Science.gov

Sample records for heterozygous truncating mutation

  1. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  2. Expanding the mutation spectrum for Fraser syndrome: identification of a novel heterozygous deletion in FRAS1.

    PubMed

    Hoefele, Julia; Wilhelm, Christian; Schiesser, Monika; Mack, Reinhold; Heinrich, Uwe; Weber, Lutz T; Biskup, Saskia; Daumer-Haas, Cornelia; Klein, Hanns-Georg; Rost, Imma

    2013-05-15

    Fraser syndrome (FS) is a rare autosomal recessive inherited disorder characterized by cryptophthalmos, laryngeal defects and oral clefting, mental retardation, syndactyly, and urogenital defects. To date, 250 patients have been described in the literature. Mutations in the FRAS1 gene on chromosome 4 have been identified in patients with Fraser syndrome. So far, 26 mutations have been identified, most of them are truncating mutations. The mutational spectrum includes nucleotide substitutions, splicing defects, a large insertion, and small deletions/insertions. Moreover, single heterozygous missense mutations in FRAS1 seem to be responsible for non-syndromic unilateral renal agenesis. Here we report the first case of a family with two patients affected by Fraser syndrome due to a deletion of 64 kb (deletion 4q21.21) and an additional novel frameshift mutation in exon 66 of the FRAS1 gene. To date, large deletions of the FRAS1 gene have not yet been described. Large deletions seem to be a rare cause for Fraser syndrome, but should be considered in patients with a single heterozygous mutation.

  3. Homozygous and compound heterozygous MMP20 mutations in amelogenesis imperfecta.

    PubMed

    Gasse, B; Karayigit, E; Mathieu, E; Jung, S; Garret, A; Huckert, M; Morkmued, S; Schneider, C; Vidal, L; Hemmerlé, J; Sire, J-Y; Bloch-Zupan, A

    2013-07-01

    In this article, we focus on hypomaturation autosomal-recessive-type amelogenesis imperfecta (type IIA2) and describe 2 new causal Matrix metalloproteinase 20 (MMP20) mutations validated in two unrelated families: a missense mutation p.T130I at the expected homozygous state, and a compound heterozygous mutation having the same mutation combined with a nucleotide deletion, leading to a premature stop codon (p.N120fz*2). We characterized the enamel structure of the latter case using scanning electron microscopy analysis and microanalysis (Energy-dispersive X-ray Spectroscopy, EDX) and confirmed the hypomaturation-type amelogenesis imperfecta as identified in the clinical diagnosis. The mineralized content was slightly decreased, with magnesium substituting for calcium in the crystal structure. The anomalies affected enamel with minimal inter-rod enamel present and apatite crystals perpendicular to the enamel prisms, suggesting a possible new role for MMP20 in enamel formation.

  4. Heterozygous Mutations of OTX2 Cause Severe Ocular Malformations

    PubMed Central

    Ragge, Nicola K.; Brown, Alison G.; Poloschek, Charlotte M.; Lorenz, Birgit; Henderson, R. Alex; Clarke, Michael P.; Russell-Eggitt, Isabelle; Fielder, Alistair; Gerrelli, Dianne; Martinez-Barbera, Juan Pedro; Ruddle, Piers; Hurst, Jane; Collin, J. Richard O.; Salt, Alison; Cooper, Simon T.; Thompson, Pamela J.; Sisodiya, Sanjay M.; Williamson, Kathleen A.; FitzPatrick, David R.; Heyningen, Veronica van; Hanson, Isabel M.

    2005-01-01

    Major malformations of the human eye, including microphthalmia and anophthalmia, are examples of phenotypes that recur in families yet often show no clear Mendelian inheritance pattern. Defining loci by mapping is therefore rarely feasible. Using a candidate-gene approach, we have identified heterozygous coding-region changes in the homeobox gene OTX2 in eight families with ocular malformations. The expression pattern of OTX2 in human embryos is consistent with the eye phenotypes observed in the patients, which range from bilateral anophthalmia to retinal defects resembling Leber congenital amaurosis and pigmentary retinopathy. Magnetic resonance imaging scans revealed defects of the optic nerve, optic chiasm, and, in some cases, brain. In two families, the mutations appear to have occurred de novo in severely affected offspring, and, in two other families, the mutations have been inherited from a gonosomal mosaic parent. Data from these four families support a simple model in which OTX2 heterozygous loss-of-function mutations cause ocular malformations. Four additional families display complex inheritance patterns, suggesting that OTX2 mutations alone may not lead to consistent phenotypes. The high incidence of mosaicism and the reduced penetrance have implications for genetic counseling. PMID:15846561

  5. Enhanced Tumor Formation in Mice Heterozygous for Blm Mutation

    NASA Astrophysics Data System (ADS)

    Heppner Goss, Kathleen; Risinger, Mary A.; Kordich, Jennifer J.; Sanz, Maureen M.; Straughen, Joel E.; Slovek, Lisa E.; Capobianco, Anthony J.; German, James; Boivin, Gregory P.; Groden, Joanna

    2002-09-01

    Persons with the autosomal recessive disorder Bloom syndrome are predisposed to cancers of many types due to loss-of-function mutations in the BLM gene, which encodes a recQ-like helicase. Here we show that mice heterozygous for a targeted null mutation of Blm, the murine homolog of BLM, develop lymphoma earlier than wild-type littermates in response to challenge with murine leukemia virus and develop twice the number of intestinal tumors when crossed with mice carrying a mutation in the Apctumor suppressor. These observations indicate that Blm is a modifier of tumor formation in the mouse and that Blm haploinsufficiency is associated with tumor predisposition, a finding with important implications for cancer risk in humans.

  6. Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy

    PubMed Central

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C.E.; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-01-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  7. Congenital hypofibrinogenemia associated with novel homozygous fibrinogen Aα and heterozygous Bβ chain mutations.

    PubMed

    Castaman, Giancarlo; Rimoldi, Valeria; Giacomelli, Sofia H; Duga, Stefano

    2015-07-01

    We report the molecular characterisation of two novel cases of inherited hypofibrinogenemia. After sequencing all coding regions and intron-exon boundaries of the three fibrinogen genes (FGA, FGB, and FGG), two different novel mutations were found, one homozygous and one heterozygous. The first patient, with a mild bleeding history and mild discrepancy between functional and immunological fibrinogen, showed a novel homozygous nonsense mutation in exon 5 of FGA (p.Trp373*, p.Trp354* according to the mature protein) caused by a G>A transition at nucleotide position 1,119. The resulting truncation in the Aα chain is likely to reduce the efficiency of fibrinogen assembly and secretion. The second patient, referred after ischemic stroke (functional fibrinogen 77mg/dL), had a novel heterozygous splicing mutation in intron 5 of FGB (IVS5+2T>A or c.832+2T>A), which we demonstrated to cause either exon 5 skipping or the inclusion of 75bp belonging to intron 5. Neither splicing defect alters the reading frame: one results in a 38-residue deletion and the other in a 25-residue insertion in the D domain of fibrinogen Bβ chain. This report confirms that genetically determined partial deficiencies of fibrinogen with levels greater than 50mg/dL are rarely associated with significant bleeding symptoms and that homozygous null mutations removing a significant portion of the Aα chain may be associated with mild fibrinogen deficiency.

  8. Compound heterozygous mutations in TTC7A cause familial multiple intestinal atresias and severe combined immunodeficiency.

    PubMed

    Yang, W; Lee, P P W; Thong, M-K; Ramanujam, T M; Shanmugam, A; Koh, M-T; Chan, K-W; Ying, D; Wang, Y; Shen, J J; Yang, J; Lau, Y L

    2015-12-01

    Familial multiple intestinal atresias is an autosomal recessive disease with or without combined immunodeficiency. In the last year, several reports have described mutations in the gene TTC7A as causal to the disease in different populations. However, exact correlation between different genotypes and various phenotypes are not clear. In this study, we report identification of novel compound heterozygous mutations in TTC7A gene in a Malay girl with familial multiple intestinal atresias and severe combined immunodeficiency (MIA-SCID) by whole exome sequencing. We found two mutations in TTC7A: one that destroyed a putative splicing acceptor at the junction of intron 17/exon 18 and one that introduced a stop codon that would truncate the last two amino acids of the encoded protein. Reviewing the recent reports on TTC7A mutations reveals correlation between the position and nature of the mutations with patient survival and clinical manifestations. Examination of public databases also suggests carrier status for healthy individuals, making a case for population screening on this gene, especially in populations with suspected frequent founder mutations.

  9. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  10. Novel heterozygous mutation in the extracellular domain of FGFR1 associated with Hartsfield syndrome

    PubMed Central

    Takagi, Masaki; Miyoshi, Tatsuya; Nagashima, Yuka; Shibata, Nao; Yagi, Hiroko; Fukuzawa, Ryuji; Hasegawa, Tomonobu

    2016-01-01

    Heterozygous kinase domain mutations or homozygous extracellular domain mutations in FGFR1 have been reported to cause Hartsfield syndrome (HS), which is characterized by the triad of holoprosencephaly, ectrodactyly and cleft lip/palate. To date, more than 200 mutations in FGFR1 have been described; however, only 10 HS-associated mutations have been reported thus far. We describe a case of typical HS with hypogonadotropic hypogonadism (HH) harboring a novel heterozygous mutation, p.His253Pro, in the extracellular domain of FGFR1. This is the first report of an HS-associated heterozygous mutation located in the extracellular domain of FGFR1, thus expanding our understanding of the phenotypic features and further developmental course associated with FGFR1 mutations. PMID:27790375

  11. Frequent truncating mutations of STAG2 in bladder cancer.

    PubMed

    Solomon, David A; Kim, Jung-Sik; Bondaruk, Jolanta; Shariat, Shahrokh F; Wang, Zeng-Feng; Elkahloun, Abdel G; Ozawa, Tomoko; Gerard, Julia; Zhuang, Dazhong; Zhang, Shizhen; Navai, Neema; Siefker-Radtke, Arlene; Phillips, Joanna J; Robinson, Brian D; Rubin, Mark A; Volkmer, Björn; Hautmann, Richard; Küfer, Rainer; Hogendoorn, Pancras C W; Netto, George; Theodorescu, Dan; James, C David; Czerniak, Bogdan; Miettinen, Markku; Waldman, Todd

    2013-12-01

    Here we report the discovery of truncating mutations of the gene encoding the cohesin subunit STAG2, which regulates sister chromatid cohesion and segregation, in 36% of papillary non-invasive urothelial carcinomas and 16% of invasive urothelial carcinomas of the bladder. Our studies suggest that STAG2 has a role in controlling chromosome number but not the proliferation of bladder cancer cells. These findings identify STAG2 as one of the most commonly mutated genes in bladder cancer.

  12. Frequent truncating mutations of STAG2 in bladder cancer

    PubMed Central

    Solomon, David A.; Kim, Jung-Sik; Bondaruk, Jolanta; Shariat, Shahrokh F.; Wang, Zeng-Feng; Elkahloun, Abdel G.; Ozawa, Tomoko; Gerard, Julia; Zhuang, DaZhong; Zhang, Shizhen; Navai, Neema; Siefker-Radtker, Arleen; Phillips, Joanna J.; Robinson, Brian D.; Rubin, Mark A.; Volkmer, Björn; Hautmann, Richard; Küfer, Rainer; Hogendoorn, Pancras C. W.; Netto, George; Theodorescu, Dan; James, C. David; Czerniak, Bogdan; Miettinen, Markku; Waldman, Todd

    2013-01-01

    Here we report the discovery of truncating mutations of the gene encoding the cohesin subunit STAG2, which regulates sister chromatid cohesion and segregation, in 36% of papillary non-invasive urothelial carcinomas and 16% of invasive urothelial carcinomas of the bladder. Our studies suggest that STAG2 plays a role in controlling chromosome number but not proliferation of bladder cancer cells. These findings identify STAG2 as among the most commonly mutated genes in bladder cancer discovered to date. PMID:24121789

  13. Homozygous truncating PTPRF mutation causes athelia.

    PubMed

    Borck, Guntram; de Vries, Liat; Wu, Hsin-Jung; Smirin-Yosef, Pola; Nürnberg, Gudrun; Lagovsky, Irina; Ishida, Luis Henrique; Thierry, Patrick; Wieczorek, Dagmar; Nürnberg, Peter; Foley, John; Kubisch, Christian; Basel-Vanagaite, Lina

    2014-08-01

    Athelia is a very rare entity that is defined by the absence of the nipple-areola complex. It can affect either sex and is mostly part of syndromes including other congenital or ectodermal anomalies, such as limb-mammary syndrome, scalp-ear-nipple syndrome, or ectodermal dysplasias. Here, we report on three children from two branches of an extended consanguineous Israeli Arab family, a girl and two boys, who presented with a spectrum of nipple anomalies ranging from unilateral hypothelia to bilateral athelia but no other consistently associated anomalies except a characteristic eyebrow shape. Using homozygosity mapping after single nucleotide polymorphism (SNP) array genotyping and candidate gene sequencing we identified a homozygous frameshift mutation in PTPRF as the likely cause of nipple anomalies in this family. PTPRF encodes a receptor-type protein phosphatase that localizes to adherens junctions and may be involved in the regulation of epithelial cell-cell contacts, peptide growth factor signaling, and the canonical Wnt pathway. Together with previous reports on female mutant Ptprf mice, which have a lactation defect, and disruption of one allele of PTPRF by a balanced translocation in a woman with amastia, our results indicate a key role for PTPRF in the development of the nipple-areola region.

  14. Estimation of the upper limit of the mutation rate and mean heterozygous effect of deleterious mutations.

    PubMed

    Caballero, A

    2006-12-01

    Deng et al. have recently proposed that estimates of an upper limit to the rate of spontaneous mutations and their average heterozygous effect can be obtained from the mean and variance of a given fitness trait in naturally segregating populations, provided that allele frequencies are maintained at the balance between mutation and selection. Using simulations they show that this estimation method generally has little bias and is very robust to violations of the mutation-selection balance assumption. Here I show that the particular parameters and models used in these simulations generally reduce the amount of bias that can occur with this estimation method. In particular, the assumption of a large mutation rate in the simulations always implies a low bias of estimates. In addition, the specific model of overdominance used to check the violation of the mutation-selection balance assumption is such that there is not a dramatic decline in mean fitness from overdominant mutations, again implying a low bias of estimates. The assumption of lower mutation rates and/or other models of balancing selection may imply considerably larger biases of the estimates, making the reliability of the proposed method highly questionable.

  15. Classical phenotype of Laron syndrome in a girl with a heterozygous mutation and heterozygous polymorphism of the growth hormone receptor gene.

    PubMed

    Shevah, Orit; Galli-Tsinopoulou, Assimina; Rubinstein, Menachem; Nousia-Arvanitakis, Sanda; Laron, Zvi

    2004-03-01

    We describe here a 19 month-old girl with classical Laron syndrome (LS). Molecular analysis of the GH receptor gene in the patient and her parents was performed. The patient was found to be heterozygous for a mutation in exon 4 (R43X) and heterozygous for a polymorphism in exon 6 (Gly168Gly). Her mother was also heterozygous for R43X but homozygous for the polymorphism. In the father, a heterozygous polymorphism was found. Contrary to previous assumptions that only homozygous patients express the typical phenotype, this patient shows all the classical features of LS, despite being a heterozygote for a pathological defect.

  16. A compound heterozygous missense mutation and a large deletion in the KCTD7 gene presenting as an opsoclonus-myoclonus ataxia-like syndrome.

    PubMed

    Blumkin, Lubov; Kivity, Sara; Lev, Dorit; Cohen, Sarit; Shomrat, Ruth; Lerman-Sagie, Tally; Leshinsky-Silver, Esther

    2012-12-01

    Mutations in the potassium channel-related gene KCTD7 were described so far in a single family with progressive myoclonus epilepsy. We describe a unique phenotype: acute onset of myoclonus and ataxia, associated with abnormal opsoclonus-like eye movements; improvement of clinical symptoms under steroid treatment; and appearance of epileptic activity on EEG 2 years later without overt seizures. After excluding possible genetic causes, whole-genome exome sequencing was performed in order to identify the causative gene. One heterozygous missense mutation (R84W) was detected by exome sequencing and a large heterozygous deletion of exons 3 and 4 by MLPA analysis. The father is heterozygous for the R84W mutation and the mother is heterozygous for the exon 3+4 deletion. The mutation affects a highly conserved segment of the predicted protein, changing a basic amino acid into neutral. The large deletion probably results in a truncated protein. The different phenotype broadens the spectrum of KCTD7-related diseases. Therefore, patients diagnosed as having opsoclonus-myoclonus with an atypical course should be evaluated for KCTD7 mutations.

  17. Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2.

    PubMed

    Yoshizawa-Ogasawara, Atsuko; Abe, Kiyomi; Ogikubo, Sayaka; Narumi, Satoshi; Hasegawa, Tomonobu; Satoh, Mari

    2016-03-01

    Here, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (DUOX2) occurring along with concurrent missense mutations in thyroid peroxidase (TPO), leading to transient congenital hypothyroidism (CH). Three Japanese boys with nonconsanguineous parents were diagnosed with CH during their neonatal screenings. All patients presented with moderate-to-severe neonatal hypothyroidism and were diagnosed with transient CH after re-evaluation of thyroid function. Two siblings were compound heterozygous for p.[R1110Q]+[Y1180X] in DUOX2; one of them was also heterozygous for p.[R361L] in TPO. The third patient was compound heterozygous for p.[L1160del]+[R1334W] in DUOX2 and heterozygous for p.[P883S] in TPO. This is the first report of a de novo L1160del mutation affecting the DUOX2 gene and of the novel mutations Y1180X in DUOX2 and R361L in TPO. R1110Q and L1160del were found to reduce H2O2 production (5%-9%, p<0.01), while Y1180X, which introduces a premature stop codon, did not confer detectable H2O2 production (-0.7%±0.6%, p<0.01). Moreover, R1334W, a missense mutation possibly affecting electron transfer, led to reduced H2O2 production (24%±0.9%, p<0.01) in vitro, and R1110Q and R1334W resulted in reduced protein expression. Y1180X was detected in a 120 kDa truncated form, whereas L1160del expression was maintained. Further, R361L, a novel missense mutation in TPO, caused partial reduction in peroxidase activity (20.6%±0.8%, p=0.01), whereas P883S, a missense variant, increased it (133.7%±2.8%, p=0.02). The protein expression levels in the case of R361L and P883S were maintained. In conclusion, we provide clinical and in vitro demonstrations of different functional defects and phenotypic heterogeneity in the same thyroid hormonogenesis pathway.

  18. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    PubMed

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-02-24

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (that is, in association with Hirschsprung disease) and heterozygous mutations in isolated Hirschsprung disease. Screening of a WS2 cohort led to the identification of an overall of 6 heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5-6% of WS2. This article is protected by copyright. All rights reserved.

  19. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis

    PubMed Central

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-01-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  20. Compound Heterozygous Mutation of Rag1 Leading to Omenn Syndrome

    PubMed Central

    Matthews, Adam G. W.; Briggs, Christine E.; Yamanaka, Keiichi; Mooster, Jana L.; Bonilla, Francisco A.; Oettinger, Marjorie A.; Butte, Manish J.

    2015-01-01

    Omenn syndrome is a primary immunodeficiency disorder, featuring susceptibility to infections and autoreactive T cells and resulting from defective genomic rearrangement of genes for the T cell and B cell receptors. The most frequent etiologies are hypomorphic mutations in “non-core” regions of the Rag1 or Rag2 genes, the protein products of which are critical members of the cellular apparatus for V(D)J recombination. In this report, we describe an infant with Omenn syndrome with a previously unreported termination mutation (p.R142*) in Rag1 on one allele and a partially characterized substitution mutation (p.V779M) in a “core” region of the other Rag1 allele. Using a cellular recombination assay, we found that while the p.R142* mutation completely abolished V(D)J recombination activity, the p.V779M mutation conferred a severe, but not total, loss of V(D)J recombination activity. The recombination defect of the V779 mutant was not due to overall misfolding of Rag1, however, as this mutant supported wild-type levels of V(D)J cleavage. These findings provide insight into the role of this poorly understood region of Rag1 and support the role of Rag1 in a post-cleavage stage of recombination. PMID:25849362

  1. XPA gene mutations resulting in subtle truncation of protein in xeroderma pigmentosum group A patients with mild skin symptoms.

    PubMed

    Takahashi, Yoshito; Endo, Yoko; Sugiyama, Yoshinori; Inoue, Shintaro; Iijima, Masahiro; Tomita, Yasushi; Kuru, Satoshi; Takigawa, Masahiro; Moriwaki, Shinichi

    2010-10-01

    Comparisons of the clinical manifestations with gene mutations in patients with xeroderma pigmentosum group A (XPA) have suggested that those with mutations closer to the C-terminal coding region of the XPA gene have milder neurological and cutaneous symptoms. Here we report on four middle-aged, newly diagnosed Japanese XPA patients whose unusually mild symptoms, especially those affecting the skin, implicate a reduced association of a subtle defect in the C-terminus of XPA protein with skin lesions. All patients had a heterozygous G → C transversion at the splice acceptor site of XPA intron 3. We identified previously unreported heterozygous mutations in exon 6: a single-base insertion (690insT) in one patient and a four-base insertion (779insTT and 780insTT) in the other patients. These mutations led to the frameshift that created new premature termination codons, resulting in the production of truncated XPA proteins. They were longer than any previously reported truncated XPA protein, suggesting that the minimal cutaneous symptoms in these patients are due to a higher residual level of XPA protein activity and that the subtle defect in the C-terminus of XPA protein is more closely related to neurological impairment than to cutaneous abnormalities.

  2. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy.

    PubMed Central

    Feigenbaum, V.; Lombard-Platet, G.; Guidoux, S.; Sarde, C. O.; Mandel, J. L.; Aubourg, P.

    1996-01-01

    X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired beta-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified. Images Figure 1 Figure 2 PMID:8651290

  3. The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers.

    PubMed

    Laitman, Yael; Boker-Keinan, Lital; Berkenstadt, Michal; Liphsitz, Irena; Weissglas-Volkov, Daphna; Ries-Levavi, Liat; Sarouk, Ifat; Pras, Elon; Friedman, Eitan

    2016-03-01

    Cancer risks in heterozygous mutation carriers of the ATM, BLM, and FANCC genes are controversial. To shed light on this issue, cancer rates were evaluated by cross referencing asymptomatic Israeli heterozygous mutation carriers in the ATM, BLM, and FANCC genes with cancer diagnoses registered at the Israeli National Cancer Registry (INCR). Comparison of observed to expected Standardized Incidence Rates (SIR) was performed. Overall, 474 individuals participated in the study: 378 females; 25 Arab and 31 Jewish ATM carriers, 152 BLM carriers, and 170 FANCC carriers (all Ashkenazim). Age range at genotyping was 19-53 years (mean + SD 30.6 + 5 years). In addition, 96 males were included; 5, 34, and 57 ATM, BLM, and FANCC mutation carriers, respectively. Over 5-16 years from genotyping (4721 person/years), 15 new cancers were diagnosed in mutation carriers: 5 breast, 4 cervical, 3 melanomas, and one each bone sarcoma, pancreatic, and colorectal cancer. No single cancer diagnosis was more prevalent then expected in all groups combined or per gene analyzed. Specifically breast cancer SIR was 0.02-0.77. We conclude that Israeli ATM, BLM, and FANCC heterozygous mutation carriers are not at an increased risk for developing cancer.

  4. Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing.

    PubMed

    Wang, Hui; Chattopadhyay, Abanti; Li, Zhe; Daines, Bryce; Li, Yumei; Gao, Chunxu; Gibbs, Richard; Zhang, Kun; Chen, Rui

    2010-07-01

    One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac(5) or sens(E2) mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.

  5. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity

    PubMed Central

    Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038

  6. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1

    PubMed Central

    LEE, JINHO; JUNG, SUNG-CHUL; HONG, YOUNG BIN; YOO, JEONG HYUN; KOO, HEASOO; LEE, JA HYUN; HONG, HYUN DAE; KIM, SANG-BEOM; CHUNG, KI WHA; CHOI, BYUNG-OK

    2016-01-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi-dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early-onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857–1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  7. Whole Genome Sequencing Identifies Novel Compound Heterozygous Lysosomal Trafficking Regulator Gene Mutations Associated with Autosomal Recessive Chediak-Higashi Syndrome

    PubMed Central

    Jin, Yaqiong; Zhang, Li; Wang, Senfen; Chen, Feng; Gu, Yang; Hong, Enyu; Yu, Yongbo; Ni, Xin; Guo, Yongli; Shi, Tieliu; Xu, Zigang

    2017-01-01

    Chediak–Higashi syndrome (CHS) is a rare autosomal recessive disease characterized by varying degrees of oculocutaneous albinism, recurrent infections, and a mild bleeding tendency, with late neurologic dysfunction. This syndrome is molecularly characterized by pathognomonic mutations in the LYST (lysosomal trafficking regulator). Using whole genome sequencing (WGS) we attempted to identify novel mutations of CHS based on a family of CHS with atypical symptoms. The two patients demonstrated a phenotypic constellation including partial oculocutaneous albinism, frequency upper respiratory infection or a marginal intelligence, without bleeding tendency and severe immunodeficiency. WGS revealed two compound LYST mutations including a maternally inherited chr1:235969126G > A (rs80338652) and a novel paternally inherited chr1: 235915327A > AT, associated with autosomal recessive CHS. These two variants fall in the coding regions of LYST, resulting in premature truncation of LYST due to R1104X/N2535KfsX2 induced incomplete translation. Notably, the heterozygous carriers (i.e. parents) were unaffected. Our finding also reveals decreased plasma serotonin levels in patients with CHS compared with unaffected individuals for the first time. The present study contributes to improved understanding of the causes of this disease and provides new ideas for possible treatments. PMID:28145517

  8. Compound Heterozygous Mutations in the Vitamin D Receptor in a Patient With Hereditary 1,25-Dihydroxyvitamin D–Resistant Rickets With Alopecia

    PubMed Central

    Zhou, Yulin; Wang, Jining; Malloy, Peter J; Dolezel, Zdenek; Feldman, David

    2009-01-01

    Hereditary vitamin D–resistant rickets (HVDRR) is a rare recessive genetic disorder caused by mutations in the vitamin D receptor (VDR). In this study, we examined the VDR in a young girl with clinical features of HVDRR including rickets, hypophosphatemia, and elevated serum 1,25(OH)2D. The girl also had total alopecia. Two mutations were found in the VDR gene: a nonsense mutation (R30X) in the DNA-binding domain and a unique 3-bp in-frame deletion in exon 6 that deleted the codon for lysine at amino acid 246 (ΔK246). The child and her mother were both heterozygous for the 3-bp deletion, whereas the child and her father were both heterozygous for the R30X mutation. Fibroblasts from the patient were unresponsive to 1,25(OH)2D3 as shown by their failure to induce CYP24A1 gene expression, a marker of 1,25(OH)2D3 responsiveness. [3H]1,25(OH)2D3 binding and immunoblot analysis showed that the patient's cells expressed the VDRΔK246 mutant protein; however, the amount of VDRΔK246 mutant protein was significantly reduced compared with wildtype controls. In transactivation assays, the recreated VDRΔK246 mutant was unresponsive to 1,25(OH)2D3. The ΔK246 mutation abolished heterodimerization of the mutant VDR with RXRα and binding to the coactivators DRIP205 and SRC-1. However, the ΔK246 mutation did not affect the interaction of the mutant VDR with the corepressor Hairless (HR). In summary, we describe a patient with compound heterozygous mutations in the VDR that results in HVDRR with alopecia. The R30X mutation truncates the VDR, whereas the ΔK246 mutation prevents heterodimerization with RXR and disrupts coactivator interactions. PMID:19049339

  9. STAT5B mutations in heterozygous state have negative impact on height: another clue in human stature heritability

    PubMed Central

    Scalco, Renata C; Hwa, Vivian; Domené, Horacio M.; Jasper, Héctor G.; Belgorosky, Alicia; Marino, Roxana; Pereira, Alberto M.; Tonelli, Carlos A.; Wit, Jan M.; Rosenfeld, Ron G.; Jorge, Alexander A.L.

    2016-01-01

    Context and objective Growth hormone insensitivity with immune dysfunction caused by signal transducer and activator of transcription 5B (STAT5B) mutations is an autosomal recessive condition. Heterozygous mutations in other genes involved in growth regulation were previously associated with a mild height reduction. Our objective was to assess for the first time the phenotype of heterozygous STAT5B mutations. Methods We genotyped and performed clinical and laboratorial evaluations in 52 relatives of 2 previously described Brazilian brothers with homozygous STAT5B c.424_427del mutation (21 heterozygous). Additionally, we obtained height data and genotype from 1,104 adult control individuals from the same region in Brazil and identified 5 additional families harboring the same mutation (18 individuals, 11 heterozygous). Furthermore, we gathered the available height data from first-degree relatives of patients with homozygous STAT5B mutations (17 individuals from 7 families). Data from heterozygous individuals and non-carriers were compared. Results Individuals carrying heterozygous STAT5B c.424_427del mutation were 0.6 SDS shorter than their non-carrier relatives (p= 0.009). Heterozygous subjects also had significantly lower SDS for serum concentrations of IGF-1 (p=0.028) and IGFBP-3 (p=0.02) than their non-carrier relatives. The 17 heterozygous first-degree relatives of patients carrying homozygous STAT5B mutations had an average height SDS of −1.4 ± 0.8 when compared with population-matched controls (p < 0.001). Conclusions STAT5B mutations in heterozygous state have a significant negative impact on height (approximately 3.9 cm). This effect is milder than the effect seen in the homozygous state, with height usually within the normal range. Our results support the hypothesis that heterozygosity of rare pathogenic variants contributes to normal height heritability. PMID:26034074

  10. Two novel cases of compound heterozygous mutations in mitofusin2: Finding out the inheritance.

    PubMed

    Geroldi, Alessandro; Lastella, Patrizia; Patruno, Margherita; Gotta, Fabio; Resta, Nicoletta; Devigili, Grazia; Sabbà, Carlo; Gulli, Rossella; Lamp, Merit; Origone, Paola; Mandich, Paola; Bellone, Emilia

    2017-01-17

    MFN2 is the major gene involved in the axonal form of Charcot-Marie-Tooth disease. It usually has an autosomal dominant pattern of inheritance, but a few cases of homozygous or compound heterozygous mutations have been described. These patients usually present an earlier onset, more severe phenotype and their inheritance pattern can span from autosomal recessive to semidominant. Here we report two unrelated patients carrying two compound heterozygous MFN2 mutations. Both present a pure axonal neuropathy without any additional features. The first patient presents a mild clinical phenotype with onset in the 2nd decade, while the second patient shows a severe, early onset phenotype with loss of independent ambulation. Only a careful clinical examination as well as neurophysiological and genetic studies allowed us to establish the role and the transmission pattern of the identified variants. We discuss practical consequences of this finding in genetic counseling.

  11. [Livedoid vasculopathy with heterozygous factor V Leiden mutation and sticky platelet syndrome].

    PubMed

    Lewerenz, V; Burchardt, T; Büchau, A; Ruzicka, T; Megahed, M

    2004-04-01

    A 64-year-old male patient presented with painful ulcerations and livedo racemosa of both lower limbs. He had a history of cerebral and myocardial infarctions. Dermatohistologic findings and laboratory tests of the patient's coagulation system revealed the diagnosis of livedoid vasculopathy with heterozygous factor V Leiden mutation and sticky platelet syndrome type II. Systemic treatment with acetylsalicylic acid and heparin as well as topical therapy with disinfectant and granulation-inducing agents resulted in improvement of the skin lesions.

  12. Compound heterozygous PANK2 mutations confirm HARP and Hallervorden-Spatz syndromes are allelic.

    PubMed

    Houlden, H; Lincoln, S; Farrer, M; Cleland, P G; Hardy, J; Orrell, R W

    2003-11-25

    The authors describe a patient with hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration (HARP) who has two compound heterozygote mutations of the PANK2 gene. IVS4-1 G>T segregates with the lipid and erythrocyte changes in the mother and sister. No other family members have the lipid, erythrocyte, or clinical abnormalities. The father and two brothers are heterozygous for Met327Thr. One other mutation has been found in this PANK2 region associated with the HARP phenotype, suggesting a local genotype effect.

  13. Identification of a novel heterozygous mutation in exon 50 of the COL1A1 gene causing osteogenesis imperfecta

    PubMed Central

    Aftab, S A S; Reddy, N; Owen, N L; Pollitt, R; Harte, A; McTernan, P G; Tripathi, G; Barber, T M

    2013-01-01

    Summary A 19-year-old woman was diagnosed with osteogenesis imperfecta (OI). She had sustained numerous low-trauma fractures throughout her childhood, including a recent pelvic fracture (superior and inferior ramus) following a low-impact fall. She had the classical blue sclerae, and dual energy X-ray absorptiometry (DEXA) bone scanning confirmed low bone mass for her age in the lumbar spine (Z-score was −2.6). However, despite these classical clinical features, the diagnosis of OI had not been entertained throughout the whole of her childhood. Sequencing of her genomic DNA revealed that she was heterozygous for the c.3880_3883dup mutation in exon 50 of the COL1A1 gene. This mutation is predicted to result in a frameshift at p.Thr1295, and truncating stop codon 3 amino acids downstream. To our knowledge, this mutation has not previously been reported in OI. Learning points OI is a rare but important genetic metabolic bone and connective tissue disorder that manifests a diverse clinical phenotype that includes recurrent low-impact fractures.Most mutations that underlie OI occur within exon 50 of the COL1A1 gene (coding for protein constituents of type 1 pro-collagen).The diagnosis of OI is easily missed in its mild form. Early diagnosis is important, and there is a need for improved awareness of OI among health care professionals.OI is a diagnosis of exclusion, although the key diagnostic criterion is through genetic testing for mutations within the COL1A1 gene.Effective management of OI should be instituted through a multidisciplinary team approach that includes a bone specialist (usually an endocrinologist or rheumatologist), a geneticist, an audiometrist and a genetic counsellor. Physiotherapy and orthopaedic surgery may also be required. PMID:24616757

  14. Novel compound heterozygous mutations in ABCA4 in a Chinese pedigree with Stargardt disease

    PubMed Central

    Zhang, Jianping; Qi, Anhui; Wang, Xi; Pan, Hong; Mo, Haiming; Huang, Jiwei; Li, Honghui; Chen, Zhenwen; Wei, Meirong

    2016-01-01

    Purpose Stargardt disease (STGD) is a common macular dystrophy in juveniles that is commonly inherited as an autosomal recessive trait. Mutations in five genes (ABCA4, PROM1, ELOVL4, BEST1, and PRPH2) have been reported to be associated with STGD. In the present study, we aimed to identify the pathogenic mutations in affected members in a Chinese STGD pedigree. Methods One patient was selected for whole-exome sequencing. Variants in five candidate genes were identified initially, followed by several filtering steps against public and private variation databases (1000Genomes, ESP6500si, ExAC, and in-house database), as well as bioinformatic analysis of the putative pathogenic roles. Sanger sequencing was used for cosegregation analysis among all members with available DNA. Results Two mutations in ABCA4 (NM_000350.2; c.5646G>A; p.Met1882Ile and NM_000350.2; c.3523–2A>G) were found using whole-exome sequencing. Cosegregation analysis confirmed all the affected members carried the compound heterozygous mutations while the other healthy members had at most one. The missense mutation was extremely rare in public databases and predicted to be deleterious. The splice-site mutation was absent from all public and private databases and was predicted to alter the splice pattern, resulting in an exon skip and a frameshift. Conclusions Using whole-exome sequencing, we found novel compound heterozygous mutations in ABCA4 in a Chinese STGD pedigree. These mutations are reported for the first time, therefore widening the mutation spectrum of Stargardt disease. The present study also illustrates the potential of whole-exome sequencing in determining the genetic cause of STGD. PMID:28050124

  15. Cortisone-reductase deficiency associated with heterozygous mutations in 11beta-hydroxysteroid dehydrogenase type 1.

    PubMed

    Lawson, Alexander J; Walker, Elizabeth A; Lavery, Gareth G; Bujalska, Iwona J; Hughes, Beverly; Arlt, Wiebke; Stewart, Paul M; Ride, Jonathan P

    2011-03-08

    In peripheral target tissues, levels of active glucocorticoid hormones are controlled by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a dimeric enzyme that catalyzes the reduction of cortisone to cortisol within the endoplasmic reticulum. Loss of this activity results in a disorder termed cortisone reductase deficiency (CRD), typified by increased cortisol clearance and androgen excess. To date, only mutations in H6PD, which encodes an enzyme supplying cofactor for the reaction, have been identified as the cause of disease. Here we examined the HSD11B1 gene in two cases presenting with biochemical features indicative of a milder form of CRD in whom the H6PD gene was normal. Novel heterozygous mutations (R137C or K187N) were found in the coding sequence of HSD11B1. The R137C mutation disrupts salt bridges at the subunit interface of the 11β-HSD1 dimer, whereas K187N affects a key active site residue. On expression of the mutants in bacterial and mammalian cells, activity was either abolished (K187N) or greatly reduced (R137C). Expression of either mutant in a bacterial system greatly reduced the yield of soluble protein, suggesting that both mutations interfere with subunit folding or dimer assembly. Simultaneous expression of mutant and WT 11β-HSD1 in bacterial or mammalian cells, to simulate the heterozygous condition, indicated a marked suppressive effect of the mutants on both the yield and activity of 11β-HSD1 dimers. Thus, these heterozygous mutations in the HSD11B1 gene have a dominant negative effect on the formation of functional dimers and explain the genetic cause of CRD in these patients.

  16. Short communication: novel truncating mutations in the CFTR gene causing a severe form of cystic fibrosis in Italian patients.

    PubMed

    Lenarduzzi, S; Morgutti, M; Crovella, S; Coiana, A; Rosatelli, M C

    2014-11-14

    Cystic fibrosis (CF) is a common recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. More than 1800 different mutations have been described to date. Here, we report 3 novel mutations in CFTR in 3 Italian CF patients. To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). Our first analysis did not reveal both of the responsible mutations; thus, direct sequencing of the CFTR gene coding region was performed. The 3 patients were compound heterozygous. In one allele, the F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11 was observed in each case. For the second allele, in patient No.1, direct sequencing revealed an 11-base pair deletion (GAGGCGATACT) in exon 14 (c.2236_2246del; pGlu746Alafs*29). In patient No. 2, direct sequencing revealed a nonsense mutation at nucleotide 3892 (c.3892G>T) in exon 24. In patient No. 3, direct sequencing revealed a deletion of cytosine in exon 27 (c.4296delC; p.Asn1432Lysfs*16). These 3 novel mutations indicate the production of a truncated protein, which consequently results in a non-functional polypeptide.

  17. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation.

    PubMed

    Qi, Chunxia; Jia, Xiaopeng; Lu, Lingling; Ma, Ping; Wei, Min

    2016-01-01

    C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.

  18. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation

    PubMed Central

    Qi, Chunxia; Jia, Xiaopeng; Lu, Lingling; Ma, Ping; Wei, Min

    2016-01-01

    C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis. PMID:27042825

  19. Severe mandibuloacral dysplasia caused by novel compound heterozygous ZMPSTE24 mutations in two Japanese siblings

    PubMed Central

    Miyoshi, Y; Akagi, M; Agarwal, AK; Namba, N; Kato-Nishimura, K; Mohri, I; Yamagata, M; Nakajima, S; Mushiake, S; Shima, M; Auchus, RJ; Taniike, M; Garg, A; Ozono, K

    2009-01-01

    Mandibuloacral dysplasia (MAD) is a rare autosomal recessive progeroid syndrome, characterized by mandibular hypoplasia, acroosteolysis affecting distal phalanges and clavicles, delayed closure of the cranial sutures, atrophic skin, and lipodystrophy. Recently, mutations in lamin A/C (LMNA) and zinc metalloprotease (ZMPSTE24), involved in post-translational processing of prelamin A to mature lamin A, have been identified in MAD kindreds. We now report novel compound heterozygous mutations in exon 1 (c.121C>T; p.Q41X) and exon 6 (c.743C>T; p.P248L) in ZMPSTE24 in two Japanese sisters, 7- and 3-year old, with severe MAD and characteristic facies and atrophic skin. The older sister had lipodystrophy affecting the chest and thighs but sparing abdomen. Their parents and a brother, who were healthy, had heterozygous mutations. The missense mutation, P248L, was not found in 100 normal subjects of Japanese origin. The mutant Q41X was inactive in a yeast halo assay; however, the mutant P248L retained near normal ZMPSTE24 activity. Immunoblots demonstrated accumulation of prelamin A in the patients’ cell lysates from lymphoblasts. The lymphoblasts from the patients also revealed less intense staining for lamin A/C on immunofluorescence. We conclude that ZMPSTE24 deficiency results in accumulation of farnesylated prelamin A, which may be responsible for cellular toxicity and the MAD phenotype. PMID:18435794

  20. [Sanger sequencing for the diagnosis of spinal muscular atrophy patients with survival motor neuron gene 1 compound heterozygous mutation].

    PubMed

    Yang, L; Cao, Y Y; Qu, Y J; Bai, J L; Wang, H; Jin, Y W; Han, Y L; Song, F

    2017-02-14

    Objective: To detect the subtle variant of survival motor neuron gene 1(SMN1) by Sanger sequencing, and to assess the value of Sanger sequencing for the diagnosis of spinal muscular atrophy(SMA) with compound heterozygous mutation of SMN1. Methods: Fifty-two patients suspected SMA were recruited by the Capital Institute of Pediatrics from Jan.2014 to June.2016. PCR was used for amplifying exon7 of SMN1 and SMN2 in 52 patients. Natural different base peaks on the sequencing chromatogram in the SMN1 and SMN2 within the amplified segments were identified with Sanger DNA sequencing to detect the homozygous deletion or heterozygous deletion of SMN1. Then we screened the SMN1 subtle variants in heterozygous deletion patients by genomic Sanger sequencing for the other SMN exons. At last, multiplex ligation-dependent probe amplification(MLPA) was carried out to confirm the results of SMN1 heterozygous deletion, and T-A cloning confirmed the subtle variants were located in SMN1. Results: Forty-seven of 52 cases were homozygous deletion of SMN1, while 5 cases were heterozygous deletion which were confirmed by MLPA.Then, by genomic and T-A cloning sequencing, five SMN1 subtle mutations were separately identified in 5 cases of heterozygous deletion. Conclusion: Sanger sequencing is an effective method for the clinical diagnosis of compound heterozygous mutation of SMN1, and is meaningful for improving genetic diagnosis rate of SMA.

  1. Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation.

    PubMed

    Fishbein, Ianai; Kuo, Yien-Ming; Giasson, Benoit I; Nussbaum, Robert L

    2014-12-01

    The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson's disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson's disease; and (ii) Lewy bodies in sporadic Parkinson's disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson's disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson's disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson's disease.

  2. A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy

    PubMed Central

    Galant, Damien; Gaborit, Bénédicte; Desgrouas, Camille; Abdesselam, Ines; Bernard, Monique; Levy, Nicolas; Merono, Françoise; Coirault, Catherine; Roll, Patrice; Lagarde, Arnaud; Bonello-Palot, Nathalie; Bourgeois, Patrice; Dutour, Anne; Badens, Catherine

    2016-01-01

    ZMPSTE24 encodes the only metalloprotease, which transforms prelamin into mature lamin A. Up to now, mutations in ZMPSTE24 have been linked to Restrictive Dermopathy (RD), Progeria or Mandibulo-Acral Dysplasia (MAD). We report here the phenotype of a patient referred for severe metabolic syndrome and cardiomyopathy, carrying a mutation in ZMPSTE24. The patient presented with a partial lipodystrophic syndrome associating hypertriglyceridemia, early onset type 2 diabetes, and android obesity with truncal and abdominal fat accumulation but without subcutaneous lipoatrophy. Other clinical features included acanthosis nigricans, liver steatosis, dilated cardiomyopathy, and high myocardial and hepatic triglycerides content. Mutated fibroblasts from the patient showed increased nuclear shape abnormalities and premature senescence as demonstrated by a decreased Population Doubling Level, an increased beta-galactosidase activity and a decreased BrdU incorporation rate. Reduced prelamin A expression by siRNA targeted toward LMNA transcripts resulted in decreased nuclear anomalies. We show here that a central obesity without subcutaneous lipoatrophy is associated with a laminopathy due to a heterozygous missense mutation in ZMPSTE24. Given the high prevalence of metabolic syndrome and android obesity in the general population, and in the absence of familial study, the causative link between mutation and phenotype cannot be formally established. Nevertheless, altered lamina architecture observed in mutated fibroblasts are responsible for premature cellular senescence and could contribute to the phenotype observed in this patient. PMID:27120622

  3. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations

    PubMed Central

    Munot, Pinki; Saunders, Dawn E.; Milewicz, Dianna M.; Regalado, Ellen S.; Ostergaard, John R.; Braun, Kees P.; Kerr, Timothy; Lichtenbelt, Klaske D.; Philip, Sunny; Rittey, Christopher; Jacques, Thomas S.; Cox, Timothy C.

    2012-01-01

    Mutations in the ACTA2 gene lead to diffuse and diverse vascular diseases; the Arg179His mutation is associated with an early onset severe phenotype due to global smooth muscle dysfunction. Cerebrovascular disease associated with ACTA2 mutations has been likened to moyamoya disease, but appears to have distinctive features. This study involved the analysis of neuroimaging of 13 patients with heterozygous missense mutations in ACTA2 disrupting Arg179. All patients had persistent ductus arteriosus and congenital mydriasis, and variable presentation of pulmonary hypertension, bladder and gastrointestinal problems associated with this mutation. Distinctive cerebrovascular features were dilatation of proximal internal carotid artery, occlusive disease of terminal internal carotid artery, an abnormally straight course of intracranial arteries, and absent basal ‘moyamoya’ collaterals. Patterns of brain injury supported both large and small vessel disease. Key differences from moyamoya disease were more widespread arteriopathy, the combination of arterial ectasia and stenosis and, importantly, absence of the typical basal ‘moyamoya’ collaterals. Evaluation of previously published cases suggests some of these features are also seen in the ACTA2 mutations disrupting Arg258. The observation that transition from dilated to normal/stenotic arterial calibre coincides with where the internal carotid artery changes from an elastic to muscular artery supports the hypothesis that abnormal smooth muscle cell proliferation caused by ACTA2 mutations is modulated by arterial wall components. Patients with persistent ductus arteriosus or congenital mydriasis with a label of ‘moyamoya’ should be re-evaluated to ensure the distinctive neuroimaging features of an ACTA2 mutation have not been overlooked. This diagnosis has prognostic and genetic implications, and mandates surveillance of other organ systems, in particular the aorta, to prevent life-threatening aortic dissection

  4. Gastric intrinsic factor deficiency with combined GIF heterozygous mutations and FUT2 secretor variant.

    PubMed

    Chery, Celine; Hehn, Alain; Mrabet, Nadir; Oussalah, Abderrahim; Jeannesson, Elise; Besseau, Cyril; Alberto, Jean-Marc; Gross, Isabelle; Josse, Thomas; Gérard, Philippe; Guéant-Rodriguez, Rosa Maria; Freund, Jean-Noel; Devignes, Jean; Bourgaud, Frédérique; Peyrin-Biroulet, Laurent; Feillet, François; Guéant, Jean-Louis

    2013-05-01

    Several genome-wide association studies (GWAS) have identified a strong association between serum vitamin B12 and fucosyltransferase 2 (FUT2), a gene associated with susceptibility to Helicobacter pylori infection. Hazra et al. conducted a meta-analysis of three GWAS and found three additional loci in MUT, CUBN and TCN1. Other GWAS conducted in Italy and China confirmed the association for FUT2 gene. Alpha-2-fucosyltransferase (FUT2) catalyzes fucose addition to form H-type antigens in exocrine secretions. FUT2 non-secretor variant produces no secretion of H-type antigens and is associated with high-plasma vitamin B12 levels. This association was explained by the influence of FUT2 on H. pylori, which is a risk factor of gastritis, a main cause of vitamin B12 impaired absorption. However, we recently showed that H. pylori serology had no influence on FUT2 association with vitamin B12, in a large sample population, suggesting the involvement of an alternative mechanism. GIF is another gene associated with plasma levels of vitamin B12 and gastric intrinsic factor (GIF) is a fucosylated protein needed for B12 absorption. Inherited GIF deficiency produces B12 deficiency unrelated with gastritis. We report 2 families with heterozygous GIF mutation, 290T>C, M97T, with decreased binding affinity of GIF for vitamin B12 and one family with heterozygous GIF mutation 435_437delGAA, K145_N146delinsN and no B12 binding activity of mutated GIF. All cases with vitamin B12 deficit carried the FUT2 rs601338 secretor variant. Ulex europeus binding to GIF was influenced by FUT2 genotypes and GIF concentration was lower, in gastric juice from control subjects with the secretor genotype. GIF290C allele was reported in 5 European cases and no Africans among 1282 ambulatory subjects and was associated with low plasma vitamin B12 and anaemia in the single case bearing the FUT2 secretor variant. We concluded that FUT2 secretor variant worsens B12 status in cases with heterozygous GIF

  5. Late-onset cutaneous porphyria in a patient heterozygous for a uroporphyrinogen III synthase gene mutation.

    PubMed

    Aguilera, P; Badenas, C; Whatley, S D; To-Figueras, J

    2016-12-01

    Deficiency of uroporphyrinogen III synthase (UROS) causes congenital erythropoietic porphyria (CEP). The disease, originating from the inheritance of mutations within the UROS gene, presents a recessive form of transmission. In a few patients, a late-onset CEP-like phenotype without UROS mutations appears to be associated with a myelodysplastic syndrome. We report a 60-year-old man with late-onset signs of cutaneous porphyria and accumulation in urine, plasma and faeces of type I porphyrin isomers characteristic of CEP. Analysis of DNA from peripheral leucocytes, skin and bone marrow aspirate showed that he was a heterozygous carrier of a Cys73Arg (c.217 T>C) mutation within UROS. Sequencing of cDNA from peripheral blood confirmed heterozygosity and expression of the normal allele. Measurement of UROS enzymatic activity in erythrocytes showed values ~70% of normal, indirectly indicating expression of the normal allele. Differently from other cases of late-onset uroporphyria, the patient did not present thrombocytopenia or any evidence of a myelodysplastic syndrome. Five years of clinical follow-up showed persistence of skin signs and increased excretion of porphyrins, independently of lifestyle factors or changes in medication regimes. We hypothesize acquired mosaicism (in the bone marrow) affecting the UROS gene. Thus, unstable cellular clones initiated overproduction of isomer I porphyrins leading to a CEP phenotype. This could be explained either by a clonal expansion of the porphyric (Cys73Arg) allele or by loss of function of the normal allele. Cellular turnover would facilitate release of uroporphyrins into circulation and subsequent skin lesions. This is the first case of a CEP heterozygous carrier presenting clinical manifestations.

  6. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene.

    PubMed

    Alder, Jonathan K; Parry, Erin M; Yegnasubramanian, Srinivasan; Wagner, Christa L; Lieblich, Lawrence M; Auerbach, Robert; Auerbach, Arleen D; Wheelan, Sarah J; Armanios, Mary

    2013-11-01

    Dyskeratosis congenita (DC) is a telomere-mediated syndrome defined by mucocutaneous features. The X-linked mode of inheritance accounts for half the cases, and is thought to predominantly manifest in childhood as bone marrow failure. We identified two male probands who presented in the fifth decade with idiopathic pulmonary fibrosis and cancer. Their pedigrees displayed consecutively affected generations. Five of six females (83%) manifested mucocutaneous features of DC, and two had wound-healing complications. No mutations in autosomal dominant telomere genes were present, but exome sequencing revealed novel variants in the X-chromosome DKC1 gene that predicted missense mutations in conserved residues, p.Thr49Ser and p.Pro409Arg. Variants segregated with the telomere phenotype, and affected females were heterozygotes, showing skewed X-inactivation. Telomerase RNA levels were compromised in cells from DKC1 mutation carriers, consistent with their pathogenic role. These findings indicate that females with heterozygous DKC1 mutations may be at increased risk for developing penetrant telomere phenotypes that, at times, may be associated with clinical morbidity.

