Sample records for heterotrophic plate counts

  1. RELATIONSHIPS BETWEEN LEVELS OF HETEROTROPHIC BACTERIA AND WATER QUALITY PARAMETERS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Conventional plating methods were used to quantify heterotrophic bacteria from a drinking water distribution system. Three media, plate count agar (PCA), R2A agar and sheep blood agar (TSA-SB) were used to determine heterotrophic plate count (HPC) levels. Grab samples were collec...

  2. HETEROTROPHIC PLATE COUNT BACTERIA - WHAT IS THEIR SIGNIFICANCE IN DRINKING WATER?

    EPA Science Inventory

    The possible health significance of heterotrophic plate count (HPC) bacteria, also know in earlier terminology as standard plate count (SPC) bacteria, in drinking water has been debated for decades. While the literature documents the universal occurrence of HPC bacteria in soil, ...

  3. A THUMBNAIL HISTORY OF HETEROTROPHIC PLATE COUNT (HPC) METHODOLOGY IN THE UNITED STATES

    EPA Science Inventory

    Over the past 100 years, the method of determining the number of bacteria in water, foods or other materials has been termed variously as: bacterial plate count, total plate count, total viable plate count, aerobic plate count, standard plate cound and more recently, heterotrophi...

  4. 40 CFR 141.72 - Disinfection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... serves water to the public. Water in the distribution system with a heterotrophic bacteria concentration... heterotrophic bacteria plate count (HPC) is measured; c=number of instances where the residual disinfectant... system with a heterotrophic bacteria concentration less than or equal to 500/ml, measured as...

  5. 40 CFR 141.72 - Disinfection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... serves water to the public. Water in the distribution system with a heterotrophic bacteria concentration... heterotrophic bacteria plate count (HPC) is measured; c=number of instances where the residual disinfectant... system with a heterotrophic bacteria concentration less than or equal to 500/ml, measured as...

  6. HETEROTROPHIC PLATE COUNT (HPC) METHODOLOGY IN THE UNITED STATES

    EPA Science Inventory

    ABSTRACT

    In the United States (U.S.), the history of bacterial plate counting methods used for water can be traced largely through Standard Methods for the Examination of Water and Wastewater (Standard Methods). The bacterial count method has evolved from the original St...

  7. Virological and bacteriological quality of drinking water in Ethiopia

    NASA Astrophysics Data System (ADS)

    Bedada, Tesfaye Legesse; Mezemir, Walelign Dessie; Dera, Firehiwot Abera; Sima, Waktole Gobena; Gebre, Samson Girma; Edicho, Redwan Muzeyin; Biegna, Almaz Gonfa; Teklu, Dejenie Shiferaw; Tullu, Kassu Desta

    2018-05-01

    Since unsafe water is responsible for many illness, deaths, and economic failure, water quality monitoring is essential. A cross-sectional study was conducted on 218 drinking waters samples collected between February and June 2016 to assess water quality using phages by the help of CB390 E. coli host, plaque assay; multiple tube fermentation for coliforms and pour plate for heterotrophic bacteria at Ethiopian Public Health Institute. Heterotrophic plate count greater than 100 cfu/ml was noted in 41 samples and detections of total and thermotolerant coliforms and E. coli in 38, 24, and 10 samples, respectively, and no phages detection in chlorinated waters. While heterotrophic plate count greater than 100 cfu/ml was observed in 100 samples and detections of total and thermotolerant coliforms, E. coli, and phages in 75, 60, 42, and 5 samples, respectively, for untreated waters. The majority of the waters contained indicators above standard limits. This indicates that the sources are contaminated and they are potential threats for health. Hence, regular water monitoring should be a priority agenda.

  8. PATHOGENICITY OF DRINKING WATER ISOLATES OF HETEROTROPHIC BACTERIA WITH PUTATIVE VIRULENCE FACTORS

    EPA Science Inventory

    Although the heterotrophic plate count (HPC) bacteria normally found in potable water are not a threat to the healthy population, some of them may be opportunistic pathogens that could cause adverse health effects in individuals with impaired immune systems. Earlier studies of t...

  9. APPARENT BIAS IN RIVER WATER INOCULUM FOLLOWING CENTRIFUGATION

    EPA Science Inventory

    We collected four measures of viable bacterial concentration (heterotrophic plate count, total coliform, fecal coliform, and Escherichia coli) and three measures of well color development in Biolog GN2 microtiter plates from water samples that were collected on two or three separ...

  10. Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system.

    PubMed

    Türetgen, Irfan; Cotuk, Aysin

    2007-02-01

    Cooling towers have the potential to develop infectious concentrations of Legionella pneumophila. Legionella counts increases where biofilm and warm water temperatures are present. In this study, biofilm associated L. pneumophila and heterotrophic bacteria were compared in terms of material dependence. Model cooling tower system was experimentally infected by L. pneumophila standard strain and monthly monitored. Different materials were tested for a period of 180 days. The lowest L. pneumophila and heterotrophic plate counts were measured on plastic polymers, whereas L. pneumophila and heterotrophic bacteria were accumulated rapidly on galvanized steel surfaces. It can be concluded that selection of plastic polymers, as a manufacturing material, are suitable for recirculating water systems.

  11. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water.

    PubMed Central

    Stewart, M H; Wolfe, R L; Means, E G

    1990-01-01

    Bacteriological analyses were performed on the effluent from a conventional water treatment pilot plant in which granular activated carbon (GAC) had been used as the final process to assess the impact of GAC on the microbial quality of the water produced. Samples were collected twice weekly for 160 days from the effluents of six GAC columns, each of which used one of four different empty-bed contact times (7.5, 15, 30, and 60 min). The samples were analyzed for heterotrophic plate counts and total coliforms. Effluent samples were also exposed to chloramines and free chlorine for 60 min (pH 8.2, 23 degrees C). Bacterial identifications were performed on the disinfected and nondisinfected effluents. Additional studies were conducted to assess the bacteriological activity associated with released GAC particles. The results indicated that heterotrophic plate counts in the effluents from all columns increased to 10(5) CFU/ml within 5 days and subsequently stabilized at 10(4) CFU/ml. The heterotrophic plate counts did not differ at different empty-bed contact times. Coliforms (identified as Enterobacter spp.) were recovered from the nondisinfected effluent on only two occasions. The disinfection results indicated that 1.5 mg of chloramines per liter inactivated approximately 50% more bacteria than did 1.0 mg of free chlorine per liter after 1 h of contact time. Chloramines and chlorine selected for the development of different bacterial species--Pseudomonas spp. and Flavobacterium spp., respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2082828

  12. Effectiveness of a steam cleaning unit for disinfection in a veterinary hospital.

    PubMed

    Wood, Cheryl L; Tanner, Benjamin D; Higgins, Laura A; Dennis, Jeffrey S; Luempert, Louis G

    2014-12-01

    To evaluate whether the application of steam to a variety of surface types in a veterinary hospital would effectively reduce the number of bacteria. 5 surface types. Steam was applied as a surface treatment for disinfection to 18 test sites of 5 surface types in a veterinary hospital. A pretreatment sample was obtained by collection of a swab specimen from the left side of each defined test surface. Steam disinfection was performed on the right side of each test surface, and a posttreatment sample was then collected in the same manner from the treated (right) side of each test surface. Total bacteria for pretreatment and posttreatment samples were quantified by heterotrophic plate counts and for Staphylococcus aureus, Pseudomonas spp, and total coliforms by counts on selective media. Significant reductions were observed in heterotrophic plate counts after steam application to dog runs and dog kennel floors. A significant reduction in counts of Pseudomonas spp was observed after steam application to tub sinks. Bacterial counts were reduced, but not significantly, on most other test surfaces that had adequate pretreatment counts for quantification. Development of health-care-associated infections is of increasing concern in human and veterinary medicine. The application of steam significantly reduced bacterial numbers on a variety of surfaces within a veterinary facility. Steam disinfection may prove to be an alternative or adjunct to chemical disinfection within veterinary practices.

  13. Conclusions on measurement uncertainty in microbiology.

    PubMed

    Forster, Lynne I

    2009-01-01

    Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.

  14. Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples.

    PubMed

    Meir-Gruber, Lital; Manor, Yossi; Gefen-Halevi, Shiraz; Hindiyeh, Musa Y; Mileguir, Fernando; Azar, Roberto; Smollan, Gill; Belausov, Natasha; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan

    2016-01-01

    The presence of pan-resistant bacteria worldwide possesses a threat to global health. It is difficult to evaluate the extent of carriage of resistant bacteria in the population. Sewage sampling is a possible way to monitor populations. We evaluated the presence of pan-resistant bacteria in Israeli sewage collected from all over Israel, by modifying the pour plate method for heterotrophic plate count technique using commercial selective agar plates. This method enables convenient and fast sewage sampling and detection. We found that sewage in Israel contains multiple pan-resistant bacteria including carbapenemase resistant Enterobacteriacae carrying blaKPC and blaNDM-1, MRSA and VRE. blaKPC carrying Klebsiella pneumonia and Enterobacter cloacae were the most common Enterobacteriacae drug resistant bacteria found in the sewage locations we sampled. Klebsiella pneumonia, Enterobacter spp., Escherichia coli and Citrobacter spp. were the 4 main CRE isolated from Israeli sewage and also from clinical samples in our clinical microbiology laboratory. Hospitals and Community sewage had similar percentage of positive samplings for blaKPC and blaNDM-1. VRE was found to be more abundant in sewage in Israel than MRSA but there were more locations positive for MRSA and VRE bacteria in Hospital sewage than in the Community. Therefore, our upgrade of the pour plate method for heterotrophic plate count technique using commercial selective agar plates can be a useful tool for routine screening and monitoring of the population for pan-resistant bacteria using sewage.

  15. Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples

    PubMed Central

    Mileguir, Fernando; Azar, Roberto; Smollan, Gill; Belausov, Natasha; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan

    2016-01-01

    The presence of pan-resistant bacteria worldwide possesses a threat to global health. It is difficult to evaluate the extent of carriage of resistant bacteria in the population. Sewage sampling is a possible way to monitor populations. We evaluated the presence of pan-resistant bacteria in Israeli sewage collected from all over Israel, by modifying the pour plate method for heterotrophic plate count technique using commercial selective agar plates. This method enables convenient and fast sewage sampling and detection. We found that sewage in Israel contains multiple pan-resistant bacteria including carbapenemase resistant Enterobacteriacae carrying blaKPC and blaNDM-1, MRSA and VRE. blaKPC carrying Klebsiella pneumonia and Enterobacter cloacae were the most common Enterobacteriacae drug resistant bacteria found in the sewage locations we sampled. Klebsiella pneumonia, Enterobacter spp., Escherichia coli and Citrobacter spp. were the 4 main CRE isolated from Israeli sewage and also from clinical samples in our clinical microbiology laboratory. Hospitals and Community sewage had similar percentage of positive samplings for blaKPC and blaNDM-1. VRE was found to be more abundant in sewage in Israel than MRSA but there were more locations positive for MRSA and VRE bacteria in Hospital sewage than in the Community. Therefore, our upgrade of the pour plate method for heterotrophic plate count technique using commercial selective agar plates can be a useful tool for routine screening and monitoring of the population for pan-resistant bacteria using sewage. PMID:27780222

  16. The Role of Flushing Dental Waterlines for the Removal of Microbial Contaminants - MCEARD

    EPA Science Inventory

    Objectives. This study was designed to determine the role of flushing dental water lines for the removal of heterotrophic plate count bacteria, Legionella spp., and free-living protozoa. Methods. Forty dental offices were surveyed in the study. An initial sample and a sample tak...

  17. Evaluation of heterotrophic plate and chromogenic agar colony counting in water quality laboratories.

    PubMed

    Hallas, Gary; Monis, Paul

    2015-01-01

    The enumeration of bacteria using plate-based counts is a core technique used by food and water microbiology testing laboratories. However, manual counting of bacterial colonies is both time and labour intensive, can vary between operators and also requires manual entry of results into laboratory information management systems, which can be a source of data entry error. An alternative is to use automated digital colony counters, but there is a lack of peer-reviewed validation data to allow incorporation into standards. We compared the performance of digital counting technology (ProtoCOL3) against manual counting using criteria defined in internationally recognized standard methods. Digital colony counting provided a robust, standardized system suitable for adoption in a commercial testing environment. The digital technology has several advantages:•Improved measurement of uncertainty by using a standard and consistent counting methodology with less operator error.•Efficiency for labour and time (reduced cost).•Elimination of manual entry of data onto LIMS.•Faster result reporting to customers.

  18. Improved methods for the enumeration of heterotrophic bacteria in bottled mineral waters.

    PubMed

    Ramalho, R; Cunha, J; Teixeira, P; Gibbs, P A

    2001-03-01

    At this time the European Union regulations require that the heterotrophic plate counts (HPC) of mineral waters be assessed at two recovery temperatures: 22 degrees C for 72 h and 37 degrees C for 24 h. This procedure is time consuming and expensive. Development of new rapid methods for microbiological assessment of the microbial flora in the bottled water is an industry-driven need. The objectives of this work were to develop a method for the HPC that utilises only one recovery temperature and one incubation period and evaluate the use of, the LIVE/DEAD(R) BacLight Bacterial Viability Kit, 5-cyano-2,3-ditotyl tetrazolium chloride (CTC) and impedance methods to enumerate viable bacteria in bottled mineral water. Results showed that incubation at 30 degrees C could be used instead of incubation at 22 degrees C and 37 degrees C. Good correlation exists between counts at 30 degrees C and counts at 22 degrees C (r>0.90) and all the pathogens important in mineral water analyses grow similarly at 30 degrees C and 37 degrees C during 24 h. It was demonstrated that impedance methods might be useful to the mineral water industry as a rapid indicator of microbiological quality of the water. Results obtained with BacLight and CTC were similar to those obtained with plate counts.

  19. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  20. Growth and persistence of pathogens on granular activated carbon filters.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1985-01-01

    Three enteric pathogens Yersinia enterocolitica O:8, Salmonella typhimurium, and enterotoxigenic Escherichia coli, were examined for their ability to colonize granular activated carbon (GAC) in pure cultures and in the presence of autochthonous river water organisms. All three organisms readily colonized sterile GAC and maintained populations of ca. 10(5) to 10(7) CFU g-1 for 14 days when suspended in sterile river water. Exposure of pathogen biofilms on GAC to unsterile river water resulted in a gradual decline in pathogens on the carbon (0.08 to 0.14 log day-1). When pathogens were introduced to sterile GAC in the presence of heterotrophic plate count organisms, they attached at levels similar to those in the pure cultures and then decreased (0.10 to 0.22 log day-1). When added with heterotrophic plate count bacteria to GAC supporting a mature biofilm of native river water bacteria, they attached at a lower level (1.0 X 10(4) to 4.6 X 10(4) CFU g-1) and decreased at a more rapid rate (0.11 to 0.70 log day-1). PMID:3911903

  1. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    PubMed

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  2. Nurses’ uniforms: How many bacteria do they carry after one shift?

    PubMed Central

    Sanon, Marie-Anne; Watkins, Sally

    2013-01-01

    This pilot study investigated the pathogens that nurses are potentially bringing into the public and their home when they wear work uniforms outside of the work environment. To achieve this, sterilized uniforms were distributed to 10 nurses at a local hospital in Washington State at the beginning of their shift. Worn uniforms were collected at the end of the shifts and sent to a laboratory for analysis. Four tests were conducted: 1) a heterotrophic growth plate count, 2) methicillin-resistant Staphylococcus aureus (MRSA) growth, 3) vancomycin-resistant Enterococci (VRE), and 4) identification of the heterotrophic plate counts. Each participant completed a questionnaire and a survey. The results showed that the average bacteria colony growth per square inch was 1,246 and 5,795 for day and night shift, respectively. After 48 h, MRSA positives were present on 4 of the day shift and 3 of the night shift uniforms. Additional bacteria identified include: Bacillus sp., Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus roseus. The significant presence of bacteria on the uniforms 48 h after the shift ended necessitates further study, discussions and policy consideration regarding wearing health care uniforms outside of the work environment. PMID:25285235

  3. Nurses' uniforms: How many bacteria do they carry after one shift?

    PubMed

    Sanon, Marie-Anne; Watkins, Sally

    2012-12-01

    This pilot study investigated the pathogens that nurses are potentially bringing into the public and their home when they wear work uniforms outside of the work environment. To achieve this, sterilized uniforms were distributed to 10 nurses at a local hospital in Washington State at the beginning of their shift. Worn uniforms were collected at the end of the shifts and sent to a laboratory for analysis. Four tests were conducted: 1) a heterotrophic growth plate count, 2) methicillin-resistant Staphylococcus aureus (MRSA) growth, 3) vancomycin-resistant Enterococci (VRE), and 4) identification of the heterotrophic plate counts. Each participant completed a questionnaire and a survey. The results showed that the average bacteria colony growth per square inch was 1,246 and 5,795 for day and night shift, respectively. After 48 h, MRSA positives were present on 4 of the day shift and 3 of the night shift uniforms. Additional bacteria identified include: Bacillus sp., Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus roseus. The significant presence of bacteria on the uniforms 48 h after the shift ended necessitates further study, discussions and policy consideration regarding wearing health care uniforms outside of the work environment.

  4. Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes.

    PubMed

    Horn, Suranie; Pieters, Rialet; Bezuidenhout, Carlos

    2016-12-01

    Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.

  5. Microbiological quality of drinking water from dispensers in roadside restaurants of Bangladesh.

    PubMed

    Moniruzzaman, M; Akter, S; Islam, M A; Mia, Z

    2011-01-15

    The microbiological status of water from dispensers in different roadside restaurants of Dhaka city and Savar area was analyzed in this study. Seven samples from Dhaka and 8 samples of Savar were checked. The heterotrophic plate count was in a range of 1.0 x 10(3) CFU mL(-1) to 2.0 x 10(4) CFU mL(-1) (from new bottles), 1.0 x 10(3) to 1.5 x 10(4) CFU mL(-1) (after dispensation), and 1.5 x 10(3) CFU mL(-1) to 1.0 x l0(5) CFU mL(-1) (from serving glass). In several of the samples, the heterotrophic plate count was higher than the count in water from new bottle or after dispensation, suggesting added contamination from the serving glass. 80% of the samples were contaminated with total and fecal coliform bacteria, which render these waters unacceptable for human consumption. The samples were found to contain gram negative bacteria like E coli, Shigella sp., Klebsiella sp., Enterobacter sp., Pseudomonas sp., and Salmonella sp., which are potential pathogens and thus pose a serious threat to public health. This study elucidates the importance of monitoring the bottling companies and the restaurants and put them under strict regulations to prevent future outbreak of any water borne diseases caused by consumption of dispensed water.

  6. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  7. Heterotrophic bacteria in an air-handling system.

    PubMed Central

    Hugenholtz, P; Fuerst, J A

    1992-01-01

    Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins. Images PMID:1476435

  8. Heterotrophic bacteria in an air-handling system.

    PubMed

    Hugenholtz, P; Fuerst, J A

    1992-12-01

    Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins.

  9. Microbiological assessment of house and imported bottled water by comparison of bacterial endotoxin concentration, heterotrophic plate count, and fecal coliform count.

    PubMed

    Reyes, Mayra I; Pérez, Cynthia M; Negrón, Edna L

    2008-03-01

    Consumers increasingly use bottled water and home water treatment systems to avoid direct tap water. According to the International Bottled Water Association (IBWA), an industry trade group, 5 billion gallons of bottled water were consumed by North Americans in 2001. The principal aim of this study was to assess the microbial quality of in-house and imported bottled water for human consumption, by measurement and comparison of the concentration of bacterial endotoxin and standard cultivable methods of indicator microorganisms, specifically, heterotrophic and fecal coliform plate counts. A total of 21 brands of commercial bottled water, consisting of 10 imported and 11 in-house brands, selected at random from 96 brands that are consumed in Puerto Rico, were tested at three different time intervals. The Standard Limulus Amebocyte Lysate test, gel clot method, was used to measure the endotoxin concentrations. The minimum endotoxin concentration in 63 water samples was less than 0.0625 EU/mL, while the maximum was 32 EU/mL. The minimum bacterial count showed no growth, while the maximum was 7,500 CFU/mL. Bacterial isolates like P. fluorescens, Corynebacterium sp. J-K, S. paucimobilis, P. versicularis, A. baumannii, P. chlororaphis, F. indologenes, A. faecalis and P. cepacia were identified. Repeated measures analysis of variance demonstrated that endotoxin concentration did not change over time, while there was a statistically significant (p < 0.05) decrease in bacterial count over time. In addition, multiple linear regression analysis demonstrated that a unit change in the concentration of endotoxin across time was associated with a significant (p < 0.05) reduction in the bacteriological cell count. This analysis evidenced a significant time effect in the average log bacteriological cell count. Although bacterial growth was not detected in some water samples, endotoxin was present. Measurement of Gram-negative bacterial endotoxins is one of the methods that have been suggested as a rapid way of determining bacteriological water quality.

  10. [Endotoxin Contamination and Correlation with Other Water Quality Parameters of Groundwater from Self-Contained Wells in Beijing].

    PubMed

    Zhang, Can; Liu, Wen-jun; Ao, Lu; Shi, Yun; An, Dai-zhi; Liu, Zhi-ping

    2015-12-01

    A survey of endotoxin activity in groundwater from 14 self-contained wells in PLA units stationed in Beijing was conducted by the kinetic-turbid assay of Tachypleus Amebocyte Lysate (TAL). Bacteriological parameters, including total cell counts detected by flow cytometry, heterotrophic plate counts (HPC), standard plate counts and total coliforms were analyzed. Additionally, suspended particles, turbidity, dissolved organic carbon (DOC), and UV₂₅₄ were investigated. Total endotoxin activities ranged from 0. 15 to 13.20 EU · mL⁻¹, free endotoxin activities ranged from 0.10 to 5.29 EU · mL⁻¹ and bound endotoxin activities ranged from 0.01 to 8.60 EU · mL⁻¹. Most of the endotoxins in heavily contaminated groundwater existed as bound endotoxins. As for total endotoxins, the sequence of correlation coefficients with other parameters was total cell counts (r = 0.88 ) > HPC (r = 0.79) > DOC (r = 0.77) > UV₂₅₄ (r = 0.57) > total coliforms (r = 0.50) > standard plate counts (r = 0.49) = turbidity (r = 0. 49) > total particles (r = 0.41). The sequence of correlations of the bound endotoxins with other parameters was total cell counts (r = 0.81) > HPC (r = 0.66) > total coliforms (r = 0.65) > turbidity (r = 0.62) > total particles (r = 0.58) > standard plate counts (r = 0.22). Free endotoxins were correlated with DOC and UV₂₅₄, r = 0.58 and 0.26, respectively. Result showed free endotoxins had a higher correlation with DOC, and a lower correlation with UV₂₅₄.

  11. Evaluation of 3 dental unit waterline contamination testing methods

    PubMed Central

    Porteous, Nuala; Sun, Yuyu; Schoolfield, John

    2015-01-01

    Previous studies have found inconsistent results from testing methods used to measure heterotrophic plate count (HPC) bacteria in dental unit waterline (DUWL) samples. This study used 63 samples to compare the results obtained from an in-office chairside method and 2 currently used commercial laboratory HPC methods (Standard Methods 9215C and 9215E). The results suggest that the Standard Method 9215E is not suitable for application to DUWL quality monitoring, due to the detection of limited numbers of heterotrophic organisms at the required 35°C incubation temperature. The results also confirm that while the in-office chairside method is useful for DUWL quality monitoring, the Standard Method 9215C provided the most accurate results. PMID:25574718

  12. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less

  13. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    PubMed

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heterotrophic plate count and consumer's health under special consideration of water softeners.

    PubMed

    Hambsch, Beate; Sacré, Clara; Wagner, Ivo

    2004-05-01

    The phenomenon of bacterial growth in water softeners is well known since years. To upgrade the hygienic safety of water softeners, the German DIN Standard 19636 was developed, to assure that the distribution system could not be contaminated by these devices and that the drinking water to be used in the household still meets the microbiological standards according to the German drinking water guidelines, i.e. among others heterotrophic plate count (HPC) below 100 CFU/ml. Moreover, the standard for the water softeners includes a test for contamination with Pseudomonas aeruginosa which has to be disinfected during the regeneration phase. This is possible by sanitizing the resin bed during regeneration by producing chlorine. The results of the last 10 years of tests of water softeners according to DIN 19636 showed that it is possible to produce water softeners that comply with that standard. Approximately 60% of the tested models were accepted. P. aeruginosa is used as an indicator for potentially pathogenic bacteria being able to grow also in low nutrient conditions which normally prevail in drinking water. Like other heterotrophs, the numbers of P. aeruginosa increase rapidly as stagnation occurs. Normally P. aeruginosa is not present in the distributed drinking water. However, under certain conditions, P. aeruginosa can be introduced into the drinking water distribution system, for instance, during construction work. The occurrence of P. aeruginosa is shown in different cases in treatment plants, public drinking water systems and in-house installations. The compliance with DIN 19636 provides assurance that a water softener will not be a constant source of contamination, even if it is once inoculated with a potentially pathogenic bacterium like P. aeruginosa. Copyright 2003 Elsevier B.V.

  15. Phylogenetic assessment of heterotrophic bacteria from a water distribution system using 16S rDNA sequencing.

    PubMed

    Tokajian, Sima T; Hashwa, Fuad A; Hancock, Ian C; Zalloua, Pierre A

    2005-04-01

    Determination of a heterotrophic plate count (HPC) for drinking-water samples alone is not enough to assess possible health hazards associated with sudden changes in the bacterial count. Speciation is very crucial to determine whether the population includes pathogens and (or) opportunistic pathogens. Most of the isolates recovered from drinking water samples could not be allocated to a specific phylogenetic branch based on the use of conventional diagnostic methods. The present study had to use phylogenetic analysis, which was simplified by determining and using the first 500-bp sequence of the 16S rDNA, to successfully identify the type and species of bacteria found in the samples. Gram-positive bacteria alpha-, beta-, and gamma-Proteobacteria were found to be the major groups representing the heterotrophic bacteria in drinking water. The study also revealed that the presence of sphingomonads in drinking water supplies may be much more common than has been reported so far and thus further studies are merited. The intermittent mode of supply, mainly characterized by water stagnation and flow interruption associated possibly with biofilm detachment, raised the possibility that the studied bacterial populations in such systems represented organisms coming from 2 different niches, the biofilm and the water column.

  16. Molecular detection of Acanthamoeba spp., Naegleria fowleri and Vermamoeba (Hartmannella) vermiformis as vectors for Legionella spp. in untreated and solar pasteurized harvested rainwater.

    PubMed

    Dobrowsky, Penelope H; Khan, Sehaam; Cloete, Thomas E; Khan, Wesaal

    2016-10-10

    Legionella spp. employ multiple strategies to adapt to stressful environments including the proliferation in protective biofilms and the ability to form associations with free-living amoeba (FLA). The aim of the current study was to identify Legionella spp., Acanthamoeba spp., Vermamoeba (Hartmannella) vermiformis and Naegleria fowleri that persist in a harvested rainwater and solar pasteurization treatment system. Pasteurized (45 °C, 65 °C, 68 °C, 74 °C, 84 °C and 93 °C) and unpasteurized tank water samples were screened for Legionella spp. and the heterotrophic plate count was enumerated. Additionally, ethidium monoazide quantitative polymerase chain reaction (EMA-qPCR) was utilized for the quantification of viable Legionella spp., Acanthamoeba spp., V. vermiformis and N. fowleri in pasteurized (68 °C, 74 °C, 84 °C and 93 °C) and unpasteurized tank water samples, respectively. Of the 82 Legionella spp. isolated from unpasteurized tank water samples, Legionella longbeachae (35 %) was the most frequently isolated, followed by Legionella norrlandica (27 %) and Legionella rowbothamii (4 %). Additionally, a positive correlation was recorded between the heterotrophic plate count vs. the number of Legionella spp. detected (ρ = 0.710, P = 0.048) and the heterotrophic plate count vs. the number of Legionella spp. isolated (ρ = 0.779, P = 0.0028) from the tank water samples collected. Solar pasteurization was effective in reducing the gene copies of viable V. vermiformis (3-log) and N. fowleri (5-log) to below the lower limit of detection at temperatures of 68-93 °C and 74-93 °C, respectively. Conversely, while the gene copies of viable Legionella and Acanthamoeba were significantly reduced by 2-logs (P = 0.0024) and 1-log (P = 0.0015) overall, respectively, both organisms were still detected after pasteurization at 93 °C. Results from this study indicate that Acanthamoeba spp. primarily acts as the vector and aids in the survival of Legionella spp. in the solar pasteurized rainwater as both organisms were detected and were viable at high temperatures (68-93 °C).

  17. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  18. Microbiological quality and potential public health risks of export meat from springbok (Antidorcas marsupialis) in Namibia.

    PubMed

    Magwedere, K; Shilangale, R; Mbulu, R S; Hemberger, Y; Hoffman, L C; Dziva, F

    2013-01-01

    To assess the microbiological quality and safety of export game meat; i) a total of 80 pooled meat samples for aerobic plate count (APC) and Enterobacteriaceae ii) water used in harvesting and processing for microbiological quality and iii) meat and rectal contents for Salmonella spp. and Shiga toxin Escherichia coli (STEC) were evaluated in 2009 and 2010. No differences (p>0.05) in the APCs were observed between the years, but the mean Enterobacteriaceae count for 2009 was 1.33 ± 0.69 log(10)cfu/cm(2) compared to 2.93 ± 1.50 log(10)cfu/cm(2) for 2010. Insignificant Heterotrophic Plate Count (HPC) levels were detected in 9/23 field water samples, while fecal bacterial (coliforms, Clostridium perfringens and enterococci) were absent in all samples. No Salmonella spp. was isolated and all E. coli isolates from meat were negative for STEC virulence genes (stx1, stx2, eae and hlyA), suggesting a negligible role by springbok in the epidemiology of STEC and Salmonella. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. [Harmonization of microbiologicaland parasitological indices of epidemic safety of drinking water with the international requirements].

    PubMed

    Ivanova, L V; Artemova, T Z; Gipp, E K; Zagaĭnova, A V; Maksimkina, T N; Krasniak, A V; Korneĭchuk, S S; Shustova, S S

    2013-01-01

    For the purpose of harmonization of microbiological and parasitological indices and benchmarks there was performed the comparative analysis of the requirements for the quality of drinking water in respect of the epidemic safety on the basic regulations of Russia, the Directive Council of the European Union EU, WHO, the United States, Canada, Australia, Finland, Sweden, Brazil, France, Japan and China. As a result, there were revealed the priority bacteriological, virological and parasitological parameters: E. coli--indicator of recent fecal contamination, coliforms, heterotrophic bacteria colony count (Heterotrophic plate count), which is in the water legislation of the Russian Federation is characterized as total bacterial count (TBC), being an integral index of the quality of wastewater treatment technologies and hygienic condition of the water supply systems, coliphages as an indicator of viral contamination. In the Guidelines for drinking-water quality control, WHO and a set of countries there is recommended a more wide range of indicators: enterococci, Clostridium perfringens, Pseudomonas aeruginosa, enteroviruses, parasitological indices. With aim of harmonization of the requirements for the quality of drinking water in the Russian Federation with international approaches to the revision of the Sanitary Regulations and Norms (SanPin) 2.1.4.1074 into the project there are introduced priority indicator parameters of bacterial, viral and parasitic contamination of water, evidence-based guidelines.

  20. Fluorometric determination of the DNA concentration in municipal drinking water.

    PubMed Central

    McCoy, W F; Olson, B H

    1985-01-01

    DNA concentrations in municipal drinking water samples were measured by fluorometry, using Hoechst 33258 fluorochrome. The concentration, extraction, and detection methods used were adapted from existing techniques. The method is reproducible, fast, accurate, and simple. The amounts of DNA per cell for five different bacterial isolates obtained from drinking water samples were determined by measuring DNA concentration and total cell concentration (acridine orange epifluorescence direct cell counting) in stationary pure cultures. The relationship between DNA concentration and epifluorescence total direct cell concentration in 11 different drinking water samples was linear and positive; the amounts of DNA per cell in these samples did not differ significantly from the amounts in pure culture isolates. We found significant linear correlations between DNA concentration and colony-forming unit concentration, as well as between epifluorescence direct cell counts and colony-forming unit concentration. DNA concentration measurements of municipal drinking water samples appear to monitor changes in bacteriological quality at least as well as total heterotrophic plate counting and epifluorescence direct cell counting. PMID:3890737

  1. Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water.

    PubMed

    Pavlov, D; de Wet, C M E; Grabow, W O K; Ehlers, M M

    2004-05-01

    Heterotrophic plate counts (HPCs) are commonly used to assess the general microbiological quality of drinking water. Drinking water quality specifications worldwide recommend HPC limits from 100 to 500 cfu ml(-1). A number of recent studies revealed evidence that these bacteria may not be as harmless as generally accepted. It appears that immuno-compromised individuals are particularly at risk. This would include the very young and very old patients with diseases such as AIDS and patients on therapy for purposes such as organ transplantation and cancer treatment. In this study, 339 bacterial colonies were isolated at random from selected treated and untreated drinking water in South Africa using routine heterotrophic plate count tests. In a first step to screen for potentially pathogenic properties, 188 (55.5%) of the isolates showed alpha- or beta-haemolysis on human- and horse-blood agar media. Subsequent analysis of the haemolytic isolates for enzymatic properties associated with pathogenicity revealed the presence of chondroitinase in 5.3% of the isolates, coagulase in 16.0%, DNase in 60.6%, elastase in 33.0%, fibrinolysin in 53.7%, gelatinase in 62.2%, hyaluronidase in 21.3%, lecithinase in 47.9%, lipase in 54.8% and proteinase in 64.4%. Fluorescein and pyocyanin were not produced by any of the isolates. Among the haemolytic isolates, 77.7% were resistant to oxacillin 1 microg, 59.6% to penicillin G 2 units, 47.3% to penicillin G 10 units, 54.3% to ampicillin 10 microg and 43.1% to ampicillin 25 microg. Cell culture studies revealed that 96% of haemolytic isolates were cytotoxic to HEp-2 cells, and 98.9% of the 181 cytotoxic isolates adhered to HEp-2 or Caco-2 cells. HEp-2 cells were invaded by 43.6%, and Caco-2 cells by 49.7%, of the 181 cytotoxic isolates. The invasion index on HEp-2 cells ranged from 1.9 x 10(-1) to 8.9 x 10(-6), whereas the invasion index on Caco-2 cells varied between 7.7 x 10(-2) and 8.3 x 10(-6). The most commonly isolated genera with these potentially pathogenic features were Aeromonas, Acinetobacter, Aureobacterium, Bacillus, Chryseobacterium, Corynebacterium, Klebsiella, Moraxella, Pseudomonas, Staphylococcus, Tsukamurella and Vibrio. The results obtained in this study support earlier findings on potentially pathogenic features of bacteria detected by routine HPCs on drinking water. These findings are in agreement with some epidemiological studies, which indicated an association between HPCs in drinking water and the incidence of gastroenteritis in consumers. However, the extent of the health risk concerned needs to be defined in more detail for meaningful revision of quality guidelines for HPCs in drinking water. Copyright 2003 Elsevier B.V.

  2. Assessment of pathogenic bacteria in water and sediment from a water reservoir under tropical conditions (Lake Ma Vallée), Kinshasa Democratic Republic of Congo.

    PubMed

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Atibu, Emmanuel K; Tshibanda, Joseph B; Ngelinkoto, Patience; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-10-01

    This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65 × 10(3), 6.35 × 10(3), 3.27 × 10(3) and 3.60 × 10(8) CFU g(-1) of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.

  3. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters.

    PubMed

    Ahammed, M Mansoor; Meera, V

    2010-09-15

    The present study was conducted to compare the performance of a dual-media filter consisting of manganese oxide-coated (MOCS) and iron hydroxide-coated sand (IOCS) with that of IOCS filter and uncoated sand filter in treating water contaminated by microorganisms, heavy metals and turbidity with a view to its use in simple household water purification devices in developing countries. Long-duration column tests were conducted using two natural waters namely, roof-harvested rainwater and canal water. Performance of the filters showed that dual-media filter was more efficient in removing bacteria and heavy metals compared to IOCS filter, while uncoated sand filter showed very poor performance. The average effluent levels for dual-media filter when tested with rainwater were: turbidity 1.0+/-0.1 NTU; total coliforms 3+/-2 MPN/100 mL; heterotrophic plate count 170+/-20 CFU/mL; zinc 0.06+/-0.01 mg/L, while that for IOCS filter were: turbidity 1.0+/-0.1 NTU; total coliforms 4+/-2 MPN/100 mL; heterotrophic plate count 181+/-37 CFU/mL; zinc 0.20+/-0.07 mg/L. Similar results were obtained for canal water also. Up to 900 bed volumes (BV) could be treated without affecting the efficiency in the case of rainwater, while the filter operation had to be terminated after 500 BV due to excessive headloss in the case of canal water. The study thus showed the potential of the dual-media for use in low-cost household water filters for purification of natural waters. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Decontamination of a drinking water pipeline system contaminated with adenovirus and Escherichia coli utilizing peracetic acid and chlorine.

    PubMed

    Kauppinen, Ari; Ikonen, Jenni; Pursiainen, Anna; Pitkänen, Tarja; Miettinen, Ilkka T

    2012-09-01

    A contaminated drinking water distribution network can be responsible for major outbreaks of infections. In this study, two chemical decontaminants, peracetic acid (PAA) and chlorine, were used to test how a laboratory-scale pipeline system can be cleaned after simultaneous contamination with human adenovirus 40 (AdV40) and Escherichia coli. In addition, the effect of the decontaminants on biofilms was followed as heterotrophic plate counts (HPC) and total cell counts (TCC). Real-time quantitative polymerase chain reaction (qPCR) was used to determine AdV40 and plate counting was used to enumerate E. coli. PAA and chlorine proved to be effective decontaminants since they decreased the levels of AdV40 and E. coli to below method detection limits in both water and biofilms. However, without decontamination, AdV40 remained present in the pipelines for up to 4 days. In contrast, the concentration of cultivable E. coli decreased rapidly in the control pipelines, implying that E. coli may be an inadequate indicator for the presence of viral pathogens. Biofilms responded to the decontaminants by decreased HPCs while TCC remained stable. This indicates that the mechanism of pipeline decontamination by chlorine and PAA is inactivation rather than physical removal of microbes.

  5. Impact of bottled water storage duration and location on bacteriological quality.

    PubMed

    Duranceau, Steven J; Emerson, Hilary P; Wilder, Rebecca J

    2012-01-01

    An investigation studying the effects of storage duration and location on the persistence of heterotrophic microorganisms in oligotrophic bottled water environments has been completed. One-gallon high-density polyethylene water containers stored for up to 16 weeks at temperatures ranging from 2°C to >49°C in a refrigerator, indoor cabinet, covered porch, and car trunk were evaluated for microbiological quality. Heterotrophic plate counts (HPCs) of up to 4 × 10(3) cfu/mL were detected in containers stored on a porch and car trunk; whereas, HPCs were found not to exceed 400 cfu/mL and 100 cfu/mL for bottles stored in indoor cabinets and refrigerators, respectively. Containers stored on an enclosed porch for up to seven years contained HPC of up to 4 × 10(4) cfu/mL. Logistic and Gompertz growth models predicted microbial growth rates for bottled water stored on a protected porch environment for long (R(2) 0.99) and short-term (R(2) 0.86) durations.

  6. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    An activated sludge from a sewage treatment plant and a laboratory activated sludge developed on an artificial waste were compared for their ability to utilize 11 aromatic compounds. There were several significant differences between them. The laboratory sludge contained higher numbers of organisms and metabolized the aromatics to a greater extent. Laboratory activated sludges acclimated to utilization of the aromatics differed from each other in population structure and the pattern of oxygen consumption with aromatic substrates. The oxidative patterns of uncontrolled mixed populations were unreliable for investigating metabolic pathways. Extracts of the various sludges elevated the plate counts of the sludges. PMID:5418946

  7. Disinfection of bacteria attached to granular activated carbon.

    PubMed Central

    LeChevallier, M W; Hassenauer, T S; Camper, A K; McFeters, G A

    1984-01-01

    Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected with 2.0 mg of chlorine per liter (1.4 to 1.6 mg of free chlorine residual per liter after 1 h) for 1 h, no significant decrease in viable counts was observed. Washed cells attached to the surface of granular activated carbon particles showed similar resistance to chlorine, but a progressive increase in sublethal injury was found. Observations made by scanning electron microscope indicated that granular activated carbon was colonized by bacteria which grow in cracks and crevices and are coated by an extracellular slime layer. These data suggest a possible mechanism by which treatment and disinfection barriers can be penetrated and pathogenic bacteria may enter drinking water supplies. Images PMID:6508306

  8. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  9. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  10. Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.L.; Stewart, M.H.; Liang, S.

    PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages, four hydrogen peroxide/ozone weight ratios, and four contact times in two source waters--Coloradomore » River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E.« less

  11. Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system.

    PubMed

    Rodríguez-Martínez, Sarah; Sharaby, Yehonatan; Pecellín, Marina; Brettar, Ingrid; Höfle, Manfred; Halpern, Malka

    2015-06-15

    Bacteria of the genus Legionella cause water-based infections, resulting in severe pneumonia. To improve our knowledge about Legionella spp. ecology, its prevalence and its relationships with environmental factors were studied. Seasonal samples were taken from both water and biofilm at seven sampling points of a small drinking water distribution system in Israel. Representative isolates were obtained from each sample and identified to the species level. Legionella pneumophila was further determined to the serotype and genotype level. High resolution genotyping of L. pneumophila isolates was achieved by Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Within the studied water system, Legionella plate counts were higher in summer and highly variable even between adjacent sampling points. Legionella was present in six out of the seven selected sampling points, with counts ranging from 1.0 × 10(1) to 5.8 × 10(3) cfu/l. Water counts were significantly higher in points where Legionella was present in biofilms. The main fraction of the isolated Legionella was L. pneumophila serogroup 1. Serogroup 3 and Legionella sainthelensis were also isolated. Legionella counts were positively correlated with heterotrophic plate counts at 37 °C and negatively correlated with chlorine. Five MLVA-genotypes of L. pneumophila were identified at different buildings of the sampled area. The presence of a specific genotype, "MLVA-genotype 4", consistently co-occurred with high Legionella counts and seemed to "trigger" high Legionella counts in cold water. Our hypothesis is that both the presence of L. pneumophila in biofilm and the presence of specific genotypes, may indicate and/or even lead to high Legionella concentration in water. This observation deserves further studies in a broad range of drinking water systems to assess its potential for general use in drinking water monitoring and management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments.

    PubMed Central

    Molongoski, J J; Klug, M J

    1976-01-01

    Strict anaerobic culture techniques were used to quantitatively and qualitatively evaluate the anaerobic heterotrophic bacteria present at the sediment-water interface of hyperutrophic Wintergreen Lake (Augusta, Mich.). Anaerobic plate counts remained constant from March through December, 1973, ranging from 2.4 X 10(6) to 5.7 X 10(6) organisms/g (dry weight) of sediment. The isolatable bacteria represented a small percentage of the total microbial community, which was shown by direct microscopic counts to be 2.0 X 10'' organisms/g (dry weight) of sediment during June and July. Bacteria of the genus Clostridium dominated the isolates obtained, accounting for 71.8% of the 960 isolates examined. A single species, Clostridium bifermentens, comprised 47.7% of the total. Additional bacterial groups and the percentage in which they were isolated included: Streptococcus sp. (10.8%), unidentified curved rods (9.5%y, gram-positive nonsporing rods (5.6%), and motile gram-negative rods (1.9%). Temperature growth studies demonstrated the ability of all the isolates to grow at in situ sediment temperatures. Gas-liqid radiochromatography was used to determine the soluble metabolic end products from [U-14C]glucose and a U-14C-labeled amino acid mixture by representative sedimentary clostridial isolates and by natural sediment microbial communities. At in situ temperatures the natural sediment microflora produced soluble fermentative end products characteristic of those elaborated by the clostridial isolates tested. These results are considered strong presumptive evidence that clostridia are actively metabolizing in the sediments of Wintergreen Lake. PMID:942211

  13. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia.

    PubMed

    Lehtola, Markku J; Juhna, Tālis; Miettinen, Ilkka T; Vartiainen, Terttu; Martikainen, Pertti J

    2004-12-01

    The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chlorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water.

  14. Legionella prevalence and risk of legionellosis in Japanese households.

    PubMed

    Kuroki, T; Watanabe, Y; Teranishi, H; Izumiyama, S; Amemura-Maekawa, J; Kura, F

    2017-05-01

    This study determined the occurrence of legionellae in private houses for which there were no available data on aquatic environments other than the water supply system. From June 2013 to November 2014, we collected 138 water and 90 swab samples from aquatic environments in 19 houses. Legionella DNA was detected via a loop-mediated isothermal amplification assay in 66 (47·8%) water and 17 (18·9%) swab samples. High Legionella DNA detection rates were observed in water samples from washing machines and aquariums. Legionella spp. was isolated from 9 (6·5%) water and 3 (3·3%) swab samples. Legionella pneumophila SG 1 was detected from the outlet water of a bathtub spout and a bath sponge. Use of amoebic co-culture effectively increased legionellae and Legionella DNA detection rates from all sample types. A logistic regression analysis revealed that the heterotrophic plate count was significantly related to Legionella contamination. Our findings indicate that there is a risk of legionellosis from exposure to Legionella spp. in a variety of aquatic environments in residential houses. Control measures for legionellae in houses should include frequent cleaning and disinfecting to reduce heterotrophic bacteria in water and, where possible, preventing aerosolization from aquatic environments.

  15. Bacterial contaminants in carbonated soft drinks sold in Bangladesh markets.

    PubMed

    Akond, Muhammad Ali; Alam, Saidul; Hasan, S M R; Mubassara, Sanzida; Uddin, Sarder Nasir; Shirin, Momena

    2009-03-31

    A total of 225 carbonated soft drink (CSD) samples from nine brands, from various locations in five metropolitan cities of Bangladesh were examined to determine their bacteriological quality. Most samples were not in compliance with microbiological standards set by organizations like the World Health Organization (WHO). Pseudomonas aeruginosa was the predominant species with an incidence of 95%. Streptococcus spp. and Bacillus stearothermophilus were the next most prevalent with numbers ranging from 6 to 122 and 9 to 105 cfu/100 ml, respectively. Fifty four percent of the samples yielded Salmonella spp. at numbers ranging from 2 to 90 cfu/100 ml. Total coliform (TC) and faecal coliform (FC) counts were found in 68-100% and 76-100% of samples of individual brands, at numbers ranging from 5 to 213 and 3 to 276 cfu/100 ml, respectively. According to WHO standards 60-88% of samples from six brands and 32% and 40% of samples from two other brands belonged to the intermediate risk group with FC counts of 100-1000 cfu/100 ml. Heterotrophic plate counts, however, were under the permissible limit in all 225 samples. These findings suggest that carbonated soft drinks commercially available in Bangladesh pose substantial risks to public health.

  16. Addition of Rubber to soil damages the functional diversity of soil.

    PubMed

    Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun

    2017-07-01

    Rubber is a polymer of isoprene, consisting mainly of cis-1,4-polyisoprene units. The unmanageable production and its irresponsible disposal pose severe threats to environmental ecology. Therefore, the current study focuses extensively on the ill-effects of Rubber disposal on soil microbial functional diversity as it reflects the health of ecosystem by acting as a key component in ecosystem productivity. To investigate the effect of Rubber on soil microbial functional diversity, soil samples were collected from landfill sites and three different soil microcosms (Rubber treated, untreated, and sterile soil) were prepared. The soil enzymatic activity was determined by fluorescein diacetate hydrolysis followed by the determination of the microbial metabolic potential and functional diversity by average well color development and Shannon-Weaver index (H), respectively. BiOLOG ECO plates were used for determining the microbial functional diversity of the soil microcosms. Higher heterotrophic microbial count as well as higher soil microbial activity was observed in Rubber untreated soil than Rubber treated soil microcosm. The result indicated that the addition of Rubber to soil reduced soil heterotrophic microbial count and soil microbial activity considerably. Similarly, soil microbial metabolic potential as well as microbial functional diversity of soil had been decreased by the addition of Rubber gloves in it. Variation in soil microbial metabolic spectrum between Rubber treated and untreated microcosm was confirmed by multivariate analysis. Collectively, all the results demonstrated that the addition of Rubber to soil reduced the soil microbial functional diversity considerably. Therefore, it is necessary for the commission of serious steps regarding Rubber disposal and protection of the environment from serious environmental issues.

  17. Data on microbial and physiochemical characteristics of inlet and outlet water from household water treatment devices in Rasht, Iran.

    PubMed

    Naghipour, Dariush; Ashrafi, Seyed Davoud; Mojtahedi, Ali; Vatandoost, Masoud; Hosseinzadeh, Loghman; Roohbakhsh, Esmail

    2018-02-01

    In this research, we measured various parameters related to drinking water quality include turbidity, temperature, pH, EC, TDS, Alkalinity, fecal and total coliform, heterotrophic plate count (HPC), free chlorine, Mn, Ca, Mg, Fe, Na, Cl - , F - , HCO 3 , in the inlet and outlet of household water treatment devices according to the standard methods for the examination of water and wastewater (W.E. Federation and Association and A.P.H., 2005) [1]. Sixty four inlet and outlet water samples were taken from thirty two household water treatment devices from eight different residential blocks in Golsar town of Rasht, Iran. The data obtained from experiments were analyzed using the software Special Package for Social Sciences (SPSS 24) and MS-Excel.

  18. Effects of Hydrogen Peroxide on Dental Unit Biofilms and Treatment Water Contamination

    PubMed Central

    Lin, Shih-Ming; Svoboda, Kathy K.H.; Giletto, Anthony; Seibert, Jeff; Puttaiah, Raghunath

    2011-01-01

    Objectives: To study effects of various concentrations of hydrogen peroxide on mature waterline biofilms and in controlling planktonic (free-floating) organisms in simulated dental treatment water systems; and to study in vitro the effects of 2%, 3%, and 7% hydrogen peroxide on the removal of mature biofilms and inorganic compounds in dental waterlines. Methods: Four units of an automated dental unit water system simulation device was used for 12 weeks. All units were initially cleaned to control biofilms and inorganic deposits. H2O2 at concentrations of 1%, 2%, 3% was used weekly for periodic cleaning in three treatment group units (units 1, 2 & 3), with 0.05%, 0.15% and 0.25% H2O2 in municipal water used as irrigant respectively. The control unit (unit 4) did not have weekly cleanings and used municipal water as irrigant. Laser Scanning Confocal Microscopy and Scanning Electron Microscopy were used to study deposits on lines, and weekly heterotrophic plate counts done to study effluent water contamination. A 24 hour in vitro challenge test with 7%, 3% and 2% H2O2 on mature biofilms was conducted using harvested waterlines to study biofilm and inorganic deposit removal. Results: Heterotrophic plate counts of effluent water showed that the control unit reached contamination levels in excess of 400,000 CFU/mL while all treatment units showed contamination levels <500 CFU/mL through most of the 12 weeks. All treatment units showed varying levels of biofilm and inorganic deposit control in this short 12 week study. The in vitro challenge test showed although there was biofilm control, there was no eradication even when 7% H2O2 was used for 24 hours. Conclusions: 2% H2O2 used as a periodic cleaner, and diluted to 0.05% in municipal water for irrigation was beneficial in controlling biofilm and planktonic contamination in dental unit water systems. However, to remove well established biofilms, it may take more than 2 months when initial and multiple periodic cleanings are performed using H2O2. PMID:21228956

  19. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2012-10-15

    Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    PubMed

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A rapid detection method using flow cytometry to monitor the risk of Legionella in bath water.

    PubMed

    Taguri, Toshitsugu; Oda, Yasunori; Sugiyama, Kanji; Nishikawa, Toru; Endo, Takuro; Izumiyama, Shinji; Yamazaki, Masayuki; Kura, Fumiaki

    2011-07-01

    Legionella species are the causative agents of human legionellosis, and bathing facilities have been identified as the sources of infection in several outbreaks in Japan. Researchers in Japan have recently reported evidence of significant associations between bacterial counts and the occurrence of Legionella in bathing facilities and in a hot tub model. A convenient and quantitative bacterial enumeration method is therefore required as an indicator of Legionella contamination or disinfection to replace existing methods such as time-consuming Legionella culture and expensive Legionella-DNA amplification. In this study, we developed a rapid detection method (RDM) to monitor the risk of Legionella using an automated microbial analyzing device based on flow cytometry techniques to measure the total number of bacteria in water samples within two minutes, by detecting typical patterns of scattered light and fluorescence. We first compared the results of our RDM with plate counting results for five filtered hot spring water samples spiked with three species of bacteria, including Legionella. Inactivation of these samples by chlorine was also assessed by the RDM, a live/dead bacterial fluorescence assay and plate counting. Using the RDM, the lower limit of quantitative bacterial counts in the spiked samples was determined as 3.0×10(3)(3.48log)counts mL(-1). We then used a laboratory model of a hot tub and found that the RDM could monitor the growth curve of naturally occurring heterotrophic bacteria with 1 and 2 days' delayed growth of amoeba and Legionella, respectively, and could also determine the killing curve of these bacteria by chlorination. Finally, samples with ≥3.48 or <3.48log total bacterial counts mL(-1) were tested using the RDM from 149 different hot tubs, and were found to be significantly associated with the positive or negative detection of Legionella with 95% sensitivity and 84% specificity. These findings indicated that the RDM can be used for Legionella control at bathing facilities, especially those where the effectiveness of chlorine is reduced by the presence of Fe(2+), Mn(2+), NH(4)(+), skin debris, and/or biofilms in the water. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    PubMed Central

    Liu, G.; Van der Mark, E. J.; Verberk, J. Q. J. C.; Van Dijk, J. C.

    2013-01-01

    The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R 2 = 0.63). Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP. PMID:23819117

  3. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    PubMed

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  4. Bacteriological quality of bottled drinking water versus municipal tap water in Dharan municipality, Nepal.

    PubMed

    Pant, Narayan Dutt; Poudyal, Nimesh; Bhattacharya, Shyamal Kumar

    2016-06-07

    Water-related diseases are of great concern in developing countries like Nepal. Every year, there are countless morbidity and mortality due to the consumption of unsafe drinking water. Recently, there have been increased uses of bottled drinking water in an assumption that the bottled water is safer than the tap water and its use will help to protect from water-related diseases. So, the main objective of this study was to analyze the bacteriological quality of bottled drinking water and that of municipal tap water. A total of 100 samples (76 tap water and 24 bottled water) were analyzed for bacteriological quality and pH. The methods used were spread plate method for total plate count (TPC) and membrane filter method for total coliform count (TCC), fecal coliform count (FCC), and fecal streptococcal count (FSC). pH meter was used for measuring pH. One hundred percent of the tap water samples and 87.5 % of the bottled water samples were found to be contaminated with heterotrophic bacteria. Of the tap water samples, 55.3 % were positive for total coliforms, compared with 25 % of the bottled water. No bottled water samples were positive for fecal coliforms and fecal streptococci, in contrast to 21.1 % and 14.5 % of the tap water samples being contaminated with fecal coliforms and fecal streptococci, respectively. One hundred percent of the tap water samples and 54.2 % of the bottled water samples had pH in the acceptable range. All of the municipal tap water samples and most of the bottled drinking water samples distributed in Dharan municipality were found to be contaminated with one or more than one type of indicator organisms. On the basis of our findings, we may conclude that comparatively, the bottled drinking water may have been safer (than tap water) to drink.

  5. Recovery and diversity of heterotrophic bacteria from chlorinated drinking waters.

    PubMed Central

    Maki, J S; LaCroix, S J; Hopkins, B S; Staley, J T

    1986-01-01

    Heterotrophic bacteria were enumerated from the Seattle drinking water catchment basins and distribution system. The highest bacterial recoveries were obtained by using a very dilute medium containing 0.01% peptone as the primary carbon source. Other factors favoring high recovery were the use of incubation temperatures close to that of the habitat and an extended incubation (28 days or longer provided the highest counts). Total bacterial counts were determined by using acridine orange staining. With one exception, all acridine orange counts in chlorinated samples were lower than those in prechlorinated reservoir water, indicating that chlorination often reduces the number of acridine orange-detectable bacteria. Source waters had higher diversity index values than did samples examined following chlorination and storage in reservoirs. Shannon index values based upon colony morphology were in excess of 4.0 for prechlorinated source waters, whereas the values for final chlorinated tap waters were lower than 2.9. It is not known whether the reduction in diversity was due solely to chlorination or in part to other factors in the water treatment and distribution system. Based upon the results of this investigation, we provide a list of recommendations for changes in the procedures used for the enumeration of heterotrophic bacteria from drinking waters. Images PMID:3524453

  6. The Ecology, Life History, and Phylogeny of the Marine Thecate Heterotrophic Dinoflagellates Protoperidinium and Diplopsalidaceae (Dinophyceae)

    DTIC Science & Technology

    2006-09-01

    specimens, appeared to be identical to Actinophrys sol and other distinct protist species (as discussed in Coats 2002). Being unaware of the...hypothesizes that photosynthetic eukaryotes evolved through a series of symbiotic relationships between heterotrophic protists and autotrophic prokaryotes...species or genus level. Athecate dinoflagellates were not well preserved by formalin-fixation, and thus were not counted. Metazoans and protists

  7. Microbial quality of water in dental unit waterlines.

    PubMed

    Nikaeen, Mahnaz; Hatamzadeh, Maryam; Sabzevari, Zohre; Zareh, Omolbanin

    2009-09-01

    Dental unit waterlines (DUWLs) are ideal environment for development of microbial biofilms. Microbial contamination of water in DUWLs is thought to be the result of biofilm formation as it could serves as a haven for pathogens. The aim of this study was to assess microbial quality of water in dental unit waterlines of dental units located at the dental school of Isfahan University of Medical Sciences. Water samples were collected from air/water syringe and high-speed handpiece. Generally, 100-200 ml water samples were collected aseptically in sterile containers with sodium thiosulfate at the beginning of the day after a 2 minute purge. Samples were transferred to the laboratory in insulated box with cooling packs and examined for total viable heterotrophic bacteria and fungi. The heterotrophic plate count levels were significantly exceeded the American Dental Association recommendations for DUWL water quality (< 200 CFU/ml), in both air/water syringe (84%, CFU/ml: 500-20000) and high-speed handpiece (96%, CFU/ml: 710-36800) samples. However, there was no significant difference between the level of contamination in the air/water syringe and high-speed handpiece. Fungi were found in 28% and 36% of air/water syringe and high-speed handpiece samples, respectively; and filamentous fungi were the most frequently isolated fungi. DUWLs should be subjected to routine microbial monitoring and to a decontamination protocol in order to minimize the risk of exposure to potential pathogens from dental units.

  8. New methods for the detection of viruses: call for review of drinking water quality guidelines.

    PubMed

    Grabow, W O; Taylor, M B; de Villiers, J C

    2001-01-01

    Drinking water supplies which meet international recommendations for source, treatment and disinfection were analysed. Viruses recovered from 100 L-1,000 L volumes by in-line glass wool filters were inoculated in parallel into four cell culture systems. Cell culture inoculation was used to isolate cytopathogenic viruses, amplify the nucleic acid of non-cytopathogenic viruses and confirm viability of viruses. Over a period of two years, viruses were detected in 23% of 413 drinking water samples and 73% of 224 raw water samples. Cytopathogenic viruses were detected in 6% raw water samples but not in any treated drinking water supplies. Enteroviruses were detected in 17% drinking water samples, adenoviruses in 4% and hepatitis A virus in 3%. In addition to these viruses, astro- and rotaviruses were detected in raw water. All drinking water supplies had heterotrophic plate counts of < 100/mL, total and faecal coliform counts of 0/100 mL and negative results in qualitative presence-absence tests for somatic and F-RNA coliphages (500 mL samples). These results call for a revision of water quality guidelines based on indicator organisms and vague reference to the absence of viruses.

