles on the basis of mass-produced AIIIBV/Ge heterostructures.

  8. Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less

  9. Two-dimensional spinodal interface in one-step grown graphene-molybdenum carbide heterostructures

    NASA Astrophysics Data System (ADS)

    Qiao, Jia-Bin; Gong, Yue; Liu, Haiwen; Shi, Jin-An; Gu, Lin; He, Lin

    2018-05-01

    Heterostructures made by stacking different materials on top of each other are expected to exhibit unusual properties and new phenomena. Interface of the heterostructures plays a vital role in determining their properties. Here, we report the observation of a two-dimensional (2D) spinodal interface in graphene-molybdenum carbide (α -M o2C ) heterostructures, which arises from spinodal decomposition occurring at the heterointerface, by using scanning tunneling microscopy. Our experiment demonstrates that the 2D spinodal interface modulates graphene into whispering gallery resonant networks filled with quasibound states of massless Dirac fermions. Moreover, below the superconducting transition temperature of the underlying α -M o2C , the 2D spinodal interface behaves as disorders, resulting in the breakdown of the proximity-induced superconductivity in graphene. Our result sheds light on tuning properties of heterostructures based on interface engineering.

  10. Native point defects in GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less

  11. Generation and characterization of point defects in SrTiO3 and Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Selim, F. A.; Winarski, D.; Varney, C. R.; Tarun, M. C.; Ji, Jianfeng; McCluskey, M. D.

    Positron annihilation lifetime spectroscopy (PALS) was applied to characterize point defects in single crystals of Y3Al5O12 and SrTiO3 after populating different types of defects by relevant thermal treatments. In SrTiO3, PALS measurements identified Sr vacancy, Ti vacancy, vacancy complexes of Ti-O (vacancy) and hydrogen complex defects. In Y3Al5O12 single crystals the measurements showed the presence of Al-vacancy, (Al-O) vacancy and Al-vacancy passivated by hydrogen. These defects are shown to play the major role in defining the electronic and optical properties of these complex oxides.

  12. A review of defects and disorder in multinary tetrahedrally bonded semiconductors [Defects and disorder in multinary tetrahedrally bonded semiconductors studied by experiment and theory

    DOE PAGES

    Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan; ...

    2016-11-10

    Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less

  13. A review of defects and disorder in multinary tetrahedrally bonded semiconductors [Defects and disorder in multinary tetrahedrally bonded semiconductors studied by experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan

    Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less

  14. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.

    PubMed

    Shi, Wenwu; Chopra, Nitin

    2012-10-24

    Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency ~50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (~67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique sacrificial agent-free, robust, and efficient photocatalysts promising for organic decontamination and environmental remediation.

  15. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    NASA Astrophysics Data System (ADS)

    Ivády, Viktor; Szász, Krisztián; Falk, Abram L.; Klimov, Paul V.; Christle, David J.; Janzén, Erik; Abrikosov, Igor A.; Awschalom, David D.; Gali, Adam

    2015-09-01

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

  16. Novel Magnetic Phenomena in Oxide Thin Films, Interfaces and Heterostructures

    NASA Astrophysics Data System (ADS)

    Venkatesan, Thirumalai

    2015-03-01

    Oxide films, heterostructures and interfaces present wonderful opportunities for exploring novel magnetic phenomena. The idea of cationic vacancy induced ferromagnetism was demonstrated by observing ferromagnetism in TaxTi1-xO2(x = 2 - 6%). Using XAS, XPS and XMCD, the magnetism was mainly located at the Ti sites and was shown to arise from Ti vacancies as opposed to Ti3+. The substrate-film interface was crucial for observing the ferromagnetism, as the required concentration of Ti vacancies could only be maintained close to the interface. With electron transport we were able to see with increasing thickness the emerging role of Kondo scattering (mediated by Ti3+) and at larger thickness impurity scattering. The polar LaAlO3/non-polar SrTiO3 interface exhibits a mixture of magnetic phases most likely arising from cationic defects and selective electron occupancy in Ti t2g levels. Using XMCD ferromagnetism was seen at these interfaces even at room temperature. Unlike LaAlO3, polar LaMnO3 is an insulator exhibiting orbital order that has a smaller band gap than SrTiO3. It is a traditional antiferromagnetic material, but when grown on SrTiO3, LaMnO3 exhibits ferromagnetism for film thicknesses exceeding 5 unit cells. This is discussed in terms of electronic reconstruction with polar charge transfer to the LaMnO3 side of the interface and also to the surface of the over layer. Novel magnetic coupling effects are seen in perovskite ferromagnets separated by a polar oxide layer such as LaAlO3 or NdGaO3, whereas non-polar oxides do not show the same effect. The coupling between the ferromagnetic layers oscillates in sign between FM and AFM, depending on the barrier thickness. Such coupling is totally unexpected in the absence of any itinerary electrons, with insulating barriers that are too thick for tunneling. The novel magnetic coupling is shown to be mediated by spin-orbit coupling and also magnetic excitation of defect levels in the polar oxide planes.

  17. Superb hydroxyl radical-mediated biocidal effect induced antibacterial activity of tuned ZnO/chitosan type II heterostructure under dark

    NASA Astrophysics Data System (ADS)

    Podder, Soumik; Halder, Suman; Roychowdhury, Anirban; Das, Dipankar; Ghosh, Chandan Kr.

    2016-10-01

    Reactive oxygen species (ROS) is the most dominating factor for bacteria cell toxicity due to release of oxidative stress. Hydroxyl radical (·OH) is a strong oxidizing ROS that has high impact on biocidal activity. This present paper highlights ·OH influenced antibacterial activity and biocidal propensity of tuned ZnO/chitosan (ZnO/CS) nanocomposite against Pseudomonas putida (P. putida) in the absence of light for the first time. For this purpose, the CS proportion was increased by 25 % (w/w) of ZnO during the preparation of ZnO/CS nanocomposite and a systematic study of different ROS like superoxide anion (O 2 ·- ), hydrogen peroxide (H2O2) and ·OH production as well as their kinetics was carried out both under UV irradiation and in dark by UV-Vis spectroscopy using NBT dye, starch and iodine reaction and fluorescence spectroscopy using terephthalic acid. The decoration of ZnO nanoparticles (ZnO·NPs) with CS tuning was characterized by XRD and FTIR spectroscopy, revealing sustained crystallinity and surface coating of ZnO NP (size about 24 nm) by CS molecule. The hybridization of ZnO nanoparticles with CS@50 wt% (w/w) resulted superior biocidal activity (81 %) within 3 h in dark mediated by optimum production of ·OH among all ROS. Here we have proposed the enhanced production of ·OH in ZnO/CS due to generation of holes by entrapment of electrons in acceptor level formed in nanocomposite for the first time, and the acceptor levels were probed by Positron annihilation lifetime spectroscopy. The increase in non-positronium (non-Ps) formation probability (I2) in ZnO/CS nanocomposite confirmed the acceptor levels. This work also confirms surface defect-mediated ROS generation in dark, and zinc interstitials are proposed as active defect sites for generation of holes and ·OH for the first time and confirmed by steady-state room temperature photoluminescence spectroscopy. Finally, a plausible mechanism was hypothesized focusing on hole generation in ZnO NP and hole transfer from CS for the first time, and a heterostructure of type II was proposed.

  18. Temperature dependence of material gain of InGaAsP/InP nano-heterostructure

    NASA Astrophysics Data System (ADS)

    Yadav, Rashmi; Alvi, P. A.