  7. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene

    PubMed Central

    Alder, Jonathan K.; Parry, Erin M.; Yegnasubramanian, Srinivasan; Wagner, Christa L.; Lieblich, Lawrence M.; Auerbach, Robert; Auerbach, Arleen D.; Wheelan, Sarah J.; Armanios, Mary

    2013-01-01

    Dyskeratosis congenita is a telomere-mediated syndrome defined by mucocutaneous features. The X-linked mode of inheritance accounts for half the cases, and is thought to predominantly manifest in childhood as bone marrow failure. We identified two male probands who presented in the fifth decade with idiopathic pulmonary fibrosis and cancer. Their pedigrees displayed consecutively affected generations. Five of six females (83%) manifested mucocutaneous features of dyskeratosis congenita, and two had wound-healing complications. No mutations in autosomal dominant telomere genes were present, but exome sequencing revealed novel variants in the X-chromosome DKC1 gene that predicted missense mutations in conserved residues, p.Thr49Ser and p.Pro409Arg. Variants segregated with the telomere phenotype, and affected females were heterozygotes showing skewed X-inactivation. Telomerase RNA levels were compromised in cells from DKC1 mutation carriers, consistent with their pathogenic role. These findings indicate that females with heterozygous DKC1 mutations may be at increased risk for developing telomere phenotypes that, at times, may be associated with clinical morbidity. PMID:23946118

  8. Congenital microcephaly and chorioretinopathy due to de novo heterozygous KIF11 mutations: five novel mutations and review of the literature

    PubMed Central

    Mirzaa, Ghayda M.; Enyedi, Laura; Parsons, Gretchen; Collins, Sarah; Medne, Livija; Adams, Carissa; Ward, Thomas; Davitt, Bradley; Bicknese, Alma; Zackai, Elaine; Toriello, Helga; Dobyns, William B.; Christian, Susan

    2014-01-01

    The microcephaly-lymphedema-chorioretinal dysplasia (MLCRD) syndrome is a distinct microcephaly syndrome. The hallmark features, microcephaly, chorioretinopathy, and lymphedema, are frequently recognized at birth. Another clinical entity, the chorioretinal dysplasia, microcephaly and mental retardation syndrome (CDMMR) is a highly overlapping syndrome characterized by more variable lymphedema. Recently, heterozygous mutations in KIF11, a gene encoding a critical spindle motor protein of the Kinesin family, have been reported in individuals with MLCRD, and in individuals with CDMMR. This finding is suggestive of a single clinically variable spectrum. Here, we report on de novo novel mutations of KIF11 in five individuals with severe microcephaly, marked simplification of the gyral pattern on neuroimaging, bilateral chorioretinopathy and developmental delay. Three patients had congenital lymphedema, and one had congenital bilateral sensorineural hearing loss. This report therefore further expands the clinical and molecular spectrum of KIF11-associated microcephaly. PMID:25115524

  9. Analysis of the presence of the GJB6 mutations in patients heterozygous for GJB2 mutation in Brazil.

    PubMed

    Esteves, Maria Carolina Braga Norte; de Lima Isaac, Myriam; Francisco, Anete Maria; da Silva Junior, Wilson Araújo; Ferreira, Cristiane Ayres; Dell'Aringa, Ana Helena Banwart

    2014-04-01

    Mutations in the GJB2 gene, mainly 35delG, are responsible for most autosomal recessive inherited genetic hearing loss. The audiometric standard of these hearing losses remains inconsistent and other genes, such as GJB6, have been involved in association with GJB2. The objective of the study was to identify the deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) in patients heterozygous for 35delG/GJB2 and analyze the phenotype they present. 101 patients with mild to profound degree of sensorineural hypoacusis were evaluated. The allele-specific PCR technique was used to identify 35delG. The del(GJB6-D13S1830) and del(GJB6-D13S1854) were identified through the PCR multiplex technique. 90% of the subjects presented a normal genotype for the analyzed mutations; 6.93% were shown to be heterozygous for 35delG/GJB2 and 1% presented compound heterozygosis GJB2/GJB6). The data found reinforced the hypothesis of an interaction of more than one gene as the cause of autosomal recessive genetic hearing loss and emphasized the importance of an early diagnosis for appropriate intervention.

  10. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease.

    PubMed

    Verdura, Edgard; Hervé, Dominique; Scharrer, Eva; Amador, Maria Del Mar; Guyant-Maréchal, Lucie; Philippi, Anne; Corlobé, Astrid; Bergametti, Françoise; Gazal, Steven; Prieto-Morin, Carol; Beaufort, Nathalie; Le Bail, Benoit; Viakhireva, Irina; Dichgans, Martin; Chabriat, Hugues; Haffner, Christof; Tournier-Lasserve, Elisabeth

    2015-08-01

    Cerebral small vessel disease represents a heterogeneous group of disorders leading to stroke and cognitive impairment. While most small vessel diseases appear sporadic and related to age and hypertension, several early-onset monogenic forms have also been reported. However, only a minority of patients with familial small vessel disease carry mutations in one of known small vessel disease genes. We used whole exome sequencing to identify candidate genes in an autosomal dominant small vessel disease family in which known small vessel disease genes had been excluded, and subsequently screened all candidate genes in 201 unrelated probands with a familial small vessel disease of unknown aetiology, using high throughput multiplex polymerase chain reaction and next generation sequencing. A heterozygous HTRA1 variant (R166L), absent from 1000 Genomes and Exome Variant Server databases and predicted to be deleterious by in silico tools, was identified in all affected members of the index family. Ten probands of 201 additional unrelated and affected probands (4.97%) harboured a heterozygous HTRA1 mutation predicted to be damaging. There was a highly significant difference in the number of likely deleterious variants in cases compared to controls (P = 4.2 × 10(-6); odds ratio = 15.4; 95% confidence interval = 4.9-45.5), strongly suggesting causality. Seven of these variants were located within or close to the HTRA1 protease domain, three were in the N-terminal domain of unknown function and one in the C-terminal PDZ domain. In vitro activity analysis of HTRA1 mutants demonstrated a loss of function effect. Clinical features of this autosomal dominant small vessel disease differ from those of CARASIL and CADASIL by a later age of onset and the absence of the typical extraneurological features of CARASIL. They are similar to those of sporadic small vessel disease, except for their familial nature. Our data demonstrate that heterozygous HTRA1 mutations are an important cause

  11. A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson-Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS.

    PubMed

    Denecke, Jonas; Brune, Thomas; Feldhaus, Tobias; Robenek, Horst; Kranz, Christian; Auchus, Richard J; Agarwal, Anil K; Marquardt, Thorsten

    2006-06-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder normally caused by a spontaneous heterozygous mutation in the LMNA gene that codes for the nuclear lamina protein lamin A. Several enzymes are involved in the processing of its precursor, prelamin A, to the mature lamin A. A functional knockout of one of the enzymes involved in prelamin A processing, the zinc metalloprotease ZMPSTE24, causes an even more severe disorder with early neonatal death described as restrictive dermatopathy (RD). This work describes a HGPS patient with a combined defect of a homozygous loss-of-function mutation in the ZMPSTE24 gene and a heterozygous mutation in the LMNA gene that results in a C-terminal elongation of the final lamin A. Whereas the loss of function mutation of ZMPSTE24 normally results in lethal RD, the truncation of LMNA seems to be a salvage alteration alleviating the clinical picture to the HGPS phenotype. The mutations of our patient indicate that farnesylated prelamin A is the deleterious agent leading to the HGPS phenotype, which gives further insights into the pathophysiology of the disorder.

  12. Cerebral arteriopathy associated with heterozygous Arg179Cys mutation in the ACTA2 gene: Report in 2 newborn siblings.

    PubMed

    de Grazia, Jose; Delgado, Ignacio; Sanchez-Montanez, Angel; Boronat, Susana; Del Campo, Miguel; Vazquez, Elida

    2017-01-01

    Mutations in the ACTA2 gene lead to a multisystemic smooth muscle dysfunction syndrome that causes vascular disease, congenital mydriasis, and variable presentation of urinary and gastrointestinal problems. The heterozygous Arg179 mutation is associated with a distinctive cerebrovascular phenotype. We report the cases of two newborn siblings with heterozygous ACTA2 Arg179Cys substitution and provide neuroimaging exams that demonstrate the distinctive cerebrovascular phenotype, also associated with variable degree of hypoplasia of the vertebro-basilar circulation as well as hypoxic-ischemic lesions.

  13. Age-associated cardiomyopathy in heterozygous carrier mice of a pathological mutation of carnitine transporter gene, OCTN2.

    PubMed

    Xiaofei, E; Wada, Yasuhiko; Dakeishi, Miwako; Hirasawa, Fujiko; Murata, Katsuyuki; Masuda, Hirotake; Sugiyama, Toshihiro; Nikaido, Hiroko; Koizumi, Akio

    2002-07-01

    The purpose of this study was to test whether heterozygotes of juvenile visceral steatosis mice, a model for systemic carnitine deficiency, may develop age-associated cardiomyopathy. Tissue morphological observations were carried out by light and electron microscopy to compare the heterozygous and age-matched control mice at periods of 1 and 2 years. Possible effects of the pathological mutation on lipid and glucose levels was also evaluated in humans and mice. Except mild increases in serum cholesterol levels in male heterozygous mice and humans, no changes were found in other factors, indicating that none of the confounding factors seems to be profound. Results demonstrated that heterozygous mice had larger left ventriclular myocyte diameters than the control mice. Morphological changes in cardiac muscles by electron microscopy revealed age-associated changes of lipid deposition and abnormal mitochondria in heterozygous mice. Two out of 60 heterozygous cohort and one out of nine heterozygous trim-kill mice had cardiac hypertrophy at ages older than 2 years. The present study and our previous work suggest that the carrier state of OCTN2 pathological mutations might be a risk factor for age-associated cardiomyopathy.

  14. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Amor, David J.; Marsh, Ashley P.L.; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B.; Pope, Kate; Bromhead, Catherine; Leventer, Richard J.; Bahlo, Melanie

    2016-01-01

    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency. PMID:27790638

  15. Compound heterozygous GFM2 mutations with Leigh syndrome complicated by arthrogryposis multiplex congenita.

    PubMed

    Fukumura, Shinobu; Ohba, Chihiro; Watanabe, Toshihide; Minagawa, Kimio; Shimura, Masaru; Murayama, Kei; Ohtake, Akira; Saitsu, Hirotomo; Matsumoto, Naomichi; Tsutsumi, Hiroyuki

    2015-09-01

    Defects in the mitochondrial translation apparatus can impair energy production in affected tissues and organs. Most components of this apparatus are encoded by nuclear genes, including GFM2, which encodes a mitochondrial ribosome recycling factor. A few patients with mutations in some of these genes have been reported to date. Here, we present two female siblings with arthrogryposis multiplex congenita, optic atrophy and severe mental retardation. The younger sister had a progressive cerebellar atrophy and bilateral neuropathological findings in the brainstem. Although her cerebrospinal fluid (CSF) levels of lactate and pyruvate were not increased, brain magnetic resonance spectroscopy showed a lactate peak. Additionally, her CSF lactate/pyruvate and serum beta-hydroxybutyrate/acetoacetate ratios were high, and levels of oxidative phosphorylation in skin fibroblasts were reduced. We therefore diagnosed Leigh syndrome. Genomic investigation confirmed the presence of compound heterozygous GFM2 mutations (c.206+4A>G and c.2029-1G>A) in both siblings, causing aberrant splicing with premature stop codons (p.Gly50Glufs*4 and p.Ala677Leufs*2, respectively). These findings suggest that GFM2 mutations could be causative of a phenotype of Leigh syndrome with arthrogryposis multiplex congenita.

  16. A compound heterozygous mutation in the FMO3 gene: the first pediatric case causes fish odor syndrome in Korea

    PubMed Central

    Cho, Sung Min; Chae, Jong-Hee

    2017-01-01

    Trimethylaminuria (TMAuria), known as “fish odor syndrome,” is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase 3 (FMO3). Most TMAuria cases are caused by missense mutations, but nonsense mutations have also been reported in these cases. Here, we describe the identification of a novel FMO3 gene mutation in a patient with TMAuria and her family. A 3-year-old girl presented with a strong corporal odor after ingesting fish. Genomic DNA sequence analysis revealed that she had compound heterozygous FMO3 mutations; One mutation was the missense mutation p.Val158Ile in exon 3, and the other was a novel nonsense mutation, p.Ser364X, in exon 7 of the FMO3 gene. Familial genetic analyses showed that the p.Val158Ile mutation was derived from the same allele in the father, and the p.Ser364X mutation was derived from the mother. This is the first description of the p.Ser364X mutation, and the first report of a Korean patient with TMAuria caused by novel compound heterozygous mutations. PMID:28392825

  17. TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions

    PubMed Central

    Shirole, Nitin H; Pal, Debjani; Kastenhuber, Edward R; Senturk, Serif; Boroda, Joseph; Pisterzi, Paola; Miller, Madison; Munoz, Gustavo; Anderluh, Marko; Ladanyi, Marc; Lowe, Scott W; Sordella, Raffaella

    2016-01-01

    TP53 truncating mutations are common in human tumors and are thought to give rise to p53-null alleles. Here, we show that TP53 exon-6 truncating mutations occur at higher than expected frequencies and produce proteins that lack canonical p53 tumor suppressor activities but promote cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resemble the naturally occurring alternative p53 splice variant, p53-psi. Accordingly, these mutants can localize to the mitochondria where they promote tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator, Cyclophilin D (CypD). Together, our studies reveal that TP53 exon-6 truncating mutations, contrary to current beliefs, act beyond p53 loss to promote tumorigenesis, and could inform the development of strategies to target cancers driven by these prevalent mutations. DOI: http://dx.doi.org/10.7554/eLife.17929.001 PMID:27759562

  18. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions

    PubMed Central

    Dubourg, C.; Bonnet-Brilhault, F.; Toutain, A.; Mignot, C.; Jacquette, A.; Dieux, A.; Gérard, M.; Beaumont-Epinette, M.-P.; Julia, S.; Isidor, B.; Rossi, M.; Odent, S.; Bendavid, C.; Barthélémy, C.; Verloes, A.; David, V.

    2014-01-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions. PMID:24715852

  19. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions.

    PubMed

    Dubourg, C; Bonnet-Brilhault, F; Toutain, A; Mignot, C; Jacquette, A; Dieux, A; Gérard, M; Beaumont-Epinette, M-P; Julia, S; Isidor, B; Rossi, M; Odent, S; Bendavid, C; Barthélémy, C; Verloes, A; David, V

    2014-02-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions.

  20. Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK) is caused by heterozygous KCNC1 mutations.

    PubMed

    Nascimento, Fábio A; Andrade, Danielle M

    2016-09-01

    Progressive myoclonus epilepsy (PME) is a distinct group of seizure disorders characterized by gradual neurological decline with ataxia, myoclonus and recurring seizures. There are several forms of PME, among which the most recently described is MEAK - myoclonus epilepsy and ataxia due to potassium channel mutation. This particular subtype is caused by a recurrent de novo heterozygous mutation (c.959G>A, p.Arg320His) in the KCNC1 gene, which maps to chromosome 11 and encodes for the Kv3.1 protein (a subunit of the Kv3 subfamily of voltage-gated potassium channels). Loss of Kv3 function disrupts the firing properties of fast-spiking neurons, affects neurotransmitter release and induces cell death. Specifically regarding Kv3.1 malfunctioning, the most affected neurons include inhibitory GABAergic interneurons and cerebellar neurons. Impairment of the former cells is believed to contribute to myoclonus and seizures, whereas dysfunction of the latter to ataxia and tremor. Phenotypically, MEAK patients generally have a normal early development. At the age of 6 to 14 years, they present with myoclonus, which tends to progressively worsen with time. Tonic-clonic seizures may or may not be present, and some patients develop mild cognitive impairment following seizure onset. Typical electroencephalographic features comprise generalized epileptiform discharges and, in some cases, photosensitivity. Brain imaging is either normal or shows cerebellar atrophy. The identification of MEAK has both expanded the phenotypic and genotypic spectra of PME and established an emerging role for de novo mutations in PME.

  1. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain.

    PubMed Central

    Touraine, R L; Attié-Bitach, T; Manceau, E; Korsch, E; Sarda, P; Pingault, V; Encha-Razavi, F; Pelet, A; Augé, J; Nivelon-Chevallier, A; Holschneider, A M; Munnes, M; Doerfler, W; Goossens, M; Munnich, A; Vekemans, M; Lyonnet, S

    2000-01-01

    Waardenburg syndrome type 4 (WS4), also called Shah-Waardenburg syndrome, is a rare neurocristopathy that results from the absence of melanocytes and intrinsic ganglion cells of the terminal hindgut. WS4 is inherited as an autosomal recessive trait attributable to EDN3 or EDNRB mutations. It is inherited as an autosomal dominant condition when SOX10 mutations are involved. We report on three unrelated WS4 patients with growth retardation and an as-yet-unreported neurological phenotype with impairment of both the central and autonomous nervous systems and occasionally neonatal hypotonia and arthrogryposis. Each of the three patients was heterozygous for a SOX10 truncating mutation (Y313X in two patients and S251X [corrected] in one patient). The extended spectrum of the WS4 phenotype is relevant to the brain expression of SOX10 during human embryonic and fetal development. Indeed, the expression of SOX10 in human embryo was not restricted to neural-crest-derived cells but also involved fetal brain cells, most likely of glial origin. These data emphasize the important role of SOX10 in early development of both neural-crest-derived tissues, namely melanocytes, autonomic and enteric nervous systems, and glial cells of the central nervous system. PMID:10762540

  2. Acquired Gitelman Syndrome in an Anti-SSA Antibody-positive Patient with a SLC12A3 Heterozygous Mutation

    PubMed Central

    Kusuda, Takeshi; Hosoya, Tadashi; Mori, Takayasu; Ihara, Katsuhito; Nishida, Hidenori; Chiga, Motoko; Sohara, Eisei; Rai, Tatemitsu; Koike, Ryuji; Uchida, Shinichi; Kohsaka, Hitoshi

    2016-01-01

    A 36-year-old woman developed hypokalemic metabolic alkalosis after anti SS-A antibody was found to be positive. Diuretic loading test results were compatible with Gitelman syndrome (GS). The patient had a heterozygous mutation in SLC12A3, which encodes for thiazide-sensitive NaCl cotransporter (NCCT). While the mutation may be responsible for a latent hypofunction of NCCTs, the underlying anti-SSA antibody-associated autoimmunity induced the manifestation of its hypofunction. To the best of our knowledge, this is the first report to demonstrate that anti SS-A antibody-associated autoimmunity may induce GS in a patient with a SLC12A3 heterozygous mutation. PMID:27803420

  3. Glucose transporter isoform-3-null heterozygous mutation causes sexually dimorphic adiposity with insulin resistance.

    PubMed

    Ganguly, Amit; Devaskar, Sherin U

    2008-06-01

    We examined male and female glucose transporter isoform-3 (GLUT3; placenta)-null heterozygous(+/-) mutation-carrying mice and compared them with age- and sex-matched wild-type(+/+) littermates. No difference in postnatal (1-2 days, 6-7 days, 12-13 days, 20-21 days), postsuckling (1-2 mo), and adult (3-6 mo) growth pattern was seen except for an increase in body weight of 9- to 11-mo-old male but not female GLUT3(+/-) mice. This change in male mutant mice was associated with increased total body fat mass, perirenal and epididymal white adipose tissue weight, and hepatic lipid infiltration. These minimally glucose-intolerant male mutant mice demonstrated no change in caloric intake but a decline in basal metabolic rate and insulin resistance. No perturbation in basal circulating glucose concentrations but an increase in insulin concentrations, triglycerides, and total cholesterol was observed in GLUT3(+/-) male mice. Tissue analysis in males and females demonstrated diminished GLUT3 protein in GLUT3(+/-) brain and skeletal muscle with no change in brain and adipose tissue GLUT1 protein concentrations. Furthermore, the male GLUT3(+/-) mice expressed decreased insulin-responsive GLUT4 in white adipose tissue and skeletal muscle sarcolemma. We conclude that the GLUT3(+/-) male mice develop adult-onset adiposity with insulin resistance.

  4. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype

    PubMed Central

    Toubiana, Julie; Okada, Satoshi; Hiller, Julia; Oleastro, Matias; Lagos Gomez, Macarena; Aldave Becerra, Juan Carlos; Ouachée-Chardin, Marie; Fouyssac, Fanny; Girisha, Katta Mohan; Etzioni, Amos; Van Montfrans, Joris; Camcioglu, Yildiz; Kerns, Leigh Ann; Belohradsky, Bernd; Blanche, Stéphane; Bousfiha, Aziz; Rodriguez-Gallego, Carlos; Meyts, Isabelle; Kisand, Kai; Reichenbach, Janine; Renner, Ellen D.; Rosenzweig, Sergio; Grimbacher, Bodo; van de Veerdonk, Frank L.; Traidl-Hoffmann, Claudia; Picard, Capucine; Marodi, Laszlo; Morio, Tomohiro; Kobayashi, Masao; Lilic, Desa; Milner, Joshua D.; Holland, Steven; Casanova, Jean-Laurent

    2016-01-01

    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A–producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis. PMID:27114460

  5. A novel compound heterozygous mutation in the GJB2 gene causing non-syndromic hearing loss in a family.

    PubMed

    Wei, Qinjun; Liu, Youguo; Wang, Shuai; Liu, Tingting; Lu, Yajie; Xing, Guangqian; Cao, Xin

    2014-02-01

    Mutations in the GJB2 gene are responsible for up to 50% of cases of non-syndromic recessive hearing loss, with c.35delG, c.167delT and c.235delC being the predominant mutations in many world populations. However, a large number of rare mutations in this gene may also contribute to hearing loss. The aim of the present study was to conduct a clinical and molecular characterization of a Chinese family with non-syndromic hearing loss. Sequence analysis of the GJB2 gene led to the identification of a novel compound heterozygous mutation c.257C>G (p.T86R)/c.605ins46 in two profoundly deaf siblings whose hearing parents were each heterozygous, either for the c.257C>G (paternal) or for the c.605ins46 (maternal) mutations. Both c.257C>G and c.605ins46 are rare GJB2 mutations that have previously been reported to segregate with autosomal recessive hearing loss exclusively in East Asian populations. To study the pathogenic effect of the compound heterozygous mutation, a three-dimensional model was constructed and Anolea mean force potential energy was predicted for a bioinformatic structural analysis. HEK293 cells were used to study the pathogenic effect of mutant connexin 26 proteins. The results suggested that the c.257C>G (p.T86R)/c.605ins46 mutations in the GJB2 gene provides a novel molecular explanation for the role of the GJB2 gene in hearing loss.

  6. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations.

    PubMed

    Agier, Virginie; Oliviero, Patricia; Lainé, Jeanne; L'Hermitte-Stead, Caroline; Girard, Samantha; Fillaut, Sandrine; Jardel, Claude; Bouillaud, Frédéric; Bulteau, Anne Laure; Lombès, Anne

    2012-10-01

    Deleterious consequences of heterozygous OPA1 mutations responsible for autosomal dominant optic atrophy remain a matter of debate. Primary skin fibroblasts derived from patients have shown diverse mitochondrial alterations that were however difficult to resolve in a unifying scheme. To address the potential use of these cells as disease model, we undertook parallel and quantitative analyses of the diverse reported alterations in four fibroblast lines harboring different OPA1 mutations, nonsense or missense, in the guanosine triphosphatase or the C-terminal coiled-coil domains. We tackled several factors potentially underlying discordant reports and showed that fibroblasts with heterozygous OPA1 mutations present with several mitochondrial alterations. These included defective mitochondrial fusion during pharmacological challenge with the protonophore carbonyl cyanide m-chlorophenyl hydrazone, significant mitochondrial elongation with decreased OPA1 and DRP1 proteins, and abnormal mitochondrial fragmentation during glycolysis shortage or exogenous oxidative stress. Respiratory complex IV activity and subunits steady-state were decreased without alteration of the mitochondrial deoxyribonucleic acid size, amount or transcription. Physical link between OPA1 protein and oxidative phosphorylation was shown by reciprocal immunoprecipitation. Altered cristae structure coexisted with normal response to pro-apoptotic stimuli and expression of Bax or Bcl2 proteins. Skin fibroblasts with heterozygous OPA1 mutations thus share significant mitochondrial remodeling, and may therefore be useful for analyzing disease pathophysiology. Identifying whether the observed alterations are also present in ganglion retinal cells, and which of them underlies their degeneration process remains however an essential goal for therapeutic strategy.

  7. De Novo Truncating FUS Gene Mutation as a Cause of Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    DeJesus-Hernandez, Mariely; Kocerha, Jannet; Finch, NiCole; Crook, Richard; Baker, Matt; Desaro, Pamela; Johnston, Amelia; Rutherford, Nicola; Wojtas, Aleksandra; Kennelly, Kathleen; Wszolek, Zbigniew K.; Graff-Radford, Neill; Boylan, Kevin; Rademakers, Rosa

    2010-01-01

    Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402 P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS. PMID:20232451

  8. Novel germline PALB2 truncating mutations in African-American breast cancer patients

    PubMed Central

    Zheng, Yonglan; Zhang, Jing; Niu, Qun; Huo, Dezheng; Olopade, Olufunmilayo I.

    2011-01-01

    Background It has been demonstrated that PALB2 acts as a bridging molecule between the BRCA1 and BRCA2 proteins and is responsible for facilitating BRCA2-mediated DNA repair. Truncating mutations in the PALB2 gene have been reported to be enriched in Fanconi anemia and breast cancer patients in various populations. Methods We evaluated the contribution of PALB2 germline mutations in 279 African-American breast cancer patients including 29 patients with a strong family history, 29 patients with a moderate family history, 75 patients with a weak family history, and 146 non-familial or sporadic breast cancer cases. Results After direct sequencing of all the coding exons, exon/intron boundaries, 5′UTR and 3′UTR of PALB2, three (1.08%; 3 in 279) novel monoallelic truncating mutations were identified: c.758dupT (exon4), c.1479delC (exon4) and c.3048delT (exon 10); together with 50 sequence variants, 27 of which are novel. None of the truncating mutations were found in 262 controls from the same population. Conclusions PALB2 mutations are present in both familial and non-familial breast cancer among African-Americans. Rare PALB2 mutations account for a small but substantial proportion of breast cancer patients. PMID:21932393

  9. Tumorigenesis in mice carrying a truncating Brca1 mutation

    PubMed Central

    Ludwig, Thomas; Fisher, Peter; Ganesan, Shridar; Efstratiadis, Argiris

    2001-01-01

    We generated mouse mutants carrying in the Brca1 locus a modification (Brca1tr) that eliminates the C-terminal half of the protein product and obtained results indicating that, depending on genetic background, the missing BRCT and/or other domains are dispensable for survival, but essential for tumor suppression. Most of the apparently hypomorphic Brca1tr/tr mutants developed various tumors. Lymphomas were detected at all ages, whereas sarcomas and carcinomas, including breast cancer, appeared after a long latency. The mammary tumors showed striking variability in histopathological patterns suggesting stochastic engagement of tumorigenic pathways in their progression, to which the Brca1tr/tr mutation was apparently a late participant. PMID:11358863

  10. A compound heterozygous EARS2 mutation associated with mild leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL).

    PubMed

    Güngör, Olcay; Özkaya, Ahmet Kağan; Şahin, Yavuz; Güngör, Gülay; Dilber, Cengiz; Aydın, Kürşad

    2016-10-01

    Mitochondrial glutamyl-tRNA synthetase is a major component of protein biosynthesis that loads tRNAs with cognate amino acids. Mutations in the gene encoding this enzyme have been associated with a variety of disorders related to oxidative phosphorylation. Here, we present a case of leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) presenting a biphasic clinical course characterized by delayed psychomotor development and seizure. High-throughput sequencing revealed a novel compound heterozygous mutation in mitochondrial glutamyl-tRNA synthetase 2 (EARS2), which appears to be causative of disease symptoms.

  11. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking.

    PubMed

    Dixon, P H; Weerasekera, N; Linton, K J; Donaldson, O; Chambers, J; Egginton, E; Weaver, J; Nelson-Piercy, C; de Swiet, M; Warnes, G; Elias, E; Higgins, C F; Johnston, D G; McCarthy, M I; Williamson, C

    2000-05-01

    Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy with serious consequences for the mother and fetus. Two pedigrees have been reported with ICP in the mothers of children with a subtype of autosomal recessive progressive familial intrahepatic cholestasis (PFIC) with raised serum gamma-glutamyl transpeptidase (gamma-GT). Affected children have homozygous mutations in the MDR3 gene (also called ABCB4 ), and heterozygous mothers have ICP. More frequently, however, ICP occurs in women with no known family history of PFIC and the genetic basis of this disorder is unknown. We investigated eight women with ICP and raised serum gamma-GT, but with no known family history of PFIC. DNA sequence analysis revealed a C to A transversion in codon 546 in exon 14 of MDR3 in one patient, which results in the missense substitution of the wild-type alanine with an aspartic acid. We performed functional studies of this mutation introduced into MDR1, a closely related homologue of MDR3. Fluorescence activated cell sorting (FACS) and western analysis indicated that this missense mutation causes disruption of protein trafficking with a subsequent lack of functional protein at the cell surface. The demonstration of a heterozygous missense mutation in the MDR3 gene in a patient with ICP with no known family history of PFIC, analysed by functional studies, is a novel finding. This shows that MDR3 mutations are responsible for the additional phenotype of ICP in a subgroup of women with raised gamma-GT.

  12. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    PubMed

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  13. PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations

    SciTech Connect

    Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.

    1994-09-01

    The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called the protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.

  14. Heterozygous gsp mutation renders ion channels of human somatotroph adenoma cells unresponsive to growth hormone-releasing hormone.

    PubMed

    Yasufuku-Takano, J; Takano, K; Takei, T; Fukumoto, S; Teramoto, A; Takakura, K; Yamashita, N; Fujita, T

    1999-05-01

    Ionic mechanisms play an important role in the regulation of hormone secretion. The GHRH-induced GH release by human GH-secreting cells is transmitted through protein kinase A (PKA), which activates nonselective cation current (NSCC) and induces membrane depolarization, intracellular Ca2+ increase, and GH secretion. To evaluate whether ionic mechanisms have pathophysiological significance in GH oversecretion of GH-secreting pituitary adenomas, we examined four adenomas with constitutively active Gs alpha mutation (gsp mutation) and compared with three gsp-negative adenomas. In primary-cultured cells of gsp-positive adenomas, GHRH did not increase the NSCC under voltage-clamp experiments. Detailed examination showed that NSCC was maximally activated at the basal level and application of GHRH did not increase the current in these adenomas. Furthermore, by using single-cell RT-PCR method, we demonstrated for the first time at the single cell level that gsp mutation is heterozygous in GH-secreting pituitary adenomas. These indicate that heterozygous gsp mutation fully activates NSCC at the basal level, which may account for the GH oversecretion in gsp-positive GH-secreting pituitary adenomas.

  15. Heterozygous mutation of cysteine528 in XPO1 is sufficient for resistance to selective inhibitors of nuclear export.

    PubMed

    Neggers, Jasper Edgar; Vanstreels, Els; Baloglu, Erkan; Shacham, Sharon; Landesman, Yosef; Daelemans, Dirk

    2016-10-18

    Exportin-1 (CRM1/XPO1) is a crucial nuclear export protein that transports a wide variety of proteins from the nucleus to the cytoplasm. These cargo proteins include tumor suppressors and growth-regulatory factors and as such XPO1 is considered a potential anti-cancer target. From this perspective, inhibition of the XPO1-mediated nuclear export by selective inhibitor of nuclear export (SINE) compounds has shown broad-spectrum anti-cancer activity. Furthermore, the clinical candidate SINE, selinexor, is currently in multiple phase I/II/IIb trials for treatment of cancer. Resistance against selinexor has not yet been observed in the clinic, but in vitro selection of resistance did not reveal any mutations in the target protein, XPO1. However, introduction of a homozygous mutation at the drug's target site, the cysteine 528 residue inside the XPO1 cargo-binding pocket, by genetic engineering, confers resistance to selinexor. Here we investigated whether this resistance to selinexor is recessive or dominant. For this purpose we have engineered multiple leukemia cell lines containing heterozygous or homozygous C528S substitutions using CRISPR/Cas9-mediated genome editing. Our findings show that heterozygous mutation confers similar resistance against selinexor as homozygous substitution, demonstrating that SINE resistance can be obtained by a single and dominant mutation of the cysteine528 residue in XPO1.

  16. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    PubMed Central

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  17. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia.

    PubMed

    Chen, Wan-Jin; Lin, Yu; Xiong, Zhi-Qi; Wei, Wei; Ni, Wang; Tan, Guo-He; Guo, Shun-Ling; He, Jin; Chen, Ya-Fang; Zhang, Qi-Jie; Li, Hong-Fu; Lin, Yi; Murong, Shen-Xing; Xu, Jianfeng; Wang, Ning; Wu, Zhi-Ying

    2011-11-20

    Paroxysmal kinesigenic dyskinesia is the most common type of paroxysmal movement disorder and is often misdiagnosed clinically as epilepsy. Using whole-exome sequencing followed by Sanger sequencing, we identified three truncating mutations within PRRT2 (NM_145239.2) in eight Han Chinese families with histories of paroxysmal kinesigenic dyskinesia: c.514_517delTCTG (p.Ser172Argfs*3) in one family, c.649dupC (p.Arg217Profs*8) in six families and c.972delA (p.Val325Serfs*12) in one family. These truncating mutations co-segregated exactly with the disease in these families and were not observed in 1,000 control subjects of matched ancestry. PRRT2 is a newly discovered gene consisting of four exons encoding the proline-rich transmembrane protein 2, which encompasses 340 amino acids and contains two predicted transmembrane domains. PRRT2 is highly expressed in the developing nervous system, and a truncating mutation alters the subcellular localization of the PRRT2 protein. The function of PRRT2 and its role in paroxysmal kinesigenic dyskinesia should be further investigated.

  18. A novel C-terminal truncating NR5A1 mutation in dizygotic twins.

    PubMed

    Hattori, Atsushi; Zukeran, Hiroaki; Igarashi, Maki; Toguchi, Suzuka; Toubaru, Yuji; Inoue, Takanobu; Katoh-Fukui, Yuko; Fukami, Maki

    2017-01-01

    Nuclear receptor subfamily 5, group A, member 1 (NR5A1) is a nuclear receptor involved in gonadal and adrenal development. We identified a novel C-terminally truncating NR5A1 mutation, p.Leu423Trpfs*7, in dizygotic twins with 46,XY disorders of sex development. Our results highlight the functional importance of C-terminal region of NR5A1 and indicate that NR5A1 mutations can be associated with intrafamilial phenotypic variations, progressive testicular dysfunction, hypogonadotropic hypogonadism, and borderline adrenal dysfunction.

  19. A novel C-terminal truncating NR5A1 mutation in dizygotic twins

    PubMed Central

    Hattori, Atsushi; Zukeran, Hiroaki; Igarashi, Maki; Toguchi, Suzuka; Toubaru, Yuji; Inoue, Takanobu; Katoh-Fukui, Yuko; Fukami, Maki

    2017-01-01

    Nuclear receptor subfamily 5, group A, member 1 (NR5A1) is a nuclear receptor involved in gonadal and adrenal development. We identified a novel C-terminally truncating NR5A1 mutation, p.Leu423Trpfs*7, in dizygotic twins with 46,XY disorders of sex development. Our results highlight the functional importance of C-terminal region of NR5A1 and indicate that NR5A1 mutations can be associated with intrafamilial phenotypic variations, progressive testicular dysfunction, hypogonadotropic hypogonadism, and borderline adrenal dysfunction. PMID:28326187

  20. The first Japanese case of leukodystrophy with ovarian failure arising from novel compound heterozygous AARS2 mutations.

    PubMed

    Hamatani, Mio; Jingami, Naoto; Tsurusaki, Yoshinori; Shimada, Shino; Shimojima, Keiko; Asada-Utsugi, Megumi; Yoshinaga, Kenji; Uemura, Norihito; Yamashita, Hirofumi; Uemura, Kengo; Takahashi, Ryosuke; Matsumoto, Naomichi; Yamamoto, Toshiyuki

    2016-10-01

    Even now, only a portion of leukodystrophy patients are correctly diagnosed, though various causative genes have been identified. In the present report, we describe a case of adult-onset leukodystrophy in a woman with ovarian failure. By whole-exome sequencing, a compound heterozygous mutation consisting of NM_020745.3 (AARS2_v001):c.1145C>A and NM_020745.3 (AARS2_v001):c.2255+1G>A was identified. Neither of the mutations has been previously reported, and this is the first report of alanyl-transfer RNA synthetase 2 mutation in Asia. We anticipate that further studies of the molecular basis of leukodystrophy will provide insight into its pathogenesis and hopefully lead to sophisticated diagnostic and treatment strategies.

  1. A Truncating De Novo Point Mutation in a Young Infant with Severe Menkes Disease.

    PubMed

    Lin, Yi-Jie; Ho, Che-Sheng; Hsu, Chyong-Hsin; Lin, Ju-Li; Chuang, Chih-Kuang; Tsai, Jen-Daw; Chiu, Nan-Chang; Lin, Hsiang-Yu; Lin, Shuan-Pei

    2017-02-01

    Menkes disease is a rare neurodegenerative disorder caused by mutations in ATP7A gene. Deficiency in copper-dependent enzymes results in the unique kinky hair appearance, neurodegeneration, developmental delay, seizures, failure to thrive and other connective tissue or organ abnormalities. Other than biochemical tests, DNA-based diagnosis is now playing an important role. More than two hundred mutations in ATP7A gene were identified. Early copper supplementation can help improve neurological symptoms, but not non-neurological problems. Further molecular studies are needed to identify additional mutation types and to understand the mechanism of pathogenesis. This may help in discovering the possible treatment measures to cure the disease. We present a case with the clinical features and biochemical findings, abnormal brain magnetic resonance imaging as well as the effects of treatment with copper-histidine. Direct sequencing of ATP7A gene revealed a de novo point mutation which resulted in an early stop codon with truncated protein.

  2. A novel heterozygous missense mutation in uromodulin gene in an Indian family with familial juvenile hyperuricemic nephropathy

    PubMed Central

    Saxena, D.; Srivastava, P.; Phadke, S. R.

    2016-01-01

    Familial juvenile hyperuricemic nephropathy (FJHN), characterized by early-onset hyperuricemia, reduced fractional excretion of uric acid, and chronic renal failure is caused due to mutation in uromodulin (UMOD) gene. We identified a novel mutation in a family with multiple members affected with FJHN. Ten coding exons of UMOD gene in three family members with clinical and biochemical features of FJHN and one unaffected family member were sequenced, and sequence variants were analyzed for the pathogenicity by bioinformatics studies. A heterozygous novel missense mutation (c. 949 T >G) in exon 5 leading to the replacement of cysteine by glycine at position 317 was identified in all three affected family members. This mutation has not been reported earlier in Human Gene Mutation Database, Human Genome Variation, Clinvar, and 1000 Genome. The mutation lies in the cysteine-rich 2 domain of the protein, and the affected residue is evolutionary conserved in other species. To our knowledge, this is the first report of the identification of UMOD mutation in an Indian family. PMID:27795632

  3. Two novel compound heterozygous mutations in the BCKDHB gene that cause the intermittent form of maple syrup urine disease.

    PubMed

    Guo, Yi; Liming, Liu; Jiang, Li

    2015-12-01

    Intermittent maple syrup urine disease (MSUD) is a potentially life-threatening metabolic disorder caused by a deficiency of branched chain α-ketoacid dehydrogenase (BCKD) complex. In contrast to classic MSUD, children with the intermittent form usually have an atypical clinical manifestation. Here, we describe the presenting symptoms and clinical course of a Chinese boy with intermittent MSUD. Mutation analysis identified two previously unreported mutations in exon 7 of the BCKDHB gene: c.767A > G (p.Y256C) and c.768C > G (p.Y256X); the parents were each heterozygous for one of these mutations. In silico analysis predicted Y256C probably affects protein structure; Y256X leads to a premature stop codon. This case demonstrates intermittent MSUD should be suspected in cases with symptoms of recurrent encephalopathy, especially ataxia or marked drowsiness, which usually present after the neonatal period and in conjunction with infection. symmetrical basal ganglia damage but normal myelination in the posterior limb will assist differential diagnosis; alloisoleucine is a useful diagnostic marker and mutation analysis may be of prognostic value. These novel mutations Y256C and Y256X result in the clinical manifestation of a variant form of MSUD, expanding the mutation spectrum of this disease.

  4. Compound heterozygous PNPLA6 mutations cause Boucher-Neuhäuser syndrome with late-onset ataxia.

    PubMed

    Deik, A; Johannes, B; Rucker, J C; Sánchez, E; Brodie, S E; Deegan, E; Landy, K; Kajiwara, Y; Scelsa, S; Saunders-Pullman, R; Paisán-Ruiz, C

    2014-12-01

    PNPLA6 mutations, known to be associated with the development of motor neuron phenotypes, have recently been identified in families with Boucher-Neuhäuser syndrome. Boucher-Neuhäuser is a rare autosomal recessive syndrome characterized by the co-occurrence of cerebellar ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. Gait ataxia in Boucher-Neuhäuser usually manifests before early adulthood, although onset in the third or fourth decade has also been reported. However, given the recent identification of PNPLA6 mutations as the cause of this condition, the determining factors of age of symptom onset still need to be established. Here, we have identified a sporadic Boucher-Neuhäuser case with late-onset gait ataxia and relatively milder retinal changes due to compound heterozygous PNPLA6 mutations. Compound heterozygosity was confirmed by cloning and sequencing the patient's genomic DNA from coding exons 26-29. Furthermore, both mutations (one novel and one known) fell in the phospholipase esterase domain, where most pathogenic mutations seem to cluster. Taken together, we herein confirm PNPLA6 mutations as the leading cause of Boucher-Neuhäuser syndrome and suggest inquiring about a history of hypogonadism or visual changes in patients presenting with late-onset gait ataxia. We also advocate for neuroophthalmologic evaluation in suspected cases.

  5. Effects of mutation, truncation and temperature on the folding kinetics of a WW domain

    PubMed Central

    Maisuradze, Gia G.; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A.

    2013-01-01

    The purpose of this work is to show how mutation, truncation and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis (PCA) of molecular dynamics (MD)-generated folding trajectories of the triple β-strand WW domain from the Formin binding protein 28 (FBP) [PDB: 1E0L] and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement, (MSD), and PCA eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992

  6. Similar patterns of clonally expanded somatic mtDNA mutations in the colon of heterozygous mtDNA mutator mice and ageing humans

    PubMed Central

    Baines, Holly L.; Stewart, James B.; Stamp, Craig; Zupanic, Anze; Kirkwood, Thomas B.L.; Larsson, Nils-Göran; Turnbull, Douglass M.; Greaves, Laura C.

    2014-01-01

    Clonally expanded mitochondrial DNA (mtDNA) mutations resulting in focal respiratory chain deficiency in individual cells are proposed to contribute to the ageing of human tissues that depend on adult stem cells for self-renewal; however, the consequences of these mutations remain unclear. A good animal model is required to investigate this further; but it is unknown whether mechanisms for clonal expansion of mtDNA mutations, and the mutational spectra, are similar between species. Here we show that mice, heterozygous for a mutation disrupting the proof-reading activity of mtDNA polymerase (PolgA+/mut) resulting in an increased mtDNA mutation rate, accumulate clonally expanded mtDNA point mutations in their colonic crypts with age. This results in focal respiratory chain deficiency, and by 81 weeks of age these animals exhibit a similar level and pattern of respiratory chain deficiency to 70-year-old human subjects. Furthermore, like in humans, the mtDNA mutation spectrum appears random and there is an absence of selective constraints. Computer simulations show that a random genetic drift model of mtDNA clonal expansion can accurately model the data from the colonic crypts of wild-type, PolgA+/mut animals, and humans, providing evidence for a similar mechanism for clonal expansion of mtDNA point mutations between these mice and humans. PMID:24915468

  7. Polyneuropathy in a young Belgian patient: A novel heterozygous mutation in the WNK1/HSN2 gene.

    PubMed

    de Filette, Jeroen; Hasaerts, Danielle; Seneca, Sara; Gheldof, Alexander; Stouffs, Katrien; Keymolen, Kathelijn; Velkeniers, Brigitte

    2016-02-01

    Hereditary sensory autonomic neuropathy (HSAN) is a rare condition, predominantly affecting the peripheral sensory nervous system, although variable motor and dysautonomic symptoms can be present. At least 7 clinical types of HSAN have been described, and different genetic mutations have been identified for each of these. HSAN IIA (OMIM #201300) is characterized by loss of pain and loss of temperature and touch sensation, with onset usually before the first decade. The mode of inheritance is autosomal recessive.(1) The causative gene, WNK1/HSN2, is located on locus 12p13.33 and is an isoform of the WNK1 (lysine deficient protein kinase 1) gene, which contains the HSN2 exon.(2,3) We describe 2 new heterozygous mutations in the WNK1/HSN2 gene in a Belgian patient with early-onset sensory polyneuropathy.

  8. Novel compound heterozygous mutations in the PANK2 gene in a Chinese patient with atypical pantothenate kinase-associated neurodegeneration.

    PubMed

    Zhang, Yu-hu; Tang, Bei-sha; Zhao, Ai-ling; Xia, Kun; Long, Zhi-gao; Guo, Ji-feng; Westaway, Shawn K; Hayflick, Susan J

    2005-07-01

    We investigated the presence of mutations in the pantothenate kinase (PANK2) gene in a 27-year-old male Chinese patient with atypical pantothenate kinase-associated neurodegeneration (PKAN), formerly Hallervorden-Spatz syndrome. Automated DNA sequence analyses revealed compound heterozygous mutations in the exon 3 and 5. This patient had a 10-year history of PKAN characterized by a slight tremor of the right hand when writing at onset and a slow progressive rigidity of the neck and the right arm and resting tremor in upper extremities. Dysarthria, dysphagia, and dystonic-athetoid movements of the face and right fingers were marked. Magnetic resonance showed the typical "eye-of-the-tiger" sign.

  9. Extreme muscle development in sheep heterozygous for both myostatin and callipyge mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two mutations causing increased muscle size and decreased fat content in sheep have been described. The callipyge (CLPG) syndrome is only exhibited after 4 to 6 weeks of age in animals inheriting the mutation solely from their sire. In contrast, a mutation of the myostatin gene (MSTN) in the Texel...

  10. A novel compound heterozygous mutation (35delG, 363delC) in the Connexin 26 gene causes non-syndromic autosomal recessive hearing loss.

    PubMed

    Onsori, Habib; Rahmati, Mohammad; Fazli, Davood

    2014-01-01

    Mutations in the Connexin 26 (Cx26) gene are a common cause of hereditary hearing loss in different populations. In the present study, an Iranian patient with bilateral hearing loss underwent molecular analysis for the causative mutation. DNA studies were performed for the Cx26 gene by PCR and sequencing methods. We describe a novel compound heterozygous mutation (35delG, 363delC) in the Cx26 gene that is strongly associated with congenital non-syndromic hearing loss (NSHL).

  11. Impact of heterozygous c.657-661del, p.I171V and p.R215W mutations in NBN on nibrin functions.

    PubMed

    Dzikiewicz-Krawczyk, Agnieszka; Mosor, Maria; Januszkiewicz, Danuta; Nowak, Jerzy

    2012-05-01

    Nibrin, product of the NBN gene, together with MRE11 and RAD50 is involved in DNA double-strand breaks (DSBs) sensing and repair, induction of apoptosis and cell cycle control. Biallelic NBN mutations cause the Nijmegen breakage syndrome, a chromosomal instability disorder characterised by, among other things, radiosensitivity, immunodeficiency and an increased cancer risk. Several studies have shown an association of heterozygous c.657-661del, p.I171V and p.R215W mutations in the NBN gene with a variety of malignancies but the data are controversial. Little is known, however, whether and to what extent do these mutations in heterozygous state affect nibrin functions. We examined frequency of chromatid breaks, DSB repair, defects in S-phase checkpoint and radiosensitivity in X-ray-irradiated cells from control individuals, NBS patients and heterozygous carriers of the c.657-661del, p.I171V and p.R215W mutations. While cells homozygous for c.657-661del displayed a significantly increased number of chromatid breaks and residual γ-H2AX foci, as well as abrogation of the intra-S-phase checkpoint following irradiation, which resulted in increased radiosensitivity, cells with heterozygous c.657-661del, p.I171V and p.R215W mutations behaved similarly to control cells. Significant differences in the frequency of spontaneous and ionising radiation-induced chromatid breaks and the level of persistent γ-H2AX foci were observed when comparing control and mutant cells heterozygous for c.657-661del. However, it is still possible that heterozygous NBN mutations may contribute to cancer development.

  12. Dual mechanisms for the low plasma levels of truncated apolipoprotein B proteins in familial hypobetalipoproteinemia. Analysis of a new mouse model with a nonsense mutation in the Apob gene.

    PubMed Central

    Kim, E; Cham, C M; Véniant, M M; Ambroziak, P; Young, S G

    1998-01-01

    Familial hypobetalipoproteinemia (FHbeta), a syndrome characterized by low plasma cholesterol levels, is caused by mutations in the apo-B gene that interfere with the synthesis of apo-B100. FHbeta mutations frequently lead to the synthesis of a truncated form of apo-B, which typically is present in plasma at < 5% of the levels of apo-B100. Although many FHbeta mutations have been characterized, the basic mechanisms causing the low plasma levels of truncated apo-B variants have not been defined. We used gene targeting to create a mutant allele that exclusively yields a truncated apo-B, apo-B83. In mice heterozygous for the Apob83 allele, plasma levels and the size and density distribution of apo-B83-containing lipoproteins were strikingly similar to those observed in humans with FHbeta and an apo-B83 mutation. Analysis of mice carrying the Apob83 mutation revealed two mechanisms for the low plasma levels of apo-B83. First, Apob83 mRNA levels and apo-B83 secretion were reduced 76 and 72%, respectively. Second, apo-B83 was removed rapidly from the plasma, compared with apo-B100. This mouse model provides a new level of understanding of FHbeta and adds new insights into apo-B metabolism. PMID:9502790

  13. Truncation and microdeletion of EVC/EVC2 with missense mutation of EFCAB7 in Ellis-van Creveld syndrome.

    PubMed

    Nguyen, Tran Quynh Nhu; Saitoh, Makiko; Trinh, Huu Tung; Doan, Nguyen Minh Thien; Mizuno, Yoko; Seki, Masafumi; Sato, Yusuke; Ogawa, Seishi; Mizuguchi, Masashi

    2016-09-01

    Ellis-van Creveld syndrome (EvC) is a ciliopathy with cardiac anomalies, disproportionate short stature, polydactyly, dystrophic nails and oral defects. To obtain further insight into the genetics of EvC, we screened EVC/EVC2 mutations in eight Vietnamese EvC patients. All the patients had a congenital heart defect with atypical oral and/or skeletal abnormalities. One had compound heterozygous EVC2 mutations: a novel mutation c.769G > T-p.E177X in exon 6 inherited from father and another previously reported c.2476C > T-p.R826X mutation in exon 14 inherited from mother. The EVC2 mRNA expression level was significantly lower in the patient and her parents compared to controls. Another case had a novel heterozygous EVC mutation (c.1717C > G-p.S572X) in exon 12, inherited from his father. Of note, the mother without any EVC mutation on Sanger sequencing showed a lower expression level of EVC mRNA compared with controls. SNP array analysis revealed that the patient and mother had a heterozygous 16.4 kb deletion in EVC. This patient also had a heterozygous novel variant in exon 9 of EFCAB7 (c.1171 T > C-p.Y391H), inherited from his father. The atypical cardiac phenotype of this patient and the father suggested that EFCAB7 may modify the phenotype by interacting with EVC. In conclusion, we detected two novel nonsense mutations and a partial deletion of EVC/EVC2 in two Vietnamese families with EvC. Moreover, we found in one family a missense mutation of EFCAB7, a possible modifier gene in EvC and its related disorders.

  14. Large deletion of the GJB6 gene in deaf patients heterozygous for the GJB2 gene mutation: genotypic and phenotypic analysis.

    PubMed

    Feldmann, Delphine; Denoyelle, Françoise; Chauvin, Pierre; Garabédian, Eréa-Noël; Couderc, Rémy; Odent, Sylvie; Joannard, Alain; Schmerber, Sébastien; Delobel, Bruno; Leman, Jacques; Journel, Hubert; Catros, Hélène; Le Maréchal, Cédric; Dollfus, Hélène; Eliot, Marie-Madeleine; Delaunoy, Jean-Pierre; David, Albert; Calais, Catherine; Drouin-Garraud, Valérie; Obstoy, Marie-Françoise; Bouccara, Didier; Sterkers, Olivier; Huy, Patrice Tran Ba; Goizet, Cyril; Duriez, Françoise; Fellmann, Florence; Hélias, Jocelyne; Vigneron, Jacqueline; Montaut, Bétina; Lewin, Patricia; Petit, Christine; Marlin, Sandrine

    2004-06-15

    Recent investigations identified a large deletion of the GJB6 gene in trans to a mutation of GJB2 in deaf patients. We looked for GJB2 mutations and GJB6 deletions in 255 French patients presenting with a phenotype compatible with DFNB1. 32% of the patients had biallelic GJB2 mutations and 6% were a heterozygous for a GJB2 mutation and a GJB6 deletion. Biallelic GJB2 mutations and combined GJB2/GJB6 anomalies were more frequent in profoundly deaf children. Based on these results, we are now assessing GJB6 deletion status in cases of prelingual hearing loss.

  15. A truncating mutation in Alzheimer's disease inactivates neuroligin-1 synaptic function.

    PubMed

    Tristán-Clavijo, Enriqueta; Camacho-Garcia, Rafael J; Robles-Lanuza, Estefanía; Ruiz, Agustín; van der Zee, Julie; Van Broeckhoven, Christine; Hernandez, Isabel; Martinez-Mir, Amalia; Scholl, Francisco G

    2015-12-01

    Neuroligins (NLs) are cell-adhesion proteins that regulate synapse formation and function. Neuroligin 1 (NL1) promotes the formation of glutamatergic synapses and mediates long-term potentiation in mouse models. Thus, altered NL1 function could mediate the synaptic and memory deficits associated with Alzheimer's disease (AD). Here, we describe a frameshift mutation, c.875_876insTT, in the neuroligin 1 gene (NLGN1) in a patient with AD and familial history of AD. The insertion generates a premature stop codon in the extracellular domain of NL1 (p.Thr271fs). Expression of mutant NL1 shows accumulation of truncated NL1 proteins in the endoplasmic reticulum. In hippocampal neurons, the p.Thr271fs mutation abolishes the ability of NL1 to promote the formation of glutamatergic synapses. Our data support a role for inactivating mutations in NLGN1 in AD. Previous studies have reported rare mutations in X-linked NLGNL3 and NLGNL4 genes in patients with autism, which result in the inactivation of the mutant alleles. Therefore, together with a role in neurodevelopmental disorders, altered NL function could underlie the molecular mechanisms associated with brain diseases in the elderly.