  9. Effect of point-of-use, activated carbon filters on the bacteriological quality of rural groundwater supplies.

    PubMed Central

    Synder, J W; Mains, C N; Anderson, R E; Bissonnette, G K

    1995-01-01

    The water quality of 24 rural, domestic groundwater supplies treated with point-of-use, powdered activated carbon (PAC) filters was monitored to determine how such treatment might impact the bacteriological quality of private, residential drinking water supplies. Heterotrophic-plate-count (HPC) and total coliform analyses were performed on raw, PAC-treated, and overnight or stagnant (first-draw) PAC-treated water samples. Densities of HPC bacteria were elevated by 0.86 and 0.20 orders of magnitude for spring and well water systems, respectively, in PAC-treated effluents following overnight stagnation compared with levels in untreated treated effluents. Densities of HPC bacteria in PAC-treated effluents were significantly reduced (P < 0.01) below influent levels, however, after the point-of-use device was flushed for 2 min. While PAC significantly reduced the number of coliforms in product waters (P < 0.01), these indicator organisms were still detected in some effluents. Seasonal variations were evident in microbial counts from spring but not well water systems. It appears that aside from periods following stagnant-water use, such as overnight, PAC treatment does not compromise the bacteriological quality of drinking water obtained from underground sources. PMID:8534096

  10. Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.

    PubMed

    Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A

    2012-09-01

    The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l⁻¹ and 1.3 day⁻¹, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.

  11. Evaluation of Petrifilm Lactic Acid Bacteria Plates for Counting Lactic Acid Bacteria in Food.

    PubMed

    Kanagawa, Satomi; Ohshima, Chihiro; Takahashi, Hajime; Burenqiqige; Kikuchi, Misato; Sato, Fumina; Nakamura, Ayaka; Mohamed, Shimaa M; Kuda, Takashi; Kimura, Bon

    2018-06-01

    Although lactic acid bacteria (LAB) are used widely as starter cultures in the production of fermented foods, they are also responsible for food decay and deterioration. The undesirable growth of LAB in food causes spoilage, discoloration, and slime formation. Because of these adverse effects, food companies test for the presence of LAB in production areas and processed foods and consistently monitor the behavior of these bacteria. The 3M Petrifilm LAB Count Plates have recently been launched as a time-saving and simple-to-use plate designed for detecting and quantifying LAB. This study compares the abilities of Petrifilm LAB Count Plates and the de Man Rogosa Sharpe (MRS) agar medium to determine the LAB count in a variety of foods and swab samples collected from a food production area. Bacterial strains isolated from Petrifilm LAB Count Plates were identified by 16S rDNA sequence analysis to confirm the specificity of these plates for LAB. The results showed no significant difference in bacterial counts measured by using Petrifilm LAB Count Plates and MRS medium. Furthermore, all colonies growing on Petrifilm LAB Count Plates were confirmed to be LAB, while yeast colonies also formed in MRS medium. Petrifilm LAB Count Plates eliminated the plate preparation and plate inoculation steps, and the cultures could be started as soon as a diluted food sample was available. Food companies are required to establish quality controls and perform tests to check the quality of food products; the use of Petrifilm LAB Count Plates can simplify this testing process for food companies.

  12. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.

    PubMed

    Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

    2013-08-01

    The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.

  13. Water quality problems associated with intermittent water supply.

    PubMed

    Tokajian, S; Hashwa, F

    2003-01-01

    A controlled study was conducted in Lebanon over a period of 12 months to determine bacterial regrowth in a small network supplying the Beirut suburb of Naccache that had a population of about 3,000. The residential area, which is fed by gravity, is supplied twice a week with chlorinated water from two artesian wells of a confined aquifer. A significant correlation was detected between the turbidity and the levels of heterotrophic plate count bacteria (HPC) in the samples from the distribution network as well as from the artesian wells. However, a negative significant correlation was found between the temperature and the HPC count in the samples collected from the source. A statistically significant increase in counts, possibly due to regrowth, was repeatedly established between two sampling points lying on a straight distribution line but 1 km apart. Faecal coliforms were detected in the source water but none in the network except during a pipe breakage incident with confirmed Escherichia coli reaching 40 CFU/100 mL. However, coliforms such as Citrobacter freundii, Enterobacter agglomerans, E. cloacae and E. skazakii were repeatedly isolated from the network, mainly due to inadequate chlorination. A second controlled study was conducted to determine the effect of storage on the microbial quality of household storage tanks (500 L), which were of two main types - galvanized cast iron and black polyethylene. The mean bacterial count increased significantly after 7 d storage in both tank types. A significant difference was found in the mean HPC/mL between the winter and the summer. Highest counts were found April-June although the maximum temperature was reported later in the summer. A positive correlation was established between the HPC/mL and pH, temperature and storage time.

  14. Characterization of Volume F Trash from the Three FY11 STS Missions: Trash Weights and Categorization and Microbial Characterization

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheller, Raymond M.

    2011-01-01

    The project reported here provides microbial characterization support to the Waste Management Systems (WMS) element of NASA's Life Support and Habitation Systems (LSHS) program. Conventional microbiological methods were used to detect and enumerate microorganisms in STS Volume F Compartment trash for three shuttle missions: STS 133, 134, and 135. This trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were cataloged and placed into categories: personal hygiene items - inclUding EVA maximum absorbent garments (MAGs) and Elbow packs (daily toilet wipes, etc), drink containers, food waste (and containers), office waste (paper), and packaging materials - plastic film and duct tape. The average wet trash generation rate for the three STS missions was 0.362 % 0.157 kgwet crew 1 d-1 . This was considerably lower and more variable than the average rate for 4 STS missions reported for FY10. Trash subtotals by category: personal hygiene wastes, 56%; drink items, 11 %; food wastes, 18%; office waste, 3%; and plastic film, 12%. These wastes have an abundance of easily biodegraded compounds that can support the growth of microorganisms. Microbial characterization of trash showed that large numbers of bacteria and fungi have taken advantage of this readily available nutrient source to proliferate. Exterior and interior surfaces of plastic film bags containing trash were sampled and counts of cultivatable microbes were generally low and mostly occurred on trash bundles within the exterior trash bags. Personal hygiene wastes, drink containers, and food wastes and packaging all contained high levels of, mostly, aerobic heterotrophic bacteria and lower levels of yeasts and molds. Isolates from plate count media were obtained and identified .and were mostly aerobic heterotrophs with some facultative anaerobes. These are usually considered common environmental isolates on Earth. However, several pathogens were also isolated: Staphylococcus aureus and Escherichia coli.

  15. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    PubMed Central

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems. PMID:27792739

  16. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    PubMed

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems.

  17. Evaluation of microbiological accumulation capability of the commercial sponge Spongia officinalis var. adriatica (Schmidt) (Porifera, Demospongiae).

    PubMed

    Stabili, Loredana; Licciano, Margherita; Longo, Caterina; Corriero, Giuseppe; Mercurio, Maria

    2008-05-01

    This study was carried out to evaluate the microbiological accumulation capability of the demosponge Spongia officinalis var. adriatica. Six microbiological parameters were researched in two sampling periods in the water and in reared sponge samples coming from sites with different degrees of microbial contamination: an off-shore fish farm displaced off the Apulian coast (Southern Adriatic Sea) and a no-impacted area displaced into the Marine Protected Area of Porto Cesareo (Apulian coast-Ionian Sea). We detected the density of culturable heterotrophic bacteria by spread plate on marine agar, total culturable bacteria at 37 degrees C on Plate Count Agar and vibrios on thiosulphate-citrate-bile-sucrose-salt (TCBS) agar. Total and fecal coliforms as well as fecal streptococci concentrations were detected by the MPN method. Bacterial densities were always higher in the sponge homogenates compared with the corresponding seawater in the sampling points and in both sampling periods. As regard vibrios, total culturable bacteria at 37 degrees C and fecal streptococci concentrations, the highest values were observed in the sponge samples coming from the off-shore fish farm during the summer period. The ability of Spongia officinalis var. adriatica to accumulate the microbial pollution indicators suggests that this species can be employed as a bioindicator for monitoring water quality.

  18. Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system.

    PubMed

    Batté, Magali; Koudjonou, Boniface; Laurent, Patrick; Mathieu, Laurence; Coallier, Josée; Prévost, Michèle

    2003-03-01

    The effects of ageing and of phosphate load on drinking water biofilms developed on a polycarbonate substratum in the pseudo-equilibrium state have been evaluated. Phosphate was added in an amount higher than the stochiometric nutrient requirements of bacteria, at concentrations commonly applied in a drinking water distribution system for corrosion control. Multiple parameters were monitored: heterotrophic plate counts (HPCs), total direct counts (TDCs) and potential exoproteolytic activity (PEPA) in order to characterise changes in bacterial biofilms. The total carbohydrate, amino acid and phosphate contents of biofilms were analysed to characterise and monitor the biochemical composition of the biofilm.The three enumeration methods showed that a pseudo-equilibrium state was reached after 7 weeks of colonisation after which, the bacterial growth rate in the biofilm was 0.1 log per week on average. Bulk phosphate addition doubled the phosphate in the biofilm, but did not affect the other biological, physiological or chemical parameters measured. Polysaccharides increased in the biofilm with ageing and the dynamics of individual carbohydrate synthesis also varied with the age of the biofilm. Once pseudo-equilibrium, it was found that the total proteins were globally constant, whereas the spectra of some individual amino acids of the proteins had significantly changed.

  19. Microbial Quality and Phylogenetic Diversity of Fresh Rainwater and Tropical Freshwater Reservoir

    PubMed Central

    Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh

    2014-01-01

    The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL – 75 CFU/100 mL for the rainwater, and were 10–94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria. PMID:24979573

  20. Microbial quality and phylogenetic diversity of fresh rainwater and tropical freshwater reservoir.

    PubMed

    Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh

    2014-01-01

    The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL-75 CFU/100 mL for the rainwater, and were 10-94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria.

  1. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm.

    PubMed

    Zhang, J S; Li, Z J; Wen, G L; Wang, Y L; Luo, L; Zhang, H J; Dong, H B

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH 4 -N, and NO 2 -N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases' outbreak after the landfall of tropical storm.

  2. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm

    PubMed Central

    Zhang, J. S.; Li, Z. J.; Wen, G. L.; Wang, Y. L.; Luo, L.; Zhang, H. J.; Dong, H. B.

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH4-N, and NO2-N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases’ outbreak after the landfall of tropical storm. PMID:27822254

  3. The Mediterranean non-indigenous ascidian Polyandrocarpa zorritensis: Microbiological accumulation capability and environmental implications.

    PubMed

    Stabili, Loredana; Licciano, Margherita; Longo, Caterina; Lezzi, Marco; Giangrande, Adriana

    2015-12-15

    We investigated the bacterial accumulation and digestion capability of Polyandrocarpa zorritensis, a non-indigenous colonial ascidian originally described in Peru and later found in the Mediterranean. Microbiological analyses were carried out on homogenates from "unstarved" and "starved" ascidians and seawater from the same sampling site (Adriatic Sea, Italy). Culturable heterotrophic bacteria (22 °C), total culturable bacteria (37 °C) and vibrios abundances were determined on Marine Agar 2216, Plate Count Agar and TCBS Agar, respectively. Microbial pollution indicators were measured by the most probable number method. All the examined microbiological groups were accumulated by ascidians but differently digested. An interesting outcome is the capability of P. zorritensis to digest allochthonous microorganisms such as coliforms as well as culturable bacteria at 37 °C, counteracting the effects of microbial pollution. Thus, the potential exploitation of these filter feeders to restore polluted seawater should be taken into consideration in the management of this alien species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An Evaluation of Microbial and Chemical Contamination Sources Related to the Deterioration of Tap Water Quality in the Household Water Supply System

    PubMed Central

    Lee, Yoonjin

    2013-01-01

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city “N” were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply. PMID:24018837

  5. An evaluation of microbial and chemical contamination sources related to the deterioration of tap water quality in the household water supply system.

    PubMed

    Lee, Yoonjin

    2013-09-06

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city "N" were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply.

  6. Evaluation and remediation of bulk soap dispensers for biofilm.

    PubMed

    Lorenz, Lindsey A; Ramsay, Bradley D; Goeres, Darla M; Fields, Matthew W; Zapka, Carrie A; Macinga, David R

    2012-01-01

    Recent studies evaluating bulk soap in public restroom soap dispensers have demonstrated up to 25% of open refillable bulk-soap dispensers were contaminated with ~ 6 log(10)(CFU ml(-1)) heterotrophic bacteria. In this study, plastic counter-mounted, plastic wall-mounted and stainless steel wall-mounted dispensers were analyzed for suspended and biofilm bacteria using total cell and viable plate counts. Independent of dispenser type or construction material, the bulk soap was contaminated with 4-7 log(10)(CFU ml(-1)) bacteria, while 4-6 log(10)(CFU cm(-2)) biofilm bacteria were isolated from the inside surfaces of the dispensers (n = 6). Dispenser remediation studies, including a 10 min soak with 5000 mg l(-1) sodium hypochlorite, were then conducted to determine the efficacy of cleaning and disinfectant procedures against established biofilms. The testing showed that contamination of the bulk soap returned to pre-test levels within 7-14 days. These results demonstrate biofilm is present in contaminated bulk-soap dispensers and remediation studies to clean and sanitize the dispensers are temporary.

  7. Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil

    PubMed Central

    Medeiros, Adriana O.; Missagia, Beatriz S.; Brandão, Luciana R.; Callisto, Marcos; Barbosa, Francisco A. R.; Rosa, Carlos A.

    2012-01-01

    Yeast communities were assessed in 14 rivers and four lakes from the Doce River basin in Brazil, during the rainy and dry seasons of the years 2000 and 2001. Water samples were collected at the subsurface in all sites. The following physical and chemical parameters were measured: temperature, dissolved oxygen, pH, electrical conductivity, total phosphorus, ortho-phosphate, ammonium, nitrate, nitrite and total nitrogen and the counts of faecal coliforms and heterotrophic bacteria were carried out to characterize the aquatic environmental sampled. The yeast counts were higher in aquatic environments with the highest counts of coliform and heterotrophic bacteria. These environments receive a high influx of domestic and industrial waste. A total of 317 isolates identified in forty eight yeast species were recorded in the sites sampled and the specie Aureobasidium pullulans were found in eleven out of eighteen sites sampled and some opportunistic pathogens such as the yeast species Candida krusei were isolated only in the polluted rivers with a positive correlation with the biotic and abiotic parameters that indicate sewage contamination. PMID:24031990

  8. Quality assessment of rooftop runoff and harvested rainwater from a building catchment.

    PubMed

    Lee, J Y; Kim, H J; Han, M Y

    2011-01-01

    A major obstacle to the promotion of rainwater harvesting is chemical and microbiological concerns. To determine its suitability as an alternative water resource, water quality parameters such as pH, turbidity and metal ion concentrations and counted total coliform, Escherichia coli and heterotrophic bacteria were measured. It was observed that the stored rainwater had a neutral average pH and that its turbidity depended on the duration and intensity of the rainfall event. Metal concentrations were within the permissible limits specified in the Korea drinking water standard. In addition, counts of coliform, E. coli and heterotrophic bacteria were higher in the first flush 5 min after the start of the rainfall event. Principal component analysis and correlation analysis through 40 events in 2009 showed that the quality of stored rainwater depends on the conditions of the catchment and storage tank and the antecedent dry period.

  9. Evaluation of Bacteriological and Chemical Quality of Dialysis Water and Fluid in Isfahan, Central Iran

    PubMed Central

    SHAHRYARI, Ali; NIKAEEN, Mahnaz; HATAMZADEH, Maryam; VAHID DASTJERDI, Marzieh; HASSANZADEH, Akbar

    2016-01-01

    Background: Chemical and microbial quality of water used in hemodialysis play key roles in a number of dialysis-related complications. In order to avoid the complications and to guarantee safety and health of patients therefore, vigorous control of water quality is essential. The objective of present study was to investigate the chemical and bacteriological characteristics of water used in dialysis centers of five hospitals in Isfahan, central Iran. Methods: A total of 30 water samples from the input of dialysis purification system and dialysis water were analyzed for chemical parameters. Heterotrophic plate count and endotoxin concentration of drinking water, dialysis water and dialysis fluid of 40 machines were also monitored over a 5-month period in 2011–2012. Results: Concentration of the determined chemicals (copper, zinc, sulfate, fluoride, chloramines and free chlorine) did not exceed the recommended concentration by the Association for the Advancement of Medical Instrumentation (AAMI) exclude lead, nitrate, aluminum and calcium. Furthermore, the magnesium; cadmium and chromium concentration exceeded the maximum level in some centers. No contamination with heterotrophic bacteria was observed in all samples, while the AMMI standard for endotoxin level in dialysis fluid (<2 EU/ml) was achieved in 95% of samples. Conclusion: Dialysis water and fluid failed to meet the all chemical and bacteriological requirements for hemodialysis. To minimize the risk of contaminants for hemodialysis patients therefore, a water quality management program including monitoring, maintenance and development of water treatment system in hemodialysis centers is extremely important. In addition, an appropriate disinfection program is needed to guarantee better control of bacterial growth and biofilm formation. PMID:27398338

  10. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    PubMed

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p < 0.001); (2) Petrifilm counts were significantly lower than nutrient agar or R2A (p = 0.02 and p < 0.001, respectively), but not statistically different from TGE, PCA, and dipslides (p = 0.55, p = 0.69, and p = 0.91, respectively); (3) the dipslide method yielded bacteria counts 1 to 3 log units lower than nutrient agar and R2A (p < 0.001), but was not significantly different from Petrifilm (p = 0.91), PCA (p = 1.00) or TGE (p = 0.07); (4) the differences between dipslides and the other methods became greater with a 6-day incubation time; and (5) the correlation between ATP readings and plate counts varied from system to system, was poor (r2 values ranged from < 0.01 to 0.47), and the ATP method was not sufficiently sensitive to measure counts below approximately 10(4) CFU/mL.

  11. Bacteriological quality and risk assessment of the imported and domestic bottled mineral water sold in Fiji.

    PubMed

    Zeenat, A; Hatha, A A M; Viola, L; Vipra, K

    2009-12-01

    Considering the popularity of bottled mineral water among indigenous Fijians and tourists alike, a study was carried out to determine the bacteriological quality of different bottled waters. A risk assessment was also carried out. Seventy-five samples of bottled mineral water belonging to three domestic brands and 25 samples of one imported brand were analysed for heterotrophic plate count (HPC) bacteria and faecal coliforms. HPC counts were determined at 22 degrees C and 37 degrees C using R2A medium and a membrane filtration technique was used to determine the faecal coliform (FC) load in 100 ml of water on mFC agar. Between 28 and 68% of the samples of the various domestic brands failed to meet the WHO standard of 100 colony forming units (cfu) per 100 ml at 22 degrees C and 7% of these also tested positive for faecal coliforms. All imported bottled mineral water samples were within WHO standards. A risk assessment of the HPC bacteria was carried out in terms of beta haemolytic activity and antibiotic resistance. More than 50% of the isolates showed beta haemolytic activity and were multi-drug resistant. While the overall quality of the product was generally good, there is a need to enforce stringent quality standards for the domestic bottlers to ensure the safety of consumers.

  12. Monitoring Microbial Numbers in Food by Density Centrifugation

    PubMed Central

    Basel, Richard M.; Richter, Edward R.; Banwart, George J.

    1983-01-01

    Some foods contain low numbers of microbes that may be difficult to enumerate by the plate count method due to small food particles that interfere with the counting of colonies. Ludox colloidal silicon was coated with reducing agents to produce a nontoxic density material. Food homogenates were applied to a layered 10 and 80% mixture of modified Ludox and centrifuged at low speed. The top and bottom of the tube contained the food material, and the Ludox-containing portion was evaluated by conventional pour plate techniques. Plate counts of the Ludox mixture agreed with plate counts of the food homogenate alone. The absence of small food particles from pour plates resulted in a plate that was more easily read than pour plates of the homogenate alone. Modified Ludox was evaluated for its effect on bacteria at 4°C during a 24-h incubation period. No inhibition was observed. This method is applicable to food products, such as doughnuts, spices, tomato products, and meat, in which small food particles often interfere with routine plate counts or low dilution may inhibit colony formation. Inhibitory substances can be removed from spices, resulting in higher counts. Ludox is more economical than similar products, such as Percoll. Modified Ludox is easily rendered nontoxic by the addition of common laboratory reagents. In addition, the mixture is compatible with microbiological media. PMID:6303217

  13. [Comparison of the efficiency of 2 culture media in the recovery of heterotrophic bacteria damaged with chlorine].

    PubMed

    Guerrero, J J

    1987-01-01

    In this study, culture mediums R2A and m-HPC were compared with respect to their efficiency in the recuperation of injured heterotrophic bacteria present in water, which previously was treated with chlorine. The results of total counts obtained by membrane filtration, show that medium R2A was better than m-HPC. These two culture mediums are indicated by the 16th edition of Standard Methods for the Examination of Water and Waste-water. The results obtained may be due to the low concentration of organic matter, or to the presence of yeast extract in the R2A medium.

  14. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.

    PubMed

    Farnelid, Hanna; Harder, Jens; Bentzon-Tilia, Mikkel; Riemann, Lasse

    2014-10-01

    The wide distribution of diverse nitrogenase (nifH) genes affiliated with those of heterotrophic bacteria in marine and estuarine waters indicates ubiquity and an ecologically relevant role for heterotrophic N2 -fixers (diazotrophs) in aquatic nitrogen (N) cycling. However, the lack of cultivated representatives currently precludes an evaluation of their N2 -fixing capacity. In this study, microoxic or anoxic N-free media were inoculated with estuarine Baltic Sea surface water to select for N2 -fixers. After visible growth and isolation of single colonies on oxic plates or in anoxic agar tubes, nifH gene amplicons were obtained from 64 strains and nitrogenase activity, applying the acetylene reduction assay, was confirmed for 40 strains. Two strains, one Gammaproteobacterium affiliated with Pseudomonas and one Alphaproteobacterium affiliated with Rhodopseudomonas were shown to represent established members of the indigenous diazotrophic community in the Baltic Sea, with abundances of up to 7.9 × 10(4) and 4.7 × 10(4)  nifH copies l(-1) respectively. This study reports media for successful isolation of heterotrophic diazotrophs. The applied methodology and the obtained strains will facilitate future identification of factors controlling heterotrophic diazotrophic activity in aquatic environments, which is a prerequisite for understanding and evaluating their ecology and contribution to N cycling at local and regional scales. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Detecting swift fox: Smoked-plate scent stations versus spotlighting

    Treesearch

    Daniel W. Uresk; Kieth E. Severson; Jody Javersak

    2003-01-01

    We compared two methods of detecting presence of swift fox: smoked-plate scent stations and spotlight counts. Tracks were counted on ten 1-mile (1.6-km) transects with bait/tracking plate stations every 0.1 mile (0.16 km). Vehicle spotlight counts were conducted on the same transects. Methods were compared with Spearman's rank order correlation. Repeated measures...

  16. Drinking water microbiological survey of the Northwestern State of Sinaloa, Mexico.

    PubMed

    Chaidez, Cristobal; Soto, Marcela; Martinez, Celida; Keswick, Bruce

    2008-03-01

    A potable water survey, in two important municipalities of the state of Sinaloa, Mexico was conducted. Culiacan, capital city of Sinaloa and its neighboring municipality, Navolato were selected to enumerate Aeromonas hydrophila, Escherichia coli, fecal and total coliforms, Pseudomonas aeruginosa, and Heterotrophic plate count bacteria from 100 households' taps. Manganese; residual chlorine; pH; temperature and turbidity were also examined. Overall, Aeromonas hydrophila was not detected in any of the samples, 3% contained Escherichia coli, 28% had fecal and 46 total coliforms, P. aeruginosa was present in 15% of the samples. HPC bacteria were found in all of the samples but 43% had numbers greater than 500 CFU per ml. The average numbers obtained for the physico-chemical parameters were 0.15 mg/L; 0.32 mg/L; 6.5; 28.7 degrees C and 2.92 NTU for manganese, residual chlorine, pH, temperature and turbidity, respectively. The findings of the current study demonstrate that potable water from both municipalities can harbor substantial numbers of indicator and opportunistic pathogens suggesting that additional treatment in the household may be needed.

  17. The use of nitrate, bacteria and fluorescent tracers to characterize groundwater recharge and contamination in a karst catchment, Chongqing, China

    NASA Astrophysics Data System (ADS)

    He, Qiufang; Yang, Pingheng; Yuan, Wenhao; Jiang, Yongjun; Pu, Junbin; Yuan, Daoxian; Kuang, Yinglun

    2010-08-01

    The Qingmuguan subterranean river system is located in the suburb of Chongqing, China, and it is the drinking water source that local people downstream rely on. The study aims to provide a scientific basis for groundwater protection in that area, using a hydrogeological framework, tracer tests, hydrological online monitoring, and hydrochemical and microbiological investigation, including heterotrophic plate count (HPC) and the analysis of denitrifying bacteria (DNB) and nitrobacteria (NB). The tracer tests proved simple and direct connections between two important sinkholes and the main springs, and also proved that the underground flows here are fast and turbulent. DNB and NB analyses revealed that the main recharge to the underground river in the dry season is the soil-leached water passing through the fissures of the epikarst, while in the rainy season, it is the surface water flow through sinkholes. The hydrochemical and microbiological data confirmed the notable impact of agriculture and sewage on the spring water quality. In the future, groundwater protection here should focus on targeted vulnerability mapping that yields different protection strategies for different seasons.

  18. A miniaturized counting technique for anaerobic bacteria.

    PubMed

    Sharpe, A N; Pettipher, G L; Lloyd, G R

    1976-12-01

    A miniaturized counting technique gave results as good as the pour-plate and Most Probable Number (MPN) techniques for enumeration of clostridia spp. and anaerobic isolates from the gut. Highest counts were obtained when ascorbic acid (1%) and dithiothreitol (0.015%) were added to the reinforced clostridial medium used for counting. This minimized the effect of exposure to air before incubation. The miniature technique allowed up to 40 samples to be plated and incubated in one McIntosh-Filde's-type anaerobic jar, compared with 3 or 4 by the normal pour plate.

  19. Technical note: enumeration of mesophilic aerobes in milk: evaluation of standard official protocols and Petrifilm aerobic count plates.

    PubMed

    Freitas, R; Nero, L A; Carvalho, A F

    2009-07-01

    Enumeration of mesophilic aerobes (MA) is the main quality and hygiene parameter for raw and pasteurized milk. High levels of these microorganisms indicate poor conditions in production, storage, and processing of milk, and also the presence of pathogens. Fifteen raw and 15 pasteurized milk samples were submitted for MA enumeration by a conventional plating method (using plate count agar) and Petrifilm Aerobic Count plates (3M, St. Paul, MN), followed by incubation according to 3 official protocols: IDF/ISO (incubation at 30 degrees C for 72 h), American Public Health Association (32 degrees C for 48 h), and Brazilian Ministry of Agriculture (36 degrees C for 48 h). The results were compared by linear regression and ANOVA. Considering the results from conventional methodology, good correlation indices and absence of significant differences between mean counts were observed, independent of type of milk sample (raw or pasteurized) and incubation conditions (IDF/ISO, American Public Health Association, or Ministry of Agriculture). Considering the results from Petrifilm Aerobic Count plates, good correlation indices and absence of significant differences were only observed for raw milk samples. The microbiota of pasteurized milk interfered negatively with the performance of Petrifilm Aerobic Count plates, probably because of the presence of microorganisms that poorly reduce the dye indicator of this system.

  20. Seawater and shellfish (Geukensia demissa) quality along the Western Coast of Assateague Island National Seashore, Maryland: an area impacted by feral horses and agricultural runoff.

    PubMed

    Lambert, Mary S; Ozbay, Gulnihal; Richards, Gary P

    2009-08-01

    We evaluated the quality of seawater and ribbed mussels (Gukensia demissa) at six sites along the West Coast of Assateague Island National Seashore (ASIS), a barrier island popular with tourists and fishermen. Parameters evaluated were summertime temperature, pH, salinity, dissolved oxygen, total phosphorus, total ammonia nitrogen, and nitrite levels for seawater and total heterotrophic plate counts and total Vibrionaceae levels for the ribbed mussels. Approximately 150 feral horses (Equus caballus) are located on ASIS and, combined with agricultural runoff from animals and croplands, local wildlife, and anthropogenic inputs, contribute to nutrient loads affecting water and shellfish quality. The average monthly dissolved oxygen for June was 2.65 mg L(-1), below the minimum acceptable threshold of 3.0 mg L(-1). Along Chincoteague Bay, total phosphorus generally exceeded the maximum level of 0.037 mg L(-1), as set by the Maryland Coastal Bays Program management objective for seagrasses, with a high of 1.92 mg L(-1) in June, some 50-fold higher than the recommended threshold. Total ammonia nitrogen approached levels harmful to fish, with a maximum recorded value of 0.093 mg L(-1). Levels of total heterotrophic bacteria spiked to 9.5 x 10(6) cells g(-1) of mussel tissue in August in Sinepuxent Bay, leading to mussels which exceeded acceptable standards for edible bivalves by 19-fold. An average of 76% of the bacterial isolates were in the Vibrionaceae family. Together, these data suggest poor stewardship of our coastal environment and the need for new intervention strategies to reduce chemical and biological contamination of our marine resources.

  1. Enumeration of total aerobic microorganisms in foods by SimPlate Total Plate Count-Color Indicator methods and conventional culture methods: collaborative study.

    PubMed

    Feldsine, Philip T; Leung, Stephanie C; Lienau, Andrew H; Mui, Linda A; Townsend, David E

    2003-01-01

    The relative efficacy of the SimPlate Total Plate Count-Color Indicator (TPC-CI) method (SimPlate 35 degrees C) was compared with the AOAC Official Method 966.23 (AOAC 35 degrees C) for enumeration of total aerobic microorganisms in foods. The SimPlate TPC-CI method, incubated at 30 degrees C (SimPlate 30 degrees C), was also compared with the International Organization for Standardization (ISO) 4833 method (ISO 30 degrees C). Six food types were analyzed: ground black pepper, flour, nut meats, frozen hamburger patties, frozen fruits, and fresh vegetables. All foods tested were naturally contaminated. Nineteen laboratories throughout North America and Europe participated in the study. Three method comparisons were conducted. In general, there was <0.3 mean log count difference in recovery among the SimPlate methods and their corresponding reference methods. Mean log counts between the 2 reference methods were also very similar. Repeatability (Sr) and reproducibility (SR) standard deviations were similar among the 3 method comparisons. The SimPlate method (35 degrees C) and the AOAC method were comparable for enumerating total aerobic microorganisms in foods. Similarly, the SimPlate method (30 degrees C) was comparable to the ISO method when samples were prepared and incubated according to the ISO method.

  2. Evaluation of Biogenic Amines Levels, and Biochemical and Microbiological Characterization of Italian-type Salami Sold in Rio de Janeiro, Brazil

    PubMed Central

    dos Santos, Luiz Felipe Lopes; Mársico, Eliane Teixeira; Lázaro, César Aquiles; Teixeira, Rose; Doro, Laís

    2015-01-01

    The objective of the present study was to evaluate the levels of biogenic amines (cadaverine, putrescine, tyramine, histamine, spermidine and spermine) by high performance liquid chromatography (HPLC) and the physicochemical (moisture, lipids, proteins, pH, water activity and fixed mineral residue) and microbiological (lactic acid bacteria and aerobic heterotrophic mesophilic bacteria count) characteristics of six Italian-type salami brands sold in the city of Niteroi (Rio de Janeiro, Brazil). The salami showed lactic acid bacteria count from 5.7 to 8.6 CFU•mL-1, and heterotrophic mesophilic bacteria count from 5.8 to 8.7 CFU•mL-1. Three brands showed moisture contents above 35% and one brand had protein content below 25%. The mean values obtained for the amines were: 197.43, 143.29, 73.02, 4.52, 90.66 and 36.17 mg•kg-1 for tyramine, putrescine, cadaverine, spermidine, histamine, and spermine respectively. Two brands presented histamine contents above the legal limit established in 100 mg•kg-1. We concluded that the evaluated salami presented a wide variation in the count of the bacterial groups with a predominance of lactic acid bacteria. The moisture contents indicate insufficient drying before commercialization and protein content had values below the minimum limit determined by the Brazilian legislation. Finally, the levels of biogenic amines found could cause adverse reactions in susceptible consumers, depending of the amount and frequency of intake of these products. PMID:27800400

  3. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials.

    PubMed

    Moritz, Miriam M; Flemming, Hans-Curt; Wingender, Jost

    2010-06-01

    Drinking water biofilms were grown on coupons of plumbing materials, including ethylene-propylene-diene-monomer (EPDM) rubber, silane cross-linked polyethylene (PE-X b), electron-ray cross-linked PE (PE-X c) and copper under constant flow-through of cold tap water. After 14 days, the biofilms were spiked with Pseudomonas aeruginosa, Legionella pneumophila and Enterobacter nimipressuralis (10(6) cells/mL each). The test bacteria were environmental isolates from contamination events in drinking water systems. After static incubation for 24 h, water flow was resumed and continued for 4 weeks. Total cell count and heterotrophic plate count (HPC) of biofilms were monitored, and P. aeruginosa, L. pneumophila and E. nimipressuralis were quantified, using standard culture-based methods or culture-independent fluorescence in situ hybridization (FISH). After 14 days total cell counts and HPC values were highest on EPDM followed by the plastic materials and copper. P. aeruginosa and L. pneumophila became incorporated into drinking water biofilms and were capable to persist in biofilms on EPDM and PE-X materials for several weeks, while copper biofilms were colonized only by L. pneumophila in low culturable numbers. E. nimipressuralis was not detected in any of the biofilms. Application of the FISH method often yielded orders of magnitude higher levels of P. aeruginosa and L. pneumophila than culture methods. These observations indicate that drinking water biofilms grown under cold water conditions on domestic plumbing materials, especially EPDM and PE-X in the present study, can be a reservoir for P. aeruginosa and L. pneumophila that persist in these habitats mostly in a viable but non-culturable state.

  4. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China.

    PubMed

    Wang, Feng; Li, Weiying; Zhang, Junpeng; Qi, Wanqi; Zhou, Yanyan; Xiang, Yuan; Shi, Nuo

    2017-05-01

    For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.

  5. Estimation method for serial dilution experiments.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2014-12-01

    Titration of microorganisms in infectious or environmental samples is a corner stone of quantitative microbiology. A simple method is presented to estimate the microbial counts obtained with the serial dilution technique for microorganisms that can grow on bacteriological media and develop into a colony. The number (concentration) of viable microbial organisms is estimated from a single dilution plate (assay) without a need for replicate plates. Our method selects the best agar plate with which to estimate the microbial counts, and takes into account the colony size and plate area that both contribute to the likelihood of miscounting the number of colonies on a plate. The estimate of the optimal count given by our method can be used to narrow the search for the best (optimal) dilution plate and saves time. The required inputs are the plate size, the microbial colony size, and the serial dilution factors. The proposed approach shows relative accuracy well within ±0.1log10 from data produced by computer simulations. The method maintains this accuracy even in the presence of dilution errors of up to 10% (for both the aliquot and diluent volumes), microbial counts between 10(4) and 10(12) colony-forming units, dilution ratios from 2 to 100, and plate size to colony size ratios between 6.25 to 200. Published by Elsevier B.V.

  6. Performance Equivalence and Validation of the Soleris Automated System for Quantitative Microbial Content Testing Using Pure Suspension Cultures.

    PubMed

    Limberg, Brian J; Johnstone, Kevin; Filloon, Thomas; Catrenich, Carl

    2016-09-01

    Using United States Pharmacopeia-National Formulary (USP-NF) general method <1223> guidance, the Soleris(®) automated system and reagents (Nonfermenting Total Viable Count for bacteria and Direct Yeast and Mold for yeast and mold) were validated, using a performance equivalence approach, as an alternative to plate counting for total microbial content analysis using five representative microbes: Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus brasiliensis. Detection times (DTs) in the alternative automated system were linearly correlated to CFU/sample (R(2) = 0.94-0.97) with ≥70% accuracy per USP General Chapter <1223> guidance. The LOD and LOQ of the automated system were statistically similar to the traditional plate count method. This system was significantly more precise than plate counting (RSD 1.2-2.9% for DT, 7.8-40.6% for plate counts), was statistically comparable to plate counting with respect to variations in analyst, vial lots, and instruments, and was robust when variations in the operating detection thresholds (dTs; ±2 units) were used. The automated system produced accurate results, was more precise and less labor-intensive, and met or exceeded criteria for a valid alternative quantitative method, consistent with USP-NF general method <1223> guidance.

  7. Comparison of Dry Medium Culture Plates for Mesophilic Aerobic Bacteria in Milk, Ice Cream, Ham, and Codfish Fillet Products

    PubMed Central

    Park, Junghyun; Kim, Myunghee

    2013-01-01

    This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products. PMID:24551829

  8. Validation of an automated colony counting system for group A Streptococcus.

    PubMed

    Frost, H R; Tsoi, S K; Baker, C A; Laho, D; Sanderson-Smith, M L; Steer, A C; Smeesters, P R

    2016-02-08

    The practice of counting bacterial colony forming units on agar plates has long been used as a method to estimate the concentration of live bacteria in culture. However, due to the laborious and potentially error prone nature of this measurement technique, an alternative method is desirable. Recent technologic advancements have facilitated the development of automated colony counting systems, which reduce errors introduced during the manual counting process and recording of information. An additional benefit is the significant reduction in time taken to analyse colony counting data. Whilst automated counting procedures have been validated for a number of microorganisms, the process has not been successful for all bacteria due to the requirement for a relatively high contrast between bacterial colonies and growth medium. The purpose of this study was to validate an automated counting system for use with group A Streptococcus (GAS). Twenty-one different GAS strains, representative of major emm-types, were selected for assessment. In order to introduce the required contrast for automated counting, 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) dye was added to Todd-Hewitt broth with yeast extract (THY) agar. Growth on THY agar with TTC was compared with growth on blood agar and THY agar to ensure the dye was not detrimental to bacterial growth. Automated colony counts using a ProtoCOL 3 instrument were compared with manual counting to confirm accuracy over the stages of the growth cycle (latent, mid-log and stationary phases) and in a number of different assays. The average percentage differences between plating and counting methods were analysed using the Bland-Altman method. A percentage difference of ±10 % was determined as the cut-off for a critical difference between plating and counting methods. All strains measured had an average difference of less than 10 % when plated on THY agar with TTC. This consistency was also observed over all phases of the growth cycle and when plated in blood following bactericidal assays. Agreement between these methods suggest the use of an automated colony counting technique for GAS will significantly reduce time spent counting bacteria to enable a more efficient and accurate measurement of bacteria concentration in culture.

  9. Introducing a Novel Media to Improve the Recovery of Culturable Bacteria from the Fish Parasite Anisakis spp. larvae (Nematoda: Anisakidae).

    PubMed

    Svanevik, Cecilie S; Lunestad, Bjørn T

    2017-09-01

    This paper describes a cultivation method to increase the recovery of bacteria from the marine muscle-invading parasitic nematode larvae of Anisakis spp. These larvae hold a high and complex population of accumulated bacteria, originating from seawater, crustaceans, fish, and marine mammals, all involved in the lifecycle of Anisakis. Two in-house agars based on fish juice prepared by either mechanical or enzymatic degradation of the fish tissue, were made. The Anisakis larvae were homogenised prior to cultivation on the in-house fish juice agars and the bacterial numbers and diversity were compared to those obtained applying the commercially available Marine Agar and Iron Agar Lyngby. Bacterial colonies of unique appearance were subcultured and identified by 16S rRNA gene sequencing. Totally three of twenty identified taxa were found on the in-house fish juice agars only. Fish juice agar prepared enzymatically would be the best supplementary agar, as this agar gave significantly higher heterotrophic plate counts, compared to mechanical preparation. The enzymatically prepared fish juice gave more suitable agar quality, was more resource efficient, and had apparently increased nutrient density and availability.

  10. Sanitization of an Automatic Reverse-Osmosis Watering System: Removal of a Clinically Significant Biofilm

    PubMed Central

    Molk, Denise M; Karr-May, Charlene L; Trang, Elaine D; Sanders, George E

    2013-01-01

    During environmental monitoring of our institution's rodent watering systems, one vivarium was found to have high bacterial loads in the reverse-osmosis (RO) automatic water system. These findings prompted evaluation of the entire RO water production and distribution system. Investigation revealed insufficient rack and RO system sanitization, leading to heavy biofilm accumulation within the system. Approximately 2 wk after discovery in the water system, one of the bacterial organisms isolated in the water supply, Sphingomonas paucimobilis, was isolated from a peritoneal abscess of a severely immunodeficient B6.Cg-Slc11a1r Rag1tm1Mom/Cwi mouse housed in the same vivarium, suggesting that rodents drinking from this system were being exposed randomly to fragments of biofilm. Plans were developed to sanitize the entire system. Hypercholorination was used first, followed by treatment with a combination of peracetic acid and hydrogen peroxide. Between system sanitizations, a low-level chlorine infusion was added to the system as a biocide. Heterotrophic plate counts and bacterial isolation were performed on water samples obtained before and after sanitization procedures. We here discuss the process of identifying and correcting this important water-quality issue. PMID:23562105

  11. Triclosan resistant bacteria in sewage effluent and cross-resistance to antibiotics.

    PubMed

    Coetzee, I; Bezuidenhout, C C; Bezuidenhout, J J

    2017-09-01

    The purpose of this study was to identify triclosan tolerant heterotrophic plate count (HPC) bacteria from sewage effluent and to determine cross-resistance to antibiotics. R2 agar supplemented with triclosan was utilised to isolate triclosan resistant bacteria and 16S rRNA gene sequencing was conducted to identify the isolates. Minimum inhibitory concentrations (MICs) of organisms were determined at selected concentrations of triclosan and cross-resistance to various antibiotics was performed. High-performance liquid chromatography was conducted to quantify levels of triclosan in sewage water. Forty-four HPC were isolated and identified as the five main genera, namely, Bacillus, Pseudomonas, Enterococcus, Brevibacillus and Paenibacillus. MIC values of these isolates ranged from 0.125 mg/L to >1 mg/L of triclosan, while combination of antimicrobials indicated synergism or antagonism. Levels of triclosan within the wastewater treatment plant (WWTP) ranged between 0.026 and 1.488 ppb. Triclosan concentrations were reduced by the WWTP, but small concentrations enter receiving freshwater bodies. Results presented indicate that these levels are sufficient to maintain triclosan resistant bacteria under controlled conditions. Further studies are thus needed into the impact of this scenario on such natural receiving water bodies.

  12. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    PubMed

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  13. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Keinänen, Minna M; Kekki, Tomi K; Laine, Olli; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2004-10-01

    We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.

  14. Potential biofouling of spacecraft propellant systems due to contaminated deionized water

    NASA Astrophysics Data System (ADS)

    Hogue, Patrick

    2006-08-01

    Deionized (DI) water, with a density close to hydrazine, is used to fill spacecraft propellant tanks for mechanical testing during ground operations, after which is it removed and the tanks dried for use with anhydrous hydrazine. Pure nitrogen is used as a pressurant during storage and during water fill and drain operations. Since DI water systems are notorious for contamination by slime-forming bacteria, DI water intended for use in New Horizons and STEREO hydrazine tanks at APL was assessed for microorganism content using the heterotrophic plate count (HPC) method. Results show that some growth occurred during storage of DI water in propellant tanks, however not at the logarithmic rate associated with well-nourished bacteria. Ralstonia and Burkholderia were present in DI water on-loaded however only Ralstonia was present in off-loaded water. One possible source of nutrients during water storage in propellant tanks is organic material originating from the EPDM (EPR per AF-E-332) expulsion diaphragm. This paper will demonstrate potential for bio-fouling of spacecraft propulsion systems due to growth of slime-forming bacteria and will suggest that specifications controlling microorganism content should be imposed on water used for spacecraft ground testing.

  15. Water characteristics associated with the occurrence of Legionella pneumophila in dental units.

    PubMed

    Zanetti, F; Stampi, S; De Luca, G; Fateh-Moghadam, P; Antonietta, M; Sabattini, B; Checchi, L

    2000-02-01

    This study evaluated the incidence of Legionella pneumophila in dental unit water samples and investigated how the occurrence of these bacteria may be related to some physical, chemical and bacteriological characteristics of the water. The samples were taken from the incoming tap water, oral rinsing cup, air-water syringe, ultrasonic scaler, and the turbine of 23 dental units of private and public institutions. Apart from L. pneumophila (serogroup 1 and 3) isolated in 22 out of the 101 (21.8%) water samples tested, two other species were found: L. bozemanii and L. dumoffii. The highest densities and frequency of L. pneumophila were observed in the water coming into the units and in the dental units of public institutions. A negative association between L. pneumophila and 36 degrees C and 22 degrees C heterotrophic total plate counts and other gram-negative bacteria was found. An inverse association between the concentration of L. pneumophila and water temperature was also observed. The values of pH and total hardness did not show any significant difference in the L. pneumophila-positive and -negative dental unit waters. Finally, the chemical oxygen demand (COD) and residual chlorine were found to correlate positively with L. pneumophila.

  16. Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models.

    PubMed

    Garcés-Vega, Francisco; Marks, Bradley P

    2014-08-01

    In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.

  17. Detection of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa)

    NASA Astrophysics Data System (ADS)

    Ekawati, ER; Yusmiati, S. N. H.

    2018-01-01

    Blood cockle (Anadara granosa) has high level of zinc and protein, which is beneficial for therapeutic function for malnourished particularly stunting case in children. Zinc in animal foods is more absorbable than that from vegetable food. Blood cockle (Anadara granosa) is rich in nutrient and an excellent environment for the growth of microorganisms. This research aimed to identify the contamination of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa). This was observation research with laboratory analysis. Salmonella sp. and Vibrio sp. were detected from blood cockle. Total plate count was determine of the total amount of the bacteria. Results detected from 20 samples of blood cockle showed that all samples were negative of Salmonella sp. and 1 sample positive Vibrio sp. The result of total plate count bacteria was < 5 x 105 colony/g sample.

  18. Death of the Escherichia coli K-12 strain W3110 in soil and water.

    PubMed Central

    Bogosian, G; Sammons, L E; Morris, P J; O'Neil, J P; Heitkamp, M A; Weber, D B

    1996-01-01

    Whether Escherichia coli K-12 strain W3110 can enter the "viable but nonculturable" state was studied with sterile and nonsterile water and soil at various temperatures. In nonsterile river water, the plate counts of added E. coli cells dropped to less than 10 CFU/ml in less than 10 days. Acridine orange direct counts, direct viable counts, most-probable-number estimates, and PCR analyses indicated that the added E. coli cells were disappearing from the water in parallel with the number of CFU. Similar results were obtained with nonsterile soil, although the decline of the added E. coli was slower. In sterile water or soil, the added E. coli persisted for much longer, often without any decline in the plate counts even after 50 days. In sterile river water at 37 degrees C and sterile artificial seawater at 20 and 37 degrees C, the plate counts declined by 3 to 5 orders of magnitude, while the acridine orange direct counts remained unchanged. However, direct viable counts and various resuscitation studies all indicated that the nonculturable cells were nonviable. Thus, in either sterile or nonsterile water and soil, the decline in plate counts of E. coli K-12 strain W3110 is not due to the cells entering the viable but nonculturable state, but is simply due to their death. PMID:8900002

  19. The diabetes nutrition education study randomized controlled trial: A comparative effectiveness study of approaches to nutrition in diabetes self-management education.

    PubMed

    Bowen, Michael E; Cavanaugh, Kerri L; Wolff, Kathleen; Davis, Dianne; Gregory, Rebecca P; Shintani, Ayumi; Eden, Svetlana; Wallston, Ken; Elasy, Tom; Rothman, Russell L

    2016-08-01

    To compare the effectiveness of different approaches to nutrition education in diabetes self-management education and support (DSME/S). We randomized 150 adults with type 2 diabetes to either certified diabetes educator (CDE)-delivered DSME/S with carbohydrate gram counting or the modified plate method versus general health education. The primary outcome was change in HbA1C over 6 months. At 6 months, HbA1C improved within the plate method [-0.83% (-1.29, -0.33), P<0.001] and carbohydrate counting [-0.63% (-1.03, -0.18), P=0.04] groups but not the control group [P=0.34]. Change in HbA1C from baseline between the control and intervention groups was not significant at 6 months (carbohydrate counting, P=0.36; modified plate method, P=0.08). In a pre-specified subgroup analysis of patients with a baseline HbA1C 7-10%, change in HbA1C from baseline improved in the carbohydrate counting [-0.86% (-1.47, -0.26), P=0.006] and plate method groups [-0.76% (-1.33, -0.19), P=0.01] compared to controls. CDE-delivered DSME/S focused on carbohydrate counting or the modified plate method improved glycemic control in patients with an initial HbA1C between 7 and 10%. Both carbohydrate counting and the modified plate method improve glycemic control as part of DSME/S. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Establishment of HPC(R2A) for regrowth control in non-chlorinated distribution systems.

    PubMed

    Uhl, Wolfgang; Schaule, Gabriela

    2004-05-01

    Drinking water distributed without disinfection and without regrowth problems for many years may show bacterial regrowth when the residence time and/or temperature in the distribution system increases or when substrate and/or bacterial concentration in the treated water increases. An example of a regrowth event in a major German city is discussed. Regrowth of HPC bacteria occurred unexpectedly at the end of a very hot summer. No pathogenic or potentially pathogenic bacteria were identified. Increased residence times in the distribution system and temperatures up to 25 degrees C were identified as most probable causes and the regrowth event was successfully overcome by changing flow regimes and decreasing residence times. Standard plate counts of HPC bacteria using the spread plate technique on nutrient rich agar according to German Drinking Water Regulations (GDWR) had proven to be a very good indicator of hygienically safe drinking water and to demonstrate the effectiveness of water treatment. However, the method proved insensitive for early regrowth detection. Regrowth experiments in the lab and sampling of the distribution system during two summers showed that spread plate counts on nutrient-poor R2A agar after 7-day incubation yielded 100 to 200 times higher counts. Counts on R2A after 3-day incubation were three times less than after 7 days. As the precision of plate count methods is very poor for counts less than 10 cfu/plate, a method yielding higher counts is better suited to detect upcoming regrowth than a method yielding low counts. It is shown that for the identification of regrowth events HPC(R2A) gives a further margin of about 2 weeks for reaction before HPC(GDWR). Copyright 2003 Elsevier B.V.

  1. Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream

    USGS Publications Warehouse

    McKnight, Diane M.; Smith, R.L.; Harnish, R.A.; Miller, C.L.; Bencala, K.E.

    1993-01-01

    The relationships between the abundance and activity of planktonic, heterotrophic microorganisms and the quantity and characteristics of dissolved organic carbon (DOC) in a Rocky Mountain stream were evaluated. Peak values of glucose uptake, 2.1 nmol L-1 hr-1, and glucose concentration, 333 nM, occurred during spring snowmelt when the water temperature was 4.0??C and the DOC concentration was greatest. The turnover time of the in situ glucose pool ranged seasonally from 40-1110 hours, with a mean of 272 hr. Seasonal uptake of3H-glucose, particulate ATP concentrations, and direct counts of microbial biomass were independent of temperature, but were positively correlated with DOC concentrations and negatively correlated with stream discharge. Heterotrophic activity in melted snow was generally low, but patchy. In the summer, planktonic heterotrophic activity and microbial biomass exhibited small-scale diel cycles which did not appear to be related to fluctuations in discharge or DOC, but could be related to the activity of benthic invertebrates. Leaf-packs placed under the snow progressively lost weight and leachable organic material during the winter, indicating that the annual litterfall in the watershed may be one source of the spring flush of DOC. These results indicate that the availability of labile DOC to the stream ecosystem is the primary control on seasonal variation in heterotrophic activity of planktonic microbial populations. ?? 1993 Kluwer Academic Publishers.

  2. A Comparison of Methods to Analyze Aquatic Heterotrophic Flagellates of Different Taxonomic Groups.

    PubMed

    Jeuck, Alexandra; Nitsche, Frank; Wylezich, Claudia; Wirth, Olaf; Bergfeld, Tanja; Brutscher, Fabienne; Hennemann, Melanie; Monir, Shahla; Scherwaß, Anja; Troll, Nicole; Arndt, Hartmut

    2017-08-01

    Heterotrophic flagellates contribute significantly to the matter flux in aquatic and terrestrial ecosystems. Still today their quantification and taxonomic classification bear several problems in field studies, though these methodological problems seem to be increasingly ignored in current ecological studies. Here we describe and test different methods, the live-counting technique, different fixation techniques, cultivation methods like the liquid aliquot method (LAM), and a molecular single cell survey called aliquot PCR (aPCR). All these methods have been tested either using aquatic field samples or cultures of freshwater and marine taxa. Each of the described methods has its advantages and disadvantages, which have to be considered in every single case. With the live-counting technique a detection of living cells up to morphospecies level is possible. Fixation of cells and staining methods are advantageous due to the possible long-term storage and observation of samples. Cultivation methods (LAM) offer the possibility of subsequent molecular analyses, and aPCR tools might complete the deficiency of LAM in terms of the missing detection of non-cultivable flagellates. In summary, we propose a combination of several investigation techniques reducing the gap between the different methodological problems. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Bacteria in non-woven textile filters for domestic wastewater treatment.

    PubMed

    Spychała, Marcin; Starzyk, Justyna

    2015-01-01

    The objective of this study was preliminary identification of heterotrophic and ammonia oxidizing bacteria (AOB) cell concentration in the cross-sectional profile of geotextile filters for wastewater treatment. Filters of thicknesses 3.6 and 7.2 mm, made of non-woven textile TS20, were supplied with septic tank effluent and intermittently dosed and filtered under hydrostatic pressure. The cumulative loads of chemical oxygen demand (COD) and total solids were about 1.36 and 1.06 kg/cm2, respectively. The filters under analysis reached a relatively high removal efficiency for organic pollution 70-90% for biochemical oxygen demand (BOD5) and 60-85% for COD. The ammonia nitrogen removal efficiency level proved to be unstable (15-55%). Biomass samples for dry mass identification were taken from two regions: continuously flooded with wastewater and intermittently flooded with wastewater. The culturable heterotrophic bacteria were determined as colony-forming units (CFUs) on microbiological-selective media by means of the plate method. AOB and nitrite oxidizing bacteria (NOB) were examined using the FISH technique. A relatively wide range of heterotrophic bacteria was observed from 7.4×10(5)/cm2 to 3.8×10(6)/cm2 in geotextile layers. The highest concentration of heterotrophic bacteria (3.8×10(6)/cm2) was observed in the first layer of the textile filter. AOB were identified occasionally--about 8-15% of all bacteria colonizing the last filter layer, but occasionally much higher concentrations and ammonia nitrogen efficiency were achieved. Bacteria oxidizing nitrite to nitrate were not observed. The relation of total and organic fraction of biomass to culturable heterotrophic bacteria was also found.

  4. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  5. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters.

    PubMed

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc; Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc

    2015-06-09

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0-15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32-37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0-1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  6. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water.

    PubMed

    Harnisz, Monika; Korzeniewska, Ewa; Gołaś, Iwona

    2015-06-01

    The aim of this study was to assess the impact of a fish farm on the structure of antibiotic resistant bacteria and antibiotic resistance genes in water of Drwęca River. Samples of upstream river waters; post-production waters and treated post-production waters from fish farm; as well as downstream river waters were monitored for tetracycline resistant bacteria, tetracycline resistant genes, basic physico-chemical parameters and tetracyclines concentration. The river waters was characterized by low levels of pollution, which was determined based on water temperature, pH and concentrations of dissolved oxygen and tetracycline antibiotics. Culture-dependent (heterotrophic plate counts, counts of bacteria resistant to oxytetracycline (OTC(R)) and doxycycline (DOX(R)), minimum inhibitory concentrations for oxytetracycline and doxycycline, multidrug resistance of OTC(R) and DOX(R), qualitative composition of OTC(R) and DOX(R), prevalence of tet genes in resistant isolates) and culture-independent surveys (quantity of tet gene copies) revealed no significant differences in the abundance of antibiotic-resistant bacteria and antibiotic resistance genes between the studied samples. The only way in which the fish farm influenced water quality in the Drwęca River was by increasing the diversity of tetracycline-resistance genes. However, it should also be noted that the bacteria of the genera Aeromonas sp. and Acinetobacter sp. were able to transfer 6 out of 13 tested tet genes into Escherichiacoli, which can promote the spread of antibiotic resistance in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluating Microbial Indicators of Environmental Condition in Oregon Rivers

    NASA Astrophysics Data System (ADS)

    Pennington, Alan T.; Harding, Anna K.; Hendricks, Charles W.; Campbell, Heidi M. K.

    2001-12-01

    Traditional bacterial indicators used in public health to assess water quality and the Biolog® system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems.

  8. Holding effects on coliform enumeration in drinking water samples.

    PubMed Central

    McDaniels, A E; Bordner, R H; Gartside, P S; Haines, J R; Brenner, K P; Rankin, C C

    1985-01-01

    Standard procedures for analyzing drinking water stress the need to adhere to the time and temperature conditions recommended for holding samples collected for microbiological testing. The National Drinking Water Laboratory Certification Program requires compliance with these holding limits, but some investigators have reported difficulties in meeting them. Research was conducted by standard analytical methods to determine if changes occurred when samples were held at 5 and 22 degrees C and analyzed at 0, 24, 30, and 48 h. Samples were analyzed for coliforms by the membrane filter and fermentation-tube procedures and for heterotrophs by the pour plate method. A total of 17 treated water samples were collected from a large municipal distribution system from August to December 1981, and 12 samples were collected from January to May 1983. The samples were dosed with coliforms previously isolated from the water system, Enterobacter cloacae in 1981 and Citrobacter freundii in 1983. The coliform counts declined linearly over time, and the rates of decline were significant at both 5 and 22 degrees C. Within 24 h at 22 degrees C, levels of E. cloacae and C. freundii decreased by 47 and 26%, respectively, and at 5 degrees C, E. cloacae numbers declined by 23%. Results from these representative laboratory-grown coliforms reinforced those previously obtained with naturally occurring coliforms under the same experimental conditions. Significantly, some samples with initially unacceptable counts (greater than 4/100 ml) met the safe drinking water limits after storage at 24 h at 5 and 22 degrees C and would have been classified as satisfactory.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:4083877

  9. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters

    PubMed Central

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O.; Edwards, Marc

    2015-01-01

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0–1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches. PMID:26066310

  10. Correlation between mastitis occurrence and the count of microorganisms in bulk raw milk of bovine dairy herds in four selective culture media.

    PubMed

    Souto, Luís I M; Minagawa, Clarice Y; Telles, Evelise O; Garbuglio, Márcio A; Amaku, Marcos; Melville, Priscilla A; Dias, Ricardo A; Sakata, Sonia T; Benites, Nilson R

    2010-02-01

    Milk is the normal secretion of the mammary gland, practically free of colostrum and obtained by the complete milking of one or more healthy animals. Mastitis is an inflammatory process of the mammary gland and it may cause alterations in the milk. The present work aimed to verify whether it is possible, by means of the counts of microorganism in the bulk raw milk in four selective culture media, to establish a correlation with the occurrence of mastitis and therefore, to monitor this disease in bovine dairy herds. The following selective culture media were used: KF Streptococcus Agar, Edwards Agar, Baird-Parker Agar, Blood Agar plus potassium tellurite. Spearman's correlation coefficient was calculated in order to compare the occurrence of mastitis (percentage) in each herd with respective selective culture media counts of microorganisms in bulk raw milk. Thirty-six possibilities were analysed (Tamis and CMT-positive rates were compared with the log-transformed count in four selective culture media) and there was a negative correlation between Tamis 3 and the Baird-Parker Agar plate count. The total results of microbiological tests showed that there were three correlations of the counts in selective culture media. Fifty-two possibilities were analysed and there was a negative correlation between no-bacterial-growth mastitis rates and log10 of KF Streptoccocus Agar plate count and there were two positive correlations between coagulase-positive staphylococci and log10 of Baird-Parker Agar plate count and Blood Agar plus potassium tellurite plate count.