    2014-04-01

    This paper deals with temperature dependent study on material gain of InGaAsP/InP lasing nano-heterostructure with in TE mode. The model is based on simple separate confinement heterostructure (SCH). Material gain for the structure has been simulated for below and above the room temperatures. Different behaviors of the material gain for both ranges of the temperature have been reported in this paper. The results obtained in the simulation of the heterostructures suggest that only the shift in maximum gain takes place that appears at the lasing wavelength ˜ 1.40 μm.

  19. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shisheng, E-mail: shishenglin@zju.edu.cn; Chen, Hongsheng; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027

    2015-11-09

    We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.

  20. Defects, stoichiometry, and electronic transport in SrTiO{sub 3-δ} epilayers: A high pressure oxygen sputter deposition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambwani, P.; Xu, P.; Jeong, J. S.

    SrTiO{sub 3} is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO{sub 3}, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry,more » defects, and structure in SrTiO{sub 3} synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO{sub 3}, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO{sub 3} films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO{sub 3} crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.« less

  1. Spatial identification of traps in AlGaN/GaN heterostructures by the combination of lateral and vertical electrical stress measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Anqi; Yang, Xuelin, E-mail: xlyang@pku.edu.cn; Cheng, Jianpeng

    2016-01-25

    We present a methodology and the corresponding experimental results to identify the exact location of the traps that induce hot electron trapping in AlGaN/GaN heterostructures grown on Si substrates. The methodology is based on a combination of lateral and vertical electrical stress measurements employing three ohmic terminals on the test sample structure with different GaN buffer designs. By monitoring the evolution of the lateral current during lateral as well as vertical stress application, we investigate the trapping/detrapping behaviors of the hot electrons and identify that the traps correlated with current degradation are in fact located in the GaN buffer layers.more » The trap activation energies (0.38–0.39 eV and 0.57–0.59 eV) extracted from either lateral or vertical stress measurements are in good agreement with each other, also confirming the identification. By further comparing the trapping behaviors in two samples with different growth conditions of an unintentionally doped GaN layer, we conclude that the traps are most likely in the unintentionally doped GaN layer but of different origins. It is suggested that the 0.38–0.39 eV trap is related to residual carbon incorporation while the 0.57–0.59 eV trap is correlated with native defects or complexes.« less

  2. The role of AlGaN buffers and channel thickness in the electronic transport properties of Al{sub x}In{sub 1–x}N/AlN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirabbasi, M., E-mail: mo.amirabbasi@gmail.com

    We try to theoretically analyze the reported experimental data of the Al{sub x}In{sub 1–x}N/AlN/GaN heterostructures grown by MOCVD and quantitatively investigate the effects of AlGaN buffers and the GaNchannel thickness on the electrical transport properties of these systems. Also, we obtain the most important effective parameters of the temperature-dependent mobility in the range 35–300 K. Our results show that inserting a 1.1 μm thick Al{sub 0.04}Ga{sub 0.96}N buffer enhances electron mobility by decreasing the effect of phonons, the interface roughness, and dislocation and crystal defect scattering mechanisms. Also, as the channel thickness increases from 20 nm to 40 nm, themore » electron mobility increases from 2200 to 2540 cm{sup 2}/(V s) and from 870 to 1000 cm{sup 2}/(V s) at 35 and 300 K respectively, which is attributed to the reduction in the dislocation density and the strain-induced field. Finally, the reported experimental data show that inserting a 450 nm graded AlGaN layer before an Al{sub 0.04}Ga{sub 0.96}N buffer causes a decrease in the electron mobility, which is attributed to the enhancement of the lateral size of roughness, the dislocation density, and the strain-induced field in this sample.« less

  3. Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaehwan; Min, Daehong; Jang, Jongjin

    2014-10-28

    In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface.more » To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.« less

  4. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-01

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  5. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang

    2018-01-01

    2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.

  6. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures.

    PubMed

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-25

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe 3 /CrSiTe 3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe 3 /CrSiTe 3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe 3 /CrSiTe 3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe 3 /CrSiTe 3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  7. Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field

    NASA Astrophysics Data System (ADS)

    Liu, Junpeng; Wang, Mengjun; Liu, Pingan

    2018-06-01

    Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles’ defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.

  8. Theoretical Study of Defect Signatures in III-V and II-VI Semiconductors

    DTIC Science & Technology

    2006-03-01

    collaboration with experimentalists at Linköpin University (Sweden), we identified the recently observed EPR signals in diluted GaPN to be Gallium ...the results from USPP calculations to all electron calculations. o Study NO-Zni complexes and other point defects in ZnO using USPP calculations...parameters for point defects in semiconductors. o Results on stability of NO-Zni complexes in ZnO and preliminary results on their electronic

  9. Low intrinsic c-axis thermal conductivity in PVD grown epitaxial Sb2Te3 films

    NASA Astrophysics Data System (ADS)

    Rieger, F.; Kaiser, K.; Bendt, G.; Roddatis, V.; Thiessen, P.; Schulz, S.; Jooss, C.

    2018-05-01

    Accurate determination and comprehensive understanding of the intrinsic c-axis thermal conductivity κc of thermoelectric layered Sb2Te3 is of high importance for the development of strategies to optimize the figure of merit in thin film devices via heterostructures and defect engineering. We present here high precision measurements of κc of epitaxial Sb2Te3 thin films on Al2O3 substrates grown by physical vapor deposition in the temperature range of 100 K to 300 K. The Kapitza resistances of the involved interfaces have been determined and subtracted from the film data, allowing access to the intrinsic thermal conductivity of single crystalline Sb2Te3. At room temperature, we obtain κc = 1.9 W/m K, being much smaller than the in-plane thermal conductivity of κa b = 5 W/m K and even lower than the thermal conductivity of nano crystalline films of κnc ≈ 2.0-2.6 W/m K published by Park et al. [Nanoscale Res. Lett. 9, 96 (2014)]. High crystallinity and very low defect concentration of the films were confirmed by x-ray diffraction and high resolution transmission electron microscopy. Our data reveal that the phonon mean free path lm f p(" separators="|T ) is not limited by defect scattering and is of intrinsic nature, i.e., due to phonon-phonon scattering similar to other soft van der Waals type bonded layered systems.

  10. Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure

    NASA Astrophysics Data System (ADS)

    Saha, B.; Sarkar, K.; Bera, A.; Deb, K.; Thapa, R.

    2017-10-01

    Delocalization of charge carriers through formation of native defects in NiO, to achieve a good metal oxide hole transport layer was attemted in this work and thus a heterojunction of p-type NiO and n-type FTO have been prepared through sol-gel process on FTO coated glass substrate. The synthesis process was stimulated by imparting large number of OH- sites during nucleation of Ni(OH)2 on FTO, so that during oxidation through annealing Ni vacancies are introduced. The structural properties as observed from X-ray diffraction measurement indicate formation of well crystalline NiO nanoparticles. Uniform distribution of NiO nanoparticles has been observed in the images obtained from scanning electron microscope. The occurrence of p-type conductivity in the NiO film was stimulated through the formation of delocalized defect carriers originated from crystal defects like vacancies or interstitials in the lattice. Ni vacancy creates shallow levels with respect to the valance band maxima and they readily produce holes. Thus a native p-type conductivity of NiO originates from Ni vacancies. NiO was thus obtained as an auspicious hole transport medium, which creates an expedient heterojunction at the interface with FTO. Excellent rectifying behavior was observed in the electrical J-V plot obtained from the prepared heterojunction. The results are explained from the band energy diagram of the NiO/FTO heterojunction. Remarkable photoresponse has been observed in the reverse characteristics of the heterojunction caused by photon generated electron hole pairs.