  16. Charcot-Marie-Tooth Disease Type 4H Resulting from Compound Heterozygous Mutations in FGD4 from Nonconsanguineous Korean Families.

    PubMed

    Hyun, Young Se; Lee, Jinho; Kim, Hye Jin; Hong, Young Bin; Koo, Heasoo; Smith, Alec S T; Kim, Deok-Ho; Choi, Byung-Ok; Chung, Ki Wha

    2015-11-01

    Charcot-Marie-Tooth disease type 4H (CMT4H) is an autosomal recessive demyelinating subtype of peripheral enuropathies caused by mutations in the FGD4 gene. Most CMT4H patients are in consanguineous Mediterranean families characterized by early onset and slow progression. We identified two CMT4H patients from a Korean CMT cohort, and performed a detailed genetic and clinical analysis in both cases. Both patients from nonconsanguineous families showed characteristic clinical manifestations of CMT4H including early onset, scoliosis, areflexia, and slow disease progression. Exome sequencing revealed novel compound heterozygous mutations in FGD4 as the underlying cause in both families (p.Arg468Gln and c.1512-2A>C in FC73, p.Met345Thr and c.2043+1G>A (p.Trp663Trpfs*30) in FC646). The missense mutations were located in highly conserved RhoGEF and PH domains which were predicted to be pathogenic in nature by in silico modeling. The CMT4H occurrence frequency was calculated to 0.7% in the Korean demyelinating CMT patients. This study is the first report of CMT4H in Korea. FGD4 assay could be considered as a means of molecular diagnosis for sporadic cases of demyelinating CMT with slow progression.

  17. Novel compound heterozygous mutations in a child with Ataxia-Telangiectasia showing unrelated cerebellar disorders.

    PubMed

    Piane, Maria; Molinaro, Anna; Soresina, Annarosa; Costa, Silvia; Maffeis, Marianna; Germani, Aldo; Pinelli, Lorenzo; Meschini, Roberta; Plebani, Alessandro; Chessa, Luciana; Micheli, Roberto

    2016-12-15

    We report the case of a 6-year-old female patient with Ataxia Telangiectasia, an extremely rare condition, who developed in addition a left cerebellar astrocytoma and a right cerebellar infarction, considered as two independent events. Children with AT have an increased risk of developing cancer, but only few cases of glioma are reported and, at our knowledge, no other case of unrelated cerebellar glioma and cerebellar infarction in with the same AT patient have been described. The molecular analysis of ATM (Ataxia Telangiectasia Mutated) gene showed that the patient is compound heterozygote for two previously unreported mutations: c.3291delC (p.Phe1097fs) at exon 25 and c.8198A>C (p.Gln2733Pro) at exon 58. The role of the identified ATM gene mutations in the pathogenesis of Ataxia Telangiectasia and the coexisting cerebellar disorders is discussed.

  18. A novel c132-134del mutation in Unverricht-Lundborg disease and the review of literature of heterozygous compound patients.

    PubMed

    Assenza, Giovanni; Benvenga, Antonella; Gennaro, Elena; Tombini, Mario; Campana, Chiara; Assenza, Federica; Di Pino, Giovanni; Di Lazzaro, Vincenzo

    2017-02-01

    Unverricht-Lundborg disease or progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disease caused by mutation of the cystatin B gene (CSTB), located on chromosome 21q22.3. The most common mutation is an expansion of unstable dodecamer repetition (CCCCGCCCCGCG), whereas other types of mutations are rare. Among these, heterozygous compound mutations are described to induce a more severe phenotype than that of homozygous dodecameric repetition. We report two siblings affected by heterozygous compound mutations carrying a novel mutation of the deletion of three nucleotides in exon 2 of the gene in position 132-134 of the coding sequence (c.132-134del) in the allele not including the dodecamer repetition. This mutation results in the loss of two amino acid residues and insertion of an asparagine in position 44 (p.Lys44_Ser45delinsAsn). Our patients presented a very different clinical picture. The male patient had a severe myoclonus, drug-resistant epilepsy and psychiatric comorbidity, while his affected sister had only very rare seizures and sporadic myoclonic jerks at awakening. The revision of literature about heterozygous compound EPM1 patients confirms this gender phenotypic expressivity, with female patients carrying less severe symptoms than male patients. These data lead to the hypothesis of complex gender-specific factors interacting with CSTB expressivity in EPM1 patients.

  19. Life-threatening methylenetetrahydrofolate reductase (MTHFR) deficiency with extremely early onset: characterization of two novel mutations in compound heterozygous patients.

    PubMed

    Forges, Thierry; Chery, Céline; Audonnet, Sandra; Feillet, François; Gueant, Jean-Louis

    2010-06-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzymatic component of the folate cycle, converting 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, the methyl donor for remethylation of homocysteine into methionine. Severe MTHFR deficiency is a rare recessive disease leading to major hyperhomocysteinemia, homocystinuria, and progressive neurological distress within the two first decades of life. More than 50 mutations have been reported so far in affected patients but only a few cases with very early onset of symptoms during the first weeks have been described, most of them showing a particular severe clinical course. We detected two novel mutations by direct sequencing of MTHFR in compound heterozygous patients with extremely low or undetectable enzyme activity; one of them had clinical onset during the first week of life and fatal issue at the age of six weeks. Prenatal diagnosis of his sibling allowed for early treatment with B vitamins and betaine and a favorable outcome. One of these mutations (c.523G>A) led to an Ala>Thr transition in the catalytic domain of the enzyme, the other (c.1166G>A) induced alternative splicing of exon 7 at the junction of the catalytic and regulatory domains. Both parents carried only one of these mutations and presented with moderate and intermediate hyperhomocysteinemia, respectively, without neurological symptoms. Severe MTHFR deficiency thus has to be taken into consideration when investigating neurological distress even in the newborn, regarding the need for an earliest possible treatment. Characterization of the relatives further allows for preventive measure to limit the risks of chronic hyperhomocysteinemia.

  20. Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects.

    PubMed

    Williamson, Kathleen A; Rainger, Joe; Floyd, James A B; Ansari, Morad; Meynert, Alison; Aldridge, Kishan V; Rainger, Jacqueline K; Anderson, Carl A; Moore, Anthony T; Hurles, Matthew E; Clarke, Angus; van Heyningen, Veronica; Verloes, Alain; Taylor, Martin S; Wilkie, Andrew O M; Fitzpatrick, David R

    2014-02-06

    Exome sequence analysis of affected individuals from two families with autosomal-dominant inheritance of coloboma identified two different cosegregating heterozygous nonsense mutations (c.370C>T [p.Arg124*] and c. 1066G>T [p.Glu356*]) in YAP1. The phenotypes of the affected families differed in that one included no extraocular features and the other manifested with highly variable multisystem involvement, including hearing loss, intellectual disability, hematuria, and orofacial clefting. A combined LOD score of 4.2 was obtained for the association between YAP1 loss-of-function mutations and the phenotype in these families. YAP1 encodes an effector of the HIPPO-pathway-induced growth response, and whole-mount in situ hybridization in mouse embryos has shown that Yap1 is strongly expressed in the eye, brain, and fusing facial processes. RT-PCR showed that an alternative transcription start site (TSS) in intron 1 of YAP1 and Yap1 is widely used in human and mouse development, respectively. Transcripts from the alternative TSS are predicted to initiate at codon Met179 relative to the canonical transcript (RefSeq NM_001130145). In these alternative transcripts, the c.370C>T mutation in family 1305 is within the 5' UTR and cannot result in nonsense-mediated decay (NMD). The c. 1066G>T mutation in family 132 should result in NMD in transcripts from either TSS. Amelioration of the phenotype by the alternative transcripts provides a plausible explanation for the phenotypic differences between the families.

  1. Compound heterozygous mutations in the SCN5A-encoded Nav1.5 cardiac sodium channel resulting in atrial standstill and His-Purkinje system disease.

    PubMed

    Baskar, Shankar; Ackerman, Michael J; Clements, Diane; Mayuga, Kenneth A; Aziz, Peter F

    2014-11-01

    An 11-year-old girl on evaluation for syncope was found to have progressive sinus node dysfunction and His-Purkinje system disease with atrial standstill. Genetic analysis revealed compound heterozygous mutations of the SCN5A gene in a novel combination.

  2. Whole Exome Sequencing Identifies De Novo Heterozygous CAV1 Mutations Associated with a Novel Neonatal Onset Lipodystrophy Syndrome

    PubMed Central

    Garg, Abhimanyu; Kircher, Martin; del Campo, Miguel; Amato, R. Stephen; Agarwal, Anil K.

    2016-01-01

    Despite remarkable progress in identifying causal genes for many types of genetic lipodystrophies in the last decade, the molecular basis of many extremely rare lipodystrophy patients with distinctive phenotypes remains unclear. We conducted whole exome sequencing of the parents and probands from six pedigrees with neonatal onset of generalized loss of subcutaneous fat with additional distinctive phenotypic features and report de novo heterozygous null mutations, c.424C>T (p. Q142*) and c.479_480delTT (p.F160*), in CAV1 in a 7-year-old male and a 3-year-old female of European origin, respectively. Both the patients had generalized fat loss, thin mottled skin and progeroid features at birth. The male patient had cataracts requiring extraction at age 30 months and the female patient had pulmonary arterial hypertension. Dermal fibroblasts of the female patient revealed negligible CAV1 immunofluorescence staining compared to control but there were no differences in the number and morphology of caveolae upon electron microscopy examination. Based upon the similarities in the clinical features of these two patients, previous reports of CAV1 mutations in patients with lipodystrophies and pulmonary hypertension, and similar features seen in CAV1 null mice, we conclude that these variants are the most likely cause of one subtype of neonatal onset generalized lipodystrophy syndrome. PMID:25898808

  3. POC1A truncation mutation causes a ciliopathy in humans characterized by primordial dwarfism.

    PubMed

    Shaheen, Ranad; Faqeih, Eissa; Shamseldin, Hanan E; Noche, Ramil R; Sunker, Asma; Alshammari, Muneera J; Al-Sheddi, Tarfa; Adly, Nouran; Al-Dosari, Mohammed S; Megason, Sean G; Al-Husain, Muneera; Al-Mohanna, Futwan; Alkuraya, Fowzan S

    2012-08-10

    Primordial dwarfism (PD) is a phenotype characterized by profound growth retardation that is prenatal in onset. Significant strides have been made in the last few years toward improved understanding of the molecular underpinning of the limited growth that characterizes the embryonic and postnatal development of PD individuals. These include impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA-damage response, defective spliceosomal machinery, and abnormal replication licensing. In three families affected by a distinct form of PD, we identified a founder truncating mutation in POC1A. This gene is one of two vertebrate paralogs of POC1, which encodes one of the most abundant proteins in the Chlamydomonas centriole proteome. Cells derived from the index individual have abnormal mitotic mechanics with multipolar spindles, in addition to clearly impaired ciliogenesis. siRNA knockdown of POC1A in fibroblast cells recapitulates this ciliogenesis defect. Our findings highlight a human ciliopathy syndrome caused by deficiency of a major centriolar protein.

  4. Neurofibromatosis type 1 (NF1): a protein truncation assay yielding identification of mutations in 73% of patients.

    PubMed Central

    Park, V M; Pivnick, E K

    1998-01-01

    Neurofibromatosis type 1 (NF1) is caused by mutations in a tumour suppressor gene located on chromosome 17 (17q11.2). Disease causing mutations are dispersed throughout the gene, which spans 350 kilobases and includes 59 exons. A common consequence of NF1 mutations is introduction of a premature stop codon, and the majority of mutant genes encode truncated forms of neurofibromin. We used a protein truncation assay to screen for mutations in 15 NF1 patients and obtained positive results in 11 of them (73%). Sequencing of cDNA and genomic DNA yielded identification of 10 different mutations, including four splicing errors, three small deletions, two nonsense mutations, and one small insertion. Nine mutations were predicted to cause premature termination of translation, while one mutation caused in frame deletion as a result ofexon skipping. In one other case involving abnormal splicing, five different aberrantly spliced transcripts were detected. One germline nonsense mutation (R1306X, 3916C>T) corresponded to the same base change that occurs by mRNA editing in normal subjects. The second nonsense mutation (R2496X) was the sole germline mutation that has been previously described. The subjects studied represented typically affected NF1 patients and no correlations between genotype and phenotype were apparent. A high incidence of ocular hypertelorism was observed. Images PMID:9783703

  5. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    SciTech Connect

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  6. Chromosomal breakage in human spermatozoa, a heterozygous effect of the bloom syndrome mutation

    SciTech Connect

    Martin, R.H.; Rademaker, A.; German, J.

    1994-12-01

    The chromosome complements of 662 spermatozoa produced by the three fathers of individuals with Bloom syndrome (BS) were analyzed to determine whether the BS mutation could affect chromosome segregation and the frequency of aneuploidy in sperm. The frequency of numerical abnormalities was not significantly different from that in normal controls studied in our laboratory, but the frequencies of structural abnormalities were significantly increased in two of the men, 14.3% and 15.9%, versus 8.6% in controls. More striking was the increase in these two men of cells with multiple structural abnormalities: 8.1% and 6.7% with multiple abnormalities, versus 2.3% in controls.

  7. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His.

    PubMed

    Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan

    2016-09-01

    Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees.Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS-PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM).The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS-PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal.Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen.

  8. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His

    PubMed Central

    Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan

    2016-01-01

    Abstract Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees. Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS–PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM). The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS–PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal. Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen. PMID

  9. De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability.

    PubMed

    Parker, Michael J; Fryer, Alan E; Shears, Deborah J; Lachlan, Katherine L; McKee, Shane A; Magee, Alex C; Mohammed, Shehla; Vasudevan, Pradeep C; Park, Soo-Mi; Benoit, Valérie; Lederer, Damien; Maystadt, Isabelle; Study, Ddd; FitzPatrick, David R

    2015-10-01

    De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase-activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi-gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss-of-function (3 nonsense; 3 frameshift; 1 whole gene deletion). The remaining two mutations, one of which affected the monozygotic twins, were missense variants. Each individual carrying a DNM in SYNGAP1 had moderate-to-severe ID and 7/10 had epilepsy; typically myoclonic seizures, absences or drop attacks. 8/10 had hypotonia, 5/10 had significant constipation, 7/10 had wide-based/unsteady gait, 3/10 had strabismus, and 2/10 had significant hip dysplasia. A proportion of the affected individuals had a similar, myopathic facial appearance, with broad nasal bridge, relatively long nose and full lower lip vermilion. A distinctive behavioral phenotype was also observed with aggressive/challenging behavior and significant sleep problems being common. 7/10 individuals had MR imaging of the brain each of which was reported as normal. The clinical features of the individuals reported here show significant overlap with those associated with 6p21.3 microdeletions, confirming that haploinsufficiency for SYNGAP1 is responsible for both disorders. © 2015 Wiley Periodicals, Inc.

  10. De novo, heterozygous, loss‐of‐function mutations in SYNGAP1 cause a syndromic form of intellectual disability

    PubMed Central

    Fryer, Alan E.; Shears, Deborah J.; Lachlan, Katherine L.; McKee, Shane A.; Magee, Alex C.; Mohammed, Shehla; Vasudevan, Pradeep C.; Park, Soo‐Mi; Benoit, Valérie; Lederer, Damien; Maystadt, Isabelle; study, DDD; FitzPatrick, David R.

    2015-01-01

    De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase‐activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi‐gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss‐of‐function (3 nonsense; 3 frameshift; 1 whole gene deletion). The remaining two mutations, one of which affected the monozygotic twins, were missense variants. Each individual carrying a DNM in SYNGAP1 had moderate‐to‐severe ID and 7/10 had epilepsy; typically myoclonic seizures, absences or drop attacks. 8/10 had hypotonia, 5/10 had significant constipation, 7/10 had wide‐based/unsteady gait, 3/10 had strabismus, and 2/10 had significant hip dysplasia. A proportion of the affected individuals had a similar, myopathic facial appearance, with broad nasal bridge, relatively long nose and full lower lip vermilion. A distinctive behavioral phenotype was also observed with aggressive/challenging behavior and significant sleep problems being common. 7/10 individuals had MR imaging of the brain each of which was reported as normal. The clinical features of the individuals reported here show significant overlap with those associated with 6p21.3 microdeletions, confirming that haploinsufficiency for SYNGAP1 is responsible for both disorders. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:26079862

  11. Identification of Compound Heterozygous Mutation in a Korean Patient with Alpha 1-antitrypsin Deficiency

    PubMed Central

    Ko, Dae-Hyun; Chang, Ho Eun; Song, Sang Hoon; Song, Junghan

    2011-01-01

    Alpha 1-antitrypsin (AAT) deficiency is a genetic disorder that primarily affects the lungs and liver. While AAT deficiency is one of the most common genetic disorders in the Caucasian population, it is extremely rare in Asians. Here, we report the case of a 36-year-old Korean woman with AAT deficiency who visited the emergency department of our hospital for the treatment of progressive dyspnea that had begun 10 years ago. She had never smoked. Chest computed tomography revealed panlobular emphysema in both lungs, which suggested AAT deficiency. The serum AAT level was 33 mg/dL (reference interval: 90-200 mg/dL). Four exons of the SERPINA1 gene, which is responsible for AAT deficiency, and their flanking regions were analyzed by PCR-direct sequencing. The patient was found to have 1 missense mutation (c.230C>T, p.Ser77Phe; Siiyama) and 1 frameshift mutation (c.1158dupC, p.Glu387ArgfsX14; QOclayton). This is the first Korean case of AAT deficiency confirmed by genetic analysis and the second case of a compound heterozygote of Siiyama and QOclayton, the first case of which was reported from Japan. PMID:22016686

  12. Congenital thrombotic thrombocytopenic purpura caused by new compound heterozygous mutations of the ADAMTS13 gene.

    PubMed

    Rank, Cecilie Utke; Kremer Hovinga, Johanna; Taleghani, Magnus Mansouri; Lämmle, Bernhard; Gøtze, Jens Peter; Nielsen, Ove Juul

    2014-02-01

    Upshaw-Schulman syndrome (USS) is due to severe congenital deficiency of von Willebrand factor (VWF)-cleaving protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 domains, nr 13) activity resulting in the presence of unusually large forms of VWF in the circulation, causing intravascular platelet clumping and thrombotic microangiopathy. Our patient, a 26-year-old man, had attacks of thrombotic thrombocytopenic purpura (TTP) with thrombocytopenia and a urine dipstick positive for hemoglobin (4+), often as the only sign of hemolytic activity. He had ADAMTS13 activity of <1% of normal plasma without the presence of inhibitors of ADAMTS13. ADAMTS13 deficiency was caused by two new mutations of the ADAMTS13 gene: a deletion of a single nucleotide in exon17 (c. 2042 delA) leading to a frameshift (K681C fs X16), and a missense mutation in exon 25 (c.3368G>A) leading to p.R1123H. This case report confirms the importance of the analysis of the ADAMTS13 activity and its inhibitor in patients who have episodes of TTP, with a very low platelet count and sometimes without the classic biochemical signs of hemolysis.

  13. Gene Expression Patterns of Hemizygous and Heterozygous KIT Mutations Suggest Distinct Oncogenic Pathways: A Study in NIH3T3 Cell Lines and GIST Samples

    PubMed Central

    Dessaux, Sophie; Besse, Anthony; Brahimi-Adouane, Sabrina; Emile, Jean-François; Blay, Jean-Yves; Alberti, Laurent

    2013-01-01

    Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways. PMID:23593401

  14. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations

    PubMed Central

    Mehler, Vera J.; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  15. Heterozygous germline mutations in NBS1 among Korean patients with high-risk breast cancer negative for BRCA1/2 mutation.

    PubMed

    Kim, Haeyoung; Cho, Dae-Yeon; Choi, Doo Ho; Jung, Gee Hue; Shin, Inkyung; Park, Won; Huh, Seung Jae; Kim, Sung-Won; Park, Sue K; Lee, Jong Won; Nam, Seok Jin; Lee, Jeong Eon; Gil, Won Ho; Kim, Seok Won

    2015-09-01

    The purpose of the present study was to analyze genetic variations in the NBS1 gene and to evaluate the contribution of heterozygous NBS1 mutation to the risk of breast cancer among Korean patients with high-risk breast cancer negative for BRCA1/2 mutation. We screened 235 non-BRCA1/2 Korean patients with high-risk breast cancer for NBS1 mutations. The entire NBS1 gene was sequenced using fluorescent conformation-sensitive capillary electrophoresis. In silico analysis of the NBS1 variants was performed using PolyPhen-2 and SIFT. The frequency of variants predicted to be deleterious by in silico analysis was compared between breast cancer patients and controls. Twenty-eight sequence variants in the NBS1 gene were identified: 9 exonic variants, including 5 missense mutations (p.R169C, p.I171V, p.E185Q, p.E564K, and p.F603L) and 4 silent mutations, and 19 variants within introns. Among the five missense variants, p.I171V (c.511A > G) was the only variant predicted to be deleterious by in silico analysis. Heterozygosity for p.I171V was found in 4/235 patients with breast cancer and 3/281 individuals in the control group. The frequency of p.I171V was not significantly different between the patient and control groups (1.7 vs. 1.06%, p = 0.7). Heterozygosity of p.I171V in the NBS1 gene was found in a small proportion of Korean patients with high-risk breast cancer. The contribution of the p.I171V variant to the development of breast cancer among Korean patients was not significant.

  16. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency.

    PubMed

    Tamura, Shinobu; Higuchi, Kohei; Tamaki, Masaharu; Inoue, Chizuko; Awazawa, Ryoko; Mitsuki, Noriko; Nakazawa, Yuka; Mishima, Hiroyuki; Takahashi, Kenzo; Kondo, Osamu; Imai, Kohsuke; Morio, Tomohiro; Ohara, Osamu; Ogi, Tomoo; Furukawa, Fukumi; Inoue, Masami; Yoshiura, Koh-ichiro; Kanazawa, Nobuo

    2015-10-01

    We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.

  17. Bernard-Soulier syndrome in a patient doubly heterozygous for two frameshift mutations in the glycoprotein ib alpha gene.

    PubMed

    Afshar-Kharghan, V; Craig, F E; López, J A

    2000-09-01

    We report here the genetic basis of Bernard-Soulier syndrome in a compound heterozygote for two mutant glycoprotein (GP) Ib alpha alleles. One allele contained a novel four base-pair deletion (TGAG) that eliminated the last base of the codon for Ser39 (AGT) and the entire codon for Glu40 (GAG), causing a reading frame shift that yielded a stretch of 51 amino acids before a premature stop codon. The other allele also contained a frame-shift mutation, caused by deletion of the last two bases of the codon for Tyr492 (TAT). This allele produced a truncated glycoprotein Ib alpha that, although not expressed on the surface of the patient's platelets, was detectable in the plasma. The second allele has been identified previously by our group and other investigators as the cause of Bernard-Soulier syndrome in patients of northern European ancestry. This allele carried a haplotype identical to those of the previously reported cases, with the following polymorphic markers: two tandem repeats in the VNTR region, C at nucleotide -5 from the ATG start codon and a substitution of G for A in the third base for codon Arg342. These findings suggest that this particular Bernard-Soulier mutation occurred once on the background of a rare haplotype and has spread throughout the northern European population.

  18. Novel compound heterozygous mutations in ZAP70 in a Chinese patient with leaky severe combined immunodeficiency disorder.

    PubMed

    Liu, Qing; Wang, Yan-Ping; Liu, Qiao; Zhao, Qin; Chen, Xue-Mei; Xue, Xiu-Hong; Zhou, Li-Na; Ding, Yuan; Tang, Xue-Mei; Zhao, Xiao-Dong; Zhang, Zhi-Yong

    2017-01-26

    In humans, the complete lack of tyrosine kinase ZAP70 function results in combined immunodeficiency (CID), with abnormal thymic development and defective T cell receptor (TCR) signaling of peripheral T cells, characterized by the selective absence of CD8(+) T cells. So far, 15 unique ZAP70 mutations have been identified in approximately 20 patients with CID, with variable clinical presentations. Herein, we report the first case from China of novel compound heterozygous mutations in ZAP70 (c.598-599delCT, p.L200fsX28; c.847 C>T, R283H). The patient suffered from early-onset and recurrent infections, but showed normal growth and development without signs of failure to thrive, thus presenting as leaky SCID. The patient also had clinical manifestations of autoimmunity, such as eczematous skin lesion, inflammatory bowel disease (IBD), and intractable diarrhea, suggesting compromised T cell tolerogenic functions. Residual ZAP70 expression was identified. Immunological analysis revealed the selective absence of CD8(+) T cells in the periphery and the presence of CD4(+) T cells that failed to respond to phytohemagglutinin. Stimulation with lectin from pokeweed mitogen also failed to stimulate B cell proliferation in the patient. The frequency of Tfhs and Tregs in the patient was lower compared with the normal reference. Compared with the age-matched healthy control, the level of IL-17 was higher and the levels of IFN-γ, IL-4, and IL-21 were lower. Infants with selected CD8 deficiency and severe autoimmune disorders or exaggerated inflammation should be screened for ZAP70 deficiency.

  19. Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer.

    PubMed

    Guo, Jianhui; Zheng, Li; Liu, Wenyong; Wang, Xianshu; Wang, Zemin; Wang, Zehua; French, Amy J; Kang, Dongchon; Chen, Lin; Thibodeau, Stephen N; Liu, Wanguo

    2011-04-15

    The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA (mtDNA) replication and transcription. Disruption of TFAM results in heart failure and premature aging in mice. But very little is known about the role of TFAM in cancer development. Here, we report the identification of frequent frameshift mutations in the coding mononucleotide repeat of TFAM in sporadic colorectal cancer (CRC) cell lines and in primary tumors with microsatellite instability (MSI), but not in microsatellite stable (MSS) CRC cell lines and tumors. The presence of the TFAM truncating mutation, in CRC cells with MSI, reduced the TFAM protein level in vivo and in vitro and correlated with mtDNA depletion. Furthermore, forced overexpression of wild-type TFAM in RKO cells carrying a TFAM truncating mutation suppressed cell proliferation and inhibited RKO cell-induced xenograft tumor growth. Moreover, these cells showed more susceptibility to cisplatin-induced apoptosis due to an increase of cytochrome b (Cyt b) expression and its release from mitochondria. An interaction assay between TFAM and the heavy-strand promoter (HSP) of mitochondria revealed that mutant TFAM exhibited reduced binding to HSP, leading to reduction in Cyt b transcription. Collectively, these data provide evidence that a high incidence of TFAM truncating mutations leads to mitochondrial copy number reduction and mitochondrial instability, distinguishing most CRC with MSI from MSS CRC. These mutations may play an important role in tumorigenesis and cisplatin-induced apoptotic resistance of most microsatellite-unstable CRCs.

  20. De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome.

    PubMed

    Jansen, Sandra; Geuer, Sinje; Pfundt, Rolph; Brough, Rachel; Ghongane, Priyanka; Herkert, Johanna C; Marco, Elysa J; Willemsen, Marjolein H; Kleefstra, Tjitske; Hannibal, Mark; Shieh, Joseph T; Lynch, Sally Ann; Flinter, Frances; FitzPatrick, David R; Gardham, Alice; Bernhard, Birgitta; Ragge, Nicola; Newbury-Ecob, Ruth; Bernier, Raphael; Kvarnung, Malin; Magnusson, E A Helena; Wessels, Marja W; van Slegtenhorst, Marjon A; Monaghan, Kristin G; de Vries, Petra; Veltman, Joris A; Lord, Christopher J; Vissers, Lisenka E L M; de Vries, Bert B A

    2017-04-06

    Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.

  1. Diffuse Angiopathy in Adams-Oliver syndrome Associated with Truncating DOCK6 Mutations

    PubMed Central

    Lehman, Anna; Stittrich, Anna-Barbara; Glusman, Gustavo; Zong, Zheyuan; Li, Hong; Eydoux, Patrice; Senger, Christof; Lyons, Christopher; Roach, Jared C.; Patel, Millan

    2014-01-01

    Adams-Oliver syndrome (AOS) is a rare malformation syndrome characterized by the presence of two anomalies: aplasia cutis congenita of the scalp and transverse terminal limb defects. Many affected individuals also have additional malformations, including a variety of intracranial anomalies such as periventricular calcification in keeping with cerebrovascular microbleeds, impaired neuronal migration, epilepsy, and microcephaly. Cardiac malformations can be present, as can vascular dysfunction in the forms of cutis marmorata telangiectasia congenita, pulmonary vein stenoses, and abnormal hepatic microvasculature. Elucidated genetic causes include four genes in different pathways, leading to a model of AOS as a multi-pathway disorder. We identified an infant with mild aplasia cutis congenita and terminal transverse limb defects, developmental delay and a severe, diffuse angiopathy with incomplete microvascularization. Whole-genome sequencing documented two rare truncating variants in DOCK6, a gene associated with a type of autosomal recessive AOS that recurrently features periventricular calcification and impaired neurodevelopment. We highlight an unexpectedly high frequency of likely deleterious mutations in this gene in the general population, relative to the rarity of the disease, and discuss possible explanations for this discrepancy. PMID:25091416

  2. [A new mutation c.422C>G (p.S141C) in homo- and heterozygous forms of the human leptin gene].

    PubMed

    Chekhranova, M K; Karpova, S K; Iatsyshina, S B; Pankov, Iu A

    2008-01-01

    Mutation g.15409C>G, c.422C>G (p.S141C) in homo- and heterozygous forms of the human LEP gene was identified among some patients of the high mountain village of Karaul, Ashkhabad oblast, Turkmenistan, some of which suffer from adiposity. It causes the substitution S120C in the secreted leptin. The mature leptin molecule (146 aa) has only two Cys residues (C96 and C146) forming an S-S bridge, which is important for the hormone function. A third mutation, C120, in the molecule might disturb the correct formation of the S-S bond and could alter the leptin activity.

  3. A novel truncating AIP mutation, p.W279*, in a familial isolated pituitary adenoma (FIPA) kindred.

    PubMed

    Cansu, Güven Barış; Taşkıran, Bengür; Trivellin, Giampaolo; Faucz, Fabio R; Stratakis, Constantine A

    2016-07-01

    Familial isolated pituitary adenomas (FIPA) constitute 2-3% of pituitary tumours. AIP is the most commonly mutated gene in FIPA. We herein report a novel germline mutation of the AIP gene in a family with FIPA. We present two patients, a father and his 12-year-old daughter, diagnosed clinically and using laboratory measures with acromegaly-gigantism. Both underwent transsphenoidal hypophyseal surgery for macroadenomas. We initially detected a novel heterozygous germline AIP mutation, c.836G>A (p.W279*), in the father's DNA. We then found the same mutation in his affected daughter. Pituitary adenomas associated with AIP mutations mostly present as FIPA (68%) at an early age (78% occur at <30 years old). They are often growth hormone (GH) - or prolactin - secreting macroadenomas (88%) that have already extended beyond the sella at the time of diagnosis. Acromegalic cases are resistant to somatostatin analogues and multimodal management is frequently essential to control the disease. Our patients had normalized GH/IGF-1 values soon after surgery, although enough time may not have elapsed to reach final cure. While penetrance of the disease can be as low as 10% in FIPA, especially children and young patients with somatotropinoma and prolactinoma should be surveyed for inactivating mutations or deletions in AIP. Determining the causative mutations may be of assistance in early diagnosis, treatment success, and genetic counseling.

  4. Analysis of p.V37I compound heterozygous mutations in the GJB2 gene in Chinese infants and young children.

    PubMed

    Du, Yating; Huang, Lihui; Cheng, Xiaohua; Zhao, Liping; Ruan, Yu; Ni, Tingting

    2016-07-19

    The p.V37I (c.109G>A) mutation in the GJB2 gene is the common frequent cause of congenital deafness; however, its pathogenicity is debated. The present study investigated the prevalence of p.V37I in Chinese infants and young children and associated clinical characteristics. The subjects of the present study were screened for mutations in GJB2 (235delC, 299delAT, 176dell6, 35delG), SLC26A4 (IVS7-2A>G, 2168A>G), GJB3 (538C>T), and in the mitochondrial 12S rRNA gene (1555A>G, 1494C>T). Subjects with p.V37I underwent an audiological evaluation. GJB2 exon sequencing revealed that 20 subjects had p.V37I compound heterozygous mutations, one of whom had a family history; the mutations included c.235delC/p.V37I (n = 12), c.299AT/p.V37I (n = 7), and c.176del16/p.V37I (n = 1). Of the 20 subjects, 12 were referred for Universal Newborn Hearing Screening (UNHS). Nine of the 20 subjects had mild hearing loss in the better ear and 5 had moderate hearing loss in the better ear while 4 had normal hearing. Among subjects with the c.235delC/p.V37I mutation, 5 had mild hearing loss and 2 had moderate hearing loss while 3 had normal hearing. Among subjects with the c.299AT/p.V37I mutation, 3 had mld hearing loss and 3 had moderate hearing loss while 1 had normal hearing. One subject with the c.176del16/p.V37I mutation had mild hearing loss. Few studies have reported on the clinical characteristics of Chinese infants with p.V37I compound heterozygous mutations identified via screening for deafness genes and GJB2 sequencing. The c.235delC/p.V37I mutation was the most prevalent mutation found in subjects. The degree of hearing loss associated with p.V37I compound heterozygous mutations was mainly mild to moderate.

  5. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases.

    PubMed

    Ueki, Masahiro; Yamada, Masafumi; Ito, Kenta; Tozawa, Yusuke; Morino, Saeko; Horikoshi, Yuho; Takada, Hidetoshi; Abdrabou, Shimaa Said Mohamed Ali; Takezaki, Shunichiro; Kobayashi, Ichiro; Ariga, Tadashi

    2017-01-01

    Heterozygous dominant-negative mutations of STAT1 are responsible for autosomal-dominant Mendelian susceptibility to mycobacterial diseases (AD-MSMD). So far, only 7 mutations have been previously described and are localized to 3 domains: the DNA-binding domain, the SH2 domain, and the tail segment. In this study, we demonstrated the first coiled-coil domain (CCD) mutation of c.749G>C, p.G250A (G250A) in STAT1 as a genetic cause of AD-MSMD in a patient with mycobacterial multiple osteomyelitis. This de novo heterozygous mutation was shown to have a dominant-negative effect on the gamma-activated sequence (GAS) transcriptional activity following IFN-γ stimulation, which could be attributable to the abolished phosphorylation of STAT1 from the wild-type (WT) allele. The three-dimensional structure of STAT1 revealed the G250 residue was located distant from a cluster of residues affected by gain-of-function mutations responsible for chronic mucocutaneous candidiasis.

  6. Mutations in the TSC2 gene: analysis of the complete coding sequence using the protein truncation test (PTT).

    PubMed

    van Bakel, I; Sepp, T; Ward, S; Yates, J R; Green, A J

    1997-09-01

    Mutations in the TSC2 gene on chromosome 16p13.3 are responsible for approximately 50% of familial tuberous sclerosis (TSC). The gene has 41 small exons spanning 45 kb of genomic DNA and encoding a 5.5 kb mRNA. Large germline deletions of TSC2 occur in <5% of cases, and a number of small intragenic mutations have been described. We analysed mRNA from 18 unrelated cases of TSC for TSC2 mutations using the protein truncation test (PTT). Three cases were predicted to be TSC2 mutations on the basis of linkage analysis or because a hamartoma from the patient showed loss of heterozygosity for 16p13.3 markers. Three overlapping PCR products, covering the complete coding sequence of mRNA, were generated from lymphoblastoid cell lines, translated into 35S-methionine labelled protein, and analysed by SDS-PAGE. PCR products showing PTT shifts were directly sequenced, and mutations confirmed by restriction enzyme digestion where possible. Six PTT shifts were identified. Five of these were caused by mutations predicted to produce a truncated protein: (i) a sporadic case showed a 32 bp deletion in exon 11, and a mutant mRNA without exon 11 was produced; the normal exon 10 was also spliced out; (ii) a sporadic case had a 1 bp deletion in exon 12 (1634delT); (iii) a TSC2-linked mother and daughter pair had a G-->T transversion in exon 23 (G2715T) introducing a cryptic splice site causing a 29 bp truncation of mRNA from exon 23; (iv) a sporadic case showed a 2 bp deletion in exon 36; (v) a sporadic case showed a 1 bp insertion disrupting the donor splice site of exon 37 (5007+2insA), resulting in the use of an upstream exonic cryptic splice site to cause a 29 bp truncation of mRNA from exon 37. In one case, the PTT shift was explained by in-frame splicing out of exon 10, in the presence of a normal exon 10 genomic sequence. Alternative splicing of exon 10 of the TSC2 gene may be a normal variant. Three 3rd base substitution polymorphisms were also detected during direct sequencing

  7. A novel ZRS mutation leads to preaxial polydactyly type 2 in a heterozygous form and Werner mesomelic syndrome in a homozygous form.

    PubMed

    VanderMeer, Julia E; Lozano, Reymundo; Sun, Miao; Xue, Yuan; Daentl, Donna; Jabs, Ethylin Wang; Wilcox, William R; Ahituv, Nadav

    2014-08-01

    Point mutations in the zone of polarizing activity regulatory sequence (ZRS) are known to cause human limb malformations. Although most mutations cause preaxial polydactyly (PPD), triphalangeal thumb (TPT) or both, a mutation in position 404 of the ZRS causes more severe Werner mesomelic syndrome (WMS) for which malformations include the distal arm or leg bones in addition to the hands and/or feet. Of more than 15 reported families with ZRS mutations, only one homozygous individual has been reported, with no change in phenotype compared with heterozygotes. Here, we describe a novel point mutation in the ZRS, 402C>T (AC007097.4:g.105548C>T), that is transmitted through two Mexican families with one homozygous individual. The homozygous phenotype for this mutation, WMS, is more severe than the numerous heterozygous individuals genotyped from both families who have TPT and PPD. A mouse transgenic enhancer assay shows that this mutation causes an expansion of the enhancer's expression domain in the developing mouse limb, confirming its pathogenicity. Combined, our results identify a novel ZRS mutation in the Mexican population, 402C>T, and suggest that a dosage effect exists for this ZRS mutation.

  8. Novel homozygous, heterozygous and hemizygous FRMD7 gene mutations segregated in the same consanguineous family with congenital X-linked nystagmus

    PubMed Central

    Radhakrishna, Uppala; Ratnamala, Uppala; Deutsch, Samuel; Bartoloni, Lucia; Kuracha, Murali R; Singh, Raminder; Banwait, Jasjit; Bastola, Dhundy K; Johar, Kaid; Nath, Swapan K; Antonarakis, Stylianos E

    2012-01-01

    Congenital nystagmus (NYS) is characterized by bilateral, spontaneous, and involuntary movements of the eyeballs that most commonly presents between 2 and 6 months of life. To date, 44 different FRMD7 gene mutations have been found to be etiological factors for the NYS1 locus at Xq26-q27. The aim of this study was to find the FRMD7 gene mutations in a large eleven-generation Indian pedigree with 71 members who are affected by NYS. Mutation analysis of the entire coding region and splice junctions of the FRMD7 gene revealed a novel missense mutation, c.A917G, predicts a substitution of Arg for Gln at codon 305 (Q305R) within exon 10 of FRMD7. The mutation was detected in hemizygous males, and in homozygous and heterozygous states in affected female members of the family. This mutation was not detected in unaffected members of the family or in 100 unrelated control subjects. This mutation was found to be at a highly conserved residue within the FERM-adjacent domain in affected members of the family. Structure prediction and energetic analysis of wild-type FRMD7 compared with mutant (Q305R) revealed that this change in amino acid led to a change in secondary structure predicted to be an energetically unstable protein. The present study represents the first confirmation of FRMD7 gene mutations in a multigenerational Indian family and expands the mutation spectrum for this locus. PMID:22490987

  9. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations

    PubMed Central

    Pharoah, Paul D. P.; Song, Honglin; Dicks, Ed; Intermaggio, Maria P.; Harrington, Patricia; Baynes, Caroline; Alsop, Kathryn; Bogdanova, Natalia; Cicek, Mine S.; Cunningham, Julie M.; Fridley, Brooke L.; Gentry-Maharaj, Aleksandra; Hillemanns, Peter; Lele, Shashi; Lester, Jenny; McGuire, Valerie; Moysich, Kirsten B.; Poblete, Samantha; Sieh, Weiva; Sucheston-Campbell, Lara; Widschwendter, Martin; Whittemore, Alice S.; Dörk, Thilo; Menon, Usha; Odunsi, Kunle; Goode, Ellen L.; Karlan, Beth Y.; Bowtell, David D.; Gayther, Simon A.; Ramus, Susan J.

    2016-01-01

    Mosaic truncating mutations in the protein phosphatase, Mg2+/Mn2+-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC. PMID:26823519

  10. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations.

    PubMed

    Pharoah, Paul D P; Song, Honglin; Dicks, Ed; Intermaggio, Maria P; Harrington, Patricia; Baynes, Caroline; Alsop, Kathryn; Bogdanova, Natalia; Cicek, Mine S; Cunningham, Julie M; Fridley, Brooke L; Gentry-Maharaj, Aleksandra; Hillemanns, Peter; Lele, Shashi; Lester, Jenny; McGuire, Valerie; Moysich, Kirsten B; Poblete, Samantha; Sieh, Weiva; Sucheston-Campbell, Lara; Widschwendter, Martin; Whittemore, Alice S; Dörk, Thilo; Menon, Usha; Odunsi, Kunle; Goode, Ellen L; Karlan, Beth Y; Bowtell, David D; Gayther, Simon A; Ramus, Susan J

    2016-03-01

    Mosaic truncating mutations in the protein phosphatase, Mg(2+)/Mn(2+)-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC.

  11. Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII.

    PubMed

    Huang, Yanru; Mei, Libin; Lv, Weigang; Li, Haoxian; Zhang, Rui; Pan, Qian; Tan, Hu; Guo, Jing; Luo, Xiaomei; Chen, Chen; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Osteogenesis imperfecta (OI) is a highly clinically and genetically heterogeneous group of disorders. It is difficult to identify severe OI in the perinatal period. Here, a Chinese woman with a suspected history of fetal OI was referred to our institution at 19weeks of gestation, due to ultrasound inspection during antenatal screening, which revealed bulbous metaphyses, short humeri, and short thick bent femora in the fetus. Using targeted exome sequencing of 248 genes known to be involved in skeletal system diseases, we identified novel compound heterozygous mutation in the P3H1 gene in the fetus with OI type VIII: c.105_120del (p.D36Rfs*16) and c.2164C>T (p.Q722*). These two mutations were inherited from the father and mother, respectively. The mRNA level of P3H1 wasn't changed suggested that mRNA with this mutation escaped from nonsense-mediated RNA decay. Besides, the level of P3H1 was absence while the CRTAP was mildly decreased. In conclusion, our findings imply this novel compound heterozygous mutation as the molecular pathogenetic in a Chinese fetus with OI type VIII, and demonstrate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia with genetic and clinical heterogeneity, especially for autosomal recessive skeletal disorders.

  12. Frequent incidence of BARD1-truncating mutations in germline DNA from triple-negative breast cancer patients.

    PubMed

    De Brakeleer, S; De Grève, J; Desmedt, C; Joris, S; Sotiriou, C; Piccart, M; Pauwels, I; Teugels, E

    2016-03-01

    Triple-negative breast cancer (TNBC) accounts for 10-20% of all breast cancers (BCs), and conventional chemotherapy is the only effective systemic treatment. Germline BRCA1/2 mutations are found in approximately 15% of TNBC patients. In the past, we have documented pathogenic mutations in BARD1, a BRCA1 interacting protein, in families at high risk for BC. In this study, we have analyzed germline DNA from 61 estrogen receptor negative patients (of which 42 were TNBC) for the presence of mutations in the BRCA1, BRCA2 and BARD1 gene. BRCA1/2 mutations were found in 8 out of 42 (19%) TNBC patients, but not in the ER-/HER2+ cohort. We also found four good candidate pathogenic BARD1 mutations in the TNBC cohort, including two protein-truncating mutations (p.Gln564Ter and p.Arg641Ter). Our data suggest that TNBC patients are enriched for pathogenic BARD1 germline mutations as compared to control samples and high BC risk families. Ten of the 42 investigated TNBC patients carry a BRCA pathway mutation (in BRCA1, BRCA2 or BARD1) rendering them susceptible to homologous recombination deficiency. These patients should become eligible for exploring the efficacy of poly (ADP-ribose) polymerase (PARP) inhibitors.

  13. Probing the Effect of Two Heterozygous Mutations in Codon 723 of SLC26A4 on Deafness Phenotype Based on Molecular Dynamics Simulations

    PubMed Central

    Yao, Jun; Qian, Xuli; Bao, Jingxiao; Wei, Qinjun; Lu, Yajie; Zheng, Heng; Cao, Xin; Xing, Guangqian

    2015-01-01

    A Chinese family was identified with clinical features of enlarged vestibular aqueduct syndrome (EVAS). The mutational analysis showed that the proband (III-2) had EVAS with bilateral sensorineural hearing loss and carried a rare compound heterozygous mutation of SLC26A4 (IVS7-2A>G, c.2167C>G), which was inherited from the same mutant alleles of IVS7-2A>G heterozygous father and c.2167C>G heterozygous mother. Compared with another confirmed pathogenic biallelic mutation in SLC26A4 (IVS7-2A>G, c.2168A>G), these two biallelic mutations shared one common mutant allele and the same codon of the other mutant allele, but led to different changes of amino acid (p.H723D, p.H723R) and both resulted in the deafness phenotype. Structure-modeling indicated that these two mutant alleles changed the shape of pendrin protein encoded by SLC26A4 with increasing randomness in conformation, and might impair pendrin’s ability as an anion transporter. The molecular dynamics simulations also revealed that the stability of mutant pendrins was reduced with increased flexibility of backbone atoms, which was consistent with the structure-modeling results. These evidences indicated that codon 723 was a hot-spot region in SLC26A4 with a significant impact on the structure and function of pendrin, and acted as one of the genetic factors responsible for the development of hearing loss. PMID:26035154

  14. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function.

    PubMed

    Sheffer, Ruth; Douiev, Liza; Edvardson, Simon; Shaag, Avraham; Tamimi, Khaled; Soiferman, Devorah; Meiner, Vardiella; Saada, Ann

    2016-06-01

    An emerging class of mitochondrial disorders is caused by mutations in nuclear genes affecting mitochondrial dynamics and function. One of these is the DNM1L gene encoding the dynamin-related protein 1 (DRP1), which is pivotal in the mitochondrial fission process. Here, we describe a patient with a novel dominant-negative, de novo DNM1L mutation, which expands the clinical spectrum. The patient reported here exhibits a chronic neurological disorder, characterized by postnatal microcephaly, developmental delay, and pain insensitivity. Muscle biopsy disclosed decreased respiratory chain complex IV activity. Exome sequencing showed a de novo heterozygous c.1084G>A (p.G362S) mutation. Subsequent studies of patient skin fibroblasts showed markedly impaired mitochondrial fission and a partial respiratory chain defect while peroxisomal morphology remained intact. Human foreskin fibroblasts over-expressing the mutant DNM1L gene displayed aberrant mitochondrial morphology. © 2016 Wiley Periodicals, Inc.

  15. Follow-up Findings in a Turkish Girl with Pseudohypoparathyroidism Type Ia Caused by a Novel Heterozygous Mutation in the GNAS Gene

    PubMed Central

    Şahin, Sezgin; Hiort, Olaf; Thiele, Susanne; Evliyaoğlu, Olcay; Tüysüz, Beyhan

    2017-01-01

    Pseudohypoparathyroidism type Ia (PHP-Ia) is characterized by multihormone resistance and an Albright hereditary osteodystrophy (AHO) phenotype. It is caused by heterozygous mutations in GNAS gene. Clinical and biochemical findings of a female PHP-Ia patient were evaluated from age of diagnosis (6.5 years) to 14.5 years of age. The patient had short stature, brachydactyly, and subcutaneous heterotopic ossifications. Serum calcium and phosphorus levels were normal, but parathyroid hormone levels were high. Based on the typical clinical findings of AHO phenotype and biochemical findings, she was diagnosed as having PHP-Ia. A novel heterozygous mutation (c.128T>C) was found in the GNAS gene. Follow-up examinations revealed resistance to thyroid-stimulating hormone and a bioinactive growth hormone. Clinicians should take into consideration PHP-Ia in patients referred with short stature, and patients with an AHO phenotype must be further evaluated for hormone resistance, GNAS gene mutation, Gsα activity. To our knowledge, this is the first case report describing bioinactive growth hormone in PHP-Ia. PMID:27425121

  16. Follow-up Findings in a Turkish Girl with Pseudohypoparathyroidism Type Ia Caused by a Novel Heterozygous Mutation in the GNAS Gene.

    PubMed

    Şahin, Sezgin; Hiort, Olaf; Thiele, Susanne; Evliyaoğlu, Olcay; Tüysüz, Beyhan

    2017-03-01

    Pseudohypoparathyroidism type Ia (PHP-Ia) is characterized by multihormone resistance and an Albright hereditary osteodystrophy (AHO) phenotype. It is caused by heterozygous mutations in GNAS gene. Clinical and biochemical findings of a female PHP-Ia patient were evaluated from age of diagnosis (6.5 years) to 14.5 years of age. The patient had short stature, brachydactyly, and subcutaneous heterotopic ossifications. Serum calcium and phosphorus levels were normal, but parathyroid hormone levels were high. Based on the typical clinical findings of AHO phenotype and biochemical findings, she was diagnosed as having PHP-Ia. A novel heterozygous mutation (c.128T>C) was found in the GNAS gene. Follow-up examinations revealed resistance to thyroid-stimulating hormone and a bioinactive growth hormone. Clinicians should take into consideration PHP-Ia in patients referred with short stature, and patients with an AHO phenotype must be further evaluated for hormone resistance, GNAS gene mutation, Gsα activity. To our knowledge, this is the first case report describing bioinactive growth hormone in PHP-Ia.

  17. A unique case of limb-girdle muscular dystrophy type 2A carrying novel compound heterozygous mutations in the human CAPN3 gene.

    PubMed

    Matsubara, E; Tsuchiya, A; Minami, N; Nishino, I; Pappolla, M A; Shoji, M; Abe, K

    2007-07-01

    A unique sib pair afflicted by limb girdle muscular dystrophy type 2A (LGMD2A) is described showing a slowly progressive autosomal recessive type of muscular dystrophy with onset in the third and fourth decades. The patients had early asymmetric muscle involvement characterized by prominent biceps brachii atrophy with sparing of the knee extensors. Additional findings included elevation of serum creatine kinase level, myopathic EMG changes and dystrophic type of pathology on muscle biopsy. Asymmetrical wasting of muscles in the extremities exhibited uniform and highly selective CT imaging patterns. RNA and DNA analyses confirmed novel compound heterozygous mutations (R147X/L212F) in the human CAPN3 gene.

  18. Dominant and recessive compound heterozygous mutations in epidermolysis bullosa simplex demonstrate the role of the stutter region in keratin intermediate filament assembly.

    PubMed

    Yasukawa, Kana; Sawamura, Daisuke; McMillan, James R; Nakamura, Hideki; Shimizu, Hiroshi

    2002-06-28

    Keratin intermediate filaments are important cytoskeletal structural proteins involved in maintaining cell shape and function. Mutations in the epidermal keratin genes, keratin 5 or keratin 14 lead to the disruption of keratin filament assembly, resulting in an autosomal dominant inherited blistering skin disease, epidermolysis bullosa simplex (EBS). We investigated a large EBS kindred who exhibited a markedly heterogeneous clinical presentation and detected two distinct keratin 5 mutations in the proband, the most severely affected. One missense mutation (E170K) in the highly conserved helix initiation peptide sequence of the 1A rod domain was found in all the affected family members. In contrast, the other missense mutation (E418K) was found only in the proband. The E418K mutation was located in the stutter region, an interruption in the heptad repeat regularity, whose function as yet remains unclear. We hypothesized that this mutated stutter allele was clinically silent when combined with the wild type allele but aggravates the clinical severity of EBS caused by the E170K mutation on the other allele. To confirm this in vitro, we transfected mutant keratin 5 cDNA into cultured cells. Although only 12.7% of the cells transfected with the E170K mutation alone showed disrupted keratin filament aggregations, significantly more cells (30.0%) cotransfected with both E170K and E418K mutations demonstrated keratin aggregation (p < 0.05). These transfection assay results corresponded to the heterogeneous clinical findings of the EBS patient in this kindred. We have identified the first case of both compound heterozygous dominant (E170K) and recessive (E418K) mutations in any keratin gene and confirmed the significant involvement of the stutter region in the assembly and organization of the keratin intermediate filament network in vitro.

  19. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    PubMed

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  20. An ABCA1 truncation shows no dominant negative effect in a familial hypoalphalipoproteinemia pedigree with three ABCA1 mutations

    SciTech Connect

    Sorrenson, Brie; Suetani, Rachel J.; Bickley, Vivienne M.; George, Peter M.; Williams, Michael J.A.; Scott, Russell S.; McCormick, Sally P.A.