  11. Regulation of Glucose Utilization by Estradiol in Breast Cancer

    DTIC Science & Technology

    2014-10-01

    counts/min) weremeasured using 350 l of lysate. Protein concentration was determined using the BCA assay according to the manufacturer’s...instructions and measured on a Powerwave XS plate reader (Biotek). Counts were normalized to protein concentration. Glycolysis Assay—MCF-7 cells growing in 6...determined using the BCA assay according to the manufacturer’s instructions and mea- sured on a Powerwave XS plate reader. Counts were normal- ized to

  12. Effect of chromium (VI) on the multiple nitrogen removal pathways and microbial community of aerobic granular sludge.

    PubMed

    Zheng, Xiao-Ying; Lu, Dan; Wang, Ming-Yang; Chen, Wei; Zhou, Gan; Zhang, Yuan

    2017-06-12

    The frequent appearance of Cr(VI) significantly impacts the microbial metabolism in wastewater. In this study, long-term effects of Cr(VI) on microbial community, nitrogen removal pathways and mechanism of aerobic granular sludge (AGS) were investigated. AGS had strong resistance ability to 1.0 mg/L Cr(VI). 3.0 mg/L Cr(VI) increased the heterotrophic-specific ammonia uptake rate (HSAUR) and heterotrophic-specific nitrate uptake rate (HSNUR) transiently, whereas 5.0 mg/L Cr(VI) sharply decreased the specific ammonia uptake rate (SAUR), specific nitrate uptake rate (SNUR) and simultaneous nitrification denitrification rate (SNDR). It was found that Cr (VI) has a greater inhibitory effect on autotrophic nitrification (ASAUR), and the maximal inhibition rate (IR) was 139.19%. Besides, the inhibition of Cr (VI) on nitrogen removal process belongs to non-competitive inhibition. Cr(VI) had a weaker negative impact on heterotrophic bacteria compared with that on autotrophic bacteria. Denaturing gradient gel electrophoresis analyses suggest that Acidovorax sp., flavobacterium sp., uncultured soil bacterium, uncultured nitrosospira sp., uncultured prokaryote, uncultured β-proteobacterium and uncultured pseudomonas sp. were the dominant species. The inhibition of Cr(VI) on nitrite-oxidizing bacteria was the strongest, followed by ammonia-oxidizing bacteria and denitrifying bacteria. Linear correlations between bacterial count and biomass-specific uptake rate were observed when the Cr(VI) concentration exceeded 3 mg/L. This study revealed the effect of Cr(VI) on nitrification is more serious than that on denitrification. Autotrophic and heterotrophic nitrification, heterotrophic denitrification and simultaneous nitrification denitrification played a significant role on nitrogen removal under Cr(VI) stress.

  13. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  14. Environmental Validation of Legionella Control in a VHA Facility Water System.

    PubMed

    Jinadatha, Chetan; Stock, Eileen M; Miller, Steve E; McCoy, William F

    2018-03-01

    OBJECTIVES We conducted this study to determine what sample volume, concentration, and limit of detection (LOD) are adequate for environmental validation of Legionella control. We also sought to determine whether time required to obtain culture results can be reduced compared to spread-plate culture method. We also assessed whether polymerase chain reaction (PCR) and in-field total heterotrophic aerobic bacteria (THAB) counts are reliable indicators of Legionella in water samples from buildings. DESIGN Comparative Legionella screening and diagnostics study for environmental validation of a healthcare building water system. SETTING Veterans Health Administration (VHA) facility water system in central Texas. METHODS We analyzed 50 water samples (26 hot, 24 cold) from 40 sinks and 10 showers using spread-plate cultures (International Standards Organization [ISO] 11731) on samples shipped overnight to the analytical lab. In-field, on-site cultures were obtained using the PVT (Phigenics Validation Test) culture dipslide-format sampler. A PCR assay for genus-level Legionella was performed on every sample. RESULTS No practical differences regardless of sample volume filtered were observed. Larger sample volumes yielded more detections of Legionella. No statistically significant differences at the 1 colony-forming unit (CFU)/mL or 10 CFU/mL LOD were observed. Approximately 75% less time was required when cultures were started in the field. The PCR results provided an early warning, which was confirmed by spread-plate cultures. The THAB results did not correlate with Legionella status. CONCLUSIONS For environmental validation at this facility, we confirmed that (1) 100 mL sample volumes were adequate, (2) 10× concentrations were adequate, (3) 10 CFU/mL LOD was adequate, (4) in-field cultures reliably reduced time to get results by 75%, (5) PCR provided a reliable early warning, and (6) THAB was not predictive of Legionella results. Infect Control Hosp Epidemiol 2018;39:259-266.

  15. Evaluation of potassium-clavulanate-supplemented modified charcoal-cefoperazone-deoxycholate agar for enumeration of Campylobacter in chicken carcass rinse.

    PubMed

    Chon, Jung-Whan; Kim, Hong-Seok; Kim, Hyunsook; Oh, Deog-Hwan; Seo, Kun-Ho

    2014-05-01

    Potassium-clavulanate-supplemented modified charcoal-cefoperazone-deoxycholate agar (C-mCCDA) that was described in our previous study was compared with original mCCDA for the enumeration of Campylobacter in pure culture and chicken carcass rinse. The quantitative detection of viable Campylobacter cells from a pure culture, plated on C-mCCDA, is statistically similar (P > 0.05) to mCCDA. In total, 120 chickens were rinsed using 400 mL buffered peptone water. The rinses were inoculated onto C-mCCDA and mCCDA followed by incubation at 42 °C for 48 h. There was no statistical difference between C-mCCDA (45 of 120 plates; mean count, 145.5 CFU/mL) and normal mCCDA (46 of 120 plates; mean count, 160.8 CFU/mL) in the isolation rate and recovery of Campylobacter (P > 0.05) from chicken carcass rinse. The Pearson correlation coefficient value for the number of Campylobacter cells recovered in the 2 media was 0.942. However, the selectivity was much better on C-mCCDA than on mCCDA plates (P < 0.05). Significantly fewer C-mCCDA plates (33 out of 120 plates; mean count, 1.9 CFU/mL) were contaminated with non-Campylobacter cells than the normal mCCDA plates (67 out of 120 plates; mean count, 27.1 CFU/mL). The C-mCCDA may provide improved results for enumeration of Campylobacter in chicken meat alternative to mCCDA with its increased selectivity the modified agar possess. © 2014 Institute of Food Technologists®

  16. Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods.

    PubMed

    Liu, G; Ling, F Q; Magic-Knezev, A; Liu, W T; Verberk, J Q J C; Van Dijk, J C

    2013-06-15

    Water quality regulations commonly place quantitative limits on the number of organisms (e.g., heterotrophic plate count and coliforms) without considering the presence of multiple cells per particle, which is only counted as one regardless how many cells attached. Therefore, it is important to quantify particle-associated bacteria (PAB), especially cells per particle. In addition, PAB may house (opportunistic) pathogens and have higher resistance to disinfection than planktonic bacteria. It is essential to know bacterial distribution on particles. However, limited information is available on quantification and identification of PAB in drinking water. In the present study, PAB were sampled from the unchlorinated drinking water at three treatment plants in the Netherlands, each with different particle compositions. Adenosine triphosphate (ATP) and total cell counts (TCC) with flow cytometry were used to quantify the PAB, and high-throughput pyrosequencing was used to identify them. The number and activity of PAB ranged from 1.0 to 3.5 × 10(3) cells ml(-1) and 0.04-0.154 ng l(-1) ATP. There were between 25 and 50 cells found to be attached on a single particle. ATP per cell in PAB was higher than in planktonic bacteria. Among the identified sequences, Proteobacteria were found to be the most dominant phylum at all locations, followed by OP3 candidate division and Nitrospirae. Sequences related to anoxic bacteria from the OP3 candidate division and other anaerobic bacteria were detected. Genera of bacteria were found appear to be consistent with the major element composition of the associated particles. The presence of multiple cells per particle challenges the use of quantitative methods such as HPC and Coliforms that are used in the current drinking water quality regulations. The detection of anoxic and anaerobic bacteria suggests the ecological importance of PAB in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. High bicarbonate assimilation in the dark by Arctic bacteria.

    PubMed

    Alonso-Sáez, Laura; Galand, Pierre E; Casamayor, Emilio O; Pedrós-Alió, Carlos; Bertilsson, Stefan

    2010-12-01

    Although both autotrophic and heterotrophic microorganisms incorporate CO₂ in the dark through different metabolic pathways, this process has usually been disregarded in oxic marine environments. We studied the significance and mediators of dark bicarbonate assimilation in dilution cultures inoculated with winter Arctic seawater. At stationary phase, bicarbonate incorporation rates were high (0.5-2.5 μg C L⁻¹ d⁻¹) and correlated with rates of bacterial heterotrophic production, suggesting that most of the incorporation was due to heterotrophs. Accordingly, very few typically chemoautotrophic bacteria were detected by 16S rRNA gene cloning. The genetic analysis of the biotin carboxylase gene accC putatively involved in archaeal CO₂ fixation did not yield any archaeal sequence, but amplified a variety of bacterial carboxylases involved in fatty acids biosynthesis, anaplerotic pathways and leucine catabolism. Gammaproteobacteria dominated the seawater cultures (40-70% of cell counts), followed by Betaproteobacteria and Flavobacteria as shown by catalyzed reporter deposition fluorescence in situ hybridization (CARDFISH). Both Beta- and Gammaproteobacteria were active in leucine and bicarbonate uptake, while Flavobacteria did not take up bicarbonate, as measured by microautoradiography combined with CARDFISH. Within Gammaproteobacteria, Pseudoalteromonas-Colwellia and Oleispira were very active in bicarbonate uptake (ca. 30 and 70% of active cells, respectively), while the group Arctic96B-16 did not take up bicarbonate. Our results suggest that, potentially, the incorporation of CO₂ can be relevant for the metabolism of specific Arctic heterotrophic phylotypes, promoting the maintenance of their cell activity and/or longer survival under resource depleted conditions.

  18. A comparison of legionella and other bacteria concentrations in cooling tower water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappabianca, R.M.; Jurinski, N.B.; Jurinski, J.B.

    1994-05-01

    A field study was conducted in which water samples collected from air conditioning cooling water reservoirs of high-rise buildings throughout an urban area were assayed for Legionella and for total bacteria. Buildings included within the study had ongoing biocidal treatment programs for the cooling towers. Separate sample analyses were performed to measure the viable colony concentrations of total bacteria and of Legionella in the process waters. The occurrence and viable counts of Legionella in 304 environmental water samples were determined by inoculating them onto plates of buffered charcoal yeast extract (BCYE) agar medium (a presumptive screening method). The samples weremore » collected during summer months between July and September. BCYE plate cultures of 50 (16.4%) of the samples yielded Legionella with viable counts ranging from 2 to 608 colony forming units per milliliter. In the water samples, 281 (92.4%) yielded viable counts of bacteria that ranged from 9 to 1.2 x 10{sup 6} per milliliter. This study demonstrates that Legionella are commonly present in the water of air conditioning cooling towers and that there is no significant correlation between concurrently sampled culture plate counts of Legionella and total bacteria plate counts. Correspondingly, there is no demonstrated validity for use of total bacterial counts as an inferential surrogate for the concentration of Legionella in the water. 19 refs., 3 figs., 1 tab.« less

  19. A Hidden Pitfall in the Preparation of Agar Media Undermines Microorganism Cultivability

    PubMed Central

    Tanaka, Tomohiro; Kawasaki, Kosei; Daimon, Serina; Kitagawa, Wataru; Yamamoto, Kyosuke; Tamaki, Hideyuki; Tanaka, Michiko; Nakatsu, Cindy H.

    2014-01-01

    Microbiologists have been using agar growth medium for over 120 years. It revolutionized microbiology in the 1890s when microbiologists were seeking effective methods to isolate microorganisms, which led to the successful cultivation of microorganisms as single clones. But there has been a disparity between total cell counts and cultivable cell counts on plates, often referred to as the “great plate count anomaly,” that has long been a phenomenon that still remains unsolved. Here, we report that a common practice microbiologists have employed to prepare agar medium has a hidden pitfall: when phosphate was autoclaved together with agar to prepare solid growth media (PT medium), total colony counts were remarkably lower than those grown on agar plates in which phosphate and agar were separately autoclaved and mixed right before solidification (PS medium). We used a pure culture of Gemmatimonas aurantiaca T-27T and three representative sources of environmental samples, soil, sediment, and water, as inocula and compared colony counts between PT and PS agar plates. There were higher numbers of CFU on PS medium than on PT medium using G. aurantiaca or any of the environmental samples. Chemical analysis of PT agar plates suggested that hydrogen peroxide was contributing to growth inhibition. Comparison of 454 pyrosequences of the environmental samples to the isolates revealed that taxa grown on PS medium were more reflective of the original community structure than those grown on PT medium. Moreover, more hitherto-uncultivated microbes grew on PS than on PT medium. PMID:25281372

  20. Seasonal distribution of potentially pathogenic Acanthamoeba species from drinking water reservoirs in Taiwan.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Liu, Jorn-Hon; Chang, Hsiang-Yu; Ji, Wen-Tsai; Tzeng, Kai-Jiun; Huang, Shih-Wei; Huang, Yu-Li

    2015-03-01

    In order to detect the presence/absence of Acanthamoeba along with geographical variations, water quality variations and seasonal change of Acanthamoeba in Taiwan was investigated by 18S ribosomal RNA (rRNA) gene TaqMan quantitative real-time PCR. Samples were collected quarterly at 19 drinking water reservoir sites from November 2012 to August 2013. Acanthamoeba was detected in 39.5 % (30/76) of the water sample, and the detection rate was 63.2 % (12/19) from samples collected in autumn. The average concentration of Acanthamoeba was 3.59 × 10(4) copies/L. For geographic distribution, the detection rate for Acanthamoeba at the northern region was higher than the central and southern regions in all seasons. Results of Spearman rank test revealed that heterotrophic plate count (HPC) had a negative correlation (R = -0.502), while dissolved oxygen (DO) had a positive correlation (R = 0.463) in summer. Significant differences were found only between the presence/absence of Acanthamoeba and HPC in summer (Mann-Whitney U test, P < 0.05). T2 and T4 genotypes of Acanthamoeba were identified, and T4 was the most commonly identified Acanthamoeba genotypes. The presence of Acanthamoeba in reservoirs presented a potential public health threat and should be further examined.

  1. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism ofmore » phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.« less

  2. Effects of pipe materials on chlorine-resistant biofilm formation under long-term high chlorine level.

    PubMed

    Zhu, Zebing; Wu, Chenguang; Zhong, Dan; Yuan, Yixing; Shan, Lili; Zhang, Jie

    2014-07-01

    Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation.

  3. Origin and spatial-temporal distribution of faecal bacteria in a bay of Lake Geneva, Switzerland.

    PubMed

    Poté, John; Goldscheider, Nico; Haller, Laurence; Zopfi, Jakob; Khajehnouri, Fereidoun; Wildi, Walter

    2009-07-01

    The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.

  4. Occurrence of Legionella in showers at recreational facilities.

    PubMed

    De Filippis, Patrizia; Mozzetti, Cinzia; Amicosante, Massimo; D'Alò, Gian Loreto; Messina, Alessandra; Varrenti, Donatella; Giammattei, Roberto; Di Giorgio, Floriana; Corradi, Stefania; D'Auria, Alberto; Fraietta, Roberta; Gabrieli, Rosanna

    2017-06-01

    Critical environments, including water systems in recreational settings, represent an important source of Legionella pneumophila infection in humans. In order to assess the potential risk for legionellosis, we analyzed Legionella contamination of water distribution systems in 36 recreational facilities equipped with swimming pools. One hundred and sixty water samples were analyzed from shower heads or taps located in locker rooms or in bathrooms. By culture method and polymerase chain reaction, 41/160 samples were positive for Legionella from 12/36 recreational centers. Hotels (57.1%) and sports centers (41.2%) were the most contaminated. L. pneumophila serotypes 2-14 (25/41) were more frequently found than serotype 1 (10/41). Samples at temperature ≥30 °C were more frequently positive than samples at temperature <30 °C (n = 39 vs n = 2, p < 0.00001). The presence of L. pneumophila was investigated by comparison with heterotrophic plate count (HPC), an indicator of water quality. The presence of L. pneumophila was associated more frequently with high and intermediate HPC load at 37 °C, therefore should be considered a potential source when HPC at 37 °C is >10 CFU/mL. Maintenance, good hygiene practices, interventions on the hydraulic system and regular controls must be implemented to minimize exposure to L. pneumophila infection risk.

  5. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Controlling Legionella and Pseudomonas aeruginosa re-growth in therapeutic spas: implementation of physical disinfection treatments, including UV/ultrafiltration, in a respiratory hydrotherapy system.

    PubMed

    Leoni, E; Sanna, T; Zanetti, F; Dallolio, L

    2015-12-01

    The study aimed to assess the efficacy of an integrated water safety plan (WSP) in controlling Legionella re-growth in a respiratory hydrotherapy system located in a spa centre, supplied with sulphurous water, which was initially colonized by Legionella pneumophila. Heterotrophic plate counts, Pseudomonas aeruginosa, Legionella spp. were detected in water samples taken 6-monthly from the hydrotherapy equipment (main circuit, entry to benches, final outlets). On the basis of the results obtained by the continuous monitoring and the changes in conditions, the original WSP, including physical treatments of water and waterlines, environmental surveillance and microbiological monitoring, was integrated introducing a UV/ultrafiltration system. The integrated treatment applied to the sulphurous water (microfiltration/UV irradiation/ultrafiltration), waterlines (superheated stream) and distal outlets (descaling/disinfection of nebulizers and nasal irrigators), ensured the removal of Legionella spp. and P. aeruginosa and a satisfactory microbiological quality over time. The environmental surveillance was successful in evaluating the hazard and identifying the most suitable preventive strategies to avoid Legionella re-growth. Ultrafiltration is a technology to take into account in the control of microbial contamination of therapeutic spas, since it does not modify the chemical composition of the water, thus allowing it to retain its therapeutic properties.

  7. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress.

    PubMed

    Muller, Jocelyn Fraga; Stevens, Ann M; Craig, Johanna; Love, Nancy G

    2007-07-01

    Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.

  8. Groundwater quality in the Upper Susquehanna River Basin, New York, 2009

    USGS Publications Warehouse

    Reddy, James E.; Risen, Amy J.

    2012-01-01

    Water samples were collected from 16 production wells and 14 private residential wells in the Upper Susquehanna River Basin from August through December 2009 and were analyzed to characterize the groundwater quality in the basin. Wells at 16 of the sites were completed in sand and gravel aquifers, and 14 were finished in bedrock aquifers. In 2004–2005, six of these wells were sampled in the first Upper Susquehanna River Basin study. Water samples from the 2009 study were analyzed for 10 physical properties and 137 constituents that included nutrients, organic carbon, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, and 4 types of bacterial analyses. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater genrally is of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water standard at 28 of the 30 wells. These constituents include: pH, sodium, aluminum, manganese, iron, arsenic, radon-222, residue on evaporation, total and fecal coliform including Escherichia coli and heterotrophic plate count.

  9. Microbial contamination in dental unit waterlines: comparison between Er:YAG laser and turbine lines.

    PubMed

    Sacchetti, Rossella; Baldissarri, Augusto; De Luca, Giovanna; Lucca, Paola; Stampi, Serena; Zanetti, Franca

    2006-01-01

    The investigation was carried out by evaluating the microbiological characteristics of the water before and after treatment with Er:YAG laser and turbine. The study was carried out in 2 dental surgeries. In both cases the laser and dental units were served by two independent circuits, fed by the same potable tap water. Samples were taken from the water supplying and the water leaving the turbine and laser before and after treatment on the same patient. Total heterotrophic plate count was measured at 36 degrees C and at 22 degrees C, and the presence of Staphylococcus species and non-fermenting Gram negative bacteria was investigated. Bacterial contamination was found within the circuit, especially in the laser device. Pseudomonas aeruginosa was detected in only 1 sample of supply water, in 11.1 % and in 19.4 % of the samples from the turbine and the laser respectively. No evidence of Staphylococcus aureus was found. The contamination of supply water was low, whereas that of the water leaving the handpieces of the 2 devices was high, especially in the laser. Attention should be paid to the control of the water leaving laser devices, given the increasingly wide use of such instruments in dental treatment exposed to risk of infection.

  10. The effect of poultry manure application rate and AlCl(3) treatment on bacterial fecal indicators in runoff.

    PubMed

    Brooks, J P; Adeli, A; McLaughlin, M R; Miles, D M

    2012-12-01

    Increasing costs associated with inorganic fertilizer have led to widespread use of broiler litter. Proper land application, typically limiting nutrient loss, is essential to protect surface water. This study was designed to evaluate litter-borne microbial runoff (heterotrophic plate count bacteria, staphylococci, Escherichia coli, enterococci, and Clostridium perfringens) while applying typical nutrient-control methods. Field studies were conducted in which plots with high and low litter rates, inorganic fertilizer, AlCl(3)-treated litter, and controls were rained on five times using a rain generator. Overall, microbial runoff from poultry litter applied plots was consistently greater (2-5 log(10) plot(-1)) than controls. No appreciable effect on microbial runoff was noted from variable litter application rate or AlCl(3) treatments, though rain event, not time, significantly affected runoff load. C. perfringens and staphylococci runoff were consistently associated with poultry litter application, during early rain events, while other indicators were unreliable. Large microbial runoff pulses were observed, ranging from 10(2) to 10(10) CFU plot(-1); however, only a small fraction of litter-borne microbes were recoverable in runoff. This study indicated that microbial runoff from litter-applied plots can be substantial, and that methods intended to reduce nutrient losses do not necessarily reduce microbial runoff.

  11. Rainfall simulation in greenhouse microcosms to assess bacterial-associated runoff from land-applied poultry litter.

    PubMed

    Brooks, John P; Adeli, Ardeshir; Read, John J; McLaughlin, Michael R

    2009-01-01

    Runoff water following a rain event is one possible source of environmental contamination after a manure application. This greenhouse study used a rainfall simulator to determine bacterial-associated runoff from troughs of common bermudagrass [Cynodon dactylon (L.) Pers.] that were treated with P-based, N-based, and N plus lime rates of poultry (Gallus gallus) litter, recommended inorganic fertilizer, and control. Total heterotrophic plate count (HPC) bacteria, total and thermotolerant coliforms, enterococci, staphylococci, Clostridium perfringens, Salmonella, and Campylobacter, as well as antibiotic resistance profiles for the staphylococci and enterococci isolates were all monitored in runoff waters. Analysis following five rainfall events indicated that staphylococci, enterococci, and clostridia levels were related to manure application rate. Runoff release of staphylococci, enterococci, and C. perfringens were approximately 3 to 6 log10 greater in litter vs. control treatment. In addition, traditional indicators such as thermotolerant and total coliforms performed poorly as fecal indicators. Some isolated enterococci demonstrated increased antibiotic resistance to polymixin b and/or select aminoglyocosides, while many staphylococci were susceptible to most antimicrobials tested. Results indicated poultry litter application can lead to microbial runoff following simulated rain events. Future studies should focus on the use of staphylococci, enterococci, and C. perfringens as indicators.

  12. Effects of Bite Count Feedback from a Wearable Device and Goal Setting on Consumption in Young Adults.

    PubMed

    Jasper, Phillip W; James, Melva T; Hoover, Adam W; Muth, Eric R

    2016-11-01

    New technologies are emerging that may help individuals engage in healthier eating behaviors. One paradigm to test the efficacy of a technology is to determine its effect relative to environment cues that are known to cause individuals to overeat. The purpose of this work was to independently investigate two questions: How does the presence of a technology that provides bite count feedback alter eating behavior? and, How does the presence of a technology that provides bite count feedback paired with a goal alter eating behavior? Two studies investigated these research questions. The first study tested the effects of a large and small plate crossed with the presence or absence of a device that provided bite count feedback on intake. The second study tested the effects of a bite count goal with bite count feedback, again crossed with plate size, on intake. Both studies used a 2×2 between-subjects design. In the first study, 94 subjects (62 women aged 19.0±1.6 years with body mass index [BMI] 23.04±3.6) consumed lunch in a laboratory. The second study examined 99 subjects (56 women aged 18.5±1.5 years with BMI 22.73±2.70) under the same conditions. In both studies subjects consumed a single-course meal, using either a small or large plate. In the first study participants either wore or did not wear an automated bite counting device. In the second study all participants wore the bite counting device and were given either a low bite count goal (12 bites) or a high bite count goal (22 bites). Effect of plate size, feedback, and goal on consumption (grams) and number of bites taken were assessed using 2×2 analyses of variance. As adjunct measures, the effects of serving size, bite size (grams per bite), postmeal satiety, and satiety change were also assessed. In the first study there was a main effect of plate size on grams consumed and number of bites taken such that eating from a large plate led to greater consumption (P=0.001) and a greater number of bites (P=0.001). There was also a main effect of feedback on consumption and number of bites taken such that those who received feedback consumed less (P=0.011) and took fewer bites (P<0.001). In the second study there was a main effect of plate size on consumption such that those eating from a large plate consumed more (P=0.003) but did not take more bites. Further analysis revealed a main effect of goal on number of bites taken such that those who received the low goal took fewer bites (P<0.001) but did not consume less. Providing feedback on the number of bites taken from a wearable intake monitor can reduce overall intake during a single meal. Regarding the first research question, providing feedback significantly reduced intake in both plate size groups and reduced the overall number of bites taken. Regarding the second research question, participants were successful in eating to their goals. However, individuals in the low goal condition appeared to compensate for the restricted goal by taking larger bites, leading to comparable levels of consumption between the low and high goal groups. Hence, the interaction of technology with goals should be considered when introducing a health intervention. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  13. Sachet water quality and brand reputation in two low-income urban communities in greater Accra, Ghana.

    PubMed

    Stoler, Justin; Tutu, Raymond A; Ahmed, Hawa; Frimpong, Lady Asantewa; Bello, Mohammed

    2014-02-01

    Sachet water has become an important primary source of drinking water in western Africa, but little is known about bacteriologic quality and improvements to quality control given the recent, rapid evolution of this industry. This report examines basic bacteriologic indicators for 60 sachet water samples from two very low-income communities in Accra, Ghana, and explores the relationship between local perceptions of brand quality and bacteriologic quality after controlling for characteristics of the vending environment. No fecal contamination was detected in any sample, and 82% of total heterotrophic bacteria counts were below the recommended limit for packaged water. Sachets from brands with a positive reputation for quality were 90% less likely to present any level of total heterotrophic bacteria after controlling for confounding factors. These results contrast with much of the recent sachet water quality literature and may indicate substantial progress in sachet water regulation and quality control.

  14. Sachet Water Quality and Brand Reputation in Two Low-Income Urban Communities in Greater Accra, Ghana

    PubMed Central

    Stoler, Justin; Tutu, Raymond A.; Ahmed, Hawa; Frimpong, Lady Asantewa; Bello, Mohammed

    2014-01-01

    Sachet water has become an important primary source of drinking water in western Africa, but little is known about bacteriologic quality and improvements to quality control given the recent, rapid evolution of this industry. This report examines basic bacteriologic indicators for 60 sachet water samples from two very low-income communities in Accra, Ghana, and explores the relationship between local perceptions of brand quality and bacteriologic quality after controlling for characteristics of the vending environment. No fecal contamination was detected in any sample, and 82% of total heterotrophic bacteria counts were below the recommended limit for packaged water. Sachets from brands with a positive reputation for quality were 90% less likely to present any level of total heterotrophic bacteria after controlling for confounding factors. These results contrast with much of the recent sachet water quality literature and may indicate substantial progress in sachet water regulation and quality control. PMID:24379244

  15. Method for Performing Aerobic Plate Counts of Anhydrous Cosmetics Utilizing Tween 60 and Arlacel 80 as Dispersing Agents

    PubMed Central

    McConville, John F.; Anger, Claude B.; Anderson, David W.

    1974-01-01

    An aqueous diluent containing Tween 60 and Arlacel 80 gave greater recovery of microorganisms when compared with two common diluents as determined by aerobic plate count of inoculated anhydrous cosmetics. The greater recovery was caused by better dispersion of the anhydrous cosmetics in the diluents. Images PMID:4203790

  16. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Viability and biomass of Micrococcus luteus DE2008 at different salinity concentrations determined by specific fluorochromes and CLSM-image analysis.

    PubMed

    Puyen, Zully M; Villagrasa, Eduard; Maldonado, Juan; Esteve, Isabel; Solé, Antonio

    2012-01-01

    In previous studies, our group developed a method based on Confocal Laser Scanning Microscopy and Image Analysis (CLSM-IA) to analyze the diversity and biomass of cyanobacteria in microbial mats. However, this method cannot be applied to heterotrophic microorganisms, as these do not have autofluorescence. In this article, we present a method that combines CLSM-IA and Hoechst 33342 and SYTOX Green fluorochromes (FLU-CLSM-IA) to determine the viability and biomass of Micrococcus luteus DE2008, isolated from a saline microbial mat (Ebro Delta, Tarragona, Spain). The method has been applied to assess the effect of salinity on this microorganism. A reduction in viability and biomass (live cells) was observed as the salt concentration increases. The largest effect was at 100‰ NaCl with a cell death of 27.25% and a decrease in total and individual biomass of 39.75 and 0.009 mgC/cm(3), respectively, both with respect to optimal growth (10 ‰ NaCl). On the other hand, another important contribution of this article was that combining the FLU-CLSM-IA results with those achieved by plate counts enabled us to determine, for first time, the viability and the total biomass of the "dormant cells" (66.75% of viability and 40.59 mgC/cm(3) of total biomass at 100‰ NaCl). FLU-CLSM-IA is an efficient, fast, and reliable method for making a total count of cells at pixel level, including the dormant cells, to evaluate the viability and the biomass of a hetetrophic microorganism, M. luteus DE2008.

  18. The Heterotrophic Bacterial Response During the Meso-scale Southern Ocean Iron Experiment (SOFeX)

    NASA Astrophysics Data System (ADS)

    Oliver, J. L.; Barber, R. T.; Ducklow, H. W.

    2002-12-01

    Previous meso-scale iron enrichments have demonstrated the stimulatory effect of iron on primary productivity and the accelerated flow of carbon into the surface ocean foodweb. In stratified waters, heterotrophic activity can work against carbon export by remineralizing POC and/or DOC back to CO2, effectively slowing the biological pump. To assess the response of heterotrophic activity to iron enrichment, we measured heterotrophic bacterial production and abundance during the Southern Ocean Iron Experiment (SOFeX). Heterotrophic bacterial processes primarily affect the latter of the two carbon export mechanisms, removal of DOC to the deep ocean. Heterotrophic bacterial production (BP), measured via tritiated thymidine (3H-TdR) and leucine (3H-Leu) incorporation, increased ~40% over the 18-d observation period in iron fertilized waters south of the Polar Front (South Patch). Also, South Patch BP was 61% higher than in the surrounding unfertilized waters. Abundance, measured by flow cytometry (FCM) and acridine orange direct counts (AODC), also increased in the South Patch from 3 to 5 x 108 cells liter-1, a 70% increase. Bacterial biomass increased from ~3.6 to 6.3 μg C liter-1, a clear indication that production rates exceeded removal rates (bactivory, viral lysis) over the course of 18 days. Biomass within the fertilized patch was 11% higher than in surrounding unfertilized waters reflecting a similar trend. This pattern is in contrast to SOIREE where no accumulation of biomass was observed. High DNA-containing (HDNA) cells detected by FCM also increased over time in iron fertilized waters from 20% to 46% relative to the total population suggesting an active subpopulation of cells that were growing faster than the removal rates. In iron fertilized waters north of the Polar Front (North Patch), BP and abundance were ~90% and 80% higher, respectively, than in unfertilized waters. Our results suggest an active bacterial population that responded to iron fertilization by utilizing newly produced DOC and/or iron and which grew at rates that exceeded removal rates. Differences in the microbial response between SOFeX and SOIREE are subtle, and may be related to differences in foodweb structure prior to and during the response to iron enrichment.

  19. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    NASA Astrophysics Data System (ADS)

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    Mining and smelting are major sources of trace metal contamination in freshwater systems. Arsenic (As) is a common contaminant derived from certain mining operations and is a known toxic metalloid and carcinogen. Antimony (Sb) is listed as a pollutant of priority interest by the EPA and is presumed to share similar geochemical and toxicological properties with arsenic. Both elements can occur in four different oxidation states (V, III, 0, and -III) under naturally occurring conditions. In aqueous solutions As(V) and Sb(V) predominate in oxygenated surface waters whereas As(III) and Sb(III) are stable in anoxic settings. Numerous studies have examined microbiological redox pathways that utilize As(V) as a terminal electron acceptor for anaerobic respiration, however there have been few studies on microbial mechanisms that may affect the biogeochemical cycling of Sb in the environment. Here we report bacterial reduction of Sb(V) to Sb(III) in anoxic enrichment cultures and bacterial isolates grown from sediment collected from an Sb contaminated pond at a mine tailings site in Idaho (total pond water Sb concentration = 235.2 +/- 136.3 ug/L). Anaerobic sediment microcosms (40 mL) were established in artificial freshwater mineral salt medium, amended with millimolar concentrations of Sb(V), acetate or lactate, and incubated at 27°C for several days. Antimony(V), lactate, and acetate concentrations were monitored during incubation by High Performance Liquid Chromatography (HPLC) and Ion Chromatography (IC). Live sediment microcosms reduced millimolar amendments of Sb(V) to Sb(III) coupled to the oxidation of acetate and lactate, while no activity occurred in killed controls. Enrichment cultures were established by serially diluting Sb(V)-reducing microcosms in mineral salt medium with Sb(V) and acetate, and a Sb(V)-reducing bacterial strain was isolated by plating on anaerobic agar plates amended with millimolar Sb(V) and acetate. Direct cell counting demonstrated that this isolate exhibited Sb(V)-dependent heterotrophic growth. These results suggest that the endogenous microbial community from this Sb-contaminated site includes anaerobic microorganisms capable of obtaining energy for growth by oxidizing heterotrophic electron donors using Sb(V) as the terminal electron acceptor. Ongoing work includes identification of the isolated organism using 16S rDNA phylogenetic markers as well as an inventory of known functional genes (e.g., arrA) within this isolate that may more typically encode for As(V)-reduction. These results elucidate the potentially significant role of microbiological transformations in controlling the speciation of Sb in the environment, and may help to identify potential bioremediation strategies for Sb contaminated waters.

  20. Microbiological survey of a South African poultry processing plant.

    PubMed

    Geornaras, I; de Jesus, A; van Zyl, E; von Holy, A

    1995-01-01

    Bacterial populations associated with poultry processing were determined on neck skin samples, equipment surfaces and environmental samples by replicate surveys. Aerobic plate counts, Enterobacteriaceae counts, Enterobacteriaceae counts and Pseudomonas counts were performed by standard procedures and the prevalence of Listeria, presumptive Salmonella and Staphylococcus aureus determined. Statistically significant (P < 0.05) increases in counts of all types of bacteria were obtained on product samples as a result of processing. Although bacterial counts on neck skin samples decreased by 0.3 to 0.4 log CFU g-1 after spray washing of carcasses, subsequent spinchilling and packaging of whole carcasses resulted in 0.7 to 1.2 log CFU g-1 increases. Bacterial numbers on equipment surfaces, however, decreased significantly from the "dirty" to the "clean" areas of the abattoir. Transport cages, "rubber fingers", defeathering curtains, shackles and conveyor belts repeatedly showed aerobic plate counts in excess of 5.0 log CFU 25 cm-2. Aerobic plate counts of scald tank and spinchiller water were 2 log CFU ml-1 higher than those of potable water samples. Bacterial numbers of the air in the "dirty" area were higher than those of the "clean" area. Listeria, presumptive Salmonella and Staphylococcus aureus were isolated from 27.6, 51.7 and 24.1% of all product samples, respectively, and Listeria and Staphylococcus aureus were also isolated from selected equipment surfaces.

  1. Neutrophilic Iron-Oxidizing Zetaproteobacteria and Mild Steel Corrosion in Nearshore Marine Environments

    DTIC Science & Technology

    2011-02-16

    were checked for the presence of heterotrophic bacteria by streak- ing a sample on ASW-R2A agar plates. DNA extraction and analysis of phylogenetic ...Bellerophon v. 3 (greengenes.lbl.gov) and Pintail (www.bioinformatics -toolkit.org/Web-Pintail/). Phylogenetic trees were constructed for SSU rRNA gene...CLUSTALW (44), and phylogenetic analyses were conducted in MEGA4 (42). The evolutionary history was inferred using the neighbor-joining method (39), and

  2. SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER.

    EPA Science Inventory

    The survival of four Salmonella strains in river water microcosms was monitored using culturing techniques, direct counts, whole cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytrometry. Plate counts of...

  3. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods.

    PubMed

    Andrade, N J; Bridgeman, T A; Zottola, E A

    1998-07-01

    Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.

  4. SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER

    EPA Science Inventory

    The survival of four Salmonella strains in river water microcosms was monitored by culturing techniques, direct counts, whole-cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytometry. Plate counts of bact...

  5. Microbiological hazard identification and exposure assessment of street food vending in Johannesburg, South Africa.

    PubMed

    Mosupye, F M; von Holy, A

    2000-11-01

    One hundred and thirty-two samples of beef, chicken, salad and gravy were collected from two street vendors over eleven replicate surveys to assess microbiological safety and quality. For each food type samples were collected during preparation and holding. Dish water was also collected and food preparation surfaces swabbed during preparation and display. Standard methods were used to determine aerobic plate counts, Enterobacteriaceae counts, coliform counts and spore counts. Six hundred and seventy-five predominant colonies were isolated from aerobic plate counts of all samples and characterised. The incidence of selected foodborne bacterial pathogens and non-pathogenic E. coli 1 was also determined. In most cases mean bacterial counts of the raw materials were significantly higher (P < 0.05) than those of corresponding cooked foods. No significant differences (P > 0.05) in all count types were observed between food samples collected during cooking and those collected during holding. In addition, no significant differences (P > 0.05) in all count types were observed between prepared salads and their raw materials. Mean bacterial counts of water and swab samples collected from vendor 1 were lower than those of water and swab samples collected from vendor 2.The predominant populations isolated from the aerobic plate counts were Bacillus spp., Staphylococcus spp., Enterobacteriaceae and Alcaligenes spp. Bacillus cereus was detected in 17%, Clostridium perfringens in 1%, Staphylococcus aureus in 3% and Vibrio metchnikovii in 2% of the food samples. Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli O157:H7 were not detected. Non-pathogenic E. coli 1 was detected in 13% of food samples, in 86 and 36% of dish water samples collected from vendors 1 and 2, respectively, and in 36% of surface swab samples from vendor 2.

  6. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines.

    PubMed

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m(3) fermentor that produced biomass at 3.81 g L(-1) day(-1) with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel.

  7. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines

    PubMed Central

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m3 fermentor that produced biomass at 3.81 g L−1 day−1 with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel. PMID:26539434

  8. [Analysis on 2011 quality control results on aerobic plate count of microbiology laboratories in China].

    PubMed

    Han, Haihong; Li, Ning; Li, Yepeng; Fu, Ping; Yu, Dongmin; Li Zhigang; Du, Chunming; Guo, Yunchang

    2015-01-01

    To test the aerobic plate count examining capability of microbiology laboratories, to ensure the accuracy and comparability of quantitative bacteria examination results, and to improve the quality of monitoring. The 4 different concentration aerobic plate count piece samples were prepared and noted as I, II, III and IV. After homogeneity and stability tests, the samples were delivered to monitoring institutions. The results of I, II, III samples were logarithmic transformed, and evaluated with Z-score method using the robust average and standard deviation. The results of IV samples were evaluated as "satisfactory" when reported as < 10 CFU/piece or as "not satisfactory" otherwise. Pearson χ2 test was used to analyze the ratio results. 309 monitoring institutions, which was 99.04% of the total number, reported their results. 271 institutions reported a satisfactory result, and the satisfactory rate was 87.70%. There was no statistical difference in satisfactory rates of I, II and III samples which were 81.52%, 88.30% and 91.40% respectively. The satisfactory rate of IV samples was 93.33%. There was no statistical difference in satisfactory rates between provincial and municipal CDC. The quality control program has provided scientific data that the aerobic plate count capability of the laboratories meets the requirements of monitoring tasks.

  9. Inactivation of Escherichia coli and coliform bacteria in traditional brass and earthernware water storage vessels.

    PubMed

    Tandon, Puja; Chhibber, Sanjay; Reed, Robert H

    2005-07-01

    The detection and enumeration of indicator bacteria such as Escherichia coli is used to assess the extent of faecal contamination of drinking water. On the basis of this approach, the effectiveness of storing water contaminated with faecal indicator bacteria in brass or earthern vessels (mutkas) of the type used in rural India have been investigated. Suspensions of bacteria in sterile distilled water were maintained for up to 48 h in each vessel and enumerated by surface plate counts on nutrient agar (non-selective) and several selective coliform media at 37 degrees C either under standard aerobic conditions, or under conditions designed to neutralise reactive oxygen species (ROS), e.g. using an anaerobic cabinet to prepare plates of pre-reduced growth medium or by inclusion of sodium pyruvate in the growth medium, with incubation of aerobically-prepared plates in an anaerobic jar. The counts obtained for E. coli decreased on short-term storage in a brass mutka; counts for selective media were lower than for equivalent counts for non-selective medium, with ROS-neutralised conditions giving consistently higher counts than aerobic incubation. However, after 48 h, no bacteria were cultivable under any conditions. Similar results were obtained using water from environmental sources in the Panjab, and from rural households where brass and earthern mutkas are used for storage of drinking water, with enumeration on selective coliform media (presumptive total coliforms). In all cases results indicated that, while storage of water in a brass mutka can inactivate E. coli and coliforms over a 48 h period, standard aerobic plate counting using selective media may not be fully effective in enumerating sub-lethally damaged bacteria.

  10. Industrial Cooling Tower Disinfection Treatment to Prevent Legionella spp.

    PubMed

    Iervolino, Matteo; Mancini, Benedetta; Cristino, Sandra

    2017-09-26

    The contamination of industrial cooling towers has been identified as one cause of legionellosis, but the real risk has been underestimated. Two different disinfection treatments were tested on Legionella colonization in an industrial Cooling Tower System (CTS). Environmental monitoring of Legionella , P. aeruginosa , and a heterotrophic plate count (HPC) at 36 °C was performed from June to October 2016. The disinfection procedures adopted were based on hydrogen peroxide (H₂O₂) and silver salts (Ag⁺), in addition to an anti-algal treatment, then using hyperclorination as a shock, and then continuous treatment by sodium hypochlorite (NaClO). L . pneumophila serogroup 8 was found at a concentration of 5.06 Log cfu/L after the CTS filling; a shock treatment performed by H₂O₂/Ag⁺ produced a rapid increase in contamination up to 6.14 Log cfu/L. The CTS activity was stopped and two subsequent shock treatments were performed using NaClO, followed by continuous hyperclorination. These procedures showed a significant decrease ( p < 0.05) in Legionella concentration (1.77 Log cfu/L). The same trend was observed for P . aeruginosa (0.55 Log cfu/100 mL) and HPC (1.95 Log cfu/mL) at 36 °C. Environmental monitoring and the adoption of maintenance procedures, including anti-scale treatment, and physical, chemical, and microbiological control, ensure the good performance of a CTS, reducing the Legionella risk for public health.

  11. Examination and characterization of distribution system biofilms.

    PubMed Central

    LeChevallier, M W; Babcock, T M; Lee, R G

    1987-01-01

    Investigations concerning the role of distribution system biofilms on water quality were conducted at a drinking water utility in New Jersey. The utility experienced long-term bacteriological problems in the distribution system, while treatment plant effluents were uniformly negative for coliform bacteria. Results of a monitoring program showed increased coliform levels as the water moved from the treatment plant through the distribution system. Increased coliform densities could not be accounted for by growth of the cells in the water column alone. Identification of coliform bacteria showed that species diversity increased as water flowed through the study area. All materials in the distribution system had high densities of heterotrophic plate count bacteria, while high levels of coliforms were detected only in iron tubercles. Coliform bacteria with the same biochemical profile were found both in distribution system biofilms and in the water column. Assimilable organic carbon determinations showed that carbon levels declined as water flowed through the study area. Maintenance of a 1.0-mg/liter free chlorine residual was insufficient to control coliform occurrences. Flushing and pigging the study area was not an effective control for coliform occurrences in that section. Because coliform bacteria growing in distribution system biofilms may mask the presence of indicator organisms resulting from a true breakdown of treatment barriers, the report recommends that efforts continue to find methods to control growth of coliform bacteria in pipeline biofilms. Images PMID:3435140

  12. Manual faucets induce more biofilms than electronic faucets.

    PubMed

    Mäkinen, Riika; Miettinen, Ilkka T; Pitkänen, Tarja; Kusnetsov, Jaana; Pursiainen, Anna; Kovanen, Sara; Riihinen, Kalle; Keinänen-Toivola, Minna M

    2013-06-01

    Electronic faucets (types E1 and E2) and manual (M) faucets were studied for microbial quality, i.e., biomass and pathogenic microbes of biofilms in the faucet aerator, the water, and the outer surface of faucet in a hospital in Finland. Heterotrophic plate count content reflecting culturable microbial biomass and adenosine triphosphate content representing viable microbial biomass were smaller in the biofilms of E1-type electronic faucets than E2-type electronic faucets or M faucets. The likely explanation is the mixing point of cold and hot water (E1 and M: in the faucet; E2: in a separate box 50 cm before the actual faucet part). The highest amounts of Legionella (serogroups 2-15 of Legionella pneumophila) in a water sample (5000 cfu/L) and in biofilm samples (May-June 2008 sampling: 240 cfu/mL; November 2008: 1100 cfu/mL) were found in one E1-type faucet, which was lacking a back pressure valve due to faulty installation. This study reveals that certain types of electronic faucets seem to promote hospital hygiene, as they were associated with less microbial growth in biofilms in the faucet aerator, than some other types of electronic faucets or manual faucets, likely owing to the mixing point of cold and hot water. However, the faucet type had no direct effect on the presence of Legionella spp. Also correct installation is crucial.

  13. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.

    PubMed

    Lautenschlager, Karin; Boon, Nico; Wang, Yingying; Egli, Thomas; Hammes, Frederik

    2010-09-01

    Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Evaluating the biosafety of conventional and O3-BAC process and its relationship with NOM characteristics.

    PubMed

    Liao, Xiaobin; Zou, Rusen; Chen, Chao; Yuan, Baoling; Zhou, Zhenming; Zhang, Xiaojian

    2018-01-01

    It is the priority to guarantee biosafety for drinking water treatment. The objective of this study was to evaluate the impact of widely applied conventional and ozone-biological activated carbon (O 3 -BAC) advanced treatment technology on biosafety of drinking water. The items, including assimilable organic carbon (AOC), biodegradable dissolved organic carbon (BDOC), heterotrophic plate counts (HPCs) and the microorganism community structures, were used to evaluate the biosafety. Moreover, their relationships with molecular weights (MWs) and fluorescence intensity of dissolved organic matter were investigated. The results indicated that the technology provided a considerable gain in potable water quality by decreasing dissolved organic carbon (DOC, from 5.05 to 1.71 mg/L), AOC (from 298 to 131 μg/L), BDOC (from 1.39 to 0.24 mg/L) and HPCs (from 275 to 10 CFU/mL). Ozone brought an increase in DOC with low MW <1 kDa, which accompanies with an increase in AOC/BDOC concentration, which could be reduced effectively by subsequent BAC process. The formation of AOC/BDOC was closely related to DOC with low MWs and aromatic protein. Bacteria could be released from BAC filter, resulting in an increase in HPC and the presence of pathogenic bacteria in effluent, while the post sand filter could further guarantee the biosafety of finished water.

  15. Microbiological assessment along the fish production chain of the Norwegian pelagic fisheries sector--Results from a spot sampling programme.

    PubMed

    Svanevik, Cecilie Smith; Roiha, Irja Sunde; Levsen, Arne; Lunestad, Bjørn Tore

    2015-10-01

    Microbes play an important role in the degradation of fish products, thus better knowledge of the microbiological conditions throughout the fish production chain may help to optimise product quality and resource utilisation. This paper presents the results of a ten-year spot sampling programme (2005-2014) of the commercially most important pelagic fish species harvested in Norway. Fish-, surface-, and storage water samples were collected from fishing vessels and processing factories. Totally 1,181 samples were assessed with respect to microbiological quality, hygiene and food safety. We introduce a quality and safety assessment scheme for fresh pelagic fish recommending limits for heterotrophic plate counts (HPC), thermos tolerant coliforms, enterococci and Listeria monocytogenes. According to the scheme, in 25 of 41 samplings, sub-optimal conditions were found with respect to quality, whereas in 21 and 9 samplings, samples were not in compliance concerning hygiene and food safety, respectively. The present study has revealed that the quality of pelagic fish can be optimised by improving the hygiene conditions at some critical points at an early phase of the production chain. Thus, the proposed assessment scheme may provide a useful tool for the industry to optimise quality and maintain consumer safety of pelagic fishery products. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    PubMed

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-05-01

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Project environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1974-01-01

    Microbiological analyses of soil particles allow for the following conclusions: (1) there is a considerable range in the values of aerobic, mesophilic microbial counts associated with different size soil fractions; (2) as soil particle size increases, there is an increase in the mean microbial concentration per particle; (3) plate counts of aerobic, mesophilic organisms in unheated soils yielded a mean concentration of about six organisms per particle for the smallest soil fraction; (4) aerobic, mesophilic counts for sonicated particles heated at 80 C for 20 minutes yielded mean values of about two organisms per particle for the smallest particles; (5) some actinomycetes associated with the soil fractions could survive dry heat treatment at 110 C for one hour; and (6) soil particles stored under ambient laboratory conditions for 2.5 years aerobic, mesophilic plate counts which were comparable or slightly greater than the counts for more recently collected soil.

  18. Rapid Membrane Filtration-Epifluorescent Microscopy Technique for Direct Enumeration of Bacteria in Raw Milk

    PubMed Central

    Pettipher, Graham L.; Mansell, Roderick; McKinnon, Charles H.; Cousins, Christina M.

    1980-01-01

    Membrane filtration and epifluorescent microscopy were used for the direct enumeration of bacteria in raw milk. Somatic cells were lysed by treatment with trypsin and Triton X-100 so that 2 ml of milk containing up to 5 × 106 somatic cells/ml could be filtered. The majority of the bacteria (ca. 80%) remained intact and were concentrated on the membrane. After being stained with acridine organe, the bacteria fluoresced under ultraviolet light and could easily be counted. The clump count of orange fluorescing cells on the membrane correlated well (r = 0.91) with the corresponding plate count for farm, tanker, and silo milks. Differences between counts obtained by different operators and between the membrane clump count and plate count were not significant. The technique is rapid, taking less than 25 min, inexpensive, costing less than 50 cents per sample, and is suitable for milks containing 5 × 103 to 5 × 108 bacteria per ml. Images PMID:16345515

  19. The effect of microchannel plate gain depression on PAPA photon counting cameras

    NASA Astrophysics Data System (ADS)

    Sams, Bruce J., III

    1991-03-01

    PAPA (precision analog photon address) cameras are photon counting imagers which employ microchannel plates (MCPs) for image intensification. They have been used extensively in astronomical speckle imaging. The PAPA camera can produce artifacts when light incident on its MCP is highly concentrated. The effect is exacerbated by adjusting the strobe detection level too low, so that the camera accepts very small MCP pulses. The artifacts can occur even at low total count rates if the image has highly a concentrated bright spot. This paper describes how to optimize PAPA camera electronics, and describes six techniques which can avoid or minimize addressing errors.

  20. Influence of phosphate and disinfection on the composition of biofilms produced from drinking water, as measured by fluorescence in situ hybridization.

    PubMed

    Batté, M; Mathieu, L; Laurent, P; Prévost, M

    2003-12-01

    Biofilms were grown in annular reactors supplied with drinking water enriched with 235 microg C/L. Changes in the biofilms with ageing, disinfection, and phosphate treatment were monitored using fluorescence in situ hybridization. EUB338, BET42a, GAM42a, and ALF1b probes were used to target most bacteria and the alpha (alpha), beta (beta), and gamma (gamma) subclasses of Proteobacteria, respectively. The stability of biofilm composition was checked after the onset of colonization between T = 42 days and T = 113 days. From 56.0% to 75.9% of the cells detected through total direct counts with DAPI (4'-6-diamidino-2-phenylindole) were also detected with the EUB338 probe, which targets the 16S rRNA of most bacteria. Among these cells, 16.9%-24.7% were targeted with the BET42a probe, 1.8%-18.3% with the ALF1b probe, and <2.5% with the GAM42a probe. Phosphate treatment induced a significant enhancement to the proportion of gamma-Proteobacteria (detected with the GAM42a probe), a group that contains many health-related bacteria. Disinfection with monochloramine for 1 month or chlorine for 3 days induced a reduction in the percentage of DAPI-stained cells that hybridized with the EUB338 probe (as expressed by percentages of EUB338 counts/DAPI) and with any of the ALF1b, BET42a, and GAM42a probes. The percentage of cells detected by any of the three probes (ALF1b+BET42a+GAM42a) tended to decrease, and reached in total less than 30% of the EUB338-hybridized cells. Disinfection with chlorine for 7 days induced a reverse shift; an increase in the percentage of EUB338 counts targeted by any of these three probes was noted, which reached up to 87%. However, it should be noted that the global bacterial densities (heterotrophic plate counts and total direct counts) tended to decrease over the duration of the experiment. Therefore, those bacteria that could be considered to resist 7 days of chlorination constituted a small part of the initial biofilm community, up to the point at which the other bacterial groups were destroyed by chlorination. The results suggest that there were variations in the kinetics of inactivation by disinfectant, depending on the bacterial populations involved.

  1. Short communication: Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count.

    PubMed

    Koop, G; Dik, N; Nielen, M; Lipman, L J A

    2010-06-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC (Fossomatic 5000, Foss, Hillerød, Denmark) and TBC (BactoScan FC 150, Foss) were measured. Staphylococcal count was correlated to SCC (r=0.40), TBC (r=0.51), and SPC (r=0.53). Coliform count was correlated to TBC (r=0.33), but not to any of the other variables. Staphylococcus aureus did not correlate to SCC. The contribution of the staphylococcal count to the SPC was 31%, whereas the coliform count comprised only 1% of the SPC. The agreement of the repeated measurements was low. This study indicates that staphylococci in goat bulk milk are related to SCC and make a significant contribution to SPC. Because of the high variation in bacterial counts, repeated sampling is necessary to draw valid conclusions from bulk milk culturing. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Microbial contamination in intraoral phosphor storage plates: the dilemma.

    PubMed

    de Souza, Tricia Murielly Pereira Andrade; de Castro, Ricardo Dias; de Vasconcelos, Laís César; Pontual, Andréa Dos Anjos; de Moraes Ramos Perez, Flávia Maria; Pontual, Maria Luiza Dos Anjos

    2017-01-01

    The aims of this study were to evaluate microbial contamination in phosphor storage plates in dental radiology services and discuss the possible origin of this contamination. The sample comprised 50 phosphor plates: 14 plates from service A, 30 from service B, and 6 in the control group, consisting of plates never used. Damp sterile swabs were rubbed on the phosphor plates, and then transferred to tests tubes containing sterile saline solution. Serial dilutions were made, and then inoculated in triplicate on Mueller Hinton agar plates and incubated at 37 °C/48 h, before counting the colony-forming units (CFU). The samples were also seeded in brain-heart infusion medium to confirm contamination by turbidity of the culture medium. All solutions, turbid and clean, were seeded in selective and non-selective media. At service A and B, 50 and 73.3 % of the phosphor plates were contaminated, respectively. This contamination was mainly due to bacteria of the genus Staphylococcus. CFU counts ranged from 26.4 to 80.0 CFU/plate. Most of the phosphor plates evaluated shown to be contaminated, mainly by Staphylococcus ssp. Quantitatively, this contamination occurred at low levels, possibly arising from handling of the plates. The use of a second plastic barrier may have diminished contamination by microorganisms from the oral cavity. There is a risk of cross-contamination by phosphor storage plates used in dental radiology services.

  3. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to Simulated Food Processing Treatments, Determined Using Fluorescence-Activated Cell Sorting and Plate Counting▿

    PubMed Central

    Kennedy, Deirdre; Cronin, Ultan P.; Wilkinson, Martin G.

    2011-01-01

    Three common food pathogenic microorganisms were exposed to treatments simulating those used in food processing. Treated cell suspensions were then analyzed for reduction in growth by plate counting. Flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) were carried out on treated cells stained for membrane integrity (Syto 9/propidium iodide) or the presence of membrane potential [DiOC2(3)]. For each microbial species, representative cells from various subpopulations detected by FCM were sorted onto selective and nonselective agar and evaluated for growth and recovery rates. In general, treatments giving rise to the highest reductions in counts also had the greatest effects on cell membrane integrity and membrane potential. Overall, treatments that impacted cell membrane permeability did not necessarily have a comparable effect on membrane potential. In addition, some bacterial species with extensively damaged membranes, as detected by FCM, appeared to be able to replicate and grow after sorting. Growth of sorted cells from various subpopulations was not always reflected in plate counts, and in some cases the staining protocol may have rendered cells unculturable. Optimized FCM protocols generated a greater insight into the extent of the heterogeneous bacterial population responses to food control measures than did plate counts. This study underlined the requirement to use FACS to relate various cytometric profiles generated by various staining protocols with the ability of cells to grow on microbial agar plates. Such information is a prerequisite for more-widespread adoption of FCM as a routine microbiological analytical technique. PMID:21602370

  4. A comparison between orthogonal and parallel plating methods for distal humerus fractures: a prospective randomized trial.

    PubMed

    Lee, Sang Ki; Kim, Kap Jung; Park, Kyung Hoon; Choy, Won Sik

    2014-10-01

    With the continuing improvements in implants for distal humerus fractures, it is expected that newer types of plates, which are anatomically precontoured, thinner and less irritating to soft tissue, would have comparable outcomes when used in a clinical study. The purpose of this study was to compare the clinical and radiographic outcomes in patients with distal humerus fractures who were treated with orthogonal and parallel plating methods using precontoured distal humerus plates. Sixty-seven patients with a mean age of 55.4 years (range 22-90 years) were included in this prospective study. The subjects were randomly assigned to receive 1 of 2 treatments: orthogonal or parallel plating. The following results were assessed: operating time, time to fracture union, presence of a step or gap at the articular margin, varus-valgus angulation, functional recovery, and complications. No intergroup differences were observed based on radiological and clinical results between the groups. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes, mean operation time, union time, or complication rates. There were no cases of fracture nonunion in either group; heterotrophic ossification was found 3 patients in orthogonal plating group and 2 patients in parallel plating group. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes or complication rates. However, orthogonal plating method may be preferred in cases of coronal shear fractures, where posterior to anterior fixation may provide additional stability to the intraarticular fractures. Additionally, parallel plating method may be the preferred technique used for fractures that occur at the most distal end of the humerus.

  5. Cultural and Molecular Evidence of Legionella spp. Colonization in Dental Unit Waterlines: Which Is the Best Method for Risk Assessment?

    PubMed

    Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M

    2016-02-06

    Legionella spp. are ubiquitous in aquatic habitats and water distribution systems, including dental unit waterlines (DUWLs). The aim of the present study was to determine the prevalence of Legionella in DUWLs and tap water samples using PMA-qPCR and standard culture methods. The total viable counts (TVCs) of aerobic heterotrophic bacteria in the samples were also determined. Legionella spp. were detected and quantified using the modified ISO 11731 culture method. Extracted genomic DNA was analysed using the iQ-Check Quanti Legionella spp. kit, and the TVCs were determined according to the ISO protocol 6222. Legionella spp. were detected in 100% of the samples using the PMA-qPCR method, whereas these bacteria were detected in only 7% of the samples using the culture method. The number of colony forming units (CFUs) of the TVCs in the DUWL and tap water samples differed, with the bacterial load being significantly lower in the tap water samples (p-value = 0). The counts obtained were within the Italian standard range established for potable water in only 5% of the DUWL water samples and in 77% of the tap water samples. Our results show that the level of Legionella spp. contamination determined using the culture method does not reflect the true scale of the problem, and consequently we recommend testing for the presence of aerobic heterotrophic bacteria based on the assumption that Legionella spp. are components of biofilms.