  11. Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Rathi, Amit; Riyaj, Md.; Bhardwaj, Garima; Alvi, P. A.

    2017-11-01

    Quaternary and ternary alloy semiconductors offer an extra degree of flexibility in terms of bandgap tuning. Modifications in the wave functions and alterations in optical transitions in quaternary and ternary QW (quantum well) heterostructures due to external uniaxial strain provide valuable insights on the characteristics of the heterostructure. This paper reports the optical gain in strained InGaAsP/GaAsSb type-II QW heterostructure (well width = 20 Å) under external uniaxial strain at room temperature (300 K). The entire heterostructure is supposed to be grown on InP substrate pseudomorphically. Band structure, wave functions, energy dispersion and momentum matrix elements of the heterostructure have been computed. 6 × 6 diagonalised k → ·p → Hamiltonian matrix of the system is evaluated and Luttinger-Kohn model has been applied for the band structure and wavefunction calculations. TE mode optical gain spectrum in the QW-heterostructure under uniaxial strain along [110] is calculated. Optical gain of the heterostructure as a function of 2D carrier density and temperature variation is investigated. The variation of the peak optical gain as a function of As and Sb fractions in InGaAsP as a barrier and GaAsSb as a well respectively is exhibited. For a charge carrier injection of 5 ×1012 /cm2 , the TE optical gain is 3952 cm-1 at room temperature under no external uniaxial strain. Significant increase in TE mode optical gain is observed under high external uniaxial strain (1, 5 and 10 GPa) along [110] within IR (Infrared region) region.

  12. Cu2O-directed in situ growth of Au nanoparticles inside HKUST-1 nanocages.

    PubMed

    Liu, Yongxin; Liu, Ting; Tian, Long; Zhang, Linlin; Yao, Lili; Tan, Taixing; Xu, Jin; Han, Xiaohui; Liu, Dan; Wang, Cheng

    2016-12-07

    Controllable integration of metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) is attracting considerable attention as the obtained composite materials always show synergistic effects in applications of catalysis, delivery, as well as sensing. Herein, a Cu 2 O-directed in situ growth strategy was developed to integrate Au nanoparticles and HKUST-1. In this strategy, Cu 2 O@HKUST-1 core-shell heterostructures, HKUST-1 nanocages, Cu 2 O@Au@HKUST-1 sandwich core-shell heterostructures and Au@HKUST-1 balls-in-cage heterostructures were successfully synthesized. Cu 2 O@HKUST-1 core-shell heterostructures were synthesized by soaking Cu 2 O nanocrystals in benzene-1,3,5-tricarboxylic acid solution. The well-defined Cu 2 O@HKUST-1 core-shell heterostructures were demonstrated to be dominated by the ratio of Cu 2+ cations to btc 3- ligands in solution during the period of HKUST-1 formation. Cu 2 O@Au@HKUST-1 sandwich core-shell or Au@HKUST-1 balls-in-cage heterostructures were obtained by impregnating HAuCl 4 into Cu 2 O@HKUST-1 core-shell heterostructures. Due to the porosity of HKUST-1 and reducibility of Cu 2 O, HAuCl 4 could pass through the HKUST-1 shell and be reduced by the Cu 2 O core in situ forming Au nanoparticles. Finally, CO oxidation reaction at high temperatures was carried out to assess the catalytic functionality of the obtained composite heterostructures. This strategy can circumvent some drawbacks of the existing approaches for integrating MNPs and MOFs, such as nonselective deposition of MNPs at the outer surface of the MOF matrices, extreme treatment conditions and additional surface modifications.

  13. Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems

    PubMed Central

    Dong, Rui; Kuljanishvili, Irma

    2017-01-01

    Transition metal dichalcogenide (TMDC) semiconductors have attracted significant attention because of their rich electronic/photonic properties and importance for fundamental research and novel device applications. These materials provide a unique opportunity to build up high quality and atomically sharp heterostructures because of the nature of weak van der Waals interlayer interactions. The variable electronic properties of TMDCs (e.g., band gap and their alignment) provide a platform for the design of novel electronic and optoelectronic devices. The integration of TMDC heterostructures into the semiconductor industry is presently hindered by limited options in reliable production methods. Many exciting properties and device architectures which have been studied to date are, in large, based on the exfoliation methods of bulk TMDC crystals. These methods are generally more difficult to consider for large scale integration processes, and hence, continued developments of different fabrication strategies are essential for further advancements in this area. In this review, the authors highlight the recent progress in the fabrication of TMDC heterostructures. The authors will review several methods most commonly used to date for controllable heterostructure formation. One of the focuses will be on TMDC heterostructures fabricated by thermal chemical vapor deposition methods which allow for the control over the resulting materials, individual layers and heterostructures. Another focus would be on the techniques for selective growth of TMDCs. The authors will discuss conventional and unconventional fabrication methods and their advantages and drawbacks and will provide some guidance for future improvements. Mask-assisted and mask-free methods will be presented, which include traditional lithographic techniques (photo- or e-beam lithography) and some unconventional methods such as the focus ion beam and the recently developed direct-write patterning approach, which are shown to be promising for the fabrication of quality TMDC heterostructures. PMID:29075580

  14. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  15. Basic Study on Term of Warranty Liability for Water Supply, Drainage, and Sanitation Arrangement Work Defect in Apartment Building

    NASA Astrophysics Data System (ADS)

    Park, Junmo; Seo, DeokSeok

    2017-06-01

    The defect lawsuit of the apartment which is the representative residential style of Korea continues and becomes a social problem. In the defect lawsuit, the term of warranty liability is a period that can demand the defect repair according to defect occurrence, and the exclusion period of the exercise of rights. However, the term of warranty liability stipulated in relevant laws such as Enforcement Decree of the Housing Act is being changed arbitrarily, without any established grounds. Therefore, a reasonable standard for establishing the term of warranty liability is required. In this study, the defects of water supply, drainage and sanitation arrangement work were studied. As a result of analyzing the number of defect occurrence in the apartment, it was shown that the defects in water supply, drainage and sanitation arrangement work occurred more than 80% in the 1st ∼ 2nd year after completion. However, the occurrence of defects from the 3rd year was extremely slight. On the other hand, it was confirmed that the defect occurrence continued until fairly late point of time as the end point of time of the defects was in the 7th to 9th years.

  16. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.