    2011-06-10

    Highlights: {yields} Characterisation of an ABCA1 truncation mutant, C978fsX988, in a pedigree with three ABCA1 mutations. {yields} Functional analysis of C978fsX988 in patient fibroblasts and HEK 293 cells shows no cholesterol efflux function. {yields} Allele-specific quantification shows C978fsX988 not expressed at mRNA level in fibroblasts. {yields} Unlike other ABCA1 truncations, C978fsX988 mutant shows no dominant negative effect at mRNA or protein level. -- Abstract: The ATP binding cassette transporter (ABCA1) A1 is a key determinant of circulating high density lipoprotein cholesterol (HDL-C) levels. Mutations in ABCA1 are a major genetic contributor to low HDL-C levels within the general population. Following the finding of three different ABCA1 mutations, p.C978fsX988, p.T1512M and p.N1800H in a subject with hypoalphalipoproteinemia, we aimed to establish whether the p.C978fsX988 truncation exerted a dominant negative effect on the full-length ABCA1 alleles within family members as has been reported for other ABCA1 truncations. Characterisation of the p.C978fsX988 mutant in transfected HEK 293 cells showed it to be expressed as a GFP fusion protein but lacking in cholesterol efflux function. This was in keeping with results from cholesterol efflux assays in the fibroblasts of p.C978fsX988 carriers which also showed impaired efflux. Allele- specific quantification of p.C978fsX988 mRNA and analysis of ABCA1 protein levels in the fibroblasts of p.C978fsX988 heterozygotes showed negligible levels of mRNA and protein expression. There was no evidence of a dominant negative effect on wildtype or p.N1800H protein levels. We conclude that in the case of the p.C978fsX988 truncated mutant a lack of expression precludes it from having a dominant negative effect.

  1. Novel compound heterozygous mutations in DYNC2H1 in a patient with severe short-rib polydactyly syndrome type III phenotype.

    PubMed

    Okamoto, Toshio; Nagaya, Ken; Kawata, Yumi; Asai, Hiroko; Tsuchida, Etsushi; Nohara, Fumikatsu; Okajima, Kazuki; Azuma, Hiroshi

    2015-08-01

    Short-rib polydactyly syndrome type III is an autosomal recessive lethal skeletal ciliopathy, which is phenotypically similar to nonlethal asphyxiating thoracic dystrophy. Mutations in DYNC2H1 have been identified in both of these disorders, indicating that they are variants of a single disorder. However, short-rib polydactyly syndrome type III is the more severe variant. Here, we report novel compound heterozygous mutations in DYNC2H1 (p.E1894fsX10 and p.R3004C) in a patient with typical short-rib polydactyly syndrome type III phenotype. R3004 is located within the microtubule-binding domain of DYNC2H1, and its substitution is predicted to disrupt the interaction with microtubules. Considering the severe phenotype of our patient, our findings suggest that R3004 may be a key residue for the microtubule-binding affinity of dynein.

  2. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens

    PubMed Central

    Pedersen, Gabriel K.; Ádori, Monika; Stark, Julian M.; Khoenkhoen, Sharesta; Arnold, Carrie; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2016-01-01

    Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens. PMID:26973645

  3. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus.

    PubMed

    Takai, Hiroyuki; Jenkinson, Emma; Kabir, Shaheen; Babul-Hirji, Riyana; Najm-Tehrani, Nasrin; Chitayat, David A; Crow, Yanick J; de Lange, Titia

    2016-04-01

    Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1(CP)) in two siblings with CP. POT1(CP)induced a proliferative arrest that could be bypassed by telomerase. POT1(CP)was expressed at normal levels, bound TPP1 and telomeres, and blocked ATR signaling. POT1(CP)was defective in regulating telomerase, leading to telomere elongation rather than the telomere shortening observed in other telomeropathies. POT1(CP)was also defective in the maintenance of the telomeric C strand, causing extended 3' overhangs and stochastic telomere truncations that could be healed by telomerase. Consistent with shortening of the telomeric C strand, metaphase chromosomes showed loss of telomeres synthesized by leading strand DNA synthesis. We propose that CP is caused by a defect in POT1/CST-dependent telomere fill-in. We further propose that deficiency in the fill-in step generates truncated telomeres that halt proliferation in cells lacking telomerase, whereas, in tissues expressing telomerase (e.g., bone marrow), the truncations are healed. The proposed etiology can explain why CP presents with features distinct from those associated with telomerase defects (e.g., dyskeratosis congenita).

  4. A Dominant Negative Heterozygous G87R Mutation in the Zinc Transporter, ZnT-2 (SLC30A2), Results in Transient Neonatal Zinc Deficiency

    PubMed Central

    Lasry, Inbal; Seo, Young Ah; Ityel, Hadas; Shalva, Nechama; Pode-Shakked, Ben; Glaser, Fabian; Berman, Bluma; Berezovsky, Igor; Goncearenco, Alexander; Klar, Aharon; Levy, Jacob; Anikster, Yair; Kelleher, Shannon L.; Assaraf, Yehuda G.

    2012-01-01

    Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation. PMID:22733820

  5. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    PubMed

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  6. Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans

    PubMed Central

    Roessler, Erich; Ma, Yong; Ouspenskaia, Maia V.; Lacbawan, Felicitas; Bendavid, Claude; Dubourg, Christèle; Beachy, Philip A.; Muenke, Maximilian

    2009-01-01

    Defective function of the Sonic Hedgehog (SHH) signaling pathway is the most frequent alteration underlying holoprosencephaly (HPE) or its various clinical microforms. We performed an extensive mutational analysis of the entire human DISP1 gene, required for secretion of all hedgehog ligand(s) and which maps to the HPE 10 locus of human chromosome 1q41, as a HPE candidate gene. Here, we describe two independent families with truncating mutations in human DISP1 that resemble the cardinal craniofacial and neuro-developmental features of a recently described microdeletion syndrome that includes this gene; therefore, we suggest that DISP1 function contributes substantially to both of these signs in humans. While these clinical features are consistent with common HPE microforms, especially those linked to defective signaling by Sonic Hedgehog, we have insufficient evidence so far that functionally abnormal DISP1 alleles will commonly contribute to the more severe features of typical HPE. PMID:19184110

  7. A Novel Heterozygous Mutation in the STAT1 SH2 Domain Causes Chronic Mucocutaneous Candidiasis, Atypically Diverse Infections, Autoimmunity, and Impaired Cytokine Regulation

    PubMed Central

    Meesilpavikkai, Kornvalee; Dik, Willem A.; Schrijver, Benjamin; Nagtzaam, Nicole M. A.; van Rijswijk, Angelique; Driessen, Gertjan J.; van der Spek, Peter J.; van Hagen, P. Martin; Dalm, Virgil A. S. H.

    2017-01-01

    Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency characterized by persistent or recurrent skin and mucosal surface infections with Candida species. Different gene mutations leading to CMC have been identified. These include various heterozygous gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) that are not only associated with infections but also with autoimmune manifestations. Recently, two STAT1 GOF mutations involving the Src homology 2 (SH2) domain have been reported, while so far, over 50 mutations have been described mainly in the coiled coil and the DNA-binding domains. Here, we present two members of a Dutch family with a novel STAT1 mutation located in the SH2 domain. T lymphocytes of these patients revealed STAT1 hyperphosphorylation and higher expression of STAT1 target genes. The clinical picture of CMC in our patients could be explained by diminished production of interleukin (IL)-17 and IL-22, cytokines important in the protection against fungal infections. PMID:28348565

  8. Heterozygous carriers of the I171V mutation of the NBS1 gene have a significantly increased risk of solid malignant tumours.

    PubMed

    Nowak, Jerzy; Mosor, Maria; Ziółkowska, Iwona; Wierzbicka, Malgorzta; Pernak-Schwarz, Monika; Przyborska, Marta; Roznowski, Krzysztof; Pławski, Andrzej; Słomski, Ryszard; Januszkiewicz, Danuta

    2008-03-01

    Homozygous mutation 657del5 within the NBS1 gene is responsible for the majority of Nijmegen breakage syndrome (NBS) cases. NBS patients are characterised by increased susceptibility to malignancies mainly of lymphoid origin. Recently it has been postulated that heterozygous carriers of 657del5 NBS1 mutation are at higher risk of cancer development. The aim of the study was to analyse the frequency of I171V mutation in NBS1 gene in 270 women with breast cancer, 176 patients with larynx cancer, 81 with second primary tumours of head and neck, 131 with colorectal carcinoma and 600 healthy individuals. I171V mutation was present in 17 cancer patients compared with only one in healthy individuals. This constitutes 2.58% in studied patients with malignancies and 0.17% in the control group (P=0.0002; relative risk 1.827; odds ratio 15.886; 95% confidence interval 2.107-119.8). Since DNA was isolated from non malignant cells, all mutations found in cancer patients appeared to be of germinal origin. It can be concluded that NBS1 allele I171V may be a general susceptibility gene in solid tumours.

  9. Exome Sequencing Identifies Compound Heterozygous Mutations in SCN5A Associated with Congenital Complete Heart Block in the Thai Population

    PubMed Central

    Thongnak, Chuphong; Tangviriyapaiboon, Duangkamol; Silvilairat, Suchaya; Puangpetch, Apichaya; Pasomsub, Ekawat

    2016-01-01

    Background. Congenital heart block is characterized by blockage of electrical impulses from the atrioventricular node (AV node) to the ventricles. This blockage can be caused by ion channel impairment that is the result of genetic variation. This study aimed to investigate the possible causative variants in a Thai family with complete heart block by using whole exome sequencing. Methods. Genomic DNA was collected from a family consisting of five family members in three generations in which one of three children in generation III had complete heart block. Whole exome sequencing was performed on one complete heart block affected child and one unaffected sibling. Bioinformatics was used to identify annotated and filtered variants. Candidate variants were validated and the segregation analysis of other family members was performed. Results. This study identified compound heterozygous variants, c.101G>A and c.3832G>A, in the SCN5A gene and c.28730C>T in the TTN gene. Conclusions. Compound heterozygous variants in the SCN5A gene were found in the complete heart block affected child but these two variants were found only in the this affected sibling and were not found in other unaffected family members. Hence, these variants in the SCN5A gene were the most possible disease-causing variants in this family. PMID:28018021

  10. The severe clinical phenotype for a heterozygous Fabry female patient correlates to the methylation of non-mutated allele associated with chromosome 10q26 deletion syndrome.

    PubMed

    Hossain, Mohammad Arif; Yanagisawa, Hiroko; Miyajima, Takashi; Wu, Chen; Takamura, Ayumi; Akiyama, Keiko; Itagaki, Rina; Eto, Kaoru; Iwamoto, Takeo; Yokoi, Takayuki; Kurosawa, Kenji; Numabe, Hironao; Eto, Yoshikatsu

    2017-03-01

    Heterozygous Fabry females usually have an attenuated form of Fabry disease, causing them to be symptomatic; however, in rare cases, they can present with a severe phenotype. In this study, we report on a 37-year-old woman with acroparesthesia, a dysmorphic face, left ventricular hypertrophy, and intellectual disability. Her father had Fabry disease and died due to chronic renal and congestive cardiac failure. Her paternal uncle had chronic renal failure and intellectual disability, and her paternal aunt was affected with congestive cardiac failure. The patient has two sisters with no significant medical illness. However, her nephew has acroparesthesia, anhidrosis, and school phobia, and her niece shows mild phenotypes. The patient's enzyme analysis showed very low α-galactosidase A (α-gal A) activity in dried blood spot (DBS), lymphocytes, and skin fibroblasts with massive excretion of Gb3 and Gb2 in urine and lyso-Gb3 in DBS and plasma. Electron microscopic examination showed a large accumulation of sphingolipids in vascular endothelial cells and keratinocytes. Chromosomal analysis and comparative genomic hybridization microarray showed 10q26 terminal deletion. Molecular data showed a novel heterozygous stop codon mutation in exon 1 of the GLA gene in her sisters and niece, and a hemizygous state in her nephew. When we checked the methylation status, we found her non-mutated allele in the GLA gene was methylated. However, the non-mutated alleles of her sisters were non-methylated, and those of her niece were partially methylated. The chromosomal and methylation study may speculate the severity of her clinical phenotypes.

  11. Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1-40 Dimer Structures from Atomistic Simulations.

    PubMed

    Nguyen, Phuong H; Sterpone, Fabio; Campanera, Josep M; Nasica-Labouze, Jessica; Derreumaux, Philippe

    2016-06-15

    The A2V mutation was reported to protect from Alzheimer's disease in its heterozygous form and cause an early Alzheimer's disease type dementia in its homozygous form. Experiments showed that the aggregation rate follows the order A2V > WT (wild-type) > A2V-WT. To understand the impact of this mutation, we carried out replica exchange molecular dynamics simulations of Aβ1-40 WT-A2V and A2V-A2V dimers and compared to the WT dimer. Our atomistic simulations reveal that the mean secondary structure remains constant, but there are substantial differences in the intramolecular and intermolecular conformations upon single and double A2V mutation. Upon single mutation, the intrinsic disorder is reduced, the intermolecular potential energies are reduced, the population of intramolecular three-stranded β-sheets is increased, and the number of all α dimer topologies is decreased. Taken together, these results offer an explanation for the reduced aggregation rate of the Aβ1-40 A2V-WT peptides and the protective effect of A2V in heterozygotes.

  12. Two novel heterozygous mutations of EVC2 cause a mild phenotype of Ellis-van Creveld syndrome in a Chinese family.

    PubMed

    Shen, Wenjing; Han, Dong; Zhang, Jin; Zhao, Hongshan; Feng, Hailan

    2011-09-01

    Ellis-van Creveld syndrome (EvC, chondroectodermal dysplasia; OMIM 225500) is an autosomal recessive skeletal dysplasia with associated multisystem involvement. The syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails, and abnormal teeth. Congenital heart defects occur in 50-60% of cases. In this study, we report EvC in a 6-year-old Chinese girl with hypodontia and polydactyly, mild short stature, and abnormalities of the knee joints. No signs of short ribs, narrow thorax, or congenital heart defects were found in this patient. The EvC phenotype shares some similarity with Weyers acrofacial dysostosis (Weyer; OMIM 193530), an autosomal dominant disorder clinically characterized by mild short stature, postaxial polydactyly, nail dystrophy, and dysplastic teeth. Mutations in EVC or EVC2 are associated with both EvC syndrome and Weyers acrodental dysostosis, but the two conditions differ in the severity of the phenotype and their pattern of inheritance. In this study, two novel heterozygous EVC2 mutations, IVS5-2A > G and c.2653C > T (Arg885X), were identified in the patient. The IVS5-2A > G mutation was inherited from the patient's mother and the c.2653C > T from her father. Her parents have no phenotypic symptoms similar to those of the patient. These findings extend the mutation spectrum of this malformation syndrome and provide the possibility of prenatal diagnosis for future offspring in this family.

  13. Exome sequencing reveals a heterozygous DLX5 mutation in a Chinese family with autosomal-dominant split-hand/foot malformation

    PubMed Central

    Wang, Xue; Xin, Qian; Li, Lin; Li, Jiangxia; Zhang, Changwu; Qiu, Rongfang; Qian, Chenmin; Zhao, Hailing; Liu, Yongchao; Shan, Shan; Dang, Jie; Bian, Xianli; Shao, Changshun; Gong, Yaoqin; Liu, Qiji

    2014-01-01

    Split-hand/foot malformation (SHFM) is a congenital limb deformity due to the absence or dysplasia of central rays of the autopod. Six SHFM loci have already been identified. Here we describe a Chinese family with autosomal-dominant SHFM1 that has previously been mapped to 7q21.2-21.3. The two affected family members, mother and son, showed deep median clefts between toes, ectrodactyly and syndactyly; the mother also showed triphalangeal thumbs. Exome sequencing and variant screening of candidate genes in the six loci known to be responsible for SHFM revealed a novel heterozygous mutation, c.558G>T (p.(Gln186His)), in distal-less homeobox 5 (DLX5). As DLX5 encodes a transcription factor capable of transactivating MYC, we also tested whether the mutation could affect DLX5 transcription acitivity. Results from luciferase reporter assay revealed that a mutation in DLX5 compromised its transcriptional activity. This is the first report of a mutation in DLX5 leading to autosomal-dominant SHFM1. PMID:24496061

  14. Bile salt export pump deficiency: A de novo mutation in a child compound heterozygous for ABCB11. Laboratory investigation to study pathogenic role and transmission of two novel ABCB11 mutations.

    PubMed

    Francalanci, Paola; Giovannoni, Isabella; Candusso, Manila; Bellacchio, Emanuele; Callea, Francesco

    2013-03-01

    Progressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal disorders. PFIC type 2 is due to mutation in ABCB11, the gene encoding the bile salt export pump (BSEP) protein. The aim of the study was to describe a child with a de novo mutation in a compound heterozygous for ABCB11 gene. We report a 1.7-year-old girl who presented with pruritus, jaundice and liver dysfunction of PFIC type 2. Immunohistochemistry and molecular analysis are described. Liver biopsy showed micronodular cirrhosis and immunohistochemical staining for BSEP, the protein encoded by ABCB11, displayed a patchy and faint reactivity. Molecular analysis revealed two novel mutations of ABCB11. We give details that one mutation is transmitted by the mother while the second one appears a de novo mutation as mutations or a potential mosaicism were ruled out in the natural father. We further speculate that the ABCB11 mutations do not prevent BSEP glycoprotein to be expressed at the canalicular pole of hepatocytes, but interfere with its ability to export bile salts. As in most instances, mutational analysis is performed following the histochemical demonstration of an undetectable BSEP on liver biopsy specimen. This case stresses that clinical PFIC with an attenuated rather than absent BSEP immunostaining can still be due to ABCB11 mutations presumably encoding a functionally deficient protein.

  15. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa

    PubMed Central

    Méndez-Vidal, Cristina; González-del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J.; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud

    2013-01-01

    Purpose Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. Methods We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Results Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Conclusions Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with

  16. Adult-onset congenital thrombotic thrombocytopenic purpura caused by a novel compound heterozygous mutation of the ADAMTS13 gene.

    PubMed

    Krabbe, Johannes G; Kemna, Evelien W M; Strunk, Annuska L M; Jobse, Pieter A; Kramer, P A; Dikkeschei, L D; van den Heuvel, L P W J; Fijnheer, Rob; Verdonck, Leo F

    2015-10-01

    Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease, characterized by microangiopathic hemolytic anaemia and thrombocytopenia, resulting in neurologic and/or renal abnormalities. We report a 49-year-old patient with a history of thrombotic events, renal failure, and thrombocytopenia. Blood analysis demonstrated no ADAMTS13 activity in the absence of antibodies against ADAMTS13. The complete ADAMTS13 gene was sequenced, and two mutations were identified: one mutation on exon 24 (Arg1060Asp), which had previously been described, and a mutation on exon 27 (Met1260IlefsX34), which has not been reported. For these mutations, compound heterozygosity appears to be necessary to cause TTP, as family members of the patient display only one of the mutations and all displayed normal ADAMTS13 activity.

  17. Novel truncating mutations in PKP1 and DSP cause similar skin phenotypes in two Brazilian families.

    PubMed

    Tanaka, A; Lai-Cheong, J E; Café, M E M; Gontijo, B; Salomão, P R; Pereira, L; McGrath, J A

    2009-03-01

    Inherited mutations in components of desmosomes result in a spectrum of syndromes characterized by variable abnormalities in the skin and its appendages, including blisters and erosions, palmoplantar hyperkeratosis, woolly hair or hypotrichosis and, in some cases, extracutaneous features such as cardiomyopathy. We investigated the molecular basis of two Brazilian patients presenting with clinical features consistent with ectodermal dysplasia-skin fragility syndrome. In patient 1 we identified a homozygous nonsense mutation, p.R672X, in the PKP1 gene (encoding plakophilin 1). This particular mutation has not been reported previously but is similar to the molecular pathology underlying other cases of this syndrome. In patient 2 we found compound heterozygosity for two frameshift mutations, c.2516del4 and c.3971del4, in the DSP gene (encoding desmoplakin). Although there was considerable clinical overlap in the skin and hair abnormalities in these two cases, patient 2 also had early-onset cardiomyopathy. The mutation c.3971del4 occurs in the longer desmoplakin-I isoform (which is the major cardiac transcript) but not in the more ubiquitous desmoplakin-II. In contrast, PKP1 is not expressed in the heart, which accounts for the lack of cardiomyopathy in patient 1. Collectively, these cases represent the first desmosomal genodermatoses to be reported from Brazil and add to genotype-phenotype correlation in this group of inherited disorders. Loss-of-function mutations in the DSP gene can result in a phenotype similar to ectodermal dysplasia-skin fragility syndrome resulting from PKP1 mutations but only DSP pathology is associated with cardiac disease.

  18. Microcephaly, epilepsy, and neonatal diabetes due to compound heterozygous mutations in IER3IP1: insights into the natural history of a rare disorder.

    PubMed

    Shalev, Stavit A; Tenenbaum-Rakover, Yardena; Horovitz, Yoseph; Paz, Veronica P; Ye, Honggang; Carmody, David; Highland, Heather M; Boerwinkle, Eric; Hanis, Craig L; Muzny, Donna M; Gibbs, Richard A; Bell, Graeme I; Philipson, Louis H; Greeley, Siri Atma W

    2014-05-01

    Neonatal diabetes mellitus is known to have over 20 different monogenic causes. A syndrome of permanent neonatal diabetes along with primary microcephaly with simplified gyral pattern associated with severe infantile epileptic encephalopathy was recently described in two independent reports in which disease-causing homozygous mutations were identified in the immediate early response-3 interacting protein-1 (IER3IP1) gene. We report here an affected male born to a non-consanguineous couple who was noted to have insulin-requiring permanent neonatal diabetes, microcephaly, and generalized seizures. He was also found to have cortical blindness, severe developmental delay and numerous dysmorphic features. He experienced a slow improvement but not abrogation of seizure frequency and severity on numerous anti-epileptic agents. His clinical course was further complicated by recurrent respiratory tract infections and he died at 8 years of age. Whole exome sequencing was performed on DNA from the proband and parents. He was found to be a compound heterozygote with two different mutations in IER3IP1: p.Val21Gly (V21G) and a novel frameshift mutation p.Phe27fsSer*25. IER3IP1 is a highly conserved protein with marked expression in the cerebral cortex and in beta cells. This is the first reported case of compound heterozygous mutations within IER3IP1 resulting in neonatal diabetes. The triad of microcephaly, generalized seizures, and permanent neonatal diabetes should prompt screening for mutations in IER3IP1. As mutations in genes such as NEUROD1 and PTF1A could cause a similar phenotype, next-generation sequencing approaches-such as exome sequencing reported here-may be an efficient means of uncovering a diagnosis in future cases.

  19. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes.

    PubMed

    Gil-Rodríguez, María Concepción; Deardorff, Matthew A; Ansari, Morad; Tan, Christopher A; Parenti, Ilaria; Baquero-Montoya, Carolina; Ousager, Lilian B; Puisac, Beatriz; Hernández-Marcos, María; Teresa-Rodrigo, María Esperanza; Marcos-Alcalde, Iñigo; Wesselink, Jan-Jaap; Lusa-Bernal, Silvia; Bijlsma, Emilia K; Braunholz, Diana; Bueno-Martinez, Inés; Clark, Dinah; Cooper, Nicola S; Curry, Cynthia J; Fisher, Richard; Fryer, Alan; Ganesh, Jaya; Gervasini, Cristina; Gillessen-Kaesbach, Gabriele; Guo, Yiran; Hakonarson, Hakon; Hopkin, Robert J; Kaur, Maninder; Keating, Brendan J; Kibaek, María; Kinning, Esther; Kleefstra, Tjitske; Kline, Antonie D; Kuchinskaya, Ekaterina; Larizza, Lidia; Li, Yun R; Liu, Xuanzhu; Mariani, Milena; Picker, Jonathan D; Pié, Ángeles; Pozojevic, Jelena; Queralt, Ethel; Richer, Julie; Roeder, Elizabeth; Sinha, Anubha; Scott, Richard H; So, Joyce; Wusik, Katherine A; Wilson, Louise; Zhang, Jianguo; Gómez-Puertas, Paulino; Casale, César H; Ström, Lena; Selicorni, Angelo; Ramos, Feliciano J; Jackson, Laird G; Krantz, Ian D; Das, Soma; Hennekam, Raoul C M; Kaiser, Frank J; FitzPatrick, David R; Pié, Juan

    2015-04-01

    Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for ∼ 1%-2% of CdLS-like phenotypes.

  20. Compound heterozygous desmoplakin mutations result in a phenotype with a combination of myocardial, skin, hair, and enamel abnormalities.

    PubMed

    Mahoney, My G; Sadowski, Sara; Brennan, Donna; Pikander, Pekka; Saukko, Pekka; Wahl, James; Aho, Heikki; Heikinheimo, Kristiina; Bruckner-Tuderman, Leena; Fertala, Andrzej; Peltonen, Juha; Uitto, Jouni; Peltonen, Sirkku

    2010-04-01

    Desmoplakin (DP) anchors the intermediate filament cytoskeleton to the desmosomal cadherins and thereby confers structural stability to tissues. In this study, we present a patient with extensive mucocutaneous blisters, epidermolytic palmoplantar keratoderma, nail dystrophy, enamel dysplasia, and sparse woolly hair. The patient died at the age of 14 years from undiagnosed cardiomyopathy. The skin showed hyperplasia and acantholysis in the mid- and lower epidermal layers, whereas the heart showed extensive fibrosis and fibrofatty replacement in both ventricles. Immunofluorescence microscopy showed a reduction in the C-terminal domain of DP in the skin and oral mucosa. Sequencing of the DP gene showed undescribed mutations in the maternal and paternal alleles. Both mutations affected exon 24 encoding the C-terminal domain. The paternal mutation, c.6310delA, leads to a premature stop codon. The maternal mutation, c.7964 C to A, results in a substitution of an aspartic acid for a conserved alanine residue at amino acid 2655 (A2655D). Structural modeling indicated that this mutation changes the electrostatic potential of the mutated region of DP, possibly altering functions that depend on intermolecular interactions. To conclude, we describe a combination of DP mutation phenotypes affecting the skin, heart, hair, and teeth. This patient case emphasizes the importance of heart examination of patients with desmosomal genodermatoses.

  1. Heterozygous Cylindromatosis Gene Mutation c.1628_1629delCT in a Family with Brook-Spiegler Syndrome

    PubMed Central

    Aguilera, Cintia Arjona; De la Varga Martínez, Raquel; García, Lidia Ossorio; Jiménez-Gallo, David; Planelles, Cristina Albarrán; Barrios, Mario Linares

    2016-01-01

    Brooke–Spiegler Syndrome (BSS) is a rare genodermatosis characterized by the progressive formation of adnexal skin tumors in the scalp and face, mainly trichoepitheliomas, cylindromas, and spiradenomas. It has also been associated with salivary glands neoplasms. It is due to mutations in the tumor suppressor gene cylindromatosis (CYLD gene) localized on chromosome 16q12−q13. Around 93 mutations have been described. The study of CYLD gene in patients and their relatives is of vital importance to establish the molecular diagnosis and offer appropriate genetic counseling. There is a low risk of malignancy and patients require long-term follow-up. A case of BSS in a family is described. The existence of the genetic mutation at the CYLD gene c. 1628_1629delCT in three of the women affected was demonstrated. This mutation has only been described once in a previous study. PMID:27688459

  2. Truncating mutation in the nitric oxide synthase 1 gene is associated with infantile achalasia.

    PubMed

    Shteyer, Eyal; Edvardson, Simon; Wynia-Smith, Sarah L; Pierri, Ciro Leonardo; Zangen, Tzili; Hashavya, Saar; Begin, Michal; Yaacov, Barak; Cinamon, Yuval; Koplewitz, Benjamin Z; Vromen, Amos; Elpeleg, Orly; Smith, Brian C

    2015-03-01

    Nitric oxide is thought to have a role in the pathogenesis of achalasia. We performed a genetic analysis of 2 siblings with infant-onset achalasia. Exome analysis revealed that they were homozygous for a premature stop codon in the gene encoding nitric oxide synthase 1. Kinetic analyses and molecular modeling showed that the truncated protein product has defects in folding, nitric oxide production, and binding of cofactors. Heller myotomy had no effect in these patients, but sildenafil therapy increased their ability to drink. The finding recapitulates the previously reported phenotype of nitric oxide synthase 1-deficient mice, which have achalasia. Nitric oxide signaling appears to be involved in the pathogenesis of achalasia in humans.

  3. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition

    PubMed Central

    Shaheen, Ranad; Han, Lu; Faqeih, Eissa; Ewida, Nour; Alobeid, Eman; Phizicky, Eric M.; Alkuraya, Fowzan S.

    2016-01-01

    Intellectual disability is a common and highly heterogeneous disorder etiologically. In a multiplex consanguineous family, we applied autozygosity mapping and exome sequencing and identified a novel homozygous truncating mutation in PUS3 that fully segregates with the intellectual disability phenotype. Consistent with the known role of Pus3 in isomerizing uracil to pseudouridine at positions 38 and 39 in tRNA, we found a significant reduction in this post-transcriptional modification of tRNA in patient cells. Our finding adds to a growing list of intellectual disability disorders that are caused by perturbation of various tRNA modifications, which highlights the sensitivity of the brain to these highly conserved processes. PMID:27055666

  4. Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy.

    PubMed

    Kremer, Laura S; Distelmaier, Felix; Alhaddad, Bader; Hempel, Maja; Iuso, Arcangela; Küpper, Clemens; Mühlhausen, Chris; Kovacs-Nagy, Reka; Satanovskij, Robin; Graf, Elisabeth; Berutti, Riccardo; Eckstein, Gertrud; Durbin, Richard; Sauer, Sascha; Hoffmann, Georg F; Strom, Tim M; Santer, René; Meitinger, Thomas; Klopstock, Thomas; Prokisch, Holger; Haack, Tobias B

    2016-02-04

    Molecular diagnosis of mitochondrial disorders is challenging because of extreme clinical and genetic heterogeneity. By exome sequencing, we identified three different bi-allelic truncating mutations in TANGO2 in three unrelated individuals with infancy-onset episodic metabolic crises characterized by encephalopathy, hypoglycemia, rhabdomyolysis, arrhythmias, and laboratory findings suggestive of a defect in mitochondrial fatty acid oxidation. Over the course of the disease, all individuals developed global brain atrophy with cognitive impairment and pyramidal signs. TANGO2 (transport and Golgi organization 2) encodes a protein with a putative function in redistribution of Golgi membranes into the endoplasmic reticulum in Drosophila and a mitochondrial localization has been confirmed in mice. Investigation of palmitate-dependent respiration in mutant fibroblasts showed evidence of a functional defect in mitochondrial β-oxidation. Our results establish TANGO2 deficiency as a clinically recognizable cause of pediatric disease with multi-organ involvement.

  5. Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy

    PubMed Central

    Kremer, Laura S.; Distelmaier, Felix; Alhaddad, Bader; Hempel, Maja; Iuso, Arcangela; Küpper, Clemens; Mühlhausen, Chris; Kovacs-Nagy, Reka; Satanovskij, Robin; Graf, Elisabeth; Berutti, Riccardo; Eckstein, Gertrud; Durbin, Richard; Sauer, Sascha; Hoffmann, Georg F.; Strom, Tim M.; Santer, René; Meitinger, Thomas; Klopstock, Thomas; Prokisch, Holger; Haack, Tobias B.

    2016-01-01

    Molecular diagnosis of mitochondrial disorders is challenging because of extreme clinical and genetic heterogeneity. By exome sequencing, we identified three different bi-allelic truncating mutations in TANGO2 in three unrelated individuals with infancy-onset episodic metabolic crises characterized by encephalopathy, hypoglycemia, rhabdomyolysis, arrhythmias, and laboratory findings suggestive of a defect in mitochondrial fatty acid oxidation. Over the course of the disease, all individuals developed global brain atrophy with cognitive impairment and pyramidal signs. TANGO2 (transport and Golgi organization 2) encodes a protein with a putative function in redistribution of Golgi membranes into the endoplasmic reticulum in Drosophila and a mitochondrial localization has been confirmed in mice. Investigation of palmitate-dependent respiration in mutant fibroblasts showed evidence of a functional defect in mitochondrial β-oxidation. Our results establish TANGO2 deficiency as a clinically recognizable cause of pediatric disease with multi-organ involvement. PMID:26805782

  6. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy.

    PubMed

    Pena, S D J; Coimbra, R L M

    2015-02-01

    We have recently performed exome analysis in a 7 year boy who presented in infancy with an encephalopathy characterized by ataxia and myoclonic epilepsy. Parents were not consanguineous and there was no family history of the disease. Exome analysis did not show any pathogenic variants in genes known to be associated with seizures and/or ataxia in children, including all known human channelopathies. However, we have identified a mutation in KCNA2 that we believe to be responsible for the disease in our patient. This gene, which encodes a member of the potassium channel, voltage-gated, shaker-related subfamily, has not been previously described as a cause of disease in humans, but mutations of the orthologous gene in mice (Kcna2) are known to cause both ataxia and convulsions. The mutation is c.890C>A, leading to the amino acid substitution p.Arg297Gln, which involves the second of the critical arginines in the S4 voltage sensor. This mutation is characterized as pathogenic by five different prediction programs. RFLP analysis and Sanger sequencing confirmed the presence of the mutation in the patient, but not in his parents, characterizing it as de novo. We believe that this discovery characterizes a new channelopathy.

  7. Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations.

    PubMed

    Tamiello, Chiara; Kamps, Miriam A F; van den Wijngaard, Arthur; Verstraeten, Valerie L R M; Baaijens, Frank P T; Broers, Jos L V; Bouten, Carlijn C V

    2013-01-01

    Laminopathies, mainly caused by mutations in the LMNA gene, are a group of inherited diseases with a highly variable penetrance; i.e., the disease spectrum in persons with identical LMNA mutations range from symptom-free conditions to severe cardiomyopathy and progeria, leading to early death. LMNA mutations cause nuclear abnormalities and cellular fragility in response to cellular mechanical stress, but the genotype/phenotype correlations in these diseases remain unclear. Consequently, tools such as mutation analysis are not adequate for predicting the course of the disease.   Here, we employ growth substrate stiffness to probe nuclear fragility in cultured dermal fibroblasts from a laminopathy patient with compound progeroid syndrome. We show that culturing of these cells on substrates with stiffness higher than 10 kPa results in malformations and even rupture of the nuclei, while culture on a soft substrate (3 kPa) protects the nuclei from morphological alterations and ruptures. No malformations were seen in healthy control cells at any substrate stiffness. In addition, analysis of the actin cytoskeleton organization in this laminopathy cells demonstrates that the onset of nuclear abnormalities correlates to an increase in cytoskeletal tension. Together, these data indicate that culturing of these LMNA mutated cells on substrates with a range of different stiffnesses can be used to probe the degree of nuclear fragility. This assay may be useful in predicting patient-specific phenotypic development and in investigations on the underlying mechanisms of nuclear and cellular fragility in laminopathies.

  8. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish

    PubMed Central

    Zou, Jun; Tran, Diana; Baalbaki, Mai; Tang, Ling Fung; Poon, Annie; Pelonero, Angelo; Titus, Erron W; Yuan, Christiana; Shi, Chenxu; Patchava, Shruthi; Halper, Elizabeth; Garg, Jasmine; Movsesyan, Irina; Yin, Chaoying; Wu, Roland; Wilsbacher, Lisa D; Liu, Jiandong; Hager, Ronald L; Coughlin, Shaun R; Jinek, Martin; Pullinger, Clive R; Kane, John P; Hart, Daniel O; Kwok, Pui-Yan; Deo, Rahul C

    2015-01-01

    Truncating mutations in the giant sarcomeric protein Titin result in dilated cardiomyopathy and skeletal myopathy. The most severely affected dilated cardiomyopathy patients harbor Titin truncations in the C-terminal two-thirds of the protein, suggesting that mutation position might influence disease mechanism. Using CRISPR/Cas9 technology, we generated six zebrafish lines with Titin truncations in the N-terminal and C-terminal regions. Although all exons were constitutive, C-terminal mutations caused severe myopathy whereas N-terminal mutations demonstrated mild phenotypes. Surprisingly, neither mutation type acted as a dominant negative. Instead, we found a conserved internal promoter at the precise position where divergence in disease severity occurs, with the resulting protein product partially rescuing N-terminal truncations. In addition to its clinical implications, our work may shed light on a long-standing mystery regarding the architecture of the sarcomere. DOI: http://dx.doi.org/10.7554/eLife.09406.001 PMID:26473617

  9. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing

    PubMed Central

    Merico, Daniele; Roifman, Maian; Braunschweig, Ulrich; Yuen, Ryan K. C.; Alexandrova, Roumiana; Bates, Andrea; Reid, Brenda; Nalpathamkalam, Thomas; Wang, Zhuozhi; Thiruvahindrapuram, Bhooma; Gray, Paul; Kakakios, Alyson; Peake, Jane; Hogarth, Stephanie; Manson, David; Buncic, Raymond; Pereira, Sergio L.; Herbrick, Jo-Anne; Blencowe, Benjamin J.; Roifman, Chaim M.; Scherer, Stephen W.

    2015-01-01

    Roifman Syndrome is a rare congenital disorder characterized by growth retardation, cognitive delay, spondyloepiphyseal dysplasia and antibody deficiency. Here we utilize whole-genome sequencing of Roifman Syndrome patients to reveal compound heterozygous rare variants that disrupt highly conserved positions of the RNU4ATAC small nuclear RNA gene, a minor spliceosome component that is essential for minor intron splicing. Targeted sequencing confirms allele segregation in six cases from four unrelated families. RNU4ATAC rare variants have been recently reported to cause microcephalic osteodysplastic primordial dwarfism, type I (MOPD1), whose phenotype is distinct from Roifman Syndrome. Strikingly, all six of the Roifman Syndrome cases have one variant that overlaps MOPD1-implicated structural elements, while the other variant overlaps a highly conserved structural element not previously implicated in disease. RNA-seq analysis confirms extensive and specific defects of minor intron splicing. Available allele frequency data suggest that recessive genetic disorders caused by RNU4ATAC rare variants may be more prevalent than previously reported. PMID:26522830

  10. Non-truncating LIFR mutation: causal for prominent congenital pain insensitivity phenotype with progressive vertebral destruction?

    PubMed

    Elsaid, M F; Chalhoub, N; Kamel, H; Ehlayel, M; Ibrahim, N; Elsaid, A; Kumar, P; Khalak, H; Ilyin, V A; Suhre, K; Abdel Aleem, A

    2016-02-01

    We present a Qatari family with two children who displayed a characteristic phenotype of congenital marked pain insensitivity with hypohidrosis and progressive aseptic destruction of joints and vertebrae resembling that of hereditary sensory and autonomic neuropathies (HSANs). The patients, aged 10 and 14, remained of uncertain genetic diagnosis until whole genome sequencing was pursued. Genome sequencing identified a novel homozygous C65S mutation in the LIFR gene that is predicted to markedly destabilize and alter the structure of a particular domain and consequently to affect the functionality of the whole multi-domain LIFR protein. The C65S mutant LIFR showed altered glycosylation and an elevated expression level that might be attributed to a slow turnover of the mutant form. LIFR mutations have been reported in Stüve-Wiedemann syndrome (SWS), a severe autosomal recessive skeletal dysplasia often resulting in early death. Our patients share some clinical features of rare cases of SWS long-term survivors; however, they also phenocopy HSAN due to the marked pain insensitivity phenotype and progressive bone destruction. Screening for LIFR mutations might be warranted in genetically unresolved HSAN phenotypes.

  11. Loop-tail phenotype in heterozygous mice and neural tube defects in homozygous mice result from a nonsense mutation in the Vangl2 gene.

    PubMed

    Chen, B; Mao, H H; Chen, L; Zhang, F L; Li, K; Xue, Z F

    2013-01-22

    N-ethyl-N-nitrosourea (ENU) is a powerful point mutagen that can generate random mutations. It has been used to generate mouse mutations to produce phenotypic models of human disease. Neural tube defects (NTD) are common birth defects in which the brain and/or spinal cord can be exposed; however, the mechanisms of these defects are poorly understood. Craniorachischisis is one type of NTD that bears a close resemblance to the phenotype of the loop-tail (Lp) mouse. Here we describe a C57BL/6J Lp mouse generated by ENU-induced mutagenesis. The mutation was mapped to the Vangl2 gene on chromosome 1, near markers D1Mit113 and D1Mit149. Sequence analysis of Vangl2 heterozygotes (Vangl2(m1Yzcm)/+) revealed a C/T transition mutation that resulted in substitution of a glutamine codon for a stop (nonsense) codon at position 449. The Vangl2 protein is involved in epithelium planar cell polarity. The predicted truncated protein would lack the PDZ-domain binding motif involved in protein-protein interaction; therefore, Vangl2(m1Yzcm) may be a loss-of-function mutant. Morphological and histological examination of homozygous mouse embryos revealed a neural tube closure defect that leads to craniorachischisis. This Vangl2(m1Yzcm) mouse represents a valuable model for the study of NTDs in humans.

  12. A novel compound heterozygous mutation in an adolescent with insulin-dependent diabetes: The challenge of characterizing Wolfram syndrome.

    PubMed

    Maltoni, Giulio; Minardi, Raffaella; Cristalli, Carlotta Pia; Nardi, Laura; D'Alberton, Franco; Mantovani, Vilma; Zucchini, Stefano

    2016-11-01

    WS diagnosis is often delayed since misdiagnosed as autoimmune diabetes. The rarity of the condition and the absence of other diseases at diabetes diagnosis might make extremely challenging the recognition of WS. However the novel compound heterozygosity for the here reported mutations, seems to confer a mild phenotype among the spectrum of WS manifestations.

  13. De Novo Truncating Mutations in AHDC1 in Individuals with Syndromic Expressive Language Delay, Hypotonia, and Sleep Apnea

    PubMed Central

    Xia, Fan; Bainbridge, Matthew N.; Tan, Tiong Yang; Wangler, Michael F.; Scheuerle, Angela E.; Zackai, Elaine H.; Harr, Margaret H.; Sutton, V. Reid; Nalam, Roopa L.; Zhu, Wenmiao; Nash, Margot; Ryan, Monique M.; Yaplito-Lee, Joy; Hunter, Jill V.; Deardorff, Matthew A.; Penney, Samantha J.; Beaudet, Arthur L.; Plon, Sharon E.; Boerwinkle, Eric A.; Lupski, James R.; Eng, Christine M.; Muzny, Donna M.; Yang, Yaping; Gibbs, Richard A.

    2014-01-01

    Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 “known” disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome. PMID:24791903

  14. Identification of a De Novo Heterozygous Missense FLNB Mutation in Lethal Atelosteogenesis Type I by Exome Sequencing

    PubMed Central

    Jeon, Ga Won; Lee, Mi-Na; Jung, Ji Mi; Hong, Seong Yeon; Kim, Young Nam; Sin, Jong Beom

    2014-01-01

    Background Atelosteogenesis type I (AO-I) is a rare lethal skeletal dysplastic disorder characterized by severe short-limbed dwarfism and dislocated hips, knees, and elbows. AO-I is caused by mutations in the filamin B (FLNB) gene; however, several other genes can cause AO-like lethal skeletal dysplasias. Methods In order to screen all possible genes associated with AO-like lethal skeletal dysplasias simultaneously, we performed whole-exome sequencing in a female newborn having clinical features of AO-I. Results Exome sequencing identified a novel missense variant (c.517G>A; p.Ala173Thr) in exon 2 of the FLNB gene in the patient. Sanger sequencing validated this variant, and genetic analysis of the patient's parents suggested a de novo occurrence of the variant. Conclusions This study shows that exome sequencing can be a useful tool for the identification of causative mutations in lethal skeletal dysplasia patients. PMID:24624349

  15. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    SciTech Connect

    Gardner, R.J.; Bobrow, M.; Roberts, R.G.

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  16. Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III.

    PubMed

    Mei, Libin; Huang, Yanru; Pan, Qian; Su, Wei; Quan, Yi; Liang, Desheng; Wu, Lingqian

    2015-07-20

    A 26-year-old woman with a past history of fetal skeletal dysplasia was referred to our institution at 24weeks of gestation following a routine sonographic diagnosis of short limbs in the fetus. A fetal ultrasound showed short limbs, a narrow thorax, short ribs with marginal spurs, and polydactyly. Conventional cytogenetics analysis of cultured amniocytes demonstrated that the fetal karyotype was normal. Using targeted exome sequencing of 226 known genes implicated in inherited skeletal dysplasia, we identified compound heterozygous mutations in the DYNC2H1 gene in the fetus with short rib-polydactyly syndrome, type III (SRPS III), c.1151 C>T(p.Ala384Val) and c.4351 C>T (p.Gln1451*), which were inherited from paternally and maternally, respectively. These variants were further confirmed using Sanger sequencing and have not been previously reported. To our knowledge, this is the first report of DYNC2H1 mutations causing SRPS III, in the Chinese population. Our findings expand the number of reported cases of this rare disease, and indicate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia.

  17. Compound heterozygous mutations of ACADS gene in newborn with short chain acyl-CoA dehydrogenase deficiency: case report and literatures review

    PubMed Central

    An, Se Jin; Kim, Sook Za; Kim, Gu Hwan; Yoo, Han Wook

    2016-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive mitochondrial disorder of fatty acid β-oxidation, and is associated with mutations in the acyl-CoA dehydrogenase (ACADS) gene. Recent advances in spectrometric screening for inborn errors of metabolism have helped detect several metabolic disorders, including SCADD, without symptoms in the neonate period. This allows immediate initiation of treatment and monitoring, so they remain largely symptomless metabolic disease. Here, we report a 15-month-old asymptomatic male, who was diagnosed with SCADD by newborn screening. Spectrometric screening for inborn errors of metabolism 72 hours after birth revealed an elevated butyrylcarnitine (C4) concentration of 2.25 µmol/L (normal, <0.99 µmol/L). Urinary excretion of ethylmalonic acid was also elevated, as detected by urine organic acid analysis. To confirm the diagnosis of SCADD, direct sequencing analysis of 10 coding exons and the exon-intron boundaries of the ACADS gene were performed. Subsequent sequence analysis revealed compound heterozygous missense mutations c.164C>T (p.Pro55Leu) and c.1031A>G (p.Glu344Gly) on exons 2 and 9, respectively. The patient is now growing up, unretarded by symptoms such as seizure and developmental delay. PMID:28018444

  18. Wiskott-Aldrich syndrome in a girl caused by heterozygous WASP mutation and extremely skewed X-chromosome inactivation: a novel association with maternal uniparental isodisomy 6.

    PubMed

    Takimoto, Tomohito; Takada, Hidetoshi; Ishimura, Masataka; Kirino, Makiko; Hata, Kenichiro; Ohara, Osamu; Morio, Tomohiro; Hara, Toshiro

    2015-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked disease characterized by microthrombocytopenia, eczema and immune deficiency, caused primarily by mutations in the WASP (Wiskott-Aldrich syndrome protein) gene. Female carriers are usually asymptomatic because of the preferential activation of the normal, nonmutated X-chromosome in their hematopoietic cells. We report our observations of a female child with WAS, who displayed symptoms of congenital thrombocytopenia. DNA sequencing analysis of the WASP gene revealed a heterozygous nonsense mutation in exon 10. The expressions of WASP and normal WASP mRNA were defective. We found preferential inactivation of the X-chromosome on which wild-type WASP was located. Single-nucleotide polymorphism microarray testing and the analysis of the polymorphic variable number of tandem repeat regions revealed maternal uniparental isodisomy of chromosome 6 (UPD6). Our results underscore the importance of WASP evaluation in females with congenital thrombocytopenia and suggest that UPD6 might be related to the pathophysiology of nonrandom X-chromosome inactivation.

  19. Hereditary Xerocytosis due to Mutations in PIEZO1 Gene Associated with Heterozygous Pyruvate Kinase Deficiency and Beta-Thalassemia Trait in Two Unrelated Families

    PubMed Central

    Vercellati, Cristina; Marcello, Anna Paola; Zaninoni, Anna; van Wijk, Richard; Mirra, Nadia; Curcio, Cristina; Cortelezzi, Agostino; Zanella, Alberto; Barcellini, Wilma; Bianchi, Paola

    2017-01-01

    Hereditary xerocytosis (HX) is a rare disorder caused by defects of RBC permeability, associated with haemolytic anaemia of variable degree and iron overload. It is sometimes misdiagnosed as hereditary spherocytosis or other congenital haemolytic anaemia. Splenectomy is contraindicated due to increased risk of thromboembolic complications. We report the clinical, haematological, and molecular characteristics of four patients from two unrelated Italian families affected by HX, associated with beta-thalassemia trait and heterozygous pyruvate kinase deficiency, respectively. Two patients had been splenectomised and displayed thrombotic episodes. All patients had iron overload in the absence of transfusion, two of them requiring iron chelation. The diagnosis of HX was confirmed by LoRRca Osmoscan analysis showing a left-shifted curve. PIEZO1 gene sequencing revealed the presence of mutation p.E2496ELE, showing that this is one of the most frequent mutations in this disease. The concomitant defects did not aggravate the clinical phenotype; however, in one patient, the initial diagnosis of pyruvate kinase deficiency delayed the correct diagnosis of HX for many years and resulted in splenectomy followed by thrombotic complications. The study underlines the importance of a precise diagnosis in HX, particularly in view of splenectomy, and the need of a molecular confirmation of suspected RBC enzymopathy. PMID:28367341

  20. Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2).

    PubMed

    Iolascon, Achille; d'Apolito, Maria; Servedio, Veronica; Cimmino, Flora; Piga, Antonio; Camaschella, Clara

    2006-01-01

    Divalent metal transporter 1 (DMT1) mediates apical iron uptake in duodenal enterocytes and iron transfer from the transferrin receptor endosomal cycle into the cytosol in erythroid cells. Both mk mice and Belgrade rats, which carry an identical DMT1 mutation, exhibit severe microcytic anemia at birth and defective intestinal iron use and erythroid iron use. We report the hematologic phenotype of a child, compound heterozygote for 2 DMT1 mutations, who was affected by severe anemia since birth and showed hepatic iron overload. The novel mutations were a 3-bp deletion in intron 4 (c.310-3_5del CTT) resulting in a splicing abnormality and a C>T transition at nucleotide 1246(p. R416C). A striking reduction of DMT1 protein in peripheral blood mononuclear cells was demonstrated by Western blot analysis. The proband required blood transfusions until erythropoietin treatment allowed transfusion independence when hemoglobin levels between 75 and 95 g/L (7.5 and 9.5 g/dL) were achieved. Hematologic data of this patient at birth and in the first years of life strengthen the essential role of DMT1 in erythropoiesis. The early onset of iron overload indicates that, as in animal models, DMT1 is dispensable for liver iron uptake, whereas its deficiency in the gut is likely bypassed by the up-regulation of other pathways of iron use.

  1. Sequencing the GRHL3 Coding Region Reveals Rare Truncating Mutations and a Common Susceptibility Variant for Nonsyndromic Cleft Palate

    PubMed Central

    Mangold, Elisabeth; Böhmer, Anne C.; Ishorst, Nina; Hoebel, Ann-Kathrin; Gültepe, Pinar; Schuenke, Hannah; Klamt, Johanna; Hofmann, Andrea; Gölz, Lina; Raff, Ruth; Tessmann, Peter; Nowak, Stefanie; Reutter, Heiko; Hemprich, Alexander; Kreusch, Thomas; Kramer, Franz-Josef; Braumann, Bert; Reich, Rudolf; Schmidt, Gül; Jäger, Andreas; Reiter, Rudolf; Brosch, Sibylle; Stavusis, Janis; Ishida, Miho; Seselgyte, Rimante; Moore, Gudrun E.; Nöthen, Markus M.; Borck, Guntram; Aldhorae, Khalid A.; Lace, Baiba; Stanier, Philip; Knapp, Michael; Ludwig, Kerstin U.

    2016-01-01

    Nonsyndromic cleft lip with/without cleft palate (nsCL/P) and nonsyndromic cleft palate only (nsCPO) are the most frequent subphenotypes of orofacial clefts. A common syndromic form of orofacial clefting is Van der Woude syndrome (VWS) where individuals have CL/P or CPO, often but not always associated with lower lip pits. Recently, ∼5% of VWS-affected individuals were identified with mutations in the grainy head-like 3 gene (GRHL3). To investigate GRHL3 in nonsyndromic clefting, we sequenced its coding region in 576 Europeans with nsCL/P and 96 with nsCPO. Most strikingly, nsCPO-affected individuals had a higher minor allele frequency for rs41268753 (0.099) than control subjects (0.049; p = 1.24 × 10−2). This association was replicated in nsCPO/control cohorts from Latvia, Yemen, and the UK (pcombined = 2.63 × 10−5; ORallelic = 2.46 [95% CI 1.6–3.7]) and reached genome-wide significance in combination with imputed data from a GWAS in nsCPO triads (p = 2.73 × 10−9). Notably, rs41268753 is not associated with nsCL/P (p = 0.45). rs41268753 encodes the highly conserved p.Thr454Met (c.1361C>T) (GERP = 5.3), which prediction programs denote as deleterious, has a CADD score of 29.6, and increases protein binding capacity in silico. Sequencing also revealed four novel truncating GRHL3 mutations including two that were de novo in four families, where all nine individuals harboring mutations had nsCPO. This is important for genetic counseling: given that VWS is rare compared to nsCPO, our data suggest that dominant GRHL3 mutations are more likely to cause nonsyndromic than syndromic CPO. Thus, with rare dominant mutations and a common risk variant in the coding region, we have identified an important contribution for GRHL3 in nsCPO. PMID:27018475

  2. Congenital IL-12R1β receptor deficiency and thrombophilia in a girl homozygous for an IL12RB1 mutation and compound heterozygous for MTFHR mutations: A case report and literature review

    PubMed Central

    Kose, M.; Ceylan, O.; Patiroglu, T.; Bustamante, J.; Casanova, J. L.; Akyildiz, B. N.; Doganay, S.