  6. Cultural and Molecular Evidence of Legionella spp. Colonization in Dental Unit Waterlines: Which Is the Best Method for Risk Assessment?

    PubMed Central

    Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M.

    2016-01-01

    Legionella spp. are ubiquitous in aquatic habitats and water distribution systems, including dental unit waterlines (DUWLs). The aim of the present study was to determine the prevalence of Legionella in DUWLs and tap water samples using PMA-qPCR and standard culture methods. The total viable counts (TVCs) of aerobic heterotrophic bacteria in the samples were also determined. Legionella spp. were detected and quantified using the modified ISO 11731 culture method. Extracted genomic DNA was analysed using the iQ-Check Quanti Legionella spp. kit, and the TVCs were determined according to the ISO protocol 6222. Legionella spp. were detected in 100% of the samples using the PMA-qPCR method, whereas these bacteria were detected in only 7% of the samples using the culture method. The number of colony forming units (CFUs) of the TVCs in the DUWL and tap water samples differed, with the bacterial load being significantly lower in the tap water samples (p-value = 0). The counts obtained were within the Italian standard range established for potable water in only 5% of the DUWL water samples and in 77% of the tap water samples. Our results show that the level of Legionella spp. contamination determined using the culture method does not reflect the true scale of the problem, and consequently we recommend testing for the presence of aerobic heterotrophic bacteria based on the assumption that Legionella spp. are components of biofilms. PMID:26861373

  7. 21 CFR 1210.16 - Method of bacterial count.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.16 Method of bacterial count. The bacterial count of milk and cream refers to the number of viable bacteria as determined by the standard plate method of...

  8. 21 CFR 1210.16 - Method of bacterial count.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.16 Method of bacterial count. The bacterial count of milk and cream refers to the number of viable bacteria as determined by the standard plate method of...

  9. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    PubMed

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  10. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  11. [Incidence of Campylobacter spp. and Salmonella spp. in raw and roasted chicken in Guadalajara, Mexico].

    PubMed

    Castillo-Ayala, A; Salas-Ubiarco, M G; Márquez-Padilla, M L; Osorio-Hernández, M D

    1993-01-01

    The presence of Campylobacter spp. and Salmonella was studied in 70 samples of fresh retail chicken pieces and in 40 samples of roast chicken. Total plate count was performed in every sample as well. Most of the samples of fresh chicken yielded total plate counts > 10(8)/piece (thigh), while in roast chicken these counts ranged from 10(3) to 10(5)/piece (leg and thigh). Campylobacter was isolated from 33% of fresh chicken and from no sample of roast chicken. Salmonella was isolated from 69% of fresh chicken and 2.5% of roast chicken. There was no relationship between total plate counts in fresh chicken and isolation of either Campylobacter or Salmonella. Sixty percent of the Salmonella isolates belonged to serotype S. anatum, and about 50% of the isolates of Campylobacter were identified as being C. coli. The only Salmonella-positive sample of roast chicken yielded three serotypes: S. give, S. muenster, and S. manhattan. Presence of Campylobacter and Salmonella in chicken is of concern, due to the risk of spreading from the raw food to other cooked foods. The isolation of pathogens from roast chicken indicates mishandling during processing and/or storage of the product.

  12. A generalized plate method for estimating total aerobic microbial count.

    PubMed

    Ho, Kai Fai

    2004-01-01

    The plate method outlined in Chapter 61: Microbial Limit Tests of the U.S. Pharmacopeia (USP 61) provides very specific guidance for assessing total aerobic bioburden in pharmaceutical articles. This methodology, while comprehensive, lacks the flexibility to be useful in all situations. By studying the plate method as a special case within a more general family of assays, the effects of each parameter in the guidance can be understood. Using a mathematical model to describe the plate counting procedure, a statistical framework for making more definitive statements about total aerobic bioburden is developed. Such a framework allows the laboratory scientist to adjust the USP 61 methods to satisfy specific practical constraints. In particular, it is shown that the plate method can be conducted, albeit with stricter acceptance criteria, using a test specimen quantity that is smaller than the 10 g or 10 mL prescribed in the guidance. Finally, the interpretation of results proffered by the guidance is re-examined within this statistical framework and shown to be overly aggressive.

  13. Automatic counting and classification of bacterial colonies using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Detection and counting of bacterial colonies on agar plates is a routine microbiology practice to get a rough estimate of the number of viable cells in a sample. There have been a variety of different automatic colony counting systems and software algorithms mainly based on color or gray-scale pictu...

  14. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe

    PubMed Central

    Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737

  15. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe.

    PubMed

    Xue, Yong; Wilkes, Jon G; Moskal, Ted J; Williams, Anna J; Cooper, Willie M; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.

  16. Development of a rapid optic bacteria detecting system based on ATP bioluminescence

    NASA Astrophysics Data System (ADS)

    Liu, Jun Tao; Luo, JinPing; Liu, XiaoHong; Cai, XinXia

    2014-12-01

    A rapid optic bacteria detecting system based on the principle of Adenosine triphosphate(ATP) bioluminescence was presented in this paper. This system consisted of bioluminescence-based biosensor and the high-sensitivity optic meter. A photon counting photomultiplier tube (PMT) module was used to improve the detection sensitivity, and a NIOS II/f processor based on a Field Programmable Gate Array(FPGA) was used to control the system. In this work, Micrococcus luteus were chosen as the test sample. Several Micrococcus luteus suspension with different concentration was tested by both T2011 and plate counting method. By comparing the two group results, an calibration curve was obtained from the bioluminescence intensity for Micrococcus luteus in the range of 2.3×102 ~ 2.3×106 CFU/mL with a good correlation coefficient of 0.960. An impacting Air microorganism sampler was used to capture Airborne Bacteria, and 8 samples were collected in different place. The TBC results of 8 samples by T2011 were between 10 ~ 2×103 cfu/mL, consistent with that of plate counting method, which indicated that 8 samples were between 10 ~ 3×103 cfu/mL. For total airborne bacteria count was small, correlation coefficient was poor. Also no significant difference was found between T2011 and plate counting method by statistical analyses.

  17. Rapid enumeration of viable bacteria by image analysis

    NASA Technical Reports Server (NTRS)

    Singh, A.; Pyle, B. H.; McFeters, G. A.

    1989-01-01

    A direct viable counting method for enumerating viable bacteria was modified and made compatible with image analysis. A comparison was made between viable cell counts determined by the spread plate method and direct viable counts obtained using epifluorescence microscopy either manually or by automatic image analysis. Cultures of Escherichia coli, Salmonella typhimurium, Vibrio cholerae, Yersinia enterocolitica and Pseudomonas aeruginosa were incubated at 35 degrees C in a dilute nutrient medium containing nalidixic acid. Filtered samples were stained for epifluorescence microscopy and analysed manually as well as by image analysis. Cells enlarged after incubation were considered viable. The viable cell counts determined using image analysis were higher than those obtained by either the direct manual count of viable cells or spread plate methods. The volume of sample filtered or the number of cells in the original sample did not influence the efficiency of the method. However, the optimal concentration of nalidixic acid (2.5-20 micrograms ml-1) and length of incubation (4-8 h) varied with the culture tested. The results of this study showed that under optimal conditions, the modification of the direct viable count method in combination with image analysis microscopy provided an efficient and quantitative technique for counting viable bacteria in a short time.

  18. Isolation and preliminary characterization of aerobic heterotrophic bacteria isolated from sub-glacial Antarctic water samples

    NASA Astrophysics Data System (ADS)

    Palma-Alvarez, R.; Lanoil, B. D.

    2002-05-01

    Recently, evidence has been accumulating supporting the presence of biogeochemically active microbial communities in cold, dark, and isolated subglacial environments. These environments are important sites of rock weathering, provide insight into global biogeochemistry during glacial periods, and are potential analogues for ancient Snowball Earth events and the ice-covered oceans of the Jovian moon, Europa. However, the extent of microbial influence on subglacial geochemistry is unclear. As part of an ongoing project to address the extent of that influence, we isolated aerobic heterotrophic bacteria from sediment-laden water from beneath Ice Stream C, a fast moving region of the Western Antarctic Ice Sheet (WAIS). Plates of a standard environmental media (R2A) were prepared at three dilutions (1x, 0.1x, 0.01x) and inoculated in duplicate in a HEPA-filtered environment. One replicate was incubated at 4oC, the other at room temperature in the dark. All plates showed abundant growth, although colony size was positively correlated with media concentration. One-hundred eighty-one colonies total were picked, grown in liquid R2A (1x concentration) at the same initial temperature, and characterized for Gram character, cell shape, cell size, and production of a diffusible yellow pigment with similar chemical characteristics to the siderophore, pyoverdine. Based on these characters, a moderate level of diversity was observed in these isolates. A few types dominated the samples, with several others found only rarely. Further characterization of these isolates is ongoing, and results of these studies and their possible implications for sub-glacial biogeochemistry are discussed.

  19. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus.

    PubMed

    Jinadatha, Chetan; Quezada, Ricardo; Huber, Thomas W; Williams, Jason B; Zeber, John E; Copeland, Laurel A

    2014-04-07

    Healthcare-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) are a significant cause of increased mortality, morbidity and additional health care costs in United States. Surface decontamination technologies that utilize pulsed xenon ultraviolet light (PPX-UV) may be effective at reducing microbial burden. The purpose of this study was to compare standard manual room-cleaning to PPX-UV disinfection technology for MRSA and bacterial heterotrophic plate counts (HPC) on high-touch surfaces in patient rooms. Rooms vacated by patients that had a MRSA-positive polymerase chain reaction or culture during the current hospitalization and at least a 2-day stay were studied. 20 rooms were then treated according to one of two protocols: standard manual cleaning or PPX-UV. This study evaluated the reduction of MRSA and HPC taken from five high-touch surfaces in rooms vacated by MRSA-positive patients, as a function of cleaning by standard manual methods vs a PPX-UV area disinfection device. Colony counts in 20 rooms (10 per arm) prior to cleaning varied by cleaning protocol: for HPC, manual (mean = 255, median = 278, q1-q3 132-304) vs PPX-UV (mean = 449, median = 365, q1-q3 332-530), and for MRSA, manual (mean = 127; median = 28.5; q1-q3 8-143) vs PPX-UV (mean = 108; median = 123; q1-q3 14-183). PPX-UV was superior to manual cleaning for MRSA (adjusted incident rate ratio [IRR] = 7; 95% CI <1-41) and for HPC (IRR = 13; 95% CI 4-48). PPX-UV technology appears to be superior to manual cleaning alone for MRSA and HPC. Incorporating 15 minutes of PPX-UV exposure time to current hospital room cleaning practice can improve the overall cleanliness of patient rooms with respect to selected micro-organisms.

  1. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study.

    PubMed

    Inkinen, Jenni; Kaunisto, Tuija; Pursiainen, Anna; Miettinen, Ilkka T; Kusnetsov, Jaana; Riihinen, Kalle; Keinänen-Toivola, Minna M

    2014-02-01

    Complex interactions existing between water distribution systems' materials and water can cause a reduction in water quality and unwanted changes in materials, aging or corrosion of materials and formation of biofilms on surfaces. Substances leaching from pipe materials and water fittings, as well as the microbiological quality of water and formation of biofilms were evaluated by applying a Living Lab theme i.e. a research in a real life setting using a full scale system during its first year of operation. The study site was a real office building with one part of the building lined with copper pipes, the other with cross-linked polyethylene (PEX) pipes thus enabling material comparison; also differences within the cold and hot water systems were analysed. It was found that operational conditions, such as flow conditions and temperature affected the amounts of metals leaching from the pipe network. In particular, brass components were considered to be a source of leaching; e. g. the lead concentration was highest during the first few weeks after the commissioning of the pipe network when the water was allowed to stagnate. Assimilable organic carbon (AOC) and microbially available phosphorus (MAP) were found to leach from PEX pipelines with minor effects on biomass of the biofilm. Cultivable and viable biomass (heterotrophic plate count (HPC), and adenosine triphosphate (ATP)) levels in biofilms were higher in the cold than in the hot water system whereas total microbial biomass (total cell count (DAPI)) was similar with both systems. The type of pipeline material was not found to greatly affect the microbial biomass or Alpha-, Beta- and Gammaproteobacteria profiles (16s rRNA gene copies) after the first one year of operation. Also microbiological quality of water was found to deteriorate due to stagnation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus

    PubMed Central

    2014-01-01

    Background Healthcare-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) are a significant cause of increased mortality, morbidity and additional health care costs in United States. Surface decontamination technologies that utilize pulsed xenon ultraviolet light (PPX-UV) may be effective at reducing microbial burden. The purpose of this study was to compare standard manual room-cleaning to PPX-UV disinfection technology for MRSA and bacterial heterotrophic plate counts (HPC) on high-touch surfaces in patient rooms. Methods Rooms vacated by patients that had a MRSA-positive polymerase chain reaction or culture during the current hospitalization and at least a 2-day stay were studied. 20 rooms were then treated according to one of two protocols: standard manual cleaning or PPX-UV. This study evaluated the reduction of MRSA and HPC taken from five high-touch surfaces in rooms vacated by MRSA-positive patients, as a function of cleaning by standard manual methods vs a PPX-UV area disinfection device. Results Colony counts in 20 rooms (10 per arm) prior to cleaning varied by cleaning protocol: for HPC, manual (mean = 255, median = 278, q1-q3 132–304) vs PPX-UV (mean = 449, median = 365, q1-q3 332–530), and for MRSA, manual (mean = 127; median = 28.5; q1-q3 8–143) vs PPX-UV (mean = 108; median = 123; q1-q3 14–183). PPX-UV was superior to manual cleaning for MRSA (adjusted incident rate ratio [IRR] = 7; 95% CI <1-41) and for HPC (IRR = 13; 95% CI 4–48). Conclusion PPX-UV technology appears to be superior to manual cleaning alone for MRSA and HPC. Incorporating 15 minutes of PPX-UV exposure time to current hospital room cleaning practice can improve the overall cleanliness of patient rooms with respect to selected micro-organisms. PMID:24708734

  3. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River

    PubMed Central

    Bräuer, S. L.; Adams, C.; Kranzler, K.; Murphy, D.; Xu, M.; Zuber, P.; Simon, H. M.; Baptista, A. M.; Tebo, B. M.

    2017-01-01

    Summary Measurements of dissolved, ascorbate-reducible and total Mn by ICP-OES revealed significantly higher concentrations during estuarine turbidity maxima (ETM) events, compared with non-events in the Columbia River. Most probable number (MPN) counts of Mn-oxidizing or Mn-reducing heterotrophs were not statistically different from that of other heterotrophs (103–104 cells ml−1) when grown in defined media, but counts of Mn oxidizers were significantly lower in nutrient-rich medium (13 cells ml−1). MPN counts of Mn oxidizers were also significantly lower on Mn(III)-pyrophosphate and glycerol (21 cells ml−1). Large numbers of Rhodobacter spp. were cultured from dilutions of 10−2 to 10−5, and many of these were capable of Mn(III) oxidation. Up to c. 30% of the colonies tested LBB positive, and all 77 of the successfully sequenced LBB positive colonies (of varying morphology) yielded sequences related to Rhodobacter spp. qPCR indicated that a cluster of Rhodobacter isolates and closely related strains (95–99% identity) represented approximately 1–3% of the total Bacteria, consistent with clone library results. Copy numbers of SSU rRNA genes for either Rhodobacter spp. or Bacteria were four to eightfold greater during ETM events compared with non-events. Strains of a Shewanella sp. were retrieved from the highest dilutions (10−5) of Mn reducers, and were also capable of Mn oxidation. The SSU rRNA gene sequences from these strains shared a high identity score (98%) with sequences obtained in clone libraries. Our results support previous findings that ETMs are zones with high microbial activity. Results indicated that Shewanella and Rhodobacter species were present in environmentally relevant concentrations, and further demonstrated that a large proportion of culturable bacteria, including Shewanella and Rhodobacter spp., were capable of Mn cycling in vitro. PMID:20977571

  4. The effect of carbon dioxide on the shelf life of ready-to-eat shredded chicken breast stored under refrigeration.

    PubMed

    Rodriguez, M B R; Junior, C A Conte; Carneiro, C S; Franco, R M; Mano, S B

    2014-01-01

    The objective of the present study was to determine the shelf life of ready-to-eat cooked chicken breast fillets (shredded) stored in atmospheres that were modified with different concentrations of CO2 and to establish a relationship between the concentration of this gas and bacterial growth. The samples were divided into 7 groups with different packaging conditions: aerobiosis, vacuum, and 10, 30, 50, 70, and 90% CO2 (with the remaining volume filled with N2). All of the samples were stored at 4 ± 2°C for 28 d. During this period, pH tests and counts of aerobic heterotrophic mesophyll bacteria (AHMB), aerobic heterotrophic psychotropic bacteria (AHPB), Enterobacteriaceae, and lactic acid bacteria (LAB) were performed, and the gas compositions of the packaging atmospheres were verified. The pH of the aerobic packages increased during storage. However, the other treatments resulted in the opposite trend, with the CO2 concentration decreasing over the first 24 h and then remaining constant until the end of experiment. A gradual increase in the AHMB, AHPB, Enterobacteriaceae, and LAB counts was observed during storage; this increase was faster in the meat that was packed under aerobiosis conditions than in the other treatments. The treatments with a CO2 concentration above 10% exhibited lower Enterobacteriaceae growth, whereas LAB growth was discrete in all of the treatments, independent of the CO2 concentration. The shelf life of the samples packed with 90% CO2 was 28 d. Based on the AHMB and AHPB counts, the shelf life was 3 times longer than for the samples packed under aerobiosis conditions (9 d). The increased package CO2 concentration caused a reduction in the growth rate of the examined bacteria (r = 0.99), and treatment with 90% CO2 appears promising as a method with which to increase the product's shelf life.

  5. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  6. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    PubMed

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  8. Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.

    PubMed

    Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C

    2007-11-01

    Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.

  9. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  10. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  11. Industrial Cooling Tower Disinfection Treatment to Prevent Legionella spp.

    PubMed Central

    Iervolino, Matteo; Mancini, Benedetta; Cristino, Sandra

    2017-01-01

    The contamination of industrial cooling towers has been identified as one cause of legionellosis, but the real risk has been underestimated. Two different disinfection treatments were tested on Legionella colonization in an industrial Cooling Tower System (CTS). Environmental monitoring of Legionella, P. aeruginosa, and a heterotrophic plate count (HPC) at 36 °C was performed from June to October 2016. The disinfection procedures adopted were based on hydrogen peroxide (H2O2) and silver salts (Ag+), in addition to an anti-algal treatment, then using hyperclorination as a shock, and then continuous treatment by sodium hypochlorite (NaClO). L. pneumophila serogroup 8 was found at a concentration of 5.06 Log cfu/L after the CTS filling; a shock treatment performed by H2O2/Ag+ produced a rapid increase in contamination up to 6.14 Log cfu/L. The CTS activity was stopped and two subsequent shock treatments were performed using NaClO, followed by continuous hyperclorination. These procedures showed a significant decrease (p < 0.05) in Legionella concentration (1.77 Log cfu/L). The same trend was observed for P. aeruginosa (0.55 Log cfu/100 mL) and HPC (1.95 Log cfu/mL) at 36 °C. Environmental monitoring and the adoption of maintenance procedures, including anti-scale treatment, and physical, chemical, and microbiological control, ensure the good performance of a CTS, reducing the Legionella risk for public health. PMID:28954435

  12. Evaluation of a new monochloramine generation system for controlling Legionella in building hot water systems.

    PubMed

    Duda, Scott; Kandiah, Sheena; Stout, Janet E; Baron, Julianne L; Yassin, Mohamed; Fabrizio, Marie; Ferrelli, Juliet; Hariri, Rahman; Wagener, Marilyn M; Goepfert, John; Bond, James; Hannigan, Joseph; Rogers, Denzil

    2014-11-01

    To evaluate the efficacy of a new monochloramine generation system for control of Legionella in a hospital hot water distribution system. A 495-bed tertiary care hospital in Pittsburgh, Pennsylvania. The hospital has 12 floors covering approximately 78,000 m(2). The hospital hot water system was monitored for a total of 29 months, including a 5-month baseline sampling period prior to installation of the monochloramine system and 24 months of surveillance after system installation (postdisinfection period). Water samples were collected for microbiological analysis (Legionella species, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter species, nitrifying bacteria, heterotrophic plate count [HPC] bacteria, and nontuberculous mycobacteria). Chemical parameters monitored during the investigation included monochloramine, chlorine (free and total), nitrate, nitrite, total ammonia, copper, silver, lead, and pH. A significant reduction in Legionella distal site positivity was observed between the pre- and postdisinfection periods, with positivity decreasing from an average of 53% (baseline) to an average of 9% after monochloramine application (P<0.5]). Although geometric mean HPC concentrations decreased by approximately 2 log colony-forming units per milliliter during monochloramine treatment, we did not observe significant changes in other microbial populations. This is the first evaluation in the United States of a commercially available monochloramine system installed on a hospital hot water system for Legionella disinfection, and it demonstrated a significant reduction in Legionella colonization. Significant increases in microbial populations or other negative effects previously associated with monochloramine use in large municipal cold water systems were not observed.

  13. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system.

    PubMed

    Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P

    2011-10-01

    Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  14. Fate of THMs and HAAs in low TOC surface water.

    PubMed

    Kim, Jinkeun

    2009-02-01

    A total of 30 conventional surface water treatment plants (WTPs) implementing prechlorination and postchlorination simultaneously from different regions in Korea were investigated to assess formation and removal of THMs and HAA(5). All water was low in total organic carbon (TOC) ranging from 0.74 to 6.20 mg/L with an average of 1.63 mg/L. The ranges of THMs and HAA(5) levels were 4.5-84.3 microg/L and 1.5-90.8 microg/L, respectively. THMs concentration was more sensitive to water temperature than HAA(5) and the ratio of THMs in summer over winter was 2.06. The sum of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was 97% of HAA(5). The extent of formation and speciation of DBPs varied greatly by season and geography. The concentration of DCAA and TCAA of the finished water was comparable on a yearly base, but more TCAA was noticed in summer and the opposite trend was noticed in winter. This can be caused by different biodegradability in the sand filter between DCAA and TCAA that formed through prechlorination. Investigation on the removal of preformed DBPs in the GAC filter-adsorber (FA) revealed that breakthrough of THMs and HAA(5) was noticed after 3 months of operation. However, gradual improvement (>90%) in HAA(5) removal was observed again after breakthrough, which could be attributable to biodegradation. Heterotrophic plate counts confirmed active biological activity in the GAC FA.

  15. Rapid surface colony counts determination with three new miniaturised techniques.

    PubMed

    Malik, K A

    1977-01-01

    Three different miniaturised methods for the rapid surface viable counting are described. The methods were tried in parallel to seven different existing methods (Table 1) for viable counts and were found to be easier, quicker and insome cases more accurate. The techniques require about 10% of the material and time needed for conventional spread-plates method and the results were in no way inferior to that (Table 1 and 2). Mini agar discs were cut aseptically with an especially designed stainless steel agar disc cutter (25 mm internal and 28 mm external diameter, Fig. 1b) or with a test tube of similar diameter. The area of the resulted mini-agar-disc of 25 mm diameter was kept such (about 1/10th of the normal plate) that the ratio of the colony-bearing area to the inoculm remained the same as on big plates in spread-plate-method (Table 2). In normal Petri dishes (about 90 mm diameter) up to seven mini agar discs were possible to cut. Each small agar disc was seperated from the other mini-disc by a distance of at least 6 mm (Fig. 1a). The empty place around the disc was still enlarged during over drying of the plates and during incubation. This created complete isolation from the neighbouring disc. For micro-determination of surface viable counts 10 micronl from each dilution was delivered on a well-dired mini-disc with a piston micropipette. The inoculm was immediately spread on the whole mini-disc with a specially designed flame sterilizable platinum-Mini-spreader (Fig. 2a). No spinning of the plate was needed. Alternatively the dropping pipette and spreader was replaced by a calibrated platinum wire Loop-spreader (Fig. 2b). A loop of 3 mm internal diameter made from a platinum-iridium wire of 0.75 mm thickness proved most useful and carried a drop of 10 micronl. Differences especially in surface tension of various diluting fluids did not influence to drop of this size and no recalibration was needed for water and nutrient broth. The loop was further shaped to Loop-spreader form. From each bacterial suspension 10 micronl were carried and spread on each mini-disc. The method is useful for pathogenic organisms as the loop can readily be flame sterilized. For routine purposes where only approximate numbers of bacteria need to be known a still rapid semiquantitative method was deviced making use of a calibrated stainless steel Stamping-disc (Fig. 2c). A disc of 25mm diameter and 1 mm thickness delivered approximateyl 10 microlitres of supensions and was found to be most useful to stamp seven dilutions on a single plate. In collections and bacteriology laboratories where by conventional methods large number of plates are to be plated and counted the presented techniques could prove most convenient, rapid and economical.

  16. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage.

    PubMed

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum . Considering that okara is an agro-waste obtained in large quantities, these results represent an innovative strategy to add it value, providing a symbiotic ingredient with promising industrial applications in the development of novel functional foods and feeds.

  17. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage

    PubMed Central

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an innovative strategy to add it value, providing a symbiotic ingredient with promising industrial applications in the development of novel functional foods and feeds. PMID:28446905

  18. Selective enumeration of propionibacteria in Emmental-type cheese using Petrifilm™ aerobic count plates added to lithium glycerol broth.

    PubMed

    de Freitas, Rosângela; Luiz, Lívia M Pinheiro; Alves, Maura Pinheiro; Valence-Bertel, Florence; Nero, Luís Augusto; de Carvalho, Antônio Fernandes

    2013-08-01

    Propionibacteria derived from dairy products are relevant starter cultures for the production of Swiss and Emmental-type cheeses, and the monitoring of which is mandatory for proper quality control. This study aimed to evaluate an alternative procedure to enumerate propionibacteria, in order to develop a reliable and practical methodology to be employed by dairy industries. 2,3,5-triphenyltetrazolium chloride (TTC) inhibitory activity was tested against five reference strains (CIRM 09, 38, 39, 40 and 116); TTC at 0·0025% (w/v) was not inhibitory, with the exception of one strain (CIRM 116). Subsequently, the four TTC-resistant strains, three commercial starter cultures (PS-1, PB-I, and CHOO) and twelve Emmental-type cheese samples were subjected to propionibacteria enumeration using Lithium Glycerol (LG) agar, and Petrifilm™ Aerobic Count (AC) plates added to LG broth (anaerobic incubation at 30 °C for 7 d). Petrifilm™ AC added to LG broth presented high counts than LG agar (P<0·05) for only two reference strains (CIRM 39, and 40) and for all commercial starter cultures. Cheese sample counts obtained by both procedures did not show significant differences (P<0·05). Significant correlation indexes were observed between the counts recorded by both methods (P<0·05). These results demonstrate the reliability of Petrifilm™ AC plates added to LG broth in enumerating select Propionibacterium spp., despite some limitations observed for specific commercial starter cultures.

  19. Total and Viable Legionella pneumophila Cells in Hot and Natural Waters as Measured by Immunofluorescence-Based Assays and Solid-Phase Cytometry ▿†

    PubMed Central

    Parthuisot, N.; Binet, M.; Touron-Bodilis, A.; Pougnard, C.; Lebaron, P.; Baudart, J.

    2011-01-01

    A new method was developed for the rapid and sensitive detection of viable Legionella pneumophila. The method combines specific immunofluorescence (IF) staining using monoclonal antibodies with a bacterial viability marker (ChemChrome V6 cellular esterase activity marker) by means of solid-phase cytometry (SPC). IF methods were applied to the detection and enumeration of both the total and viable L. pneumophila cells in water samples. The sensitivity of the IF methods coupled to SPC was 34 cells liter−1, and the reproducibility was good, with the coefficient of variation generally falling below 30%. IF methods were applied to the enumeration of total and viable L. pneumophila cells in 46 domestic hot water samples as well as in cooling tower water and natural water samples, such as thermal spring water and freshwater samples. Comparison with standard plate counts showed that (i) the total direct counts were always higher than the plate counts and (ii) the viable counts were higher than or close to the plate counts. With domestic hot waters, when the IF assay was combined with the viability test, SPC detected up to 3.4 × 103 viable but nonculturable L. pneumophila cells per liter. These direct IF methods could be a powerful tool for high-frequency monitoring of domestic hot waters or for investigating the occurrence of viable L. pneumophila in both man-made water systems and environmental water samples. PMID:21742913

  20. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of 55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  1. Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India.

    PubMed

    Abdul, Rasheed M; Mutnuri, Lakshmi; Dattatreya, Patil J; Mohan, Dayal A

    2012-03-01

    A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 10(5) to 18 × 10(7 )cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate that the water is highly contaminated with microorganisms and is hazardous for drinking purposes. Bacteriological pollution of drinking water supplies caused diarrhoeal illness in Bholakpur, which is due to the infiltration of contaminated water (sewage) through cross connection, leakage points, and back siphoning.

  2. Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.

    2006-01-01

    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.

  3. Detection of microbial concentration in ice-cream using the impedance technique.

    PubMed

    Grossi, M; Lanzoni, M; Pompei, A; Lazzarini, R; Matteuzzi, D; Riccò, B

    2008-06-15

    The detection of microbial concentration, essential for safe and high quality food products, is traditionally made with the plate count technique, that is reliable, but also slow and not easily realized in the automatic form, as required for direct use in industrial machines. To this purpose, the method based on impedance measurements represents an attractive alternative since it can produce results in about 10h, instead of the 24-48h needed by standard plate counts and can be easily realized in automatic form. In this paper such a method has been experimentally studied in the case of ice-cream products. In particular, all main ice-cream compositions of real interest have been considered and no nutrient media has been used to dilute the samples. A measurement set-up has been realized using benchtop instruments for impedance measurements on samples whose bacteria concentration was independently measured by means of standard plate counts. The obtained results clearly indicate that impedance measurement represents a feasible and reliable technique to detect total microbial concentration in ice-cream, suitable to be implemented as an embedded system for industrial machines.

  4. Protocol for evaluating the efficacy of cetylpyridinium chloride as a beef hide intervention.

    PubMed

    Bosilevac, Joseph M; Wheeler, Tommy L; Rivera-Betancourt, Mildred; Nou, Xiangwu; Arthur, Terrance M; Shackelford, Steven D; Kent, Matthew P; Jaroni, Divya; Osborn, Matthew S; Rossman, Michelle; Reagan, James O; Koohmaraie, Mohammad

    2004-02-01

    The objective of this study was to establish the necessary protocols and assess the efficacy of cetylpyridinium chloride (CPC) as an antimicrobial intervention on beef cattle hides. Experiments using CPC were conducted to determine (i) the methods of neutralization needed to obtain valid efficacy measurements, (ii) the effect of concentration and dwell time after treatment, (iii) the effect of CPC on hide and carcass microbial populations when cattle were treated at a feedlot and then transported to a processing facility for harvest, and (iv) the effectiveness of spray pressure and two-spray combinations of CPC and water to reduce hide microbial populations. Residual CPC in hide sponge samples prevented bacterial growth. Dey-Engley neutralization media at 7.8% and a centrifugation step were necessary to overcome this problem. All dwell times, ranging from 30 s to 4 h, after 1% CPC application to cattle hides resulted in aerobic plate counts and Enterobacteriaceae counts 1.5 log CFU/100 cm2 lower than controls. The most effective dose of CPC was 1%, which reduced aerobic plate counts and Enterobacteriaceae counts 2 and 1 log CFU/100 cm2, respectively. Low-pressure application of 1% CPC at the feedlot, transport to the processing facility, and harvest within 5 h of application resulted in no effect on Escherichia coli O157 prevalence on hides or preevisceration carcasses. Two high-pressure CPC washes lowered aerobic plate counts and Enterobacteriaceae counts by 4 log CFU/100 cm2, and two medium-pressure CPC washes were only slightly less effective. These results indicate that under the proper conditions, CPC may still be effective for reducing microbial populations on cattle hides. Further study is warranted to determine if this effect will result in reduction of hide-to-carcass contamination during processing.

  5. Occurrence of heterotrophic bacteria and fungi in an aviation fuel handling system and its relationship with fuel fouling.

    PubMed

    Ferrari, M D; Neirotti, E; Albornoz, C

    1998-01-01

    Clean, dry and contaminant-free fuel is necessary for safe and economical aircraft operation. Microbial growth in aviation fuel handling systems can alter the quality of the product. This paper reports the occurrence of heterotrophic bacteria and fungi in a handling system of jet A-1 aviation turbine fuel. A total of 350 samples were collected during 1990-1996. The aerobic microorganisms in fuel samples were mainly fungi, 85% of samples containing < or = 100 cfu/l (range 0 (< 1 cfu/l) to 2000 cfu/l). The predominant fungi were Cladosporium and Aspergillus. Water was observed mainly in samples extracted from the drainage pipes of two tanks used frequently as intermediate storage tanks. The aerobic heterotrophic microorganisms found in water samples were mostly bacteria, counts varying from 100 to 8.8 x 10(7) cfu/ml, with 85% of samples containing 10(4)-10(7) cfu/ml. There was a preponderance of Pseudomonas spp. Bacterial contaminants belonging to the genus Flavobacterium and Aeromonas were also identified. Sulphate reducing bacteria were detected in 80% of water samples. It was not possible to assign a maximum microbial contamination level above which maintenance is required and it is suggested that analysis of successive samples from the same site are necessary for this purpose. Microbial sludges produced in the laboratory and collected from a contaminated tank bottom were analysed chemically. The data are presented and discussed. Samples collected from the supply pipes of tanks and refueller trucks during the period surveyed always met the standard specifications.

  6. [A correlative study on heterotrophic bacteria and the main pollutant in city lakes' water].

    PubMed

    Huang, Li-Jing; Yun, Luo-Jia; Wang, Lin; Zhang, Xiao-He

    2005-01-01

    To provide scientific basis for bioremediation of city lake, the distribution of heterotrophic bacteria and its correlation with major pollutions condition were studied. Puping Lake and Moshui Lake of Wu Han City were choosen as the objects of our study. COD(cr) TOC, TP and TN were determined in sampled freshwater and sediment via the standard methods. At the same time the bacteria was cultivated. The average value of COD(cr), TOC, TP and TN were 8. 934 mg/L, 5.125 mg/L, 0.089 mg/L, 4.739 mg/L in Puping Lake and 86.296 mg/L,13.255 mg/ L, 1.796 mg/L, 7.325 mg/L in Moshui Lake. Ten strains of heterotrophic bacteria were isolated from the sample and they are Pseudomonas, Bacillus, Enterobateriaceae, Aeromonas and Coccus. The dominant strain in water was Pseudomonas. The proportion of Bacillus in sediment was relatively higher. In the two lakes, the average bacteria counts were 1.90 x 10(3) CFU and 5.53 x 10(4) CFU per mL in water, 3.12 x 10(5) CFU and 5.06 x 10(5) CFU per g in sediment. Puping Lake and Moshui Lake were polluted seriously according to the standard; Gram negative rods were the main types in water, and the dominant type was Pseudomonas, the Gram positive bacteria was Bacillus; The type and quantity of bacteria in Moshui Lake were higher than those in Puping Lake, and there were correlations between the quantity of bacteria and the pollutants.

  7. Enumeration of the contaminating bacterial microbiota in unfermented pasteurized milks enriched with probiotic bacteria.

    PubMed

    Champagne, C P; Raymond, Y; Gonthier, J; Audet, P

    2009-04-01

    Pasteurized and unfermented milks supplemented with probiotic bacteria are appearing on the market. It then becomes a challenge to ascertain the undesirable contamination microbiota in the presence of a largely superior population of probiotic bacteria. A method to enumerate the contaminating microbial microbiota in such probiotic-enriched milks was developed. The probiotic cultures, Lactobacillus rhamnosus Lb-Immuni-T and Bifidobacterium animalis subsp. lactis BB-12(R), were added to a pasteurized unfermented milk to reach a minimum of 1 billion CFU per 250 mL portion, as ascertained by plating on de Man - Rogosa - Sharpe (MRS) agar in anaerobic conditions. No growth of B. animalis subsp. lactis BB-12 was noted on plate count agar (PCA) or Petrifilm plates, and the presence of this culture did not affect standard plate counts (SPC) of contaminating bacteria. However, L. rhamnosus formed colonies on PCA and Petrifilm plates. Attempts were thus made to inhibit the growth of the probiotic lactobacilli in PCA. The addition of 2% sodium phosphate (SP) or 5% glycerophosphate (GP) inhibited the growth of the lactobacilli in broths, but pin-point colonies of L. rhamnosus Lb-Immuni-T nevertheless appeared on PCA supplemented with phosphates. SPC could be obtained on PCA + 2% SP by only counting the large colonies, but this resulted in a significant (4.4 fold) underestimation of SPC values. On Petrifilm AC, at dilutions 0 to 2, all colonies were considered as being contaminants, while at dilutions 3 and 4, only large colonies were counted for SPC determinations. There was a direct correlation (R2 = 0.99) between SPC values with Petrifilm in uninoculated milks and those obtained on probiotic-enriched milks. The high correlation obtained over the 102 to 106 CFU/mL range of SPC values show that this Petrifilm method is appropriate to evaluate the microbiological quality of pasteurized milks enriched with L. rhamnosus Lb-Immuni-T and B. animalis subsp. lactis BB-12.

  8. Microorganisms as an Indicator of Hygiene Status Among Migrant Food Handlers in Peninsular Malaysia.

    PubMed

    Woh, Pei Yee; Thong, Kwai Lin; Lim, Yvonne Ai Lian; Behnke, Jerzy Marian; Lewis, John Watkin; Mohd Zain, Siti Nursheena

    2017-10-01

    This study used microbial indicators to assess the hygiene status of 383 migrant food handlers from 3 urban cities in Peninsular Malaysia. Microbiological analysis revealed that all the hand swabs tested 99.5% positive for aerobic plate counts (mean [M] ± standard deviation [SD] = 3.57 ± 0.83 log 10 CFU [colony forming unit]), 20.8% positive for total coliform/ Escherichia coli (M ± SD = 0.30 ± 0.67 log 10 CFU), and 63.4% positive for Staphylococcus aureus (M ± SD = 1.38 ± 1.26 log 10 CFU). In addition, aerobic plate counts and Staphylococcus aureus counts exceeded the acceptable standard levels. Bacterial counts were found to be significantly associated with subjects' country of origin ( P = .019) and working responsibilities ( P = .001). Our findings indicate high probability of transmission of pathogenic bacteria from the food handlers' hands to customers during meal preparation and serving. This calls for improvements in personal hygiene and sanitation standards by the relevant health authorities among migrant food handlers.

  9. Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds.

    PubMed

    Low, Adrian; Ng, Charmaine; He, Jianzhong

    2016-12-01

    Urban watersheds from point sources are potential reservoirs of antibiotic resistance genes (ARGs). However, few studies have investigated urban watersheds of non-point sources. To understand the type of ARGs and bacteria that might carry such genes, we investigated two non-point source urban watersheds with different land-use profiles. Antibiotic resistance levels of two watersheds (R1, R3) were examined using heterotrophic plate counts (HPC) as a culturing method to obtain counts of bacteria resistant to seven antibiotics belonging to different classes (erythromycin, kanamycin, lincomycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim). From the HPC study, 239 antibiotic resistant bacteria were characterized for resistance to more antibiotics. Furthermore, ARGs and antimicrobial biosynthesis genes were identified using GeoChip version 5.0 to elucidate the resistomes of surface waters in watersheds R1 and R3. The HPC study showed that water samples from R1 had significantly higher counts of bacteria resistant to erythromycin, kanamycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim than those from R3 (Analysis of Similarity (ANOSIM), R = 0.557, p < 0.01). Of the seven antibiotics tested, lincomycin and trimethoprim resistant bacteria are greater in abundances. The 239 antibiotic resistant isolates represent a subset of resistant bacterial populations, including bacteria not previously known for resistance. Majority of the isolates had resistance to ampicillin, vancomycin, lincomycin and trimethoprim. GeoChip revealed similar ARGs in both watersheds, but with significantly higher intensities for tetX and β-lactamase B genes in R1 than R3. The genes with the highest average normalized intensities in R1 and R3 were tetracycline (tet) and fosfomycin (fosA) resistance genes, respectively. The higher abundance of tetX genes in R1 is congruent with the higher abundance of tetracycline resistant HPC observed in R1 samples. Strong correlations (r ≥ 0.8) of efflux pumps with antimicrobial biosynthesis genes suggest that natural production of antimicrobials may act as a selective pressure of transporter proteins in the absence of antibiotics from anthropogenic sources. In conclusion, distinct antibiotic resistant bacteria phylotypes and a variety of ARGs were present in the non-point sources urban watersheds of different land-use profiles, suggesting that ARG risk assessments and monitoring studies need to include these types of watersheds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparative analyses of viable bacterial counts in foods and seawater under microplate based liquid- and conventional agar plate cultivation: increased culturability of marine bacteria under liquid cultivation.

    PubMed

    Shigematsu, Toru; Ueno, Shigeaki; Tsuchida, Yasuharu; Hayashi, Mayumi; Okonogi, Hiroko; Masaki, Haruhiko; Fujii, Tomoyuki

    2007-12-01

    Bacterial counts under liquid cultivation using 96-well microplates were performed. The counts under liquid and under solid cultivation were equivalent in foods, although the counts under liquid cultivation exceeded those under solid cultivation in seawater, suggesting that some bacteria in seawater were viable but did not form detectable colonies. Phylogenetic analysis of bacteria obtained under liquid cultivation was also performed.

  11. Semiquantitative determination of mesophilic, aerobic microorganisms in cocoa products using the Soleris NF-TVC method.

    PubMed

    Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer

    2014-01-01

    The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods.

  12. Quality and shelf life evaluation of fermented sausages of buffalo meat with different levels of heart and fat.

    PubMed

    Ahmad, S; Srivastava, P K

    2007-04-01

    Investigations were carried to study the effect of heart incorporation (0%, 15% and 20%) and increasing levels of fat (20% and 25%) on physicochemical (pH, moisture content and thiobarbituric acid, TBA number) and microbiological (total plate count and yeast and mold count) quality and shelf life of semi dry sausages of buffalo meat during refrigerated storage (4°C). Different levels of fat significantly (p<0.05) increased the pH of the sausage samples. However different levels of heart incorporation did not significantly (p<0.05) affect pH, moisture content and TBA number of sausage samples. Fresh samples had pH, moisture content and TBA number in the range of 5.15-5.28, 42.4-47.4% and 0.073-0.134 respectively. Refrigerated storage significantly (p<0.05) increased TBA number of control samples while storage did not significantly (p<0.05) increase the TBA number of sodium ascorbate (SA) treated samples. Total plate counts of twelve sausage samples were f under the TFTC (too few to count) limit at the initial stage. Incorporation of different levels of heart and also increasing levels of fat did not significantly (p<0.05) increase the log TPC/g values. Yeast and molds were not detected in twelve samples of semi dry fermented sausages in their fresh condition. Storage revealed that there was a consistent decrease in pH, and moisture content. Refrigerated storage significantly (p<0.05) reduced both pH and moisture contents. TBA number and total plate counts and yeast and mold counts of controls were found to increase significantly (p<0.05) during refrigerated storage. However, in SA treated sausage, only TPC and yeast and mold count significantly (p<0.05) increased during refrigerated storage. Shelf life of the sausages was found to be 60 days under refrigerated storage (4°C).

  13. Absolute Enumeration of Probiotic Strains Lactobacillus acidophilus NCFM® and Bifidobacterium animalis subsp. lactis Bl-04 ® via Chip-Based Digital PCR.

    PubMed

    Hansen, Sarah J Z; Morovic, Wesley; DeMeules, Martha; Stahl, Buffy; Sindelar, Connie W

    2018-01-01

    The current standard for enumeration of probiotics to obtain colony forming units by plate counts has several drawbacks: long time to results, high variability and the inability to discern between bacterial strains. Accurate probiotic cell counts are important to confirm the delivery of a clinically documented dose for its associated health benefits. A method is described using chip-based digital PCR (cdPCR) to enumerate Bifidobacterium animalis subsp. lactis Bl-04 and Lactobacillus acidophilus NCFM both as single strains and in combination. Primers and probes were designed to differentiate the target strains against other strains of the same species using known single copy, genetic differences. The assay was optimized to include propidium monoazide pre-treatment to prevent amplification of DNA associated with dead probiotic cells as well as liberation of DNA from cells with intact membranes using bead beating. The resulting assay was able to successfully enumerate each strain whether alone or in multiplex. The cdPCR method had a 4 and 5% relative standard deviation (RSD) for Bl-04 and NCFM, respectively, making it more precise than plate counts with an industry accepted RSD of 15%. cdPCR has the potential to replace traditional plate counts because of its precision, strain specificity and the ability to obtain results in a matter of hours.

  14. What's growing on your stethoscope? (And what you can do about it).

    PubMed

    Schroeder, Ariel; Schroeder, Maryellen A; D'Amico, Frank

    2009-08-01

    Studies have shown that rubbing alcohol pads on stethoscope diaphragms can reduce bacterial colonization, but alcohol pads are used infrequently used and not always available. We conducted a prospective, single-blinded study to investigate whether simultaneously scrubbing hands and stethoscope head with alcohol-based hand foam would significantly reduce bacterial counts on the stethoscope. Using their own stethoscope, participants imprinted the stethoscope head onto a chocolate agar plate, then used alcohol-based hand foam to cleanse their hands while simultaneously rubbing the stethoscope head. Once the stethoscope heads were dry, the participants imprinted their stethoscope heads onto a second plate. After 48 hours' incubation, we determined the bacterial counts for the prewash and post-wash plates, and compared the 2. We analyzed a total of 184 cultures (from 92 stethoscopes). Both the mean (28 prewash vs 3 post-wash, P=.001) and median (11 prewash vs 1 post-wash, P=.001) colony counts were significantly greater before being cleansed. Three methicillin-resistant Staphylococcus aureus (MRSA) colonies were identified in the prewash period; all were destroyed by the foam. The estimated number of hand washes needed to prevent 1 MRSA colony is 31 (95% confidence interval [CI], 18-89). Simultaneously using hand foam to clean hands and stethoscope heads reduces bacterial counts on stethoscopes. Further research is needed to determine whether this intervention can reduce morbidity and mortality associated with bacterial infection.

  15. Bacteriology of Dehydrated Space Foods 1

    PubMed Central

    Powers, Edmund M.; Ay, Carl; El-Bisi, Hamed M.; Rowley, Durwood B.

    1971-01-01

    The initial bacteriological requirement established in 1964 for space foods by the U.S. Army Natick Laboratories are: a total aerobic plate count (≤ 10,000 per g), a total coliform count (≤ 10 per g), fecal coliforms (negative per gram), fecal streptococci (≤ 20 per g), coagulase-positive staphylococci (negative in 5 g) and salmonellae (negative in 10 g). Of the space foods and prototypes tested during 1968 and 1969, 93% complied with the total aerobic plate count, 98% had less than 1 coliform per g, and 99% were negative for fecal coliforms; 88% complied with the streptococci requirement; 100 and 98% were negative for staphylococci and salmonellae, respectively. Nineteen food samples which did not comply (as indicated parenthetically by actual counts per gram) with the requirements were (i) total aerobic plate count: beef soup and gravy base (18,000), chicken soup and gravy base (57,000), spaghetti with meat sauce (12,100 and 14,000), sugared coffee (> 300,000), chocolate ice cream cubes (20,000), and each of four samples of chocolate candy (12,000 to 61,000); (ii) coliforms: two out of three vanilla milk drinks (16 and 127) and one beef hash bar (14); (iii) fecal coliforms: one sample of chicken soup and gravy base positive; (iv) fecal streptococci: two samples of peanut cubes (40 and 108), coconut cubes (75), chicken soup and gravy base (2,650), beef soup and gravy base (33), and five out of six flavored milk drinks (23 to 300); (v) salmonellae: one each of chicken and beef soup and gravy base were positive. Images PMID:4940878

  16. Formation and resuscitation of viable but nonculturable Salmonella typhi.

    PubMed

    Zeng, Bin; Zhao, Guozhong; Cao, Xiaohong; Yang, Zhen; Wang, Chunling; Hou, Lihua

    2013-01-01

    Salmonella typhi is a pathogen that causes the human disease of typhoid fever. The aim of this study was to investigate the viable but nonculturable (VBNC) state of S. typhi. Some samples were stimulated at 4°C or -20°C, while others were induced by different concentrations of CuSO4. Total cell counts remained constant throughout several days by acridine orange direct counting; however, plate counts declined to undetectable levels within 48 hours by plate counting at -20°C. The direct viable counts remained fairly constant at this level by direct viable counting. Carbon and nitrogen materials slowly decreased which indicated that a large population of cells existed in the VBNC state and entered the VBNC state in response to exposure to 0.01 or 0.015 mmol/L CuSO4 for more than 14 or 12 days, respectively. Adding 3% Tween 20 or 1% catalase enabled cells to become culturable again, with resuscitation times of 48 h and 24 h, respectively. The atomic force microscope results showed that cells gradually changed in shape from short rods to coccoids, and decreased in size when they entered the VBNC state. Further animal experiments suggested that resuscitated cells might regain pathogenicity.

  17. Automated food microbiology: potential for the hydrophobic grid-membrane filter.

    PubMed Central

    Sharpe, A N; Diotte, M P; Dudas, I; Michaud, G L

    1978-01-01

    Bacterial counts obtained on hydrophobic grid-membrane filters were comparable to conventional plate counts for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus in homogenates from a range of foods. The wide numerical operating range of the hydrophobic grid-membrane filters allowed sequential diluting to be reduced or even eliminated, making them attractive as components in automated systems of analysis. Food debris could be rinsed completely from the unincubated hydrophobic grid-membrane filter surface without affecting the subsequent count, thus eliminating the possibility of counting food particles, a common source of error in electronic counting systems. PMID:100054

  18. An evaluation of the efficacy of Aqualox for microbiological control of industrial cooling tower systems.

    PubMed

    Prince, E L; Muir, A V G; Thomas, W M; Stollard, R J; Sampson, M; Lewis, J A

    2002-12-01

    A comprehensive sampling protocol was employed to evaluate the efficacy of Aqualox, a biocide based on electrochemically activated water, against legionellae and heterotrophic bacteria in two industrial cooling tower systems. Both of the towers in the study remained free from evidence of Legionella spp. contamination throughout a five-month evaluation period, despite the previously demonstrated presence of legionellae in one of the test towers, and in two other towers on the same site, at levels well in excess of UK Health and Safety Commission (HSC) Approved Code of Practice and Guidance (ACOP) upper action limits. Levels of heterotrophic bacteria were controlled below 10(4) cfu/mL in both towers throughout most of the trial. Results also provided indirect evidence of significant activity against biofilm bacteria, with biofilm removal beginning almost immediately after commissioning of the Aqualox treatment systems. The results were particularly encouraging as the two towers studied had a long history of poor microbiological control using conventional bromine-based biocide products. Significant differences were observed between laboratory measurements of total viable counts on frequent liquid samples and those obtained from dip slides following HSC recommendations. Copyright 2002 The Hospital Infection Society

  19. Changes in abundance of heterotrophic and coliform bacteria resident in stored water bodies in relation to incoming bacterial loads following rain events.

    PubMed

    Martin, Anthony Richard; Coombes, Peter John; Harrison, Tracey Lee; Hugh Dunstan, R

    2010-01-01

    Microbial properties of harvested rainwater were assessed at two study sites at Newcastle on the east coast of Australia. The investigation monitored daily counts of heterotrophic bacteria (HPC), total coliforms and E. coli during a mid-winter month (July). Immediately after a major rainfall event, increases in bacterial loads were observed at both sites, followed by gradual reductions in numbers to prior baseline levels within 7 days. Baseline HPC levels ranged from 500-1000 cfu/mL for the sites evaluated, and the loads following rain peaked at 3590-6690 cfu/mL. Baseline levels of total coliforms ranged from 0-100 cfu/100 mL and peaked at 480-1200 cfu/100 mL following rain. At Site 1, there was no evidence of E. coli loading associated with the rain events assessed, and Site 2 had no detectable E.coli colonies at baseline, with a peak load of 17 cfu/100 mL following rain which again diminished to baseline levels. It was concluded that rainfall events contributed to the bacterial load in rainwater storage systems, but processes within the rainwater storage ensured these incoming loads were not sustained.

  20. Rapid enumeration of low numbers of moulds in tea based drinks using an automated system.

    PubMed

    Tanaka, Kouichi; Yamaguchi, Nobuyasu; Baba, Takashi; Amano, Norihide; Nasu, Masao

    2011-01-31

    Aseptically prepared cold drinks based on tea have become popular worldwide. Contamination of these drinks with harmful microbes is a potential health problem because such drinks are kept free from preservatives to maximize aroma and flavour. Heat-tolerant conidia and ascospores of fungi can survive pasteurization, and need to be detected as quickly as possible. We were able to rapidly and accurately detect low numbers of conidia and ascospores in tea-based drinks using fluorescent staining followed by an automated counting system. Conidia or ascospores were inoculated into green tea and oolong tea, and samples were immediately filtered through nitrocellulose membranes (pore size: 0.8 μm) to concentrate fungal propagules. These were transferred onto potato dextrose agar and incubated for 23 h at 28 °C. Fungi germinating on the membranes were fluorescently stained for 30 min. The stained mycelia were counted selectively within 90s using an automated counting system (MGS-10LD; Chuo Electric Works, Osaka, Japan). Very low numbers (1 CFU/100ml) of conidia or ascospores could be rapidly counted, in contrast to traditional labour intensive techniques. All tested mould strains were detected within 24h while conventional plate counting required 72 h for colony enumeration. Counts of slow-growing fungi (Cladosporium cladosporioides) obtained by automated counting and by conventional plate counting were close (r(2) = 0.986). Our combination of methods enables counting of both fast- and slow-growing fungi, and should be useful for microbiological quality control of tea-based and also other drinks. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Results from raw milk microbiological tests do not predict the shelf-life performance of commercially pasteurized fluid milk.

    PubMed

    Martin, N H; Ranieri, M L; Murphy, S C; Ralyea, R D; Wiedmann, M; Boor, K J

    2011-03-01

    Analytical tools that accurately predict the performance of raw milk following its manufacture into commercial food products are of economic interest to the dairy industry. To evaluate the ability of currently applied raw milk microbiological tests to predict the quality of commercially pasteurized fluid milk products, samples of raw milk and 2% fat pasteurized milk were obtained from 4 New York State fluid milk processors for a 1-yr period. Raw milk samples were examined using a variety of tests commonly applied to raw milk, including somatic cell count, standard plate count, psychrotrophic bacteria count, ropy milk test, coliform count, preliminary incubation count, laboratory pasteurization count, and spore pasteurization count. Differential and selective media were used to identify groups of bacteria present in raw milk. Pasteurized milk samples were held at 6°C for 21 d and evaluated for standard plate count, coliform count, and sensory quality throughout shelf-life. Bacterial isolates from select raw and pasteurized milk tests were identified using 16S ribosomal DNA sequencing. Linear regression analysis of raw milk test results versus results reflecting pasteurized milk quality consistently showed low R(2) values (<0.45); the majority of R(2) values were <0.25, indicating small relationship between the results from the raw milk tests and results from tests used to evaluate pasteurized milk quality. Our findings suggest the need for new raw milk tests that measure the specific biological barriers that limit shelf-life and quality of fluid milk products. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Comparison of solid-phase cytometry and the plate count method for the evaluation of the survival of bacteria in pharmaceutical oils.

    PubMed

    De Prijck, K; Peeters, E; Nelis, H J

    2008-12-01

    To compare the survival of four bacterial strains (Escherichia coli, Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa) in pharmaceutical oils, including jojoba oil/tea tree oil, carbol oil, jojoba oil and sesame oil. Oils were spiked with the test bacteria in a concentration of 10(4) CFU ml(-1). Bacteria were extracted from oils with phosphate-buffered saline containing 0.5% Tween 20. Aliquots of the pooled water layers were analysed by solid-phase cytometry and plate counting. Plate counts dropped to zero for all test strains exposed for 24 h to three of the four oils. In contrast, significant numbers of viable cells were still detected by SPC, except in the jojoba oil/tea tree oil mixture and partly in sesame oil. Exposure of bacteria for 24 h to the two oils containing an antimicrobial led to a loss of their culturability but not necessarily of their viability. The antibacterial activity of the jojoba oil/tea tree oil mixture supersedes that of carbol oil. These in vitro data suggest that the jojoba oil/tea tree oil mixture more than carbol oil inhibits bacterial proliferation when used for intermittent self-catherization.

  3. Identification of Lactobacillus delbrueckii and Streptococcus thermophilus Strains Present in Artisanal Raw Cow Milk Cheese Using Real-time PCR and Classic Plate Count Methods.

    PubMed

    Stachelska, Milena A

    2017-12-04

    The aim of this paper was to detect Lactobacillus delbrueckii and Streptococcus thermophilus using real-time quantitative PCR assay in 7-day ripening cheese produced from unpasteurised milk. Real-time quantitative PCR assays were designed to identify and enumerate the chosen species of lactic acid bacteria (LAB) in ripened cheese. The results of molecular quantification and classic bacterial enumeration showed a high level of similarity proving that DNA extraction was carried out in a proper way and that genomic DNA solutions were free of PCR inhibitors. These methods revealed the presence of L. delbrueckii and S. thermophilus. The real-time PCR enabled quantification with a detection of 101-103 CFU/g of product. qPCR-standard curves were linear over seven log units down to 101 copies per reaction; efficiencies ranged from 77.9% to 93.6%. Cheese samples were analysed with plate count method and qPCR in parallel. Compared with the classic plate count method, the newly developed qPCR method provided faster and species specific identification of two dairy LAB and yielded comparable quantitative results.

  4. Comparison of Primary Models to Predict Microbial Growth by the Plate Count and Absorbance Methods.

    PubMed

    Pla, María-Leonor; Oltra, Sandra; Esteban, María-Dolores; Andreu, Santiago; Palop, Alfredo

    2015-01-01

    The selection of a primary model to describe microbial growth in predictive food microbiology often appears to be subjective. The objective of this research was to check the performance of different mathematical models in predicting growth parameters, both by absorbance and plate count methods. For this purpose, growth curves of three different microorganisms (Bacillus cereus, Listeria monocytogenes, and Escherichia coli) grown under the same conditions, but with different initial concentrations each, were analysed. When measuring the microbial growth of each microorganism by optical density, almost all models provided quite high goodness of fit (r(2) > 0.93) for all growth curves. The growth rate remained approximately constant for all growth curves of each microorganism, when considering one growth model, but differences were found among models. Three-phase linear model provided the lowest variation for growth rate values for all three microorganisms. Baranyi model gave a variation marginally higher, despite a much better overall fitting. When measuring the microbial growth by plate count, similar results were obtained. These results provide insight into predictive microbiology and will help food microbiologists and researchers to choose the proper primary growth predictive model.

  5. Impact of solids residence time on biological nutrient removal performance of membrane bioreactor.

    PubMed

    Ersu, Cagatayhan Bekir; Ong, Say Kee; Arslankaya, Ertan; Lee, Yong-Woo

    2010-05-01

    Impact of long solids residence times (SRTs) on nutrient removal was investigated using a submerged plate-frame membrane bioreactor with anaerobic and anoxic tanks. The system was operated at 10, 25, 50 and 75 days SRTs with hydraulic retention times (HRTs) of 2 h each for the anaerobic and anoxic tanks and 8 h for the oxic tank. Recirculation of oxic tank mixed liquor into the anaerobic tank and permeate into the anoxic tank were fixed at 100% each of the influent flow. For all SRTs, percent removals of soluble chemical oxygen demand were more than 93% and nitrification was more than 98.5% but total nitrogen percent removal seemed to peak at 81% at 50 days SRT while total phosphorus (TP) percent removal showed a deterioration from approximately 80% at 50 days SRT to 60% at 75 days SRT. Before calibrating the Biowin((R)) model to the experimental data, a sensitivity analysis of the model was conducted which indicated that heterotrophic anoxic yield, anaerobic hydrolysis factors of heterotrophs, heterotrophic hydrolysis, oxic endogenous decay rate for heterotrophs and oxic endogenous decay rate of PAOs had the most impact on predicted effluent TP concentration. The final values of kinetic parameters obtained in the calibration seemed to imply that nitrogen and phosphorus removal increased with SRT due to an increase in anoxic and anaerobic hydrolysis factors up to 50 days SRT but beyond that removal of phosphorus deteriorated due to high oxic endogenous decay rates. This indirectly imply that the decrease in phosphorus removal at 75 days SRT may be due to an increase in lysis of microbial cells at high SRTs along with the low food/microorganisms ratio as a result of high suspended solids in the oxic tank. Several polynomial correlations relating the various calibrated kinetic parameters with SRTs were derived. The Biowin((R)) model and the kinetic parameters predicted by the polynomial correlations were verified and found to predict well the effluent water quality of the MBR at 35 days SRT.