    PubMed

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-10-27

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

  17. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T; Dayeh, Shadi A

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5}more » I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.« less

  18. Comparative analysis of hole transport in compressively strained InSb and Ge quantum well heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Ashish; Barth, Michael; Madan, Himanshu

    2014-08-04

    Compressively strained InSb (s-InSb) and Ge (s-Ge) quantum well heterostructures are experimentally studied, with emphasis on understanding and comparing hole transport in these two-dimensional confined heterostructures. Magnetotransport measurements and bandstructure calculations indicate 2.5× lower effective mass for s-InSb compared to s-Ge quantum well at 1.9 × 10{sup 12} cm{sup –2}. Advantage of strain-induced m* reduction is negated by higher phonon scattering, degrading hole transport at room temperature in s-InSb quantum well compared to s-Ge heterostructure. Consequently, effective injection velocity is superior in s-Ge compared to s-InSb. These results suggest s-Ge quantum well heterostructure is more favorable and promising p-channel candidate compared to s-InSbmore » for future technology node.« less

  19. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

    PubMed Central

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-01-01

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321

  20. Gas Sensing Properties of p-Co₃O₄/n-TiO₂ Nanotube Heterostructures.

    PubMed

    Alev, Onur; Kılıç, Alp; Çakırlar, Çiğdem; Büyükköse, Serkan; Öztürk, Zafer Ziya

    2018-03-23

    In this paper, we fabricated p-Co₃O₄/n-TiO₂ heterostructures and investigated their gas sensing properties. The structural and morphological characterization were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy analysis (XPS). The electrical properties of the heterostructure were studied within the temperature range from 293 K to 423 K. Changes in electrical properties and sensing behavior against reducing and oxidizing gases were attributed to the formation of p-n heterojunctions at the Co₃O₄ and TiO₂ interface. In comparison with sensing performed with pristine TiO₂ nanotubes (NTs), a significant improvement in H₂ sensing at 200 °C was observed, while the sensing response against NO₂ decreased for the heterostructures. Additionally, a response against toluene gas, in contrast to pristine TiO₂ NTs, appeared in the Co₃O₄/TiO₂ heterostructure samples.

  1. Probing interlayer interactions in WS2 -graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; Yuan, Long; Huang, Libai; Chen, Yong P.

    Two-dimensional crystals based van der Waals coupled heterostructures are of interest owing to their potential applications for flexible and transparent electronics and optoelectronics. The interaction between the 2D layered crystals at the interfaces of these heterostructures is crucial in determining the overall performance and is strongly affected by contamination and interfacial strain. We have fabricated heterostructures consisting of atomically thin exfoliated WS2 and chemical-vapor-deposited (CVD) graphene, and studied the interaction and coupling between the WS2 and graphene using atomic force microscopy (AFM), Raman spectroscopy and femtosecond transient absorption measurement (TAM). Information from Raman-active phonon modes allows us to estimate charge doping in graphene and interfacial strain on the crystals. Spatial imaging probed by TAM can be correlated to the heterostructure surface morphology measured by AFM and Raman maps of graphene and WS2, showing how the interlayer coupling alters exciton decay dynamics quantitatively.

  2. Photocatalytic reduction of CO2 by employing ZnO/Ag1-xCux/CdS and related heterostructures

    NASA Astrophysics Data System (ADS)

    Lingampalli, S. R.; Ayyub, Mohd Monis; Magesh, Ganesan; Rao, C. N. R.

    2018-01-01

    In view of the great importance of finding ways to reduce CO2 by using solar energy, we have examined the advantage of employing heterostructures containing bimetallic alloys for the purpose. This choice is based on the knowledge that metals such as Pt reduce CO2, although the activity may not be considerable. Our studies on the reduction of CO2 by ZnO/M/CdS (M = Ag, Au, Ag1-xAux, Ag1-xCux) heterostructures in liquid phase have shown good results specially in the case of ZnO/Ag1-xCux/CdS, reaching a CO production activity of 327.4 μmol h-1 g-1. The heterostructures also reduce CO2 in the gas-phase although the production activity is not high. Some of the heterostructures exhibit reduction of CO2 even in the absence of a sacrificial reagent.

  3. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties.

    PubMed

    Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri

    2010-04-27

    We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.

  4. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  5. Engineering charge transport by heterostructuring solution-processed semiconductors

    NASA Astrophysics Data System (ADS)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  6. Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei

    2012-10-01

    Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.

  7. High resistance ratio of bipolar resistive switching in a multiferroic/high-K Bi(Fe0.95Cr0.05)O3/ZrO2/Pt heterostructure

    NASA Astrophysics Data System (ADS)

    Dong, B. W.; Miao, Jun; Han, J. Z.; Shao, F.; Yuan, J.; Meng, K. K.; Wu, Y.; Xu, X. G.; Jiang, Y.

    2018-03-01

    An novel heterostructure composed of multiferroic Bi(Fe0.95Cr0.05)O3 (BFCO) and high-K ZrO2 (ZO) layers is investigated. Ferroelectric and electrical properties of the BFZO/ZO heterostructure have been investigated. A pronounced bipolar ferroelectric resistive switching characteristic was achieved in the heterostructure at room temperature. Interestingly, the BFCO/ZO structures exhibit a reproducible resistive switching with a high On/Off resistance ratio ∼2×103 and long retention time. The relationship between polarization and band structure at the interface of BFCO/ZO bilayer under the positive and negative sweepings has been discussed. As a result, the BFCO/ZO multiferroic/high-K heterostructure with high On/Off resistance ratio and long retention characterizes, exhibits a potential in future nonvolatile memory application.

  8. Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering

    PubMed Central

    Lan, Jin-Le; Liu, Yaochun; Lin, Yuan-Hua; Nan, Ce-Wen; Cai, Qing; Yang, Xiaoping

    2015-01-01

    The issue of how to improve the thermoelectric figure of merit (ZT) in oxide semiconductors has been challenging for more than 20 years. In this work, we report an effective path to substantial reduction in thermal conductivity and increment in carrier concentration, and thus a remarkable enhancement in the ZT value is achieved. The ZT value of In2O3 system was enhanced 4-fold by nanostructuing (nano-grains and nano-inclusions) and point defect engineering. The introduction of point defects in In2O3 results in a glass-like thermal conductivity. The lattice thermal conductivity could be reduced by 60%, and extraordinary low lattice thermal conductivity (1.2 W m−1 K−1 @ 973 K) below the amorphous limit was achieved. Our work paves a path for enhancing the ZT in oxides by both the nanosturcturing and the point defect engineering for better phonon-glasses and electron-crystal (PGEC) materials. PMID:25586762

  9. Many-Body Theory of Proton-Generated Point Defects for Losses of Electron Energy and Photons in Quantum Wells

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.

    2018-02-01

    The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.

    The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less

  11. Enhancing the electron mobility of SrTiO3 with strain

    NASA Astrophysics Data System (ADS)

    Jalan, Bharat; Allen, S. James; Beltz, Glenn E.; Moetakef, Pouya; Stemmer, Susanne

    2011-03-01

    We demonstrate, using high-mobility SrTiO3 thin films grown by molecular beam epitaxy, that stress has a pronounced influence on the electron mobility in this prototype complex oxide. Moderate strains result in more than 300% increases in the electron mobilities with values exceeding 120 000 cm2/V s and no apparent saturation in the mobility gains. The results point to a range of opportunities to tailor high-mobility oxide heterostructure properties and open up ways to explore oxide physics.

  12. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements ofmore » dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.« less

  13. Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide

    NASA Astrophysics Data System (ADS)

    Kerbiriou, X.; Barthe, M.-F.; Esnouf, S.; Desgardin, P.; Blondiaux, G.; Petite, G.