    2014-01-01

    Interleukin-12 (IL-12) plays an important role in the production of interferon gamma from T cells and natural killer cells and is essential for protection against intra-macrophagic pathogens such as Mycobacterium and Salmonella. Here, we describe a 16-year-old girl with homozygous mutation in exon 12 of the IL12RB1 gene, which causes complete IL-12Rβ1 deficiency in association with heterozygous mutation (C677T and A1298C) in the methylenetetrahydrofolate reductase gene. She presented with disseminated Mycobacterium tuberculosis complex infection, retroperitoneal fungal abscess and also thrombosis in the superior mesenteric–portal vein junction. This is the first case report of a primary immunodeficiency associated with a genetically determined venous thrombosis. PMID:24678409

  3. A novel heterozygous mutation in the ATP6V0A4 gene encoding the V-ATPase a4 subunit in an adult patient with incomplete distal renal tubular acidosis

    PubMed Central

    Imai, Eri; Kaneko, Shuzo; Mori, Takayasu; Okado, Tomokazu; Uchida, Shinichi; Tsukamoto, Yusuke

    2016-01-01

    A 40-year-old Japanese man who had a medical history of hypokalemic periodic paralysis 4 months prior was hospitalized to undergo a cholecystectomy. Hypokalemia, nephrocalcinosis and alkaluria suggesting distal renal tubular acidosis (dRTA) were detected, but metabolic acidosis was not evident. An ammonium chloride/furosemide–fludrocortisone/bicarbonate loading test demonstrated a remarkable disability in urinary H+ excretion. A novel heterozygous mutation in the ATP6V0A4 gene encoding the vacuolar H+-ATPase (V-ATPase) a4 subunit p.S544L was detected. Among cases of V-ATPase a4 mutations, this is the first case in which a heterozygous mutation developed to an incomplete or latent form of dRTA. PMID:27274828

  4. Identification of a Heterozygous SPG11 Mutation by Clinical Exome Sequencing in a Patient With Hereditary Spastic Paraplegia: A Case Report

    PubMed Central

    2016-01-01

    Next-generation sequencing, such as whole-genome sequencing, whole-exome sequencing, and targeted panel sequencing have been applied for diagnosis of many genetic diseases, and are in the process of replacing the traditional methods of genetic analysis. Clinical exome sequencing (CES), which provides not only sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to genetic diagnosis. Sequencing of genes with clinical relevance rather than whole exome sequencing might be more suitable for the diagnosis of known hereditary disease with genetic heterogeneity. Here, we present the clinical usefulness of CES for the diagnosis of hereditary spastic paraplegia (HSP). We report a case of patient who was strongly suspected of having HSP based on her clinical manifestations. HSP is one of the diseases with high genetic heterogeneity, the 72 different loci and 59 discovered genes identified so far. Therefore, traditional approach for diagnosis of HSP with genetic analysis is very challenging and time-consuming. CES with TruSight One Sequencing Panel, which enriches about 4,800 genes with clinical relevance, revealed compound heterozygous mutations in SPG11. One workflow and one procedure can provide the results of genetic analysis, and CES with enrichment of clinically relevant genes is a cost-effective and time-saving diagnostic tool for diseases with genetic heterogeneity, including HSP. PMID:28119845

  5. Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice

    PubMed Central

    Short, Kieran M.; Wiradjaja, Fenny; Janssen, Irene M.; Jehee, Fernanda; Bertola, Debora; Liu, Jia; Yagnik, Garima; Sekiguchi, Kiyotoshi; Kiyozumi, Daiji; van Bokhoven, Hans; Marcelis, Carlo; Cunningham, Michael L.; Anderson, Peter J.; Boyadjiev, Simeon A.; Passos-Bueno, Maria Rita; Veltman, Joris A.; Smyth, Ian; Buckley, Michael F.; Roscioli, Tony

    2011-01-01

    The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia. PMID:21931569

  6. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia.

    PubMed

    Bolar, Nikhita Ajit; Golzio, Christelle; Živná, Martina; Hayot, Gaëlle; Van Hemelrijk, Christine; Schepers, Dorien; Vandeweyer, Geert; Hoischen, Alexander; Huyghe, Jeroen R; Raes, Ann; Matthys, Erve; Sys, Emiel; Azou, Myriam; Gubler, Marie-Claire; Praet, Marleen; Van Camp, Guy; McFadden, Kelsey; Pediaditakis, Igor; Přistoupilová, Anna; Hodaňová, Kateřina; Vyleťal, Petr; Hartmannová, Hana; Stránecký, Viktor; Hůlková, Helena; Barešová, Veronika; Jedličková, Ivana; Sovová, Jana; Hnízda, Aleš; Kidd, Kendrah; Bleyer, Anthony J; Spong, Richard S; Vande Walle, Johan; Mortier, Geert; Brunner, Han; Van Laer, Lut; Kmoch, Stanislav; Katsanis, Nicholas; Loeys, Bart L

    2016-07-07

    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.

  7. A case of sitosterolemia due to compound heterozygous mutations in ABCG5: clinical features and treatment outcomes obtained with colestimide and ezetimibe

    PubMed Central

    Ono, Sahoko; Matsuda, Junko; Saito, Aki; Yamamoto, Takenobu; Fujimoto, Wataru; Shimizu, Hitomi; Dateki, Sumito; Ouchi, Kazunobu

    2017-01-01

    Abstract. Sitosterolemia is a rare, autosomal recessively inherited disorder of lipid metabolism caused by mutations in the “ATP-binding cassette, subfamily G” member 5 and 8 proteins (encoded by the ABCG5 and ABCG8 genes, respectively), which play critical roles in the intestinal and biliary excretion of plant sterols. We report the clinical features and treatment outcomes of an 18-month-old Japanese girl with sitosterolemia, who presented with multiple linear and intertriginous xanthomas around the joint areas. Serum lipid analyses revealed elevated levels of total cholesterol (T-Chol: 866 mg/dL), low density lipoprotein-cholesterol (LDL-C: 679 mg/dL), and plant sterols (sitosterol: 24.6 mg/dL, campesterol: 19.2 mg/dL, stigmasterol: 1.8 mg/dL). Compound heterozygous mutations (p.R419H and p.R389H) were identified in ABCG5. The patient was placed on a low cholesterol/low plant sterol diet and treated with colestimide (a bile acid sequestrant) and ezetimibe (an NPC1L1 inhibitor). Serum T-Chol and LDL-C levels decreased to normal within 2 mo, and plant sterol levels decreased by 30% within 4 mo. The xanthomas regressed gradually, and almost completely disappeared after 1.5 yr of treatment. No further reductions of plant sterol levels were observed. Long-term follow-up is important to verify appropriate therapeutic goals to prevent premature atherosclerosis and coronary artery disease. PMID:28203044

  8. Heterozygous mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in male tilapia, Oreochromis niloticus

    PubMed Central

    Chen, Jinlin; Jiang, Dongneng; Tan, Dejie; Fan, Zheng; Wei, Yingying; Li, Minghui; Wang, Deshou

    2017-01-01

    Eukaryotic elongation factor 1 alpha (eEF1A) is an essential component of the translational apparatus. In the present study, eEF1A1b was isolated from the Nile tilapia. Real-time PCR and Western blot revealed that eEF1A1b was expressed highly in the testis from 90 dah (days after hatching) onwards. In situ hybridization and immunohistochemistry analyses showed that eEF1A1b was highly expressed in the spermatogonia of the testis. CRISPR/Cas9 mediated mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in the F0 XY fish. Consistently, heterozygous mutation of eEF1A1b (eEF1A1b+/−) resulted in an absence of spermatocytes at 90 dah, very few spermatocytes, spermatids and spermatozoa at 180 dah, and decreased Cyp11b2 and serum 11-ketotestosterone level at both stages. Further examination of the fertilization capacity of the sperm indicated that the eEF1A1b+/− XY fish were infertile due to abnormal spermiogenesis. Transcriptomic analyses of the eEF1A1b+/− testis from 180 dah XY fish revealed that key elements involved in spermatogenesis, steroidogenesis and sperm motility were significantly down-regulated compared with the control XY. Transgenic overexpression of eEF1A1b rescued the spermatogenesis arrest phenotype of the eEF1A1b+/− testis. Taken together, our data suggested that eEF1A1b is crucial for spermatogenesis and male fertility in the Nile tilapia. PMID:28266557

  9. Heterozygous p53V172F mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53

    PubMed Central

    Xie, Xiaolei; Lozano, Guillermina; Siddik, Zahid H.

    2017-01-01

    Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism, affected by either mutation in the DNA binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4 that destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53V172F mutation, which reduced p53 half-life by 2- to 3-fold compared to homozygous wild-type p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (5- to 8-fold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53V172F mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a hetromeric p53wt/p53V172F complex was confirmed in 2780CP/Cl-24 cells transfected with wild-type (wt) p53 or multimer-inhibiting p53L344P mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5°C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37°C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by siRNA in either resistant cell line induced p53 and restored p21 transactivation at 37°C, as did cisplatin-induced DNA damage at 32.5°C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53V172F mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4

  10. "CADASIL coma" in an Italian homozygous CADASIL patient: comparison with clinical and MRI findings in age-matched heterozygous patients with the same G528C NOTCH3 mutation.

    PubMed

    Ragno, Michele; Pianese, Luigi; Morroni, Manrico; Cacchiò, Gabriella; Manca, Antonio; Di Marzio, Fabio; Silvestri, Serena; Miceli, Cristina; Scarcella, Maria; Onofrj, Marco; Trojano, Luigi

    2013-11-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic disorder caused by mutations in the NOTCH3 gene, with a striking variability in phenotypic expression. To date, only two homozygous patients have been reported, with divergent phenotypic features. We describe an Italian CADASIL patient, homozygous for G528C mutation, in whom early manifestation of the disease was migraine, but whose clinical evolution was characterized by a reversible acute encephalopathy followed by full recovery ("CADASIL coma"). Clinical evaluation, MR scan, neuropsychological and neurophysiological investigation did not reveal substantial differences between our homozygous patient and her heterozygous relatives sharing the same mutation, or between our patient and a group of heterozygous individuals with the same mutation but from different families. Skin biopsy identified peculiar features in the homozygous patient, with cytoplasmic pseudoinclusions likely containing granular osmiophilic material (GOM) in the vascular smooth muscle cells, but further studies are necessary to substantiate their possible relationships with CADASIL homozygosis. "CADASIL coma" did not seem to be specific of patient's homozygosis, since it was observed in one of her heterozygous relatives, whereas its pathogenesis seems to be related to peculiar constellations of unknown predisposing factors. The present study demonstrated that CADASIL conforms to the classical definition of dominant diseases, according to which homozygotes and heterozygotes for a defect are phenotypically indistinguishable.

  11. No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins.

    PubMed

    Murdoch, John D; Gupta, Abha R; Sanders, Stephan J; Walker, Michael F; Keaney, John; Fernandez, Thomas V; Murtha, Michael T; Anyanwu, Samuel; Ober, Gordon T; Raubeson, Melanie J; DiLullo, Nicholas M; Villa, Natalie; Waqar, Zainabdul; Sullivan, Catherine; Gonzalez, Luis; Willsey, A Jeremy; Choe, So-Yeon; Neale, Benjamin M; Daly, Mark J; State, Matthew W

    2015-01-01

    Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk.

  12. Homozygous truncating mutation in prenatally expressed skeletal isoform of TTN gene results in arthrogryposis multiplex congenita and myopathy without cardiac involvement.

    PubMed

    Fernández-Marmiesse, Ana; Carrascosa-Romero, M Carmen; Alfaro Ponce, Blanca; Nascimento, Andres; Ortez, Carlos; Romero, Norma; Palacios, Lourdes; Jimenez-Mallebrera, Cecilia; Jou, Cristina; Gouveia, Sofía; Couce, María L

    2017-02-01

    We report the case of a newborn with arthrogryposis multiplex congenita and severe axial hypotonia without cardiac involvement in which, using a customized targeted next-generation sequencing assay for 64 myopathy-associated genes, we detected a novel homozygous truncating mutation, c.38661_38665del, in exon 197 of the TTN gene that is expressed only in the fetal skeletal isoform. Its pathogenicity is supported by evidence of maternal isodisomy for chromosome 2. Muscle pathology showed fibers with core-like areas devoid of oxidative staining and cytoplasmic bodies. Electron microscopy showed the replacement of the sarcomeric structure with filamentous material. Identification of this mutation expands the phenotypic spectrum of the TTN gene and shows for the first time that a mutation not found in adult TTN isoforms is involved in the development of a neuromuscular disorder. TTN mutations should be considered in all severe congenital myopathies with arthrogryposis without cardiac involvement.

  13. Stimulus-evoked release of neuropeptides is enhanced in sensory neurons from mice with a heterozygous mutation of the Nf1 gene.

    PubMed

    Hingtgen, C M; Roy, S L; Clapp, D W

    2006-01-01

    Neurofibromatosis type I is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibrinomin, the protein product of the NF1 gene (neurofibromin gene (human)), is a guanosine triphosphate activating protein for p21(ras). Loss of NF1 results in an increase in activity of the p21(ras) transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the p21(ras) transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P and calcitonin gene-related peptide, from primary sensory neurons of mice with a mutation of the Nf1 gene (neurofibromin gene (mouse)) (Nf1+/-). Measuring immunoreactive substance P and immunoreactive calcitonin gene-related peptide by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropeptides is three to five-fold higher in spinal cord slices from Nf1+/- mice than from wildtype mouse tissue. In addition, the potassium and capsaicin-stimulated release of immunoreactive calcitonin gene-related peptide from cultures of sensory neurons isolated from Nf1+/- mice was more than double that from cultures of wildtype neurons. Treatment of wildtype sensory neurons with nerve growth factor for 5-7 days mimicked the enhanced stimulus-evoked release observed from the Nf1+/- neurons. When nerve growth factor was removed 48 h before conducting release experiments, nerve growth factor-induced augmentation of immunoreactive calcitonin gene-related peptide release from Nf1+/- neurons was more pronounced than in Nf1+/- sensory neurons that were treated with nerve growth factor continuously for 5-7 days. Thus, sensory neurons from mice with a heterozygous mutation of the Nf1 gene that is analogous to the human disease neurofibromatosis type I, exhibit increased sensitivity to chemical

  14. p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1 mRNA expression in primary human sarcomas

    PubMed Central

    Mousses, S; Gokgoz, N; Wunder, J S; Ozcelik, H; Bull, S; Bell, R S; Andrulis, I L

    2001-01-01

    Many growth-suppressing signals converge to control the levels of the CDK inhibitor p21CIP1/WAF1. Some human cancers exhibit low levels of expression of p21CIP1/WAF1and mutations in p53 have been implicated in this down-regulation. To evaluate whether the presence of p53 mutations was related to the in vivo expression of p21CIP1/WAF1 mRNA in sarcomas we measured the p21CIP1/WAF1 mRNA levels for a group of 71 primary bone and soft tissue tumours with known p53 status. As expected, most tumours with p53 mutations expressed low levels of p21CIP1/WAF1 mRNA. However, we identified a group of tumours with p53 gene mutations that exhibited normal or higher levels of p21CIP1/WAF1 mRNA. The p53 mutations in the latter group were not the common missense mutations in exons 4–9, but were predominantly nonsense mutations predicted to result in truncation of the p53 protein. The results of this study suggest that different types of p53 mutations can have different effects on the expression of downstream genes such as p21CIP1/WAF1 in human sarcomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11401317

  15. Recurrent truncating mutations in alanine-glyoxylate aminotransferase gene in two South Indian families with primary hyperoxaluria type 1 causing later onset end-stage kidney disease

    PubMed Central

    Dutta, A. K.; Paulose, B. K.; Danda, S.; Alexander, S.; Tamilarasi, V.; Omprakash, S.

    2016-01-01

    Primary hyperoxaluria type 1 is an autosomal recessive inborn error of metabolism due to liver-specific peroxisomal enzyme alanine-glyoxylate transaminase deficiency. Here, we describe two unrelated patients who were diagnosed to have primary hyperoxaluria. Homozygous c.445_452delGTGCTGCT (p.L151Nfs*14) (Transcript ID: ENST00000307503; human genome assembly GRCh38.p2) (HGMD ID CD073567) mutation was detected in both the patients and the parents were found to be heterozygous carriers. Our patients developed end-stage renal disease at 23 years and 35 years of age. However, in the largest series published from OxalEurope cohort, the median age of end-stage renal disease for null mutations carriers was 9.9 years, which is much earlier than our cases. Our patients had slower progressions as compared to three unrelated patients from North India and Pakistan, who had homozygous c.302T>C (p.L101P) (HGMD ID CM093792) mutation in exon 2. Further, patients need to be studied to find out if c.445_452delGTGCTGCT mutation represents a founder mutation in Southern India. PMID:27512303

  16. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test.

    PubMed Central

    Gardner, R J; Bobrow, M; Roberts, R G

    1995-01-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frame-shifting deletions in the dystrophin gene that are detectable by a multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be a mutation in the ORF. We believe that reverse-transcription--PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. Images Figure 2 PMID:7668256

  17. Protein C Sapporo (protein C Glu 25 --> Lys): a heterozygous missense mutation in the Gla domain provides new insight into the interaction between protein C and endothelial protein C receptor.

    PubMed

    Nakabayashi, Toru; Mizukami, Kazuhiro; Naitoh, Sumiyoshi; Takeda, Mika; Shikamoto, Yasuo; Nakagawa, Takafumi; Kaneko, Hiroki; Tarumi, Takashi; Mizoguchi, Itaru; Mizuno, Hiroshi; Ieko, Masahiro; Koike, Takao

    2005-11-01

    Interaction of the gamma-carboxyglutamic acid (Gla) domain of protein C with endothelial protein C receptor (EPCR) is a critical step for efficient activation of protein C, though interactions by mutants in the Gla domain of protein C with EPCR have been rarely evaluated. We identified a 44-year-old Japanese woman with a history of recurrent thromboembolism as an inherited missense mutation, the first such case reported in Japan, which involved a protein C Gla 25 mutation. Total protein C antigen and Gla protein C antigen levels in the proband were normal. Protein C activity measured with an anticoagulant assay was reduced, whereas that measured with an amidolytic assay was normal. She was therefore phenotypically diagnosed as type IIb protein C deficiency. Direct sequencing of the PCR fragments revealed a heterozygous G to A transition at nucleotide position 1462 in exon 3, which predicted an amino acid substitution of Glu 25 by Lys. Her mother and one son were also heterozygous for this mutation. A molecular dynamics simulation of Gla 25-->Lys/EPCR complex in water suggested that the affinity between the molecules was decreased compared to the wild type Gla domain/EPCR complex. Since Gla 25 has been shown to play an important role in protein C function, not only in membrane phospholipid binding but also in binding to EPCR, our findings provide new insight into the mechanism by which the Glu 25-->Lys mutation induces type IIb protein C deficiency in individuals.

  18. Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability.

    PubMed

    Law, Rosalind; Dixon-Salazar, Tracy; Jerber, Julie; Cai, Na; Abbasi, Ansar A; Zaki, Maha S; Mittal, Kirti; Gabriel, Stacey B; Rafiq, Muhammad Arshad; Khan, Valeed; Nguyen, Maria; Ali, Ghazanfar; Copeland, Brett; Scott, Eric; Vasli, Nasim; Mikhailov, Anna; Khan, Muhammad Nasim; Andrade, Danielle M; Ayaz, Muhammad; Ansar, Muhammad; Ayub, Muhammad; Vincent, John B; Gleeson, Joseph G

    2014-12-04

    Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density.

  19. Biallelic truncating SCN9A mutation identified in four families with congenital insensitivity to pain from Pakistan.

    PubMed

    Sawal, H A; Harripaul, R; Mikhailov, A; Dad, R; Ayub, M; Jawad Hassan, M; Vincent, J B

    2016-12-01

    (a) Homozygosity-mapping-by-descent of four Bhakkar congenital indifference/insensitivity to pain (CIP) families. (b) Identification of mutation Met1190* in SCN9A. (c) SCN9A/NaV1.7 2D structure (as predicted by CCTOP and SMART) and approximate position of known nonsense (*) and missense (M) mutations ( www.hgmd.cf.ac.uk), as well as the Bhakkar mutation (this study) in red.

  20. Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail

    SciTech Connect

    Bhatia, Ajay K.; Kaushik, Rajnish; Campbell, Nancy A.; Pontow, Suzanne E.; Ratner, Lee

    2009-02-05

    The human immunodeficiency virus type 1 (HIV-1) matrix (MA) domain is involved in both early and late events of the viral life cycle. Simultaneous mutation of critical serine residues in MA has been shown previously to dramatically reduce phosphorylation of MA. However, the role of phosphorylation in viral replication remains unclear. Viruses harboring serine to alanine substitutions at positions 9, 67, 72, and 77 are severely impaired in their ability to infect target cells. In addition, the serine mutant viruses are defective in their ability to fuse with target cell membranes. Interestingly, both the fusion defect and the infectivity defect can be rescued by truncation of the long cytoplasmic tail of gp41 envelope protein (gp41CT). Sucrose density gradient analysis also reveals that these mutant viruses have reduced levels of gp120 envelope protein incorporated into the virions as compared to wild type virus. Truncation of the gp41CT rescues the envelope incorporation defect. Here we propose a model in which mutation of specific serine residues prevents MA interaction with lipid rafts during HIV-1 assembly and thereby impairs recruitment of envelope to the sites of viral budding.

  1. Acute intermittent porphyria: A single-base deletion and a nonsense mutation in the human hydroxymethylbilane synthase gene, predicting truncations of the enzyme polypeptide

    SciTech Connect

    Lee, G.L.; Astrin, K.H.; Desnick, R.J.

    1995-08-28

    Acute intermittent porphyria (AIP) is an autosomal-dominant inborn error of metabolism that results from the half-normal activity of the third enzyme in the heme biosynthetic pathway, hydroxymethylbilane synthase (HMB-synthase). AIP is an ecogenetic condition, since the life-threatening acute attacks are precipitated by various factors, including drugs, alcohol, fasting, and certain hormones. Biochemical diagnosis is problematic, and the identification of mutations in the HMB-synthase gene provides accurate detection of presymptomatic heterozygotes, permitting avoidance of the acute precipitating factors. By direct solid-phase sequencing, two mutations causing AIP were identified, an adenine deletion at position 629 in exon 11(629delA), which alters the reading frame and predicts premature truncation of the enzyme protein after amino acid 255, and a nonsense mutation in exon 12 (R225X). These mutations were confirmed by either restriction enzyme analysis or family studies of symptomatic patients, permitting accurate presymptomatic diagnosis of affected relatives. 29 refs., 2 figs.

  2. Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for “double trouble” overlapping syndromes

    PubMed Central

    Ricci, Giulia; Scionti, Isabella; Alì, Greta; Volpi, Leda; Zampa, Virna; Fanin, Marina; Angelini, Corrado; Politano, Luisa; Tupler, Rossella; Siciliano, Gabriele

    2012-01-01

    We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient’s muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient. PMID:22245016

  3. Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for "double trouble" overlapping syndromes.

    PubMed

    Ricci, Giulia; Scionti, Isabella; Alì, Greta; Volpi, Leda; Zampa, Virna; Fanin, Marina; Angelini, Corrado; Politano, Luisa; Tupler, Rossella; Siciliano, Gabriele

    2012-06-01

    We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient's muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient.

  4. A truncating mutation in the IL1RAPL1 gene is responsible for X-linked mental retardation in the MRX21 family.

    PubMed

    Tabolacci, Elisabetta; Pomponi, M Grazia; Pietrobono, Roberta; Terracciano, Alessandra; Chiurazzi, Pietro; Neri, Giovanni

    2006-03-01

    X-linked mental retardation (XLMR) is a genetically heterogeneous condition, due to mutations in at least 50 genes, involved in functioning of the central nervous system and located on the X chromosome. Nonspecific XLMR (MRX) is characterized essentially by mental retardation transmitted by X-linked inheritance. More than 80 extended MRX pedigrees have been reported to date, which have been distinguished exclusively by physical position of the corresponding gene on the X chromosome, established by linkage analysis. One such family, MRX21, which was described by us in 1993 and localized to Xp11.4-pter, has now been reanalyzed with additional markers and after one more affected individual had became available. This extra information allowed a significant reduction of the linkage interval and, eventually, identification of the mutant gene. A stop mutation in exon 10 of the IL1RAPL1 gene (in Xp21) was found in the four affected males and in obligate carriers, allowing conclusive counseling of other family members of uncertain carrier status. The W487X mutation results in the production of a truncated IL1RAPL protein, comprised of the extracellular Ig-like domain and transmembrane tract, but lacking the last 210 aminoacids of the cytoplasmic domain. MRX21 is the first extended MRX family with a point mutation in IL1RAPL1 and the second with a stop mutation, which had been previously found only in a small family. Our report confirms the role of the IL1RAPL1 gene in causing nonspecific mental retardation in males and underlines the importance of detailed linkage analysis before candidate gene mutational screening.

  5. Next-generation sequencing detection and characterization of a heterozygous novel splice junction mutation in the 2B domain of KRT1 in a family with diffuse palmoplantar keratoderma.

    PubMed

    Banerjee, Santasree; Ren, Yunqing; Wei, Tianying; Zhou, Zhongwei; Yu, Ping; Guan, Fenghui; Wei, Xiaonming; Ye, Sheng; Yan, Shaofeng; Zheng, Min; Raff, Michael L; Qi, Ming

    2015-02-01

    Diffuse palmoplantar keratoderma (DPPK) is an autosomal-dominant genodermatosis characterized by restricted, uniform hyperkeratosis on the palm and sole epidermis. DPPK is normally associated with dominant-negative mutations in the keratin-encoding gene, KRT1. We report a heterozygous novel point mutation in the exon 6 splice donor site of KRT1 (c.1254G>C) by next-generation sequencing, resulting in the formation of two alternative transcripts, which segregates with DPPK in a four-generation Chinese family. This results in both the complete loss of exon 6 and the simultaneous utilization of a novel in-frame splice site 54 bases downstream of the mutation with the subsequent deletion of 42 amino acids and the insertion of 18 amino acids into the protein's 2B domain. This is the first report of a novel splice donor site mutation with aberrant splicing and the formation of two alternative transcripts causing DPPK. This study also demonstrates the value of next-generation sequencing in the identification of novel disease-causing mutations.

  6. A novel homozygous Fas ligand mutation leads to early protein truncation, abrogation of death receptor and reverse signaling and a severe form of the autoimmune lymphoproliferative syndrome.

    PubMed

    Nabhani, Schafiq; Hönscheid, Andrea; Oommen, Prasad T; Fleckenstein, Bernhard; Schaper, Jörg; Kuhlen, Michaela; Laws, Hans-Jürgen; Borkhardt, Arndt; Fischer, Ute

    2014-12-01

    We report a novel type of mutation in the death ligand FasL that was associated with a severe phenotype of the autoimmune lymphoproliferative syndrome in two patients. A frameshift mutation in the intracellular domain led to complete loss of FasL expression. Cell death signaling via its receptor and reverse signaling via its intracellular domain were completely abrogated. In vitro lymphocyte proliferation induced by weak T cell receptor stimulation could be blocked and cell death was induced by engagement of FasL in T cells derived from healthy individuals and a heterozygous carrier, but not in FasL-deficient patient derived cells. Expression of genes implicated in lymphocyte proliferation and activation (CCND1, NFATc1, NF-κB1) was increased in FasL-deficient T cells and could not be downregulated by FasL engagement as in healthy cells. Our data thus suggest, that deficiency in FasL reverse signaling may contribute to the clinical lymphoproliferative phenotype of ALPS.

  7. Sequential mutations in the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor beta-subunit genes are necessary for the complete conversion to growth autonomy mediated by a truncated beta C subunit.

    PubMed

    Hannemann, J; Hara, T; Kawai, M; Miyajima, A; Ostertag, W; Stocking, C

    1995-05-01

    An amino-terminally truncated beta C receptor (beta C-R) subunit of the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor complex mediates factor-independent and tumorigenic growth in two spontaneous mutants of a promyelocytic cell line. The constitutive activation of the JAK2 protein kinase in these mutants confirms that signaling occurs through the truncated receptor protein. Noteworthily, in addition to a 10-kb deletion in the beta C-R subunit gene encoding the truncated receptor, several secondary and independent mutations that result in the deletion or functional inactivation of the allelic beta C-R subunit and the closely related beta IL3-R subunit genes were observed in both mutants, suggesting that such mutations are necessary for the full oncogenic penetrance of the truncated beta C-R subunit. Reversion of these mutations by the expression of the wild-type beta C-R in the two mutants resulted in a fivefold decrease in cloning efficiency of the mutants in the absence of IL3, confirming a functional interaction between the wild-type and truncated proteins. Furthermore, expression of the truncated beta C-R subunit in factor-dependent myeloid cells did not immediately render the cells autonomous but increased the spontaneous frequency to factor-independent growth by 4 orders of magnitude. Implications for both leukemogenic progression and receptor-subunit interaction and signaling are discussed.

  8. Reduced chlorophyll biosynthesis in heterozygous barley magnesium chelatase mutants.

    PubMed

    Braumann, Ilka; Stein, Nils; Hansson, Mats

    2014-05-01

    Chlorophyll biosynthesis is initiated by magnesium chelatase, an enzyme composed of three proteins, which catalyzes the insertion of Mg2+ into protoporphyrin IX to produce Mg-protoporphyrin IX. In barley (Hordeum vulgare L.) the three proteins are encoded by Xantha-f, Xantha-g and Xantha-h. Two of the gene products, XanH and XanG, belong to the structurally conserved family of AAA+ proteins (ATPases associated with various cellular activities) and form a complex involving six subunits of each protein. The complex functions as an ATP-fueled motor of the magnesium chelatase that uses XanF as substrate, which is the catalytic subunit responsible for the insertion of Mg2+ into protoporphyrin IX. Previous studies have shown that semi-dominant Xantha-h mutations result in non-functional XanH subunits that participate in the formation of inactive AAA complexes. In the present study, we identify severe mutations in the barley mutants xantha-h.38, -h.56 and -h.57. A truncated form of the protein is seen in xantha-h.38, whereas no XanH is detected in xantha-h.56 and -h.57. Heterozygous mutants show a reduction in chlorophyll content by 14-18% suggesting a slight semi-dominance of xantha-h.38, -h.56 and -h.57, which otherwise have been regarded as recessive mutations.

  9. Analysis of PALB2 in a cohort of Italian breast cancer patients: identification of a novel PALB2 truncating mutation.

    PubMed

    Vietri, Maria Teresa; Caliendo, Gemma; Schiano, Concetta; Casamassimi, Amelia; Molinari, Anna Maria; Napoli, Claudio; Cioffi, Michele

    2015-09-01

    PALB2 gene is mutated in about 1-2% of familial breast cancer as well as in 3-4% of familial pancreatic cancer cases. Few studies have reported mutations in Italian patients with breast or pancreatic cancer. We evaluate the occurrence of PALB2 mutations in Italian patients affected with hereditary breast and ovarian cancers and define the pathological significance of the putative allelic variants. We recruited 98 patients (F = 93, M = 5) affected with breast and/or ovarian cancer, negative for mutations in BRCA1 and BRCA2 (BRCAX). Genomic DNA was isolated from peripheral blood lymphocytes, PALB2 coding regions and adjacent intronic were sequenced; in silico predictions were carried out using prediction programs. Mutational analysis of PALB2 gene revealed the novel mutation c.1919C>A (p.S640X) in a 29 years old woman with breast cancer. The c.1919C>A (p.S640X) mutation causes the lack of C-terminus region inducing alteration of MORF4L1-PALB2 association and the lack of interaction of PALB2 with RAD51 and BRCA2. In addition, we identified two novel PALB2 variants, c.3047T>C (p.F1016S) and c.*146A>G. In silico analysis conducted for c.*146A>G indicates that this variant does not affect the splicing while c.3047T>C (p.F1016S) was predicted as damaging in three classifier algorithms. The proband carrier of c.3047T>C (p.F1016S) showed two breast cancer cases, two ovarian cancer cases and one pancreatic cancer in mother's family. c.3047T>C (p.F1016S) and c.*146A>G should be considered PALB2 UVs even though the genotype-phenotype correlation for these variants remains still unclear. Our findings indicate that the presence of PALB2 mutation should be routinely investigated in hereditary breast and ovarian cancers families since it could be of clinical relevance for clinical management.

  10. The impact of an early truncating founder ATM mutation on immunoglobulins, specific antibodies and lymphocyte populations in ataxia-telangiectasia patients and their parents

    PubMed Central

    STRAY-PEDERSEN, A; JÓNSSON, T; HEIBERG, A; LINDMAN, C R; WIDING, E; AABERGE, I S; BORRESEN-DALE, A L; ABRAHAMSEN, T G

    2004-01-01

    Eleven Norwegian patients (aged 2–33 years, seven males and four females) with Ataxia-telangiectasia (A-T) and their parents were investigated. Five of the patients were homozygous for the same ATM mutation, 3245delATCinsTGAT, a Norwegian founder mutation. They had the lowest IgG2 levels; mean (95% confidence interval) 0·23 (0·05–0·41) g/l versus 0·91 (0·58–1·26) g/l in the other patients (P = 0·002). Among the 11 A-T patients, six had IgG2 deficiency, six had IgA deficiency (three in combination with IgG2 deficiency) and seven had low/undetectable IgE values. All patients had very low levels of antibodies to Streptococcus pneumoniae 0·9 (0·4–1·4) U/ml, while normal levels were found in their parents 11·1 (8·7–13·4) U/ml (P < 0·001). A positive linear relationship between pneumococcal antibodies and IgG2 (r = 0·85, P = 0·001) was found in the patients. Six of 11 had diphtheria antibodies and 7 of 11 tetanus antibodies after childhood vaccinations, while 4 of 7 Hemophilus influenzae type b (Hib) vaccinated patients had protective antibodies. Ten patients had low B cell (CD19+) counts, while six had low T cell (CD3+) counts. Of the T cell subpopulations, 11 had low CD4+ cell counts, six had reduced CD8+ cell counts, and four had an increased portion of double negative (CD3+/CD4-/CD8-) gamma delta T cells. Of the 22 parents (aged 23–64 years) 12 were heterozygous for the ATM founder mutation. Abnormalities in immunoglobulin levels and/or lymphocyte subpopulations were also observed in these carriers, with no correlation to a special ATM genotype. PMID:15196260

  11. [Selection on viability of individuals heterozygous for the temperature-sensitive lethal mutation l(2)M167(DTS) in experimental populations of Drosophila melanogaster].

    PubMed

    Kulikov, A M; Marec, F; Mitrofanov, V G

    2005-06-01

    In experiments on introduction of mutation l(2)M167(DTS) in Drosophila melanogaster populations, larval and pupal viability and developmental rate are limiting factors determining the intensity of selection on the l(2)M167(DTS) mutation. Notwithstanding the rapid elimination of the mutation from the population, positive selection for viability was shown, which increased fitness of the mutation carriers in generations. The fitness component viability was estimated in individuals l(2)M167(DTS)/+; relative to that of wild-type individuals, it varied from 0.1 to 1. Factors affecting this trait in overcrowded populations were found.

  12. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism

    PubMed Central

    Buxton, Jessica L.; Zekavati, Anna; Sosinsky, Alona; Yiorkas, Andrianos M.; Holder, Susan; Klaber, Robert E.; Bridges, Nicola; van Haelst, Mieke M.; le Roux, Carel W.; Walley, Andrew J.; Walters, Robin G.; Mueller, Michael; Blakemore, Alexandra I. F.

    2015-01-01

    Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans. PMID:26120850

  13. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia.

    PubMed Central

    Bai, M; Pearce, S H; Kifor, O; Trivedi, S; Stauffer, U G; Thakker, R V; Brown, E M; Steinmann, B

    1997-01-01

    We characterized the in vivo, cellular and molecular pathophysiology of a case of neonatal hyperparathyroidism (NHPT) resulting from a de novo, heterozygous missense mutation in the gene for the extracellular Ca2+ (Ca2+(o))-sensing receptor (CaR). The female neonate presented with moderately severe hypercalcemia, markedly undermineralized bones, and multiple metaphyseal fractures. Subtotal parathyroidectomy was performed at 6 wk; hypercalcemia recurred rapidly but the bone disease improved gradually with reversion to an asymptomatic state resembling familial benign hypocalciuric hypercalcemia (FBHH). Dispersed parathyroid cells from the resected tissue showed a set-point (the level of Ca2+(o) half maximally inhibiting PTH secretion) substantially higher than for normal human parathyroid cells (approximately 1.8 vs. approximately 1.0 mM, respectively); a similar increase in set-point was observed in vivo. The proband's CaR gene showed a missense mutation (R185Q) at codon 185, while her normocalcemic parents were homozygous for wild type (WT) CaR sequence. Transient expression of the mutant R185Q CaR in human embryonic kidney (HEK293) cells revealed a substantially attenuated Ca2+(o)-evoked accumulation of total inositol phosphates (IP), while cotransfection of normal and mutant receptors showed an EC50 (the level of Ca2+(o) eliciting a half-maximal increase in IPs) 37% higher than for WT CaR alone (6.3+/-0.4 vs. 4.6+/-0.3 mM Ca2+(o), respectively). Thus this de novo, heterozygous CaR mutation may exert a dominant negative action on the normal CaR, producing NHPT and more severe hypercalcemia than typically seen with FBHH. Moreover, normal maternal calcium homeostasis promoted additional secondary hyperparathyroidism in the fetus, contributing to the severity of the NHPT in this case with FBHH. PMID:9011580

  14. Establishment and rapid detection of a heterozygous missense mutation in the CACNA1F gene by ARMS technique with double-base mismatched primers.

    PubMed

    Yang, W C; Zhu, L; Zhou, B X; Tania, S; Zhou, Q; Khan, M A; Fu, X L; Cheng, J L; Lv, H B; Fu, J J

    2015-09-25

    Retinitis pigmentosa (RP) is a retinal degenerative disorder that often causes complete blindness. Mutations of more than 50 genes have been identified as associated with RP, including the CACNA1F gene. In a recent study, by employing next-generation sequencing, we identified a novel mutation in the CACNA1F gene. In this study, we used the amplification refractory mutation system (ARMS) and identified a single nucleotide change c.1555C>T in exon 13 of the CACNA1F gene, leading to the substitution of arginine by tryptophan (p.R519W) in a Chinese individual affected by RP. This study actually confirms this novel mutation, and establishes the ARMS technique for the detection of mutations in RP.

  15. Congenital hypomyelinating neuropathy due to the association of a truncating mutation in PMP22 with the classical HNPP deletion.

    PubMed

    Jouaud, Maxime; Gonnaud, Pierre-Marie; Richard, Laurence; Latour, Philippe; Ollagnon-Roman, Elisabeth; Sturtz, Franck; Mathis, Stéphane; Magy, Laurent; Vallat, Jean-Michel

    2016-01-01

    Congenital hypomyelinating neuropathy appears early in life, resulting in a delay of motor and sensory development. Mutations involve genes such as myelin protein zero (MPZ), peripheral myelin protein 22 (PMP22), and early growth response 2 (EGR2). We present a patient with two compound mutations in PMP22: a point mutation causing a premature STOP codon in exon 3 was inherited from the mother on the first allele, and the "typical" PMP22 deletion in the 17p11.2-p12 region was inherited from the father on the other allele. A sural biopsy was performed at age four. The patient has been followed from 28 months to 21 years of age; he presented significant sensory disturbances, with a slight motor deficit. PMP22 mRNA quantitation showed a severe decrease of PMP22 protein. No myelin sheaths were observed in the biopsy; mesaxons failed to form. The absence of PMP22 provides new insights into the role of this protein.

  16. Infertility due to congenital absence of vas deferens in mainly caused by variable exon 9 skipping of the CFTR gene in heterozygous males for cystic fibrosis mutations

    SciTech Connect

    Chillon, M.; Casals, T.; Nunes, V.

    1994-09-01

    About 65% or the individuals with congenital bilateral absence of the vas deferens (CBAVD) have mutations in at least one of the CFTR alleles. We have studied the phenotypic effects of the CFTR gene intron 8 polyT tract 5T allele in 90 CBAVD subjects and in parents of CF patients. This group was compared with normal individuals, and with fathers and mothers of CF patients. Allele 5T was significantly associated with CBAVD (19.6%) when compared to the general population (5.2%) ({chi}{sup 2} = 33.3%; p<<0.0001). It was represented poorly in fathers of CF patients (1.3%). Mutations were identified in one (60%) or both CFTR alleles (8.9%) of CBAVD patients. Heterozygosity for the 5T allele was strongly associated with heterozygosity for CF mutations ({chi}{sup 2} = 10.9; p<0.0004). The strong correlation between allele 5T and CBAVD, together with the low frequency of this allele in fathers of CF patients, demonstrates that variable {Delta}exon 9 produces infertility in males if associated with a CF mutation on the other chromosome. The 30% of CBAVD cases with only one CFTR mutation and without a 5T-allele may be due to other molecular mechanisms involving CFTR, distinct from {Delta}exon 9. Since there is a relatively high proportion of CBAVD without CF mutations (25%), other gene(s), distinct from CFTR, may have a role in the CBAVD phenotype.

  17. A female patient with incomplete hemophagocytic lymphohistiocytosis caused by a heterozygous XIAP mutation associated with non-random X-chromosome inactivation skewed towards the wild-type XIAP allele.

    PubMed

    Yang, Xi; Hoshino, Akihiro; Taga, Takashi; Kunitsu, Tomoaki; Ikeda, Yuhachi; Yasumi, Takahiro; Yoshida, Kenichi; Wada, Taizo; Miyake, Kunio; Kubota, Takeo; Okuno, Yusuke; Muramatsu, Hideki; Adachi, Yuichi; Miyano, Satoru; Ogawa, Seishi; Kojima, Seiji; Kanegane, Hirokazu

    2015-04-01

    X-linked lymphoproliferative disease (XLP) is a rare inherited immunodeficiency that often leads to hemophagocytic lymphohistiocytosis (HLH). XLP can be classified as XLP1 or XLP2, caused by mutations in SH2D1A and XIAP, respectively. In women, X-chromosome inactivation (XCI) of most X-linked genes occurs on one of the X chromosomes in each cell. The choice of which X chromosome remains activated is generally random, although genetic differences and selective advantage may cause one of the X chromosomes to be preferentially inactivated. Here we describe three patients with pancytopenia, including one female patient, in a Japanese family with a novel XIAP mutation. All three patients exhibited deficient XIAP protein expression, impaired NOD2/XIAP signaling, and augmented activation-induced cell death. In the female patient, the paternally derived X chromosome was non-randomly and exclusively inactivated in her peripheral blood and hair root cells. In contrast to asymptomatic females, this patient exhibied non-random XCI skewed towards the wild-type XIAP allele. This is the first report of a female patient with incomplete HLH resulting from a heterozygous XIAP mutation in association with non-random XCI.

  18. A patient with multisystem dysfunction carries a truncation mutation in human SLC12A2, the gene encoding the Na-K-2Cl cotransporter, NKCC1

    PubMed Central

    Wolfe, Lynne; Flores, Bianca; Koumangoye, Rainelli; Schornak, Cara C.; Omer, Salma; Pusey, Barbara; Lau, Christopher; Markello, Thomas; Adams, David R.

    2016-01-01

    This study describes a 13-yr-old girl with orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency, and multiorgan failure involving the gut and bladder. Exome sequencing revealed a de novo, loss-of-function allele in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1. The 11-bp deletion in exon 22 results in frameshift (p.Val1026Phefs*2) and truncation of the carboxy-terminal tail of the cotransporter. Preliminary studies in heterologous expression systems demonstrate that the mutation leads to a nonfunctional transporter, which is expressed and trafficked to the plasma membrane alongside wild-type NKCC1. The truncated protein, visible at higher molecular sizes, indicates either enhanced dimerization or misfolded aggregate. No significant dominant-negative effect was observed. K+ transport experiments performed in fibroblasts from the patient showed reduced total and NKCC1-mediated K+ influx. The absence of a bumetanide effect on K+ influx in patient fibroblasts only under hypertonic conditions suggests a deficit in NKCC1 regulation. We propose that disruption in NKCC1 function might affect sensory afferents and/or smooth muscle cells, as their functions depend on NKCC1 creating a Cl− gradient across the plasma membrane. This Cl− gradient allows the γ-aminobutyric acid (GABA) receptor or other Cl− channels to depolarize the membrane affecting processes such as neurotransmission or cell contraction. Under this hypothesis, disrupted sensory and smooth muscle function in a diverse set of tissues could explain the patient's phenotype. PMID:27900370

  19. Establishment of Mouse Model of MYH9 Disorders: Heterozygous R702C Mutation Provokes Macrothrombocytopenia with Leukocyte Inclusion Bodies, Renal Glomerulosclerosis and Hearing Disability

    PubMed Central

    Suzuki, Nobuaki; Kunishima, Shinji; Ikejiri, Makoto; Maruyama, Shoichi; Sone, Michihiko; Takagi, Akira; Ikawa, Masahito; Okabe, Masaru; Kojima, Tetsuhito; Saito, Hidehiko; Naoe, Tomoki; Matsushita, Tadashi

    2013-01-01

    Nonmuscle myosin heavy chain IIA (NMMHCIIA) encoded by MYH9 is associated with autosomal dominantly inherited diseases called MYH9 disorders. MYH9 disorders are characterized by macrothrombocytopenia and very characteristic inclusion bodies in granulocytes. MYH9 disorders frequently cause nephritis, sensorineural hearing disability and cataracts. One of the most common and deleterious mutations causing these disorders is the R702C missense mutation. We generated knock-in mice expressing the Myh9 R702C mutation. R702C knock-in hetero mice (R702C+/− mice) showed macrothrombocytopenia. We studied megakaryopoiesis of cultured fetal liver cells of R702C+/− mice and found that proplatelet formation was impaired: the number of proplatelet tips was decreased, proplatelet size was increased, and proplatelet shafts were short and enlarged. Although granulocyte inclusion bodies were not visible by May–Grünwald Giemsa staining, immunofluorescence analysis indicated that NMMHCIIA proteins aggregated and accumulated in the granulocyte cytoplasm. In other organs, R702C+/− mice displayed albuminuria which increased with age. Renal pathology examination revealed glomerulosclerosis. Sensory hearing loss was indicated by lowered auditory brainstem response. These findings indicate that Myh9 R702C knock-in mice mirror features of human MYH9 disorders arising from the R702C mutation. PMID:23976996

  20. Establishment of mouse model of MYH9 disorders: heterozygous R702C mutation provokes macrothrombocytopenia with leukocyte inclusion bodies, renal glomerulosclerosis and hearing disability.

    PubMed

    Suzuki, Nobuaki; Kunishima, Shinji; Ikejiri, Makoto; Maruyama, Shoichi; Sone, Michihiko; Takagi, Akira; Ikawa, Masahito; Okabe, Masaru; Kojima, Tetsuhito; Saito, Hidehiko; Naoe, Tomoki; Matsushita, Tadashi

    2013-01-01

    Nonmuscle myosin heavy chain IIA (NMMHCIIA) encoded by MYH9 is associated with autosomal dominantly inherited diseases called MYH9 disorders. MYH9 disorders are characterized by macrothrombocytopenia and very characteristic inclusion bodies in granulocytes. MYH9 disorders frequently cause nephritis, sensorineural hearing disability and cataracts. One of the most common and deleterious mutations causing these disorders is the R702C missense mutation. We generated knock-in mice expressing the Myh9 R702C mutation. R702C knock-in hetero mice (R702C+/- mice) showed macrothrombocytopenia. We studied megakaryopoiesis of cultured fetal liver cells of R702C+/- mice and found that proplatelet formation was impaired: the number of proplatelet tips was decreased, proplatelet size was increased, and proplatelet shafts were short and enlarged. Although granulocyte inclusion bodies were not visible by May-Grünwald Giemsa staining, immunofluorescence analysis indicated that NMMHCIIA proteins aggregated and accumulated in the granulocyte cytoplasm. In other organs, R702C+/- mice displayed albuminuria which increased with age. Renal pathology examination revealed glomerulosclerosis. Sensory hearing loss was indicated by lowered auditory brainstem response. These findings indicate that Myh9 R702C knock-in mice mirror features of human MYH9 disorders arising from the R702C mutation.

  1. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities

    PubMed Central

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  2. Novel TACSTD2 mutation in gelatinous drop-like corneal dystrophy

    PubMed Central

    Jongkhajornpong, Passara; Lekhanont, Kaevalin; Ueta, Mayumi; Kitazawa, Koji; Kawasaki, Satoshi; Kinoshita, Shigeru

    2015-01-01

    We identified a novel mutation in the tumor-associated calcium signal transducer 2 (TACSTD2) gene in a consanguineous Thai family with gelatinous drop-like corneal dystrophy (GDLD). All affected family members presented with an intense amyloid substance deposited on the cornea, which required surgical management. Genetic analysis of these individuals revealed a homozygous mutation c.79delC, in the TACSTD2 gene. Both parents of these individuals were unaffected and showed heterozygous mutations in the TACSTD2 gene. The mutation produced a truncated protein sequence that might be the cause of GDLD. PMID:27081552

  3. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits.

    PubMed

    MacDermot, Kay D; Bonora, Elena; Sykes, Nuala; Coupe, Anne-Marie; Lai, Cecilia S L; Vernes, Sonja C; Vargha-Khadem, Faraneh; McKenzie, Fiona; Smith, Robert L; Monaco, Anthony P; Fisher, Simon E

    2005-06-01

    FOXP2, the first gene to have been implicated in a developmental communication disorder, offers a unique entry point into neuromolecular mechanisms influencing human speech and language acquisition. In multiple members of the well-studied KE family, a heterozygous missense mutation in FOXP2 causes problems in sequencing muscle movements required for articulating speech (developmental verbal dyspraxia), accompanied by wider deficits in linguistic and grammatical processing. Chromosomal rearrangements involving this locus have also been identified. Analyses of FOXP2 coding sequence in typical forms of specific language impairment (SLI), autism, and dyslexia have not uncovered any etiological variants. However, no previous study has performed mutation screening of children with a primary diagnosis of verbal dyspraxia, the most overt feature of the disorder in affected members of the KE family. Here, we report investigations of the entire coding region of FOXP2, including alternatively spliced exons, in 49 probands affected with verbal dyspraxia. We detected variants that alter FOXP2 protein sequence in three probands. One such variant is a heterozygous nonsense mutation that yields a dramatically truncated protein product and cosegregates with speech and language difficulties in the proband, his affected sibling, and their mother. Our discovery of the first nonsense mutation in FOXP2 now opens the door for detailed investigations of neurodevelopment in people carrying different etiological variants of the gene. This endeavor will be crucial for gaining insight into the role of FOXP2 in human cognition.

  4. Diagnostic conundrums in antenatal presentation of a skeletal dysplasia with description of a heterozygous C-propeptide mutation in COL1A1 associated with a severe presentation of osteogenesis imperfecta.

    PubMed

    Marshall, Charlotte J; Arundel, Paul; Mushtaq, Talat; Offiah, Amaka C; Pollitt, Rebecca C; Bishop, Nicholas J; Balasubramanian, Meena

    2016-12-01

    Prompt and accurate diagnosis of skeletal dysplasias can play a crucial role in ensuring appropriate counseling and management (both antenatal and postnatal). When a skeletal dysplasia is detected during the antenatal period, especially early in the pregnancy, it can be associated with a poor prognosis. It is important to make a diagnosis in antenatal presentation of skeletal dysplasias to inform diagnosis, predict prognosis, provide accurate recurrence risks, and options for prenatal genetic testing in future pregnancies. Prenatal ultrasound scanning is a useful tool to detect several skeletal dysplasias and sonographic measurements serve as reliable indicators of lethality. The lethality depends on various factors including gestational age at which features are identified, size of the chest and progression of malformations. Although, it is important to type the skeletal presentation as accurately as possible, this is not always possible in an antenatal presentation and it is important to acknowledge this uncertainty. In the case of a live birth, it is always important to reassess the infant. Osteogenesis imperfecta (OI) is a heterogeneous group of disorders characterized by fragile bones. Here, we report an infant with severe OI born following a twin pregnancy in whom the bone disease is caused by a heterozygous pathogenic mutation, c.4160C >T, p.(Ala1387Val) located in the C-propeptide region of COL1A1. An assumption of lethality antenatally complicated his management in early life. We discuss this patient with particular emphasis on the neonatal presentation of a severe skeletal dysplasia and the lessons that may be learned in such situations. © 2016 Wiley Periodicals, Inc.