  6. Evaluation of the Dark-Medium Objective Lens in Counting Asbestos Fibers by Phase-Contrast Microscopy

    PubMed Central

    Lee, Eun Gyung; Nelson, John H.; Kashon, Michael L.; Harper, Martin

    2015-01-01

    A Japanese round-robin study revealed that analysts who used a dark-medium (DM) objective lens reported higher fiber counts from American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) chrysotile samples than those using a standard objective lens, but the cause of this difference was not investigated at that time. The purpose of this study is to determine any major source of this difference by performing two sets of round-robin studies. For the first round-robin study, 15 AIHA PAT samples (five each of chrysotile and amosite generated by water-suspended method, and five chrysotile generated by aerosolization method) were prepared with relocatable cover slips and examined by nine laboratories. A second round-robin study was then performed with six chrysotile field sample slides by six out of nine laboratories who participated in the first round-robin study. In addition, two phase-shift test slides to check analysts’ visibility and an eight-form diatom test plate to compare resolution between the two objectives were examined. For the AIHA PAT chrysotile reference slides, use of the DM objective resulted in consistently higher fiber counts (1.45 times for all data) than the standard objective (P-value < 0.05), regardless of the filter generation (water-suspension or aerosol) method. For the AIHA PAT amosite reference and chrysotile field sample slides, the fiber counts between the two objectives were not significantly different. No statistically significant differences were observed in the visibility of blocks of the test slides between the two objectives. Also, the DM and standard objectives showed no pattern of differences in viewing the fine lines and/or dots of each species images on the eight-form diatom test plate. Among various potential factors that might affect the analysts’ performance of fiber counts, this study supports the greater contrast caused by the different phase plate absorptions as the main cause of high counts for the AIHA PAT chrysotile slides using the DM objective. The comparison of fiber count ratios (DM/standard) between the AIHA PAT chrysotile samples and chrysotile field samples indicates that there is a fraction of fibers in the PAT samples approaching the theoretical limit of visibility of the phase-contrast microscope with 3-degree phase-shift. These fibers become more clearly visible through the greater contrast from the phase plate absorption of the DM objective. However, as such fibers are not present in field samples, no difference in counts between the two objectives was observed in this study. The DM objective, therefore, could be allowed for routine fiber counting as it will maintain continuity with risk assessments based on earlier phase-contrast microscopy fiber counts from field samples. Published standard methods would need to be modified to allow a higher aperture specification for the objective. PMID:25737333

  7. Application of Microbiological Method Direct Epifluorescence Filter Techique/Aerobic Plate Count Agar in the Identification of Irradiated Herbs and Spices

    PubMed Central

    Di Schiavi, Maria Teresa; Foti, Marina; Mosconi, Maria Cristina; Mattiolo, Giuseppina; Cavallina, Roberta

    2014-01-01

    Irradiation is a preservation technology used to improve the safety and hygienic quality of food. Aim of this study was to assess the applicability and validity of the microbiological screening method direct epifluorescence filter technique (DEFT)/aerobic plate count (APC) (EN 13783:2001) for the identification of irradiated herbs and spices. Tests on non-irradiated and irradiated samples of dried herbs and spices were performed. The method was based on the comparison of APC and count obtained using DEFT. In accordance with the standard reference, this method is not applicable to samples with APC<103 colony forming units (CFU)/g and this is its main limit. The results obtained in our laboratories showed that in 50% of cases of non-irradiated samples and in 96% of the samples treated with ionising radiation, the method was not applicable due to a value of CFU/g <103. PMID:27800348

  8. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    PubMed

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Biological instability in a chlorinated drinking water distribution network.

    PubMed

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  10. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  11. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing.

    PubMed

    Friedler, Eran; Gilboa, Yael

    2010-04-01

    This paper examines the microbial quality of treated RBC (Rotating Biological Contactor) and MBR (Membrane Bioreactor) light greywater along a continuous pilot-scale reuse system for toilet flushing, quantifies the efficiency of UV disinfection unit, and evaluates the regrowth potential of selected microorganisms along the system. The UV disinfection unit was found to be very efficient in reducing faecal coliforms and Staphylococcus aureus. On the other hand, its efficiency of inactivation of HPC (Heterotrophic Plate Count) and Pseudomonas aeruginosa was lower. Some regrowth occurred in the reuse system as a result of HPC regrowth which included opportunistic pathogens such as P. aeruginosa. Although the membrane (UF) of the MBR system removed all bacteria from the greywater, bacteria were observed in the reuse system due to "hopping phenomenon." The microbial quality of the disinfected greywater was found to be equal or even better than the microbial quality of "clean" water in toilet bowls flushed with potable water (and used for excretion). Thus, the added health risk associated with reusing the UV-disinfected greywater for toilet flushing (regarding P. aeruginosa and S. aureus), was found to be insignificant. The UV disinfection unit totally removed (100%) the viral indicator (F-RNA phage, host: E. coli F(amp)(+)) injected to the treatment systems simulating transient viral contamination. To conclude, this work contributes to better design of UV disinfection reactors and provides an insight into the long-term behavior of selected microorganisms along on-site greywater reuse systems for toilet flushing. (c) 2010 Elsevier B.V. All rights reserved.

  12. Microbial succession in a compost-packed biofilter treating benzene-contaminated air.

    PubMed

    Borin, Sara; Marzorati, Massimo; Brusetti, Lorenzo; Zilli, Mario; Cherif, Hanene; Hassen, Abdennaceur; Converti, Attilio; Sorlini, Claudia; Daffonchio, Daniele

    2006-03-01

    Air artificially contaminated with increasing concentrations of benzene was treated in a laboratory scale compost-packed biofilter for 240 days with a removal efficiency of 81-100%. The bacterial community in the packing material (PM) at different heights of the biofilter was analysed every 60 days. Bacterial plate counts and ribosomal intergenic spacer analysis (RISA) of the isolated strains showed that the number of cultivable aerobic heterotrophic bacteria and the species diversity increased with benzene availability. Identification of the isolated species and the main bands in denaturing gradient gel electrophoresis (DGGE) profiles from total compost DNA during the treatment revealed that, at a relatively low volumetric benzene load (1.2< or =VBL< or =6.4 g m(-3) (PM) h(-1)), besides low G+C Gram positive bacteria, originally present in the packing compost, bacteroidetes and beta- and gamma-proteobacteria became detectable in the colonising population. At the VBL value (24.8 g m(-3) (PM) h(-1)) ensuring the maximum elimination capacity of the biofilter (20.1 g m(-3) (PM) h(-1)), strains affiliated to the genus Rhodococcus dominated the microflora, followed by beta-proteobacteria comprising the genera Bordetella and Neisseria. Under these conditions, more than 35% of the isolated strains were able to grow on benzene as the sole carbon source. Comparison of DGGE and automated RISA profiles of the total community and isolated strains showed that a complex bacterial succession occurred in the reactor in response to the increasing concentrations of the pollutant and that cultivable bacteria played a major role in benzene degradation under the adopted conditions.

  13. Field testing hot water temperature reduction as an energy-saving measure--does the Legionella presence change in a clinic's plumbing system?

    PubMed

    Völker, Sebastian; Kistemann, Thomas

    2015-01-01

    Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.

  14. Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh.

    PubMed

    Islam, Md Atikul; Sakakibara, Hiroyuki; Karim, Md Rezaul; Sekine, Masahiko; Mahmud, Zahid Hayat

    2011-06-01

    This study was conducted to assess the bacteriological quality of alternative drinking water supply options in southwest coastal areas of Bangladesh. A total of 90 water samples were collected during both dry and wet seasons from household based rainwater harvesting systems (RWHSS), community based rain water harvesting systems (CRWHSs), pond-sand filters (PSFs) and ponds. The samples were evaluated for faecal coliform, Escherichia coli and Heterotrophic Plate Count, as well as Vibrio cholerae, Salmonella spp., Shigella spp. and Pseudomonas spp. Physico-chemical parameters (pH, electrical conductivity, and color) were also examined. In addition, sanitary inspections were conducted to identify faecal contamination sources. All options showed varying degrees of indicator bacterial contamination. The median E. coli concentrations measured for RWHSs, CRWHSS, PSFS, and ponds were 16, 7, 11, and 488 cfu/100 ml during the wet season, respectively. Vibrio cholerae 01/0139, Salmonella and Shigella spp. were not found in any samples. However, Vibrio cholerae Non-01/Non-0139 and Pseudomonas spp. were isolated from 74.4% and 91.1% of the water samples collected during the wet season. A maximum pH of 10.4 was found in CRWHSS. Estimation of the disease burden for all options in disability adjusted life years (DALYs) showed an increased disease burden during the wet season. According to sanitary inspections, poor maintenance and unprotected ponds were responsible for rainwater and PSF water contamination, respectively. The findings of the present study suggest that alternative drinking water supply options available in southwest coastal Bangladesh pose a substantial risk to public health.

  15. Optimization of low energy sonication treatment for granular activated carbon colonizing biomass assessment.

    PubMed

    Saccani, G; Bernasconi, M; Antonelli, M

    2014-01-01

    This study is aimed at optimizing a low energy sonication (LES) treatment for granular activated carbon (GAC)-colonizing biomass detachment and determination, evaluating detachment efficiency and the effects of ultrasound exposure on bacterial cell viability. GAC samples were collected from two filters fed with groundwater. Conventional heterotrophic plate count (HPC) and fluorescence microscopy with a double staining method were used to evaluate cell viability, comparing two LES procedures, without and with periodical bulk substitution. A 20 min LES treatment, with bulk substitution after cycles of 5 min as maximum treatment time, allowed to recover 87%/100% of attached biomass, protecting detached bacteria from ultrasound damaging effects. Observed viable cell inactivation rate was 6.5/7.9% cell/min, with membrane-compromised cell damage appearing to be even higher (11.5%/13.1% cell/min). Assessing bacterial detachment and damaging ultrasound effects, fluorescence microscopy turned out to be more sensitive compared to conventional HPC. The optimized method revealed a GAC-colonizing biomass of 9.9 x 10(7) cell/gGAC for plant 1 and 8.8 x 10(7) cell/gGAC for plant 2, 2 log lower than reported in literature. The difference between the two GAC-colonizing biomasses is higher in terms of viable cells (46.3% of total cells in plant 1 GAC-colonizing biomass compared to the 33.3% in plant 2). Studying influent water contamination through multivariate statistical analyses, apossible combined toxic and genotoxic effect of chromium VI and trichloroethylene was suggested as a reason for the lower viable cell fraction observed in plant 2 GAC-colonizing population.

  16. Survival of selected bacterial species in sterilized activated carbon filters and biological activated carbon filters.

    PubMed Central

    Rollinger, Y; Dott, W

    1987-01-01

    The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects. PMID:3579281

  17. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.

  18. Seasonal distribution and prevalence of diarrheagenic Escherichia coli in different aquatic environments in Taiwan.

    PubMed

    Huang, Wen-Chien; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Ho, Ying-Ning; Kuo, Chun-Wei; Huang, Yu-Li

    2016-02-01

    Diarrheagenic Escherichia coli (DEC) are the most common agents of diarrhea. Waterborne DEC could pose a potential health risk to human through agricultural, household, recreational, and industrial use. There are few published reports on the detection of DEC and its seasonal distribution in aquatic environments. The presence of DEC in different types of aquatic environments was investigated in this study. Water samples were collected from major rivers, water reservoirs, and recreational hot springs throughout Taiwan. Moreover, an intensive water sampling plan was carried out along Puzih River. The detection of DEC target genes was used to determine the presence of enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC). Among the 383 water samples analyzed, DEC was found in 122 (31.8%) samples. The detection rate varied by genotype, raging from 3.6% for STEC to 17.2% for EPEC. The DEC detection rate was higher from river waters than reservoirs and hot springs. In addition, DEC was detected at a higher rate in spring and summer. The presence of EPEC was significantly associated with total coliform levels among hot spring samples. Moreover, the presence of ETEC in river water samples was associated with heterotrophic plate counts. Water with EPEC differed significantly in pH from Puzih River samples. These results suggest that seasonal characteristics may affect the presence of DEC in different aquatic environments, and water quality indicators may be indicative of the presence of DEC. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Airborne Salmonella and Listeria associated with Irish commercial beef, sheep and pig plants.

    PubMed

    Okraszewska-Lasica, Wioletta; Bolton, D J; Sheridan, J J; McDowell, D A

    2014-06-01

    Air samples from lairage, hide/fleece pulling or dehairing/scraping, evisceration and chilling areas in commercial beef, sheep and pig plants were examined for Salmonella spp. and Listeria monocytogenes, by impaction or sedimentation onto selective (Brilliant Green Agar, BSA; Listeria Selective Agar, LSA) and non-selective (Plate Count Agar, PCA) media. Both pathogens were frequently detected in all three plants. Improved recoveries were achieved by combining sedimentation, and broth based resuscitation, suggesting cell injury. Salmonella were recovered from all three plants, with the highest counts on BGA in the pig plant. The most common serotypes were S. Typhimurium in the beef/sheep plants and S. Derby in the pig plant. Very low counts of L. monocytogenes (e.g. 2.6CFUm(2)) were detected at hide removal on LSA sedimentation plates in the beef plant. These included serogroup 1/2a-3a and 1/2b-3b-7. Pathogen counts in the three plants were generally very low, suggesting that air is unlikely to be a significant source of carcass or plant surface contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site.

    PubMed

    Karra, Styliani; Katsivela, Eleftheria

    2007-03-01

    Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.

  1. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density.

    PubMed

    Garza-Gisholt, Eduardo; Hemmi, Jan M; Hart, Nathan S; Collin, Shaun P

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.

  2. Moisture Limitations Dominate the Seasonality of Heterotrophic Respiration in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Konings, A. G.; Bloom, A. A.; Liu, J.; Parazoo, N.; Schimel, D.; Bowman, K. W.

    2016-12-01

    Heterotrophic respiration is the dominant process causing the loss of soil organic carbon, the largest stock of carbon on earth. Temperature, soil moisture, substrate availability, and soil microbial composition can all affect the rate of heterotrophic respiration. Without isotopic or root-specific measurements, it can be difficult to separate the total soil respiration into autotrophic and heterotrophic respiration. As a result, the large-scale variability and seasonality of heterotrophic respiration remains unknown, especially outside the mid-latitudes. In this study, we use remote-sensing based observational constraints to estimate heterotrophic respiration at large scales. We combine net ecosystem exchange estimates from atmospheric inversions of the Carbon Monitoring System-Flux project (CMS-Flux) with a recently derived optimally-scaled GPP dataset based on satellite-observed solar-induced fluorescence variations to estimate total ecosystem respiration. The ecosystem respiration is then separated into autotrophic and heterotrophic components based on a spatially-varying carbon use efficiency retrieved in a model-data fusion framework (CARDAMOM). The three datasets are combined into a Bayesian framework to derive the uncertainty distribution of global heterotrophic respiration allowing only physically realistic solutions (appropriate signs for all fluxes), In most Southern Hemisphere regions where precipitation and temperature are anti-correlated (e.g. dry African woodlands, Sahel, Southern India, etc..), the seasonality of heterotrophic respiration follows precipitation, not temperature. This results in an apparent anti-correlation between heterotrophic respiration and temperature. By comparison, a data-constrained terrestrial ecosystem model that does not simulate an effect of soil moisture on heterotrophic respiration did not show this anti-correlation. Data-driven heterotrophic respiration estimates such as those presented here may be used to benchmark model predictions of heterotrophic respiration in the future.

  3. Hydrophilic-treated plastic plates for wide-range analysis of Giemsa-stained red blood cells and automated Plasmodium infection rate counting.

    PubMed

    Hashimoto, Muneaki; Yatsushiro, Shouki; Yamamura, Shohei; Tanaka, Masato; Sakamoto, Hirokazu; Ido, Yusuke; Kajimoto, Kazuaki; Bando, Mika; Kido, Jun-Ichi; Kataoka, Masatoshi

    2017-08-08

    Malaria is a red blood cell (RBC) infection caused by Plasmodium parasites. To determine RBC infection rate, which is essential for malaria study and diagnosis, microscopic evaluation of Giemsa-stained thin blood smears on glass slides ('Giemsa microscopy') has been performed as the accepted gold standard for over 100 years. However, only a small area of the blood smear provides a monolayer of RBCs suitable for determination of infection rate, which is one of the major reasons for the low parasite detection rate by Giemsa microscopy. In addition, because Giemsa microscopy is exacting and time-consuming, automated counting of infection rates is highly desirable. A method that allows for microscopic examination of Giemsa-stained cells spread in a monolayer on almost the whole surface of hydrophilic-treated cyclic olefin copolymer (COC) plates was established. Because wide-range Giemsa microscopy can be performed on a hydrophilic-treated plate, the method may enable more reliable diagnosis of malaria in patients with low parasitaemia burden. Furthermore, the number of RBCs and parasites stained with a fluorescent nuclear staining dye could be counted automatically with a software tool, without Giemsa staining. As a result, researchers studying malaria may calculate the infection rate easily, rapidly, and accurately even in low parasitaemia. Because the running cost of these methods is very low and they do not involve complicated techniques, the use of hydrophilic COC plates may contribute to improved and more accurate diagnosis and research of malaria.

  4. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry.

    PubMed

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena; Mundkur, Lakshmi

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856.

  5. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry

    PubMed Central

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856. PMID:29474436

  6. A rapid and universal bacteria-counting approach using CdSe/ZnS/SiO2 composite nanoparticles as fluorescence probe.

    PubMed

    Fu, Xin; Huang, Kelong; Liu, Suqin

    2010-02-01

    In this paper, a rapid, simple, and sensitive method was described for detection of the total bacterial count using SiO(2)-coated CdSe/ZnS quantum dots (QDs) as a fluorescence marker that covalently coupled with bacteria using glutaraldehyde as the crosslinker. Highly luminescent CdSe/ZnS were prepared by applying cadmium oxide and zinc stearate as precursors instead of pyrophoric organometallic precursors. A reverse-microemulsion technique was used to synthesize CdSe/ZnS/SiO(2) composite nanoparticles with a SiO(2) surface coating. Our results showed that CdSe/ZnS/SiO(2) composite nanoparticles prepared with this method possessed highly luminescent, biologically functional, and monodispersive characteristics, and could successfully be covalently conjugated with the bacteria. As a demonstration, it was found that the method had higher sensitivity and could count bacteria in 3 x 10(2) CFU/mL, lower than the conventional plate counting and organic dye-based method. A linear relationship of the fluorescence peak intensity (Y) and the total bacterial count (X) was established in the range of 3 x 10(2)-10(7) CFU/mL using the equation Y = 374.82X-938.27 (R = 0.99574). The results of the determination for the total count of bacteria in seven real samples were identical with the conventional plate count method, and the standard deviation was satisfactory.

  7. Biofilms associated with poultry processing equipment.

    PubMed

    Lindsay, D; Geornaras, I; von Holy, A

    1996-01-01

    Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.

  8. Optimizing the position resolution of a Z-stack microchannel plate resistive anode detector for low intensity signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, B. B.; Richardson, E.; Siwal, D.

    A method for achieving good position resolution of low-intensity electron signals using a microchannel plate resistive anode detector is demonstrated. Electron events at a rate of 7 counts s{sup −1} are detected using a Z-stack microchannel plate. The dependence of position resolution on both the distance and the potential difference between the microchannel plate and resistive anode is investigated. Using standard commercial electronics, a measured position resolution of 170 μm (FWHM) is obtained, which corresponds to an intrinsic resolution of 157 μm (FWHM)

  9. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis.

    PubMed

    McCarron, J L; Keefe, G P; McKenna, S L B; Dohoo, I R; Poole, D E

    2009-05-01

    The objective was to determine test characteristics and compare 2 potential on-farm culture systems for clinical mastitis, the Minnesota Easy Culture System II Bi-plate and Petrifilm. The tests were evaluated using clinically positive mastitic milk samples (n = 282) to determine their ability to differentiate appropriate treatment groups; all cases that had gram-positive growth were considered treatment candidates (n = 161), whereas cases that grew gram-negative organisms only or yielded no bacterial growth were classified as no treatment (n = 121). For Petrifilm, both undiluted and 1:10 diluted milk samples were used. To create treatment categories, 2 types of Petrifilms were used, Aerobic Count (AC) and Coliform Count (CC). Both Bi-plates and Petrifilms were read after 24 h of incubation. Analysis was conducted at various colony count thresholds for the Petrifilm test system. The combination of Petrifilms that had the highest sensitivity classified a case as gram-negative if there were > or =20 colonies present on the CC. If there were <20 colonies present on the CC and >5 colonies present on the AC, a case would be classified as gram-positive. The Bi-plate had a sensitivity of 97.9% and a specificity of 68.6%. The Petrifilm test system had a sensitivity of 93.8% and a specificity of 70.1%. There was no significant difference in the sensitivities between the tests. All Bi-plates and Petrifilms were read by a laboratory technician and a group of masked readers with limited microbiology training. Kappa values for the masked readers were 0.75 for Bi-plates and 0.84 and 0.86 for AC and CC Petrifilms, respectively. The Bi-plate and Petrifilm were able to successfully categorize clinical cases of mastitis into 2 treatments based on their ability to detect the presence of a gram-positive organism. Neither method had the ability to determine if a sample was contaminated. The results of this study indicate that both tests were able to appropriately categorize cases, which could potentially result in a reduction in the quantity of antibiotics used to treat clinical cases of mastitis.

  10. Two-dimensional photon-counting detector arrays based on microchannel array plates

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1975-01-01

    The production of simple and rugged photon-counting detector arrays has been made possible by recent improvements in the performance of the microchannel array plate (MCP) and by the parallel development of compatible electronic readout systems. The construction of proximity-focused MCP arrays of novel design in which photometric information from (n x m) picture elements is read out with a total of (n + m) amplifier and discriminator circuits is described. Results obtained with a breadboard (32 x 32)-element array employing 64 charge-sensitive amplifiers are presented, and the application of systems of this type in spectrometers and cameras for use with ground-based telescopes and on orbiting spacecraft discussed.

  11. Microchannel plate life testing for UV spectroscopy instruments

    NASA Astrophysics Data System (ADS)

    Darling, N. T.; Siegmund, O. H. W.; Curtis, T.; McPhate, J.; Tedesco, J.; Courtade, S.; Holsclaw, G.; Hoskins, A.; Al Dhafri, S.

    2017-08-01

    The Emirates Mars Mission (EMM) UV Spectrograph (EMUS) is a far ultraviolet (102 nm to 170 nm) imaging spectrograph for characterization of the Martian exosphere and thermosphere. Imaging is accomplished by a photon counting open-face microchannel plate (MCP) detector using a cross delay line (XDL) readout. An MCP gain stabilization ("scrub") followed by lifetime spectral line burn-in simulation has been completed on a bare MCP detector at SSL. Gain and sensitivity stability of better than 7% has been demonstrated for total dose of 2.5 × 1012 photons cm-2 (2 C · cm-2 ) at 5.5 kHz mm-2 counting rates, validating the efficacy of an initial low gain full-field scrub.

  12. Detection of enteroviruses in untreated and treated drinking water supplies in South Africa.

    PubMed

    Ehlers, M M; Grabow, W O K; Pavlov, D N

    2005-06-01

    Enteric viruses have been detected in many drinking water supplies all over the world. A meaningful number of these supplies were treated and disinfected according to internationally acceptable methods. In addition, counts of bacterial indicators (coliform bacteria and heterotrophic plate count organisms) in these water supplies were within limits generally recommended for treated drinking water and these findings have been supported by epidemiological data on infections associated with drinking water. The shortcomings of conventional treatment methods and indicator organisms to confirm the absence of enteric viruses from drinking water, was generally ascribed to the exceptional resistance of these viruses. In this study, the prevalence of enteroviruses detected from July 2000 to June 2002 in sewage, river-, borehole-, spring- and dam water as well as drinking water supplies treated and disinfected according to international specifications for the production of safe drinking water was analysed. A glass wool adsorption-elution technique was used to recover viruses from 10--20 l of sewage as well as environmental water samples, in the case of drinking water from more than 100 l. Recovered enteroviruses were inoculated onto two cell culture types (BGM and PLC/PRF/5 cells) for amplification of viral RNA with nested-PCR being used to detect the amplified viral RNA. Results from the study demonstrated the presence of enteroviruses in 42.5% of sewage and in 18.7% of treated drinking water samples. Furthermore, enteroviruses were detected in 28.5% of river water, in 26.7% of dam/spring water and in 25.3% of borehole water samples. The high prevalence of coxsackie B viruses found in this study suggested, that a potential health risk and a burden of disease constituted by these viruses might be meaningful. These findings indicated that strategies, other than end-point analysis of treated and disinfected drinking water supplies, may be required to ensure the production of drinking water that does not exceed acceptable health risks. More reliable approaches to ensure acceptable safety of drinking water supplies may be based on control by multiple-barrier principles from catchment to tap using hazard assessment and critical control point (HACCP) principles.

  13. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts

    PubMed Central

    Hoffmann, Stefanie; Walter, Steffi; Blume, Anne-Kathrin; Fuchs, Stephan; Schmidt, Christiane; Scholz, Annemarie; Gerlach, Roman G.

    2018-01-01

    The quantification of bacteria in cell culture infection models is of paramount importance for the characterization of host-pathogen interactions and pathogenicity factors involved. The standard to enumerate bacteria in these assays is plating of a dilution series on solid agar and counting of the resulting colony forming units (CFU). In contrast, the virtual colony count (VCC) method is a high-throughput compatible alternative with minimized manual input. Based on the recording of quantitative growth kinetics, VCC relates the time to reach a given absorbance threshold to the initial cell count using a series of calibration curves. Here, we adapted the VCC method using the model organism Salmonella enterica sv. Typhimurium (S. Typhimurium) in combination with established cell culture-based infection models. For HeLa infections, a direct side-by-side comparison showed a good correlation of VCC with CFU counting after plating. For MDCK cells and RAW macrophages we found that VCC reproduced the expected phenotypes of different S. Typhimurium mutants. Furthermore, we demonstrated the use of VCC to test the inhibition of Salmonella invasion by the probiotic E. coli strain Nissle 1917. Taken together, VCC provides a flexible, label-free, automation-compatible methodology to quantify bacteria in in vitro infection assays. PMID:29497603

  14. Track counts as indices to abundances of arboreal rodents.

    Treesearch

    A.B. Carey; J.W. Witt

    1991-01-01

    Counting tracks to obtain an index of abundance for species difficult to capture offers a promise of efficiency and effectiveness when broad surveys of populations are necessary. Sand plots, smoked kymograph paper, and, recently, smoked aluminum plates have been used to record tracks(Raphael et al., 1986; Taylor and Raphael, 1988). Findings of studies of carnivores...

  15. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant

    PubMed Central

    Bakker, Geo L.; Italiaander, Ronald; Veenendaal, Harm R.; Wullings, Bart A.

    2017-01-01

    ABSTRACT Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila. The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm−2) exposed to treated aerobic groundwater (0.3 mg C liter−1; 1 μg assimilable organic carbon [AOC] liter−1) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm−2) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm−2 in the biofilms on glass (1,055 ± 225 pg ATP cm−2) and CPVC (2,755 ± 460 pg ATP cm−2) exposed to treated anaerobic groundwater (7.9 mg C liter−1; 10 μg AOC liter−1). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis. This amoeba was rarely detected at biofilm concentrations of <100 pg ATP cm−2. A threshold concentration of approximately 50 pg ATP cm−2 (TCC = 1 × 106 to 2 × 106 cells cm−2) was derived for growth of L. pneumophila in biofilms. IMPORTANCE Legionella pneumophila is the etiologic agent in more than 10,000 cases of Legionnaires' disease that are reported annually worldwide and in most of the drinking water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter−1 of organic carbon) induced a low biofilm concentration that supported no or very limited growth of L. pneumophila. Elevated biofilm concentrations and L. pneumophila colony counts were observed on surfaces exposed to two types of extensively treated groundwater, containing 1.8 and 7.9 mg C liter−1 and complying with the microbial water quality criteria during distribution. Control measures in warm tap water installations are therefore essential for preventing growth of L. pneumophila. PMID:28062459

  16. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant.

    PubMed

    van der Kooij, Dick; Bakker, Geo L; Italiaander, Ronald; Veenendaal, Harm R; Wullings, Bart A

    2017-03-01

    Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm -2 ) exposed to treated aerobic groundwater (0.3 mg C liter -1 ; 1 μg assimilable organic carbon [AOC] liter -1 ) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm -2 ) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm -2 in the biofilms on glass (1,055 ± 225 pg ATP cm -2 ) and CPVC (2,755 ± 460 pg ATP cm -2 ) exposed to treated anaerobic groundwater (7.9 mg C liter -1 ; 10 μg AOC liter -1 ). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis This amoeba was rarely detected at biofilm concentrations of <100 pg ATP cm -2 A threshold concentration of approximately 50 pg ATP cm -2 (TCC = 1 × 10 6 to 2 × 10 6 cells cm -2 ) was derived for growth of L. pneumophila in biofilms. IMPORTANCE Legionella pneumophila is the etiologic agent in more than 10,000 cases of Legionnaires' disease that are reported annually worldwide and in most of the drinking water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter -1 of organic carbon) induced a low biofilm concentration that supported no or very limited growth of L. pneumophila Elevated biofilm concentrations and L. pneumophila colony counts were observed on surfaces exposed to two types of extensively treated groundwater, containing 1.8 and 7.9 mg C liter -1 and complying with the microbial water quality criteria during distribution. Control measures in warm tap water installations are therefore essential for preventing growth of L. pneumophila . Copyright © 2017 American Society for Microbiology.

  17. Surface Enhanced Raman Spectroscopy for the Rapid Detection and Identification of Microbial Pathogens in Human Serum

    DTIC Science & Technology

    2014-12-11

    and 1 mm depth. Bacterial culture and cell count determination Bacterial species of Acinetobacter baumannii (A. baumannii, ST-3), Escherichia coli...remove all broth components followed by a final resuspension of the pellet in ddH2O back to 1 OD. Cell count was determined by plating the 10 4 , 10 3...10 2 and 10 1 cell dilutions on TSB Nutrient Agar media. Colony forming units (CFU) were counted the following day to confirm bacterial species

  18. The influence of dialyzer geometry on blood coagulation and biocompatibility.

    PubMed

    Lins, L E; Boberg, U; Jacobson, S H; Kjellstrand, C; Ljungberg, B; Skröder, R

    1993-11-01

    The influence of dialyzer geometry on blood coagulation, heparin requirement and complement activation was studied in fourteen chronic hemodialysis patients. Each patient was dialyzed with two different cuprophan dialyzers, hollow fiber GF 120M and parallel plate Lundia IC5N. Both dialyzers had a wall thickness of 11 microns, surface area of 1.2 m2 and both were sterilized with ethylene oxide. Heparin doses were individually titrated. The mean heparin dose was 6089 +/- 988 U. Platelet count decreased from 218 x 10(9)/l to 193 x 10(9)/l and from 235 x 10(9)/l to 197 x 10(9)/l respectively (hollow fiber/plate dialyzer, ns). The number of leucocytes decreased at 15 min after start of dialysis by 56% and 61% (hollow fiber/plate dialyzer, ns). The heparin requirement, measured as prolongation of whole blood activated coagulation time after identical doses of heparin, were the same in hollow fiber and plate dialysis sessions. The arterial fibrinopeptide A concentrations increased during dialysis from 5.4 to 7.1 nmol/l and 8.5 to 9.6 nmol/l respectively (hollow fiber/plate dialyzer, ns). The residual blood volume in the hollow fiber dialyzers was 1.3 +/- 1.1 ml and in the plate dialyzers 1.5 +/- 0.9 ml (ns). C3a activation, indicated by a marked arterio-venous difference, was observed at 15 min after start of dialysis with hollow fiber as well as plate dialyzers. The arterio-venous difference was less pronounced at the end of dialysis. There were no differences in C3a activation between hollow fiber and plate dialyzers at any timepoint. It is concluded that dialyzer geometry does not significantly influence platelet count, blood coagulation, heparin requirement or complement activation.

  19. Steam versus hot-water scalding in reducing bacterial loads on the skin of commercially processed poultry.

    PubMed

    Patrick, T E; Goodwin, T L; Collins, J A; Wyche, R C; Love, B E

    1972-04-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling.

  20. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  1. Accurate live and dead bacterial cell enumeration using flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ou, Fang; McGoverin, Cushla; Swift, Simon; Vanholsbeeck, Frédérique

    2017-03-01

    Flow cytometry (FCM) is based on the detection of scattered light and fluorescence to identify cells with particular characteristics of interest. However most FCM cannot precisely control the flow through its interrogation point and hence the volume and concentration of the sample cannot be immediately obtained. The easiest, most reliable and inexpensive way of obtaining absolute counts with FCM is by using reference beads. We investigated a method of using FCM with reference beads to measure live and dead bacterial concentration over the range of 106 to 108 cells/mL and ratio varying from 0 to 100%. We believe we are the first to use this method for such a large cell concentration range while also establishing the effect of varying the live/dead bacteria ratios. Escherichia coli solutions with differing ratios of live:dead cells were stained with fluorescent dyes SYTO 9 and propidium iodide (PI), which label live and dead cells, respectively. Samples were measured using a LSR II Flow Cytometer (BD Biosciences); using 488 nm excitation with 20 mW power. Both SYTO 9 and PI fluorescence were collected and threshold was set to side scatter. Traditional culture-based plate count was done in parallel to the FCM analysis. The concentration of live bacteria from FCM was compared to that obtained by plate counts. Preliminary results show that the concentration of live bacteria obtained by FCM and plate counts correlate well with each other and indicates this may be extended to a wider concentration range or for studying other cell characteristics.

  2. Antibiotic-resistant bacteria in the Hudson River Estuary linked to wet weather sewage contamination.

    PubMed

    Young, Suzanne; Juhl, Andrew; O'Mullan, Gregory D

    2013-06-01

    Heterotrophic bacteria resistant to tetracycline and ampicillin were assessed in waterways of the New York City metropolitan area using culture-dependent approaches and 16S rRNA gene sequence analysis of resultant isolates. Resistant microbes were detected at all 10 sampling sites in monthly research cruises on the lower Hudson River Estuary (HRE), with highest concentrations detected at nearshore sites. Higher frequency sampling was conducted in Flushing Bay, to enumerate resistant microbes under both dry and wet weather conditions. Concentrations of ampicillin- and tetracycline-resistant bacteria, in paired samples, were positively correlated with one another and increased following precipitation. Counts of the fecal indicator, Enterococcus, were positively correlated with levels of resistant bacteria, suggesting a shared sewage-associated source. Analysis of 16S rRNA from isolates identified a phylogenetically diverse group of resistant bacteria, including genera containing opportunistic pathogens. The occurrence of Enterobacteriaceae, a family of enteric bacteria, was found to be significantly higher in resistant isolates compared to total heterotrophic bacteria and increased following precipitation. This study is the first to document the widespread distribution of antibiotic-resistant bacteria in the HRE and to demonstrate clearly a link between the abundance of antibiotic-resistant bacteria and levels of sewage-associated bacteria in an estuary.

  3. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7

    NASA Technical Reports Server (NTRS)

    Lisle, J. T.; Pyle, B. H.; McFeters, G. A.

    1999-01-01

    A suite of fluorescent intracellular stains and probes was used, in conjunction with viable plate counts, to assess the effect of chlorine disinfection on membrane potential (rhodamine 123; Rh123 and bis-(1,3-dibutylbarbituric acid) trimethine oxonol; DiBAC4(3)), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride; CTC) and substrate responsiveness (direct viable counts; DVC) in the commensal pathogen Escherichia coli O157:H7. After a 5 min exposure to the disinfectant, physiological indices were affected in the following order: viable plate counts > substrate responsiveness > membrane potential > respiratory activity > membrane integrity. In situ assessment of physiological activity by examining multiple targets, as demonstrated in this study, permits a more comprehensive determination of the site and extent of injury in bacterial cells following sublethal disinfection with chlorine. This approach to assessing altered bacterial physiology has application in various fields where detection of stressed bacteria is of interest.

  4. Molecular microbial diversity of a spacecraft assembly facility

    NASA Technical Reports Server (NTRS)

    Venkateswaran, K.; Satomi, M.; Chung, S.; Kern, R.; Koukol, R.; Basic, C.; White, D.

    2001-01-01

    In ongoing investigations to map and archive the microbial footprints in various components of the spacecraft and its accessories, we have examined the microbial populations of the Jet Propulsion Laboratory's Spacecraft Assembly Facility (JPL-SAF). Witness plates made up of spacecraft materials, some painted with spacecraft qualified paints, were exposed for approximately 7 to 9 months at JPL-SAF and examined the particulate materials collected for the incidence of total cultivable aerobic heterotrophs and heat-tolerant (80 degrees C for 15-min.) spore-formers. The results showed that the witness plates coated with spacecraft qualified paints attracted more dust particles than the non-coated stainless steel witness plates. Among the four paints tested, witness plates coated with NS43G accumulated the highest number of particles, and hence attracted more cultivable microbes. The conventional microbiological examination revealed that the JPL-SAF harbors mainly Gram-positive microbes and mostly spore-forming Bacillus species. Most of the isolated microbes were heat resistant to 80 degrees C and proliferate at 60 degrees C. The phylogenetic relationships among 23 cultivable heat-tolerant microbes were examined using a battery of morphological, physiological, molecular and chemotaxonomic characterizations. By 16S rDNA sequence analysis, the isolates fell into seven clades: Bacillus licheniformis, B. pumilus, B. cereus, B. circulans, Staphylococcus capitis, Planococcus sp. and Micrococcus lylae. In contrast to the cultivable approach, direct DNA isolation, cloning and 16S rDNA sequencing analysis revealed equal representation of both Gram-positive and Gram-negative microorganisms.

  5. Rapid staining and enumeration of small numbers of total bacteria in water by solid-phase laser cytometry

    NASA Technical Reports Server (NTRS)

    Broadaway, Susan C.; Barton, Stephanie A.; Pyle, Barry H.

    2003-01-01

    The nucleic acid stain SYBR Green I was evaluated for use with solid-phase laser cytometry to obtain total bacterial cell counts from several water sources with small bacterial numbers. Results were obtained within 30 min and exceeded or equaled counts on R2A agar plates incubated for 14 days at room temperature.

  6. Optimization of Uranium Molecular Deposition for Alpha-Counting Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria

    2016-12-12

    Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less

  7. Olivine dissolution in the presence of heterotrophic bacteria (Pseudomonas reactants) extracted from Icelandic groundwater of the CO2 injection pilot site

    NASA Astrophysics Data System (ADS)

    Shirokova, Liudmila; Pokrovsky, Oleg; Benezeth, Pascale; Gerard, Emmanuelle; Menez, Benedicte; Alfredsson, Helgi

    2010-05-01

    This work is aimed at experimental modeling of the effect of heterotrophic bacteria on dissolution of important rock-forming mineral, olivine, at the conditions of CO2 storage and sequestration. Heterotrophic aerobic gram-negative bacteria were extracted from deep underground water (HK31, 1700 m deep and, t = 25-30°C) of basaltic aquifer located within the Hellisheidi CO2 injection pilot site (Iceland). Following this sampling, we separated, using culture on nutrient agar plates, four different groups of gram-negative aerobic bacteria. The enzymatic activity of studied species has been evaluated using Biolog Ecoplates and their genetic identification was performed using 18-S RNA analysis. The optimal growth conditions of bacteria on Brain Hearth Broth nutrient have been determined as 5 to 37°C and growth media pH varied from 7.0-8.2. Culturing experiments allowed determining the optimal physico-chemical conditions for bacteria experiments in the presence of basic Ca, Mg-containing silicates. Olivine (Fo92) was chosen as typical mineral of basalt, widely considered in carbon dioxide sequestration mechanisms. Dissolution experiments were performed in constant-pH (7 to 9), bicarbonate-buffered (0.001 to 0.05 M) nutrient-diluted media in batch reactors at 0-30 bars of CO2 in the presence of various biomass of Pseudomonas reactants. The release rate of magnesium, silica and iron was measured as a function of time in the presence of live, actively growing, dead (autoclaved or glutaraldehyde-treated) cells and bacteria exometabolites. Both nutrient media diluted 10 times (to 100 mg DOC/L) and inert electrolyte (NaCl, no DOC) were used. Our preliminary results indicate that the pH and dissolved organic matter are the first-order parameters that control the element release from olivine at far from equilibrium conditions. The SEM investigation of reacted surfaces reveal formation of surface roughness with much stronger mineral alteration in the presence of live bacteria compared to experiments with dead biomass. Overall, this work allows better understanding of microbially-affected silicate dissolution in basaltic aquifers and provides a firm methodological basis for constructing the mixed-flow reactors for studying the interaction of heterotrophic bacteria with rock-forming silicates at the environmental conditions of CO2-storage.

  8. Cadmium tolerance and antibiotic resistance in Escherichia coli isolated from waste stabilization ponds.

    PubMed

    Patra, Sova; Das, T K; Avila, C; Cabello, V; Castillo, F; Sarkar, D; Lahiri, Susmita; Jana, B B

    2012-04-01

    The incidence pattern of cadmium tolerance and antibiotics resistance by Escherichia coli was examined periodically from the samples of water, sludge and intestine of fish raised in waste stabilization ponds in a sewage treatment plant. Samples of water and sludge were collected from all the selected ponds and were monitored for total counts of fecal coliform (FC), total coliform (TC) and the population of Escherichia coli, which was also obtained from the intestine of fishes. Total counts of both FC and TC as well as counts of E. coli were markedly reduced from the facultative pond to the last maturation pond. Tolerance limit to cadmium by E. coli tended to decline as the distance of the sewage effluent from the source increased; the effective lethal concentration of cadmium ranged from 0.1 mM in split chamber to 0.05 mM in first maturation pond. E. coli isolated from water, sludge and fish gut were sensitive to seven out of ten antibiotics tested. It appears that holistic functions mediated through the mutualistic growth of micro algae and heterotrophic bacteria in the waste stabilization ponds were responsible for the promotion of water quality and significant reduction of coliform along the sewage effluent gradient.

  9. Steam Versus Hot-Water Scalding in Reducing Bacterial Loads on the Skin of Commercially Processed Poultry

    PubMed Central

    Patrick, Thomas E.; Goodwin, T. L.; Collins, J. A.; Wyche, R. C.; Love, B. E.

    1972-01-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling. PMID:4553146

  10. Efficacy of Various Chemical Disinfectants on Biofilms Formed in Spacecraft Potable Water System Component

    NASA Technical Reports Server (NTRS)

    Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane

    2009-01-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.

  11. Roof-harvested rainwater for potable purposes: application of solar disinfection (SODIS) and limitations.

    PubMed

    Amin, Muhammad Tahir; Han, Mooyoung

    2009-01-01

    Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.

  12. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  13. Water quality, compliance, and health outcomes among utilities implementing Water Safety Plans in France and Spain.

    PubMed

    Setty, Karen E; Kayser, Georgia L; Bowling, Michael; Enault, Jerome; Loret, Jean-Francois; Serra, Claudia Puigdomenech; Alonso, Jordi Martin; Mateu, Arnau Pla; Bartram, Jamie

    2017-05-01

    Water Safety Plans (WSPs), recommended by the World Health Organization since 2004, seek to proactively identify potential risks to drinking water supplies and implement preventive barriers that improve safety. To evaluate the outcomes of WSP application in large drinking water systems in France and Spain, we undertook analysis of water quality and compliance indicators between 2003 and 2015, in conjunction with an observational retrospective cohort study of acute gastroenteritis incidence, before and after WSPs were implemented at five locations. Measured water quality indicators included bacteria (E. coli, fecal streptococci, total coliform, heterotrophic plate count), disinfectants (residual free and total chlorine), disinfection by-products (trihalomethanes, bromate), aluminum, pH, turbidity, and total organic carbon, comprising about 240K manual samples and 1.2M automated sensor readings. We used multiple, Poisson, or Tobit regression models to evaluate water quality before and after the WSP intervention. The compliance assessment analyzed exceedances of regulated, recommended, or operational water quality thresholds using chi-squared or Fisher's exact tests. Poisson regression was used to examine acute gastroenteritis incidence rates in WSP-affected drinking water service areas relative to a comparison area. Implementation of a WSP generally resulted in unchanged or improved water quality, while compliance improved at most locations. Evidence for reduced acute gastroenteritis incidence following WSP implementation was found at only one of the three locations examined. Outcomes of WSPs should be expected to vary across large water utilities in developed nations, as the intervention itself is adapted to the needs of each location. The approach may translate to diverse water quality, compliance, and health outcomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water.

    PubMed

    Hijnen, W A M; Schurer, R; Bahlman, J A; Ketelaars, H A M; Italiaander, R; van der Wal, A; van der Wielen, P W J J

    2018-02-01

    It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production plants which use the same surface water, and on the regrowth conditions in the related distribution systems. Easily biodegradable compounds in the drinking water were determined with AOC-P17/Nox during 2012-2015. Slowly biodegradable organic compounds measured as particulate and/or high-molecular organic carbon (PHMOC), were monitored at the inlet and after the different treatment stages of the three treatments during the same period. The results show that PHMOC (300-470 μg C L -1 ) was approximately 10% of the TOC in the surface water and was removed to 50-100 μg C L -1 . The PHMOC in the water consisted of 40-60% of carbohydrates and 10% of proteins. A significant and strong positive correlation was observed for PHMOC concentrations and two recently introduced bioassay methods for slowly biodegradable compounds (AOC-A3 and biomass production potential, BPC 14 ). Moreover, these three parameters in the biological active carbon effluent (BACF) of the three plants showed a positive correlation with regrowth in the drinking water distribution system, which was assessed with Aeromonas, heterotrophic plate counts, coliforms and large invertebrates. In contrast, the AOC-P17/Nox concentrations did not correlate with these regrowth parameters. We therefore conclude that slowly biodegradable compounds in the treated water from these treatment plants seem to have a greater impact on regrowth in the distribution system than easily biodegradable compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    PubMed

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. A homozygous recA mutant of Synechocystis PCC6803: construction strategy and characteristics eliciting a novel RecA independent UVC resistance in dark.

    PubMed

    Minda, Renu; Ramchandani, Jyoti; Joshi, Vasudha P; Bhattacharjee, Swapan Kumar

    2005-12-01

    We report here the construction of a homozygous recA460::cam insertion mutant of Synechocystis sp. PCC 6803 that may be useful for plant molecular genetics by providing a plant like host free of interference from homologous recombination. The homozygous recA460::cam mutant is highly sensitive to UVC under both photoreactivating and non-photoreactivating conditions compared to the wild type (WT). The liquid culture of the mutant growing in approximately 800 lx accumulates nonviable cells to the tune of 86% as estimated by colony counts on plates incubated at the same temperature and light intensity. The generation time of recA mutant in standard light intensity (2,500 lx) increases to 50 h compared to 28 h in lower light intensity (approximately 800 lx) that was used for selection, thus explaining the earlier failures to obtain a homozygous recA mutant. The WT, in contrast, grows at faster rate (23 h generation time) in standard light intensity compared to that at approximately 800 lx (26 h). The Synechocystis RecA protein supports homologous recombination during conjugation in recA (-) mutant of Escherichia coli, but not the SOS response as measured by UV sensitivity. It is suggested that using this homozygous recA460::cam mutant, investigations can now be extended to dissect the network of DNA repair pathways involved in housekeeping activities that may be more active in cyanobacteria than in heterotrophs. Using this mutant for the first time we provide a genetic evidence of a mechanism independent of RecA that causes enhanced UVC resistance on light to dark transition.

  17. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Chlorination and safe storage of household drinking water in developing countries to reduce waterborne disease.

    PubMed

    Sobsey, M D; Handzel, T; Venczel, L

    2003-01-01

    Simple, effective and affordable methods are needed to treat and safely store non-piped, gathered household water. This study evaluated point-of-use chlorination and storage in special plastic containers of gathered household water for improving microbial quality and reducing diarrhoeal illness of consumers living under conditions of poor sanitation and hygiene. Community families were recruited and randomly divided into intervention (household water chlorination and storage in a special container) and control (no intervention) households. Microbes in stored household water were extensively inactivated by 1-5-mg/L doses of hypochlorite. Escherichia coli levels in stored household waters were < 1/100 mL in most intervention households but readily detectable at high levels in control households. Stored water of intervention households was also lower in Clostridium perfringens and heterotrophic plate count bacteria than in control households. The intervention reduced household diarrhoeal illness. In Bolivia, monthly episodes of household diarrhoeal illness were 1.25 and 2.2 in intervention and control families, respectively (P = < 0.002) indicating that 43% of community diarrhoea was preventable by using the intervention. In Bangladesh, mean episodes of child diarrhoea/1,000 d were 19.6 and 24.8 in intervention and control groups respectively (P = < 0.03) indicating that about 24% of observed diarrhoea was preventable by using the intervention. Chlorine disinfection and storage in an appropriate container significantly improved the microbiological quality of non-piped household drinking water and reduced community diarrhoeal disease. Widespread use of this simple treatment and storage system for non-piped domestic water has the potential to dramatically reduce the global burden of waterborne diarrhoeal disease.

  19. Quality of water sources used as drinking water in a Brazilian peri-urban area.

    PubMed

    Razzolini, Maria Tereza Pepe; Günther, Wanda Maria Risso; Peternella, Francisca Alzira Dos Santos; Martone-Rocha, Solange; Bastos, Veridiana Karmann; Santos, Thaís Filomena da Silva; Cardoso, Maria Regina Alves

    2011-04-01

    The objective of this paper was to assess bacteriological quality of drinking water in a peri-urban area located in the Metropolitan Region of São Paulo, Brazil. A total of 89 water samples were collected from community plastic tanks and 177 water samples from wells were collected bimonthly, from September 2007 to November 2008, for evaluating bacteriological parameters including: Escherichia coli, Enterococcus and heterotrophic plate count (HPC). Clostridium perfringens was investigated in a subsample (40 samples from community plastic tank and 40 from wells). E. coli was present in 5 (5.6%) samples from community plastic tanks (2.0 - 5.1x10(4) MPN/100mL) and in 70 (39.5%) well samples (2.0 - 8.6x10(4) MPN/100mL). Thus, these samples were not in accordance with the Brazilian Regulation. Enterococcus was detected in 20 (22.5%) samples of the community plastic tanks (1 to 79 NC/100mL) and in 142 (80.2%) well samples (1 to >200 NC/100mL). C. perfringens was detected in 5 (12.5%) community plastic tanks samples and in 35 (87.5%) wells samples (2.2 to >16 MPN/100mL). HPC were above 500 CFU/mL in 5 (5.6%) waters from community plastic tanks. In wells samples, the HPC ranged from <1 to 1.6x10(4) CFU/mL. The residual chlorine did not attend the standard established in the drinking water legislation (0.2 mg/L), except in 20 (22.5%) samples. These results confirm the vulnerability of the water supply systems in this peri-urban area what is clearly a public health concern.

  20. Management of Risks From Water and Ice From Ice Machines for the Very Immunocompromised Host: A Process Improvement Project Prompted by an Outbreak of Rapidly Growing Mycobacteria on a Pediatric Hematopoietic Stem Cell Transplant (Hsct) Unit.

    PubMed

    Guspiel, Amanda; Menk, Jeremiah; Streifel, Andrew; Messinger, Keith; Wagner, John; Ferrieri, Patricia; Kline, Susan

    2017-07-01

    BACKGROUND In 2011, pediatric hematopoietic stem cell transplant (HSCT) patients were moved from an older hospital to a new children's hospital. To minimize bacterial growth in the new hospital's water during construction, the plumbing system was flushed and disinfected before occupancy. However, 6 months after occupancy, an increased incidence of rapidly growing mycobacteria (RGM) was detected in clinical cultures. Over 10 months, 15 pediatric HSCT patients were infected, while no pediatric HSCT patients had been infected in the preceding 12 months. OBJECTIVE To determine the cause of the outbreak and to interrupt patient acquisition of RGM. METHODS Water samples were collected from water entering the hospital and from drinking water and ice machines (DWIMs) from the old and new hospitals. Total heterotrophic plate counts (HPCs, CFU/mL) of water were undertaken, and select isolates were identified as RGM. RESULTS The cause of the outbreak was increased bacterial levels in the water (including RGM) in the DWIMs in the new (2011) hospital. Tests revealed higher HPCs in drinking water and ice from the DWIMs in the new hospital than in the DWIMs in the old hospital. Ultimately, HPCs were reduced by several different interventions. CONCLUSION In response to an RGM outbreak, HSCT patients were banned from ingesting DWIM ice and water and bottled water was provided. Since this interverntion 4 years ago, no additional RGM isolates have been identified in HSCT patient cultures. Our measures to reduce HPCs to goal levels in drinking water from DWIMs were successful, but the HPCs for ice have not consistently reached the goal of <500 CFU/mL. Infect Control Hosp Epidemiol 2017;38:792-800.

  1. Point-of-use membrane filtration and hyperchlorination to prevent patient exposure to rapidly growing mycobacteria in the potable water supply of a skilled nursing facility.

    PubMed

    Williams, Margaret M; Chen, Tai-Ho; Keane, Tim; Toney, Nadege; Toney, Sean; Armbruster, Catherine R; Butler, W Ray; Arduino, Matthew J

    2011-09-01

    Healthcare-associated outbreaks and pseudo-outbreaks of rapidly growing mycobacteria (RGM) are frequently associated with contaminated tap water. A pseudo-outbreak of Mycobacterium chelonae-M. abscessus in patients undergoing bronchoscopy was identified by 2 acute care hospitals. RGM was identified in bronchoscopy specimens of 28 patients, 25 of whom resided in the same skilled nursing facility (SNF). An investigation ruled out bronchoscopy procedures, specimen collection, and scope reprocessing at the hospitals as sources of transmission. To identify the reservoir for RGM within the SNF and evaluate 2 water system treatments, hyperchlorination and point-of-use (POU) membrane filters, to reduce RGM. A comparative in situ study of 2 water system treatments to prevent RGM transmission. An SNF specializing in care of patients requiring ventilator support. RGM and heterotrophic plate count (HPC) bacteria were examined in facility water before and after hyperchlorination and in a subsequent 24-week assessment of filtered water by colony enumeration on Middlebrook and R2A media. Mycobacterium chelonae was consistently isolated from the SNF water supply. Hyperchlorination reduced RGM by 1.5 log(10) initially, but the population returned to original levels within 90 days. Concentration of HPC bacteria also decreased temporarily. RGM were reduced below detection level in filtered water, a 3-log(10) reduction. HPC bacteria were not recovered from newly installed filters, although low quantities were found in water from 2-week-old filters. POU membrane filters may be a feasible prevention measure for healthcare facilities to limit exposure of sensitive individuals to RGM in potable water systems.

  2. Is there an association between airborne and surface microbes in the critical care environment?

    PubMed

    Smith, J; Adams, C E; King, M F; Noakes, C J; Robertson, C; Dancer, S J

    2018-04-09

    There are few data and no accepted standards for air quality in the intensive care unit (ICU). Any relationship between airborne pathogens and hospital-acquired infection (HAI) risk in the ICU remains unknown. First, to correlate environmental contamination of air and surfaces in the ICU; second, to examine any association between environmental contamination and ICU-acquired staphylococcal infection. Patients, air, and surfaces were screened on 10 sampling days in a mechanically ventilated 10-bed ICU for a 10-month period. Near-patient hand-touch sites (N = 500) and air (N = 80) were screened for total colony count and Staphylococcus aureus. Air counts were compared with surface counts according to proposed standards for air and surface bioburden. Patients were monitored for ICU-acquired staphylococcal infection throughout. Overall, 235 of 500 (47%) surfaces failed the standard for aerobic counts (≤2.5 cfu/cm 2 ). Half of passive air samples (20/40: 50%) failed the 'index of microbial air' contamination (2 cfu/9 cm plate/h), and 15/40 (37.5%) active air samples failed the clean air standard (<10 cfu/m 3 ). Settle plate data were closer to the pass/fail proportion from surfaces and provided the best agreement between air parameters and surfaces when evaluating surface benchmark values of 0-20 cfu/cm 2 . The surface standard most likely to reflect hygiene pass/fail results compared with air was 5 cfu/cm 2 . Rates of ICU-acquired staphylococcal infection were associated with surface counts per bed during 72h encompassing sampling days (P = 0.012). Passive air sampling provides quantitative data analogous to that obtained from surfaces. Settle plates could serve as a proxy for routine environmental screening to determine the infection risk in ICU. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. A Comparison of Spatial Analysis Methods for the Construction of Topographic Maps of Retinal Cell Density

    PubMed Central

    Garza-Gisholt, Eduardo; Hemmi, Jan M.; Hart, Nathan S.; Collin, Shaun P.

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed ‘by eye’. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation ‘respects’ the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the ‘noise’ caused by artefacts and permits a clearer representation of the dominant, ‘real’ distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome. PMID:24747568

  4. A survey of the bacteriological quality of preroasted peanut, almond, cashew, hazelnut, and brazil nut kernels received into three Australian nut-processing facilities over a period of 3 years.

    PubMed

    Eglezos, Sofroni; Huang, Bixing; Stuttard, Ed

    2008-02-01

    There is little information about bacteriological quality of preroasted kernels available in the public domain. An investigation of the bacteriological quality of preroasted peanut, almond, cashew, hazelnut, and Brazil nut kernels received into three Australian nut-processing facilities was performed over a period of 3 years. A total of 836 samples were analyzed for aerobic plate count, and 921 samples for Salmonella and Escherichia coli. The 921 samples included 653 peanut, 100 cashew, 60 almond, 60 Brazil nut, and 48 hazelnut kernels. There was no E. coli detected in any sample. Salmonella subsp. II (Fremantle) was detected in one raw almond sample. The aerobic plate count percentages of positive samples with counts above the detection level of the plating method used (100 CFU/g) for peanuts, almonds, cashews, hazelnuts, and Brazil nuts were 84, 78, 74, 50, and 45%, respectively. Of the samples containing more than this detection limit, the means were 4.5, 4.4, 3.1, 2.5, and 3.8 log CFU/g respectively. Although roasted kernel quality was not within the scope of this survey, raw microbial bioload would be expected to reduce on roasting. The bacteriological quality of preroasted peanut, almond, cashew, hazelnut, and Brazil nut kernels received into nut-processing facilities in Australia does not appear to suggest a public health concern.

  5. A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells.

    PubMed

    Bankier, Claire; Cheong, Yuen; Mahalingam, Suntharavathanan; Edirisinghe, Mohan; Ren, Guogang; Cloutman-Green, Elaine; Ciric, Lena

    2018-01-01

    Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.

  6. Differential enumeration of subpopulations in concentrated frozen and lyophilized cultures of Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Shao, Yuyu; Wang, Zhaoxia; Bao, Qiuhua; Zhang, Heping

    2017-11-01

    Differential enumeration of subpopulations in concentrated frozen and lyophilized cultures of Lactobacillus delbrueckii ssp. bulgaricus ND02 derived from 2 propagation procedures was determined. The subpopulations consisted of 3 categories (physiological states): viable cells capable of forming colonies on agar plates (VC+), viable cells incapable of forming colonies on agar plates (VC-), widely referred to as viable but nonculturable (VBNC) cells, and nonviable or dead cells (NVC). Counts of VC+ were recorded using a conventional plate count procedure. A fluorescent vital staining procedure that discriminates between viable (VC+ and VC-) and NVC cells was used to determine the number of viable and nonviable cells. Both propagation procedures had 2 variables: in procedure (P)1, the propagation medium was rich in yeast extract (4.0%) and the pH was maintained at 5.7; in P2, the medium was devoid of yeast extract and the pH was maintained at 5.1. The results showed that post-propagation operations-concentration of cells by centrifugation and subsequent freezing or lyophilization of cell concentrate-induced different degrees of transience from VC+ to VC- states in cells derived from P1 and P2. Compared with cells derived from P2, cells from P1 were more labile to stress associated with centrifugation, freezing, and lyophilization, as revealed by differential counting. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Characterisation of the spoilage bacterial microbiota in oyster gills during storage at different temperatures.