    2007-05-01

    Both for electronic and nuclear applications, it is of major interest to understand the properties of point defects into silicon carbide (SiC). Low energy electron irradiations are supposed to create primary defects into materials. SiC single crystals have been irradiated with electrons at two beam energies in order to investigate the silicon displacement threshold energy into SiC. This paper presents the characterization of the electron irradiation-induced point defects into both polytypes hexagonal (6H) and cubic (3C) SiC single crystals by using both positron annihilation spectroscopy (PAS) and electron paramagnetic resonance (EPR). The nature and the concentration of the generated point defects depend on the energy of the electron beam and the polytype. After an electron irradiation at an energy of 800 keV vSi mono-vacancies and vSi-vC di-vacancies are detected in both 3C and 6H-SiC polytypes. On the contrary, the nature of point defects detected after an electron irradiation at 190 keV strongly depends on the polytype. Into 6H-SiC crystals, silicon Frenkel pairs vSi-Si are detected whereas only carbon vacancy related defects are detected into 3C-SiC crystals. The difference observed in the distribution of defects detected into the two polytypes can be explained by the different values of the silicon displacement threshold energies for 3C and 6H-SiC. By comparing the calculated theoretical numbers of displaced atoms with the defects numbers measured using EPR, the silicon displacement threshold energy has been estimated to be slightly lower than 20 eV in the 6H polytype and close to 25 eV in the 3C polytype.

  14. Fermi Level Control of Point Defects During Growth of Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary; Hoffmann, Marc; Tweedie, James; Kirste, Ronny; Callsen, Gordon; Bryan, Isaac; Rice, Anthony; Bobea, Milena; Mita, Seiji; Xie, Jinqiao; Sitar, Zlatko; Collazo, Ramón

    2013-05-01

    In this study, Fermi level control of point defects during metalorganic chemical vapor deposition (MOCVD) of Mg-doped GaN has been demonstrated by above-bandgap illumination. Resistivity and photoluminescence (PL) measurements are used to investigate the Mg dopant activation of samples with Mg concentration of 2 × 1019 cm-3 grown with and without exposure to ultraviolet (UV) illumination. Samples grown under UV illumination have five orders of magnitude lower resistivity values compared with typical unannealed GaN:Mg samples. The PL spectra of samples grown with UV exposure are similar to the spectra of those grown without UV exposure that were subsequently annealed, indicating a different incorporation of compensating defects during growth. Based on PL and resistivity measurements we show that Fermi level control of point defects during growth of III-nitrides is feasible.

  15. Study of electrochemical reduced graphene oxide and MnO2 heterostructure for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Jana, S. K.; Rao, V. P.; Banerjee, S.

    2013-02-01

    In this paper we have shown enhanced supercapacitive property of electrochemically reduced graphene oxide (ERGO) and manganese dioxide (MnO2) based heterostructure over single MnO2 thin film grown by electrochemical deposition on indium tin oxide (ITO). ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure.

  16. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  17. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  18. Molecular-beam epitaxy of 7-8 μm range quantum-cascade laser heterostructures

    NASA Astrophysics Data System (ADS)

    Babichev, A. V.; Denisov, D. V.; Filimonov, A. V.; Nevedomsky, V. N.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Sokolovskii, G. S.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu

    2017-11-01

    The method of molecular beam epitaxy demonstrates the possibility to create high quality heterostructures of quantum cascade lasers in a spectral range of 7-8 μm containing 50 quantum cascades in an active region. Design based on the principle of two-phonon resonant scattering is used. X-ray diffraction and transmission electron microscopy experiments confirm high structural properties of the created heterostructures, e.g. the identity of the composition and thickness of epitaxial layers in all 50 cascades. Edge-emitting lasers based on the grown heterostructure demonstrate lasing with threshold current density of 2.8 kA/cm2 at a temperature of 78 K.

  19. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-24

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  20. Augmented Photoelectrochemical Efficiency of ZnO/TiO2 Nanotube Heterostructures

    NASA Astrophysics Data System (ADS)

    Boda, Muzaffar Ahmad; Shah, Mohammad Ashraf

    2017-11-01

    ZnO/TiO2 nanotube heterostructures have been fabricated by electrodeposition of ZnO microcrystals over electrochemically anodized TiO2 nanotube arrays. The resulting ZnO/TiO2 nanotube heterostructures showed enhanced photocurrent density of 5.72 mA cm-2, about 1.5 times the value of 3.68 mA cm-2 shown by bare compact TiO2 nanotubes. This enhanced photocurrent density of the ZnO/TiO2 nanotube heterostructures is due to high electron mobility in the ZnO crystals, thereby decreasing the electron-hole recombination process, good interfacial quality between the ZnO and TiO2 structures, and a proposed smooth charge-transfer mechanism due to band bending at the interface. The morphological features of the as-prepared heterostructures were determined by field-emission scanning electron microscopy (FESEM). The crystallinity and phase purity of the samples were confirmed by x-ray diffraction (XRD) analysis. The light absorption properties of the prepared samples were investigated by ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photoelectrochemical efficiency of bare and ZnO-modified TiO2 nanotube heterostructures was determined by electrochemical analyzer.

  1. Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.

    2017-10-01

    In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.

  2. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  3. Nd2-xCexCuO4-y/Nd2-xCexOy boundary and resistive switchings in mesoscopic structures on base of epitaxial Nd1.86Ce0.14CuO4-у films

    NASA Astrophysics Data System (ADS)

    Tulina, N. A.; Rossolenko, A. N.; Ivanov, A. A.; Sirotkin, V. V.; Shmytko, I. M.; Borisenko, I. Yu.; Ionov, A. M.

    2016-08-01

    Reverse and stable bipolar resistive switching effect (BRSE) was observed in planar Nd2-xCex CuO4-y/Nd2-xCexOx/Ag heterostructure. It was shown that the СVС of the BRSE observed has a diode character. Simulations were used to consider the influence of the nonuniform distribution of an electric field at the interface of a heterojunction on the effect of bipolar resistive switching in investigated structures. The inhomogeneous distribution of the electric field near the contact edge creates regions of higher electric field strength which, in turn, stimulates motion and redistribution of defects, changes of the resistive properties of the whole structure and formation of a percolation channel.

  4. Nanobubble induced formation of quantum emitters in monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Shepard, Gabriella D.; Ajayi, Obafunso A.; Li, Xiangzhi; Zhu, X.-Y.; Hone, James; Strauf, Stefan

    2017-06-01

    The recent discovery of exciton quantum emitters in transition metal dichalcogenides (TMDCs) has triggered renewed interest of localized excitons in low-dimensional systems. Open questions remain about the microscopic origin previously attributed to dopants and/or defects as well as strain potentials. Here we show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures. Correlations of atomic-force microscope and hyperspectral photoluminescence images reveal that the origin of quantum emitters and trion disorder is extrinsic and related to 10 nm tall nanobubbles and 70 nm tall wrinkles, respectively. We further demonstrate that ‘hot stamping’ results in the absence of 0D quantum emitters and trion disorder. The demonstrated technique is useful for advances in nanolasers and deterministic formation of cavity-QED systems in monolayer materials.

  5. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Degradation phenomena in laser diodes

    NASA Astrophysics Data System (ADS)

    Beister, G.; Krispin, P.; Maege, J.; Richter, G.; Weber, H.; Rechenberg, I.

    1988-11-01

    Accelerated tests on GaAlAs/GaAs double heterostructure laser diodes showed, in agreement with earlier results on light-emitting diodes, that ageing appeared in three distinct forms: initial and slow degradation stages, both obeying a logarithmic time dependence, and a superimposed "gradation" (enhancement of the output power). Measurements made by the method of deep level transient spectroscopy during the accelerated tests on these lasers, operated as light-emitting diodes, revealed the appearance right from the beginning of B levels attributed to the antisite GaAs defects. The B levels appeared again in diodes tested in the lasing mode. In the case of a group of 21 laser diodes the mean time-to-failure was 9000 h at 70°C for 5 mW (in accordance with the Weibull statistics of degradation rates).