  5. Periodontal disease and FAM20A mutations.

    PubMed

    Kantaputra, Piranit Nik; Bongkochwilawan, Chotika; Lubinsky, Mark; Pata, Supansa; Kaewgahya, Massupa; Tong, Huei Jinn; Ketudat Cairns, James R; Guven, Yeliz; Chaisrisookumporn, Nipon

    2017-03-16

    Enamel-renal-gingival syndrome (ERGS; OMIM #204690), a rare autosomal recessive disorder caused by mutations in FAM20A, is characterized by nephrocalcinosis, nephrolithiasis, amelogenesis imperfecta, hypoplastic type, gingival fibromatosis and other dental abnormalities, including hypodontia and unerupted teeth with large dental follicles. We report three patients and their families with findings suggestive of ERGS. Mutation analysis of FAM20A was performed in all patients and their family members. Patients with homozygous frameshift and compound heterozygous mutations in FAM20A had typical clinical findings along with periodontitis. The other had a novel homozygous missense mutation in exon 10, mild gingival fibromatosis and renal calcifications. The periodontitis in our patients may be a syndrome component, and similar findings in previous reports suggest more than coincidence. Fam20a is an allosteric activator that increases Fam20c kinase activity. It is hypothesized that lack of FAM20A activation of FAM20C in our patients with FAM20A mutations might have caused amelogenesis imperfecta, abnormal bone remodeling and periodontitis. Nephrocalcinosis appears not to be a consistent finding of the syndrome and the missense mutation may correlate with mild gingival fibromatosis. Here we report three patients with homozygous or compound heterozygous mutations in FAM20A and findings that extend the phenotypic spectrum of this disorder, showing that protein truncation is associated with greater clinical severity.Journal of Human Genetics advance online publication, 16 March 2017; doi:10.1038/jhg.2017.26.

  6. New mutation of the PTCH gene in nevoid basal-cell carcinoma syndrome with West syndrome.

    PubMed

    Tachi, Nobutada; Fujii, Katsunori; Kimura, Mitsugu; Seki, Kouhei; Hirakai, Masahisa; Miyashita, Toshiyuki

    2007-11-01

    Neurologic involvement in nevoid basal-cell carcinoma syndrome includes intracranial calcification, congenital hydrocephalus, intracranial neoplasms, and mental retardation. A few cases of epilepsy with nevoid basal-cell carcinoma syndrome were reported. We report on a patient with nevoid basal-cell carcinoma syndrome and West syndrome. The patient had a heterozygous mutation (insertion of TGGC) in the PTCH gene. This mutation causes a shift of the reading frame, and creates a stop codon predicting the truncation of the PTCH protein. This mutation was not found in previously described patients with nevoid basal-cell carcinoma syndrome.

  7. The Intronic GABRG2 Mutation, IVS6+2T→G, Associated with CAE Altered Subunit mRNA Intron Splicing, Activated Nonsense-Mediated Decay and Produced a Stable Truncated γ2 Subunit

    PubMed Central

    Tian, Mengnan; Macdonald, Robert L.

    2012-01-01

    The intronic GABRG2 mutation, IVS6+2T→G, was identified in an Australian family with childhood absence epilepsy (CAE) and febrile seizures (Kananura et al., 2002). The GABRG2 intron 6 splice donor site was found to be mutated from GT to GG. We generated wildtype and mutant γ2S subunit bacterial artificial chromosomes (BACs) driven by a CMV promoter and expressed them in HEK293T cells and expressed wildtype and mutant γ2S subunit BACs containing the endogenous hGABRG2 promoter in transgenic mice. Wildtype and mutant GABRG2 mRNA splicing patterns were determined in both BAC transfected HEK293T cells and transgenic mouse brain, and in both, the mutation abolished intron 6 splicing at the donor site, activated a cryptic splice site, generated partial intron 6 retention and produced a frame shift in exon 7 that created a premature translation-termination codon (PTC). The resultant mutant mRNA was either degraded partially by nonsense mediated mRNA decay (NMD) or translated to a stable, truncated subunit (the γ2-PTC subunit) containing the first 6 GABRG2 exons and a novel frame-shifted 29 aa C terminal tail. The γ2-PTC subunit was homologous to the mollusk acetylcholine binding protein (AChBP) but was not secreted from cells. It was retained in the ER and not expressed on the surface membrane, but it did oligomerize with α1 and β2 subunits. These results suggested that the GABRG2 mutation, IVS6+2T→G, reduced surface αβγ2 receptor levels, thus reducing GABAergic inhibition, by reducing GABRG2 transcript level and producing a stable, nonfunctional truncated subunit that had a dominant negative effect on αβγ2 receptor assembly. PMID:22539854

  8. Increased rate of missense/in-frame mutations in individuals with NF1-related pulmonary stenosis: a novel genotype-phenotype correlation.

    PubMed

    Ben-Shachar, Shay; Constantini, Shlomi; Hallevi, Hen; Sach, Emma K; Upadhyaya, Meena; Evans, Gareth D; Huson, Susan M

    2013-05-01

    Neurofibromatosis type 1 (NF1) and its related disorders (NF1-Noonan syndrome (NFNS) and Watson syndrome (WS)) are caused by heterozygous mutations in the NF1 gene. Pulmonary stenosis (PS) occurs more commonly in NF1 and its related disorders than in the general population. This study investigated whether PS is associated with specific types of NF1 gene mutations in NF1, NFNS and WS. The frequency of different NF1 mutation types in a cohort of published and unpublished cases with NF1/NFNS/WS and PS was examined. Compared with NF1 in general, NFNS patients had higher rates of PS (9/35=26% vs 25/2322=1.1%, P value<0.001). Stratification according to mutation type showed that the increased PS rate appears to be driven by the NFNS group with non-truncating mutations. Eight of twelve (66.7%) NFNS cases with non-truncating mutations had PS compared with a 1.1% PS frequency in NF1 in general (P<0.001); there was no increase in the frequency of PS in NFNS patients with truncating mutations. Eight out of eleven (73%) individuals with NF1 and PS, were found to have non-truncating mutations, a much higher frequency than the 19% reported in NF1 cohorts (P<0.015). Only three cases of WS have been published with intragenic mutations, two of three had non-truncating mutations. Therefore, PS in NF1 and its related disorders is clearly associated with non-truncating mutations in the NF1 gene providing a new genotype-phenotype correlation. The data indicate a specific role of non-truncating mutations on the NF1 cardiac phenotype.

  9. Upper beak truncation in chicken embryos with the cleft primary palate mutation is due to an epithelial defect in the frontonasal mass.

    PubMed

    MacDonald, Mary E; Abbott, Ursula K; Richman, Joy M

    2004-06-01

    In this study, we used the chicken mutant strain known as cleft primary palate (cpp) to study the mechanisms of beak outgrowth. cpp mutants have complete truncation of the upper beak with normal development of the lower beak. Based on structural analysis and grafts of facial prominences, we localized the defect to the frontonasal mass and its derivatives. Several explanations that would account for the outgrowth defect were investigated, including abnormal expression of genes in the frontonasal epithelium, intrinsic defects in epithelium and/or mesenchyme defects in epithelial-mesenchymal signalling, a localized decrease in cell proliferation or a localized increase in programmed cell death. One of the genes expressed in the frontonasal epithelial growth zone, Fgf8, failed to down-regulate and was maintained for at least 48 hr beyond the time when down-regulation normally occurs. Recombination experiments further illustrated that the frontonasal mass epithelium was abnormal in the cpp mutants, whereas mutant mesenchyme was capable of normal outgrowth when combined with wild-type epithelium. Cell proliferation was not decreased in mutant embryos nor was cell death initially increased. Later, at stages 31-32, when the prenasal cartilage begins directed outgrowth, there was an increase in cell death within the mutant upper but not lower beak cartilage. The cpp beak truncation, therefore, is due to an epithelial defect in the frontonasal mass that is coincident with a failure to down-regulate expression of Fgf8.

  10. Merkel cell polyomavirus infection in both components of a combined Merkel cell carcinoma and basal cell carcinoma with ductal differentiation; each component had a similar but different novel Merkel cell polyomavirus large T antigen truncating mutation.

    PubMed

    Iwasaki, Takeshi; Kodama, Hajime; Matsushita, Michiko; Kuroda, Naoto; Yamasaki, Yoshikazu; Murakami, Ichiro; Yamamoto, Osamu; Hayashi, Kazuhiko

    2013-03-01

    Merkel cell polyomavirus infects up to 80% of patients with Merkel cell carcinoma. Combined Merkel cell carcinoma and cutaneous tumors occur occasionally. Previous reports have suggested that Merkel cell polyomavirus is absent from combined Merkel cell carcinoma and squamous cell carcinomas. This is the first report that Merkel cell polyomavirus infected in both lesions of a combined Merkel cell carcinoma and basal cell carcinoma. A 92-year-old Japanese man presented with a right thigh small subcutaneous mass. Histologic examination revealed a combined tumor with Merkel cell carcinoma and basal cell carcinoma with ductal differentiation. Both tumors and intermingled Merkel cells in basal cell carcinoma expressed Merkel cell polyomavirus large T antigen, and 17 and 240 copies of Merkel cell polyomavirus/cell were detected in the microdissected Merkel cell carcinoma and basal cell carcinoma specimens, respectively. Mutation analysis of Merkel cell polyomavirus large T antigen revealed a novel truncating mutation in Merkel cell carcinoma and a similar but different mutation in the basal cell carcinoma. These results suggest that each was infected by a different Merkel cell polyomavirus subclone derived from a single Merkel cell polyomavirus.

  11. Atypical phenotype in two patients with LAMA2 mutations.

    PubMed

    Marques, Joana; Duarte, Sofia T; Costa, Sónia; Jacinto, Sandra; Oliveira, Jorge; Oliveira, Márcia E; Santos, Rosário; Bronze-da-Rocha, Elsa; Silvestre, Ana Rita; Calado, Eulália; Evangelista, Teresinha

    2014-05-01

    Congenital muscular dystrophy type 1A is caused by mutations in the LAMA2 gene, which encodes the α2-chain of laminin. We report two patients with partial laminin-α2 deficiency and atypical phenotypes, one with almost exclusive central nervous system involvement (cognitive impairment and refractory epilepsy) and the second with marked cardiac dysfunction, rigid spine syndrome and limb-girdle weakness. Patients underwent clinical, histopathological, imaging and genetic studies. Both cases have two heterozygous LAMA2 variants sharing a potentially pathogenic missense mutation c.2461A>C (p.Thr821Pro) located in exon 18. Brain MRI was instrumental for the diagnosis, since muscular examination and motor achievements were normal in the first patient and there was a severe cardiac involvement in the second. The clinical phenotype of the patients is markedly different which could in part be explained by the different combination of mutations types (two missense versus a missense and a truncating mutation).

  12. ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts.

    PubMed

    Akiyama, Masashi

    2010-10-01

    Mutations in ABCA12 have been described in autosomal recessive congenital ichthyoses (ARCI) including harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). HI shows the most severe phenotype. CIE and LI are clinically characterized by fine, whitish scales on a background of erythematous skin, and large, thick, dark scales over the entire body without serious background erythroderma, respectively. To date, a total of 56 ABCA12 mutations have been reported in 66 ARCI families including 48 HI, 10 LI, and 8 CIE families of African, European, Pakistani/Indian, and Japanese origin (online database: http://www.derm-hokudai.jp/ABCA12/). A total of 62.5% of reported ABCA12 mutations are expected to lead to truncated proteins. Most mutations in HI are truncation mutations and homozygous or compound heterozygous truncation mutations always results in HI phenotype. In CIE families, at least one mutation on each allele is typically a missense mutation. Combinations of missense mutations in the first ATP-binding cassette of ABCA12 underlie the LI phenotype. ABCA12 is a keratinocyte lipid transporter associated with lipid transport in lamellar granules, and loss of ABCA12 function leads to a defective lipid barrier in the stratum corneum, resulting in an ichthyotic phenotype. Recent work using mouse models confirmed ABCA12 roles in skin barrier formation.

  13. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

    PubMed Central

    Puffenberger, Erik G.; Baple, Emma; Harding, Brian; Crino, Peter; Fogo, Agnes B.; Wenger, Olivia; Xin, Baozhong; Koehler, Alanna E.; McGlincy, Madeleine H.; Provencher, Margaret M.; Smith, Jeffrey D.; Tran, Linh; Al Turki, Saeed; Chioza, Barry A.; Cross, Harold; Harlalka, Gaurav V.; Hurles, Matthew E.; Maroofian, Reza; Heaps, Adam D.; Morton, Mary C.; Stempak, Lisa; Hildebrandt, Friedhelm; Sadowski, Carolin E.; Zaritsky, Joshua; Campellone, Kenneth; Morton, D. Holmes; Wang, Heng; Crosby, Andrew; Strauss, Kevin A.

    2015-01-01

    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology. PMID:26070982

  14. A Truncated Cauchy Distribution

    ERIC Educational Resources Information Center

    Nadarajah, Saralees; Kotz, Samuel

    2006-01-01

    A truncated version of the Cauchy distribution is introduced. Unlike the Cauchy distribution, this possesses finite moments of all orders and could therefore be a better model for certain practical situations. One such situation in finance is discussed. Explicit expressions for the moments of the truncated distribution are also derived.

  15. Mutations in MTP gene in abeta- and hypobeta-lipoproteinemia.

    PubMed

    Di Leo, Enza; Lancellotti, Sandra; Penacchioni, Junia Y; Cefalù, Angelo B; Averna, Maurizio; Pisciotta, L; Bertolini, Stefano; Calandra, Sebastiano; Gabelli, Carlo; Tarugi, Patrizia

    2005-06-01

    Familial hypobetalipoproteinemia (FHBL) and abetalipoproteinemia (ABL) are inherited disorders of apolipoprotein B (apo B)-containing lipoproteins that result from mutations in apo B and microsomal triglyceride transfer protein (MTP) genes, respectively. Here we report three patients with severe deficiency of plasma low-density lipoprotein (LDL) and apo B. Two of them (probands F.A. and P.E.) had clinical and biochemical phenotype consistent with ABL. Proband F.A. was homozygous for a minute deletion/insertion (c.1228delCCCinsT) in exon 9 of MTP gene predicted to cause a truncated MTP protein of 412 amino acids. Proband P. E. was heterozygous for a mutation in intron 9 (IVS9-1G>A), previously reported in an ABL patient. We failed to find the second pathogenic mutation in MTP gene of this patient. No mutations were found in apo B gene. The third proband (D.F.) had a less severe lipoprotein phenotype which was similar to that of heterozygous FHBL and appeared to be inherited as a co-dominant trait. However, he had no mutations in apo B gene. He was found to be a compound heterozygote for two missense mutations (D384A and G661A), involving highly conserved regions of MTP. Since this proband was also homozygous for varepsilon2 allele of apolipoprotein E (apo E), it is likely that his hypobetalipoproteinemia derives from a combined effect of a mild MTP deficiency and homozygosity for apo E2 isoform.

  16. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31). A unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins.

    PubMed Central

    Young, S G; Hubl, S T; Smith, R S; Snyder, S M; Terdiman, J F

    1990-01-01

    Apolipoprotein B-100 has a crucial structural role in the formation of VLDL and LDL. Familial hypobetalipoproteinemia, a syndrome in which the concentration of LDL cholesterol in plasma is abnormally low, can be caused by mutations in the apo B gene that prevent the translation of a full-length apo B-100 molecule. Prior studies have revealed that truncated species of apo B [e.g., apo B-37 (1728 amino acids), apo B-46 (2057 amino acids)] can occasionally be identified in the plasma of subjects with familial hypobetalipoproteinemia; in each of these cases, the truncated apo B species has been a prominent protein component of VLDL. In this report, we describe a kindred with hypobetalipoproteinemia in which the plasma of four affected heterozygotes contained a unique truncated apo B species, apo B-31. Apolipoprotein B-31 is caused by the deletion of a single nucleotide in the apo B gene, and it is predicted to contain 1425 amino acids. Apolipoprotein B-31 is the shortest of the mutant apo B species to be identified in the plasma of a subject with hypobetalipoproteinemia. In contrast to longer truncated apo B species, apo B-31 was undetectable in the VLDL and the LDL; however, it was present in the HDL fraction and the lipoprotein-deficient fraction of plasma. The density distribution of apo B-31 in the plasma suggests the possibility that the amino-terminal 1425 amino acids of apo B-100 are sufficient to permit the formation and secretion of small, dense lipoproteins but are inadequate to support the formation of the more lipid-rich VLDL and LDL particles. Images PMID:2312735

  17. A new heterozygous mutation of the FOXL2 gene is associated with a large ovarian cyst and ovarian dysfunction in an adolescent girl with blepharophimosis/ptosis/epicanthus inversus syndrome.

    PubMed

    Raile, K; Stobbe, H; Tröbs, R B; Kiess, W; Pfäffle, R

    2005-09-01

    Blepharophimosis/ptosis/epicanthus inversus syndrome (BPES), an autosomal dominant syndrome in which eyelid malformation is associated with (type I BPES) or without premature ovarian failure (type II BPES). Mutations of a putative winged helix/forkhead transcription factor FOXL2 account for both types of BPES. We report on a 16-year-old adolescent girl with blepharophimosis and ptosis. Subsequently she developed oligomenorrhea, secondary amenorrhea for 6 months, and an extremely large cyst of one ovary. The cyst contained 8 l of cyst fluid and histopathology displayed a large corpus luteum cyst. Following laparotomy, gonadotropin levels were elevated (LH 17.2 U/l, FSH 29.4 U/l) and estradiol levels decreased (67 pmol/l). Because of clinical aspects of BPES and abnormal ovarian function we suspected a mutation of her FOXL2 gene and found a new in-frame mutation (904_939dup36) on one allele, leading to a 12 alanine expansion within the polyalanine domain. We conclude that the FOXL2 mutation 904_939dup36 may account not only for blepharophimosis and ptosis but also for ovarian dysfunction and growth of the large corpus luteum cyst. In contrast to known FOXL2 mutations with polyalanine expansions and association with BPES type II, clinical aspects of our girl may indicate some degree of ovarian dysfunction that might finally lead to BPES type I with premature ovarian failure.

  18. A Mouse Model That Reproduces the Developmental Pathways and Site Specificity of the Cancers Associated With the Human BRCA1 Mutation Carrier State.

    PubMed

    Liu, Ying; Yen, Hai-Yun; Austria, Theresa; Pettersson, Jonas; Peti-Peterdi, Janos; Maxson, Robert; Widschwendter, Martin; Dubeau, Louis

    2015-10-01

    Predisposition to breast and extrauterine Müllerian carcinomas in BRCA1 mutation carriers is due to a combination of cell-autonomous consequences of BRCA1 inactivation on cell cycle homeostasis superimposed on cell-nonautonomous hormonal factors magnified by the effects of BRCA1 mutations on hormonal changes associated with the menstrual cycle. We used the Müllerian inhibiting substance type 2 receptor (Mis2r) promoter and a truncated form of the Follicle stimulating hormone receptor (Fshr) promoter to introduce conditional knockouts of Brca1 and p53 not only in mouse mammary and Müllerian epithelia, but also in organs that control the estrous cycle. Sixty percent of the double mutant mice developed invasive Müllerian and mammary carcinomas. Mice carrying heterozygous mutations in Brca1 and p53 also developed invasive tumors, albeit at a lesser (30%) rate, in which the wild type alleles were no longer present due to loss of heterozygosity. While mice carrying heterozygous mutations in both genes developed mammary tumors, none of the mice carrying only a heterozygous p53 mutation developed such tumors (P < 0.0001), attesting to a role for Brca1 mutations in tumor development. This mouse model is attractive to investigate cell-nonautonomous mechanisms associated with cancer predisposition in BRCA1 mutation carriers and to investigate the merit of chemo-preventive drugs targeting such mechanisms.

  19. A Mouse Model That Reproduces the Developmental Pathways and Site Specificity of the Cancers Associated With the Human BRCA1 Mutation Carrier State

    PubMed Central

    Liu, Ying; Yen, Hai-Yun; Austria, Theresa; Pettersson, Jonas; Peti-Peterdi, Janos; Maxson, Robert; Widschwendter, Martin; Dubeau, Louis

    2015-01-01

    Predisposition to breast and extrauterine Müllerian carcinomas in BRCA1 mutation carriers is due to a combination of cell-autonomous consequences of BRCA1 inactivation on cell cycle homeostasis superimposed on cell-nonautonomous hormonal factors magnified by the effects of BRCA1 mutations on hormonal changes associated with the menstrual cycle. We used the Müllerian inhibiting substance type 2 receptor (Mis2r) promoter and a truncated form of the Follicle stimulating hormone receptor (Fshr) promoter to introduce conditional knockouts of Brca1 and p53 not only in mouse mammary and Müllerian epithelia, but also in organs that control the estrous cycle. Sixty percent of the double mutant mice developed invasive Müllerian and mammary carcinomas. Mice carrying heterozygous mutations in Brca1 and p53 also developed invasive tumors, albeit at a lesser (30%) rate, in which the wild type alleles were no longer present due to loss of heterozygosity. While mice carrying heterozygous mutations in both genes developed mammary tumors, none of the mice carrying only a heterozygous p53 mutation developed such tumors (P < 0.0001), attesting to a role for Brca1 mutations in tumor development. This mouse model is attractive to investigate cell-nonautonomous mechanisms associated with cancer predisposition in BRCA1 mutation carriers and to investigate the merit of chemo-preventive drugs targeting such mechanisms. PMID:26629527

  20. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    PubMed

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype.

  1. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia.

    PubMed

    Nieminen, P; Arte, S; Tanner, D; Paulin, L; Alaluusua, S; Thesleff, I; Pirinen, S

    2001-10-01

    Development of dentition is controlled by numerous genes, as has been shown by experimental animal studies and mutations that have been identified by genetic studies in man. Here we report a nonsense mutation in the PAX9 gene that is associated with molar tooth agenesis in a Finnish family. The A340T transversion creates a stop codon at lysine 114, and truncates the coded PAX9 protein at the end of the DNA-binding paired-box. All the affected members of the family were heterozygous for the mutation. The tooth agenesis phenotype involves all permanent second and third molars and most of the first molars and resembles the earlier reported phenotype that was also associated with a PAX9 mutation. The phenotype is presumably a consequence of haploinsufficiency of PAX9. In another Finnish family with molar tooth agenesis, we could not find similar sequence changes in PAX9.

  2. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome

    PubMed Central

    El Husny, Antonette Souto; Raiol-Moraes, Milene; Fernandes-Caldato, Milena Coelho; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the João de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease. PMID:25328414

  3. Superalgebraic truncations in supergravities

    SciTech Connect

    Kim, C. ); Park, Y.; Kim, K.Y.; Kim, Y. ); l'Yi, W.S. Department of Physics and Astronomy, University of Maryland, College Park, Maryland )

    1991-11-15

    We study {ital D}=5 and {ital D}=8 supergravities in the context of superalgebra. These are analyzed in SU(4/2) superalgebra and its branching patterns in terms of Kac-Dynkin weight techniques. Consistent truncations can be easily realized as subalgebra chains of SU(4/2) superalgebras.

  4. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy

    PubMed Central

    Halbritter, Jan; Porath, Jonathan D.; Diaz, Katrina A.; Braun, Daniela A.; Kohl, Stefan; Chaki, Moumita; Allen, Susan J.; Soliman, Neveen A.; Hildebrandt, Friedhelm

    2015-01-01

    Nephronophthisis-related ciliopathies (NPHP-RC) are autosomal-recessive cystic kidney diseases. More than 13 genes are implicated in its pathogenesis to date, accounting for only 40 % of all cases. High-throughput mutation screenings of large patient cohorts represent a powerful tool for diagnostics and identification of novel NPHP genes. We here performed a new high-throughput mutation analysis method to study 13 established NPHP genes (NPHP1–NPHP13) in a worldwide cohort of 1,056 patients diagnosed with NPHP-RC. We first applied multiplexed PCR-based amplification using Fluidigm Access-Array™ technology followed by barcoding and next-generation resequencing on an Illumina platform. As a result, we established the molecular diagnosis in 127/1,056 independent individuals (12.0 %) and identified a single heterozygous truncating mutation in an additional 31 individuals (2.9 %). Altogether, we detected 159 different mutations in 11 out of 13 different NPHP genes, 99 of which were novel. Phenotypically most remarkable were two patients with truncating mutations in INVS/NPHP2 who did not present as infants and did not exhibit extrarenal manifestations. In addition, we present the first case of Caroli disease due to mutations in WDR19/NPHP13 and the second case ever with a recessive mutation in GLIS2/NPHP7. This study represents the most comprehensive mutation analysis in NPHP-RC patients, identifying the largest number of novel mutations in a single study worldwide. PMID:23559409

  5. Ultra-Deep Sequencing of Mouse Mitochondrial DNA: Mutational Patterns and Their Origins

    PubMed Central

    Freyer, Christoph; Hagström, Erik; Ingman, Max; Larsson, Nils-Göran; Gyllensten, Ulf

    2011-01-01

    Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading–deficient mtDNA polymerase (mtDNA mutator mice) have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life. PMID:21455489

  6. Investigation of Truncated Waveguides

    NASA Technical Reports Server (NTRS)

    Lourie, Nathan P.; Chuss, David T.; Henry, Ross M.; Wollack, Edward J.

    2013-01-01

    The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to sub-millimeter wavebands.

  7. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach.

  8. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease.

    PubMed

    Roberts, Angharad M; Ware, James S; Herman, Daniel S; Schafer, Sebastian; Baksi, John; Bick, Alexander G; Buchan, Rachel J; Walsh, Roddy; John, Shibu; Wilkinson, Samuel; Mazzarotto, Francesco; Felkin, Leanne E; Gong, Sungsam; MacArthur, Jacqueline A L; Cunningham, Fiona; Flannick, Jason; Gabriel, Stacey B; Altshuler, David M; Macdonald, Peter S; Heinig, Matthias; Keogh, Anne M; Hayward, Christopher S; Banner, Nicholas R; Pennell, Dudley J; O'Regan, Declan P; San, Tan Ru; de Marvao, Antonio; Dawes, Timothy J W; Gulati, Ankur; Birks, Emma J; Yacoub, Magdi H; Radke, Michael; Gotthardt, Michael; Wilson, James G; O'Donnell, Christopher J; Prasad, Sanjay K; Barton, Paul J R; Fatkin, Diane; Hubner, Norbert; Seidman, Jonathan G; Seidman, Christine E; Cook, Stuart A

    2015-01-14

    The recent discovery of heterozygous human mutations that truncate full-length titin (TTN, an abundant structural, sensory, and signaling filament in muscle) as a common cause of end-stage dilated cardiomyopathy (DCM) promises new prospects for improving heart failure management. However, realization of this opportunity has been hindered by the burden of TTN-truncating variants (TTNtv) in the general population and uncertainty about their consequences in health or disease. To elucidate the effects of TTNtv, we coupled TTN gene sequencing with cardiac phenotyping in 5267 individuals across the spectrum of cardiac physiology and integrated these data with RNA and protein analyses of human heart tissues. We report diversity of TTN isoform expression in the heart, define the relative inclusion of TTN exons in different isoforms (using the TTN transcript annotations available at http://cardiodb.org/titin), and demonstrate that these data, coupled with the position of the TTNtv, provide a robust strategy to discriminate pathogenic from benign TTNtv. We show that TTNtv is the most common genetic cause of DCM in ambulant patients in the community, identify clinically important manifestations of TTNtv-positive DCM, and define the penetrance and outcomes of TTNtv in the general population. By integrating genetic, transcriptome, and protein analyses, we provide evidence for a length-dependent mechanism of disease. These data inform diagnostic criteria and management strategies for TTNtv-positive DCM patients and for TTNtv that are identified as incidental findings.

  9. One novel Dravet syndrome causing mutation and one recurrent MAE causing mutation in SCN1A gene.

    PubMed

    Yordanova, Iglika; Todorov, Tihomir; Dimova, Petia; Hristova, Dimitrina; Tincheva, Radka; Litvinenko, Ivan; Yotovska, Olga; Kremensky, Ivo; Todorova, Albena

    2011-04-25

    Mutations in SCN1A gene, encoding the voltage-gated sodium channel α1-subunit, are found to be associated with severe myoclonic epilepsy in infancy or Dravet syndrome (DS), but only rarely with the myoclonic astatic epilepsy (MAE, or Doose syndrome). We report on two patients with SCN1A mutations and severe epilepsy within the spectrum of generalized epilepsy with febrile seizures plus syndrome (GEFS+), the phenotypes being consistent with DS and MAE, respectively. Analysis of SCN1A revealed a heterozygous de novo frameshift mutation (c.4205_4208delGAAA) in the patient with DS, and a recurrent missense mutation (c.3521C>G) in that suffering from MAE. The missense mutation has been reported in patients with neurological diseases of various manifestations, which suggests that this variability is likely to result from the modifying effects of other genetic or environmental factors. DS phenotype has been mainly found associated with truncation mutations, while predominantly missense mutations and very few prematurely terminating substitutions have been reported in GEFS+ patients.

  10. Thyroglobulin gene mutations in Chinese patients with congenital hypothyroidism.

    PubMed

    Hu, Xuyun; Chen, Rongyu; Fu, Chunyun; Fan, Xin; Wang, Jin; Qian, Jiale; Yi, Shang; Li, Chuan; Luo, Jingsi; Su, Jiasun; Zhang, Shujie; Xie, Bobo; Zheng, Haiyang; Lai, Yunli; Chen, Yun; Li, Hongdou; Gu, Xuefan; Chen, Shaoke; Shen, Yiping

    2016-03-05

    Mutations in Thyroglobulin (TG) are common genetic causes of congenital hypothyroidism (CH). But the TG mutation spectrum and its frequency in Chinese CH patients have not been investigated. Here we conducted a genetic screening of TG gene in a cohort of 382 Chinese CH patients. We identified 22 rare non-polymorphic variants including six truncating variants and 16 missense variants of unknown significance (VUS). Seven patients carried homozygous pathogenic variants, and three patients carried homozygous or compound heterozygous VUS. 48 out of 382 patients carried one of 18 heterozygous VUS which is significantly more often than their occurrences in control cohort (P < 0.0001). Unique to Asian population, the c.274+2T>G variant is the most common pathogenic variant with an allele frequency of 0.021. The prevalence of CH due to TG gene defect in Chinese population was estimated to be approximately 1/101,000. Our study uncovered ethnicity specific TG mutation spectrum and frequency.

  11. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta.

    PubMed

    Kim, J W; Seymen, F; Lee, K E; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Shin, T J; Kyun, H K; Simmer, J P; Hu, J C-C

    2013-10-01

    Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.

  12. Truncated Gaussians as tolerance sets

    NASA Technical Reports Server (NTRS)

    Cozman, Fabio; Krotkov, Eric

    1994-01-01

    This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.

  13. Molecular basis of severe factor XI deficiency in seven families from the west of France. Seven novel mutations, including an ancient Q88X mutation.

    PubMed

    Quélin, F; Trossaërt, M; Sigaud, M; Mazancourt, P D E; Fressinaud, E

    2004-01-01

    Inherited factor (F)XI deficiency is a rare disorder in the general population, though it is commonly found in individuals of Ashkenazi Jewish ancestry. In particular, two mutations--a stop mutation (type II) and a missense mutation (type III)--which are responsible for FXI deficiency, predominate. The bleeding tendency associated with plasma FXI deficiency in patients is variable, with approximately 50% of patients exhibiting excessive post-traumatic or postsurgical bleeding. In this study, we identified the molecular basis of FXI deficiency in 10 patients belonging to six unrelated families of the Nantes area in France and one family of Lebanese origin. As in Ashkenazi Jewish or in French Basque patients, we have identified a new ancient mutation in exon 4 resulting in Q88X, specific to patients from Nantes, that can result in a severely truncated polypeptide. Homozygous Q88X was found in a severely affected patient with an inhibitor to FXI and in three other unrelated families, either as homozygous, heterozygous or compound heterozygous states. Other identified mutations are two nonsense mutations in the FXI gene, in exon 7 and 15, resulting in R210X and C581X, respectively, which were identified in three families. A novel insertion in exon 3 (nucleotide 137 + G), which causes a stop codon, was characterized. Finally, sequence analysis of all 15 exons of the FXI gene revealed three missense mutations resulting in G336R and G350A (exon 10) and T575M (exon 15). Two mutations (T575M and G350A) with discrepant antigen and functional values are particularly interesting because most of the described mutations are associated with the absence of secreted protein.

  14. Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia.

    PubMed

    Sirmaci, Asli; Spiliopoulos, Michail; Brancati, Francesco; Powell, Eric; Duman, Duygu; Abrams, Alex; Bademci, Guney; Agolini, Emanuele; Guo, Shengru; Konuk, Berrin; Kavaz, Asli; Blanton, Susan; Digilio, Maria Christina; Dallapiccola, Bruno; Young, Juan; Zuchner, Stephan; Tekin, Mustafa

    2011-08-12

    KBG syndrome is characterized by intellectual disability associated with macrodontia of the upper central incisors as well as distinct craniofacial findings, short stature, and skeletal anomalies. Although believed to be genetic in origin, the specific underlying defect is unknown. Through whole-exome sequencing, we identified deleterious heterozygous mutations in ANKRD11 encoding ankyrin repeat domain 11, also known as ankyrin repeat-containing cofactor 1. A splice-site mutation, c.7570-1G>C (p.Glu2524_Lys2525del), cosegregated with the disease in a family with three affected members, whereas in a simplex case a de novo truncating mutation, c.2305delT (p.Ser769GlnfsX8), was detected. Sanger sequencing revealed additional de novo truncating ANKRD11 mutations in three other simplex cases. ANKRD11 is known to interact with nuclear receptor complexes to modify transcriptional activation. We demonstrated that ANKRD11 localizes mainly to the nuclei of neurons and accumulates in discrete inclusions when neurons are depolarized, suggesting that it plays a role in neural plasticity. Our results demonstrate that mutations in ANKRD11 cause KBG syndrome and outline a fundamental role of ANKRD11 in craniofacial, dental, skeletal, and central nervous system development and function.

  15. Mutations in ANKRD11 Cause KBG Syndrome, Characterized by Intellectual Disability, Skeletal Malformations, and Macrodontia

    PubMed Central

    Sirmaci, Asli; Spiliopoulos, Michail; Brancati, Francesco; Powell, Eric; Duman, Duygu; Abrams, Alex; Bademci, Guney; Agolini, Emanuele; Guo, Shengru; Konuk, Berrin; Kavaz, Asli; Blanton, Susan; Digilio, Maria Christina; Dallapiccola, Bruno; Young, Juan; Zuchner, Stephan; Tekin, Mustafa

    2011-01-01

    KBG syndrome is characterized by intellectual disability associated with macrodontia of the upper central incisors as well as distinct craniofacial findings, short stature, and skeletal anomalies. Although believed to be genetic in origin, the specific underlying defect is unknown. Through whole-exome sequencing, we identified deleterious heterozygous mutations in ANKRD11 encoding ankyrin repeat domain 11, also known as ankyrin repeat-containing cofactor 1. A splice-site mutation, c.7570-1G>C (p.Glu2524_Lys2525del), cosegregated with the disease in a family with three affected members, whereas in a simplex case a de novo truncating mutation, c.2305delT (p.Ser769GlnfsX8), was detected. Sanger sequencing revealed additional de novo truncating ANKRD11 mutations in three other simplex cases. ANKRD11 is known to interact with nuclear receptor complexes to modify transcriptional activation. We demonstrated that ANKRD11 localizes mainly to the nuclei of neurons and accumulates in discrete inclusions when neurons are depolarized, suggesting that it plays a role in neural plasticity. Our results demonstrate that mutations in ANKRD11 cause KBG syndrome and outline a fundamental role of ANKRD11 in craniofacial, dental, skeletal, and central nervous system development and function. PMID:21782149

  16. A Novel CCM2 Gene Mutation Associated with Familial Cerebral Cavernous Malformation

    PubMed Central

    Huang, Wen-Qing; Lu, Cong-Xia; Zhang, Ya; Yi, Ke-Hui; Cai, Liang-Liang; Li, Ming-Li; Wang, Han; Lin, Qing; Tzeng, Chi-Meng

    2016-01-01

    Background: Cerebral cavernous malformations (CCMs) are common vascular malformations that predominantly arise in the central nervous system and are mainly characterized by enlarged vascular cavities without intervening brain parenchyma. Familial CCMs (FCCMs) is inherited in an autosomal dominant pattern with incomplete penetrance and variable symptoms. Methods: Mutations of three pathogenic genes, CCM1, CCM2, and CCM3, were investigated by direct DNA sequencing in a Chinese family with multiple CCM lesions. Results: Four heterozygous variants in the CCM2 gene, including one deletion (c.95delC), a missense mutation (c.358G>A, p.V120I), one silent mutation (c.915G>A, p.T305T), and a substitution (c. *1452 T>C), were identified in the subjects with multiple CCM lesions, but not in a healthy sibling. Among these variants, the c.95delC deletion is a novel mutation which is expected to cause a premature termination codon. It is predicted to produce a truncated CCM2 protein lacking the PTB and C-terminal domains, thus disrupting the molecular functions of CCM2. Conclusions: The novel truncating mutation in the CCM2 gene, c.95delC, may be responsible for multiple CCM lesions in a part of FCCM. In addition, it may represent a potential genetic biomarker for early diagnosis of FCCM. PMID:27708576

  17. Tay-Sachs disease in an Arab family due to c.78G>A HEXA nonsense mutation encoding a p.W26X early truncation enzyme peptide.

    PubMed

    Haghighi, Alireza; Masri, Amira; Kornreich, Ruth; Desnick, Robert J

    2011-12-01

    Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient β-hexosaminidase A activity due to β-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient β-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations.

  18. Identification of novel PIKFYVE gene mutations associated with Fleck corneal dystrophy

    PubMed Central

    Gee, Jessica A.; Frausto, Ricardo F.; Chung, Duk-Won D.; Tangmonkongvoragul, Chulaluck; Le, Derek J.; Wang, Cynthia; Han, Jonathan

    2015-01-01

    Purpose To report the identification of a novel frameshift mutation and copy number variation (CNV) in PIKFYVE in two probands with fleck corneal dystrophy (FCD). Methods Slit-lamp examination was performed to identify characteristic features of FCD. After genomic DNA was collected, PCR amplification and automated sequencing of all 41 exons of PIKFYVE was performed. Using genomic DNA, quantitative PCR (qPCR) was performed to detect CNVs within PIKFYVE. Results In the first FCD proband, numerous panstromal punctate opacities were observed in each of the proband’s corneas, consistent with the diagnosis of FCD. Screening of PIKFYVE demonstrated a novel heterozygous frameshift mutation in exon 19, c.3151dupA, which is predicted to encode for a truncated PIKFYVE protein, p.(Asp1052Argfs*18). This variant was identified in an affected sister but not in the proband’s unaffected mother or brother or 200 control chromosomes. The second FCD proband presented with bilateral, discrete, punctate, grayish-white stromal opacities. Exonic screening of PIKFYVE revealed no causative variant. However, CNV analysis demonstrated the hemizygous deletion of exons 15 and 16. Conclusions We report a novel heterozygous frameshift mutation (c.3151dupA) and a CNV in PIKFYVE, representing the first CNV and the fifth frameshift mutation associated with FCD. PMID:26396486

  19. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis.

    PubMed

    Ruiz-Perez, V L; Ide, S E; Strom, T M; Lorenz, B; Wilson, D; Woods, K; King, L; Francomano, C; Freisinger, P; Spranger, S; Marino, B; Dallapiccola, B; Wright, M; Meitinger, T; Polymeropoulos, M H; Goodship, J

    2000-03-01

    Ellis-van Creveld syndrome (EvC, MIM 225500) is an autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly and dysplastic nails and teeth. Congenital cardiac defects, most commonly a defect of primary atrial septation producing a common atrium, occur in 60% of affected individuals. The disease was mapped to chromosome 4p16 in nine Amish subpedigrees and single pedigrees from Mexico, Ecuador and Brazil. Weyers acrodental dysostosis (MIM 193530), an autosomal dominant disorder with a similar but milder phenotype, has been mapped in a single pedigree to an area including the EvC critical region. We have identified a new gene (EVC), encoding a 992-amino-acid protein, that is mutated in individuals with EvC. We identified a splice-donor change in an Amish pedigree and six truncating mutations and a single amino acid deletion in seven pedigrees. The heterozygous carriers of these mutations did not manifest features of EvC. We found two heterozygous missense mutations associated with a phenotype, one in a man with Weyers acrodental dysostosis and another in a father and his daughter, who both have the heart defect characteristic of EvC and polydactyly, but not short stature. We suggest that EvC and Weyers acrodental dysostosis are allelic conditions.

  20. Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development

    PubMed Central

    Vivante, Asaf; Kleppa, Marc-Jens; Schulz, Julian; Kohl, Stefan; Sharma, Amita; Chen, Jing; Shril, Shirlee; Hwang, Daw-Yang; Weiss, Anna-Carina; Kaminski, Michael M.; Shukrun, Rachel; Kemper, Markus J.; Lehnhardt, Anja; Beetz, Rolf; Sanna-Cherchi, Simone; Verbitsky, Miguel; Gharavi, Ali G.; Stuart, Helen M.; Feather, Sally A.; Goodship, Judith A.; Goodship, Timothy H.J.; Woolf, Adrian S.; Westra, Sjirk J.; Doody, Daniel P.; Bauer, Stuart B.; Lee, Richard S.; Adam, Rosalyn M.; Lu, Weining; Reutter, Heiko M.; Kehinde, Elijah O.; Mancini, Erika J.; Lifton, Richard P.; Tasic, Velibor; Lienkamp, Soeren S.; Jüppner, Harald; Kispert, Andreas; Hildebrandt, Friedhelm

    2015-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT. PMID:26235987

  1. Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia.

    PubMed

    Ohashi, K; Ishibashi, S; Osuga, J; Tozawa, R; Harada, K; Yahagi, N; Shionoiri, F; Iizuka, Y; Tamura, Y; Nagai, R; Illingworth, D R; Gotoda, T; Yamada, N

    2000-08-01

    Abetalipoproteinemia (ABL) is an inherited disease characterized by the virtual absence of apolipoprotein B (apoB)-containing lipoproteins from plasma. Only limited numbers of families have been screened for mutations in the microsomal triglyceride transfer protein (MTP) gene. To clarify the genetic basis of clinical diversity of ABL, mutations of the MTP gene have been screened in 4 unrelated patients with ABL. Three novel mutations have been identified: a frameshift mutation caused by a single adenine deletion at position 1389 of the cDNA, and a missense mutation, Asn780Tyr, each in homozygous forms; and a splice site mutation, 2218-2A-->G, in a compound heterozygous form. The frameshift and splice site mutations are predicted to encode truncated forms of MTP. When transiently expressed in Cos-1 cells, the Asn780Tyr mutant MTP bound protein disulfide isomerase (PDI) but displayed negligible MTP activity. It is of interest that the patient having the Asn780Tyr mutation, a 27-year-old male, has none of the manifestations characteristic of classic ABL even though his plasma apoB and vitamin E were virtually undetectable. These results indicated that defects of the MTP gene are the proximal cause of ABL.

  2. Biallelic SZT2 Mutations Cause Infantile Encephalopathy with Epilepsy and Dysmorphic Corpus Callosum

    PubMed Central

    Basel-Vanagaite, Lina; Hershkovitz, Tova; Heyman, Eli; Raspall-Chaure, Miquel; Kakar, Naseebullah; Smirin-Yosef, Pola; Vila-Pueyo, Marta; Kornreich, Liora; Thiele, Holger; Bode, Harald; Lagovsky, Irina; Dahary, Dvir; Haviv, Ami; Hubshman, Monika Weisz; Pasmanik-Chor, Metsada; Nürnberg, Peter; Gothelf, Doron; Kubisch, Christian; Shohat, Mordechai; Macaya, Alfons; Borck, Guntram

    2013-01-01

    Epileptic encephalopathies are genetically heterogeneous severe disorders in which epileptic activity contributes to neurological deterioration. We studied two unrelated children presenting with a distinctive early-onset epileptic encephalopathy characterized by refractory epilepsy and absent developmental milestones, as well as thick and short corpus callosum and persistent cavum septum pellucidum on brain MRI. Using whole-exome sequencing, we identified biallelic mutations in seizure threshold 2 (SZT2) in both affected children. The causative mutations include a homozygous nonsense mutation and a nonsense mutation together with an exonic splice-site mutation in a compound-heterozygous state. The latter mutation leads to exon skipping and premature termination of translation, as shown by RT-PCR in blood RNA of the affected boy. Thus, all three mutations are predicted to result in nonsense-mediated mRNA decay and/or premature protein truncation and thereby loss of SZT2 function. Although the molecular role of the peroxisomal protein SZT2 in neuronal excitability and brain development remains to be defined, Szt2 has been shown to influence seizure threshold and epileptogenesis in mice, consistent with our findings in humans. We conclude that mutations in SZT2 cause a severe type of autosomal-recessive infantile encephalopathy with intractable seizures and distinct neuroradiological anomalies. PMID:23932106

  3. Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population.

    PubMed

    Srour, Myriam; Schwartzentruber, Jeremy; Hamdan, Fadi F; Ospina, Luis H; Patry, Lysanne; Labuda, Damian; Massicotte, Christine; Dobrzeniecka, Sylvia; Capo-Chichi, José-Mario; Papillon-Cavanagh, Simon; Samuels, Mark E; Boycott, Kym M; Shevell, Michael I; Laframboise, Rachel; Désilets, Valérie; Maranda, Bruno; Rouleau, Guy A; Majewski, Jacek; Michaud, Jacques L

    2012-04-06

    Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.

  4. Expanding the clinical and mutational spectrum of Kaufman oculocerebrofacial syndrome with biallelic UBE3B mutations.

    PubMed

    Basel-Vanagaite, Lina; Yilmaz, Rüstem; Tang, Sha; Reuter, Miriam S; Rahner, Nils; Grange, Dorothy K; Mortenson, Megan; Koty, Patrick; Feenstra, Heather; Farwell Gonzalez, Kelly D; Sticht, Heinrich; Boddaert, Nathalie; Désir, Julie; Anyane-Yeboa, Kwame; Zweier, Christiane; Reis, André; Kubisch, Christian; Jewett, Tamison; Zeng, Wenqi; Borck, Guntram

    2014-07-01

    Biallelic mutations of UBE3B have recently been shown to cause Kaufman oculocerebrofacial syndrome (also reported as blepharophimosis-ptosis-intellectual disability syndrome), an autosomal recessive condition characterized by hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels. To date, six patients with either missense mutations affecting the UBE3B HECT domain or truncating mutations have been described. Here, we report on the identification of homozygous or compound heterozygous UBE3B mutations in six additional patients from five unrelated families using either targeted UBE3B sequencing in individuals with suggestive facial dysmorphic features, or exome sequencing. Our results expand the clinical and mutational spectrum of the UBE3B-related disorder in several ways. First, we have identified UBE3B mutations in individuals who previously received distinct clinical diagnoses: two sibs with Toriello-Carey syndrome as well as the patient reported to have a "new" syndrome by Buntinx and Majewski in 1990. Second, we describe the adult phenotype and clinical variability of the syndrome. Third, we report on the first instance of homozygous missense alterations outside the HECT domain of UBE3B, observed in a patient with mildly dysmorphic facial features. We conclude that UBE3B mutations cause a clinically recognizable and possibly underdiagnosed syndrome characterized by distinct craniofacial features, hypotonia, failure to thrive, eye abnormalities, other congenital malformations, low cholesterol levels, and severe intellectual disability. We review the UBE3B-associated phenotypes, including forms that can mimick Toriello-Carey syndrome, and suggest the single designation "Kaufman oculocerebrofacial syndrome".

  5. Hereditary spastic paraplegia with recessive trait caused by mutation in KLC4 gene.

    PubMed

    Bayrakli, Fatih; Poyrazoglu, Hatice Gamze; Yuksel, Sirin; Yakicier, Cengiz; Erguner, Bekir; Sagiroglu, Mahmut Samil; Yuceturk, Betul; Ozer, Bugra; Doganay, Selim; Tanrikulu, Bahattin; Seker, Askin; Akbulut, Fatih; Ozen, Ali; Per, Huseyin; Kumandas, Sefer; Altuner Torun, Yasemin; Bayri, Yasar; Sakar, Mustafa; Dagcinar, Adnan; Ziyal, Ibrahim

    2015-12-01

    We report an association between a new causative gene and spastic paraplegia, which is a genetically heterogeneous disorder. Clinical phenotyping of one consanguineous family followed by combined homozygosity mapping and whole-exome sequencing analysis. Three patients from the same family shared common features of progressive complicated spastic paraplegia. They shared a single homozygous stretch area on chromosome 6. Whole-exome sequencing revealed a homozygous mutation (c.853_871del19) in the gene coding the kinesin light chain 4 protein (KLC4). Meanwhile, the unaffected parents and two siblings were heterozygous and one sibling was homozygous wild type. The 19 bp deletion in exon 6 generates a stop codon and thus a truncated messenger RNA and protein. The association of a KLC4 mutation with spastic paraplegia identifies a new locus for the disease.

  6. Recessive and Dominant De Novo ITPR1 Mutations Cause Gillespie Syndrome

    PubMed Central

    Gerber, Sylvie; Alzayady, Kamil J.; Burglen, Lydie; Brémond-Gignac, Dominique; Marchesin, Valentina; Roche, Olivier; Rio, Marlène; Funalot, Benoit; Calmon, Raphaël; Durr, Alexandra; Gil-da-Silva-Lopes, Vera Lucia; Ribeiro Bittar, Maria Fernanda; Orssaud, Christophe; Héron, Bénédicte; Ayoub, Edward; Berquin, Patrick; Bahi-Buisson, Nadia; Bole, Christine; Masson, Cécile; Munnich, Arnold; Simons, Matias; Delous, Marion; Dollfus, Helene; Boddaert, Nathalie; Lyonnet, Stanislas; Kaplan, Josseline; Calvas, Patrick; Yule, David I.; Rozet, Jean-Michel; Fares Taie, Lucas

    2016-01-01

    Gillespie syndrome (GS) is a rare variant form of aniridia characterized by non-progressive cerebellar ataxia, intellectual disability, and iris hypoplasia. Unlike the more common dominant and sporadic forms of aniridia, there has been no significant association with PAX6 mutations in individuals with GS and the mode of inheritance of the disease had long been regarded as uncertain. Using a combination of trio-based whole-exome sequencing and Sanger sequencing in five simplex GS-affected families, we found homozygous or compound heterozygous truncating mutations (c.4672C>T [p.Gln1558∗], c.2182C>T [p.Arg728∗], c.6366+3A>T [p.Gly2102Valfs5∗], and c.6664+5G>T [p.Ala2221Valfs23∗]) and de novo heterozygous mutations (c.7687_7689del [p.Lys2563del] and c.7659T>G [p.Phe2553Leu]) in the inositol 1,4,5-trisphosphate receptor type 1 gene (ITPR1). ITPR1 encodes one of the three members of the IP3-receptors family that form Ca2+ release channels localized predominantly in membranes of endoplasmic reticulum Ca2+ stores. The truncation mutants, which encompass the IP3-binding domain and varying lengths of the modulatory domain, did not form functional channels when produced in a heterologous cell system. Furthermore, ITPR1 p.Lys2563del mutant did not form IP3-induced Ca2+ channels but exerted a negative effect when co-produced with wild-type ITPR1 channel activity. In total, these results demonstrate biallelic and monoallelic ITPR1 mutations as the underlying genetic defects for Gillespie syndrome, further extending the spectrum of ITPR1-related diseases. PMID:27108797

  7. A novel spontaneous mutation of BCAR3 results in extrusion cataracts in CF#1 mouse strain.

    PubMed

    Kondo, Tomohiro; Nakamori, Taketo; Nagai, Hiroaki; Takeshita, Ai; Kusakabe, Ken-Takeshi; Okada, Toshiya

    2016-10-01

    A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.

  8. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease.

    PubMed

    Basmanav, F Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C

    2014-01-02

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4*), c.652C>T (p.Arg218*), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218*) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology.

  9. Heterozygous L1-deficient mice express an autism-like phenotype.

    PubMed

    Sauce, Bruno; Wass, Christopher; Netrakanti, Meera; Saylor, Joshua; Schachner, Melitta; Matzel, Louis D

    2015-10-01

    The L1CAM (L1) gene encodes a cell adhesion molecule that contributes to several important processes in the developing and adult nervous system, including neuronal migration, survival, and plasticity. In humans and mice, mutations in the X chromosome-linked gene L1 cause severe neurological defects in males. L1 heterozygous female mice with one functional copy of the L1 gene show complex morphological features that are different from L1 fully-deficient and wild-type littermate mice. However, almost no information is available on the behavior of L1 heterozygous mice and humans. Here, we investigated the behavior of heterozygous female mice in which the L1 gene is constitutively inactivated. These mice were compared to wild-type littermate females. Animals were assessed in five categories of behavioral tests: five tests for anxiety/stress/exploration, four tests for motor abilities, two tests for spatial learning, three tests for social behavior, and three tests for repetitive behavior. We found that L1 heterozygous mice express an autism-like phenotype, comprised of reduced social behaviors and excessive self-grooming (a repetitive behavior also typical in animal models of autism). L1 heterozygous mice also exhibited an increase in sensitivity to light, assessed by a reluctance to enter the lighted areas of novel environments. However, levels of anxiety, stress, motor abilities, and spatial learning in L1 heterozygous mice were similar to those of wild-type mice. These observations raise the possibility that using molecules known to trigger L1 functions may become valuable in the treatment of autism in humans.