    PubMed

    Chen, Huibin; Liu, Zhiyu; Wang, Meiying; Chen, Shaojun; Chen, Tuanwei

    2013-12-01

    The spoilage bacterial community in oyster gill was investigated during storage at 4, 10 and 20 °C. Aerobic plate counts and pH values were determined. Total bacterial DNA was extracted from oyster gill and bulk cells of plate count media. The major bacterial species during fresh or different temperatures storage were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The initial aerobic plate count in oyster gill reached 6.70 log CFU g(-1). PCR-DGGE fingerprinting analysis of the 16S rRNA gene V3 region revealed that most of the strains in fresh oyster gill belonged to the genera Lactococcus and Enterobacter. The major spoilage bacteria at a storage temperature of 20 °C were Leuconostoc pseudomesenteroides, an uncultured bacterium, Cytophaga fermentans, Lactococcus lactis, Pseudoalteromonas sp., Enterococcus mundtii, Clostridium difficile and an uncultured Fusobacteria; those at 10 °C were Lactococcus spp., Lactobacillus curvatus, Weissella confusa and C. difficile; those at 4 °C were Lactococcus, Weissella, Enterobacter and Aeromonas. The other minor species were L. curvatus, Pseudomonas sp. and E. mundtii. Lactococcus spp. was the most common main spoilage bacteria in oyster gill during chilled storage. PCR-DGGE revealed the complexity of the bacterial microbiota and the major bacteria species in oyster gill for fresh and storage. © 2013 Society of Chemical Industry.

  8. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field.

    PubMed

    Gil-Loaiza, Juliana; White, Scott A; Root, Robert A; Solís-Dominguez, Fernando A; Hammond, Corin M; Chorover, Jon; Maier, Raina M

    2016-09-15

    Standard practice in reclamation of mine tailings is the emplacement of a 15 to 90cm soil/gravel/rock cap which is then hydro-seeded. In this study we investigate compost-assisted direct planting phytostabilization technology as an alternative to standard cap and plant practices. In phytostabilization the goal is to establish a vegetative cap using native plants that stabilize metals in the root zone with little to no shoot accumulation. The study site is a barren 62-hectare tailings pile characterized by extremely acidic pH as well as lead, arsenic, and zinc each exceeding 2000mgkg(-1). The study objective is to evaluate whether successful greenhouse phytostabilization results are scalable to the field. In May 2010, a 0.27ha study area was established on the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site with six irrigated treatments; tailings amended with 10, 15, or 20% (w/w) compost seeded with a mix of native plants (buffalo grass, arizona fescue, quailbush, mountain mahogany, mesquite, and catclaw acacia) and controls including composted (15 and 20%) unseeded treatments and an uncomposted unseeded treatment. Canopy cover ranging from 21 to 61% developed after 41 months in the compost-amended planted treatments, a canopy cover similar to that found in the surrounding region. No plants grew on unamended tailings. Neutrophilic heterotrophic bacterial counts were 1.5 to 4 orders of magnitude higher after 41months in planted versus unamended control plots. Shoot tissue accumulation of various metal(loids) was at or below Domestic Animal Toxicity Limits, with some plant specific exceptions in treatments receiving less compost. Parameters including % canopy cover, neutrophilic heterotrophic bacteria counts, and shoot uptake of metal(loids) are promising criteria to use in evaluating reclamation success. In summary, compost amendment and seeding, guided by preliminary greenhouse studies, allowed plant establishment and sustained growth over 4years demonstrating feasibility for this phytostabilization technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Distribution and prevalence of airborne microorganisms in three commercial poultry processing plants.

    PubMed

    Whyte, P; Collins, J D; McGill, K; Monahan, C; O'Mahony, H

    2001-03-01

    Airborne microbial contaminants and indicator organisms were monitored within three poultry processing plants (plants A, B, and C). In total, 15 cubic feet (c.f.) of air was sampled per location during 15 visits to each plant and quantitatively analyzed for total mesophilic and psychrophilic aerobic counts, thermophilic campylobacters, Escherichia coli, and Enterobacteriaceae. The prevalence of Salmonella spp. in air samples was also evaluated. Significant reductions in total aerobic counts were observed between defeathering and evisceration areas of the three plants (P < 0.05). Mesophilic plate counts were highest in the defeathering areas of all plants compared to equivalent psychrophilic plate counts. Enterobacteriaceae counts were highest in the defeathering areas of all three plants with counts of log10 1.63, 1.53, and 1.18 CFU/15 c.f. recovered in plants A, B, and C, respectively. E. coli enumerated from air samples in the defeathering areas exhibited a similar trend to those obtained for Enterobacteriaceae with log10 1.67, 1.58, and 1.18 CFU for plants A, B, and C, respectively. Thermophilic campylobacters were most frequently isolated from samples in the defeathering areas followed by the evisceration areas. The highest mean counts of the organism were observed in plant A at 21 CFU/15 c.f. sample with plants B and C at 9 and 8 CFU/sample, respectively. With the exception of low levels of Enterobacteriaceae recovered from samples in the on-line air chill in plant A, E. coli, Enterobacteriaceae, or Campylobacter spp. were not isolated from samples in postevisceration sites in any of the plants examined. Salmonella spp. were not recovered from any samples during the course of the investigation.

  10. Biodegradable Chitosan Coating Incorporated with Black Pepper Essential Oil for Shelf Life Extension of Common Carp (Cyprinus carpio) during Refrigerated Storage.

    PubMed

    Moosavi-Nasab, Marzieh; Shad, Ehsan; Ziaee, Esmaeil; Yousefabad, Seyyed Hossein Asadi; Golmakani, Mohammad Taghi; Azizinia, Mehdi

    2016-06-01

    Chitosan (Ch) coating incorporated with black pepper essential oil (Ch+BPEO) was studied to extend the shelf life of common carp (Cyprinus carpio) during refrigerated storage at 4 ± 1°C. The chemical composition of BPEO was characterized using gas chromatography-mass spectrometry (GC-MS). Antibacterial properties of BPEO were determined by disk diffusion agar, MIC, and MBC. Ch (2% [wt/vol]) and Ch+BPEO (2% [wt/vol] Ch with 1.5% [vol/vol] BPEO) were used for common carp fillet coating. The samples were analyzed periodically for chemical (pH, total volatile basic nitrogen) and microbiological (aerobic plate count, psychrophilic bacteria count, lactic acid bacteria, and Enterobacteriaceae bacterial counts) characteristics during 16 days. The GC-MS results indicated that main components in BPEO were carene, caryophyllene, limonene, β-pinene, and α-pinene. The samples coated with Ch and Ch+BPEO resulted in lower pH and total volatile basic nitrogen values in comparison with the control. The microbiological analysis of fish fillets during refrigerated storage clearly indicated that Ch+BPEO coating significantly reduced the fish fillet microbial load. The aerobic plate count, psychrophilic bacteria count, lactic acid bacteria count, and Enterobacteriaceae bacterial count of samples coated with Ch+BPEO were reduced approximately 4.1, 3.9, 2.3, and 2.8 log CFU/g, respectively, at the end of the storage period. Finally, Ch and Ch+BPEO effectively improved the quality of fish fillet during refrigerated storage and extended the shelf life of fish fillets from 8 to 16 days. Black pepper; Chitosan; Common carp; Essential oil.

  11. The degree of bacterial contamination while performing spine surgery.

    PubMed

    Ahn, Dong Ki; Park, Hoon Seok; Kim, Tae Woo; Yang, Jong Hwa; Boo, Kyung Hwan; Kim, In Ja; Lee, Hye Jin

    2013-03-01

    Prospective experimental study. To evaluate bacterial contamination during surgery. The participants of surgery and ventilation system have been known as the most significant sources of contamination. Two pairs of air culture blood agar plate for G(+) bacteria and MacConkey agar plate for G(-) bacteria were placed at 3 different locations in a conventional operation room: in the surgical field, under the airflow of local air conditioner, and pathway to door while performing spine surgeries. One pair of culture plates was retrieved after one hour and the other pair was retrieved after 3 hours. The cultured bacteria were identified and number of colonies was counted. There was no G(-) bacteria identified. G(+) bacteria grew on all 90 air culture blood agar plates. The colony count of one hour group was 14.5±5.4 in the surgical field, 11.3±6.6 under the local air conditioner, and 13.1±8.7 at the pathway to the door. There was no difference among the 3 locations. The colony count of 3 hours group was 46.4±19.5, 30.3±12.9, and 39.7±15.2, respectively. It was more at the surgical field than under the air conditioner (p=0.03). The number of colonies of one hour group was 13.0±7.0 and 3 hours group was 38.8±17.1. There was positive correlation between the time and the number of colonies (r=0.76, p=0.000). Conventional operation room was contaminated by G(+) bacteria. The degree of contamination was most high at the surgical field. The number of bacteria increased right proportionally to the time.

  12. The Degree of Bacterial Contamination While Performing Spine Surgery

    PubMed Central

    Ahn, Dong Ki; Park, Hoon Seok; Yang, Jong Hwa; Boo, Kyung Hwan; Kim, In Ja; Lee, Hye Jin

    2013-01-01

    Study Design Prospective experimental study. Purpose To evaluate bacterial contamination during surgery. Overview of Literature The participants of surgery and ventilation system have been known as the most significant sources of contamination. Methods Two pairs of air culture blood agar plate for G(+) bacteria and MacConkey agar plate for G(-) bacteria were placed at 3 different locations in a conventional operation room: in the surgical field, under the airflow of local air conditioner, and pathway to door while performing spine surgeries. One pair of culture plates was retrieved after one hour and the other pair was retrieved after 3 hours. The cultured bacteria were identified and number of colonies was counted. Results There was no G(-) bacteria identified. G(+) bacteria grew on all 90 air culture blood agar plates. The colony count of one hour group was 14.5±5.4 in the surgical field, 11.3±6.6 under the local air conditioner, and 13.1±8.7 at the pathway to the door. There was no difference among the 3 locations. The colony count of 3 hours group was 46.4±19.5, 30.3±12.9, and 39.7±15.2, respectively. It was more at the surgical field than under the air conditioner (p=0.03). The number of colonies of one hour group was 13.0±7.0 and 3 hours group was 38.8±17.1. There was positive correlation between the time and the number of colonies (r=0.76, p=0.000). Conclusions Conventional operation room was contaminated by G(+) bacteria. The degree of contamination was most high at the surgical field. The number of bacteria increased right proportionally to the time. PMID:23508998

  13. Microbiological and molecular characterization of commercially available probiotics containing Bacillus clausii from India and Pakistan.

    PubMed

    Patrone, Vania; Molinari, Paola; Morelli, Lorenzo

    2016-11-21

    Probiotics are actively used for treatment of diarrhoea, respiratory infections, and prevention of infectious gastrointestinal diseases. The efficacy of probiotics is due to strain-specific features and the number of viable cells; however, several reports of deviations from the label in the actual content of strains in probiotic products are a matter of concern. Most of the available data on quality focuses on probiotic products containing lactobacilli and/or bifidobacteria, while very few data are available on spore-forming probiotics. The present study evaluates the label claims for spore count and species identification in five commercial probiotic products marketed in India and Pakistan that claim to contain Bacillus clausii: Tufpro, Ecogro, Enterogermina, Entromax, and Ospor. Bacterial enumeration from three batches was done by microbiological plating methods by two independent operators. Species identification was done using PCR amplification and sequence analysis of the 16S rRNA gene, and determination of the total amount of species present in the products was done using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis followed by DNA sequencing of the excised bands. Plate count methods demonstrated poor correlations between quantitative label indications and bacteria recovered from plates for Tufpro, Ecogro, and Ospor. The 16S rRNA analysis performed on bacteria isolated from plate counts showed that only Enterogermina and Ospor contained homogenous B. clausii. PCR-DGGE analysis revealed that only Enterogermina had a homogenous B. clausii population while other products had mixed bacterial populations. In conclusion, the current analysis clearly demonstrates that of the five analysed commercial probiotics, only Enterogermina followed the label claims. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations.

    PubMed

    Kiess, A S; Hirai, J H; Triplett, M D; Parker, H M; McDaniel, C D

    2016-08-01

    The use of antibiotics in poultry is being heavily scrutinized, therefore alternatives such as probiotics are being investigated. Lactobacilli spp. are a commonly used bacteria in formulating probiotics, and the addition of Lactobacilli to broiler diets has demonstrated increased growth rates, stimulated immune systems, and reduced pathogen loads in the gastro-intestinal tract ( GI: ) tract. However, previous research has shown that when rooster semen is directly exposed to Lactobacillus acidophilus (L. acidophilus) sperm quality is reduced. Therefore, the objective of the current study was to determine if oral administration of L. acidophilus increases the concentration of Lactobacilli in semen as well as the cloaca. A total of 30 roosters were used: 15 roosters were gavaged with 1X PBS (Control) and 15 roosters were gavaged with 10(7) cfu/mL of L. acidophilus (Treated). All roosters were gavaged for 14 consecutive days. Semen was collected on a 3 d interval, and cloacal swabs were collected on a 2 d interval, beginning on the first day prior to oral administration. Semen and cloacal swabs were serial diluted, and 100 μL of each dilution was then plated on Man, Rogosa, Sharpe ( MRS: ) agar plates. All plates were incubated for 48 h at 37°C under anaerobic conditions and counted. All Lactobacilli counts were first log transformed, then log transformed (day 0) pre-counts were subtracted from the log transformed day counts providing log differences for the analysis. Seminal Lactobacilli counts were not altered by treatments. However, the main effect of treatment (P = 0.026) for cloacal counts indicated that roosters gavaged with Lactobacilli yielded higher counts than the controls. Additionally, cloaca samples also demonstrated a treatment by day interaction trend (P = 0.082), where Lactobacilli was higher in the L. acidophilus gavaged roosters than the controls only on days 3, 5, 13, and 15. In conclusion, the addition of L. acidophilus to the male breeder diet over extended periods may increase concentrations of Lactobacilli in the cloaca even higher than the concentrations observed in this study. If Lactobacilli reaches high enough concentrations in the cloaca, then sperm quality may be impacted which could lead to poor fertility within the breeder flock. © 2016 Poultry Science Association Inc.

  15. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  16. High spatial resolution detection of low-energy electrons using an event-counting method, application to point projection microscopy

    NASA Astrophysics Data System (ADS)

    Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger

    2018-04-01

    An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.

  17. The effect of laminar air flow and door openings on operating room contamination.

    PubMed

    Smith, Eric B; Raphael, Ibrahim J; Maltenfort, Mitchell G; Honsawek, Sittisak; Dolan, Kyle; Younkins, Elizabeth A

    2013-10-01

    We evaluate the association of laminar airflow (LAF) and OR traffic with intraoperative contamination rates. Two sterile basins were placed in each room during 81 cases, one inside and one outside the LAF. One Replicate Organism Detection and Counting (RODAC) plate from each basin was sent for culture at successive 30-minute intervals from incision time until wound closure. At successive 30-minute intervals more plates were contaminated outside than inside the LAF. A negative binomial model showed that the bacteria colony forming units (CFU) depended on whether there were any door openings (P=0.02) and the presence of LAF (P=0.003). LAF decreases CFU by 36.6%. LAF independently reduces the risk of contamination and microbial counts for surgeries lasting 90 minutes or less. © 2013.

  18. Reborn quadrant anode image sensor

    NASA Astrophysics Data System (ADS)

    Prokazov, Yury; Turbin, Evgeny; Vitali, Marco; Herzog, Andreas; Michaelis, Bernd; Zuschratter, Werner; Kemnitz, Klaus

    2009-06-01

    We describe a position sensitive photon counting microchannel plate based detector with an improved quadrant anode (QA) readout system. The technique relies on a combination of the four planar elements pattern and an additional fifth electrode. The charge cloud induced by single particle detection is split between the electrodes. The measured charge values uniquely define the position of the initial event. QA has been first published in 1976 by Lampton and Malina. This anode configuration was undeservedly forgotten and its potential has been hardly underestimated. The presented approach extends the operating spatial range to the whole sensitive area of the microchannel plate surface and demonstrates good linearity over the field of view. Therefore, the novel image sensor results in spatial resolution better then 50 μm and count rates up to one million events per second.

  19. Impact of commonly used agrochemicals on bacterial diversity in cultivated soils.

    PubMed

    Ampofo, J A; Tetteh, W; Bello, M

    2009-09-01

    The effects of three selected agrochemicals on bacterial diversity in cultivated soil have been studied. The selected agrochemicals are Cerox (an insecticide), Ceresate and Paraquat (both herbicides). The effect on bacterial population was studied by looking at the total heterotrophic bacteria presence and the effect of the agrochemicals on some selected soil microbes. The soil type used was loamy with pH of 6.0-7.0. The soil was placed in opaque pots and bambara bean (Vigna subterranean) seeds cultivated in them. The agrochemicals were applied two weeks after germination of seeds at concentrations based on manufacturer's recommendation. Plant growth was assessed by weekly measurement of plant height, foliage appearance and number of nodules formed after one month. The results indicated that the diversity index (Di) among the bacteria populations in untreated soil and that of Cerox-treated soils were high with mean diversity index above 0.95. Mean Di for Ceresate-treated soil was 0.88, and that for Paraquattreated soil was 0.85 indicating low bacterial populations in these treatment-type soils. The study also showed that application of the agrochemicals caused reduction in the number of total heterotrophic bacteria population sizes in the soil. Ceresate caused 82.50% reduction in bacteria number from a mean of 40 × 10(5) cfu g(-1) of soil sample to 70 × 10(4) cfu g(-1). Paraquat-treated soil showed 92.86% reduction, from a mean of 56 × 10(5) cfu g(-1) to 40 × 10(4) cfu g(-1). Application of Cerox to the soil did not have any remarkable reduction in bacterial population number. Total viable cell count studies using Congo red yeast-extract mannitol agar indicated reduction in the number of Rhizobium spp. after application of the agrochemicals. Mean number of Rhizobium population numbers per gram of soil was 180 × 10(4) for the untreated soil. Cerox-treated soil recorded mean number of 138 × 10(4) rhizobial cfu g(-1) of soil, a 23.33% reduction. Ceresate- and Paraquat-treated soils recorded 20 × 10(4) and 12 × 10(4) cfu g(-1) of soil, respectively, representing 88.89% and 93.33% reduction in Rhizobium population numbers. Correspondingly, the mean number of nodules per plant was 44 for the growth in untreated soil, 30 for the plant in the Cerox-treated soil, 8 for the plant in Paraquat-treated soil and 3 for the plant in Ceresate-treated soil. The study has confirmed detrimental effect of insecticide on bacterial populations in the soil. Total heterotrophic counts, rhizobial counts as well as the number of nodules of all samples taken from the chemically treated soils were all low as compared to values obtained for the untreated soil. However, the effect of the insecticide was minimal in all cases as compared to the effects of the herbicides on the soil fauna. Indiscriminate use of agrochemicals on farms can therefore affect soil flora and subsequently food production.

  20. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor L.) in recirculating aquaculture systems.

    PubMed

    Ardiansyah, A; Fotedar, R

    2016-07-01

    Duckweed (Lemna minor L.) is a potential biofilter for nutrient removal and acts as a substrate for heterotrophic bacteria in recirculating aquaculture systems (RAS). Here, we determined the effects of harvesting frequency of duckweed on heterotrophic bacteria in RAS. Twelve independent RAS consisting of fish-rearing tank, biofilter tank and waste-collection tank were used to study the interactions between duckweed harvest frequencies up to 6 days and the composition, abundance and diversity of heterotrophic bacteria. After 36 days, heterotrophic bacteria in the biofilter tank were primarily Gram-negative cocci or ovoid, coccobacilli, Gram-negative bacilli and Gram-positive bacilli. Most bacterial genera were Bacillus and Pseudomonas while the least common was Acinetobacter. Duckweed harvested after every 2 days produced the highest specific growth rates (SGR) and total harvested biomass of duckweed, but harboured less abundant bacteria, whereas 6-day harvests had a higher growth index (GI) of duckweed than 2-day harvests, but caused a poor relationship between SGR and biomass harvest with the abundance and diversity of heterotrophic bacteria. Stronger correlations (R(2)  > 0·65) between duckweed SGR and biomass harvest with the heterotrophic bacteria diversity were observed at 4-day harvest frequency and the control. This study provides significant information on the interaction between the harvest frequency of duckweed and the composition, abundance and diversity of heterotrophic bacteria in recirculating aquaculture systems (RAS). Different harvest frequencies significantly influence the abundance and diversity of heterotrophic bacteria, which in turn may influence the nitrogen uptake efficiency of the system. The research is useful in improving the efficiency of removing nitrogenous metabolites in RAS directly by the duckweed and associated heterotrophic bacteria. © 2016 The Society for Applied Microbiology.

  1. Rapid High-Throughput Assessment of Aerobic Bacteria in Complex Samples by Fluorescence-Based Oxygen Respirometry

    PubMed Central

    O'Mahony, Fiach C.; Papkovsky, Dmitri B.

    2006-01-01

    A simple method has been developed for the analysis of aerobic bacteria in complex samples such as broth and food homogenates. It employs commercial phosphorescent oxygen-sensitive probes to monitor oxygen consumption of samples containing bacteria using standard microtiter plates and fluorescence plate readers. As bacteria grow in aqueous medium, at certain points they begin to deplete dissolved oxygen, which is seen as an increase in probe fluorescence above baseline signal. The time required to reach threshold signal is used to either enumerate bacteria based on a predetermined calibration or to assess the effects of various effectors on the growth of test bacteria by comparison with an untreated control. This method allows for the sensitive (down to a single cell), rapid (0.5 to 12 h) enumeration of aerobic bacteria without the need to conduct lengthy (48 to 72 h) and tedious colony counts on agar plates. It also allows for screening a wide range of chemical and environmental samples for their toxicity. These assays have been validated with different bacteria, including Escherichia coli, Micrococcus luteus, and Pseudomonas fluorescens, with the enumeration of total viable counts in broth and industrial food samples (packaged ham, chicken, and mince meat), and comparison with established agar plating and optical-density-at-600-nm assays has been given. PMID:16461677

  2. Single electron counting using a dual MCP assembly

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun

    2016-09-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.

  3. Physiological responses of bacteria in biofilms to disinfection.

    PubMed Central

    Yu, F P; McFeters, G A

    1994-01-01

    In situ enumeration methods using fluorescent probes and a radioisotope labelling technique were applied to evaluate physiological changes of Klebsiella pneumoniae within biofilms after disinfection treatment. Chlorine (0.25 mg of free chlorine per liter [pH 7.2]) and monochloramine (1 mg/liter [pH 9.0]) were employed as disinfectants in the study. Two fluorgenic compounds, 5-cyano-2,3-ditolyl tetrazolium chloride and rhodamine 123, and tritiated uridine incorporation were chosen for assessment of physiological activities. Results obtained by these methods were compared with those from the plate count and direct viable count methods. 5-Cyano-2,3-ditolyl tetrazolium chloride is an indicator of bacterial respiratory activity, rhodamine 123 is incorporated into bacteria in response to transmembrane potential, and the incorporation of uridine represents the global RNA turnover rate. The results acquired by these methods following disinfection exposure showed a range of responses and suggested different physiological reactions in biofilms exposed to chlorine and monochloramine. The direct viable count response and respiratory activity were affected more by disinfection than were the transmembrane potential and RNA turnover rate on the basis of comparable efficiency as evaluated by plate count enumeration. Information revealed by these approaches can provide different physiological insights that may be used in evaluating the efficacy of biofilm disinfection. PMID:8074525

  4. Comparison of bulk-tank standard plate count and somatic cell count for Wisconsin dairy farms in three size categories.

    PubMed

    Ingham, S C; Hu, Y; Ané, C

    2011-08-01

    The objective of this study was to evaluate possible claims by advocates of small-scale dairy farming that milk from smaller Wisconsin farms is of higher quality than milk from larger Wisconsin farms. Reported bulk tank standard plate count (SPC) and somatic cell count (SCC) test results for Wisconsin dairy farms were obtained for February to December, 2008. Farms were sorted into 3 size categories using available size-tracking criteria: small (≤118 cows; 12,866 farms), large (119-713 cattle; 1,565 farms), and confined animal feeding operations (≥714 cattle; 160 farms). Group means were calculated (group=farm size category) for the farms' minimum, median, mean, 90th percentile, and maximum SPC and SCC. Statistical analysis showed that group means for median, mean, 90th percentile, and maximum SPC and SCC were almost always significantly higher for the small farm category than for the large farm and confined animal feeding operations farm categories. With SPC and SCC as quality criteria and the 3 farm size categories of ≤118, 119 to 713, and ≥714 cattle, the claim of Wisconsin smaller farms producing higher quality milk than Wisconsin larger farms cannot be supported. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Experimental Study for Automatic Colony Counting System Based Onimage Processing

    NASA Astrophysics Data System (ADS)

    Fang, Junlong; Li, Wenzhe; Wang, Guoxin

    Colony counting in many colony experiments is detected by manual method at present, therefore it is difficult for man to execute the method quickly and accurately .A new automatic colony counting system was developed. Making use of image-processing technology, a study was made on the feasibility of distinguishing objectively white bacterial colonies from clear plates according to the RGB color theory. An optimal chromatic value was obtained based upon a lot of experiments on the distribution of the chromatic value. It has been proved that the method greatly improves the accuracy and efficiency of the colony counting and the counting result is not affected by using inoculation, shape or size of the colony. It is revealed that automatic detection of colony quantity using image-processing technology could be an effective way.

  6. Bactericidal effects of negative air ions on airborne and surface Salmonella enteritidis from an artificially generated aerosol.

    PubMed

    Seo, K H; Mitchell, B W; Holt, P S; Gast, R K

    2001-01-01

    The bactericidal effect of high levels of negative ions was studied using a custom-built electrostatic space charge device. To investigate whether the ion-enriched air exerted a bactericidal effect, an aerosol containing Salmonella Enteritidis (SE) was pumped into a sealed plastic chamber. Plates of XLT4 agar were attached to the walls, top, and bottom of the chamber and exposed to the aerosol for 3 h with and without the ionizer treatment. The plates were then removed from the chamber, incubated at 37 degrees C for 24 h, and colonies were counted. An average of greater than 10(3) CFU/plate were observed on plates exposed to the aerosol without the ionizer treatment (control) compared with an average of less than 53 CFU/plate on the ionizer-treated plates. In another series of experiments, the SE aerosol was pumped for 3 h into an empty chamber containing only the ionizer and allowed to collect on the internal surfaces. The inside surfaces of the chamber were then rinsed with 100 ml phosphate-buffered saline that was then plated onto XLT4 plates. While the rinse from the control chamber contained colony counts greater than 400 CFU/ml of wash, no colonies were found in the rinse from the ionizer-treatment chamber. These results indicate that high levels of negative air ions can have a significant impact on the airborne microbial load, and that most of this effect is through direct killing of the organisms. This technology, which also causes significant reduction in airborne dust, has already been successfully applied for poultry hatching cabinets and caged layer rooms. Other potential applications include any enclosed space such as food processing areas, medical institutions, the workplace, and the home, where reduction of airborne and surface pathogens is desired.

  7. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    NASA Astrophysics Data System (ADS)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed, indicating that they may play an important role in the pelagic food web, and that they may have a substantial impact on the carbon cycle in oligotrophic regions.

  8. Tidal radii of the globular clusters M 5, M 12, M 13, M 15, M 53, NGC 5053 and NGC 5466 from automated star counts.

    NASA Astrophysics Data System (ADS)

    Lehmann, I.; Scholz, R.-D.

    1997-04-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962) we derived the following structural parameters: tidal radius r_t_, core radius r_c_ and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al. 1995).

  9. The effect of different gas permeability of packaging on physicochemical and microbiological parameters of pork loin storage under high O2 modified atmosphere packaging conditions.

    PubMed

    Marcinkowska-Lesiak, Monika; Poławska, Ewa; Wierzbicka, Agnieszka

    2017-03-01

    The aim of this study was to determine the influence of different packaging materials on meat quality during cold storage. Therefore pork loins (m. longissimus thoracis et lumborum) obtained from crossbred pigs (Polish Landrance x Duroc, n = 6) were stored at 2 ℃ in modified atmosphere packs (80% O 2 , 20% CO 2 ) in four types of trays, which differ in gas permeability. Physicochemical (headspace gas composition, pH, colour, drip loss, cooking loss, shear force, the basic composition and fatty acid profile) and microbiological ( Salmonella spp., Escherichia coli, Enterobacteriaceae, total aerobic plates count, total psychrotrophic bacteria count, the number of lactic acid bacteria, Pseudomonas spp., the general amount of yeast and mold) parameters were monitored for up to 12 days. At the end of the storage period no differences in most physicochemical properties of pork loin due to type of packaging were found, however trays with high gas permeability had the greatest impact on total aerobic plates count and Pseudomonas spp. growth.

  10. High-Dose Neutron Detector Development Using 10B Coated Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detectionmore » efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.« less

  11. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  12. Extinction map of Chamaeleon I molecular cloud with DENIS star counts.

    NASA Astrophysics Data System (ADS)

    Cambresy, L.; Epchtein, N.; Copet, E.; de Batz, B.; Kimeswenger, S.; Le Bertre, T.; Rouan, D.; Tiphene, D.

    1997-08-01

    Massive, large scale star counts in the J (1.25μm) band provided by the Deep Near Infrared Survey of the Southern Sky (DENIS) are used for the first time to draw out an extinction map of the Chamaeleon I dark cloud. We derived a 2' resolution map of the cloud from J star counts within an area of 1.5°x3° around the centre of the cloud using an adaptive grid method and applying a wavelet decomposition. Possible contaminating young stellar objects within the cloud are removed, although they are shown to have a negligible effect on the counts. A comparison of our extinction map with the cold contribution of the IRAS 100μm emission shows an almost perfect matching. It is shown that J star counts supersede optical counts on Schmidt plate where A_V_>4.

  13. Assessment of variable fluorescence fluorometry as an approach for rapidly detecting living photoautotrophs in ballast water

    NASA Astrophysics Data System (ADS)

    First, Matthew R.; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; Drake, Lisa A.

    2018-03-01

    Variable fluorescence fluorometry, an analytical approach that estimates the fluorescence yield of chlorophyll a (F0, a proximal measure of algal concentration) and photochemical yield (FV/FM, an indicator of the physiological status of algae) was evaluated as a means to rapidly assess photoautotrophs. Specifically, it was used to gauge the efficacy of ballast water treatment designed to reduce the transport and delivery of potentially invasive organisms. A phytoflagellate, Tetraselmis spp. (10-12 μm) and mixed communities of ambient protists were examined in both laboratory experiments and large-scale field trials simulating 5-d hold times in mock ballast tanks. In laboratory incubations, ambient organisms held in the dark exhibited declining F0 and FV/FM measurements relative to organisms held under lighted conditions. In field experiments, increases and decreases in F0 and FV/FM over the tank hold time corresponded to those of microscope counts of organisms in two of three trials. In the third trial, concentrations of organisms ≥ 10 and < 50 μm (presumably heterotrophic protists) increased while F0 and FV/FM decreased. Rapid and sensitive, variable fluorescence fluorometry is appropriate for detecting changes in organism concentrations and physiological status in samples dominated by microalgae. Changes in the heterotrophic community, which may become more prevalent in light-limited ballast tanks, would not be detected via variable fluorescence fluorometry, however.

  14. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests

    USGS Publications Warehouse

    Perakis, Steven; Pett-Ridge, Julie C.; Catricala, Christina E.

    2017-01-01

    Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.

  15. UV inactivation of pathogenic and indicator microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4more » times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.« less

  16. Comparison of the Petrifilm dry rehydratable film and conventional culture methods for enumeration of yeasts and molds in foods: collaborative study.

    PubMed

    Knight, M T; Newman, M C; Benzinger, M J; Neufang, K L; Agin, J R; McAllister, J S; Ramos, M

    1997-01-01

    A collaborative study was performed involving 18 laboratories and 6 food types to compare 3M Petrifilm yeast and mold count plates with the method described in the U.S. Food and Drug Administration's Bacteriological Analytical Manual. Four species of mold and 2 species of yeast were used to inoculate the following foods: hot dogs, corn meal, ketchup, orange juice, yogurt, and cake mix. Each collaborator received 15 samples of each food type: 5 low-level inoculations, 5 high-level inoculations, and 5 uninoculated samples. There was no significant difference between the means of the 2 methods for any product or inoculation level. The Petrifilm yeast and mold count plate method for enumeration of yeasts and molds in foods has been adopted first action by AOAC INTERNATIONAL.

  17. Microorganisms associated with production lots of the nucleopolyhedrosis virus of the gypsy moth Lymantria dispar (Lep.: Lymantriidae)

    Treesearch

    J.D. Podgwaite; R.B. Bruen; M. Shapiro

    1983-01-01

    Samples of a gypsy moth nucleopolyhedrosis virus product, Gypchek®, were taken each day during a 100-day production run and monitored for the presence of pathogenic bacteria and fungi. The standard plate count/g of product was 5.97 ± 1.51 x 108 over the 100-day period, while the sporulating bacteria count was 3.81 ± 1.21 x 106...

  18. Nondestructive detection of total viable count changes of chilled pork in high oxygen storage condition based on hyperspectral technology

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochun; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    The plate count method is commonly used to detect the total viable count (TVC) of bacteria in pork, which is timeconsuming and destructive. It has also been used to study the changes of the TVC in pork under different storage conditions. In recent years, many scholars have explored the non-destructive methods on detecting TVC by using visible near infrared (VIS/NIR) technology and hyperspectral technology. The TVC in chilled pork was monitored under high oxygen condition in this study by using hyperspectral technology in order to evaluate the changes of total bacterial count during storage, and then evaluate advantages and disadvantages of the storage condition. The VIS/NIR hyperspectral images of samples stored in high oxygen condition was acquired by a hyperspectral system in range of 400 1100nm. The actual reference value of total bacteria was measured by standard plate count method, and the results were obtained in 48 hours. The reflection spectra of the samples are extracted and used for the establishment of prediction model for TVC. The spectral preprocessing methods of standard normal variate transformation (SNV), multiple scatter correction (MSC) and derivation was conducted to the original reflectance spectra of samples. Partial least squares regression (PLSR) of TVC was performed and optimized to be the prediction model. The results show that the near infrared hyperspectral technology based on 400-1100nm combined with PLSR model can describe the growth pattern of the total bacteria count of the chilled pork under the condition of high oxygen very vividly and rapidly. The results obtained in this study demonstrate that the nondestructive method of TVC based on NIR hyperspectral has great potential in monitoring of edible safety in processing and storage of meat.

  19. Efficacy of hypobromous acid as a hide-on carcass antimicrobial intervention.

    PubMed

    Schmidt, John W; Wang, Rong; Kalchayanand, Norasak; Wheeler, Tommy L; Koohmaraie, Mohammad

    2012-05-01

    Escherichia coli O157:H7 and Salmonella on cattle hides at slaughter are the main source of beef carcass contamination by these foodborne pathogens during processing. Hypobromous acid (HOBr) has been approved for various applications in meat processing, but the efficacy of HOBr as a hide antimicrobial has not been determined. In this study, the antimicrobial properties of HOBr were determined by spraying cattle hides at either of two concentrations, 220 or 500 ppm. Treatment of hides with 220 ppm of HOBr reduced the prevalence of E. coli O157:H7 on hides from 25.3 to 10.1% (P < 0.05) and reduced the prevalence of Salmonella from 28.3 to 7.1% (P < 0.05). Treatment of hides with 500 ppm of HOBr reduced (P < 0.05) the prevalence of E. coli O157:H7 on hides from 21.2 to 10.1% and the prevalence of Salmonella from 33.3 to 8.1%. The application of 220 ppm of HOBr reduced (P < 0.05) aerobic plate counts, total coliform counts, and E. coli counts on hides by 2.2 log CFU/ 100 cm(2). The use of 500 ppm of HOBr resulted in reductions (P < 0.05) of aerobic plate counts, total coliform counts, and E. coli counts by 3.3, 3.7, and 3.8 log CFU/100 cm(2), respectively, demonstrating that the use of higher concentrations of HOBr on hides resulted in additional antimicrobial activity. These results indicate that the adoption of a HOBr hide wash will reduce hide concentrations of spoilage bacteria and pathogen prevalence, resulting in a lower risk of carcass contamination.

  20. Feasibility study for epidemic prevention and control in a regional hospital.

    PubMed

    Chen, Yung-Liang; Yeh, Ming-Yang; Huang, Shau-Yen; Liu, Chi-Ming; Sun, Chi-Chen; Lu, Hsu-Feng; Chiu, Tsan-Hung; Hsia, Te-Chun; Chung, Jing-Gung

    2012-03-01

    Epidemic prevention policies in hospitals address issues such as, indoor air quality control, cleanliness of medical staff clothing and employee hand-washing procedures. Our hospital employed Bio-Kil to treat air-conditioning filters and nursing staff uniforms. We also assessed the efficacy of different detergents. Using Bio-Kil technology, the mean bacterial count in the air was reduced from 108.8 CFU/h/plate (n=420) to 68.6 CFU/h/plate (n=630). On the lower hems of the Bio-Kil-treated gowns, the mean bacterial count was 1,201 CFU/100 cm(2), markedly lower than the bacterial count of 7,753 CFU/100 cm(2), found on the parts of the gowns not treated with Bio-Kil (p=0.0401). On the cuffs of sleeves treated with Bio-Kil, the mean count was 1,165 CFU/100 cm(2), markedly lower than that of 2,131 CFU/100 cm(2), found on the cuffs not treated with Bio-Kil (p=0.0073). With regard to the mean bacterial eradication rates of antimicrobial solutions, Steridal Solution, 75% alcohol and Bio-Kil (3rd generation) were shown to be the most effective, with rates exceeding 80%. Hibiscrub with paper towels and Fresh Protect Skin were the second most effective. Bio-Kil (1st generation), tap water with paper towels, liquid hand soap with paper towels and ozone water were the least effective. One important observation was that hand-washing without the use of paper towels increased the bacterial count by as much as 84% . Bio-Kil is effective in reducing bacterial counts in the air, on nursing staff uniforms and is an effective detergent.

  1. [Progress of heterotrophic studies on symbiotic corals].

    PubMed

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  2. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  3. Calorie count - sodas and energy drinks

    MedlinePlus

    ... Accessed May 11, 2016. United States Department of Agriculture website. ChooseMyPlate.gov. Make better beverage choices. www. ... Accessed May 11, 2016. United States Department of Agriculture. National nutrient database for standard reference. Release 28. ...

  4. 7 CFR 58.653 - Microbiological requirements for sherbet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for sherbet. The finished product shall contain not more than 50,000 bacteria per gram as determined by the standard plate count and shall contain not more than 10 coliform organisms per gram in...

  5. 7 CFR 58.653 - Microbiological requirements for sherbet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements for sherbet. The finished product shall contain not more than 50,000 bacteria per gram as determined by the standard plate count and shall contain not more than 10 coliform organisms per gram in...

  6. 7 CFR 58.653 - Microbiological requirements for sherbet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements for sherbet. The finished product shall contain not more than 50,000 bacteria per gram as determined by the standard plate count and shall contain not more than 10 coliform organisms per gram in...

  7. Comprehensive System-Based Architecture for an Integrated High Energy Laser Test Bed

    DTIC Science & Technology

    2015-03-01

    76 4. Comparison of Sensors ................................................................76 B. TRANSMISSION...81 b. Photometers .......................................................................84 4. Comparison of Sensors ...88 a. Flat Plate Target Boards, Ablatives, and Acrylite ...........88 b. Photon-Counting Sensors

  8. Microchannel plate EUV detectors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Malina, R. F.; Coburn, K.; Werthimer, D.

    1984-01-01

    The design and operating characteristics of the prototype imaging microchannel plate (MCP) detector for the Extreme Ultraviolet Explorer (EUVE) Satellite are discussed. It is shown that this detector has achieved high position resolution performance (greater than 512 x 512 pixels) and has low (less than one percent) image distortion. In addition, the channel plate scheme used has tight pulse height distributions (less than 40 percent FWHM) for UV radiation and displays low (less than 0.2 cnt/sq cm-s) dark background counting rates. Work that has been done on EUV filters in relation to the envisaged filter and photocathode complement is also described.

  9. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Dreyer, J.; Fan, X.; Kämpfer, B.; Kiselev, S.; Kotte, R.; Garcia, A. Laso; Malkevich, D.; Naumann, L.; Nedosekin, A.; Plotnikov, V.; Stach, D.; Sultanov, R.; Voloshin, K.

    2017-02-01

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  10. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  11. Protective isolation in single-bed rooms: studies in a modified hospital ward

    PubMed Central

    Ayliffe, G. A. J.; Collins, B. J.; Lowbury, E. J. L.; Wall, Mary

    1971-01-01

    Studies were made in a modified hospital ward containing 19 beds, 14 of them in the open ward, one in a window-ventilated side-room, two in rooms with partial-recirculation ventilators giving 7-10 air changes per hour, and two in self-contained isolation suites with plenum ventilation (20 air changes per hour), ultra-violet (UV) barriers at doorways and airlocks. Preliminary tests with aerosols of tracer bacteria showed that few bacteria entered the plenum or recirculation-ventilated rooms. Bacteria released inside mechanically ventilated cubicles escaped into the corridor, but this transfer was reduced by the presence of an airlock. UV barriers at the entrance to the airlock and the cubicle reduced the transfer of bacteria from cubicle to corridor. During a period of 4 years while the ward was in use for surgical and gynaecological patients, the incidence of post-operative sepsis and colonization of wounds by multiple-resistant Staphylococcus aureus was lower (though not significantly lower) in the plenum-ventilated rooms than in the open ward, the recirculator-ventilated cubicles and the window-ventilated cubicles. Nasal acquisition of multiple-resistant Staph. aureus was significantly less common in the plenum-ventilated than in the recirculator-ventilated cubicles and in the other areas. Mean counts of bacteria on settle-plates were significantly lower in the plenum-ventilated cubicles than in the other areas; mean settle-plate counts in the recirculator-ventilated cubicles were significantly lower than in the open ward and in the window-ventilated side-room; similar results were shown by slit-sampling of air. Mean settle-plate counts were significantly lower in all areas when the ward was occupied by female patients. Staph. aureus was rarely carried by air from plenum-ventilated or other cubicles to the open ward, or from the open ward to the cubicles; though staphylococci were transferred from one floor area to another, they did not appear to be redispersed into the air in sufficient numbers to infect the patients. Ultra-violet irradiation caused a significant reduction in the total and staphylococcal counts from the floors of airlocks, and a significant reduction of total counts in the air. PMID:5289715

  12. Antimicrobial Resources for Disinfection of Potable Water Systems for Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Birmele, Michele; Roberts, Michael S.

    2012-01-01

    As human exploration adventures beyond low earth orbit, life support systems will require more innovation and research to become self-sustaining and durable. One major concern about future space travel is the ability to store and decontaminate water for consumption and hygiene. This project explores materials and technologies for possible use in future water systems without requiring point-of-use (POU) filtering or chemical additives such as iodine or silver that require multiple doses to remain effective. This experimentation tested the efficacy of a variety of antimicrobial materials against biofilm formation in a high shear CDC Biofilm Reactor (CBR) and some materials in a low shear Drip Flow Reactor (DFR) which(also utilizes ultra violet light emitting diodes (UVLEDs) as an antimicrobial resource. Most materials were tested in the CBR using the ASTM E 2562-07 1method involving the Pseudomonas aeruginosa and coupon samples that vary in their antimicrobial coatings and surface layer topographies. In a controlled environmental chamber (CEC), the CBR underwent a batch phase, continuous flow phase (CFP), and a harvest before analysis. The DFR portion of this experimentation was performed in order to assess the antimicrobial capabilities of ultraviolet-A LEDs (UV-A) in potable water systems. The ASTM E 2647-08 was modified in order to incorporate UV-A LEDs and to operate as a closed, re-circulating system. The modified DFR apparatus that was utilized contains 4 separate channels each of which contain 2 UV-A LEDs (1 chamber is masked off to serve as a control) and each channel is equipped with its own reservoir and peristaltic pump head. The 10 DFR runs discussed in this report include 4 initial experimental runs that contained blank microscope slides to test the UVA LEDs alone, 2 that incorporated solid silver coupons, 2 that utilized titanium dioxide (Ti02) coupons as a photocatalyst, and 2 runs that utilized silver coated acrylic slides. Both the CBR and DFR experiments were analyzed for microbial content via heterotrophic plate counts (HPC) and acridine orange direct counts (AODC). Ofthe materials used in the CBR, only two materials performed as antiicrobials under high shear conditions (a reduction of 5 or more logs) showing a>7 log reduction in viable microbes.

  13. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.

    PubMed

    Långmark, Jonas; Storey, Michael V; Ashbolt, Nicholas J; Stenström, Thor Axel

    2004-02-01

    The artificial recharge of sand aquifers with raw source waters is a means both explored and utilised by many water utilities to meet the future potable water demands for increasing urban populations. The microbial ecology within these systems is however, poorly understood, as is the role that microbial biofilms play in the quality of finished water. Knowledge of the ability of biofilm bacteria to metabolise natural organic matter (NOM) is limited, particularly in respect to the degradation of normally recalcitrant hydrophilic and hydrophobic humic acid fractions by sessile and planktonic microbial consortia within sand aquifer systems. To simulate the artificial recharge of sand aquifers that were proposed for the Greater Stockholm Area, four separate 4 m deep sand columns were fed raw lake water and examined over a 45-week study period. The simulated aquifer system (hydraulic retention time 9-16 h) demonstrated the removal of total organic carbon (TOC) (10+/-5%), direct total counts (DTC) of bacteria (74+/-11%), heterotrophic plate count (HPC) bacteria (87+/-5%) and assimilable organic carbon (AOC) (87+/-5%), thereby fulfilling an important barrier function, except for the removal of TOC. Hydrophilic humic acid fractions were more readily metabolised by microbiota (HPC and EUB338-positive cells) harvested from the raw source water (SSM-W), whilst hydrophobic humic acid fractions promoted higher activity by microbiota harvested from the sand matrix (SSM-S). The apparent low activity demonstrated by biofilm microbiota (approximately 40% and 25% of DTC were positive to EUB338 probing for sand matrix and slide biofilms, respectively) could be attributed to the highly recalcitrant nature of the organic loads, whilst at the same time explain the poor removal of TOC. Following nutrient activation (by the PAC assay) nonetheless, a 3-fold increase in the percentage of EUB-positive bacteria was observed on glass slides. Furthermore, the incubation of SSM-S with R2A increased probe-active cells from 57+/-8% to 75+/-7% of DTC and at the same time increased SSM-W from 38+/-8% to 50+/-10%. Whilst these results may imply a good potential for the biological treatment of water by shallow sand aquifers, further work should address the poor removal of TOC observed in this study.

  14. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  15. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Treesearch

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  16. Oceanic heterotrophic dinoflagellates: distribution, abundance, and role as microzooplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessard, E.J.

    1984-01-01

    The primary objectives of this thesis were to determine the distribution and abundance of heterotrophic dinoflagellates across the Gulf Stream system off Cape Hatteras and to assess the potential grazing impact of these microheterotrophs in plankton communities. A list of species encountered in this study and their trophic status based on epifluorescence is presented, as well as observations on the presence of external or internal symbionts. The abundance of heterotrophic dinoflagellates across the Gulf Stream region off Cape Hatteras was determined from bimonthly net tow samples over a year and from whole water samples in March. Their average abundance wasmore » twice that of net ciliates in the net plankton and ten times that of ciliates in the nanoplankton. An isotope technique was developed to measure grazing rates of individual dinoflaggellates and other microzooplankton which cannot be separated in natural populations on the basis of size. /sup 3/H-thymidine and /sup 14/C-bicarbonate were used to label natural heterotrophic (bacteria and bacterivores) and autotrophic (phytoplankton and herbivores) food, respectively. Estimates of the grazing impact of heterotrophic kinoflagellates relative to other groups of heterotrophs on phytoplankton and bacteria were made by combining abundance data and clearance rates. Such calculations suggested that heterotrophic dinoflagellates may be an important group of grazers in oceanic waters.« less

  17. Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico.

    PubMed

    Popendorf, Kimberly J; Duhamel, Solange

    2015-10-01

    Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Fortifying fresh human milk with commercial powdered human milk fortifiers does not affect bacterial growth during 6 hours at room temperature.

    PubMed

    Telang, Sucheta; Berseth, Carol Lynn; Ferguson, Paul W; Kinder, Julie M; DeRoin, Mark; Petschow, Bryon W

    2005-10-01

    To evaluate the growth of resident aerobic mesophilic flora and added Enterobacter sakazakii in fresh, unfortified human milk; fresh human milk fortified with two commercial powdered fortifiers differing in iron content; and infant formula prepared from powder. Eight mothers provided preterm breast milk samples. Breast milk samples were divided into three aliquots: unfortified, fortified with fortifier containing 1.44 mg iron/14 kcal, and fortified with fortifier containing 0.4 mg iron/14 kcal. Aliquots of formula were prepared. Breast milk and formula aliquots were divided into two test samples. Half were inoculated with low amounts of E sakazakii; half were not. All test samples were maintained at room temperature (22 degrees C), serially diluted, and plated onto agars after 0, 2, 4, and 6 hours. Plates were incubated at 35 degrees C and enumerated. Data were analyzed using repeated measures analysis of variance. P<.05 was considered significant. There were no differences in colony counts of aerobic bacteria among uninoculated or among inoculated human milk samples at any time; counts did not increase significantly over 6 hours. There were no differences in colony counts of E sakazakii among inoculated human milk samples at any time; counts did not increase significantly over 6 hours. Aerobic bacteria and E sakazakii colony counts from infant formula did not increase significantly over 6 hours. During 6 hours at 22 degrees C, fresh human milk and formula had negligible bacterial growth; fortifying human milk with powdered fortifiers did not affect bacterial growth.

  19. Escherichia coli viability determination using dynamic light scattering: a comparison with standard methods.

    PubMed

    Loske, Achim M; Tello, Elba M; Vargas, Susana; Rodriguez, Rogelio

    2014-08-01

    To determine the concentration of bacteria in a sample is important in the food industry, medicine and biotechnology. A disadvantage of the plate-counting method is that a microorganism colony could arise from one cell or from many cells. The other standard methodology, known as optical density determination, is based on the turbidity of a suspension and registers all bacteria, dead and alive. In this article, dynamic light scattering is proposed as a fast and reliable method to determine bacterial viability and, consequently, time evolution. Escherichia coli was selected because this microorganism is well known and easy to handle. A correlation between the data from these three techniques was obtained. We were able to calculate the growth rate, usually determined by plate counting or optical density measurement, using dynamic light scattering and to predict bacterial behavior. An analytical relationship between the colony forming units and the light scattered intensity was also deduced.

  20. Lung counting: comparison of detector performance with a four detector array that has either metal or carbon fibre end caps, and the effect on mda calculation.

    PubMed

    Ahmed, Asm Sabbir; Hauck, Barry; Kramer, Gary H

    2012-08-01

    This study described the performance of an array of high-purity Germanium detectors, designed with two different end cap materials-steel and carbon fibre. The advantages and disadvantages of using this detector type in the estimation of the minimum detectable activity (MDA) for different energy peaks of isotope (152)Eu were illustrated. A Monte Carlo model was developed to study the detection efficiency for the detector array. A voxelised Lawrence Livermore torso phantom, equipped with lung, chest plates and overlay plates, was used to mimic a typical lung counting protocol with the array of detectors. The lung of the phantom simulated the volumetric source organ. A significantly low MDA was estimated for energy peaks at 40 keV and at a chest wall thickness of 6.64 cm.

  1. Quality control of fifteen probiotic products containing Saccharomyces boulardii.

    PubMed

    Vanhee, L M E; Goemé, F; Nelis, H J; Coenye, T

    2010-11-01

    The yeast Saccharomyces boulardii is used as a probiotic for the prevention and treatment of diarrhoea. In this study, the quality of 15 probiotic products containing S. boulardii was verified. Using microsatellite typing, the identity of all Saccharomyces strains in the products was confirmed as S. boulardii. Additionally, solid-phase cytometry (SPC) and a plate method were used to enumerate S. boulardii cells. SPC was not only able to produce results more rapidly than plating (4h compared to 48h) but the cell counts obtained with SPC were significantly higher than the plate counts. Finally, we found that <1% of the S. boulardii cells survived 120min in gastric conditions and storage for 3months at 40°C with 75% relative humidity. We developed a SPC method for the quantification of viable S. boulardii cells in probiotics. Additionally, we demonstrated that gastric conditions and storage have a marked effect on the viability of the yeast cells.   To our knowledge, this is the first time SPC is used for the quality control of probiotics with S. boulardii. Additionally, we demonstrated the need for gastric protection and accurate storage. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  2. A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Yuan; Hsiung, Lo-Chang; Wang, Chen-Ho; Chiang, Chi-Ling; Lin, Ching-Hung; Huang, Chiun-Sheng; Wo, Andrew M.

    2015-04-01

    Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.

  3. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Stephanie G.; Yan, Leo L. W.; Silver, Pamela A.

    In this study, microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyadsmore » reveals general design principles for the construction of robust autotroph/heterotroph consortia. As a result, we observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. In conclusion, enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence cyanobacteria/heterotroph consortia robustness. The modular nature of these communities and their unusual robustness exhibits promise as a platform for highly-versatile photoproduction strategies that capitalize on multi-species interactions and could be utilized as a tool for the study of nascent symbioses. Further consortia improvements via engineered interventions beyond those we show here (i.e., increased efficiency growing on sucrose) could improve these communities as production platforms.« less

  4. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction

    DOE PAGES

    Hays, Stephanie G.; Yan, Leo L. W.; Silver, Pamela A.; ...

    2017-01-23

    In this study, microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyadsmore » reveals general design principles for the construction of robust autotroph/heterotroph consortia. As a result, we observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. In conclusion, enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence cyanobacteria/heterotroph consortia robustness. The modular nature of these communities and their unusual robustness exhibits promise as a platform for highly-versatile photoproduction strategies that capitalize on multi-species interactions and could be utilized as a tool for the study of nascent symbioses. Further consortia improvements via engineered interventions beyond those we show here (i.e., increased efficiency growing on sucrose) could improve these communities as production platforms.« less

  5. Diversity and distribution of heterotrophic dinoflagellates from the coastal waters of Port Blair, South Andaman.

    PubMed

    Sai Elangovan, S; Padmavati, G

    2017-11-06

    The interaction between the environment and heterotrophic dinoflagellates inhabiting coastal waters of South Andaman was studied based on year round collections made during September 2012-August 2013 in the bay, eastern, and western region of South Andaman. The distribution pattern of microzooplankton in South Andaman showed high abundance in eutrophic waters (bay region) and gradually decreased towards the off shore region. Microzooplankton community comprised of six different taxa, viz. tintinnids, heterotrophic dinoflagellates, non-loricate ciliates, Foraminifera, Rotifera, and Copepoda (nauplii). Tintinnids were the major component of the microzooplankton (43.8 ± 7%) followed by heterotrophic dinoflagellates (34 ± 12%) and copepod nauplii (18.8 ± 4.0%). This study focused on heterotrophic dinoflagellates which ranked next to tintinnids in overall abundance and contributed 38-42% in the bay, 22-37% in the eastern, and 15-29% in the western region to the microzooplankton community. Dinoflagellates showed a positive correlation with salinity and a negative correlation with dissolved oxygen and chlorophyll a (r = - 0.3). Abundance of heterotrophic dinoflagellates in this area may be due to their diverse and advantageous mode of nutrition. A total of 35 species belonging to 8 genera of heterotrophic dinoflagellates were recorded during the study period. Heterotrophic dinoflagellates showed a great potential to thrive in low oxygenated and low productive area (p < 0.001, Mann-Whitney test). Relatively higher diversity (H') in the dinoflagellates population was found in the bay region (avg. H' = 3.46).

  6. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    PubMed Central

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice C.; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-01-01

    Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities. PMID:24778628

  7. Competition between autotrophic and heterotrophic microbial plankton for inorganic nutrients induced by variability in estuarine biophysicochemical conditions

    NASA Astrophysics Data System (ADS)

    Williams, A.; Quigg, A.

    2016-02-01

    Competition for inorganic nutrients between autotrophic and heterotrophic fractions of microbial plankton (0.2-20μm) was investigated at two stations in a sub-tropical estuary, Galveston Bay, Texas. Competition potential between these groups is enhanced because individuals are similar in size, reducing variability among their nutrient uptake efficiencies. Further, in estuaries, allochthonous supplements to autochthonous carbon may satisfy heterotrophic requirements, allowing alternative factors to limit abundance. The relative abundance of autotrophs and heterotrophs stained with SYBR Green I and enumerated on a Beckman Coulter Gallios flow cytometer were evaluated monthly during a year-long study. Shifts in the relative in situ abundance were significantly related to temperature, dissolved inorganic nitrogen (DIN), phosphorous (Pi), and total organic carbon (TOC) concentrations revealing opposing gradients of limitation by different abiotic factors. In corresponding in vitro nutrient enrichment bioassays the relative contribution of autotrophic or heterotrophic microbial plankton to significant enrichment responses varied. Only during macro- (>20μm) phytoplankton blooms do autotrophic microbial plankton respond to nutrient enrichment. Contrastingly, the heterotrophic microbial plankton responded to nutrient enrichment primarily when temperature limitation was alleviated. Therefore, the potential for autotrophic and heterotrophic microbial plankton competition for limiting nutrients is highest when autotrophic microbial plankton are also competing with larger phytoplankton during bloom events. Based on this evidence, we hypothesize that the autotrophic microbial fraction has a competitive advantage over the heterotrophs for inorganic nutrients in Galveston Bay. The observed microbial competition during estuarine phytoplankton blooms may have important consequences on biogeochemical processes including carbon and nutrient cycling.

  8. The effect of an antibacterial washing-up liquid in reducing dishwater aerobic plate counts.

    PubMed

    Holah, J T; Hall, K E

    2006-05-01

    To assess any significant differences in the aerobic plate count (APC) of catering dishwaters following the use of a traditional, nonantibacterial or an antibacterial washing-up liquid. A dishwashing trial was undertaken within a commercial restaurant of 6 weeks duration (3 weeks with each washing-up liquid in a randomized, weekly pattern). Five replicate samples were taken from the dishwater at the end of the washing-up operation, on three separate occasions each day corresponding to mid-morning, lunchtime and mid-afternoon meal preparations. The antibacterial product was shown to significantly reduce the APC by an average log10 reduction of 1.81 CFU ml(-1) (98.5%) as compared with the traditional product. APC were lower for each of the three weekly time periods for the antibacterial product. Continued use of the antibacterial product did not decrease the APC of the dishwater, though with the traditional product, dishwater counts increased throughout the trial week. Antibacterial washing-up liquids, with proven activity in controlling levels of microorganisms in dishwaters, could play a significant role in reducing the risk of cross-contamination between washed articles during washing-up operations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, M.; Hugot, G.

    A procedure is described for the detection of alpha -emitting contaminants of the respiratory tract. The method is useful when contamination from inhaled Pu/sup 239/ is suspected. Sputum, collected early in the morning, is dissolved in mineral acids and then evaporated on a stainiess steel plate. Radioautograms are prepared by placing the plate in contact with a nuclear emulsion. The number of tracks appearing after 24 and 48 hrs and 7 days is counted. The results are useful in estimating internal contamination and in following removal from the respiratory tract. (C.H.)

  10. The Sydney University PAPA camera

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.