  6. Layer-by-layer growth by pulsed laser deposition in the unit-cell limit.

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Prosandeev, S.; Liu, J.; Ryan, P.; Freeland, J. W.; Chakhalian, J.

    2009-03-01

    Unlike conventional growth of complex oxide heterostructures, the ultimate unit cell limit imposes strict constrains for a multitude of parameters critical to layer-by-layer growth. Here we report on detailed analysis of far-from-equilibrium growth by interrupted pulsed laser deposition with application to RENiO3/LaAlO3 superlattices grown on a diverse set of substrates SrTiO3, NdGaO3, LSAT and LaAlO3. A combination of in-situ high-pressure RHEED and AFM along with extensive data obtained from synchrotron based XRD and resonant XAS allows us critically assess the meaning of RHEED intensity oscillation and the effect of a polar/non-polar interface on the heteroepitaxial growth. The role of defects formed during the initial stages of growth is also addressed.

  7. Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.

    2005-10-01

    AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.

  8. Concentration of point defects in 4H-SiC characterized by a magnetic measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Jia, R. X., E-mail: rxjia@mail.xidian.edu.cn; Wang, Y. T.

    A magnetic method is presented to characterize the concentration of point defects in silicon carbide. In this method, the concentration of common charged point defects, which is related to the density of paramagnetic centers, is determined by fitting the paramagnetic component of the specimen to the Brillouin function. Several parameters in the Brillouin function can be measured such as: the g-factor can be obtained from electron spin resonance spectroscopy, and the magnetic moment of paramagnetic centers can be obtained from positron lifetime spectroscopy combined with a first-principles calculation. To evaluate the characterization method, silicon carbide specimens with different concentrations ofmore » point defects are prepared with aluminum ion implantation. The fitting results of the densities of paramagnetic centers for the implanted doses of 1 × 10{sup 14} cm{sup −2}, 1 × 10{sup 15} cm{sup −2} and 1 × 10{sup 16} cm{sup −2} are 6.52 × 10{sup 14}/g, 1.14 × 10{sup 15}/g and 9.45 × 10{sup 14}/g, respectively. The same trends are also observed for the S-parameters in the Doppler broadening spectra. It is shown that this method is an accurate and convenient way to obtain the concentration of point defects in 4H-SiC.« less

  9. Room-temperature giant magneto-mechanical-electric cross-coupling in Si-integrated PbZr0.52Ti0.48O3/Ni50Mn35In15 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2017-04-01

    The current study reports the strong magnetoelectric coupling (M-E) in silicon (Si)-integrated ferromagnetic shape memory alloy-based PZT/Ni-Mn-In thin-film multiferroic heterostructure. The strain-mediated nature of converse M-E coupling is reflected from the butterfly-shaped normalized magnetization (M/M s) versus electric field plots. The direct M-E properties of the heterostructure were measured with a frequency of AC magnetic field, bias magnetic field, as well as with temperature. A maximum direct M-E coupling in the bilayered thin-film multiferroic heterostructures occurred at resonance frequencies around the first-order structural transitional temperature of the bottom Ni-Mn-In layer. It was observed that the measuring temperature remarkably affects the direct M-E characteristic of the heterostructure. A large direct ME effect and converse ME effect coefficient α DME  ~  894 mV cm-1.Oe and α CME ~ 2.7  ×  10-5 s m-1, respectively, were achieved in the bilayer at room temperature. The mechanism of direct as well as converse M-E effects in the thin-film multiferroic heterostructures is discussed. The electrically driven angular dependence of normalized magnetization (M/M s) reveals the twofold symmetric magnetic anisotropy of the heterostructure, with the drastic shifting of the magnetic hard axis at E  >  E c (coercivity of PZT).

  10. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation: Highly photocatalytic property and enhanced photostability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhongmei, E-mail: kalimodor@163.com; Zhang, Ping; Ding, Yanhuai

    2011-10-15

    Highlights: {yields} Fabrication of Ag/ZnO heterostructure between the two incompatible phases is realized under UV irradiation in the absence of surfactant. {yields} The synthetic method is facile, low cost, and low carbon, which depends on the photogenerated electrons produced by ZnO under UV light. {yields} Photocatalytic property of the as-synthesized samples is 3.0 times as good as the pure ZnO synthesized under the same condition or the commercial TiO{sub 2} (Degussa, P-25). {yields} The heterostructures exhibit good durability without significant change in the activity even after the third cycle compared to the pure ZnO. -- Abstract: We report a newmore » method to synthesize Ag/ZnO heterostructures assisted by UV irradiation. The formation of Ag/ZnO heterostructures depends on photogenerated electrons produced by ZnO under UV light to reduce high valence silver. Functional property of the Ag/ZnO heterostructures is evaluated by photodegradation of methylene blue (MB) under UV illumination. Results of photodegradation tests reveal that the optimal photocatalytic activity of as-syntheszied samples is about 1.5 times higher than the pure ZnO synthesized in the same condition or commercial TiO{sub 2} (P-25), showing the advantage of the unique structure in the Ag/ZnO heterostructure. Besides, due to the reduced activation of surface oxygen atom, photocatalytic activity of the photocatalysts has no evident decrease even after three recycles.« less

  11. Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications.

    PubMed

    Akkari, Marwa; Aranda, Pilar; Ben Haj Amara, Abdessalem; Ruiz-Hitzky, Eduardo

    2016-01-01

    In this study, ZnO/SiO 2 -clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO 2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO 2 -clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO 2 -clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.

  12. Optimization of edge state velocity in the integer quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.

    2018-02-01

    Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.

  13. Phase coherent transport in hybrid superconductor-topological insulator devices

    NASA Astrophysics Data System (ADS)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  14. The verification of printability about marginal defects and the detectability at the inspection tool in sub 50nm node

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Jeong, Goomin; Seo, Kangjun; Kim, Sangchul; kim, changreol

    2008-05-01

    Since mask design rule is smaller and smaller, Defects become one of the issues dropping the mask yield. Furthermore controlled defect size become smaller while masks are manufactured. According to ITRS roadmap on 2007, controlled defect size is 46nm in 57nm node and 36nm in 45nm node on a mask. However the machine development is delayed in contrast with the speed of the photolithography development. Generally mask manufacturing process is divided into 3 parts. First part is patterning on a mask and second part is inspecting the pattern and repairing the defect on the mask. At that time, inspection tools of transmitted light type are normally used and are the most trustful as progressive type in the developed inspection tools until now. Final part is shipping the mask after the qualifying the issue points and weak points. Issue points on a mask are qualified by using the AIMS (Aerial image measurement system). But this system is including the inherent error possibility, which is AIMS measures the issue points based on the inspection results. It means defects printed on a wafer are over the specific size detected by inspection tools and the inspection tool detects the almost defects. Even though there are no tools to detect the 46nm and 36nm defects suggested by ITRS roadmap, this assumption is applied to manufacturing the 57nm and 45nm device. So we make the programmed defect mask consisted with various defect type such as spot, clear extension, dark extension and CD variation on L/S(line and space), C/H(contact hole) and Active pattern in 55nm and 45nm node. And the programmed defect mask was inspected by using the inspection tool of transmitted light type and was measured by using AIMS 45-193i. Then the marginal defects were compared between the inspection tool and AIMS. Accordingly we could verify whether defect size is proper or not, which was suggested to be controlled on a mask by ITRS roadmap. Also this result could suggest appropriate inspection tools for next generation device among the inspection tools of transmitted light type, reflected light type and aerial image type.