  10. Dominant Mutations in KAT6A Cause Intellectual Disability with Recognizable Syndromic Features

    PubMed Central

    Tham, Emma; Lindstrand, Anna; Santani, Avni; Malmgren, Helena; Nesbitt, Addie; Dubbs, Holly A.; Zackai, Elaine H.; Parker, Michael J.; Millan, Francisca; Rosenbaum, Kenneth; Wilson, Golder N.; Nordgren, Ann

    2015-01-01

    Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects. PMID:25728777

  11. Tietz/Waardenburg type 2A syndrome associated with posterior microphthalmos in two unrelated patients with novel MITF gene mutations.

    PubMed

    Cortés-González, Vianney; Zenteno, Juan Carlos; Guzmán-Sánchez, Martín; Giordano-Herrera, Verónica; Guadarrama-Vallejo, Dalia; Ruíz-Quintero, Narlly; Villanueva-Mendoza, Cristina

    2016-12-01

    Tietz syndrome and Waardenburg syndrome type 2A are allelic conditions caused by MITF mutations. Tietz syndrome is inherited in an autosomal dominant pattern and is characterized by congenital deafness and generalized skin, hair, and eye hypopigmentation, while Waardenburg syndrome type 2A typically includes variable degrees of sensorineural hearing loss and patches of de-pigmented skin, hair, and irides. In this paper, we report two unrelated families with MITF mutations. The first family showed an autosomal dominant pattern and variable expressivity. The second patient was isolated. MITF gene analysis in the first family demonstrated a c.648A>C heterozygous mutation in exon 8 c.648A>C; p. (R216S), while in the isolated patient, an apparently de novo heterozygous c.1183_1184insG truncating mutation was demonstrated in exon 10. All patients except one had bilateral reduced ocular anteroposterior axial length and a high hyperopic refractive error corresponding to posterior microphthalmos, features that have not been described as part of the disease. Our results suggest that posterior microphthalmos might be part of the clinical characteristics of Tietz/Waardenburg syndrome type 2A and expand both the clinical and molecular spectrum of the disease. © 2016 Wiley Periodicals, Inc.

  12. Reduced Ciliary Polycystin-2 in Induced Pluripotent Stem Cells from Polycystic Kidney Disease Patients with PKD1 Mutations

    PubMed Central

    Freedman, Benjamin S.; Lam, Albert Q.; Sundsbak, Jamie L.; Iatrino, Rossella; Su, Xuefeng; Koon, Sarah J.; Wu, Maoqing; Daheron, Laurence; Harris, Peter C.; Zhou, Jing

    2013-01-01

    Heterozygous mutations in PKD1 or PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause autosomal dominant PKD (ADPKD), whereas mutations in PKHD1, which encodes fibrocystin/polyductin (FPC), cause autosomal recessive PKD (ARPKD). However, the relationship between these proteins and the pathogenesis of PKD remains unclear. To model PKD in human cells, we established induced pluripotent stem (iPS) cell lines from fibroblasts of three ADPKD and two ARPKD patients. Genetic sequencing revealed unique heterozygous mutations in PKD1 of the parental ADPKD fibroblasts but no pathogenic mutations in PKD2. Undifferentiated PKD iPS cells, control iPS cells, and embryonic stem cells elaborated primary cilia and expressed PC1, PC2, and FPC at similar levels, and PKD and control iPS cells exhibited comparable rates of proliferation, apoptosis, and ciliogenesis. However, ADPKD iPS cells as well as somatic epithelial cells and hepatoblasts/biliary precursors differentiated from these cells expressed lower levels of PC2 at the cilium. Additional sequencing confirmed the retention of PKD1 heterozygous mutations in iPS cell lines from two patients but identified possible loss of heterozygosity in iPS cell lines from one patient. Furthermore, ectopic expression of wild-type PC1 in ADPKD iPS-derived hepatoblasts rescued ciliary PC2 protein expression levels, and overexpression of PC1 but not a carboxy-terminal truncation mutant increased ciliary PC2 expression levels in mouse kidney cells. Taken together, these results suggest that PC1 regulates ciliary PC2 protein expression levels and support the use of PKD iPS cells for investigating disease pathophysiology. PMID:24009235

  13. Novel PRRT2 mutations in paroxysmal dyskinesia patients with variant inheritance and phenotypes.

    PubMed

    Liu, X-R; Wu, M; He, N; Meng, H; Wen, L; Wang, J-L; Zhang, M-P; Li, W-B; Mao, X; Qin, J-M; Li, B-M; Tang, B; Deng, Y-H; Shi, Y-W; Su, T; Yi, Y-H; Tang, B-S; Liao, W-P

    2013-03-01

    Paroxysmal dyskinesias (PDs) are a group of episodic movement disorders with marked variability in clinical manifestation and potential association with epilepsy. PRRT2 has been identified as a causative gene for PDs, but the phenotypes and inheritance patterns of PRRT2 mutations need further clarification. In this study, 10 familial and 21 sporadic cases with PDs and PDs-related phenotypes were collected. Genomic DNA was screened for PRRT2 mutations by direct sequencing. Seven PRRT2 mutations were identified in nine (90.0%) familial cases and in six (28.6%) sporadic cases. Five mutations are novel: two missense mutations (c.647C>G/p.Pro216Arg and c.872C>T/p.Ala291Val) and three truncating mutations (c.117delA/p.Val41TyrfsX49, c.510dupT/p.Leu171SerfsX3 and c.579dupA/p.Glu194ArgfsX6). Autosomal dominant inheritance with incomplete penetrance was observed in most of the familial cases. In the sporadic cases, inheritance was heterogeneous including recessive inheritance with compound heterozygous mutations, inherited mutations with incomplete parental penetrance and de novo mutation. Variant phenotypes associated with PRRT2 mutations, found in 36.0% of the affected cases, included febrile convulsions, epilepsy, infantile non-convulsive seizures (INCS) and nocturnal convulsions (NC). All patients with INCS or NC, not reported previously, displayed abnormalities on electroencephalogram (EEG). No EEG abnormalities were recorded in patients with classical infantile convulsions and paroxysmal choreoathetosis (ICCA)/paroxysmal kinesigenic dyskinesia (PKD). Our study further confirms that PRRT2 mutations are the most common cause of familial PDs, displaying both dominant and recessive inheritance. Epilepsy may occasionally occur in ICCA/PKD patients with PRRT2 mutations. Variant phenotypes INCS or NC differ from classical ICCA/PKD clinically and electroencephalographically. They have some similarities with, but not identical to epilepsy, possibly represent an overlap between

  14. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects

    PubMed Central

    Liu, Yo-Tsen; Nian, Fang-Shin; Chou, Wan-Ju; Tai, Chin-Yin; Kwan, Shang-Yeong; Chen, Chien; Kuo, Pei-Wen; Lin, Po-Hsi; Chen, Chin-Yi; Huang, Chia-Wei; Lee, Yi-Chung; Soong, Bing-Wen; Tsai, Jin-Wu

    2016-01-01

    Mutations in the proline-rich transmembrane protein 2 (PRRT2) gene cause a wide spectrum of neurological diseases, ranging from paroxysmal kinesigenic dyskinesia (PKD) to mental retardation and epilepsy. Previously, seven PKD-related PRRT2 heterozygous mutations were identified in the Taiwanese population: P91QfsX, E199X, S202HfsX, R217PfsX, R217EfsX, R240X and R308C. This study aimed to investigate the disease-causing mechanisms of these PRRT2 mutations. We first documented that Prrt2 was localized at the pre- and post-synaptic membranes with a close spatial association with SNAP25 by synaptic membrane fractionation and immunostaining of the rat neurons. Our results then revealed that the six truncating Prrt2 mutants were accumulated in the cytoplasm and thus failed to target to the cell membrane; the R308C missense mutant had significantly reduced protein expression, suggesting loss-of function effects generated by these mutations. Using in utero electroporation of shRNA into cortical neurons, we further found that knocking down Prrt2 expression in vivo resulted in a delay in neuronal migration during embryonic development and a marked decrease in synaptic density after birth. These pathologic effects and novel disease-causing mechanisms may contribute to the severe clinical symptoms in PRRT2–related diseases. PMID:27172900

  15. Mutations in the GlyT2 Gene (SLC6A5) Are a Second Major Cause of Startle Disease*

    PubMed Central

    Carta, Eloisa; Chung, Seo-Kyung; James, Victoria M.; Robinson, Angela; Gill, Jennifer L.; Remy, Nathalie; Vanbellinghen, Jean-François; Drew, Cheney J. G.; Cagdas, Sophie; Cameron, Duncan; Cowan, Frances M.; Del Toro, Mireria; Graham, Gail E.; Manzur, Adnan Y.; Masri, Amira; Rivera, Serge; Scalais, Emmanuel; Shiang, Rita; Sinclair, Kate; Stuart, Catriona A.; Tijssen, Marina A. J.; Wise, Grahame; Zuberi, Sameer M.; Harvey, Kirsten; Pearce, Brian R.; Topf, Maya; Thomas, Rhys H.; Supplisson, Stéphane; Rees, Mark I.; Harvey, Robert J.

    2012-01-01

    Hereditary hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, leading to hypertonia and apnea episodes. Missense, nonsense, frameshift, splice site mutations, and large deletions in the human glycine receptor α1 subunit gene (GLRA1) are the major known cause of this disorder. However, mutations are also found in the genes encoding the glycine receptor β subunit (GLRB) and the presynaptic Na+/Cl−-dependent glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of SLC6A5 in 93 new unrelated human hyperekplexia patients revealed 20 sequence variants in 17 index cases presenting with homozygous or compound heterozygous recessive inheritance. Five apparently unrelated cases had the truncating mutation R439X. Genotype-phenotype analysis revealed a high rate of neonatal apneas and learning difficulties associated with SLC6A5 mutations. From the 20 SLC6A5 sequence variants, we investigated glycine uptake for 16 novel mutations, confirming that all were defective in glycine transport. Although the most common mechanism of disrupting GlyT2 function is protein truncation, new pathogenic mechanisms included splice site mutations and missense mutations affecting residues implicated in Cl− binding, conformational changes mediated by extracellular loop 4, and cation-π interactions. Detailed electrophysiology of mutation A275T revealed that this substitution results in a voltage-sensitive decrease in glycine transport caused by lower Na+ affinity. This study firmly establishes the combination of missense, nonsense, frameshift, and splice site mutations in the GlyT2 gene as the second major cause of startle disease. PMID:22700964

  16. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss

    PubMed Central

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-01-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041

  17. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss.

    PubMed

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-07-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.

  18. Hypomorphic NOTCH3 mutation in an Italian family with CADASIL features.

    PubMed

    Moccia, Marcello; Mosca, Lorena; Erro, Roberto; Cervasio, Mariarosaria; Allocca, Roberto; Vitale, Carmine; Leonardi, Antonio; Caranci, Ferdinando; Del Basso-De Caro, Maria Laura; Barone, Paolo; Penco, Silvana

    2015-01-01

    The cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is because of NOTCH3 mutations affecting the number of cysteine residues. In this view, the role of atypical NOTCH3 mutations is still debated. Therefore, we investigated a family carrying a NOTCH3 nonsense mutation, with dominantly inherited recurrent cerebrovascular disorders. Among 7 family members, 4 received a clinical diagnosis of CADASIL. A heterozygous truncating mutation in exon 3 (c.307C>T, p.Arg103X) was found in the 4 clinically affected subjects and in one 27-year old lady, only complaining of migraine with aura. Magnetic resonance imaging scans found typical signs of small-vessel disease in the 4 affected subjects, supporting the clinical diagnosis. Skin biopsies did not show the typical granular osmiophilic material, but only nonspecific signs of vascular damage, resembling those previously described in Notch3 knockout mice. Interestingly, messenger RNA (mRNA) analysis supports the hypothesis of an atypical NOTCH3 mutation, suggesting a nonsense-mediated mRNA decay. In conclusion, the present study broadens the spectrum of CADASIL mutations, and, therefore, opens new insights about Notch3 signaling.

  19. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.

  20. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    PubMed

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  1. Increased insulin action in SKIP heterozygous knockout mice.

    PubMed

    Ijuin, Takeshi; Yu, Y Eugene; Mizutani, Kiyohito; Pao, Annie; Tateya, Sanshiro; Tamori, Yoshikazu; Bradley, Allan; Takenawa, Tadaomi

    2008-09-01

    Insulin controls glucose homeostasis and lipid metabolism, and insulin impairment plays a critical role in the pathogenesis of diabetes mellitus. Human skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) is a member of the phosphatidylinositol 3,4,5-trisphosphate phosphatase family (T. Ijuin et al. J. Biol. Chem. 275:10870-10875, 2000; T. Ijuin and T. Takenawa, Mol. Cell. Biol. 23:1209-1220, 2003). Previous studies showed that SKIP negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling (Ijuin and Takenawa, Mol. Cell. Biol. 23:1209-1220, 2003). We now have generated mice with a targeted mutation of the mouse ortholog of the human SKIP gene, Pps. Adult heterozygous Pps mutant mice show increased insulin sensitivity and reduced diet-induced obesity with increased Akt/protein kinase B (PKB) phosphorylation in skeletal muscle but not in adipose tissue. The insulin-induced uptake of 2-deoxyglucose into the isolated soleus muscle was significantly enhanced in Pps mutant mice. A hyperinsulinemic-euglycemic clamp study also revealed a significant increase in the rate of systemic glucose disposal in Pps mutant mice without any abnormalities in hepatic glucose production. Furthermore, in vitro knockdown studies in L6 myoblast cells revealed that reduction of SKIP expression level increased insulin-stimulated Akt/PKB phosphorylation and 2-deoxyglucose uptake. These results imply that SKIP regulates insulin signaling in skeletal muscle. Thus, SKIP may be a promising pharmacologic target for the treatment of insulin resistance and diabetes.

  2. Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia.

    PubMed Central

    Collins, D R; Knott, T J; Pease, R J; Powell, L M; Wallis, S C; Robertson, S; Pullinger, C R; Milne, R W; Marcel, Y L; Humphries, S E

    1988-01-01

    Familial hypobetalipoproteinaemia is a rare autosomal dominant disorder in which levels of apo-B-containing plasma lipoproteins are approximately half-normal in heterozygotes and virtually absent in homozygotes. Here we describe mutations of the apo-B gene that cause two different truncated variants of apo-B in unrelated individuals with hypobetalipoproteinaemia. One variant, apo-B(His1795----Met-Trp-Leu-Val-Thr-Term) is predicted to be 1799 amino acids long and arises from deletion of a single nucleotide (G) from leucine codon 1794. This protein was found at low levels in very low density and low density lipoprotein fractions in the blood. The second, shorter variant, apo-B(Arg1306----Term), is caused by mutation of a CpG dinucleotide in arginine codon 1306 converting it to a stop codon and predicting a protein of 1305 residues. The product of this allele could not be detected in the circulation. The differences in size and behaviour of these two variants compared to apo-B100 or apo-B48 point to domains that may be important for the assembly, secretion or stability of apo-B-containing lipoproteins. Images PMID:2843815

  3. Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia

    SciTech Connect

    Collins, D.R.; Knott, T.J.; Pease, R.J.; Powell, L.M.; Wallis, S.C.; Robertson, S.; Pullinger, C.R.; Lloyd, K.; Miller, N.E.; Muller, D.; Scott, J. ); Humphries, S.E.; Talmud, P.J. ); Milne, R.W.; Marcel, Y.L. )

    1988-09-12

    Familial hypobetalipoproteinaemia is a rare autosomal dominant disorder in which levels of apo-B-containing plasma lipoproteins are approximately half-normal in heterozygotes and virtually absent in homozygotes. Here the authors describe mutations of the apo-B gene that cause two different truncated variants of apo-B in unrelated individuals with hypobetalipoproteinaemia. One variant is predicted to be 1,799 amino acids long and arises from deletion of a single nucleotide (G) from leucine codon 1,794. This protein was found at low levels in very low density and low density lipoprotein fractions in the blood. The second, shorter variant is caused by mutation of a CpG dinucleotide in arginine codon 1,306 converting it to a stop codon and predicting a protein of 1,305 residues. The differences in size and behavior of these two variants compared to apo-B100 or apo-B48 point to domains that may be important for the assembly, secretion or stability of apo-B-containing lipoproteins.

  4. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio.

    PubMed

    Odenthal, J; Rossnagel, K; Haffter, P; Kelsh, R N; Vogelsang, E; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kane, D A; Mullins, M C; Nüsslein-Volhard, C

    1996-12-01

    In a large-scale screen for mutants with defects in embryonic development we identified 17 genes (65 mutants) specifically required for the development of xanthophores. We provide evidence that these genes are required for three different aspects of xanthophore development. (1) Pigment cell formation and migration (pfeffer and salz); (2) pigment synthesis (edison, yobo, yocca and brie) and (3) pigment translocation (esrom, tilsit and tofu). The number of xanthophore cells that appear in the body is reduced in embryos with mutations in the two genes, salz and pfeffer. In heterozygous and homozygous salz and pfeffer adults, the melanophore stripes are interrupted, indicating that xanthophore cells have an important function in adult melanophore pattern formation. Most other genes affect only larval pigmentation. In embryos mutant for edison, yobo, yocca and brie, differences in pteridine synthesis can be observed under UV light and by thin-layer chromatography. Homozygous mutant females of yobo show a recessive maternal effect. Embryonic development is slowed down and embryos display head and tail truncations. Xanthophores in larvae mutant in the three genes esrom, tilsit and tofu appear less spread out. In addition, these mutants display a defect in retinotectal axon pathfinding. These mutations may affect xanthophore pigment distribution within the cells or xanthophore cell shape. Mutations in seven genes affecting xanthophore pigmentation remain unclassified.

  5. A novel mutation of the erythropoietin receptor gene associated with primary familial and congenital polycythaemia.

    PubMed

    O'Rourke, Kacey; Fairbairn, David J; Jackson, Kathryn A; Morris, Kirk L; Tey, Siok-Keen; Kennedy, Glen A

    2011-04-01

    Primary familial and congenital polycythaemia (PFCP) is a rare form of inherited erythrocytosis caused by heterozygous mutations in the erythropoietin receptor gene (EPOR). We present a novel mutation in the EPOR in a 15-year-old male who was referred to our clinic for investigation of a persistently elevated haemoglobin level. A significant family history of unexplained erythrocytosis spanning four generations of the patient's family was established. The family history was also significant for an apparent increased rate of cerebrovascular disease in individuals with erythrocytosis. The mutation detected in our patient resides in exon 8 of EPOR, similar to all other EPOR mutations responsible for PFCP. These mutations result in truncation of the cytoplasmic domain of the receptor and impair down-regulation of signalling via the erythropoietin receptor (EPOR). Clinical manifestations in published cases have varied widely and there is a paucity of firm recommendations regarding the management of affected patients. Given the strong family history of complications attributable to erythrocytosis we have recommended venesection with a haematocrit target of ≤0.45 for our patient.

  6. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    PubMed

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  7. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    NASA Technical Reports Server (NTRS)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  8. Multiple nevoid basal cell carcinoma syndrome associated with congenital orbital teratoma, caused by a PTCH1 frameshift mutation.

    PubMed

    Rodrigues, A L; Carvalho, A; Cabral, R; Carneiro, V; Gilardi, P; Duarte, C P; Puente-Prieto, J; Santos, P; Mota-Vieira, L

    2014-07-25

    Gorlin-Goltz syndrome, or nevoid basal cell carcinoma syndrome (NBCCS), is a rare autosomal dominant disorder caused by mutations in the PTCH1 gene and shows a high level of penetrance and variable expressivity. The syndrome is characterized by developmental abnormalities or neoplasms and is diagnosed with 2 major criteria, or with 1 major and 2 minor criteria. Here, we report a new clinical manifestation associated with this syndrome in a boy affected by NBCCS who had congenital orbital teratoma at birth. Later, at the age of 15 years, he presented with 4 major and 4 minor criteria of NBCCS, including multiple basal cell carcinoma and 2 odontogenic keratocysts of the jaw, both confirmed by histology, more than 5 palmar pits, calcification of the cerebral falx, extensive meningeal calcifications, macrocephaly, hypertelorism, frontal bosses, and kyphoscoliosis. PTCH1 mutation analysis revealed the heterozygous germline mutation c.290dupA. This mutation generated a frameshift within exon 2 and an early premature stop codon (p.Asn97LysfsX43), predicting a truncated protein with complete loss of function. Identification of this mutation is useful for genetic counseling. Although the clinical symptoms are well-known, our case contributes to the understanding of phenotypic variability in NBCCS, highlighting that PTCH1 mutations cannot be used for predicting disease burden and reinforces the need of a multidisciplinary team in the diagnosis, treatment, and follow-up of NBCCS patients.

  9. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants

    PubMed Central

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-01-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  10. ENAM Mutations with Incomplete Penetrance

    PubMed Central

    Seymen, F.; Lee, K.-E.; Koruyucu, M.; Gencay, K.; Bayram, M.; Tuna, E.B.; Lee, Z.H.; Kim, J.-W.

    2014-01-01

    Amelogenesis imperfecta (AI) is a genetic disease affecting tooth enamel formation. AI can be an isolated entity or a phenotype of syndromes. To date, more than 10 genes have been associated with various forms of AI. We have identified 2 unrelated Turkish families with hypoplastic AI and performed mutational analysis. Whole-exome sequencing identified 2 novel heterozygous nonsense mutations in the ENAM gene (c.454G>T p.Glu152* in family 1, c.358C>T p.Gln120* in family 2) in the probands. Affected individuals were heterozygous for the mutation in each family. Segregation analysis within each family revealed individuals with incomplete penetrance or extremely mild enamel phenotype, in spite of having the same mutation with the other affected individuals. We believe that these findings will broaden our understanding of the clinical phenotype of AI caused by ENAM mutations. PMID:25143514

  11. Increased frequency of double and triple heterozygous gene variants in children with intrahepatic cholestasis

    PubMed Central

    Goldschmidt, Monique L.; Mourya, Reena; Connor, Jessica; Dexheimer, Phillip; Karns, Rebekah; Miethke, Alexander; Sheridan, Rachel; Zhang, Kejian; Bezerra, Jorge A.

    2016-01-01

    Background and Aims Single-gene mutations cause syndromes of intrahepatic cholestasis, but previous multi-gene mutation screening in children with idiopathic cholestasis failed to fulfill diagnostic criteria in about two-thirds of children. In adults with fibrosing cholestatic disease, heterozygous ABCB4 mutations were present in 34% of patients. Here, we hypothesized that children with idiopathic cholestasis have a higher frequency of heterozygous non-synonymous gene sequence variants. Methods We analyzed the frequency and types of variants in 717 children in whom high-throughput sequencing of the genes SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 was performed as part of an evaluation for intrahepatic idiopathic cholestasis. The frequency of non-synonymous variants (NSVs) was compared to those of 1092 control subjects enrolled in the 1000-Genome-Project. Results The frequency of NSVs in single genes was similar between disease (25%) and controls (26%, P=0.518). In contrast, double or triple NSVs in 2 or more genes were more frequent in disease (N= 7%) than controls (N=4.7%, P=0.028). Detailed review of clinical and laboratory information in a subgroup of double or triple heterozygous patients revealed variable GGT levels and severity of pruritus, with liver biopsies showing stage 2–3 fibrosis. Conclusion Children with intrahepatic idiopathic cholestasis have a higher frequency of double or triple NSVs in SERPINA1, JAG1, ATPB1, ABCB11, or ABCB4. These findings raise the potential role for gene-gene relationships in determining the phenotype of cholestatic liver disease in children. PMID:26126923

  12. Germline mutations and genotype-phenotype associations in head and neck paraganglioma patients with negative family history in China.

    PubMed

    Zhu, W D; Wang, Z Y; Chai, Y C; Wang, X W; Chen, D Y; Wu, H

    2015-09-01

    The aim of this study was to assess the frequency of germline mutations and to explore genotype-phenotype associations in Chinese head and neck paraganglioma (HNPGL) patients without family history. Twenty-six Chinese patients with a diagnosis of HNPGL(14 male and 12 female, respectively)were recruited, who were followed up from 2000 to 2012. Genomic DNA was obtained from resected tumor tissues and peripheral blood samples. Seven genes, Succinate dehydrogenase complex A,B,C,D (SDHA, SDHB, SDHC, SDHD), succinate dehydrogenase complex assembly factor 2 (SDHAF2), TMEM127 (transmembrane protein 127) and VHL (Von Hippel-Lindau), were screened by direct sequencing and multiplex ligation-dependent probe amplification (MLPA) was performed to search for potential large deletions or duplications of SDHB, SDHC, SDHD, SDHAF1 and SDHAF2. The total frequency of germline mutations was 30.8% (8/26), including 5 cases with missense mutation p.Met1Ile in SDHD, 1 case with missense mutation p.Tyr216Cys in SDHB, and 1 case with a novel truncation mutation p.Gln44Ter in SDHAF2. MLPA showed one patient with malignant HNPGL had heterozygous deletions of exon1, 2, 3, 7 and 8 in SDHB. Mutations in SDHD were the leading cause of HNPGL in this study. Mutation carriers were younger than non-mutation carriers (p < 0.01) and more likely to suffer from multiple tumors (p = 0.048), especially with mutations in SDHD. The presence of mutation was associated with the development of larger tumors (p = 0.021). This study confirmed that the missense mutation p.Met1Ile at the start codon in SDHD was a hotspot in chinese patients with HNPGLs. We recommend genetic analysis in patients below 45 years, especially SDHD gene.

  13. Inactivating Mutations in ESCO2 Cause SC Phocomelia and Roberts Syndrome: No Phenotype-Genotype Correlation

    PubMed Central

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-01-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3–8 of ESCO2. In two families, affected individuals were homozygous—for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR. PMID:16380922

  14. Redundans: an assembly pipeline for highly heterozygous genomes

    PubMed Central

    Pryszcz, Leszek P.; Gabaldón, Toni

    2016-01-01

    Many genomes display high levels of heterozygosity (i.e. presence of different alleles at the same loci in homologous chromosomes), being those of hybrid organisms an extreme such case. The assembly of highly heterozygous genomes from short sequencing reads is a challenging task because it is difficult to accurately recover the different haplotypes. When confronted with highly heterozygous genomes, the standard assembly process tends to collapse homozygous regions and reports heterozygous regions in alternative contigs. The boundaries between homozygous and heterozygous regions result in multiple assembly paths that are hard to resolve, which leads to highly fragmented assemblies with a total size larger than expected. This, in turn, causes numerous problems in downstream analyses such as fragmented gene models, wrong gene copy number, or broken synteny. To circumvent these caveats we have developed a pipeline that specifically deals with the assembly of heterozygous genomes by introducing a step to recognise and selectively remove alternative heterozygous contigs. We tested our pipeline on simulated and naturally-occurring heterozygous genomes and compared its accuracy to other existing tools. Our method is freely available at https://github.com/Gabaldonlab/redundans. PMID:27131372

  15. Elimination of truncated recombinant protein expressed in Escherichia coli by removing cryptic translation initiation site.

    PubMed

    Jennings, Matthew J; Barrios, Adam F; Tan, Song

    2016-05-01

    Undesirable truncated recombinant protein products pose a special expression and purification challenge because such products often share similar chromatographic properties as the desired full length protein. We describe here our observation of both full length and a truncated form of a yeast protein (Gcn5) expressed in Escherichia coli, and the reduction or elimination of the truncated form by mutating a cryptic Shine-Dalgarno or START codon within the Gcn5 coding region. Unsuccessful attempts to engineer in a cryptic translation initiation site into other recombinant proteins suggest that cryptic Shine-Dalgarno or START codon sequences are necessary but not sufficient for cryptic translation in E. coli.

  16. A de novo mutation in PRICKLE1 in fetal agenesis of the corpus callosum and polymicrogyria

    PubMed Central

    Bassuk, Alexander G.; Sherr, Elliott H.

    2016-01-01

    Homozygous recessive mutations in the PRICKLE1 gene were originally reported in three consanguineous families with myoclonic epilepsy. Subsequently, several studies have identified neurological abnormalities in animal models with both heterozygous and homozygous mutations in PRICKLE1 orthologues, including epilepsy in flies and in mice with heterozygous PRICKLE1 mutations. We describe a fetus with a novel de novo mutation in PRICKLE1 associated with agenesis of the corpus callosum. PMID:26727662

  17. Marfan syndrome caused by a novel FBN1 mutation with associated pigmentary glaucoma.

    PubMed

    Kuchtey, John; Chang, Ta Chen; Panagis, Lampros; Kuchtey, Rachel W

    2013-04-01

    Mutations in fibrillin-1 (FBN1) cause a wide spectrum of disorders, including Marfan syndrome, which have in common defects in fibrillin-1 microfibrils. Ectopia lentis and myopia are frequently observed ocular manifestations of Marfan syndrome. Glaucoma is also associated with Marfan syndrome, though the form of glaucoma has not been well-characterized. In this report, ocular examination of a patient diagnosed with Marfan syndrome based on family history and aortic dilatation was performed, including measurement of facility of aqueous humor outflow by tonography. The patient did not have ectopia lentis at the age of 42 years. Based on optic nerve appearance, reduced outflow facility, elevated IOP with open angles and clear signs of pigment dispersion, the patient was diagnosed with pigmentary glaucoma. The patient was heterozygous for a novel truncating mutation in FBN1, p.Leu72Ter. Histology of normal human eyes revealed abundant expression of elastic fibers and fibrillin-1 in aqueous humor outflow structures. This is the first report of a patient with Marfan syndrome that is caused by a confirmed FBN1 mutation with associated pigmentary glaucoma. In addition to identifying a novel mutation of FBN1 and broadening the spectrum of associated ocular phenotypes in Marfan syndrome, our findings suggest that pigmentary glaucoma may involve defects in fibrillin-1 microfibrils.

  18. Truncated Gaussian and derived methods

    NASA Astrophysics Data System (ADS)

    Beucher, Hélène; Renard, Didier

    2016-09-01

    The interest of a digital model to represent the geological characteristics of the field is well established. However, the way to obtain it is not straightforward because this translation is necessarily a simplification of the actual field. This paper describes a stochastic model called truncated Gaussian simulations (TGS), which distributes a collection of facies or lithotypes over an area of interest. This method is based on facies proportions, spatial distribution and relationships, which can be easily tuned to produce numerous different textures. Initially developed for ordered facies, this model has been extended to complex organizations, where facies are not sequentially ordered. This method called pluri-Gaussian simulation (PGS) considers several Gaussian random functions, which can be correlated. PGS can produce a large variety of lithotype setups, as illustrated by several examples such as oriented deposits or high frequency layering.

  19. Targeted Next-Generation Sequencing Identifies a Recurrent Mutation in MCPH1 Associating with Hereditary Breast Cancer Susceptibility

    PubMed Central

    Mantere, Tuomo; Winqvist, Robert; Kauppila, Saila; Grip, Mervi; Jukkola-Vuorinen, Arja; Tervasmäki, Anna; Rapakko, Katrin; Pylkäs, Katri

    2016-01-01

    Breast cancer is strongly influenced by hereditary risk factors, a majority of which still remain unknown. Here, we performed a targeted next-generation sequencing of 796 genes implicated in DNA repair in 189 Finnish breast cancer cases with indication of hereditary disease susceptibility and focused the analysis on protein truncating mutations. A recurrent heterozygous mutation (c.904_916del, p.Arg304ValfsTer3) was identified in early DNA damage response gene, MCPH1, significantly associating with breast cancer susceptibility both in familial (5/145, 3.4%, P = 0.003, OR 8.3) and unselected cases (16/1150, 1.4%, P = 0.016, OR 3.3). A total of 21 mutation positive families were identified, of which one-third exhibited also brain tumors and/or sarcomas (P = 0.0007). Mutation carriers exhibited significant increase in genomic instability assessed by cytogenetic analysis for spontaneous chromosomal rearrangements in peripheral blood lymphocytes (P = 0.0007), suggesting an effect for MCPH1 haploinsufficiency on cancer susceptibility. Furthermore, 40% of the mutation carrier tumors exhibited loss of the wild-type allele. These findings collectively provide strong evidence for MCHP1 being a novel breast cancer susceptibility gene, which warrants further investigations in other populations. PMID:26820313

  20. Homozygous Mutations in NEUROD1 Are Responsible for a Novel Syndrome of Permanent Neonatal Diabetes and Neurological Abnormalities

    PubMed Central

    Rubio-Cabezas, Oscar; Minton, Jayne A.L.; Kantor, Iren; Williams, Denise; Ellard, Sian; Hattersley, Andrew T.

    2010-01-01

    OBJECTIVE NEUROD1 is expressed in both developing and mature β-cells. Studies in mice suggest that this basic helix-loop-helix transcription factor is critical in the development of endocrine cell lineage. Heterozygous mutations have previously been identified as a rare cause of maturity-onset diabetes of the young (MODY). We aimed to explore the potential contribution of NEUROD1 mutations in patients with permanent neonatal diabetes. RESEARCH DESIGN AND METHODS We sequenced the NEUROD1 gene in 44 unrelated patients with permanent neonatal diabetes of unknown genetic etiology. RESULTS Two homozygous mutations in NEUROD1 (c.427_ 428del and c.364dupG) were identified in two patients. Both mutations introduced a frameshift that would be predicted to generate a truncated protein completely lacking the activating domain. Both patients had permanent diabetes diagnosed in the first 2 months of life with no evidence of exocrine pancreatic dysfunction and a morphologically normal pancreas on abdominal imaging. In addition to diabetes, they had learning difficulties, severe cerebellar hypoplasia, profound sensorineural deafness, and visual impairment due to severe myopia and retinal dystrophy. CONCLUSIONS We describe a novel clinical syndrome that results from homozygous loss of function mutations in NEUROD1. It is characterized by permanent neonatal diabetes and a consistent pattern of neurological abnormalities including cerebellar hypoplasia, learning difficulties, sensorineural deafness, and visual impairment. This syndrome highlights the critical role of NEUROD1 in both the development of the endocrine pancreas and the central nervous system in humans. PMID:20573748

  1. Parent-progeny sequencing indicates higher mutation rates in heterozygotes.

    PubMed

    Yang, Sihai; Wang, Long; Huang, Ju; Zhang, Xiaohui; Yuan, Yang; Chen, Jian-Qun; Hurst, Laurence D; Tian, Dacheng

    2015-07-23

    Mutation rates vary within genomes, but the causes of this remain unclear. As many prior inferences rely on methods that assume an absence of selection, potentially leading to artefactual results, we call mutation events directly using a parent-offspring sequencing strategy focusing on Arabidopsis and using rice and honey bee for replication. Here we show that mutation rates are higher in heterozygotes and in proximity to crossover events. A correlation between recombination rate and intraspecific diversity is in part owing to a higher mutation rate in domains of high recombination/diversity. Implicating diversity per se as a cause, we find an ∼3.5-fold higher mutation rate in heterozygotes than in homozygotes, with mutations occurring in closer proximity to heterozygous sites than expected by chance. In a genome that is a patchwork of heterozygous and homozygous domains, mutations occur disproportionately more often in the heterozygous domains. If segregating mutations predispose to a higher local mutation rate, clusters of genes dominantly under purifying selection (more commonly homozygous) and under balancing selection (more commonly heterozygous), might have low and high mutation rates, respectively. Our results are consistent with this, there being a ten times higher mutation rate in pathogen resistance genes, expected to be under positive or balancing selection. Consequently, we do not necessarily need to evoke extremely weak selection on the mutation rate to explain why mutational hot and cold spots might correspond to regions under positive/balancing and purifying selection, respectively.

  2. Lamp with a truncated reflector cup

    DOEpatents

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  3. Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority...

  4. Computing correct truncated excited state wavefunctions

    NASA Astrophysics Data System (ADS)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  5. Reducing Truncation Error In Integer Processing

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks; Berner, Jeffrey B.; Graham, J. Scott

    1995-01-01

    Improved method of rounding off (truncation of least-significant bits) in integer processing of data devised. Provides for reduction, to extremely low value, of numerical bias otherwise generated by accumulation of truncation errors from many arithmetic operations. Devised for use in integer signal processing, in which rescaling and truncation usually performed to reduce number of bits, which typically builds up in sequence of operations. Essence of method to alternate direction of roundoff (plus, then minus) on alternate occurrences of truncated values contributing to bias.

  6. Juvenile Paget’s Disease With Heterozygous Duplication In TNFRSF11A Encoding RANK

    PubMed Central

    Whyte, Michael P.; Tau, Cristina; McAlister, William H.; Zhang, Xiafang; Novack, Deborah V.; Preliasco, Virginia; Santini-Araujo, Eduardo; Mumm, Steven

    2014-01-01

    Mendelian disorders of RANKL/OPG/RANK signaling feature the extremes of aberrant osteoclastogenesis and cause either osteopetrosis or rapid turnover skeletal disease. The patients with autosomal dominant accelerated bone remodeling have familial expansile osteolysis, early-onset Paget’s disease of bone, expansile skeletal hyperphosphatasia, or panostotic expansile bone disease due to heterozygous 18-, 27-, 15-, and 12-bp insertional duplications, respectively, within exon 1 of TNFRSF11A that encodes the signal peptide of RANK. Juvenile Paget’s disease (JPD), an autosomal recessive disorder, manifests extremely fast skeletal remodeling, and is usually caused by loss-of-function mutations within TNFRSF11B that encodes OPG. These disorders are ultra-rare. A 13-year-old Bolivian girl was referred at age 3 years. One femur was congenitally short and curved. Then, both bowed. Deafness at age 2 years involved missing ossicles and eroded cochleas. Teeth often had absorbed roots, broke, and were lost. Radiographs had revealed acquired tubular bone widening, cortical thickening, and coarse trabeculation. Biochemical markers indicated rapid skeletal turnover. Histopathology showed accelerated remodeling with abundant osteoclasts. JPD was diagnosed. Immobilization from a femur fracture caused severe hypercalcemia that responded rapidly to pamidronate treatment followed by bone turnover marker and radiographic improvement. No TNFRSF11B mutation was found. Instead, a unique heterozygous 15-bp insertional tandem duplication (87dup15) within exon 1 of TNFRSF11A predicted the same pentapeptide extension of RANK that causes expansile skeletal hyperphosphatasia (84dup15). Single nucleotide polymorphisms in TNFRSF11A and TNFRSF11B possibly impacted her phenotype. Our findings: i) reveal that JPD can be associated with an activating mutation within TNFRSF11A, ii) expand the range and overlap of phenotypes among the mendelian disorders of RANK activation, and iii) call for mutation

  7. Prevalence of Titin Truncating Variants in General Population

    PubMed Central

    Akinrinade, Oyediran; Koskenvuo, Juha W.; Alastalo, Tero-Pekka

    2015-01-01

    Background Truncating titin (TTN) mutations, especially in A-band region, represent the most common cause of dilated cardiomyopathy (DCM). Clinical interpretation of these variants can be challenging, as these variants are also present in reference populations. We carried out systematic analyses of TTN truncating variants (TTNtv) in publicly available reference populations, including, for the first time, data from Exome Aggregation Consortium (ExAC). The goal was to establish more accurate estimate of prevalence of different TTNtv to allow better clinical interpretation of these findings. Methods and Results Using data from 1000 Genomes Project, Exome Sequencing Project (ESP) and ExAC, we estimated the prevalence of TTNtv in the population. In the three population datasets, 52–54% of TTNtv were not affecting all TTN transcripts. The frequency of truncations affecting all transcripts in ExAC was 0.36% (0.32% - 0.41%, 95% CI) and 0.19% (0.16% - 0.23%, 95% CI) for those affecting the A-band. In the A-band region, the prevalences of frameshift, nonsense and essential splice site variants were 0.057%, 0.090%, and 0.047% respectively. Cga/Tga (arginine/nonsense–R/*) transitional change at CpG mutation hotspots was the most frequent type of TTN nonsense mutation accounting for 91.3% (21/23) of arginine residue nonsense mutation (R/*) at TTN A-band region. Non-essential splice-site variants had significantly lower proportion of private variants and higher proportion of low-frequency variants compared to essential splice-site variants (P = 0.01; P = 5.1 X 10−4, respectively). Conclusion A-band TTNtv are more rare in the general population than previously reported. Based on this analysis, one in 500 carries a truncation in TTN A-band suggesting the penetrance of these potentially harmful variants is still poorly understood, and some of these variants do not manifest as autosomal dominant DCM. This calls for caution when interpreting TTNtv in individuals and families

  8. Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells.

    PubMed

    Díaz, David; Recio, Javier S; Weruaga, Eduardo; Alonso, José R

    2012-01-01

    Bone marrow-derived cells have different plastic properties, especially regarding cell fusion, which increases with time and is prompted by tissue injury. Several recessive mutations, including Purkinje Cell Degeneration, affect the number of Purkinje cells in homozygosis; heterozygous young animals have an apparently normal phenotype but they undergo Purkinje cell loss as they age. Our findings demonstrate that heterozygous pcd mice undergo Purkinje cell loss at postnatal day 300, this slow but steadily progressing cell death starting sooner than has been reported previously and without massive reactive gliosis or inflammation. Here, transplantation of bone marrow stem cells was performed to assess the arrival of bone marrow-derived cells in the cerebellum in these heterozygous mice. Our results reveal that a higher number of cell fusion events occurs in heterozygous animals than in the controls, on days 150 and 300 postnatally. In sum, this study indicates that mild cell death promotes the fusion of bone marrow-derived cells with surviving Purkinje neurons. This phenomenon suggests new therapies for long-lasting neurodegenerative disorders.

  9. Molecular characterization of a genetic variant of the steroid hormone-binding globulin gene in heterozygous subjects

    SciTech Connect

    Hardy, D.O.; Catterall, J.F.; Carino, C.

    1995-04-01

    Steroid hormone-binding globulin in human serum displays different isoelectric focusing (IEF) patterns among individuals, suggesting genetic variation in the gene for this extracellular steroid carrier protein. Analysis of allele frequencies and family studies suggested the existence of two codominant alleles of the gene. Subsequent determination of the molecular basis of a variant of the gene was carried out using DNA from homozygous individuals from a single Belgian family. It was of interest to characterize other variant individuals to determine whether all variants identified by IEF phenotyping were caused by the same mutation or whether other mutations occurred in the gene in different populations. Previous studies identified Mexican subjects who were heterozygous for the variant IEF phenotype. Denaturing gradient gel electrophoresis was used to localize the mutation in these subjects and to purify the variant allele for DNA sequence analysis. The results show that the mutation in this population is identical to that identified in the Belgian family, and no other mutations were detected in the gene. These data represent the first analysis of steroid hormone-binding globulin gene variation in heterozygous subjects and further support the conclusion of biallelism of the gene worldwide. 11 refs., 2 figs., 1 tab.

  10. A patient showing features of both SBBYSS and GPS supports the concept of a KAT6B-related disease spectrum, with mutations in mid-exon 18 possibly leading to combined phenotypes.

    PubMed

    Vlckova, Marketa; Simandlova, Martina; Zimmermann, Pavel; Stranecky, Viktor; Hartmannova, Hana; Hodanova, Katerina; Havlovicova, Marketa; Hancarova, Miroslava; Kmoch, Stanislav; Sedlacek, Zdenek

    2015-10-01

    Genitopatellar syndrome (GPS) and Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) are two distinct clinically overlapping syndromes caused by de novo heterozygous truncating mutations in the KAT6B gene encoding lysine acetyltransferase 6B, a part of the histone H3 acetyltransferase complex. We describe an 8-year-old girl with a KAT6B mutation and a combined GPS/SBBYSS phenotype. The comparison of this patient with 61 previously published cases with KAT6B mutations and GPS, SBBYSS or combined GPS/SBBYSS phenotypes allowed us to separate the KAT6B mutations into four groups according to their position in the gene (reflecting nonsense mediated RNA decay and protein domains) and their clinical outcome. We suggest that mutations in mid-exon 18 corresponding to the C-terminal end of the acidic (Asp/Glu-rich) domain of KAT6B may have more variable expressivity leading to GPS, SBBYSS or combined phenotypes, in contrast to defects in other regions of the gene which contribute more specifically to either GPS or SBBYSS. Notwithstanding the clinical overlap, our cluster analysis of phenotypes of all known patients with KAT6B mutations supports the existence of two clinical entities, GPS and SBBYSS, as poles within the KAT6B-related disease spectrum. The awareness of these phenomena is important for qualified genetic counselling of patients with KAT6B mutations.

  11. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome

    PubMed Central

    Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980

  12. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    PubMed

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.

  13. Perspective on rainbow-ladder truncation

    SciTech Connect

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Cloeet, I. C.; Roberts, C. D.

    2008-04-15

    Prima facie the systematic implementation of corrections to the rainbow-ladder truncation of QCD's Dyson-Schwinger equations will uniformly reduce in magnitude those calculated mass-dimensioned results for pseudoscalar and vector meson properties that are not tightly constrained by symmetries. The aim and interpretation of studies employing rainbow-ladder truncation are reconsidered in this light.

  14. Experiences of Being Heterozygous for Fabry Disease: a Qualitative Study.

    PubMed

    von der Lippe, Charlotte; Frich, Jan C; Harris, Anna; Solbrække, Kari Nyheim

    2016-10-01

    Little is known about the experiences of women with Fabry disease. The aim of this study was to explore women's experiences of being heterozygous for Fabry disease. We used an explorative qualitative study design and selected ten Norwegian women who were known heterozygous for Fabry disease to participate. We conducted in-depth semi-structured interviews and analyzed the interviews using inductive thematic analysis. We found that learning about one's heterozygous status may be devastating for some. However, for most of the participants, heterozygous status, as well as doctors' acceptance of symptoms in women heterozygous for Fabry disease, provided an explanation and relief. Although many women did not consider themselves ill, they wished to be acknowledged as more than "just carriers." The participants were grateful for enzyme replacement therapy, although it had its burdens regarding time, planning, and absences from school or work. Women with Fabry disease felt that the lack of knowledge among healthcare professionals about Fabry disease was frustrating and worrisome. These findings suggest that healthcare professionals should acknowledge the different ways women react to their diagnosis, and be aware of the personal costs of receiving treatment.

  15. Mutations in Myosin Light Chain Kinase Cause Familial Aortic Dissections

    PubMed Central

    Wang, Li; Guo, Dong-chuan; Cao, Jiumei; Gong, Limin; Kamm, Kristine E.; Regalado, Ellen; Li, Li; Shete, Sanjay; He, Wei-Qi; Zhu, Min-Sheng; Offermanns, Stephan; Gilchrist, Dawna; Elefteriades, John; Stull, James T.; Milewicz, Dianna M.

    2010-01-01

    Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and β-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections. PMID:21055718

  16. Immature truncated O-glycophenotype of cancer directly induces oncogenic features

    PubMed Central

    Radhakrishnan, Prakash; Dabelsteen, Sally; Madsen, Frey Brus; Francavilla, Chiara; Kopp, Katharina L.; Steentoft, Catharina; Vakhrushev, Sergey Y.; Olsen, Jesper V.; Hansen, Lars; Bennett, Eric P.; Woetmann, Anders; Yin, Guangliang; Chen, Longyun; Song, Haiyan; Bak, Mads; Hlady, Ryan A.; Peters, Staci L.; Opavsky, Rene; Thode, Christenze; Qvortrup, Klaus; Schjoldager, Katrine T.-B. G.; Clausen, Henrik; Hollingsworth, Michael A.; Wandall, Hans H.

    2014-01-01

    Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 β3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures. PMID:25118277

  17. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis.

    PubMed

    Ye, Xiaoqian; Song, Guangtai; Fan, Mingwen; Shi, Lisong; Jabs, Ethylin Wang; Huang, Shangzhi; Guo, Ruiqiang; Bian, Zhuan

    2006-03-01

    Weyers acrofacial dysostosis (MIM 193530) is an autosomal dominant disorder clinically characterized by mild short stature, postaxial polydactyly, nail dystrophy and dysplastic teeth. Ellis-van Creveld syndrome (EvC, MIM 225500) is an autosomal recessive disorder with a similar, but more severe phenotype. Mutations in the EVC have been identified in both syndromes. However, the EVC mutations only occur in a small proportion of EvC patients. Recently, mutations in a new gene, EVC2, were found to be associated with other EvC cases. The EVC and EVC2 are located close to each other in a head-to-head configuration and may be functionally related. In this study, we report identification of a novel heterozygous deletion in the EVC2 that is responsible for autosomal dominant Weyers acrofacial dysostosis in a large Chinese family. This constitutes the first report of Weyers acrofacial dysostosis caused by this gene. Hence, the spectrum of malformation syndromes due to EVC2 mutations is further extended. Our data provides conclusive evidence that Weyers acrofacial dysostosis and EvC syndrome are allelic and genetically heterogeneous conditions.

  18. Titin Truncating Variants in Dilated Cardiomyopathy – Prevalence and Genotype-Phenotype Correlations

    PubMed Central

    Franaszczyk, Maria; Chmielewski, Przemyslaw; Truszkowska, Grazyna; Stawinski, Piotr; Michalak, Ewa; Rydzanicz, Malgorzata; Sobieszczanska-Malek, Malgorzata; Pollak, Agnieszka; Szczygieł, Justyna; Kosinska, Joanna; Parulski, Adam; Stoklosa, Tomasz; Tarnowska, Agnieszka; Machnicki, Marcin M.; Foss-Nieradko, Bogna; Szperl, Malgorzata; Sioma, Agnieszka; Kusmierczyk, Mariusz; Grzybowski, Jacek; Zielinski, Tomasz; Ploski, Rafal

    2017-01-01

    TTN gene truncating variants are common in dilated cardiomyopathy (DCM), although data on their clinical significance is still limited. We sought to examine the frequency of truncating variants in TTN in patients with DCM, including familial DCM (FDCM), and to look for genotype-phenotype correlations. Clinical cardiovascular data, family histories and blood samples were collected from 72 DCM probands, mean age of 34 years, 45.8% FDCM. DNA samples were examined by next generation sequencing (NGS) with a focus on the TTN gene. Truncating mutations were followed up by segregation study among family members. We identified 16 TTN truncating variants (TTN trunc) in 17 probands (23.6% of all cases, 30.3% of FDCM, 17.9% of sporadic DCM). During mean 63 months from diagnosis, there was no difference in adverse cardiac events between probands with and without TTN truncating mutations. Among relatives 29 mutation carriers were identified, nine were definitely affected (31%), eight probably affected (27.6%) one possibly affected (3.4%) and eleven were not affected (37.9%). When relatives with all affected statuses were combined, disease penetrance was still incomplete (62.1%) even after exclusion of unaffected relatives under 40 (82%) and was higher in males versus females. In all mutation carriers, during follow-up, 17.4% had major adverse cardiac events, and prognosis was significantly worse in men than in women. In conclusion, TTN truncating variants were observed in nearly one fourth of young DCM patient population, in vast majority without conduction system disease. Incomplete penetrance suggests possible influence of other genetic and/or environmental factors on the course of cardiotitinopathy. Counseling should take into account sex and incomplete penetrance. PMID:28045975

  19. Identification of four novel cytochrome P4501B1 mutations (p.I94X, p.H279D, p.Q340H, and p.K433K) in primary congenital glaucoma patients

    PubMed Central

    Tanwar, Mukesh; Dada, Tanuj; Sihota, Ramanjit

    2009-01-01

    Purpose Primary congenital glaucoma (PCG) is an autosomal recessive eye disorder that is postulated to result from developmental defects in the anterior eye segment. Mutations in the cytochrome P4501B1 (CYP1B1) gene are a predominant cause of congenital glaucoma. In this study we identify CYP1B1 mutations in PCG patients. Methods Twenty-three unrelated PCG patients and 50 healthy controls were enrolled in the study. CYP1B1 was screened for mutations by PCR and DNA sequencing. Results DNA sequencing revealed a total of 15 mutations. Out of these, four (p.I94X, p.H279D, p.Q340H, and p.K433K) were novel mutations and five were known pathogenic mutations. Five coding single nucleotide polymorphisms and one intronic single nucleotide polymorphism (rs2617266) were also found. Truncating mutations (p.I94X and p.R355X) were associated with the most severe disease phenotype. It is possible that patients with two null alleles with no catalytic activity may present with a more severe phenotype of the disease compared to patients with one null allele (heterozygous). The disease phenotype of patients with CYP1B1 mutations was more severe compared with the clinical phenotype of patients negative for CYP1B1 mutations. Conclusion Mutations in CYP1B1 are a major cause for PCG in our patients. Identifying mutations in subjects at risk of developing glaucoma, particularly among relatives of PCG patients, is of clinical significance. These developments may help in reducing the disease frequency in familial cases. Such studies will be of benefit in the identification of pathogenic mutations in different populations and will enable us to develop simple and rapid diagnostic tests for analyzing such cases. PMID:20057908

  20. Linkage of low-density lipoprotein size to the lipoprotein lipase gene in heterozygous lipoprotein lipase deficiency.

    PubMed Central

    Hokanson, J E; Brunzell, J D; Jarvik, G P; Wijsman, E M; Austin, M A

    1999-01-01

    Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus. PMID:9973300

  1. LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs

    PubMed Central

    Seppälä, Eija H.; Jokinen, Tarja S.; Fukata, Masaki; Fukata, Yuko; Webster, Matthew T.; Karlsson, Elinor K.; Kilpinen, Sami K.; Steffen, Frank; Dietschi, Elisabeth; Leeb, Tosso; Eklund, Ranja; Zhao, Xiaochu; Rilstone, Jennifer J.; Lindblad-Toh, Kerstin; Minassian, Berge A.; Lohi, Hannes

    2011-01-01

    One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2–10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission. PMID:21829378

  2. A novel mutation in the GCM2 gene causing severe congenital isolated hypoparathyroidism

    PubMed Central

    Doyle, Daniel; Kirwin, Susan M.; Sol-Church, Katia; Levine, Michael A.