    1994-04-01

    The Precision Analog Photon Address (PAPA) camera is a photon-counting array detector that uses optical encoding to locate photon events on the output of a microchannel plate image intensifier. The Sydney University camera is a 256x256 pixel detector which can operate at speeds greater than 1 million photons per second and produce individual photon coordinates with a deadtime of only 300 ns. It uses a new Gray coded mask-plate which permits a simplified optical alignment and successfully guards against vignetting artifacts.

  11. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  12. Bare below elbows: does this policy affect handwashing efficacy and reduce bacterial colonisation?

    PubMed Central

    Burger, A; Wijewardena, C; Clayson, S; Greatorex, RA

    2010-01-01

    INTRODUCTION UK Department of Health guidelines recommend that clinical staff are ‘bare below the elbows’. There is a paucity of evidence to support this policy. One may hypothesise that absence of clothing around wrists facilitates more effective handwashing: this study aims to establish whether dress code affects bacterial colonisation before and after handwashing. SUBJECTS AND METHODS Sixty-six clinical staff volunteered to take part in the study, noting whether they were bare below the elbows (BBE) or not bare (NB). Using a standardised technique, imprints of left and right fingers, palms, wrists and forearms were taken onto mini agar plates. Imprints were repeated after handwashing. After incubation, colonies per plate were counted, and subcultures taken. RESULTS Thirty-eight staff were BBE and 28 were not. A total of 1112 plates were cultured. Before handwashing there was no significant difference in number of colonies between BBE and NB groups (Mann–Whitney, P < 0.05). Handwashing reduced the colony count, with greatest effect on fingers, palms and dominant wrists (t-test, P < 0.05). Comparing the two groups again after handwashing revealed no significant difference (Mann–Whitney, P < 0.05). Subcultures revealed predominantly skin flora. CONCLUSIONS There was a large variation in number of colonies cultured. Handwashing resulted in a statistically significant reduction in colony count on fingers, palms and dominant wrist regardless of clothing. We conclude that handwashing produces a significant reduction in number of bacterial colonies on staff hands, and that clothing that is not BBE does not impede this reduction. PMID:20727253

  13. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less

  14. Relationship between salivary flow rates and Candida counts in subjects with xerostomia.

    PubMed

    Torres, Sandra R; Peixoto, Camila Bernardo; Caldas, Daniele Manhães; Silva, Eline Barboza; Akiti, Tiyomi; Nucci, Márcio; de Uzeda, Milton

    2002-02-01

    This study evaluated the relationship between salivary flow and Candida colony counts in the saliva of patients with xerostomia. Sialometry and Candida colony-forming unit (CFU) counts were taken from 112 subjects who reported xerostomia in a questionnaire. Chewing-stimulated whole saliva was collected and streaked in Candida plates and counted in 72 hours. Species identification was accomplished under standard methods. There was a significant inverse relationship between salivary flow and Candida CFU counts (P =.007) when subjects with high colony counts were analyzed (cutoff point of 400 or greater CFU/mL). In addition, the median sialometry of men was significantly greater than that of women (P =.003), even after controlling for confounding variables like underlying disease and medications. Sjögren's syndrome was associated with low salivary flow rate (P =.007). There was no relationship between the median Candida CFU counts and gender or age. There was a high frequency (28%) of mixed colonization. Candida albicans was the most frequent species, followed by C parapsilosis, C tropicalis, and C krusei. In subjects with high Candida CFU counts there was an inverse relationship between salivary flow and Candida CFU counts.

  15. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.

    PubMed

    Rivas, Lucia; Dykes, Gary A; Fegan, Narelle

    2007-04-01

    Attachment of Shiga toxigenic Escherichia coli (STEC) to surfaces and the formation of biofilms may enhance persistence in a food processing environment and present a risk of contaminating products. Seven strains of STEC and three non-STEC strains were selected to compare two biofilm quantification methods; epifluorescence microscopy on stainless steel (SS) and a microtitre plate assay. The influence of prior growth in planktonic (nutrient broth) and sessile (nutrient agar) culture on biofilm production, as well as expression of surface structures and the possession of antigen 43 (encoded by agn43) on biofilm formation were also investigated. Biofilms were produced in diluted nutrient broth at 25 degrees C for 24 and 48 h. Curli expression was determined using congo red indicator agar, while the presence of agn43 was determined using polymerase chain reaction. No correlation was found between counts for epifluorescence microscopy on SS and the absorbance values obtained with the microtitre plate method for planktonic and sessile grown cultures. Different abilities of individual STEC strains to attach to SS and microtitre plates were found with some strains attaching better to each surface following growth in either planktonic or sessile culture. All O157 STEC strains had low biofilm counts on SS for planktonic and sessile grown cultures; however, one STEC O157:H- strain (EC516) had significantly greater (p<0.05) biofilm production on microtitre plates compared to the other O157 STEC strains. EC516 and other STEC (O174:H21 and O91:H21) strains expressing curli fimbriae were found to produce significantly greater (p<0.05) biofilms on microtitre plates compared to the non-curli expressing strains. No relationship was found between the production of type-I fimbriae, motility, agn43 and bacterial physicochemical properties (previously determined) and biofilm formation on SS or microtitre plates. Variations between the two biofilm determination methods may suggest that the biofilm production on microtitre plates may not be appropriate to represent other surfaces such as SS and that caution should be taken when selecting a method to quantify biofilm production on a surface.

  16. Bacteriological quality of drinking water from dispensers (coolers) and possible control measures.

    PubMed

    Baumgartner, Andreas; Grand, Marius

    2006-12-01

    Three water dispensers (coolers) were bacteriologically monitored over a period of 3 months to evaluate their hygienic status. For this purpose, 174 samples of chilled and unchilled water were analyzed for levels of mesophilic aerobic bacteria and the presence of Escherichia coli and enterococci in 100-ml samples, and the presence of Pseudomonas aeruginosa in 10- and 100-ml samples. Additionally, 12 samples from 20-liter plastic bottles of spring water used to supply the coolers and 36 samples of 12 different brands of noncarbonated bottled mineral water were similarly analyzed. Water from the coolers yielded aerobic plate counts of 3 to 5 log CFU/ml with a geometric mean of 3.86 log CFU/ml, whereas water from the 20-liter bottles had a mean aerobic plate count of 3.3 log CFU/ml. Aerobic plate counts for noncarbonated mineral waters were generally lower (13 samples, < 10 CFU/ml; 6 samples, 10 to 10(2) CFU/ml; 13 samples, 10(2) to 10(3) CFU/ml; 3 samples, 10(3) to 10(4) CFU/ ml; 1 sample, 2 x 10(4) CFU/ml). Although occasional professional cleaning of the coolers did not affect the aerobic plate count, P. aeruginosa was successfully eliminated 2 weeks after cleaning, with only one cooler becoming recolonized. Neither E. coli nor enterococci was found in any of the water samples tested. However, P. aeruginosa was identified in three (25%) of twelve 100-ml samples from 20-liter bottles of spring water; a similar frequency of 24.1% was seen for water samples from coolers. Overall, 35 (21.6%) of 162 water samples (10 ml) from coolers also yielded P. aeruginosa, suggesting potential growth of P. aeruginosa in the dispensers. Pulsed-field gel electrophoresis typing and antibiotic susceptibility testing found 19 P. aeruginosa isolates from the coolers and bottles to be identical, indicating that a single strain originated from the bottled water rather than the surroundings of the coolers. Because P. aeruginosa can cause serious nosocomial infections, its spread should be strictly controlled in institutions caring for vulnerable people such as hospitals and nursing homes. Consequently, in keeping with legal requirement for bottled spring and mineral water in Switzerland, it is also advisable that P. aeruginosa be absent in 100-ml samples of cooler water.

  17. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    PubMed Central

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall’Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. PMID:27198027

  18. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79

    PubMed Central

    Sedlacek, Christopher J.; Nielsen, Susanne; Greis, Kenneth D.; Haffey, Wendy D.; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J.

    2016-01-01

    ABSTRACT Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. IMPORTANCE Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to nitrite. In their natural environment, they coexist and interact with nitrite oxidizers, which convert nitrite to nitrate, and with heterotrophic microorganisms. The presence of nitrite oxidizers and heterotrophic bacteria has a positive influence on the growth of the ammonia oxidizers. Here, we present a study investigating the effect of nitrite oxidizers and heterotrophic bacteria on the proteome of a selected ammonia oxidizer in a defined culture to elucidate how these two groups improve the performance of the ammonia oxidizer. The results show that the presence of a nitrite oxidizer and heterotrophic bacteria reduced the stress for the ammonia oxidizer and resulted in more efficient energy generation. This study contributes to our understanding of microbe-microbe interactions, in particular between ammonia oxidizers and their neighboring microbial community. PMID:27235442

  19. Strong, weak, and missing links in a microbial community of the N.W. Mediterranean Sea.

    PubMed

    Bettarel, Y; Dolan, J R; Hornak, K; Lemée, R; Masin, M; Pedrotti, M-L; Rochelle-Newall, E; Simek, K; Sime-Ngando, T

    2002-12-01

    Planktonic microbial communities often appear stable over periods of days and thus tight links are assumed to exist between different functional groups (i.e. producers and consumers). We examined these links by characterizing short-term temporal correspondences in the concentrations and activities of microbial groups sampled from 1 m depth, at a coastal site of the N.W. Mediterranean Sea, in September 2001 every 3 h for 3 days. We estimated the abundance and activity rates of the autotrophic prokaryote Synechococcus, heterotrophic bacteria, viruses, heterotrophic nanoflagellates, as well as dissolved organic carbon concentrations. We found that Synechococcus, heterotrophic bacteria, and viruses displayed distinct patterns. Synechococcus abundance was greatest at midnight and lowest at 21:00 and showed the common pattern of an early evening maximum in dividing cells. In contrast, viral concentrations were minimal at midnight and maximal at 18:00. Viral infection of heterotrophic bacteria was rare (0.5-2.5%) and appeared to peak at 03:00. Heterotrophic bacteria, as % eubacteria-positive cells, peaked at midday, appearing loosely related to relative changes in dissolved organic carbon concentration. Bacterial production as assessed by leucine incorporation showed no consistent temporal pattern but could be related to shifts in the grazing rates of heterotrophic nanoflagellates and viral infection rates. Estimates of virus-induced mortality of heterotrophic bacteria, based on infection frequencies, were only about 10% of cell production. Overall, the dynamics of viruses appeared more closely related to Synechococcus than to heterotrophic bacteria. Thus, we found weak links between dissolved organic carbon concentration, or grazing, and bacterial activity, a possibly strong link between Synechococcus and viruses, and a missing link between light and viruses.

  20. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity.

    PubMed

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile genetic potential to adapt to the unique environmental conditions.

  1. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  2. Resource-limited heterotrophic prokaryote production and its potential environmental impact associated with Mn nodule exploitation in the northeast equatorial pacific.

    PubMed

    Hyun, Jung-Ho

    2006-08-01

    Shipboard enrichment incubation experiments were performed to elucidate the limiting resources for heterotrophic prokaryotic production and to discuss the potential impact of bottom water and sediment discharges in relation to manganese (Mn) nodule exploitation on the heterotrophic prokaryotes in the oligotrophic northeast equatorial Pacific. Compared to an unamended control, the production of heterotrophic prokaryotes increased 25-fold in water samples supplemented with amino acids (i.e., organic carbon plus nitrogen), whereas the production increased five and two times, respectively, in samples supplemented with either glucose or ammonium alone. These results indicate that heterotrophic prokaryote production in the northeast equatorial Pacific was co-limited by the availability of dissolved organic carbon and inorganic nitrogen. In samples from the nutrient-depleted surface mixed layer (10-m depth), the addition of a slurry of bottom water and sediment doubled heterotrophic prokaryote production compared to an unamended control, whereas sonicating the slurry prior to addition quadrupled the production rate. However, little difference was observed between an unamended control and slurry-amended samples in the subsurface chlorophyll a (Chl a) maximum (SCM) layer. Thus, the impact of slurry discharge is more significant at the nutrient-depleted surface mixed layer than at the high-nutrient SCM layer. The greatly enhanced prokaryote production resulting from the addition of sonicated slurry further suggests that dissociated organic carbon may directly stimulate heterotrophic prokaryote production in the surface mixed layer. Overall, the results suggest that the surface discharge of bottom water and sediments during manganese nodule exploitation could have a significant environmental impact on the production of heterotrophic prokaryotes that are currently resource limited.

  3. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

    PubMed Central

    Pepe-Ranney, Charles; Hall, Edward K.

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  4. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity

    PubMed Central

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A.; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile genetic potential to adapt to the unique environmental conditions. PMID:29527196

  5. Heterotrophic cultivation of microalgae for pigment production: A review.

    PubMed

    Hu, Jianjun; Nagarajan, Dillirani; Zhang, Quanguo; Chang, Jo-Shu; Lee, Duu-Jong

    Pigments (mainly carotenoids) are important nutraceuticals known for their potent anti-oxidant activities and have been used extensively as high end health supplements. Microalgae are the most promising sources of natural carotenoids and are devoid of the toxic effects associated with synthetic derivatives. Compared to photoautotrophic cultivation, heterotrophic cultivation of microalgae in well-controlled bioreactors for pigments production has attracted much attention for commercial applications due to overcoming the difficulties associated with the supply of CO 2 and light, as well as avoiding the contamination problems and land requirements in open autotrophic culture systems. In this review, the heterotrophic metabolic potential of microalgae and their uses in pigment production are comprehensively described. Strategies to enhance pigment production under heterotrophic conditions are critically discussed and the challenges faced in heterotrophic pigment production with possible alternative solutions are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions.

    PubMed

    Fernandez-Fontaina, E; Gomes, I B; Aga, D S; Omil, F; Lema, J M; Carballa, M

    2016-01-15

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    PubMed

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. Copyright © 2016 da Silva et al.

  8. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea.

    PubMed

    Almeda, Rodrigo; Connelly, Tara L; Buskey, Edward J

    2014-12-19

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude oil droplets (1-86 μm in diameter) by heterotrophic dinoflagellates, major components of marine planktonic food webs. At a crude oil concentration commonly found after an oil spill (1 μL L(-1)), the heterotrophic dinoflagellates Noctiluca scintillans and Gyrodinium spirale grew and ingested ~0.37 μg-oil μg-C(dino)(-1) d(-1), which could represent ~17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills.

  9. Nitrification in histosols: a potential role for the heterotrophic nitrifier.

    PubMed

    Tate, R L

    1977-04-01

    Insufficient populations of Nitrosomonas and Nitrobacter were found in a Pahokee muck soil (Lithic medidaprit) to account for the nitrate concentration observed. To determine if heterotrophic nitrifiers could account for some of this discrepancy, a method was developed to measure the levels of heterotrophic nitrifiers in soil. A population of 4.1 X 10(5) Arthrobacter per g of dry fallow soil, capable of producing nitrite and/or nitrate from reduced nitrogenous compounds, was observed. Amendment of the much with 0.5% (wt/wt) sodium acetate and 0.1% (wt/wt) ammonium-nitrogen as ammonium sulfate (final concentrations) not only resulted in the usual increase in autotrophic nitrifiers, but also in a fourfold increase in the heterotrophic nitrifying Arrthrobacter. Amendment of like samples with N-Serve [2-chloro-6(trichloromethyl) pyridinel] prevented the increase in Nitrosomonas, but not that in the heterotrophic nitrifiers. Nitrate production in the presence of the inhibitor was diminished but not prevented. An Arthrobacter sp., isolated from the muck, produced nitrite when inoculated at high densities into sterile soil, unamended or amended with sodium acetate and/or ammomium sulfate. These data suggest that the heterotrophic population may be responsible for some of the nitrate produced in these Histosols.

  10. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities.

    PubMed

    Zhang, Tingting; Wang, Xiaowei; Zhou, Jiti; Zhang, Yu

    2018-03-01

    Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N 2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O 2 content synthesized more PHB, which had a wider optimal CH 4 :O 2 range and produced a high PHB content (48.7%) even though in the presence of N 2 . In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities. Copyright © 2017. Published by Elsevier B.V.

  11. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    PubMed Central

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2014-01-01

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude oil droplets (1–86 μm in diameter) by heterotrophic dinoflagellates, major components of marine planktonic food webs. At a crude oil concentration commonly found after an oil spill (1 μL L−1), the heterotrophic dinoflagellates Noctiluca scintillans and Gyrodinium spirale grew and ingested ~0.37 μg-oil μg-Cdino−1 d−1, which could represent ~17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills. PMID:25523528

  12. In vitro effect of Reiki treatment on bacterial cultures: Role of experimental context and practitioner well-being.

    PubMed

    Rubik, Beverly; Brooks, Audrey J; Schwartz, Gary E

    2006-01-01

    To measure effects of Reiki treatments on growth of heat-shocked bacteria, and to determine the influence of healing context and practitioner well-being. Overnight cultures of Escherichia coli K12 in fresh medium were used. Culture samples were paired with controls to minimize any ordering effects. Samples were heat-shocked prior to Reiki treatment, which was performed by Reiki practitioners for up to 15 minutes, with untreated controls. Plate-count assay using an automated colony counter determined the number of viable bacteria. Fourteen Reiki practitioners each completed 3 runs (n = 42 runs) without healing context, and another 2 runs (n = 28 runs) in which they first treated a pain patient for 30 minutes (healing context). Well-being questionnaires were administered to practitioners pre-post all sessions. No overall difference was found between the Reiki and control plates in the nonhealing context. In the healing context, the Reiki treated cultures overall exhibited significantly more bacteria than controls (p < 0.05). Practitioner social (p < 0.013) and emotional well-being (p < 0.021) correlated with Reiki treatment outcome on bacterial cultures in the nonhealing context. Practitioner social (p < 0.031), physical (p < 0.030), and emotional (p < 0.026) well-being correlated with Reiki treatment outcome on the bacterial cultures in the healing context. For practitioners starting with diminished well-being, control counts were likely to be higher than Reiki-treated bacterial counts. For practitioners starting with a higher level of well-being, Reiki counts were likely to be higher than control counts. Reiki improved growth of heat-shocked bacterial cultures in a healing context. The initial level of well-being of the Reiki practitioners correlates with the outcome of Reiki on bacterial culture growth and is key to the results obtained.

  13. The Effect of Light on Bacterial Activity in a Seaweed Holobiont.

    PubMed

    Coelho-Souza, Sergio A; Jenkins, Stuart R; Casarin, Antonio; Baeta-Neves, Maria Helena; Salgado, Leonardo T; Guimaraes, Jean R D; Coutinho, Ricardo

    2017-11-01

    Holobionts are characterized by the relationship between host and their associated organisms such as the biofilm associated with macroalgae. Considering that light is essential to macroalgae survival, the aim of this study was to verify the effect of light on the heterotrophic activity in biofilms of the brown macroalgae Sargassum furcatum during its growth cycle. Measurements of heterotrophic activity were done under natural light levels at different times during a daily cycle and under an artificial extinction of natural light during the afternoon. We also measured Sargassum primary production under these light levels in the afternoon. Both measurements were done with and without photosynthesis inhibitor and antibiotics. Biofilm composition was mainly represented by bacteria but diatoms, cyanobacteria, and other organisms were also common. When a peak of diatom genera was recorded, the heterotrophic activity of the biofilm was higher. Heterotrophic activity was usually highest during the afternoon and the presence of a photosynthesis inhibitor caused an average reduction of 17% but there was no relationship with Sargassum primary production. These results indicate that autotrophic production in the biofilm was reduced by the inhibitor with consequences on bacterial activity. Heterotrophic activity was mainly bacterial and the antibiotics chloramphenicol and penicillin were more effective than streptomycin. We suggest primary producers in the biofilm are more important to increase bacterial activity than the macroalgae itself because of coherence of the peaks of heterotrophic and autotrophic activity in biofilm during the afternoon and the effects of autotrophic inhibitors on heterotrophic activity.

  14. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    NASA Astrophysics Data System (ADS)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    Built between the walls of Herculaneum excavations, one of the world's most important archaeological sites, and the sea in the early 1st cent. AD, the Suburban Bath is one of the best thermal complexes better preserved in ancient times. The entrance opens onto a large courtyard that leads into a hallway well lit by a skylight, impluvium, with a portrait of "Apollo". From this room you can access various parts of the thermae, all beautifully preserved. A single room, mostly occupied by the pool, serving both apodyterium (dressing room) that frigidarium. Among tepidarium and frigidarium there's a room elegantly decorated with stucco and marble. The vestibule opens to the right, through a corridor, onto a waiting room with a floor in signinum opus and into a praefurnium (oven for heating). A large pool of tepidarium, connected with laconicum, a small circular room for the baths sweat, is also present. The calidarium, as usual, has a small tank for hot water and a basin for washing in cold water. Behind the calidarium is the praefurnium, an environment with the boiler for heating the bath. Although the suburban baths are well preserved, unfortunately in you can observe the development of visible microbial coatings. During the biodeterioration process, secondary colonization of wall is due to heterotrophic bacteria and fungi that induce deterioration cause structural as well as aesthetic damage such as the discoloration of materials, the formation of crusts on surfaces and the loss of material. This investigation was carried out sampling the surfaces of walls of different rooms in the Suburban Thermae according to Italian legal procedures. Depending on the samples typology, sampling was carry out using sterile nitrocellulose membranes pressed on the surface of the walls, sterile swabs or with sterile tweezers by tearing out surface material. The samples were suspended in physiological solution and immediately refrigerated until analysis. Isolated colonies grown on PCA plates were purified in the same growth medium by streaking and differentiated by assessing their morphological (phase-contrast microscopy) and biochemical characteristics (Gram-stains KOH-lysis and catalase activity). Cultural-based method allow us to identify by 16S and 26S rRNA partial sequence analysis, heterotrophic bacteria belonging to different genera as Bacillus, Pseudomonas, Aeromonas and Microbacterium. By using this approach, Bacillus-related species (B. benzoevorans, B. megaterium and B. pumilis and B. megaterium/B. simplex group) as well as Aeromonas sobria/Aeromonas salmonicida/Aeromonas hydrophila group, Pseudomonas plecoglossicida and Microbacterium esteraromaticum were isolated in different sample points analysed. DGGE analysis of PCR amplified V3 region of rDNA from DNA directly recovered from samples of biofilms and patina, enabled identification of bacterial species not found using culturable technology, as those closest related to Aeromonas, Paenibacillus, Brevibacterium, Exiguobacterium, Microbacterium, Brevibacterium, Stenothophomonas and Streptomyces. Combination of culture-dependent and independent methods provide a better characterization of heterotrophic microbiota that colonize the surface of ancient decorated walls and can contribute to understand the potential of biodeterioration activity by heterotrophic microorganisms.

  15. Beyond the standard plate count: genomic views into microbial food ecology

    USDA-ARS?s Scientific Manuscript database

    Food spoilage is a complex process that involves multiple species with specific niches and metabolic processes; bacterial culturing techniques are the traditional methods for identifying the microbes responsible. These culture-dependent methods may be considered selective, targeting the isolation of...

  16. High Speed Large Format Photon Counting Microchannel Plate Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.; Craven, C.; Popecki, M.; O'Mahony, A.; Minot, M.

    The development of a new class of microchannel plate technology, using atomic layer deposition (ALD) techniques applied to a borosilicate microcapillary array is enabling the implementation of larger, more stable detectors for Astronomy and remote sensing. Sealed tubes with MCPs with SuperGenII, bialkali, GaAs and GaN photocathodes have been developed to cover a wide range of optical/UV sensing applications. Formats of 18mm and 25mm circular, and 50mm (Planacon) and 20cm square have been constructed for uses from night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy, to large area focal plane imagers for Astronomy, neutron detection and ring imaging Cherenkov detection. The large focal plane areas were previously unattainable, but the new developments in construction of ALD microchannel plates allow implementation of formats of 20cm or more. Continuing developments in ALD microchannel plates offer improved overall sealed tube lifetime and gain stability, and furthermore show reduced levels of radiation induced background. High time resolution astronomical and remote sensing applications can be addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. Photon counting imaging readouts for these devices vary from cross strip (XS), cross delay line (XDL), to stripline anodes, and pad arrays depending on the intended application. The XS and XDL readouts have been implemented in formats from 22mm, and 50mm to 20cm. Both use MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. XDL readout uses signal propagation delay to encode positions while XS readout uses charge cloud centroiding. Spatial resolution readout of XS detectors can be better than 20 microns FWHM, with good image linearity while using low gain (<10^6), allowing high local counting rates and longer overall tube lifetime. XS tubes with electronics can encode event rates of >5 MHz and event timing accuracy of ~100ps. We will discuss how we are applying these detector system developments for devices in formats of 18mm and 25mm circular, and 50mm and 20cm square. The performance characteristics will be demonstrated along with lifetest data taken over the last year. Implications for ground based instruments to study transient and variable astronomical objects, as well as implementation in satellite instruments for earth atmospheric, planetary and solar observations will be discussed.

  17. Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging.

    PubMed

    Cui, Xiaonan; Ren, Lihui; Shan, Yufei; Wang, Xixian; Yang, Zhenlong; Li, Chunyu; Xu, Jian; Ma, Bo

    2018-05-18

    Standard plate count (SPC) has been recognized as the golden standard for the quantification of viable bacteria. However, SPC usually takes one to several days to grow individual cells into a visible colony, which greatly hampers its application in rapid bacteria enumeration. Here we present a microdroplet turbidity imaging based digital standard plate count (dSPC) method to overcome this hurdle. Instead of cultivating on agar plates, bacteria are encapsulated in monodisperse microdroplets for single-cell cultivation. Proliferation of the encapsulated bacterial cell produced a detectable change in microdroplet turbidity, which allowed, after just a few bacterial doubling cycles (i.e., a few hours), enumeration of viable bacteria by visible-light imaging. Furthermore, a dSPC platform integrating a power-free droplet generator with smartphone-based turbidity imaging was established. As proof-of-concept demonstrations, a series of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis) samples were quantified via the smartphone dSPC accurately within 6 hours, representing a detection sensitivity of 100 CFU ml-1 and at least 3 times faster. In addition, Enterobacter sakazakii (E. sakazakii) in infant milk powder as a real sample was enumerated within 6 hours, in contrast to the 24 hours needed in traditional SPC. Results with high accuracy and reproducibility were achieved, with no difference in counts found between dSPC and SPC. By enabling label-free, rapid, portable and low-cost enumeration and cultivation of viable bacteria onsite, smartphone dSPC forms the basis for a temporally and geographically trackable network for surveying live microbes globally where every citizen with a cellphone can contribute anytime and anywhere.

  18. Liming Poultry Manures to Kill Pathogens and Decrease Soluble Phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire,R.; Hesterberg, D.; Gernat, A.

    2006-01-01

    Received for publication September 9, 2005. Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH){sub 2} for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH){sub 2} at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed formore » microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793 000 to 6500 mL{sup -1}. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.« less

  19. Microbial quality and associated health risks of raw milk marketed in the Tanga region of Tanzania.

    PubMed

    Swai, E S; Schoonman, L

    2011-06-01

    To evaluate microbial quality and associated health risks of raw milk marketed in the Tanga region of Tanzania. A microbial quality assessment of marketed raw milk was undertaken by evaluating 59 samples of milk from selling points (collecting centres =15), bicycle boys (12) and kiosks/restaurants (32) in Tanga city during April-May 2005. Quality and milk-borne hazards were assessed using a combination of tests in order to quantify the occurrence of Brucellosis (milk ring test), Escherichia coli (E. coli) O157:H7 (culture), the coliform bacteria as well as standard plate count (SPC). Specific gravity (SG) determination was used as an indicator of adulteration. The mean coliform plate count (c.f.u/mL) of milk handled by bicycle boys (4.2×10(6)) was significantly higher than that handled by collecting centres (3.0×10(6)) and kiosk/ restaurants (1.4×10(6)), respectively (P < 0.05). Of the 59 milk samples collected, 33 (56%) were Brucella milk ring test (MRT)-positive and 78% and 17% of the samples graded satisfactorily based on SG and coliform plate counts as prescribed by East African Community standards for raw milk. There was no verocytotoxigenic E. coli (VTEC) O157: H7 in any of the milk samples collected and analysed during the present study. It can be concluded that raw market milk in the study area is of poor bacteriological quality and hazardous for human consumption. This highlights the need to implement good hygiene practices and effective monitoring from production through the delivery chain to the consumer. Further studies are needed for detection of toxins that are produced by E. coli, other pathogenic spore forming bacteria (Bacillus spp. and Clostridium spp.) and other harmful microorganisms.

  20. Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population.

    PubMed

    Maguire, R O; Hesterberg, D; Gernat, A; Anderson, K; Wineland, M; Grimes, J

    2006-01-01

    Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH)2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH)2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793,000 to 6500 mL-1. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.

  1. Microbiological, coliphages and physico-chemical assessments of the Umgeni River, South Africa.

    PubMed

    Singh, Atheesha; Lin, Johnson

    2015-01-01

    The water quality of Umgeni River in KwaZulu-Natal (South Africa) was investigated from April 2011 to January 2012. Indicator bacterial populations, physico-chemical properties, heavy metal contaminants and the presence of coliphages were determined according to standard protocols. The results showed that all sampling points failed to comply with the set guidelines for turbidity, total coliform, faecal coliform and total heterotrophic counts. Salmonella spp., Shigella spp. and Vibrio cholerae were also detected in all the water samples. The somatic coliphages and F-RNA coliphages were detected more frequently in the lower reaches of the river during summer. Temperature, electrical conductivity and pH were found to have positive relationships with the microbial communities especially in the lower catchment area during spring and summer indicating the impacts of various anthropogenic activities in the surrounding areas.

  2. Effects of 1-MeV gamma radiation on a multi-anode microchannel array detector tube

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1979-01-01

    A multianode microchannel array (MAMA) detector tube without a photocathode was exposed to a total dose of 1,000,000 rads of 1-MeV gamma radiation from a Co-60 source. The high-voltage characteristic of the microchannel array plate, average dark count, gain, and resolution of pulse height distribution characteristics showed no degradation after this total dose. In fact, the degassing of the microchannels induced by the high radiation flux had the effect of cleaning up the array plate and improving its characteristics.

  3. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79.

    PubMed

    Sedlacek, Christopher J; Nielsen, Susanne; Greis, Kenneth D; Haffey, Wendy D; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J; Bollmann, Annette

    2016-08-01

    Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to nitrite. In their natural environment, they coexist and interact with nitrite oxidizers, which convert nitrite to nitrate, and with heterotrophic microorganisms. The presence of nitrite oxidizers and heterotrophic bacteria has a positive influence on the growth of the ammonia oxidizers. Here, we present a study investigating the effect of nitrite oxidizers and heterotrophic bacteria on the proteome of a selected ammonia oxidizer in a defined culture to elucidate how these two groups improve the performance of the ammonia oxidizer. The results show that the presence of a nitrite oxidizer and heterotrophic bacteria reduced the stress for the ammonia oxidizer and resulted in more efficient energy generation. This study contributes to our understanding of microbe-microbe interactions, in particular between ammonia oxidizers and their neighboring microbial community. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Impedance technology reduces the enumeration time of Brettanomyces yeast during beer fermentation.

    PubMed

    van Wyk, Sanelle; Silva, Filipa V M

    2016-12-01

    Brettanomyces yeasts are increasingly being used to produce lambic style beers and craft beers with unique flavors. Currently, the industry monitors Brettanomyces bruxellensis using time consuming plate counting. B. bruxellensis is a fastidious slow growing organism, requiring five days of incubation at 30°C for visible growth on agar plates. Thus, a need exists to develop a quicker, feasible method to enumerate this yeast. The aim of this study was therefore to determine the feasibility of using the 'direct' and 'indirect' impedance methods for the enumeration of B. bruxellensis in beer and to monitor the growth of the yeast during fermentation. The impedance methods were able to decrease the incubation time of beer samples containing Brettanomyces from 120 h down to 2 and 84 h for samples containing 10 7 and 10 3 cfu/mL, respectively. The 'indirect' method was more successful than the 'direct' method, presenting a smaller error and wider detection range. Overall, the 'indirect' impedance method is a viable alternative to plate counting for the enumeration of yeasts in the brewing industry because it decreases preparation and incubation times, thereby increasing throughput and decreasing the chance of contamination. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.

    PubMed

    Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean

    2016-10-01

    To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.

  6. Nonrecovery of varying proportions of viable bacteria during spread plating governed by the extent of spreader usage and proposal for an alternate spotting-spreading approach to maximize the CFU.

    PubMed

    Thomas, P; Sekhar, A C; Mujawar, M M

    2012-08-01

    To elucidate the cause of high variations and inconsistencies in bacterial CFU observed within and between different experiments while assessing viable bacterial counts through spread plating (SP). Following the inconsistent results, CFU estimations were undertaken through conventional SP using the spreader, or a modified approach that did not use spreader employing four organisms. The latter approach involving spotting-and-tilt-spreading of inoculum on agar surface [spotting spreading (SS)] yielded higher CFU by 11-120% over the weighted average depending on the organism and diluent. The adverse effect owing to the spreader was the most obvious in Escherichia coli followed by Staphylococcus epidermidis, Enterobacter cloacae and Bacillus pumilus. Plate attributes that determined the surface moisture levels of agar medium and the spreading practice adopted by the personnel formed two other major influencing factors. Plating for shorter periods (<60 s) using fresh 15/20 ml plates caused loss of 3-12% CFU owing to inoculum adhesion to spreader irrespective of glass or polypropylene make. On the other hand, prolonging the plating brought down the CFU significantly. Spreader movement on agar surface subsequent to the exhaustion of free moisture, which was marked by the experiencing of some friction to smooth spreader movement, was detrimental to vegetative cells, while Bacillus spores were less affected. The study brings out that the way SP is carried out exerts significant effects on CFU influenced by plate conditions. Prolonged use of spreader on dry agar surface could be highly detrimental to bacterial cells. A mild use of spreader accounting for spreader-adhering inoculum or the practice of SS not involving the spreader is recommended. This study unravels the effects owing to the spreader on bacterial cells and the CFU and recommends an alternate approach of SS to minimize CFU inconsistencies and to maximize the viable bacterial counts. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  7. Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.

    PubMed

    Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro

    2016-01-01

    At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.

  8. Microbiological baseline study of poultry slaughtered in provincially inspected abattoirs in Alberta, Canada

    PubMed Central

    Bohaychuk, Valerie M.; Checkley, Sylvia L.; Gensler, Gary E.; Barrios, Pablo Romero

    2009-01-01

    Studies to determine baseline levels of microbial contaminants and foodborne bacterial pathogens are needed to evaluate the effectiveness of Hazard Analysis Critical Control Point (HACCP) programs, Good Manufacturing/Production Practices, and various interventions. In 2004 and 2005 poultry carcass rinses from provincially inspected abattoirs in Alberta, Canada, were tested to determine the levels of aerobic plate count bacteria, coliform bacteria, and generic Escherichia coli, the prevalence and levels of Campylobacter spp., and the prevalence of Salmonella spp. and Shiga toxin-producing E. coli (STEC). Samples were collected from 3 high volume and 62 low volume abbatoirs. All samples (1296) were positive for aerobic plate count bacteria, with 98.8% of samples having counts of 100 000 or less colony forming units (CFU)/cm2. Coliform bacteria were isolated from 99.7% of the 1296 carcasses and were recovered at levels of ≤ 1000 CFU/cm2 for 98.3% of the samples. Generic E. coli were recovered from 99.1% of the 1296 carcasses at levels of ≤ 1000 CFU/cm2 for 98.6% of the samples. Seventy five percent of 1234 samples that were tested for Campylobacter were positive; 37.5% of 1295 samples that were tested for Salmonella were positive; and only 2 of 1296 samples tested for STEC were positive (0.15%). PMID:19412397

  9. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Henzlova, Daniela

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. Themore » comparison data is presented in this report.« less

  10. Evaluation of the methods for enumerating coliform bacteria from water samples using precise reference standards.

    PubMed

    Wohlsen, T; Bates, J; Vesey, G; Robinson, W A; Katouli, M

    2006-04-01

    To use BioBall cultures as a precise reference standard to evaluate methods for enumeration of Escherichia coli and other coliform bacteria in water samples. Eight methods were evaluated including membrane filtration, standard plate count (pour and spread plate methods), defined substrate technology methods (Colilert and Colisure), the most probable number method and the Petrifilm disposable plate method. Escherichia coli and Enterobacter aerogenes BioBall cultures containing 30 organisms each were used. All tests were performed using 10 replicates. The mean recovery of both bacteria varied with the different methods employed. The best and most consistent results were obtained with Petrifilm and the pour plate method. Other methods either yielded a low recovery or showed significantly high variability between replicates. The BioBall is a very suitable quality control tool for evaluating the efficiency of methods for bacterial enumeration in water samples.

  11. Microbiological quality of frozen cauliflower, corn, and peas obtained at retail markets.

    PubMed Central

    Barnard, R J; Duran, A P; Swartzentruber, A; Schwab, A H; Wentz, B A; Read, R B

    1982-01-01

    The microbiological quality of blanched frozen cauliflower, cut corn, and peas at the retail level was determined. At 35 degrees C, mean aerobic plate count (APC) values for cauliflower, corn, and peas, respectively, were 30,000, 6,100, and 4,700 per g; at 30 degrees C, the mean APC values were 45,000, 8,500, and 6,800 per g, respectively. Geometric means for coliform, Escherichia coli, and Staphylococcus aureus counts for all three vegetables were less than 10 per g. PMID:6751226

  12. Microbiological survey of five poultry processing plants in the UK.

    PubMed

    Mead, G C; Hudson, W R; Hinton, M H

    1993-07-01

    1. Neck skin samples were taken from chickens and turkeys at all the main stages of processing to monitor changes in total viable count (TVC) and counts of coliforms and pseudomonads. 2. Processing reduced TVC by up to 100-fold. Geometric mean counts after packaging were log10 4.4 to 5.3 CFU/g whilst corresponding counts of coliforms were 2.7 to 3.8 CFU/g. 3. Increases in mean TVC or coliforms as a result of either defeathering or evisceration did not exceed 0.6 log. 4. Pseudomonads represented only a minor fraction of the initial microflora of the bird and were often reduced by scalding to a figure which could not be detected by direct plating of samples; however, subsequent contamination resulted in means between log10 2.9 and 4.0 CFU/g for packaged carcases. 5. Although Staphylococcus aureus was readily isolated from defeathering equipment, mean counts from defeathered carcases were always below log10 3.0 CFU/g.

  13. Variation in heterotrophic and autotrophic nitrifier populations in relation to nitrification in organic soils.

    PubMed

    Tate, R L

    1980-07-01

    The occurrence of heterotrophic and autotrophic nitrifiers in Pahokee muck and the role of these organisms in the ecosystem were assessed by surveying their population densities under different field conditions and by observing the relationship of these populations with aerobic bacteria and soil moisture. Heterotrophic nitrifier populations varied from 2.0 x 10 to 3.8 x 10 bacteria per cm of muck in surface fallow (bare) Pahokee muck during the annual cycle. This population decreased 40-fold between the surface and the 60- to 70-cm depths of soil. Similar variations were noted with autotrophic nitrifier populations. Significant correlations were found between heterotrophic nitrifiers and both soil moisture and aerobic bacteria. These relationships did not exist for the autotrophic nitrifiers. In soil that had been heated to kill the autotrophic nitrifiers, while preserving a population of the heterotrophs, and then amended with sodium acetate or ammonium sulfate or both, no nitrate or nitrite accumulated, although significant increases in heterotrophic nitrifiers were detected. In unheated control soil, nitrate plus nitrite-N increased from 14.3 to 181 mug/g of wet soil, and 48 mug of nitrite-N per g was produced. These data suggest that the autotrophic nitrifiers were the sole population responsible for nitrification in Pahokee muck.

  14. Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process.

    PubMed

    Yu, Jie; Liu, Dongfang; Li, Kexun

    2015-03-01

    The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.

  15. Dense infraspecific sampling reveals rapid and independent trajectories of plastome degradation in a heterotrophic orchid complex.

    PubMed

    Barrett, Craig F; Wicke, Susann; Sass, Chodon

    2018-05-01

    Heterotrophic plants provide excellent opportunities to study the effects of altered selective regimes on genome evolution. Plastid genome (plastome) studies in heterotrophic plants are often based on one or a few highly divergent species or sequences as representatives of an entire lineage, thus missing important evolutionary-transitory events. Here, we present the first infraspecific analysis of plastome evolution in any heterotrophic plant. By combining genome skimming and targeted sequence capture, we address hypotheses on the degree and rate of plastome degradation in a complex of leafless orchids (Corallorhiza striata) across its geographic range. Plastomes provide strong support for relationships and evidence of reciprocal monophyly between C. involuta and the endangered C. bentleyi. Plastome degradation is extensive, occurring rapidly over a few million years, with evidence of differing rates of genomic change among the two principal clades of the complex. Genome skimming and targeted sequence capture differ widely in coverage depth overall, with depth in targeted sequence capture datasets varying immensely across the plastome as a function of GC content. These findings will help to fill a knowledge gap in models of heterotrophic plastid genome evolution, and have implications for future studies in heterotrophs. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling

    PubMed Central

    Liu, Yiwen; Sun, Jing; Peng, Lai; Wang, Dongbo; Dai, Xiaohu; Ni, Bing-Jie

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria–substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm. PMID:27273460

  17. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    NASA Astrophysics Data System (ADS)

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p < 0.05) between heterotrophic and coliform bacteria. Though the coliforms showed significantly high level of antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  18. Variation in Heterotrophic and Autotrophic Nitrifier Populations in Relation to Nitrification in Organic Soils †

    PubMed Central

    Tate, Robert L.

    1980-01-01

    The occurrence of heterotrophic and autotrophic nitrifiers in Pahokee muck and the role of these organisms in the ecosystem were assessed by surveying their population densities under different field conditions and by observing the relationship of these populations with aerobic bacteria and soil moisture. Heterotrophic nitrifier populations varied from 2.0 × 105 to 3.8 × 106 bacteria per cm3 of muck in surface fallow (bare) Pahokee muck during the annual cycle. This population decreased 40-fold between the surface and the 60- to 70-cm depths of soil. Similar variations were noted with autotrophic nitrifier populations. Significant correlations were found between heterotrophic nitrifiers and both soil moisture and aerobic bacteria. These relationships did not exist for the autotrophic nitrifiers. In soil that had been heated to kill the autotrophic nitrifiers, while preserving a population of the heterotrophs, and then amended with sodium acetate or ammonium sulfate or both, no nitrate or nitrite accumulated, although significant increases in heterotrophic nitrifiers were detected. In unheated control soil, nitrate plus nitrite-N increased from 14.3 to 181 μg/g of wet soil, and 48 μg of nitrite-N per g was produced. These data suggest that the autotrophic nitrifiers were the sole population responsible for nitrification in Pahokee muck. PMID:16345599

  19. Comparison of methods for isolation and enumeration of thermophilic actinomycetes from dust.

    PubMed Central

    Treuhaft, M W; Arden Jones, M P

    1982-01-01

    Thermophilic actinomycetes are the primary sensitizing agents in farmer's lung disease. We compared dilution pour-plate and spread-plate methods for their usefulness in enumerating thermophilic actinomycetes in moldy silage dust and evaluated the ability of a nonquantitative gravity settling technique to recover thermophilic actinomycetes from moldy silage. Spread plates and pour plates yielded similar estimates of total thermophiles. Higher counts were observed on spread plates (P less than 0.05) for Thermoactinomyces candidus, Micropolyspora faeni, and Saccharomonospora viridis. M. faeni and S. viridis were less efficient than T. candidus in breaking through the agar of pour plates to form colonies which could be identified. Coefficients of variability were less than 10% for the two methods. The relative proportion of organisms recovered by the settling method correlated well with that recovered on spread plates for M. faeni (r = 0.79), S. viridis (r = 0.88), and Thermomonospora spp. (r = 0.79), but not well for T. candidus (r = 0.28). When sophisticated air-sampling equipment is not available, dilution spread plates of dust washings provide a reproducible method for enumerating a broad range of thermophilic actinomycetes of interest. The gravity settling method is a simple, rapid alternative when isolation is all that is required. PMID:6761363

  20. Microbial quality of catfish nuggets

    USDA-ARS?s Scientific Manuscript database

    The microbiological quality of catfish nuggets is not known. Nuggets, purchased from local retailers in the northeast United States (NJ, NY, PA, and DE), were tested for aerobic plate count (APC) at 22 and 37 deg C, Enterobacteriacea, and Escherichia coli/coliform using Petrifilms**™. The BAX**™ ...

  1. Prevalence of pathogenic bacteria in street vended ready-to-eat meats in Windhoek, Namibia.

    PubMed

    Shiningeni, Daphney; Chimwamurombe, Percy; Shilangale, Renatus; Misihairabgwi, Jane

    2018-05-31

    To determine the prevalence of pathogenic bacteria in street vended ready-to-eat meats in Windhoek, Namibia, a total of 96 street vended ready to eat meat samples were evaluated. Prevalences of 42%, 52%, 15%, 6% and 83% were observed for Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Shigella and Enterobacteriaceae respectively, while the highest aerobic plate counts were 7.74 Log 10 cfu/g, 5.67 Log 10 cfu/g, 5.12 Log 10 cfu/g , 4.56 Log 10 cfu/g, 3.3 Log 10 cfu/g, 5.75 Log 10 cfu/g respectively. Unsatisfactory microbial levels were 32% for aerobic plate count, 26% for Enterobacteriaceae, 35% for Escherichia coli, 11% for Listeria monocytogenes, 7% for Staphylococcus aureus and 6% for Shigella. Salmonella was detected in 11% and 40% of samples from two suburbs. The unsatisfactory microbiological quality of some ready-to-eat meats necessitates the provision of training on food safety and hygiene to street vendors for consumer protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cook/chill foodservice system with a microwave oven: aerobic plate counts from beef loaf, potatoes and frozen green beans.

    PubMed

    Dahl, C A; Matthews, M E; Marth, E H

    1980-06-01

    The purpose was to evaluate microbiological quality and end temperature (ET) of portioned food after heating in a microwave oven as used in a hospital cook/chill foodservice system. Beef loaf (15 kg), potatoes (6 kg), and green beans (5 kg) were prepared in a laboratory. After initial cooking to 60 degrees C, and storage (7 degrees C for 24 h), beef loaf (100 g) was microwave heated: 20, 50, 80 or 110 s. Potatoes were reconstituted, stored (7 degrees C for 24 h), portioned (100 g/portion), and microwave-heated: 25, 45, 65 or 84 s. Beans were thawed (7 degrees C for 24 h), portioned (100 g/portion), and microwave-heated: 20, 50, 80 or 110 s. Aerobic plate counts (APC) for foods were obtained throughout product flow. Wide ranges of Et and of APC in foods indicates that research is needed, for greater control of microwave-heating through advanced microwave engineering and food technology, to produce food with constant microbiological quality.

  3. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1974-01-01

    The effect of storage of dry heat treated Teflon ribbons under nitrogen gas followed by high vacuum on the recovery of hardy organisms from the ribbons was studied. A similar experiment was performed on spore crops of hardy organisms recovered previously from Cape Canaveral. Hardy organisms have been inoculated onto slides and subjected to an artificial Martian environment in an attempt to demonstrate their growth in this environment. Additional experiments using the artificial Martian environment include response of soil samples from the VAB with both constant temperature and freeze-thaw cycles. These experiments were performed with dried soil and soil containing added water. Other investigations included the effect of heatshock on soil samples, psychrophilic counts of new soil samples from the manufacture area of the Viking spacecraft, effect of pour plate versus spread plate on psychrophilic counts, and preparation of spore crops of hardy organisms from Cape Canaveral.

  4. Selective cultivation and rapid detection of Staphylococcus aureus by computer vision.

    PubMed

    Wang, Yong; Yin, Yongguang; Zhang, Chaonan

    2014-03-01

    In this paper, we developed a selective growth medium and a more rapid detection method based on computer vision for selective isolation and identification of Staphylococcus aureus from foods. The selective medium consisted of tryptic soy broth basal medium, 3 inhibitors (NaCl, K2 TeO3 , and phenethyl alcohol), and 2 accelerators (sodium pyruvate and glycine). After 4 h of selective cultivation, bacterial detection was accomplished using computer vision. The total analysis time was 5 h. Compared to the Baird-Parker plate count method, which requires 4 to 5 d, this new detection method offers great time savings. Moreover, our novel method had a correlation coefficient of greater than 0.998 when compared with the Baird-Parker plate count method. The detection range for S. aureus was 10 to 10(7) CFU/mL. Our new, rapid detection method for microorganisms in foods has great potential for routine food safety control and microbiological detection applications. © 2014 Institute of Food Technologists®

  5. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retainedmore » in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.« less

  6. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake

    PubMed Central

    Ruiz-González, Clara; Simó, Rafel; Vila-Costa, Maria; Sommaruga, Ruben; Gasol, Josep M

    2012-01-01

    There is a large body of evidence supporting a major role of heterotrophic bacteria in dimethylsulphoniopropionate (DMSP) utilisation as a source of reduced sulphur. However, a role for phototrophic microorganisms has been only recently described and little is known about their contribution to DMSP consumption and the potential modulating effects of sunlight. In an attempt to ascertain the relative quantitative roles of heterotrophic bacteria and picophytoplankton in the osmoheterotrophic uptake of DMSP-sulphur upon exposure to natural sunlight conditions, we incubated northwestern Mediterranean waters under various optical filters and used an array of bulk and single-cell activity methods to trace the fate of added 35S-DMSP. Flow cytometry cell sorting confirmed dark 35S uptake by Prochlorococcus, Synechococcus and heterotrophic bacteria, the latter being the most efficient in terms of uptake on a cell volume basis. Under exposure to full sunlight, however, the relative contribution of Synechococcus was significantly enhanced, mainly because of the inhibition of heterotrophic bacteria. Microautoradiography showed a strong increase in the proportion of Synechococcus cells actively taking up 35S-DMSP, which, after full sunlight exposure, made up to 15% of total active Bacteria. Parallel incubations with 3H-leucine generally showed no clear responses to light. Finally, size-fractionated assimilation experiments showed greater relative cyanobacterial assimilation during the day than at night compared with that of heterotrophic bacteria. Our results show for the first time a major influence of sunlight in regulating the competition among autotrophic and heterotrophic picoplankton for DMSP uptake at both the daily and seasonal time scales. PMID:21955992

  7. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.

    PubMed

    Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2014-10-15

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions.

    PubMed

    Scheili, A; Rodriguez, M J; Sadiq, R

    2015-03-01

    A one-year sampling program covering twenty-five small municipal systems was carried out in two Canadian regions to improve our understanding of the variability of water quality in small systems from water source to the end of the distribution system (DS). The database obtained was used to develop a global portrait of physical, chemical and microbiological water quality parameters. More precisely, the temporal and the spatial variability of these parameters were investigated. We observed that the levels of natural organic matter (NOM) were variable during different seasons, with maxima in the fall for both provinces. In the regions under study, the highest trihalomethane (THM) and haloacetic acid (HAA) levels were achieved in warmer seasons (summer, fall), as observed in previous studies involving large systems. Observed THM and HAA levels were three times higher in systems in the province of Newfoundland & Labrador than in the province of Quebec. Taste and odor indicators were detected during the summer and fall, and higher heterotrophic plate count (HPC) levels were associated with lower free chlorine levels. To determine spatial variations, stepwise statistical analysis was used to identify parameters and locations in the DS that act as indicators of drinking water quality. As observed for medium and large systems, free chlorine consumption, THM and HAA levels were dependent on their location in the DS. We also observed that the degradation of HAAs is more important in small systems than in medium or large DS reported in the literature, and this degradation can occur from the beginning of the DS. The results of this research may contribute to providing precious information on drinking water quality to small system operators and pave the way for several opportunities to improve water quality management. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The effect of in-stream activities on the Njoro River, Kenya. Part II: Microbial water quality

    NASA Astrophysics Data System (ADS)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    The influence of periodic in-stream activities of people and livestock on the microbial water quality of the Njoro River in Kenya was monitored at two disturbed pools (Turkana Flats and Njoro Bridge) at the middle reaches. A total of 96 sets of samples were obtained from the two pools in six weeks during dry weather (January-April) in 2006. On each sampling day, two trips were made before and during in-stream activities and on each trip, two sets of samples were collected upstream and downstream of activities. This schedule was repeated four times each for Wednesday, Saturday and Sunday. Samples were processed for heterotrophic plate count bacteria (HPC), total coliform (TC), presumptive Escherichia coli and presumptive Enterococci. Additional samples were analysed for total suspended solids (TSS), turbidity, BOD 5 and ammonium-N. The microbial water quality deteriorated significant ( p < 0.05) downstream during activities at both pools. A similar trend was observed with the chemical indicators (TSS, turbidity, BOD 5 and ammonium-N). The two groups of indicators demonstrated high capacity for site segregation based on pollution levels. Pollution levels for specific days were not significantly different ( p > 0.05). This was incompatible with the variability of in-stream activities with specific days. The pooled data was explained largely by three significant principal components - recent pollution (PC1), metabolic activity (PC2) and residual pollution (PC3). It was concluded that the empirical site parity/disparity in the levels of microbial and non-microbial indicators reflected the diurnal periodicity of in-stream activities and the concomitant pollution they caused. However, microbial source tracking studies are required to distinguish faecal sources. In the meantime, measures should be undertaken to regulate in-stream activities along the stream and minimize the movement of livestock in the catchment.

  10. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS).

    PubMed

    Amin, M T; Han, M Y

    2009-12-01

    The efficiency of solar disinfection (SODIS), recommended by the World Health Organization, has been determined for rainwater disinfection, and potential benefits and limitations discussed. The limitations of SODIS have now been overcome by the use of solar collector disinfection (SOCO-DIS), for potential use of rainwater as a small-scale potable water supply, especially in developing countries. Rainwater samples collected from the underground storage tanks of a rooftop rainwater harvesting (RWH) system were exposed to different conditions of sunlight radiation in 2-L polyethylene terephthalate bottles in a solar collector with rectangular base and reflective open wings. Total and fecal coliforms were used, together with Escherichia coli and heterotrophic plate counts, as basic microbial and indicator organisms of water quality for disinfection efficiency evaluation. In the SOCO-DIS system, disinfection improved by 20-30% compared with the SODIS system, and rainwater was fully disinfected even under moderate weather conditions, due to the effects of concentrated sunlight radiation and the synergistic effects of thermal and optical inactivation. The SOCO-DIS system was optimized based on the collector configuration and the reflective base: an inclined position led to an increased disinfection efficiency of 10-15%. Microbial inactivation increased by 10-20% simply by reducing the initial pH value of the rainwater to 5. High turbidities also affected the SOCO-DIS system; the disinfection efficiency decreased by 10-15%, which indicated that rainwater needed to be filtered before treatment. The problem of microbial regrowth was significantly reduced in the SOCO-DIS system compared with the SODIS system because of residual sunlight effects. Only total coliform regrowth was detected at higher turbidities. The SOCO-DIS system was ineffective only under poor weather conditions, when longer exposure times or other practical means of reducing the pH were required for the treatment of stored rainwater for potable purposes.

  11. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    PubMed

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for confirmation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Quick counting method for estimating the number of viable microbes on food and food processing equipment.

    PubMed

    Winter, F H; York, G K; el-Nakhal, H

    1971-07-01

    A rapid method for estimating the extent of microbial contamination on food and on food processing equipment is described. Microbial cells are rinsed from food or swab samples with sterile diluent and concentrated on the surface of membrane filters. The filters are incubated on a suitable bacteriological medium for 4 hr at 30 C, heated at 105 C for 5 min, and stained. The membranes are then dried at 60 C for 15 min, rendered transparent with immersion oil, and examined microscopically. Data obtained by the rapid method were compared with counts of the same samples determined by the standard plate count method. Over 60 comparisons resulted in a correlation coefficient of 0.906. Because the rapid technique can provide reliable microbiological count information in extremely short times, it can be a most useful tool in the routine evaluation of microbial contamination of food processing facilities and for some foods.

  13. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less

  14. Heterotrophic euglenids from marine sediments of cape tribulation, tropical australia

    NASA Astrophysics Data System (ADS)

    Je Lee, Won

    2006-06-01

    This paper presents new data on free-living heterotrophic euglenids (Euglenozoa, Protista) that occurred in the marine sediments at Cape Tribulation, Queensland, Australia. Twenty-nine species from 9 genera are described with uninterpreted records based on light microscopy, including one new taxon: Notosolenus capetribulationi n. sp. There was little evidence for endemism because the majority of heterotrophic euglenid species encountered here have been reported or were found from other habitats.

  15. Study of archaeological underwater finds: deterioration and conservation

    NASA Astrophysics Data System (ADS)

    Crisci, G. M.; La Russa, M. F.; Macchione, M.; Malagodi, M.; Palermo, A. M.; Ruffolo, S. A.

    2010-09-01

    This study is aimed at an assessment of the methodologies, instruments and new applications for underwater archaeology. Research focused on study of the various kinds of degradation affecting underwater finds and stone materials aged in underwater environment, efficiency evaluation of various surface cleaning methods and study and mixing of protective products with consolidating resins and antimicrobial biocides to be applied to restored underwater finds. Transmitted light optical microscopy and scanning electron microscopy (SEM) were used to study surface biofilms and the interactions with samples of different stone materials such as brick, marble and granite immersed in the submarine archaeological area of Crotone (South of Italy). Surface cleaning tests were performed with application of ion exchange resins, EDTA, hydrogen peroxide and ultrasound techniques. Capillary water absorption, simulated solar ageing and colourimetric measurements were carried out to evaluate hydrophobic and consolidant properties; to assess biocidal efficacy, heterotrophic micro-organisms ( Aspergillus niger) were inoculated on agar plates and growth inhibition was measured.

  16. Chemosensory responses by the heterotrophic marine dinoflagellateCrypthecodinium cohnii.

    PubMed

    Hauser, D C; Levandowsky, M; Hutner, S H; Chunosoff, L; Hollwitz, J S

    1974-12-01

    Chemosensory responses by the colorles inshore marine dinoflagellateCrypthecodinium cohnii were observed in quadrant-divided Petri plates containing an agar layer + liquid overlay. A suspension of organisms in salt solution was poured onto this and allowed to stand 3 hr. A differential tendency of the cells to become firmly attached or embedded in the substratum was observed when various substances were incorporated in the gel. A positive response (tendency to attach) occurred with: α-L-fucose, dimethyl-β-propiothetin, betaine, sucrose, glycine, L-alanine, hemin, and fructose; negative response: formalin, glutathione, acid hydrolyzed agar, protamine SO4, L-glutamic acid, lactose, glutamine, taurine, L-aspartic acid, putrescine 2 HCl, choline citrate, choline bitartrate, K citrate, and choline HCl. γ-Aminobutyric acid was negative or positive dependeng on concentration. Dead or immotile cells did not become attached. The following compounds elicited no response: α-D-fucose, dimethyl acetothetin chloride, cyclic AMP, and glucose.

  17. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    The Lower Hudson River Basin study area covers 5,607 square miles and encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. Twelve of the wells sampled in the Lower Hudson River Basin are completed in sand-and-gravel deposits, and 13 are completed in bedrock. Groundwater in the Lower Hudson River Basin was generally of good quality, although properties and concentrations of some constituents—pH, sodium, chloride, dissolved solids, arsenic, aluminum, iron, manganese, radon-222, total coliform bacteria, fecal coliform bacteria, Escherichia coli bacteria, and heterotrophic plate count—equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (20 of 25 samples) was radon-222.

  18. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  19. Use of Dehydrated Agar to Estimate Microbial Water Quality for Horticulture Irrigation.