  15. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  16. Effective response theory for zero-energy Majorana bound states in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2015-05-01

    We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.

  17. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGES

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH 3NH 3PbI 3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  18. A sharp interface model for void growth in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  19. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo

    2018-04-01

    A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.

  20. Characterization of Point Defects in Lithium Aluminate (LiAlO2) Single Crystals

    DTIC Science & Technology

    2015-09-17

    high-quality neutron detectors since 235U and 239Pu, the two isotopes used to fuel nuclear weapons , both emit neu- trons through spontaneous fission of...dissertation has iden- tified and characterized the major point defects created and induced through x ray and neutron radiation using electron paramagnetic... neutron irradiation is an F+ center; an oxygen vacancy with one trapped electron. This defect has two states, a stable state that survives up to 500 ◦C and

  1. Finite Element Creep Damage Analyses and Life Prediction of P91 Pipe Containing Local Wall Thinning Defect

    NASA Astrophysics Data System (ADS)

    Xue, Jilin; Zhou, Changyu

    2016-03-01

    Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.

  2. Box 6: Nanoscale Defects

    NASA Astrophysics Data System (ADS)

    Alves, Eduardo; Breese, Mark

    Defects affect virtually all properties of crystalline materials, and their role is magnified in nanoscale structures. In this box we describe the different type of defects with particular emphasis on point and linear defects. Above zero Kelvin all real materials have a defect population within their structure, which affects either their crystalline, electronic or optical properties. It is common to attribute a negative connotation to the presence of defects. However, a perfect silicon crystal or any other defect-free semiconductor would have a limited functionality and might even be useless.

  3. Highly insulating ferromagnetic cobaltite heterostructures

    DOE PAGES

    Choi, Woo Seok; Kang, Kyeong Tae; Jeen, Hyoungjeen; ...

    2017-04-02

    Ferromagnetic insulators are rather rare but possess great technological potential in, for example, spintronics. Individual control of ferromagnetic properties and electronic transport provides a useful design concept of multifunctional oxide heterostructures. We studied the close correlation among the magnetism, atomic structure, and electronic structure of oxide heterostructures composed of the ferromagnetic perovskite LaCoO 3 and the antiferromagnetic brownmillerite SrCoO 2.5 epitaxial thin film layers. By reversing the stacking sequence of the two layers, we could individually modify the electric resistance and saturation magnetic moment. Lastly, the ferromagnetic insulating behavior in the heterostructures was understood in terms of the electronic reconstructionmore » at the oxide surface/interfaces and crystalline quality of the constituent layers.« less

  4. Highly insulating ferromagnetic cobaltite heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Woo Seok; Kang, Kyeong Tae; Jeen, Hyoungjeen

    Ferromagnetic insulators are rather rare but possess great technological potential in, for example, spintronics. Individual control of ferromagnetic properties and electronic transport provides a useful design concept of multifunctional oxide heterostructures. We studied the close correlation among the magnetism, atomic structure, and electronic structure of oxide heterostructures composed of the ferromagnetic perovskite LaCoO 3 and the antiferromagnetic brownmillerite SrCoO 2.5 epitaxial thin film layers. By reversing the stacking sequence of the two layers, we could individually modify the electric resistance and saturation magnetic moment. Lastly, the ferromagnetic insulating behavior in the heterostructures was understood in terms of the electronic reconstructionmore » at the oxide surface/interfaces and crystalline quality of the constituent layers.« less

  5. Electron scattering times in ZnO based polar heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falson, J., E-mail: j.falson@fkf.mpg.de; Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561; Max Planck Institute for Solid State Research, D-70569 Stuttgart

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  6. Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru

    NASA Astrophysics Data System (ADS)

    Bai, Lei

    2018-03-01

    Platinum-ruthenium (PtRu) nanocubes and PtRu/Ru heterostructure via epitaxial growth were synthesized by varying the amount of Ru precursor. As model catalysts, the PtRu/Ru heterostructure demonstrated the highest catalytic performance in electrooxidation of methanol, which was possibly due to the more hydroxyl species produced from the extra Ru nanoparticles as well as enhanced adsorption of methanol of PtRu alloys in the PtRu/Ru heterostructure. The catalytic performance of the catalysts was closely related with the structure, which was well characterized by a series of methods. It was expected that the present work could provide a new insight for the synthesis of PtRu based nanocatalysts.

  7. Achieving tunable doping of MoSe2 based devices using GO@MoSe2 heterostructure

    NASA Astrophysics Data System (ADS)

    Maji, Tuhin Kumar; Tiwary, Krishna Kanhaiya; Karmakar, Debjani

    2017-05-01

    Doping nature of MoSe2, one of the promising Graphene analogous device material, can be tuned by controlling the concentration of functional groups in Graphene oxide (GO)@MoSe2 heterostructure. In this study, by first-principles simulation, we have observed that GO can be used as a carrier injection layer for MoSe2, where n or p type carriers are introduced within MoSe2 layer depending on the type and concentration of functional moieties in it. Both n and p-type Schottky barrier height modulations are investigated for different modeled configurations of the heterostructure. This combinatorial heterostructure can be a promising material for future electronic device application.

  8. Research on stratified evolution of composite materials under four-point bending loading

    NASA Astrophysics Data System (ADS)

    Hao, M. J.; You, Q. J.; Zheng, J. C.; Yue, Z.; Xie, Z. P.

    2017-12-01

    In order to explore the effect of stratified evolution and delamination on the load capacity and service life of the composite materials under the four-point bending loading, the artificial tectonic defects of the different positions were set up. The four-point bending test was carried out, and the whole process was recorded by acoustic emission, and the damage degree of the composite layer was judged by the impact accumulation of the specimen - time-amplitude history chart, load-time-relative energy history chart, acoustic emission impact signal positioning map. The results show that the stratified defects near the surface of the specimen accelerate the process of material failure and expansion. The location of the delamination defects changes the bending performance of the composites to a great extent. The closer the stratification defects are to the surface of the specimen, the greater the damage, the worse the service capacity of the specimen.

  9. Point Defects and p -Type Doping in ScN from First Principles

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu

    2018-03-01

    Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.

  10. Role of the charge state of interface defects in electronic inhomogeneity evolution with gate voltage in graphene

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan K.

    2018-05-01

    Evolution of electronic inhomogeneities with back-gate voltage in graphene on SiO2 was studied using room temperature scanning tunneling microscopy and spectroscopy. Reversal of contrast in some places in the conductance maps and sharp changes in cross correlations between topographic and conductance maps, when graphene Fermi energy approaches its Dirac point, are attributed to the change in charge state of interface defects. The spatial correlations in the conductance maps, described by two length scales, and their growth during approach to Dirac point, show a qualitative agreement with the predictions of the screening theory of graphene. Thus a sharp change in the two length scales close to the Dirac point, seen in our experiments, is interpreted in terms of the change in charge state of some of the interface defects. A systematic understanding and control of the charge state of defects can help in memory applications of graphene.

  11. The interaction between atomic displacement cascades and tilt symmetrical grain boundaries in α-zirconium

    NASA Astrophysics Data System (ADS)

    Kapustin, P.; Svetukhin, V.; Tikhonchev, M.

    2017-06-01

    The atomic displacement cascade simulations near symmetric tilt grain boundaries (GBs) in hexagonal close packed-Zirconium were considered in this paper. Further defect structure analysis was conducted. Four symmetrical tilt GBs -∑14?, ∑14? with the axis of rotation [0 0 0 1] and ∑32?, ∑32? with the axis of rotation ? - were considered. The molecular dynamics method was used for atomic displacement cascades' simulation. A tendency of the point defects produced in the cascade to accumulate near the GB plane, which was an obstacle to the spread of the cascade, was discovered. The results of the point defects' clustering produced in the cascade were obtained. The clusters of both types were represented mainly by single point defects. At the same time, vacancies formed clusters of a large size (more than 20 vacancies per cluster), while self-interstitial atom clusters were small-sized.

  12. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    NASA Astrophysics Data System (ADS)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  13. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    PubMed Central

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-01-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770

  14. Magneto-transport Properties Using Top-Gated Hall Bars of Epitaxial Heterostructures on Single-Crystal SiGe Nanomembranes

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Li, Yize; Foote, Ryan; Cui, Xiaorui; Savage, Donald; Sookchoo, Pornsatit; Eriksson, Mark; Lagally, Max

    2014-03-01

    A high-quality 2-dimensional electron gas (2DEG) is crucial for quantum electronics and spintronics. Grown heterostructures on SiGe nanomembranes (NMs) show promise to create these 2DEG structures because they have reduced strain inhomogeneities and mosaic tilt. We investigate charge transport properties of these SiGe NMs/heterostructures over a range of temperatures and compare them with results from heterostructures grown on compositionally graded SiGe substrates. Measurements are done by creating Hall bars with top gates on the samples. From the magneto-transport data, low-carrier-density mobility values are calculated. Initial results on the grown heterostructures give a typical curve for mobility versus carrier density, but extraction of the zero-carrier-density mobility is dependent on the curve-fitting technique. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government.

  15. Pyroelectric effect and lattice thermal conductivity of InN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Hansdah, Gopal; Sahoo, Bijay Kumar

    2018-06-01

    The built-in-polarization (BIP) of InN/GaN heterostructures enhances Debye temperature, phonon mean free path and thermal conductivity of the heterostructure at room temperature. The variation of thermal conductivities (kp: including polarization mechanism and k: without polarization mechanism) with temperature predicts the existence of a transition temperature (Tp) between primary and secondary pyroelectric effect. Below Tp, kp is lower than k; while above Tp, kp is significantly contributed from BIP mechanism due to thermal expansion. A thermodynamic theory has been proposed to explain the result. The room temperature thermal conductivity of InN/GaN heterostructure with and without polarization is respectively 32 and 48 W m-1 K-1. The temperature Tp and room temperature pyroelectric coefficient of InN has been predicted as 120 K and -8.425 μC m-2 K-1, respectively which are in line with prior literature studies. This study suggests that thermal conductivity measurement in InN/GaN heterostructures can help to understand the role of phonons in pyroelectricity.

  16. Tunable Schottky barrier and electronic properties in borophene/g-C2N van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, J. W.; Wang, X. C.; Song, Y.; Mi, W. B.

    2018-05-01

    By stacking different layers of two dimensional (2D) monolayer materials, the electronic properties of the 2D van der Waals (vdW) heterostructures can be tailored. However, the Schottky barrier formed between 2D semiconductor and metallic electrode has greatly limited the application of 2D semiconductor in nanoelectronic and optoelectronic devices. Herewith, we investigate the electronic properties of borophene/g-C2N vdW heterostructures by first-principles calculations. The results indicate that electronic structures of borophene and g-C2N are preserved in borophene/g-C2N vdW heterostructures. Meanwhile, upon the external electric field, a transition from the n-type Schottky contact to Ohmic contact is induced, and the carrier concentration between the borophene and g-C2N interfaces can be tuned. These results are expected to provide useful insight in the nanoelectronic and optoelectronic devices based on the borophene/g-C2N vdW heterostructures.

  17. Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability.

    PubMed

    Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing

    2018-04-11

    Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.

  18. Electron microscopy characterization of AlGaN/GaN heterostructures grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Gkanatsiou, A.; Lioutas, Ch. B.; Frangis, N.; Polychroniadis, E. K.; Prystawko, P.; Leszczynski, M.

    2017-03-01

    AlGaN/GaN buffer heterostructures were grown on "on axis" and 4 deg off Si (111) substrates by MOVPE. The electron microscopy study reveals the very good epitaxial growth of the layers. Almost c-plane orientated nucleation grains are achieved after full AlN layer growth. Step-graded AlGaN layers were introduced, in order to prevent the stress relaxation and to work as a dislocation filter. Thus, a crack-free smooth surface of the final GaN epitaxial layer is achieved in both cases, making the buffer structure ideal for the forthcoming growth of the heterostructure (used for HEMT device applications). Finally, the growth of the AlGaN/GaN heterostructure on top presents characteristic and periodic undulations (V-pits) on the surface, due to strain relaxation reasons. The AlN interlayer grown in between the heterostructure demonstrates an almost homogeneous thickness, probably reinforcing the 2DEG electrical characteristics.

  19. Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures.

    PubMed

    Lewis, Ryan B; Corfdir, Pierre; Küpers, Hanno; Flissikowski, Timur; Brandt, Oliver; Geelhaar, Lutz

    2018-04-11

    The flexibility and quasi-one-dimensional nature of nanowires offer wide-ranging possibilities for novel heterostructure design and strain engineering. In this work, we realize arrays of extremely and controllably bent nanowires comprising lattice-mismatched and highly asymmetric core-shell heterostructures. Strain sharing across the nanowire heterostructures is sufficient to bend vertical nanowires over backward to contact either neighboring nanowires or the substrate itself, presenting new possibilities for designing nanowire networks and interconnects. Photoluminescence spectroscopy on bent-nanowire heterostructures reveals that spatially varying strain fields induce charge carrier drift toward the tensile-strained outside of the nanowires, and that the polarization response of absorbed and emitted light is controlled by the bending direction. This unconventional strain field is employed for light emission by placing an active region of quantum dots at the outer side of a bent nanowire to exploit the carrier drift and tensile strain. These results demonstrate how bending in nanoheterostructures opens up new degrees of freedom for strain and device engineering.

  20. nomalous Interface and Surface Strontium Segregation in (La 1-ySr y) 2CoO 4 /La 1-xSr xCoO 3- Heterostructured Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhenxing; Yacoby, Yuzhak; Gadre, Milind

    2014-01-01

    Heterostructured materials have shown unusual physiochemical properties at the interfaces such as two dimensional electron gas systems, high-temperature superconductivity, and enhanced catalysis. Here we report the first atomic-scale evidence of the microscopic structure of a perovskite/Ruddlesden-Popper heterostructure (having La1-xSrxCoO3- /(La1-ySry)2CoO4 ), and anomalous strontium segregation at the interface and in the Ruddlesden-Popper structure using direct X-ray methods combined with ab initio calculations. The remarkably enhanced activity of such heterostructured surfaces relative to bulk perovskite and Ruddlesden-Popper oxides previously shown for oxygen electrocatalysis at elevated temperatures can be attributed to reduced thermodynamic penalty of oxygen vacancies in the oxide structure associatedmore » with Sr segregation observed in the heterostructure. Our findings provide insights for the design of highly active catalysts for energy conversion and storage applications.« less

Top