    PubMed

    Meador, Dustin P; Fisher, Paul R; Guy, Charles L; Harmon, Philip F; Peres, Natalia A; Teplitski, Max

    2016-07-01

    Petrifilms are dehydrated agar culture plates that have been used to quantify colony forming units (CFU) mL of either aerobic bacteria (Petrifilm-AC) or fungus (Petrifilm-YM), depending on substrate composition. Microbes in irrigation systems can indicate biofilm risk and potential clogging of irrigation emitters. The research objective was to compare counts on Petrifilms versus traditional, hydrated-agar plates using samples collected from recirculated irrigation waters and cultures of isolated known species. The estimated count (in CFU mL) from a recirculated irrigation sample after 7 d of incubation on Petrifilm-YM was only 5.5% of the count quantified using sabouraud dextrose agar (SDA) with chloramphenicol after 14 d. In a separate experiment with a known species, Petrifilm-YM did not successfully culture zoospores of . Isolates of viable zoospores were cultured successfully on potato-dextrose agar (PDA), with comparable counts with a vegetable juice medium supplemented with the antibiotics pimaricin, ampicillin, rifamycin, pentochloronitrobenzene and hymexazol (PARP-H). The quantification of pv. Begoniaceae on Petrifilm-AC was not significantly different ( < 0.05) than on PDA, but was lower than on Reasoner and Goldrich agar (R2A) or with a hemocytometer. The current formulation of Petrifilm-YM is unlikely to be a useful monitoring method for plant pathogens in irrigation water because of the inability to successfully culture oomycetes. However, Petrifilm-AC was an effective method to quantify bacteria and can provide an easy-to-use on-farm tool to monitor biofilm risk and microbial density. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Correlation between standard plate count and somatic cell count milk quality results for Wisconsin dairy producers.

    PubMed

    Borneman, Darand L; Ingham, Steve

    2014-05-01

    The objective of this study was to determine if a correlation exists between standard plate count (SPC) and somatic cell count (SCC) monthly reported results for Wisconsin dairy producers. Such a correlation may indicate that Wisconsin producers effectively controlling sanitation and milk temperature (reflected in low SPC) also have implemented good herd health management practices (reflected in low SCC). The SPC and SCC results for all grade A and B dairy producers who submitted results to the Wisconsin Department of Agriculture, Trade, and Consumer Protection, in each month of 2012 were analyzed. Grade A producer SPC results were less dispersed than grade B producer SPC results. Regression analysis showed a highly significant correlation between SPC and SCC, but the R(2) value was very small (0.02-0.03), suggesting that many other factors, besides SCC, influence SPC. Average SCC (across 12 mo) for grade A and B producers decreased with an increase in the number of monthly SPC results (out of 12) that were ≤ 25,000 cfu/mL. A chi-squared test of independence showed that the proportion of monthly SCC results >250,000 cells/mL varied significantly depending on whether the corresponding SPC result was ≤ 25,000 or >25,000 cfu/mL. This significant difference occurred in all months of 2012 for grade A and B producers. The results suggest that a generally consistent level of skill exists across dairy production practices affecting SPC and SCC. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Changes in the Microbial Composition of Microbrewed Beer during the Process in the Actual Manufacturing Line.

    PubMed

    Kim, S A; Jeon, S H; Kim, N H; Kim, H W; Lee, N Y; Cho, T J; Jung, Y M; Lee, S H; Hwang, I G; Rhee, M S

    2015-12-01

    This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.

  2. The microbiological quality of drinking water sold on the streets in Kumasi, Ghana.

    PubMed

    Obiri-Danso, K; Okore-Hanson, A; Jones, K

    2003-01-01

    The aim of this study was to assess the microbiological quality of Ghanaian bottled and plastic-bagged drinking water sold on the streets of Metropolitan Kumasi, Ghana. Eight bottled, 88 factory-filled plastic sachet and 40 hand-filled hand-tied polythene-bagged drinking waters were examined for the presence of heterotrophic bacteria total viable counts (TVCs), indicators of faecal contamination (total coliforms, faecal coliforms and enterococci) and for lead, manganese and iron. Heterotrophic bacteria were found in all three types of water with TVCs per millilitre ranging from 1 to 460 for bottled water, 2-6.33 x 10(5) for factory-bagged sachet water and 2.33 x 10(3)-7.33 x 10(12) for hand-filled hand-tied bagged water. None of the microbial indicators of faecal contamination were detected in bottled water, whereas 4.5% of the factory-bagged sachets contained total coliforms and 2.3% faecal coliforms, and 42.5% of the hand-filled hand-tied bags contained total coliforms, 22.5% faecal coliforms and 5% enterococci. Iron was found in all three types of drinking water but at concentrations well within the WHO recommendations. Lead and manganese were not detected. Ghanaian bottled water is of good microbiological quality but some factory-bagged sachet and hand-filled hand-tied polythene-bagged drinking water are of doubtful quality. Factory-bagged sachets and hand-filled hand-tied bags of drinking water sold in Ghana should be monitored for microbiological contamination, with the aim of raising standards in the industry and re-assuring the public.

  3. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    DOE PAGES

    Arandia-Gorostidi, Nestor; Weber, Peter K.; Alonso-Sáez, Laura; ...

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs bymore » 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Lastly, our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.« less

  4. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arandia-Gorostidi, Nestor; Weber, Peter K.; Alonso-Sáez, Laura

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs bymore » 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Lastly, our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.« less

  5. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    PubMed

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The structure and component characteristics of partial nitrification biofilms under autotrophic and heterotrophic conditions.

    PubMed

    Xu, Hanli; Wang, Cunbao; Liang, Zhiwei; He, Liyi; Wu, Weixiang

    2015-04-01

    The differences in the structure and component characteristics of partial nitrification biofilms between autotrophic and heterotrophic conditions were investigated in this work. Three-dimensional excitation-emission matrix fluorescence spectroscopy (EEM), fluorescence staining, and confocal laser scanning microscopy (CLSM) were used to determine differences in the architecture and extracellular polymeric substance (EPS) distribution of the autotrophic and heterotrophic biofilms. Partial nitrification was successfully achieved, and the results demonstrated that an appropriate amount of organic carbon (chemical oxygen demand (COD)/N = 2.6) is advantageous for obtaining better partial nitrification. The final ammoniation and nitrosation rates achieved were 97 and 99 %, respectively. Proteins (PN) and polysaccharides (PS) were dominant in the tightly bound EPS (TB-EPS) of autotrophic and heterotrophic biofilms, with PN/PS ratios of 0.96 and 0.69, respectively. Proteins, lipids, α-D-glucopyranose polysaccharides, and nucleic acids were mostly present within the layers of biofilms, but they were distributed in the upper-middle portion of the autotrophic biofilm and increased with depth from the upper layer in the heterotrophic biofilms.

  7. Flocked nylon swabs versus RODAC plates for detection of multidrug-resistant organisms on environmental surfaces in intensive care units.

    PubMed

    Okamoto, K; Rhee, Y; Schoeny, M; Lolans, K; Cheng, J; Reddy, S; Weinstein, R A; Hayden, M K; Popovich, K J

    2018-01-01

    To compare two culture methods [nylon fiber flocked swabs with broth enrichment versus RODAC ('replicate organism detection and counting') plates] for recovery of multidrug-resistant organisms, 780 environmental surfaces in 63 rooms of patients on contact precautions in four intensive care units at one hospital were examined. Among sites that had at least one positive culture, swab culture with broth enrichment detected the target organisms more frequently than RODAC plates (37.5% vs 26.0%, P = 0.06). There was moderate agreement between the two methods (κ = 0.44) with agreement better for small or flat surfaces compared to large or irregular surfaces. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy.

    PubMed

    Weiser, H; Vitz, R C; Moos, H W; Weinstein, A

    1976-12-01

    An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160-1750 A) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm(-2) sec(-1) were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10(-6) Torr until reaching altitude.

  9. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  10. EFFECT OF AEROSOLIZATION ON CULTURABILITY AND VIABILITY OF GRAM-NEGATIVE BACTERIA

    EPA Science Inventory

    Estimations of the bacterial content of air can be more easily made now than a decade ago, with colony formation the method of choice for enumeration of airborne bacteria.However, plate counts are subject to error because bacteria exposed to the air may remain viable yet lose the...

  11. Bacterial Cleanability of Various Types of Eating Surfaces.

    ERIC Educational Resources Information Center

    Ridenour, Gerald M.; Armbruster, E. H.

    1953-01-01

    Presents a study of the capability of commercial dishwashers to remove bacteria from various kinds of service plates. Gives an account of preliminary research on the bacterial cleanability of eating surfaces of different materials by two radiological procedures--(1) radiological count, and (2) autoradiographic measurement. Among the factors…

  12. Automated agar plate streaker: a linear plater on Society for Biomolecular Sciences standard plates.

    PubMed

    King, Gregory W; Kath, Gary S; Siciliano, Sal; Simpson, Neal; Masurekar, Prakash; Sigmund, Jan; Polishook, Jon; Skwish, Stephen; Bills, Gerald; Genilloud, Olga; Peláez, Fernando; Martín, Jesus; Dufresne, Claude

    2006-09-01

    Several protocols for bacterial isolation and techniques for aerobic plate counting rely on the use of a spiral plater to deposit concentration gradients of microbial suspensions onto a circular agar plate to isolate colony growth. The advantage of applying a gradient of concentrations across the agar surface is that the original microbiological sample can be applied at a single concentration rather than as multiple serial dilutions. The spiral plater gradually dilutes the sample across a compact area and therefore saves time preparing dilutions and multiple agar plates. Commercial spiral platers are not automated and require manual sample loading. Dispensing of the sample volume and rate of gradients are often very limited in range. Furthermore, the spiral sample application cannot be used with rectangular microplates. Another limitation of commercial spiral platers is that they are useful only for dilute, filtered suspensions and cannot plate suspensions of coarse organic particles therefore precluding the use of many kinds of microorganism-containing substrata. An automated agar plate spreader capable of processing 99 rectangular microplates in unattended mode is described. This novel instrument is capable of dispensing discrete volumes of sample in a linear pattern. It can be programmed to dispense a sample suspense at a uniform application rate or across a decreasing concentration gradient.

  13. Newly discovered role of the heterotrophic nanoflagellate Katablepharis japonica, a predator of toxic or harmful dinoflagellates and raphidophytes.

    PubMed

    Kwon, Ji Eun; Jeong, Hae Jin; Kim, So Jin; Jang, Se Hyeon; Lee, Kyung Ha; Seong, Kyeong Ah

    2017-09-01

    Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea-a suitable algal prey item-heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d -1 . In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13ngC predator -1 d -1 (0.06 cells predator -1 d -1 ). The maximum ingestion rate of K. japonica for heterotrophic bacteria was 0.019ngC predator -1 d -1 (266 bacteria predator -1 d -1 ), and the highest ingestion rate of K. japonica for Synechococcus sp. at the given prey concentrations of up to ca. 10 7 cells ml -1 was 0.01ngC predator -1 d -1 (48 Synechococcus predator -1 d -1 ). The maximum daily carbon acquisition from A. sanguinea, heterotrophic bacteria, and Synechococcus sp. were 307, 43, and 22%, respectively, of the body carbon of the predator. Thus, low ingestion rates of K. japonica on heterotrophic bacteria and Synechococcus sp. may be responsible for the lack of growth. The results of the present study clearly show that K. japonica is a predator of diverse phytoplankton, including toxic or harmful algae, and may also affect the dynamics of red tides caused by these prey species. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Infection control in digital intraoral radiography: evaluation of microbiological contamination of photostimulable phosphor plates in barrier envelopes.

    PubMed

    MacDonald, David S; Waterfield, J Douglas

    2011-01-01

    The detectors (both solid-state sensors and photostimulable phosphor [PSP] plates) used for digital intraoral radiography cannot be autoclaved, and barriers are typically used to prevent the spread of infection. The aim of this study was to determine the effectiveness of a barrier envelope system for PSP plates. Disinfected PSP plates were aseptically inserted into barrier envelopes and placed in a periapical location. One PSP plate was placed in each of 28 patients, and 12 plates in each of 2 volunteers (D.S.M., J.D.W.). After retrieval, each PSP plate was removed from its barrier envelope, immersed in trypticase soy broth and aliquots were plated on trypticase soy agar. Bacterial colonies were counted 2 days later. Fifty-two PSP plates in barrier envelopes were evaluated for contamination. Quality assurance of the PSP plates before clinical placement revealed defects in the integrity of 4 barrier envelopes, caused by forceps-related damage or failure to achieve a uniform seal. These defects allowed substantial contamination. Contamination also occurred as a result of failure to extract the PSP plate from the barrier envelope cleanly. Of the 44 barriers with no obvious defects that were placed by either final-year dental students or a radiologist, only 3 allowed bacterial contamination of the PSP plate. Detectors contained in barrier envelopes remain a potential source of contamination. PSP plates must be disinfected between removal from a contaminated barrier envelope and placement in a new barrier envelope. In addition, placement into the barrier envelope should ideally be carried out under aseptic conditions. Finally, the integrity of each sealed barrier envelope must be verified visually before release to the clinic.

  15. Heterotrophic Carbon Dioxide Fixation Products of Euglena

    PubMed Central

    Peak, Jennifer G.; Peak, Meyrick J.; Ting, Irwin P.

    1980-01-01

    The metabolic products of heterotrophic (dark) CO2 fixation by Euglena gracilis Klebs strain Z Pringsheim were separated and identified. They consisted of amino acids, phosphorylated compounds, tricarboxylic acid cycle intermediates, and nucleotides. Exposure of the cells to NH4+ after a period of NH4+ deprivation stimulated heterotrophic CO2 fixation almost 4-fold, modifying the spectrum of the fixation products. In particular, the NH4+ treatment stimulated fixation of CO2 into glutamine, glycine, alanine, and serine. PMID:16661238

  16. Occurrence of heterotrophic and coliform bacteria in liquid hand soaps from bulk refillable dispensers in public facilities.

    PubMed

    Chattman, Marisa; Gerba, Sheri L; Maxwell, Charles P

    2011-03-01

    The goal of the study discussed in this article was to determine the occurrence of heterotrophic and coliform bacteria in liquid soap from bulk refillable dispensers, obtained from restrooms in a variety of public facilities. A total of 541 samples was collected from five U.S. cities. Liquid soap from dispensers in public areas was found to contain heterotrophic and coliform bacterial numbers averaging more than 106 CFU/mL in 24.8% of the dispensers.

  17. Photon-counting image sensors for the ultraviolet

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    An investigation on specific performance details of photon counting, ultraviolet image sensors having 2-dimensional formats is reviewed. In one study, controlled experiments were performed which compare the quantum efficiencies, in pulse counting mode, of CsI photocathodes deposited on: (1) the front surface of a microchannel plate (MCP), (2) a solid surface in front of an MCP, and (3) an intensified CCD image sensor (ICCD) where a CCD is directly bombarded by accelerated photoelectrons. Tests indicated that the detection efficiency of the CsI-coated MCP at 1026 A is lower by a factor of 2.5 than that of the MCP with a separate, opaque CsI photocathode, and the detection efficiency ratio increases substantially at longer wavelengths (ratio is 5 at 1216 A and 20 at 1608 A).

  18. Microbial evaluation of Alaska salmon caviar.

    PubMed

    Himelbloom, B H; Crapo, C A

    1998-05-01

    Microbial quality of pink salmon caviar (ikura) processed at one plant in Alaska during a 30-day season was examined. Ikura (aw = 0.98; pH 6.1) averaged 49% water, 32% protein, 11% fat, 7% ash, and 3% salt. Aerobic plate counts (APCs) ranged from < 10(2)/g to 4.5 x 10(7)/g with increasing APC toward season's end. Coliform counts ranged from < 3/g to 2.4 x 10(3)/g. Escherichia coli, Staphylococcus aureus, yeasts, and molds were not detected. High-APC (10(7)/g) thawed caviar exhibited predominantly lactic acid bacteria; low-APC (10(3)/g) thawed caviar exhibited predominantly gram-negative bacteria. Freezing had little effect on the microbial counts, and shelf life of thawed caviar was 3 to 5 days at 2 degrees C.

  19. Monitoring process hygiene in Serbian retail establishments

    NASA Astrophysics Data System (ADS)

    Vesković Moračanin, S.; Baltić, T.; Milojević, L.

    2017-09-01

    The present study was conducted to estimate the effectiveness of sanitary procedures on food contact surfaces and food handlers’ hands in Serbian retail establishments. For that purpose, a total of 970 samples from food contact surfaces and 525 samples from workers’ hands were microbiologically analyzed. Results of total aerobic plate count and total Enterobacteriaceae count showed that the implemented washing and disinfection procedures, as a part of HACCP plans, were not effective enough in most retail facilities. Constant and intensive education of employees on proper implementation of sanitation procedures are needed in order to ensure food safety in the retail market.

  20. Photon-Counting H33D Detector for Biological Fluorescence Imaging

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2010-01-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021

  1. Risk factors associated with bulk tank standard plate count, bulk tank coliform count, and the presence of Staphylococcus aureus on organic and conventional dairy farms in the United States.

    PubMed

    Cicconi-Hogan, K M; Gamroth, M; Richert, R; Ruegg, P L; Stiglbauer, K E; Schukken, Y H

    2013-01-01

    The purpose of this study was to assess the association of bulk tank milk standard plate counts, bulk tank coliform counts (CC), and the presence of Staphylococcus aureus in bulk tank milk with various management and farm characteristics on organic and conventional dairy farms throughout New York, Wisconsin, and Oregon. Data from size-matched organic farms (n=192), conventional nongrazing farms (n=64), and conventional grazing farms (n=36) were collected at a single visit for each farm. Of the 292 farms visited, 290 bulk tank milk samples were collected. Statistical models were created using data from all herds in the study, as well as exclusively for the organic subset of herds. Because of incomplete data, 267 of 290 herds were analyzed for total herd modeling, and 173 of 190 organic herds were analyzed for the organic herd modeling. Overall, more bulk tanks from organic farms had Staph. aureus cultured from them (62% of organic herds, 42% conventional nongrazing herds, and 43% of conventional grazing herds), whereas fewer organic herds had a high CC, defined as ≥50 cfu/mL, than conventional farms in the study. A high standard plate count (×1,000 cfu/mL) was associated with decreased body condition score of adult cows and decreased milk production in both models. Several variables were significant only in the model created using all herds or only in organic herds. The presence of Staph. aureus in the bulk tank milk was associated with fewer people treating mastitis, increased age of housing, and a higher percentage of cows with 3 or fewer teats in both the organic and total herd models. The Staph. aureus total herd model also showed a relationship with fewer first-lactation animals, higher hock scores, and less use of automatic takeoffs at milking. High bulk tank CC was related to feeding a total mixed ration and using natural service in nonlactating heifers in both models. Overall, attentive management and use of outside resources were useful with regard to CC on organic farms. In all models except the organic CC model, we observed an association with the average reported somatic cell count from 3 mo before the herd visit, indicating that many of the regularly tested milk quality parameters are interconnected. In conclusion, we found that conventional and organic farms are similar in regard to overall herd management, but each grazing system faces unique challenges when managing milk quality. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Determination of viability of Aeromonas hydrophila in increasing concentrations of sodium chloride at different temperatures by flow cytometry and plate count technique.

    PubMed

    Pianetti, Anna; Manti, Anita; Boi, Paola; Citterio, Barbara; Sabatini, Luigia; Papa, Stefano; Rocchi, Marco Bruno Luigi; Bruscolini, Francesca

    2008-10-31

    Aeromonads in waters and foods can represent a risk to human health. Factors such as sodium chloride concentration and temperature can affect growth and viability of several food and water-borne pathogens. The behaviour of an Aeromonas hydrophila strain in the presence of 1.7%, 3.4% and 6% NaCl concentrations at 24 degrees C and 4 degrees C was studied over a 188 day period. Viability and membrane potential were assessed by flow cytometry; growth was evaluated by plate count technique. Flow cytometry evidenced that A. hydrophila retained viability over the period although varying according to temperature and salt concentrations. Colony Forming Units were generally lower in number than viable cells especially in the presence of 6% NaCl, indicating the occurrence of stressed cells which maintain metabolic activity yet are not able to grow on agar plates. In conclusion, A. hydrophila showed a long-term halotolerance even at elevated (6%) NaCl concentrations and a lesser sensitivity to salt at low temperature; therefore, low temperature and salt, which are two important factors limiting bacterial growth, do not assure safety in the case of high initial contamination. Finally, cytometry appears a valid tool for the rapid detection of the viability of pathogenic bacteria in food and environmental matrices to control and prevent health risks.

  3. Quantifying the Interannual Variability in Global Carbon Fluxes from Heterotrophic Respiration using a Testbed and Pulse Response Modeling Approach.

    NASA Astrophysics Data System (ADS)

    Basile, S.; Wieder, W. R.; Hartman, M. D.; Keppel-Aleks, G.

    2017-12-01

    The atmospheric growth rate of carbon dioxide (CO2) varies interannually and is strongly correlated with climate factors, including temperature and drought. These climate drivers affect vegetation productivity and the rate of respiration of organic matter to CO2 (heterotrophic respiration). Here we quantified the interannual variability in global carbon fluxes from heterotrophic respiration and their relationship to climate drivers. We used a novel testbed approach to simulate respiration, then simulated the imprint that these modeled heterotrophic fluxes have on atmospheric CO2 using an idealized pulse response model. Two of the testbed formulations (MIMICS and CORPSE) are microbially explicit by incorporation of microbial physiological tradeoffs and microbial activity in soil near fine roots (rhizosphere soils), respectively, while the third model (CASA) uses a CENTURY-like microbially implicit framework. Modeled respiration exhibited subtle differences, with MIMICS showing the largest seasonal amplitude in the Northern Hemisphere and the strongest correlation with global temperature variations. At Mauna Loa (MLO) the simulated seasonal CO2 amplitude in response to global heterotrophic respiration ranged by a factor of 1.5 across the models with the MIMICS and CASA models producing the higher amplitude responses between 1987 and 2006. The seasonal CO2 amplitude at MLO varied by about 5% interannually, with the largest variation in the MIMICS model. In the Northern Hemisphere there was a similar response range in average peak-to-trough seasonal CO2 but all models showed slightly higher amplitude values. Comparatively in the Northern Hemisphere, the average seasonal CO2 amplitude in response to respiration ranged between 30%-41% of the seasonal CO2 amplitude in response to net primary productivity. We expect that exploring the imprint of heterotrophic respiration on atmospheric CO2 from these three different models will improve our understanding of the imprint that heterotrophic respiration imparts on atmospheric data. The aim of this work is to ultimately yield an approach for combining CO2 observations with remote sensing-based observations of terrestrial productivity to produce regional constraints on heterotrophic respiration.

  4. Survival of B. Horneckiae Spores Under Ground-simulated Space Conditions

    NASA Technical Reports Server (NTRS)

    Schanche, Bradley

    2012-01-01

    To prevent forward contamination and maintain the scientific integrity of future life detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated habitats, spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. Recently a radiation resistant, spore forming bacterial isolate, Bacillus horneckiae, was isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. The exceptionally high tolerance of extreme conditions demonstrated by sporeforming bacteria highlighted the need to assess the viability of these microbes in situ (in real) space. The proposed BOSS (Biofilm Organisms Surfing Space) project aims to understand the mechanisms by which biofilm forming organisms, such as B. horneckiae, will potentially be able to withstand harsh space conditions. As previously stated, the spore producing ability of these species gives them increased survivability to harsh conditions. Some of the spores will have the protective exosporium layer artificially removed before the test to determine if the existence of this layer significantly changes the survivability during the mission. In preparation for that experiment, we analyzed spores which were exposed during a ground simulation, the EXPOSE R2 Biofilm Organisms Surfing Space (BOSS). Previous to exposure, spores were deposited onto spacecraft grade aluminum coupons in a spore suspension calculated to contain between 10(exp 7) and 10(exp 8) spores. This precursor series will be used to establish a baseline survivability function for comparison with the future flight tests during EXPOSE-R. For each coupon, a 10% polyvinyl alcohol (PVA) film was applied and peeled from the coupon to recover the spores. One hundred µl of sterile 10% PVA was applied to the surface of the coupon and allowed to dry for 1 hour at 37 C. The films were then removed using sterile scalpel and forceps and placed into a glass test tube containing 2 milliliters of sterile deionized water. The PVA film process was then repeated on each coupon one additional time to ensure recovery of the majority of spores. The second PVA film was added in the same glass tube as in the previous round. If the spores remained 100% viable, the test tubes should now contain between 5 X 10(exp 6) and 5 X 10(exp 7) spores per millimeter; however, it is expected that some loss of viability has occurred. In order to assess this loss, the number of colony forming, viable spores was counted. To count the colony forming units (CFUs), the spore containing solution was diluted in a process of 10-fold serial dilution by mixing successive solutions in a 100 microliter spore suspension to 900 microliter deionized H2O ratio. A sample dilution series revealed that 10(exp -3) and 10(exp -4) concentrations would be necessary for an accurate CFU count to be taken. For those two concentrations, a spread on a TSA plate was prepared and incubated at 32 C. For the samples exposed to UV radiation, the cell survivability was too low to establish a count from 100 microliter spread plating. Instead, no dilutions were performed and the entire 2 milliliter spore suspension was plated and incubated at 32 C. The plate's CFU counts were taken at 24 hours and 48 hours from the time of plating. At the end of the CFU counting the total surviving spores in each sample were calculated based on the number of CFUs that were observed per 100 microliters, or per 2 milliliters for the UV irradiated samples. The results of these calculations are shown in Figures 1 and 2.

  5. Inter-operator variation in ELISPOT analysis of measles virus-specific IFN-gamma-secreting T cells.

    PubMed

    Ryan, J E; Ovsyannikova, I G; Dhiman, N; Pinsky, N A; Vierkant, R A; Jacobson, R M; Poland, G A

    2005-01-01

    The ELISPOT assay is a highly sensitive technique used for the detection of individual cytokine releasing cells. We have developed an IFN-gamma ELISPOT assay utilizing unfractionated frozen peripheral blood mononuclear cells (PBMC) to quantify the frequency of measles virus (MV)-specific IFN-gamma-secreting T cells in 117 healthy children who had been previously immunized with two doses of the measles-mumps-rubella vaccine. We have also estimated the variability associated with the quantification of ELISPOT plates and compared the number of MV-specific IFN-gamma-secreting T cells for each subject as determined by two different operators of an ELISPOT reader. The median frequency of MV-specific IFN-gamma-producing memory T cells detected by this assay was 0.005 % and 0.01 % as determined by an in-house and commercial operator, respectively. Although we found a significant correlation (r = 0.83, p<0.0001) between the number of spots counted by the commercial and in-house operators of an ELISPOT reader, the median number of spots counted by the commercial operator was twice the number of spots counted by an in-house operator (p<0.001). This demonstrates the importance of using a common ELISPOT reader and operator, among other parameters, to quantify the number of spots when a large volume of plates are being scanned and analyzed.

  6. Stress-opioid interactions: a comparison of morphine and methadone.

    PubMed

    Taracha, Ewa; Mierzejewski, Paweł; Lehner, Małgorzata; Chrapusta, Stanisław J; Kała, Maria; Lechowicz, Wojciech; Hamed, Adam; Skórzewska, Anna; Kostowski, Wojciech; Płaźnik, Adam

    2009-01-01

    The utility of methadone and morphine for analgesia and of methadone for substitution therapy for heroin addiction is a consequence of these drugs acting as opioid receptor agonists.We compared the cataleptogenic and antinociceptive effects of single subcutaneous doses of methadone hydrochloride (1-4 mg/kg) and morphine sulfate (2.5-10 mg/kg) using catalepsy and hot-plate tests, and examined the effects of the highest doses of the drugs on Fos protein expression in selected brain regions in male Sprague-Dawley rats. Methadone had greater cataleptogenic and analgesic potency than morphine. Fos immunohistochemistry revealed substantial effects on the Fos response of both the stress induced by the experimental procedures and of the drug exposure itself. There were three response patterns identified: 1) drug exposure, but not stress, significantly elevated Fos-positive cell counts in the caudate-putamen; 2) stress alone and stress combined with drug exposure similarly elevated Fos-positive cell counts in the nucleus accumbens and cingulate cortex; and 3) methadone and morphine (to a lesser extent) counteracted the stimulatory effect of nonpharmacological stressors on Fos protein expression in the somatosensory cortex barrel field, and Fos-positive cell counts in this region correlated negatively with both the duration of catalepsy and the latency time in the hot-plate test. The overlap between brain regions reacting to nonpharmacological stressors and those responding to exogenous opioids suggests that stress contributes to opioid-induced neuronal activation.

  7. High throughput and quantitative approaches for measuring circadian rhythms in cyanobacteria using bioluminescence

    PubMed Central

    Shultzaberger, Ryan K.; Paddock, Mark L.; Katsuki, Takeo; Greenspan, Ralph J.; Golden, Susan S.

    2016-01-01

    The temporal measurement of a bioluminescent reporter has proven to be one of the most powerful tools for characterizing circadian rhythms in the cyanobacterium Synechococcus elongatus. Primarily, two approaches have been used to automate this process: (1) detection of cell culture bioluminescence in 96-well plates by a photomultiplier tube-based plate-cycling luminometer (TopCount Microplate Scintillation and Luminescence Counter, Perkin Elmer) and (2) detection of individual colony bioluminescence by iteratively rotating a Petri dish under a cooled CCD camera using a computer-controlled turntable. Each approach has distinct advantages. The TopCount provides a more quantitative measurement of bioluminescence, enabling the direct comparison of clock output levels among strains. The computer-controlled turntable approach has a shorter set-up time and greater throughput, making it a more powerful phenotypic screening tool. While the latter approach is extremely useful, only a few labs have been able to build such an apparatus because of technical hurdles involved in coordinating and controlling both the camera and the turntable, and in processing the resulting images. This protocol provides instructions on how to construct, use, and process data from a computer-controlled turntable to measure the temporal changes in bioluminescence of individual cyanobacterial colonies. Furthermore, we describe how to prepare samples for use with the TopCount to minimize experimental noise, and generate meaningful quantitative measurements of clock output levels for advanced analysis. PMID:25662451

  8. The Resazurin-Agar Method - a Quick Test to Determine Water Quality

    NASA Astrophysics Data System (ADS)

    Huckfeldt, J.; Westphal, B.; Claußen, L.

    2015-12-01

    Rezasurin has been used as a smart tracer in stream ecosystems to indicate metabolic activity, specifically aerobic respiration by heterotrophic bacteria. Resazurin is a blue compound which is irreversibly reduced to the pink resorufin in the presence of aerobic bacteria. The degree and speed of colour change from blue to pink is a measure of the degree of oxygen consumption and thus an indirect indication of the concentration of aerobic bacteria in a given medium. A high concentration of bacteria in water indicates a bad water quality. In our work a method was developed using resazurin agar plates to find a quick and easy way for testing water quality and comparing concentrations of bacteria in freshwater and seawater samples. The theory was to concentrate bacteria from a defined volume of water sample onto polycarbonate filters (0.2 μm), which are then placed onto the resazurin agar plate. The presence of aerobic bacteria on the filter will reduce the resazurin in the agar and the compound changes its colour. First tests conducted with different dilutions of a pure culture of yoghurt bacteria showed promising results and confirmed the feasibility of the method. In a further assay, we used water samples from different water layers and different temperatures and were also able to observe differences in the concentration of bacteria, depending on these different environmental conditions.The assay was also successfully used with seawater samples, collected from 2 different stations at 3 different depths in the Baltic Sea (salinity=15). The discolouration of the plates showed good correlation with the oxygen concentrations in the water. The resazurin-agar plate method is economical and fast. Several samples could be investigated at the same time without sacrificing the reliability of the results. Thus it is a good pre-screening test for a quantitative evaluation of bacteria in a water sample.

  9. Biodiesel production from heterotrophic microalgal oil.

    PubMed

    Miao, Xiaoling; Wu, Qingyu

    2006-04-01

    The present study introduced an integrated method for the production of biodiesel from microalgal oil. Heterotrophic growth of Chlorella protothecoides resulted in the accumulation of high lipid content (55%) in cells. Large amount of microalgal oil was efficiently extracted from these heterotrophic cells by using n-hexane. Biodiesel comparable to conventional diesel was obtained from heterotrophic microalgal oil by acidic transesterification. The best process combination was 100% catalyst quantity (based on oil weight) with 56:1 molar ratio of methanol to oil at temperature of 30 degrees C, which reduced product specific gravity from an initial value of 0.912 to a final value of 0.8637 in about 4h of reaction time. The results suggested that the new process, which combined bioengineering and transesterification, was a feasible and effective method for the production of high quality biodiesel from microalgal oil.

  10. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    PubMed

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  11. Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohutskyi, Pavlo; Kucek, Leo A.; Hill, Eric

    Metabolic flexibility and robustness of phototroph- heterotroph co-cultures provide a flexible binary engineering platform for a variety of biotechnological and environmental applications. Here, we metabolically coupled a heterotrophic bacterium Bacillus subtilis with astaxanthin producing alga Haematococcus pluvialis and successfully applied this binary co-culture for conversion of the starch-rich waste stream into valuable astaxanthin-rich biomass. Importantly, the implemented system required less mass transfer of CO2 and O2 due to in-situ exchange between heterotroph and phototroph, which can contribute to reduction in energy consumption for wastewater treatment. In addition, the maximum reduction in chemical oxygen demand, total nitrogen and phosphorus reached 65%,more » 55% and 30%, respectively. The preliminary economic analysis indicated that realization of produced biomass with 0.8% astaxanthin content may generate annual revenues of $3.2M (baseline scenario) from treatment of wastewater (1,090 m3/day) from a potato processing plant. Moreover, the revenues may be increased up to $18.2M for optimized scenario with astaxanthin content in algae of 2%. This work demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into targeted value-added products through metabolic connection of heterotrophic and phototrophic organisms. Utilization of heterotrophic-algal binary cultures opens new perspectives for designing highly-efficient production processes for feedstock biomass production as well as allows utilization of variety of organic agricultural, chemical, or municipal wastes.« less

  12. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    NASA Astrophysics Data System (ADS)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  13. Survival of cold-stressed Campylobacter jejuni on ground chicken and chicken skin during frozen storage.

    PubMed

    Bhaduri, Saumya; Cottrell, Bryan

    2004-12-01

    Campylobacter jejuni is prevalent in poultry, but the effect of combined refrigerated and frozen storage on its survival, conditions relevant to poultry processing and storage, has not been evaluated. Therefore, the effects of refrigeration at 4 degrees C, freezing at -20 degrees C, and a combination of refrigeration and freezing on the survival of C. jejuni in ground chicken and on chicken skin were examined. Samples were enumerated using tryptic soy agar containing sheep's blood and modified cefoperazone charcoal deoxycholate agar. Refrigerated storage alone for 3 to 7 days produced a reduction in cell counts of 0.34 to 0.81 log10 CFU/g in ground chicken and a reduction in cell counts of 0.31 to 0.63 log10 CFU/g on chicken skin. Declines were comparable for each sample type using either plating medium. Frozen storage, alone and with prerefrigeration, produced a reduction in cell counts of 0.56 to 1.57 log10 CFU/g in ground chicken and a reduction in cell counts of 1.38 to 3.39 log10 CFU/g on chicken skin over a 2-week period. The recovery of C. jejuni following freezing was similar on both plating media. The survival following frozen storage was greater in ground chicken than on chicken skin with or without prerefrigeration. Cell counts after freezing were lower on chicken skin samples that had been prerefrigerated for 7 days than in those that had been prerefrigerated for 0, 1, or 3 days. This was not observed for ground chicken samples, possibly due to their composition. C. jejuni survived storage at 4 and -20 degrees C with either sample type. This study indicates that, individually or in combination, refrigeration and freezing are not a substitute for safe handling and proper cooking of poultry.

  14. Assessing the growth and recovery of Salmonella Enteritidis SE86 after sodium dichloroisocyanurate exposure

    PubMed Central

    Ferreira, Fernanda Stoduto; Horvath, Mariana Bandeira; Tondo, Eduardo Cesar

    2013-01-01

    The objective of the present study was to assess the growth and the recovery of Salmonella (S.) Enteritidis SE86 in different diluents, culture media and using different plating methods after the exposure to 200 mg/kg sodium dichloroisocyanurate (NaDCC). Before and after NaDCC exposure, SE86 was cultured at 30 °C and 7 °C in the following diluents: Peptone water (P), Saline solution (SaS), Peptone water+Saline solution (P+SaS), Peptone water+Tween 80+Lecithin+Sodium thiosulfate (P+N) and Saline solution+Tween 80+Lecithin+Sodium thiosulfate (SaS+N). The SaS diluent was chosen because it was able to maintain cells viable without growth and was further used for plating SE86 on non selective medium (Tryptic Soy Agar-TSA) and on selective media (Mannitol Lysine Crystal Violet Brilliant Green Agar-MLCB; Brilliant Green Agar-BGA; Salmonella Shigella Agar-SS and Xylose Lysine Dextrose–XLD). The Thin Agar Layer method (TAL) i.e., selective media overlayed with non selective TSA was also evaluated. Results indicated that SE86 not exposed to NaDCC was able to grow in P, P+N, SaS+N and P+SaS, but not in SaS, that was able to maintain cells viable. SE86 exposed to NaDCC demonstrated similar counts after dilution in SaS and the plating on non selective TSA, selective media MLCB, BGA, SS and XLD and on TAL media. SE86, S. Typhimurium and S. Bredeney, exposed or not exposed to NaDCC, showed no significant differences in counts on TSA, XLD and XLD overlayed with TSA, suggesting that all those media may be used to quantify NaDCC-exposed Salmonella by plating method. PMID:24516446

  15. The effect of different precooling rates and cold storage on milk microbiological quality and composition.

    PubMed

    Paludetti, Lizandra F; Kelly, Alan L; O'Brien, Bernadette; Jordan, Kieran; Gleeson, David

    2018-03-01

    The objective of this study was to measure the effect of different milk cooling rates, before entering the bulk tank, on the microbiological load and composition of the milk, as well as on energy usage. Three milk precooling treatments were applied before milk entered 3 identical bulk milk tanks: no plate cooler (NP), single-stage plate cooler (SP), and double-stage plate cooler (DP). These precooling treatments cooled the milk to 32.0 ± 1.4°C, 17.0 ± 2.8°C, and 6.0 ± 1.1°C, respectively. Milk was added to the bulk tank twice daily for 72 h, and the tank refrigeration temperature was set at 3°C. The blend temperature within each bulk tank was reduced after each milking event as the volume of milk at 3°C increased simultaneously. The bacterial counts of the milk volumes precooled at different rates did not differ significantly at 0 h of storage or at 24-h intervals thereafter. After 72 h of storage, the total bacterial count of the NP milk was 3.90 ± 0.09 log 10 cfu/mL, whereas that of the precooled milk volumes were 3.77 ± 0.09 (SP) and 3.71 ± 0.09 (DP) log 10 cfu/mL. The constant storage temperature (3°C) over 72 h helped to reduce bacterial growth rates in milk; consequently, milk composition was not affected and minimal, if any, proteolysis occurred. The DP treatment had the highest energy consumption (17.6 ± 0.5 Wh/L), followed by the NP (16.8 ± 2.7 Wh/L) and SP (10.6 ± 1.3 Wh/L) treatments. This study suggests that bacterial count and composition of milk are minimally affected when milk is stored at 3°C for 72 h, regardless of whether the milk is precooled; however, milk entering the tank should have good initial microbiological quality. Considering the numerical differences between bacterial counts, however, the use of the SP or DP precooling systems is recommended to maintain low levels of bacterial counts and reduce energy consumption. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  16. [BIOMECHANICAL COMPARATIVE STUDY ON FOUR INTERNAL FIXATIONS FOR ACETABULAR FRACTURES IN QUADRILATERAL AREA].

    PubMed

    Wang, Lei; Wu, Xiaobo; Qi, Wei; Wang, Yongbin; He, Quanjie; Xu, Fengsong; Liu, Hongyang

    2015-10-01

    To compare the biomechanical difference of 4 kinds of internal fixations for acetabular fracture in quadrilateral area. The transverse fracture models were created in 16 hemipelves specimens from 8 adult males, and were randomly divided into 4 groups according to different internal fixation methods (n = 4): infrapectineal buttress reconstruction plate (group A), infrapectineal buttress locking reconstruction plate (group B), reconstruction plate combined with trans-plate quadrilateral screws (group C), and anterior reconstruction plate-lag screw (group D). Then the horizontal displacement, longitudinal displacement of fractures, and axial stiffness were measured and counted to compare the stability after continuous vertical loading. Under the same loading, the horizontal and longitudinal displacements of groups A, B, C, and D were decreased gradually; when the loading reached 1 800 N, the longitudinal displacement of group A was more than 3.00 mm, indicating the failure criterion, while the axial stiffness increased gradually. Under 200 N loading, there was no significant difference (P > 0.05) in horizontal displacement, longitudinal displacement, and axial stiffness among 4 groups. When the loading reached 600-1 800 N, significant differences were found in horizontal displacement, longitudinal displacement, and axial stiffness among 4 groups (P < 0.05) except the horizontal displacement between groups C and D (P > 0.05). For acetabular fracture in the quadrilateral area, anterior reconstruction plate-lag screw for internal fixation has highest stability, followed by reconstruction plate combined with trans-plate quadrilateral screws, and they are better than infrapectineal buttress reconstruction plate and infrapectineal buttress locking reconstruction plate.

  17. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways.

    Treesearch

    Jennifer L. Greenwood; Amy D. Rosemond; J. Bruce Wallace; Wyatt F. Cross; Holly S. Weyers

    2009-01-01

    Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-...

  18. Multi-anode microchannel arrays

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1977-01-01

    A development program is currently being undertaken to produce photon-counting detector arrays which are suitable for use in both ground-based and space-borne instruments and which utilize the full sensitivity, dynamic range and photometric stability of the microchannel array plate (MCP). The construction of the detector arrays and the status of the development program are described.

  19. Paper Plate Fractions: The Counting Connection

    ERIC Educational Resources Information Center

    McCoy, Ann; Barnett, Joann; Stine, Tammy

    2016-01-01

    Without a doubt, fractions prove to be a stumbling block for many children. Researchers have suggested a variety of explanations for why this is the case. The introduction of symbolization and operations before the development of conceptual understanding of fractions, a lack of understanding of the role of the numerator and denominator, and an…

  20. VizieR Online Data Catalog: Tidal radii of 7 globular clusters (Lehmann+ 1997)

    NASA Astrophysics Data System (ADS)

    Lehmann, I.; Scholz, R.-D.

    1998-02-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962AJ.....67..471K) we derived the following structural parameters: tidal radius rt, core radius rc and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al., 1995AJ....109.2553G). (1 data file).

  1. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    PubMed

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  2. Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia.

    PubMed

    Rodes, Laetitia; Paul, Arghya; Coussa-Charley, Michael; Al-Salami, Hani; Tomaro-Duchesneau, Catherine; Fakhoury, Marc; Prakash, Satya

    2011-12-01

    Retention time, which is analogous to transit time, is an index for bacterial stability in the intestine. Its consideration is of particular importance to optimize the delivery of probiotic bacteria in order to improve treatment efficacy. This study aims to investigate the effect of retention time on Lactobacilli and Bifidobacteria stability using an established in vitro human colon model. Three retention times were used: 72, 96, and 144 h. The effect of retention time on cell viability of different bacterial populations was analyzed with bacterial plate counts and PCR. The proportions of intestinal Bifidobacteria, Lactobacilli, Enterococci, Staphylococci and Clostridia populations, analyzed by plate counts, were found to be the same as that in human colonic microbiota. Retention time in the human colon affected the stability of Lactobacilli and Bifidobacteria communities, with maximum stability observed at 144 h. Therefore, retention time is an important parameter that influences bacterial stability in the colonic microbiota. Future clinical studies on probiotic bacteria formulations should take into consideration gastrointestinal transit parameters to improve treatment efficacy.

  3. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    PubMed Central

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  4. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  5. Cultural, Transcriptomic, and Proteomic Analyses of Water-Stressed Cells of Actinobacterial Strains Isolated from Compost: Ecological Implications in the Fed-Batch Composting Process.

    PubMed

    Narihiro, Takashi; Kanosue, Yuji; Hiraishi, Akira

    2016-06-25

    This study was undertaken to examine the effects of water activity (aw) on the viability of actinobacterial isolates from a fed-batch composting (FBC) process by comparing culturability and stainability with 5-cyano-2,3-ditoryl tetrazolium chloride (CTC). The FBC reactor as the source of these bacteria was operated with the daily loading of household biowaste for 70 d. During this period of composting, aw in the reactor decreased linearly with time and reached approximately 0.95 at the end of operation. The plate counts of aerobic chemoorganotrophic bacteria were 3.2-fold higher than CTC-positive (CTC+) counts on average at the fully acclimated stage (after 7 weeks of operation), in which Actinobacteria predominated, as shown by lipoquinone profiling and cultivation methods. When the actinobacterial isolates from the FBC process were grown under aw stress, no significant differences were observed in culturability among the cultures, whereas CTC stainability decreased with reductions in aw levels. A cDNA microarray-based transcriptomic analysis of a representative isolate showed that many of the genes involved in cellular metabolism and genetic information processing were down-regulated by aw stress. This result was fully supported by a proteomic analysis. The results of the present study suggest that, in low aw mature compost, the metabolic activity of the community with Actinobacteria predominating is temporarily reduced to a level that hardly reacts with CTC; however, these bacteria are easily recoverable by exposure to a high aw culture medium. This may be a plausible reason why acclimated FBC reactors in which Actinobacteria predominate yields higher plate counts than CTC+ counts.

  6. The effect of ice-cream-scoop water on the hygiene of ice cream.

    PubMed Central

    Wilson, I. G.; Heaney, J. C.; Weatherup, S. T.

    1997-01-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples. PMID:9287941

  7. The effect of ice-cream-scoop water on the hygiene of ice cream.

    PubMed

    Wilson, I G; Heaney, J C; Weatherup, S T

    1997-08-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples.

  8. Biochemical Composition of Dissolved Organic Carbon Derived from Phytoplankton and Used by Heterotrophic Bacteria

    PubMed Central

    Sundh, Ingvar

    1992-01-01

    The molecular size distribution and biochemical composition of the dissolved organic carbon released from natural communities of lake phytoplankton (photosynthetically produced dissolved organic carbon [PDOC]) and subsequently used by heterotrophic bacteria were determined in three lakes differing in trophic status and concentration of humic substances. After incubation of epilimnetic lake water samples with H14CO3- over one diel cycle, the phytoplankton were removed by size-selective filtration. The filtrates, still containing most of the heterotrophic bacteria, were reincubated in darkness (heterotrophic incubation). Differences in the amount and composition of PDO14C between samples collected before the heterotrophic incubation and samples collected afterwards were considered to be a result of bacterial utilization. The PDO14C collected at the start of the heterotrophic incubations always contained both high (>10,000)- and low (<1,000)-molecular-weight (MW) components and sometimes contained intermediate-MW components as well. In general, bacterial turnover rates of the low-MW components were fairly rapid, whereas the high-MW components were utilized slowly or not at all. In the humic lake, the intermediate-MW components accounted for a large proportion of the net PDO14C and were subject to rapid bacterial utilization. This fraction probably consisted almost entirely of polysaccharides of ca. 6,000 MW. Amino acids and peptides, other organic acids, and carbohydrates could all be quantitatively important parts of the low-MW PDO14C that was utilized by the heterotrophic bacteria, but the relative contributions of these fractions differed widely. It was concluded that, generally, low-MW components of PDOC are quantitatively much more important to the bacteria than are high-MW components, that PDOC released from phytoplankton does not contain substances of quantitative importance as bacterial substrates in all situations, and that high-MW components of PDOC probably contribute to the buildup of refractory, high-MW dissolved organic carbon in pelagic environments. PMID:16348767

  9. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    PubMed

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change. © 2012 Blackwell Publishing Ltd.

  10. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    PubMed

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  11. Evaluation of Heterotrophy in in Serpentinite-Associated Waters from the Coast Range Ophiolite, Northern California, USA and the Zambales Ophiolite, Philippines

    NASA Astrophysics Data System (ADS)

    Scott, T. J.; Arcilla, C. A.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.; Meyer-Dombard, D. R.; Schrenk, M. O.

    2013-12-01

    The deep biosphere in cold, dark sub-seafloor ultramafic rocks (i.e., those rocks rich in Fe and Mg) is stressed by exceedingly high pH, transient, if any, inorganic carbon availability, and little known organic carbon inventories. As a test of heterotrophic carbon use, serpentinite-associated waters (from groundwater sampling wells and associated surface seepages in tectonically uplifted mantle units in ophiolites) were tested for differences with respect to aqueous geochemistry and performance in EcoPlates™ - Biolog Inc. .. This work focuses on two field locations for water sampling: the Coast Range Ophiolite, CA, USA, and the Zambales Ophiolite, Philippines. Characteristics of each sampling site are presented (pH, mineral substrate, Ca2+/Mg2+ ratio, aqueous metal loads, etc.). Complementary EcoPlate™ results [prefabricated 96-well plates, seeded with triplicate experiments for determining microbiological community response to difference organic carbon sources; a triplicate control experiment with just water is built in to the plate also] are also presented. We found that waters from selected California [groundwater wells (7 discrete wells) and related surface seeps (5 hydrologically connected sites)] and Philippines [4 Zambales Ophiolite springs/seepages] sourced in serpentinites were analyzed. EcoPlate™ average well-color development (AWCD), which demonstrates microbial activities averaged per plate (as in Garland and Mills, 1991), differs across sites. Correlations of AWCD with environmental data (such as pH, oxidation-reduction potential or ORP, Ca2+/Mg2+ ratio, and Fe contents) are evaluated. Clarifying the geochemical-biological relationships that bear out in these analyses informs discourse on the energetic limits of life in serpentinizing systems, with relevance to ultramafic-hosted life on continents and in the seabed.

  12. Carbon limitation patterns in buried and open urban streams

    EPA Science Inventory

    Urban streams alternate between darkened buried segments dominated by heterotrophic processes and lighted open segments dominated by autotrophic processes. We hypothesized that labile carbon leaking from autotrophic cells would reduce heterotrophic carbon limitation in open chan...

  13. The plastid genomes of nonphotosynthetic algae are not so small after all

    PubMed Central

    Figueroa-Martinez, Francisco; Nedelcu, Aurora M.; Reyes-Prieto, Adrian

    2017-01-01

    ABSTRACT The thing about plastid genomes in nonphotosynthetic plants and algae is that they are usually very small and highly compact. This is not surprising: a heterotrophic existence means that genes for photosynthesis can be easily discarded. But the loss of photosynthesis cannot explain why the plastomes of heterotrophs are so often depauperate in noncoding DNA. If plastid genomes from photosynthetic taxa can span the gamut of compactness, why can't those of nonphotosynthetic species? Well, recently we showed that they can. The free-living, heterotrophic green alga Polytoma uvella has a plastid genome boasting more than 165 kilobases of noncoding DNA, making it the most bloated plastome yet found in a heterotroph. In this addendum to the primary study, we elaborate on why the P. uvella plastome is so inflated, discussing the potential impact of a free-living vs. parasitic lifestyle on plastid genome expansion in nonphotosynthetic lineages. PMID:28377793

  14. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.

    PubMed

    Smetana, Sergiy; Sandmann, Michael; Rohn, Sascha; Pleissner, Daniel; Heinz, Volker

    2017-12-01

    The lack of protein sources in Europe could be reduced with onsite production of microalgae with autotrophic and heterotrophic systems, owing the confirmation of economic and environmental benefits. This study aimed at the life cycle assessment (LCA) of microalgae and cyanobacteria cultivation (Chlorella vulgaris and Arthrospira platensis) in autotrophic and heterotrophic conditions on a pilot industrial scale (in model conditions of Berlin, Germany) with further biomass processing for food and feed products. The comparison of analysis results with traditional benchmarks (protein concentrates) indicated higher environmental impact of microalgae protein powders. However high-moisture extrusion of heterotrophic cultivated C. vulgaris resulted in more environmentally sustainable product than pork and beef. Further optimization of production with Chlorella pyrenoidosa on hydrolyzed food waste could reduce environmental impact in 4.5 times and create one of the most sustainable sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as a growth medium.

    PubMed

    Nzayisenga, Jean Claude; Eriksson, Karolina; Sellstedt, Anita

    2018-06-01

    The biomass production and changes in biochemical composition of a locally isolated microalga (Chlorella sp.) were investigated in autotrophic, mixotrophic and heterotrophic conditions, using glucose or glycerol as carbon sources and municipal wastewater as the growth medium. Both standard methods and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) analysis of data acquired by Fourier-transform IR (FTIR) spectrometry showed that autotrophic and mixotrophic conditions promoted carbohydrate accumulation, while heterotrophic conditions with glycerol resulted in the highest lipid content and lowest carbohydrate content. Heterotrophic conditions with glycerol as a carbon source also resulted in high oleic acid (18:1) contents and low linolenic acid (18:3) contents, and thus increasing biodiesel quality. The results also show the utility of MCR-ALS for analyzing changes in microalgal biochemical composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Difference of three standard curves of real-time reverse-transcriptase PCR in viable Vibrio parahaemolyticus quantification].

    PubMed

    Jin, Mengtong; Sun, Wenshuo; Li, Qin; Sun, Xiaohong; Pan, Yingjie; Zhao, Yong

    2014-04-04

    We evaluated the difference of three standard curves in quantifying viable Vibrio parahaemolyticus in samples by real-time reverse-transcriptase PCR (Real-time RT-PCR). The standard curve A was established by 10-fold diluted cDNA. The cDNA was reverse transcripted after RNA synthesized in vitro. The standard curve B and C were established by 10-fold diluted cDNA. The cDNA was synthesized after RNA isolated from Vibrio parahaemolyticus in pure cultures (10(8) CFU/mL) and shrimp samples (10(6) CFU/g) (Standard curve A and C were proposed for the first time). Three standard curves were performed to quantitatively detect V. parahaemolyticus in six samples, respectively (Two pure cultured V. parahaemolyticus samples, two artificially contaminated cooked Litopenaeus vannamei samples and two artificially contaminated Litopenaeus vannamei samples). Then we evaluated the quantitative results of standard curve and the plate counting results and then analysed the differences. The three standard curves all show a strong linear relationship between the fractional cycle number and V. parahaemolyticus concentration (R2 > 0.99); The quantitative results of Real-time PCR were significantly (p < 0.05) lower than the results of plate counting. The relative errors compared with the results of plate counting ranked standard curve A (30.0%) > standard curve C (18.8%) > standard curve B (6.9%); The average differences between standard curve A and standard curve B and C were - 2.25 Lg CFU/mL and - 0.75 Lg CFU/mL, respectively, and the mean relative errors were 48.2% and 15.9%, respectively; The average difference between standard curve B and C was among (1.47 -1.53) Lg CFU/mL and the average relative errors were among 19.0% - 23.8%. Standard curve B could be applied to Real-time RT-PCR when quantify the number of viable microorganisms in samples.

  17. A new application of a sodium deoxycholate-propidium monoazide-quantitative PCR assay for rapid and sensitive detection of viable Cronobacter sakazakii in powdered infant formula.

    PubMed

    Zhou, Baoqing; Chen, Bolu; Wu, Xin; Li, Fan; Yu, Pei; Aguilar, Zoraida P; Wei, Hua; Xu, Hengyi

    2016-12-01

    A rapid, reliable, and sensitive method for the detection of Cronobacter sakazakii, a common foodborne pathogen that may cause serious neonatal disease, has been developed. In this study, a rapid real-time quantitative PCR (qPCR) assay combined with sodium deoxycholate (SD) and propidium monoazide (PMA) was developed to detect C. sakazakii contamination in powdered infant formula (PIF). This method could eliminate the interference from dead or injured bacteria. Optimization studies indicated that SD and PMA at 0.08% (wt/vol) and 5µg/mL, respectively, were the most appropriate. In addition, qPCR, PMA-qPCR, SD-PMA-qPCR, and plate count assays were used to account for the number of viable bacteria in cell suspensions that were exposed to a 55°C water bath at different length of time. As a result, the viable number by PMA-qPCR showed significantly higher than of the number from SD-PMA-qPCR or plate counts. The number of viable bacteria was consistent between SD-PMA-qPCR and traditional plate counts, which indicated that SD treatment could eliminate the interference from dead or injured cells. Using the optimized parameters, the limit of detection with the SD-PMA-qPCR assay was 3.3×10 2 cfu/mL and 4.4×10 2 cfu/g in pure culture and in spiked PIF, respectively. A similar detection limit of 5.6×10 2 cfu/g was obtained in the presence of the Staphylococcus aureus (10 7 cfu/mL). The combined SD-PMA-qPCR assay holds promise for the rapid detection of viable C. sakazakii in PIF. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Advantageous Direct Quantification of Viable Closely Related Probiotics in Petit-Suisse Cheeses under In Vitro Gastrointestinal Conditions by Propidium Monoazide - qPCR

    PubMed Central

    Villarreal, Martha Lissete Morales; Padilha, Marina; Vieira, Antonio Diogo Silva; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Saad, Susana Marta Isay

    2013-01-01

    Species-specific Quantitative Real Time PCR (qPCR) alone and combined with the use of propidium monoazide (PMA) were used along with the plate count method to evaluate the survival of the probiotic strains Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12, and the bacteriocinogenic and potentially probiotic strain Lactobacillus sakei subsp. sakei 2a in synbiotic (F1) and probiotic (F2) petit-suisse cheeses exposed throughout shelf-life to in vitro simulated gastrointestinal tract conditions. The three strains studied showed a reduction in their viability after the 6 h assay. Bb-12 displayed the highest survival capacity, above 72.6 and 74.6% of the initial populations, respectively, by plate count and PMA-qPCR, maintaining population levels in the range or above 6 log CFU/g. The prebiotic mix of inulin and FOS did not offer any additional protection for the strains against the simulated gastrointestinal environment. The microorganisms' populations were comparable among the three methods at the initial time of the assay, confirming the presence of mainly viable and culturable cells. However, with the intensification of the stress induced throughout the various stages of the in vitro test, the differences among the methods increased. The qPCR was not a reliable enumeration method for the quantification of intact bacterial populations, mixed with large numbers of injured and dead bacteria, as confirmed by the scanning electron microscopy results. Furthermore, bacteria plate counts were much lower (P<0.05) than with the PMA-qPCR method, suggesting the accumulation of stressed or dead microorganisms unable to form colonies. The use of PMA overcame the qPCR inability to differentiate between dead and alive cells. The combination of PMA and species-specific qPCR in this study allowed a quick and unequivocal way of enumeration of viable closely related species incorporated into probiotic and synbiotic petit-suisse cheeses and under stress conditions. PMID:24358142

  19. Intercondylar humerus fracture- parallel plating and its results.

    PubMed

    Kumar, Sanjiv; Singh, Sudhir; Kumar, Dharmender; Kumar, Neeraj; Verma, Reetu

    2015-01-01

    Intercondylar fracture of humerus is one of the commonest fractures of young adult and counts for about 30% of all elbow fractures. The treatment of these fractures continues to present challenges despite advances in internal fixation. Although orthogonal plating use to provid adequate functional results in these fractures, parallel plating is said to be mechanically more stable construct thus allowing early mobilization and better range of motion. AIM of the study is to assess the clinical as well functional results of these fractures treated with parallel plating. Prospective study in a tertiary care hospital. A total of 23 fresh patients of intercondylar fracture of humerus from Jan 2013 to May 2014 were included in the study and were treated with parallel plating. These patients were followed at 3, 6, 12, 24 weeks and at 1year of follow up and assessed in terms of time for union, range of motion, MAYO score, DASH score and complication rate. At final follow up Mayo score was 96.32±04.96 from 5.00±01.26 and DASH SCORE was 31.42±2.04 which dropped from 150±05.34, Range of motion improved from 21.38±05.70 to 116.1±07.92 with 100% union rate and complications less than 19%. Parallel plating for intercondylar fracture of humerus is excellent method of fixation and results are similar to those treated with orthogonal plating.

  20. Free Surface Effects on the Wake of a Flat Plate.

    DTIC Science & Technology

    1984-11-08

    D-i46 98 FREE SURFCE’EFFECTS ON THE MAKE OF A FLAT PLTE(U) i/l 9(8 NAVAL RESEARCH LAB WASHINGTON DC T F SWEAN ET AL. 08 NOV 84 NRL-MR...5426UNCLASSIFIED F/ 20/4 NL 11111 ~ L.0 2 4 11111L .563 I -A 16 CEO -- . . IV NRL Memorandum Rpot52 Free Surface iEffwcs on the Wake of Al lit Plate T . F. SWEAlJ...13b. TIME COVERED 14. DATE OF REPORT (YeasrUonitDay) S.PAGE COUNT .0 - Interim IFROM _ TO T 1984 November 8 FS23 16 SUPPLEMENTARY NOTATION 17 COSATI

Top