    2013-01-01

    Objective To investigate the GCM2 gene in three siblings with congenital hypoparathyroidism and perform functional analysis. Materials and methods We sequenced the GCM2 gene by PCR and analyzed the functional consequence of the mutation by transient transfection studies. Haplotype analysis was performed. Results We identified a nucleotide change, c.408C>A, in exon 3 that is predicted to truncate the Gcm2 protein (p.Tyr136Ter). All three affected siblings were homozygous and both parents were heterozygous for the mutation. Transfection studies revealed the mutant mRNA but not expression of the Gcm2 protein. Haplotype analysis revealed that the two mutant GCM2 alleles shared genotypes on chromosome 6p24.2. Conclusions We describe the first GCM2 mutation in exon 3 in patients with severe congenital hypoparathyroidism. Informative genetic markers could not exclude identity by descent for the mutant alleles. Gcm2 protein was not detected after transfection, suggesting that complete lack of Gcm2 action accounts for severe hypoparathyroidism. PMID:23155703

  3. FOXL2-mutations in blepharophimosis-ptosis-epicanthus inversus syndrome (BPES); challenges for genetic counseling in female patients.

    PubMed

    Fokstuen, Siv; Antonarakis, Stylianos E; Blouin, Jean-Louis

    2003-03-01

    Mutations in the forkhead transcription factor gene 2 (FOXL2) were recently reported to cause blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) types I and II. Evidence was provided that BPES type I (eyelid abnormalities and female infertility) is caused by mutations resulting in a truncated FOXL2 protein. In contrast, mutant FOXL2 proteins, either with inserted aminoacids in the forkhead domain or polyalanine tract, or with novel aminoacids at the carboxyl end, were found in BPES type II, in which fertility is generally normal. We report a 32-year-old female patient with sporadic BPES and a history of menstrual cycle irregularities and periods of secondary amenorrhoea. A heterozygous frameshift mutation (c959-960insG) was found in the FOXL2 gene, resulting in a predicted FOXL2 protein with 212 novel aminoacids in the carboxyl end, suggesting BPES type II despite menstrual irregularities. The clinical presentations of our patient and of three female patients with BPES type II in the report of De Baere et al. [2001: Hum Mol Genet 10:1591-1600.] indicate phenotypic overlap between BPES type I and II. These observations do not support a clear-cut prediction of female fertility based on the FOXL2 molecular defect. As a consequence, FOXL2 mutation testing in female patients of child-bearing age with BPES should be handled with caution, and a two-step genetic counseling approach, including an initial pre-test information session, is proposed.

  4. Structural and Functional Mutations of the Perlecan Gene Cause Schwartz-Jampel Syndrome, with Myotonic Myopathy and Chondrodysplasia

    PubMed Central

    Arikawa-Hirasawa, Eri; Le, Alexander H.; Nishino, Ichizo; Nonaka, Ikuya; Ho, Nicola C.; Francomano, Clair A.; Govindraj, Prasanthi; Hassell, John R.; Devaney, Joseph M.; Spranger, Jürgen; Stevenson, Roger E.; Iannaccone, Susan; Dalakas, Marinos C.; Yamada, Yoshihiko

    2002-01-01

    Perlecan, a large heparan sulfate proteoglycan, is a component of the basement membrane and other extracellular matrices and has been implicated in multiple biological functions. Mutations in the perlecan gene (HSPG2) cause two classes of skeletal disorders: the relatively mild Schwartz-Jampel syndrome (SJS) and severe neonatal lethal dyssegmental dysplasia, Silverman-Handmaker type (DDSH). SJS is an autosomal recessive skeletal dysplasia characterized by varying degrees of myotonia and chondrodysplasia, and patients with SJS survive. The molecular mechanism underlying the chondrodystrophic myotonia phenotype of SJS is unknown. In the present report, we identify five different mutations that resulted in various forms of perlecan in three unrelated patients with SJS. Heterozygous mutations in two patients with SJS either produced truncated perlecan that lacked domain V or significantly reduced levels of wild-type perlecan. The third patient had a homozygous 7-kb deletion that resulted in reduced amounts of nearly full-length perlecan. Unlike DDSH, the SJS mutations result in different forms of perlecan in reduced levels that are secreted to the extracellular matrix and are likely partially functional. These findings suggest that perlecan has an important role in neuromuscular function and cartilage formation, and they define the molecular basis involved in the difference in the phenotypic severity between DDSH and SJS. PMID:11941538

  5. A Novel Null Mutation in P450 Aromatase Gene (CYP19A1) Associated with Development of Hypoplastic Ovaries in Humans

    PubMed Central

    Akçurin, Sema; Türkkahraman, Doğa; Kim, Woo-Young; Durmaz, Erdem; Shin, Jae-Gook; Lee, Su-Jun

    2016-01-01

    Objective: The CYP19A1 gene product aromatase is responsible for estrogen synthesis and androgen/estrogen equilibrium in many tissues, particularly in the placenta and gonads. Aromatase deficiency can cause various clinical phenotypes resulting from excessive androgen accumulation and insufficient estrogen synthesis during the pre- and postnatal periods. In this study, our aim was to determine the clinical characteristics and CYP19A1 mutations in three patients from a large Turkish pedigree. Methods: The cases were the newborns referred to our clinic for clitoromegaly and labial fusion. Virilizing signs such as severe acne formation, voice deepening, and clitoromegaly were noted in the mothers during pregnancy. Preliminary diagnosis was aromatase deficiency. Therefore, direct DNA sequencing of CYP19A1 was performed in samples from parents (n=5) and patients (n=3). Results: In all patients, a novel homozygous insertion mutation in the fifth exon (568insC) was found to cause a frameshift in the open reading frame and to truncate the protein prior to the heme-binding region which is crucial for enzymatic activity. The parents were found to be heterozygous for this mutation. Additionally, all patients had hypoplastic ovaries instead of cystic and enlarged ovaries. Conclusion: A novel 568C insertion mutation in CYP19A1 can lead to severe aromatase deficiency. Homozygosity for this mutation is associated with the development of hypoplastic ovaries. This finding provides an important genetic marker for understanding the physiological function of aromatase in fetal ovarian development. PMID:27086564

  6. The historical Coffin-Lowry syndrome family revisited: identification of two novel mutations of RPS6KA3 in three male patients.

    PubMed

    Nishimoto, Hiromi Koso; Ha, Kyungsoo; Jones, Julie R; Dwivedi, Alka; Cho, Hyun-Min; Layman, Lawrence C; Kim, Hyung-Goo

    2014-09-01

    Coffin-Lowry syndrome (CLS) is a rare X-linked dominant disorder characterized by intellectual disability, craniofacial abnormalities, short stature, tapering fingers, hypotonia, and skeletal malformations. CLS is caused by mutations in the Ribosomal Protein S6 Kinase, 90 kDa, Polypeptide 3 (RPS6KA3) gene located at Xp22.12, which encodes Ribosomal S6 Kinase 2 (RSK2). Here we analyzed RPS6KA3 in three unrelated CLS patients including one from the historical Coffin-Lowry syndrome family and found two novel mutations. To date, over 140 mutations in RPS6KA3 have been reported. However, the etiology of the very first familial case, which was described in 1971 by Lowry with detailed phenotype and coined the term CLS, has remained unknown. More than 40 years after the report, we succeeded in identifying deposited fibroblast cells from one patient of this historic family and found a novel heterozygous 216 bp in-frame deletion, encompassing exons 15 and 16 of RPS6KA3. Drop episodes in CLS patients were reported to be associated with truncating mutations deleting the C-terminal kinase domain (KD), and only one missense mutation and one single basepair duplication involving the C-terminal KD of RSK2 in the patients with drop episode have been reported thus far. Here we report the first in-frame deletion in C-terminal KD of RPS6KA3 in a CLS patient with drop episodes.

  7. Germline Heterozygous Variants in SEC23B Are Associated with Cowden Syndrome and Enriched in Apparently Sporadic Thyroid Cancer

    PubMed Central

    Yehia, Lamis; Niazi, Farshad; Ni, Ying; Ngeow, Joanne; Sankunny, Madhav; Liu, Zhigang; Wei, Wei; Mester, Jessica L.; Keri, Ruth A.; Zhang, Bin; Eng, Charis

    2015-01-01

    Cancer-predisposing genes associated with inherited cancer syndromes help explain mechanisms of sporadic carcinogenesis and often inform normal development. Cowden syndrome (CS) is an autosomal-dominant disorder characterized by high lifetime risks of epithelial cancers, such that ∼50% of affected individuals are wild-type for known cancer-predisposing genes. Using whole-exome and Sanger sequencing of a multi-generation CS family affected by thyroid and other cancers, we identified a pathogenic missense heterozygous SEC23B variant (c.1781T>G [p.Val594Gly]) that segregates with the phenotype. We also found germline heterozygous SEC23B variants in 3/96 (3%) unrelated mutation-negative CS probands with thyroid cancer and in The Cancer Genome Atlas (TCGA), representing apparently sporadic cancers. We note that the TCGA thyroid cancer dataset is enriched with unique germline deleterious SEC23B variants associated with a significantly younger age of onset. SEC23B encodes Sec23 homolog B (S. cerevisiae), a component of coat protein complex II (COPII), which transports proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Interestingly, germline homozygous or compound-heterozygous SEC23B mutations cause an unrelated disorder, congenital dyserythropoietic anemia type II, and SEC23B-deficient mice suffer from secretory organ degeneration due to ER-stress-associated apoptosis. By characterizing the p.Val594Gly variant in a normal thyroid cell line, we show that it is a functional alteration that results in ER-stress-mediated cell-colony formation and survival, growth, and invasion, which reflect aspects of a cancer phenotype. Our findings suggest a different role for SEC23B, whereby germline heterozygous variants associate with cancer predisposition potentially mediated by ER stress “addiction.” PMID:26522472

  8. Metachromatic leukodystrophy and nonverbal learning disability: neuropsychological and neuroradiological findings in heterozygous carriers.

    PubMed

    Weber Byars, A M; McKellop, J M; Gyato, K; Sullivan, T; Franz, D N

    2001-03-01

    Metachromatic leukodystrophy (MLD) is an autosomal recessive neurodegenerative disorder due to deficiency of the enzyme arylsulfatase A that leads to progressive, diffuse demyelination. The syndrome of nonverbal learning disability has been attributed to white matter abnormality and has been reported in children with this disorder and in some healthy family member carriers of gene. We examined the neuropsychologic profiles and MRIs of eight members of the family of a 7-year-old girl with this disease, all of whom were heterozygous carriers of the mutation and five of whom were also carriers of the MLD pseudodeficiency gene. All had low normal levels of arylsulfatase A, and seven of the eight had average or better profiles across all assessed neuropsychological domains. The patient's younger sister had a profile with features of the syndrome of nonverbal learning disability despite a normal MRI, whereas two members with minor white matter findings did not. This family does not provide evidence for the syndrome of nonverbal learning disability in heterozygous carriers of the gene for MLD, even when associated with the MLD pseudodeficiency gene.

  9. Molecular analysis of the PAX6 gene in Mexican patients with congenital aniridia: report of four novel mutations

    PubMed Central

    Villarroel, Camilo E.; Villanueva-Mendoza, Cristina; Orozco, Lorena; Alcántara-Ortigoza, Miguel Angel; Jiménez, Diana F.; Ordaz, Juan C.

    2008-01-01

    Purpose Paired box gene 6 (PAX6) heterozygous mutations are well known to cause congenital non-syndromic aniridia. These mutations produce primarily protein truncations and have been identified in approximately 40%–80% of all aniridia cases worldwide. In Mexico, there is only one previous report describing three intragenic deletions in five cases. In this study, we further analyze PAX6 variants in a group of Mexican aniridia patients and describe associated ocular findings. Methods We evaluated 30 nonrelated probands from two referral hospitals. Mutations were detected by single-strand conformation polymorphism (SSCP) and direct sequencing, and novel missense mutations and intronic changes were analyzed by in silico analysis. One intronic variation (IVS2+9G>A), which in silico analysis suggested had no pathological effects, was searched in 103 unaffected controls. Results Almost all cases exhibited phenotypes that were at the severe end of the aniridia spectrum with associated ocular alterations such as nystagmus, macular hypoplasia, and congenital cataracts. The mutation detection rate was 30%. Eight different mutations were identified: four (c.184_188dupGAGAC, c.361T>C, c.879dupC, and c.277G>A) were novel, and four (c.969C>T, IVS6+1G>C, c.853delC, and IVS7–2A>G) have been previously reported. The substitution at position 969 was observed in two patients. None of the intragenic deletions previously reported in Mexican patients were found. Most of the mutations detected predict either truncation of the PAX6 protein or conservative amino acid changes in the paired domain. We also detected two intronic non-pathogenic variations, IVS9–12C>T and IVS2+9G>A, that had been previously reported. Because the latter variation was considered potentially pathogenic, it was analyzed in 103 healthy Mexican newborns where we found an allelic frequency of 0.1116 for the A allele. Conclusions This study adds four novel mutations to the worldwide PAX6 mutational spectrum, and

  10. Identification of a second HOXA2 nonsense mutation in a family with autosomal dominant non-syndromic microtia and distinctive ear morphology.

    PubMed

    Piceci, F; Morlino, S; Castori, M; Buffone, E; De Luca, A; Grammatico, P; Guida, V

    2016-08-09

    Microtia is a congenital defect affecting external ears, which appear smaller and sometimes malformed. Here we describe a five-generation family with isolated bilateral microtia segregating as an autosomal dominant trait. Similar features have been previously observed in an autosomal dominant family with non-syndromic microtia and hearing loss segregating with a HOXA2 nonsense variant. HOXA2 biallelic mutations were also described in an inbreed family with autosomal recessive microtia, hearing impairment and incomplete cleft palate. In our family, sequence analysis detected a heterozygous protein truncating nonsense variant [c.670G>T, p.(Glu224*)] segregating in all affected individuals and absent in public databases. This study confirms the role of HOXA2 gene in dominant isolated microtia and contribute to further define the dysmorphogenetic effect of this gene on ear development.

  11. Association between a Novel Mutation in SLC20A2 and Familial Idiopathic Basal Ganglia Calcification

    PubMed Central

    Zhang, Yang; Guo, Xianan; Wu, Anhua

    2013-01-01

    Familial idiopathic basal ganglia calcification (FIBGC) is a rare, autosomal dominant disorder involving bilateral calcification of the basal ganglia. To identify gene mutations related to a Chinese FIBGC lineage, we evaluated available individuals in the family using CT scans. DNA was extracted from the peripheral blood of available family members, and both exonic and flanking intronic sequences of the SLC20A2 gene were amplified by PCR and then sequenced. Non-denaturing polyacrylamide gel electrophoresis (PAGE) was used to confirm the presence of mutations. Allele imbalances of the SLC20A2 gene or relative quantity of SLC20A2 transcripts were evaluated using qRT-PCR. A novel heterozygous single base-pair deletion (c.510delA) within the SLC20A2 gene was identified. This deletion mutation was found to co-segregate with basal ganglia calcification in all of the affected family members but was not detected in unaffected individuals or in 167 unrelated Han Chinese controls. The mutation will cause a frameshift, producing a truncated SLC20A2 protein with a premature termination codon, most likely leading to the complete loss of function of the SLC20A2 protein. This mutation may also lead to a reduction in SLC20A2 mRNA expression by approximately 30% in cells from affected individuals. In conclusion, we identified a novel mutation in SLC20A2 that is linked to FIBGC. In addition to the loss of function at the protein level, decreasing the expression of SLC20A2 mRNA may be another mechanism that can regulate SLC20A2 function in IBGC individuals. We propose that the regional expression pattern of SLC20A1 and SLC20A2 might explain the unique calcification pattern observed in FIBGC patients. PMID:23437308

  12. Directional intercept factor of truncated CPCs

    SciTech Connect

    Minano, J.C.

    1983-09-01

    The fraction of power reaching the collector of a truncated cylindrical compound parabolic concentrator, out of the total power arriving at its entry aperture in a given direction, is calculated without ray tracing for all directions.

  13. Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice.

    PubMed

    Kutiyanawalla, Ammar; Promsote, Wanwisa; Terry, Alvin; Pillai, Anilkumar

    2012-09-01

    Brain-derived neurotrophic factor (BDNF) signalling through its receptor, TrkB is known to regulate GABAergic function and glutamic acid decarboxylase (GAD) 67 expression in neurons. Alterations in BDNF signalling have been implicated in the pathophysiology of schizophrenia and as a result, they are a potential therapeutic target. Interestingly, heterozygous reeler mice (HRM) have decreased GAD67 expression in the frontal cortex and hippocampus and they exhibit many behavioural and neurochemical abnormalities similar to schizophrenia. In this study, we evaluated the potential of cysteamine, a neuroprotective compound to improve the deficits in GAD67 expression and cognitive function in HRM. We found that cysteamine administration (150 mg/kg.d, through drinking water) for 30 d significantly ameliorated the decreases in GAD67, mature BDNF and full-length TrkB protein levels found in frontal cortex and hippocampus of HRM. A significant attenuation of the increased levels of truncated BDNF in frontal cortex and hippocampus, as well as truncated TrkB in frontal cortex of HRM was also observed following cysteamine treatment. In behavioural studies, HRM were impaired in a Y-maze spatial recognition memory task, but not in a spontaneous alternation task or a sensorimotor, prepulse inhibition (PPI) procedure. Cysteamine improved Y-maze spatial recognition in HRM to the level of wide-type controls and it improved PPI in both wild-type and HRM. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in GAD67 expression suggesting that TrkB signalling plays an important role in GAD67 regulation by cysteamine.

  14. Homozygous and Heterozygous p53 Knockout Rats Develop Metastasizing Sarcomas with High Frequency

    PubMed Central

    van Boxtel, Ruben; Kuiper, Raoul V.; Toonen, Pim W.; van Heesch, Sebastiaan; Hermsen, Roel; de Bruin, Alain; Cuppen, Edwin

    2011-01-01

    The TP53 tumor suppressor gene is mutated in the majority of human cancers. Inactivation of p53 in a variety of animal models results in early-onset tumorigenesis, reflecting the importance of p53 as a gatekeeper tumor suppressor. We generated a mutant Tp53 allele in the rat using a target-selected mutagenesis approach. Here, we report that homozygosity for this allele results in complete loss of p53 function. Homozygous mutant rats predominantly develop sarcomas with an onset of 4 months of age with a high occurrence of pulmonary metastases. Heterozygous rats develop sarcomas starting at 8 months of age. Molecular analysis revealed that these tumors exhibit a loss-of-heterozygosity of the wild-type Tp53 allele. These unique features make this rat highly complementary to other rodent p53 knockout models and a versatile tool for investigating tumorigenesis processes as well as genotoxic studies. PMID:21854749

  15. A Novel Zebrafish ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for mapk10 as a Modifier of Enteric Nervous System Phenotype Severity

    PubMed Central

    Kawakami, Koichi; Pachnis, Vassilis

    2016-01-01

    Hirschsprung disease (HSCR) is characterized by absence of enteric neurons from the distal colon and severe intestinal dysmotility. To understand the pathophysiology and genetics of HSCR we developed a unique zebrafish model that allows combined genetic, developmental and in vivo physiological studies. We show that ret mutant zebrafish exhibit cellular, physiological and genetic features of HSCR, including absence of intestinal neurons, reduced peristalsis, and varying phenotype expressivity in the heterozygous state. We perform live imaging experiments using a UAS-GAL4 binary genetic system to drive fluorescent protein expression in ENS progenitors. We demonstrate that ENS progenitors migrate at reduced speed in ret heterozygous embryos, without changes in proliferation or survival, establishing this as a principal pathogenic mechanism for distal aganglionosis. We show, using live imaging of actual intestinal movements, that intestinal motility is severely compromised in ret mutants, and partially impaired in ret heterozygous larvae, and establish a clear correlation between neuron position and organised intestinal motility. We exploited the partially penetrant ret heterozygous phenotype as a sensitised background to test the influence of a candidate modifier gene. We generated mapk10 loss-of-function mutants, which show reduced numbers of enteric neurons. Significantly, we show that introduction of mapk10 mutations into ret heterozygotes enhanced the ENS deficit, supporting MAPK10 as a HSCR susceptibility locus. Our studies demonstrate that ret heterozygous zebrafish is a sensitized model, with many significant advantages over existing murine models, to explore the pathophysiology and complex genetics of HSCR. PMID:27902697

  16. Immunogenicity of self tumor associated proteins is enhanced through protein truncation

    PubMed Central

    Kottke, Tim; Shim, Kevin G; Alonso-Camino, Vanesa; Zaidi, Shane; Maria Diaz, Rosa; Pulido, Jose; Thompson, Jill; Rajani, Karishma R; Evgin, Laura; Ilett, Elizabeth; Pandha, Hardev; Harrington, Kevin; Selby, Peter; Melcher, Alan; Vile, Richard

    2016-01-01

    We showed previously that therapy with Vesicular Stomatitis Virus (VSV) expressing tumor-associated proteins eradicates established tumors. We show here that when cellular cDNA were cloned into VSV which retained their own poly-A signal, viral species emerged in culture which had deleted the cellular poly-A signal and also contained a truncated form of the protein coding sequence. Typically, the truncation occurred such that a Tyrosine-encoding codon was converted into a STOP codon. We believe that the truncation of tumor-associated proteins expressed from VSV in this way occurred to preserve the ability of the virus to replicate efficiently. Truncated cDNA expressed from VSV were significantly more effective than full length cDNA in treating established tumors. Moreover, tumor therapy with truncated cDNA was completely abolished by depletion of CD4+ T cells, whereas therapy with full length cDNA was CD8+ T cell dependent. These data show that the type/potency of antitumor immune responses against self-tumor-associated proteins can be manipulated in vivo through the nature of the self protein (full length or truncated). Therefore, in addition to generation of neoantigens through sequence mutation, immunological tolerance against self-tumor-associated proteins can be broken through manipulation of protein integrity, allowing for rational design of better self-immunogens for cancer immunotherapy. PMID:27933315

  17. A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling.

    PubMed

    Vivante, Asaf; Mann, Nina; Yonath, Hagith; Weiss, Anna-Carina; Getwan, Maike; Kaminski, Michael M; Bohnenpoll, Tobias; Teyssier, Catherine; Chen, Jing; Shril, Shirlee; van der Ven, Amelie T; Ityel, Hadas; Schmidt, Johanna Magdalena; Widmeier, Eugen; Bauer, Stuart B; Sanna-Cherchi, Simone; Gharavi, Ali G; Lu, Weining; Magen, Daniella; Shukrun, Rachel; Lifton, Richard P; Tasic, Velibor; Stanescu, Horia C; Cavaillès, Vincent; Kleta, Robert; Anikster, Yair; Dekel, Benjamin; Kispert, Andreas; Lienkamp, Soeren S; Hildebrandt, Friedhelm

    2017-04-05

    Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of CKD in the first three decades of life. However, for most patients with CAKUT, the causative mutation remains unknown. We identified a kindred with an autosomal dominant form of CAKUT. By whole-exome sequencing, we identified a heterozygous truncating mutation (c.279delG, p.Trp93fs*) of the nuclear receptor interacting protein 1 gene (NRIP1) in all seven affected members. NRIP1 encodes a nuclear receptor transcriptional cofactor that directly interacts with the retinoic acid receptors (RARs) to modulate retinoic acid transcriptional activity. Unlike wild-type NRIP1, the altered NRIP1 protein did not translocate to the nucleus, did not interact with RARα, and failed to inhibit retinoic acid-dependent transcriptional activity upon expression in HEK293 cells. Notably, we also showed that treatment with retinoic acid enhanced NRIP1 binding to RARα RNA in situ hybridization confirmed Nrip1 expression in the developing urogenital system of the mouse. In explant cultures of embryonic kidney rudiments, retinoic acid stimulated Nrip1 expression, whereas a pan-RAR antagonist strongly reduced it. Furthermore, mice heterozygous for a null allele of Nrip1 showed a CAKUT-spectrum phenotype. Finally, expression and knockdown experiments in Xenopus laevis confirmed an evolutionarily conserved role for NRIP1 in renal development. These data indicate that dominant NRIP1 mutations can cause CAKUT by interference with retinoic acid transcriptional signaling, shedding light on the well documented association between abnormal vitamin A levels and renal malformations in humans, and suggest a possible gene-environment pathomechanism in this disease.

  18. Mutations in DOCK7 in individuals with epileptic encephalopathy and cortical blindness.

    PubMed

    Perrault, Isabelle; Hamdan, Fadi F; Rio, Marlène; Capo-Chichi, José-Mario; Boddaert, Nathalie; Décarie, Jean-Claude; Maranda, Bruno; Nabbout, Rima; Sylvain, Michel; Lortie, Anne; Roux, Philippe P; Rossignol, Elsa; Gérard, Xavier; Barcia, Giulia; Berquin, Patrick; Munnich, Arnold; Rouleau, Guy A; Kaplan, Josseline; Rozet, Jean-Michel; Michaud, Jacques L

    2014-06-05

    Epileptic encephalopathies are increasingly thought to be of genetic origin, although the exact etiology remains uncertain in many cases. We describe here three girls from two nonconsanguineous families affected by a clinical entity characterized by dysmorphic features, early-onset intractable epilepsy, intellectual disability, and cortical blindness. In individuals from each family, brain imaging also showed specific changes, including an abnormally marked pontobulbar sulcus and abnormal signals (T2 hyperintensities) and atrophy in the occipital lobe. Exome sequencing performed in the first family did not reveal any gene with rare homozygous variants shared by both affected siblings. It did, however, show one gene, DOCK7, with two rare heterozygous variants (c.2510delA [p.Asp837Alafs(∗)48] and c.3709C>T [p.Arg1237(∗)]) found in both affected sisters. Exome sequencing performed in the proband of the second family also showed the presence of two rare heterozygous variants (c.983C>G [p.Ser328(∗)] and c.6232G>T [p.Glu2078(∗)]) in DOCK7. Sanger sequencing confirmed that all three individuals are compound heterozygotes for these truncating mutations in DOCK7. These mutations have not been observed in public SNP databases and are predicted to abolish domains critical for DOCK7 function. DOCK7 codes for a Rac guanine nucleotide exchange factor that has been implicated in the genesis and polarization of newborn pyramidal neurons and in the morphological differentiation of GABAergic interneurons in the developing cortex. All together, these observations suggest that loss of DOCK7 function causes a syndromic form of epileptic encephalopathy by affecting multiple neuronal processes.

  19. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway.

    PubMed

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon; Li, Fang; Sarchet, Kara N; DiStasi, Matthew R; Conway, Simon J; Kapur, Reuben; Ingram, David A

    2013-03-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.

  20. Truncation correction for oblique filtering lines

    SciTech Connect

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Guenter; Dennerlein, Frank; Noo, Frederic

    2008-12-15

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  1. Truncation correction for oblique filtering lines.

    PubMed

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Günter; Dennerlein, Frank; Noo, Frédéric

    2008-12-01

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  2. A COL7A1 Mutation Causes Dystrophic Epidermolysis Bullosa in Rotes Höhenvieh Cattle

    PubMed Central

    Menoud, Annie; Welle, Monika; Tetens, Jens; Lichtner, Peter; Drögemüller, Cord

    2012-01-01

    We identified a congenital mechanobullous skin disorder in six calves on a single farm of an endangered German cattle breed in 2010. The condition presented as a large loss of skin distal to the fetlocks and at the mucosa of the muzzle. All affected calves were euthanized on humane grounds due to the severity, extent and progression of the skin and oral lesions. Examination of skin samples under light microscopy revealed detachment of the epidermis from the dermis at the level of the dermo epidermal junction, leading to the diagnosis of a subepidermal bullous dermatosis such as epidermolysis bullosa. The pedigree was consistent with monogenic autosomal recessive inheritance. We localized the causative mutation to an 18 Mb interval on chromosome 22 by homozygosity mapping. The COL7A1 gene encoding collagen type VII alpha 1 is located within this interval and COL7A1 mutations have been shown to cause inherited dystrophic epidermolysis bullosa (DEB) in humans. A SNP in the bovine COL7A1 exon 49 (c.4756C>T) was perfectly associated with the observed disease. The homozygous mutant T/T genotype was exclusively present in affected calves and their parents were heterozygous C/T confirming the assumed recessive mode of inheritance. All known cases and genotyped carriers were related to a single cow, which is supposed to be the founder animal. The mutant T allele was absent in 63 animals from 24 cattle breeds. The identified mutation causes a premature stop codon which leads to a truncated protein representing a complete loss of COL7A1 function (p.R1586*). We thus have identified a candidate causative mutation for this genetic disease using only three cases to unravel its molecular basis. Selection against this mutation can now be used to eliminate the mutant allele from the Rotes Höhenvieh breed. PMID:22715415

  3. Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3

    PubMed Central

    Abreu, Ana Paula; Dauber, Andrew; Macedo, Delanie B.; Noel, Sekoni D.; Brito, Vinicius N.; Gill, John C.; Cukier, Priscilla; Thompson, Iain R.; Navarro, Victor M.; Gagliardi, Priscila C.; Rodrigues, Tânia; Kochi, Cristiane; Longui, Carlos Alberto; Beckers, Dominique; de Zegher, Francis; Montenegro, Luciana R.; Mendonca, Berenice B.; Carroll, Rona S.; Hirschhorn, Joel N.; Latronico, Ana Claudia; Kaiser, Ursula B.

    2013-01-01

    BACKGROUND The onset of puberty is first detected as an increase in pulsatile secretion of gonadotropin-releasing hormone (GnRH). Early activation of the hypothalamic–pituitary–gonadal axis results in central precocious puberty. The timing of pubertal development is driven in part by genetic factors, but only a few, rare molecular defects associated with central precocious puberty have been identified. METHODS We performed whole-exome sequencing in 40 members of 15 families with central precocious puberty. Candidate variants were confirmed with Sanger sequencing. We also performed quantitative real-time polymerase-chain-reaction assays to determine levels of messenger RNA (mRNA) in the hypothalami of mice at different ages. RESULTS We identified four novel heterozygous mutations in MKRN3, the gene encoding makorin RING-finger protein 3, in 5 of the 15 families; both sexes were affected. The mutations included three frameshift mutations, predicted to encode truncated proteins, and one missense mutation, predicted to disrupt protein function. MKRN3 is a paternally expressed, imprinted gene located in the Prader–Willi syndrome critical region (chromosome 15q11–q13). All affected persons inherited the mutations from their fathers, a finding that indicates perfect segregation with the mode of inheritance expected for an imprinted gene. Levels of Mkrn3 mRNA were high in the arcuate nucleus of prepubertal mice, decreased immediately before puberty, and remained low after puberty. CONCLUSIONS Deficiency of MKRN3 causes central precocious puberty in humans. (Funded by the National Institutes of Health and others.) PMID:23738509

  4. Correlation estimation with singly truncated bivariate data.

    PubMed

    Im, Jongho; Ahn, Eunyong; Beck, Namseon; Kim, Jae Kwang; Park, Taesung

    2017-02-27

    Correlation coefficient estimates are often attenuated for truncated samples in the sense that the estimates are biased towards zero. Motivated by real data collected in South Sudan, we consider correlation coefficient estimation with singly truncated bivariate data. By considering a linear regression model in which a truncated variable is used as an explanatory variable, a consistent estimator for the regression slope can be obtained from the ordinary least squares method. A consistent estimator of the correlation coefficient is then obtained by multiplying the regression slope estimator by the variance ratio of the two variables. Results from two limited simulation studies confirm the validity and robustness of the proposed method. The proposed method is applied to the South Sudanese children's anthropometric and nutritional data collected by World Vision. Copyright © 2017 John Wiley & Sons, Ltd.

  5. On consistent truncations in = 2* holography

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Venkat; Buchel, Alex

    2014-02-01

    Although Pilch-Warner (PW) gravitational renormalization group flow [1] passes a number of important consistency checks to be identified as a holographic dual to a large- N SU( N) = 2* supersymmetric gauge theory, it fails to reproduce the free energy of the theory on S 4, computed with the localization techniques. This disagreement points to the existence of a larger dual gravitational consistent truncation, which in the gauge theory flat-space limit reduces to a PW flow. Such truncation was recently identified by Bobev-Elvang-Freedman-Pufu (BEFP) [2]. Additional bulk scalars of the BEFP gravitation truncation might lead to destabilization of the finite-temperature deformed PW flows, and thus modify the low-temperature thermodynamics and hydrodynamics of = 2* plasma. We compute the quasinormal spectrum of these bulk scalar fields in the thermal PW flows and demonstrate that these modes do not condense, as long as the masses of the = 2* hypermultiplet components are real.

  6. Identification of a Novel Homozygous Nonsense Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy

    PubMed Central

    Méjécase, Cécile; Laurent-Coriat, Caroline; Mayer, Claudine; Poch, Olivier; Mohand-Saïd, Saddek; Prévot, Camille; Antonio, Aline; Boyard, Fiona; Condroyer, Christel; Michiels, Christelle; Blanchard, Steven; Letexier, Mélanie; Saraiva, Jean-Paul; Sahel, José-Alain

    2016-01-01

    GNAT1, encoding the transducin subunit Gα, is an important element of the phototransduction cascade. Mutations in this gene have been associated with autosomal dominant and autosomal recessive congenital stationary night blindness. Recently, a homozygous truncating GNAT1 mutation was identified in a patient with late-onset rod-cone dystrophy. After exclusion of mutations in genes underlying progressive inherited retinal disorders, by targeted next generation sequencing, a 32 year-old male sporadic case with severe rod-cone dystrophy and his unaffected parents were investigated by whole exome sequencing. This led to the identification of a homozygous nonsense variant, c.963C>A p.(Cys321*) in GNAT1, which was confirmed by Sanger sequencing. The mother was heterozygous for this variant whereas the variant was absent in the father. c.963C>A p.(Cys321*) is predicted to produce a shorter protein that lacks critical sites for the phototransduction cascade. Our work confirms that the phenotype and the mode of inheritance associated with GNAT1 variants can vary from autosomal dominant, autosomal recessive congenital stationary night blindness to autosomal recessive rod-cone dystrophy. PMID:27977773

  7. Central Precocious Puberty That Appears to Be Sporadic Caused by Paternally Inherited Mutations in the Imprinted Gene Makorin Ring Finger 3

    PubMed Central

    Macedo, Delanie B.; Abreu, Ana Paula; Reis, Ana Claudia S.; Montenegro, Luciana R.; Dauber, Andrew; Beneduzzi, Daiane; Cukier, Priscilla; Silveira, Leticia F. G.; Teles, Milena G.; Carroll, Rona S.; Junior, Gil Guerra; Filho, Guilherme Guaragna; Gucev, Zoran; Arnhold, Ivo J. P.; de Castro, Margaret; Moreira, Ayrton C.; Martinelli, Carlos Eduardo; Hirschhorn, Joel N.; Mendonca, Berenice B.; Brito, Vinicius N.; Antonini, Sonir R.; Kaiser, Ursula B.

    2014-01-01

    Context: Loss-of-function mutations in makorin ring finger 3 (MKRN3), an imprinted gene located on the long arm of chromosome 15, have been recognized recently as a cause of familial central precocious puberty (CPP) in humans. MKRN3 has a potential inhibitory effect on GnRH secretion. Objectives: The objective of the study was to investigate potential MKRN3 sequence variations as well as copy number and methylation abnormalities of the 15q11 locus in patients with apparently sporadic CPP. Setting and Participants: We studied 215 unrelated children (207 girls and eight boys) from three university medical centers with a diagnosis of CPP. All but two of these patients (213 cases) reported no family history of premature sexual development. First-degree relatives of patients with identified MKRN3 variants were included for genetic analysis. Main Outcome Measures: All 215 CPP patients were screened for MKRN3 mutations by automatic sequencing. Multiplex ligation-dependent probe amplification was performed in a partially overlapping cohort of 52 patients. Results: We identified five novel heterozygous mutations in MKRN3 in eight unrelated girls with CPP. Four were frame shift mutations predicted to encode truncated proteins and one was a missense mutation, which was suggested to be deleterious by in silico analysis. All patients with MKRN3 mutations had classical features of CPP with a median age of onset at 6 years. Copy number and methylation abnormalities at the 15q11 locus were not detected in the patients tested for these abnormalities. Segregation analysis was possible in five of the eight girls with MKRN3 mutations; in all cases, the mutation was inherited on the paternal allele. Conclusions: We have identified novel inherited MKRN3 defects in children with apparently sporadic CPP, supporting a fundamental role of this peptide in the suppression of the reproductive axis. PMID:24628548

  8. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39.

    PubMed

    Choi, Kimyung; Shim, Joohyun; Ko, Nayoung; Eom, Heejong; Kim, Jiho; Lee, Jeong-Woong; Jin, Dong-Il; Kim, Hyunil

    2017-04-01

    Production of transgenic pigs for use as xenotransplant donors is a solution to the severe shortage of human organs for transplantation. The first barrier to successful xenotransplantation is hyperacute rejection, a rapid, massive humoral immune response directed against the pig carbohydrate GGTA1 epitope. Platelet activation, adherence, and clumping, all major features of thrombotic microangiopathy, are inevitable results of immune-mediated transplant rejection. Human CD39 rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. In this study, we developed a vector-based strategy for ablation of GGTA1 function and concurrent expression of human CD39 (hCD39). An hCD39 expression cassette was constructed to target exon 4 of GGTA1. We established heterozygous GGTA1 knock-out cell lines expressing hCD39 from pig ear fibroblasts for somatic cell nuclear transfer (SCNT). We also described production of heterozygous GGTA1 knock-out piglets expressing hCD39 and analyzed expression and function of the transgene. Human CD39 was expressed in heart, kidney and aorta. Human CD39 knock-in heterozygous ear fibroblast from transgenic cloned pigs, but not in non-transgenic pig's cells. Expression of GGTA1 gene was lower in the knock-in heterozygous ear fibroblast from transgenic pigs compared to the non-transgenic pig's cell. The peripheral blood mononuclear cells (PBMC) from the transgenic pigs were more resistant to lysis by pooled complement-preserved normal human serum than that from wild type (WT) pig. Accordingly, GGTA1 mutated piglets expressing hCD39 will provide a new organ source for xenotransplantation research.

  9. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2

    PubMed Central

    Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W.; Morín, Matías; Jhangiani, Shalini; Verver, Eva J.J.; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H.; Huygen, Patrick L.M.; Insenser, María; Admiraal, Ronald J.C.; Pennings, Ronald J.E.; Hoefsloot, Lies H.; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G.; Jansen, Joop H.; Muzny, Donna M.; Huls, Gerwin; van Rossum, Michelle M.; Lupski, James R.; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P.M.; Kremer, Hannie

    2015-01-01

    Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. PMID:26522471

  10. AIP mutations in young patients with acromegaly and the Tampico Giant: the Mexican experience.

    PubMed

    Ramírez-Rentería, Claudia; Hernández-Ramírez, Laura C; Portocarrero-Ortiz, Lesly; Vargas, Guadalupe; Melgar, Virgilio; Espinosa, Etual; Espinosa-de-Los-Monteros, Ana Laura; Sosa, Ernesto; González, Baldomero; Zúñiga, Sergio; Unterländer, Martina; Burger, Joachim; Stals, Karen; Bussell, Anne-Marie; Ellard, Sian; Dang, Mary; Iacovazzo, Donato; Kapur, Sonal; Gabrovska, Plamena; Radian, Serban; Roncaroli, Federico; Korbonits, Márta; Mercado, Moisés

    2016-08-01

    Although aryl hydrocarbon receptor-interacting protein (AIP) mutations are rare in sporadic acromegaly, their prevalence among young patients is nonnegligible. The objectives of this study were to evaluate the frequency of AIP mutations in a cohort of Mexican patients with acromegaly with disease onset before the age of 30 and to search for molecular abnormalities in the AIP gene in teeth obtained from the "Tampico Giant". Peripheral blood DNA from 71 patients with acromegaly (51 females) with disease onset <30 years was analysed (median age of disease onset of 23 years) and correlated with clinical, biochemical and imaging characteristics. Sequencing was also carried out in DNA extracted from teeth of the Tampico Giant. Five patients (7 %) harboured heterozygous, germline mutations of the AIP gene. In two of them (a 9-year-old girl with gigantism and a young man with symptoms of GH excess since age 14) the c.910C>T (p.Arg304Ter), well-known truncating mutation was identified; in one of these two cases and her identical twin sister, the mutation proved to be a de novo event, since neither of their parents were found to be carriers. In the remaining three patients, new mutations were identified: a frameshift mutation (c.976_977insC, p.Gly326AfsTer), an in-frame deletion (c.872_877del, p.Val291_Leu292del) and a nonsense mutation (c.868A > T, p.Lys290Ter), which are predicted to be pathogenic based on in silico analysis. Patients with AIP mutations tended to have an earlier onset of acromegaly and harboured larger and more invasive tumours. A previously described genetic variant of unknown significance (c.869C > T, p.Ala299Val) was identified in DNA from the Tampico Giant. The prevalence of AIP mutations in young Mexican patients with acromegaly is similar to that of European cohorts. Our results support the need for genetic evaluation of patients with early onset acromegaly.

  11. New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms*

    PubMed Central

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G. L.; Keramidas, Angelo; Cushion, Thomas D.; Thomas, Rhys H.; Pickrell, William O.; Drew, Cheney J. G.; Masri, Amira; Jones, Elizabeth A.; Vassallo, Grace; Born, Alfred P.; Alehan, Fusun; Aharoni, Sharon; Bannasch, Gerald; Bartsch, Marius; Kara, Bulent; Krause, Amanda; Karam, Elie G.; Matta, Stephanie; Jain, Vivek; Mandel, Hanna; Freilinger, Michael; Graham, Gail E.; Hobson, Emma; Chatfield, Sue; Vincent-Delorme, Catherine; Rahme, Jubran E.; Afawi, Zaid; Berkovic, Samuel F.; Howell, Owain W.; Vanbellinghen, Jean-François; Rees, Mark I.; Chung, Seo-Kyung; Lynch, Joseph W.

    2013-01-01

    Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus β subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors. PMID:24108130

  12. Identification of novel mutations in CD2BP1 gene in clinically proven rheumatoid arthritis patients of south India.

    PubMed

    Kumar, Bhattaram Siddhartha; Kumar, Pasupuleti Santhosh; Sowgandhi, Nannepaga; Prajwal, Bhattaram Manoj; Mohan, Alladi; Sarma, Kadainti Venkata Subbaraya; Sarma, Potukuchi Venkata Gurunadha Krishna

    2016-08-01

    Pyogenic Arthritis, Pyoderma gangrenosum, and Acne (PAPA syndrome) is a rare autosomal dominant, auto-inflammatory disease that affects joints and skin. The disease results due to mutations in the cluster of differentiation 2 binding protein 1 (CD2BP1) gene on chromosome 15q24.3. Rheumatoid arthritis (RA) is a common, genetically complex disease that affects the joints with occasional skin manifestations. Studies related to the pathophysiology of inflammation in these two disorders show a certain degree of overlap at genetic level. The present study was done to confirm the existence of such a genetic overlap between PAPA syndrome and RA in south Indian population. In the present study 100 patients who were clinically diagnosed rheumatoid arthritis and 100 apparently healthy controls were chosen and the 15 exons of CD2BP1 gene were PCR-amplified and sequenced. The sequence analysis showed that in exon 3 thirty eight patients revealed presence of novel heterozygous missense mutations p.Glu51Asp, p.Leu57Arg and p.Ala64Thr. In exons 6, 10 and 14 eight patients showed 44 novel missense mutations and two patients showed novel frame shift mutations p.(Met123_Leu416delinsThr) and p.(Thr337Profs*52) leading to truncated protein formation. Such mutations were not seen in controls. Further, the in silico analysis revealed the mutant CD2BP1 structure showed deletion of Cdc15 and SH3 domains when superimposed with the wild type CD2BP1 structure with variable RMSD values. Therefore, these structural variations in CD2BP1 gene due to the mutations could be one of the strongest reasons to demonstrate the involvement of these gene variations in the patients with rheumatoid arthritis.

  13. De novo dominant ASXL3 mutations alter H2A deubiquitination and transcription in Bainbridge–Ropers syndrome

    PubMed Central

    Srivastava, Anshika; Ritesh, K.C.; Tsan, Yao-Chang; Liao, Rosy; Su, Fengyun; Cao, Xuhong; Hannibal, Mark C.; Keegan, Catherine E.; Chinnaiyan, Arul M.; Martin, Donna M.; Bielas, Stephanie L.

    2016-01-01

    De novo truncating mutations in Additional sex combs-like 3 (ASXL3) have been identified in individuals with Bainbridge–Ropers syndrome (BRS), characterized by failure to thrive, global developmental delay, feeding problems, hypotonia, dysmorphic features, profound speech delays and intellectual disability. We identified three novel de novo heterozygous truncating variants distributed across ASXL3, outside the original cluster of ASXL3 mutations previously described for BRS. Primary skin fibroblasts established from a BRS patient were used to investigate the functional impact of pathogenic variants. ASXL3 mRNA transcripts from the mutated allele are prone to nonsense-mediated decay, and expression of ASXL3 is reduced. We found that ASXL3 interacts with BAP1, a hydrolase that removes mono-ubiquitin from histone H2A lysine 119 (H2AK119Ub1) as a component of the Polycomb repressive deubiquitination (PR-DUB) complex. A significant increase in H2AK119Ub1 was observed in ASXL3 patient fibroblasts, highlighting an important functional role for ASXL3 in PR-DUB mediated deubiquitination. Transcriptomes of ASXL3 patient and control fibroblasts were compared to investigate the impact of chromatin changes on transcriptional regulation. Out of 564 significantly differentially expressed genes (DEGs) in ASXL3 patient fibroblasts, 52% were upregulated and 48% downregulated. DEGs were enriched in molecular processes impacting transcriptional regulation, development and proliferation, consistent with the features of BRS. This is the first single gene disorder linked to defects in deubiquitination of H2AK119Ub1 and suggests an important role for dynamic regulation of H2A mono-ubiquitination in transcriptional regulation and the pathophysiology of BRS. PMID:26647312

  14. Candidate gene analysis of BRCA1/2 mutation-negative high-risk Russian breast cancer patients.

    PubMed

    Sokolenko, Anna P; Preobrazhenskaya, Elena V; Aleksakhina, Svetlana N; Iyevleva, Aglaya G; Mitiushkina, Natalia V; Zaitseva, Olga A; Yatsuk, Olga S; Tiurin, Vladislav I; Strelkova, Tatiana N; Togo, Alexandr V; Imyanitov, Evgeny N

    2015-04-10

    Twenty one DNA repair genes were analyzed in a group of 95 BC patients, who displayed clinical features of hereditary disease predisposition but turned out to be negative for mutations in BRCA1 and BRCA2 entire coding region as well as for founder disease-predisposing alleles in CHEK2, NBN/NBS1 and ATM genes. Full-length sequencing of CHEK2 and NBN/NBS1 failed to identify non-founder mutations. The analysis of TP53 revealed a woman carrying the R282W allele; further testing of additional 108 BC patients characterized by a very young age at onset (35 years or earlier) detected one more carrier of the TP53 germ-line defect. In addition, this study confirmed non-random occurrence of PALB2 truncating mutations in Russian hereditary BC patients. None of the studied cases carried germ-line defects in recently discovered hereditary BC genes, BRIP1, FANCC, MRE11A and RAD51C. The analysis of genes with yet unproven BC-predisposing significance (BARD1, BRD7, CHEK1, DDB2, ERCC1, EXO1, FANCG, PARP1, PARP2, RAD51, RNF8, WRN) identified single women carrying a protein-truncating allele, WRN R1406X. DNA sequencing of another set of 95 hereditary BC cases failed to reveal additional WRN heterozygous genotypes. Since WRN is functionally similar to the known BC-predisposing gene, BLM, it deserves to be analyzed in future hereditary BC studies. Furthermore, this investigation revealed a number of rare missense germ-line variants, which are classified as probably protein-damaging by online in silico tools and therefore may require further consideration.

  15. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5′ splice site

    PubMed Central

    Yadegari, Hamideh; Biswas, Arijit; Akhter, Mohammad Suhail; Driesen, Julia; Ivaskevicius, Vytautas; Marquardt, Natascha

    2016-01-01

    Disease-associated silent mutations are considered to affect the accurate pre–messenger RNA (mRNA) splicing either by influencing regulatory elements, leading to exon skipping, or by creating a new cryptic splice site. This study describes a new molecular pathological mechanism by which a silent mutation inhibits splicing and leads to intron retention. We identified a heterozygous silent mutation, c.7464C>T, in exon 44 of the von Willebrand factor (VWF) gene in a family with type 1 von Willebrand disease. In vivo and ex vivo transcript analysis revealed an aberrantly spliced transcript, with intron 44 retained in the mRNA, implying disruption of the first catalytic step of splicing at the 5′ splice site (5′ss). The abnormal transcript with the retained intronic region coded a truncated protein that lacked the carboxy-terminal end of the VWF protein. Confocal immunofluorescence characterizations of blood outgrowth endothelial cells derived from the patient confirmed the presence of the truncated protein by demonstrating accumulation of VWF in the endoplasmic reticulum. In silico pre-mRNA secondary and tertiary structure analysis revealed that this substitution, despite its distal position from the 5′ss (85 bp downstream), induces cis alterations in pre-mRNA structure that result in the formation of a stable hairpin at the 5′ss. This hairpin sequesters the 5′ss residues involved in U1 small nuclear RNA interactions, thereby inhibiting excision of the pre-mRNA intronic region. This study is the first to show the allosteric-like/far-reaching effect of an exonic variation on pre-mRNA splicing that is mediated by structural changes in the pre-mRNA. PMID:27543438

  16. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish.

    PubMed

    Kim, Seok-Hyung; Kowalski, Marie L; Carson, Robert P; Bridges, L Richard; Ess, Kevin C

    2013-07-01

    Tuberous sclerosis complex (TSC) is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1) kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors.

  17. Abnormalities induced by the mutant gene, lpr. Patterns of disease and expression of murine leukemia viruses in SJL/J mice homozygous and heterozygous for lpr.

    PubMed

    Morse, H C; Roths, J B; Davidson, W F; Langdon, W Y; Fredrickson, T N; Hartley, J W

    1985-03-01

    SJL/J mice heterozygous or homozygous for the lpr mutation were compared with SJL/J-+/+ mice for longevity, histopathology, antigenic characteristics of lymphocytes and expression of murine leukemia viruses (MuLV). In comparison to +/+ mice, lpr homozygotes had a markedly shortened life span, died with infiltrative pulmonary disease, but little or no renal disease, and expressed high levels of infectious ecotropic MuLV in lymphoid tissues. SJL-lpr/+ mice had a life span intermediate between SJL-+/+ and -lpr/lpr mice, died with lymphomas that histologically resembled the neoplasms of +/+ mice, and sometimes expressed high levels of ecotropic MuLV. The lymphomas of lpr/+ could be transplanted to +/+ recipients in 78% of cases, and continuous in vitro lines were established from some of them. Similar effects on virus expression or lymphoma development were not observed in other strains homozygous or heterozygous for the lpr mutation. These results indicate that the diseases expressed by mice homozygous for the lpr mutation are highly strain-dependent, and that this gene can have an effect in the heterozygous state in SJL mice.

  18. Scattering by a Truncated Periodic Array.

    DTIC Science & Technology

    1987-03-01

    those near the truncated edges of the array. This edge effect is clearly noticeable from the computed data and leads one to conclude that the simple...findings of this work are summarized as follows: (1) The edge effect is clearly observable and should not be ignored; (2) The array scat- ters strongly in

  19. Irregularly Shaped Space-Filling Truncated Octahedra

    ERIC Educational Resources Information Center

    Hanson, John Robert

    2008-01-01

    For any parent tetrahedron ABCD, centroids of selected sub-tetrahedra form the vertices of an irregularly shaped space-filling truncated octahedron. To reflect these properties, such a figure will be called an ISTO. Each edge of the ISTO is parallel to and one-eighth the length of one of the edges of tetrahedron ABCD and the volume of the ISTO is…

  20. Family Therapy for the "Truncated" Nuclear Family.

    ERIC Educational Resources Information Center

    Zuk, Gerald H.

    1980-01-01

    The truncated nuclear family consists of a two-generation group in which conflict has produced a polarization of values. The single-parent family is at special risk. Go-between process enables the therapist to depolarize sharply conflicted values and reduce pathogenic relating. (Author)

  1. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome.

    PubMed

    Rivas, Manuel A; Pirinen, Matti; Conrad, Donald F; Lek, Monkol; Tsang, Emily K; Karczewski, Konrad J; Maller, Julian B; Kukurba, Kimberly R; DeLuca, David S; Fromer, Menachem; Ferreira, Pedro G; Smith, Kevin S; Zhang, Rui; Zhao, Fengmei; Banks, Eric; Poplin, Ryan; Ruderfer, Douglas M; Purcell, Shaun M; Tukiainen, Taru; Minikel, Eric V; Stenson, Peter D; Cooper, David N; Huang, Katharine H; Sullivan, Timothy J; Nedzel, Jared; Bustamante, Carlos D; Li, Jin Billy; Daly, Mark J; Guigo, Roderic; Donnelly, Peter; Ardlie, Kristin; Sammeth, Michael; Dermitzakis, Emmanouil T; McCarthy, Mark I; Montgomery, Stephen B; Lappalainen, Tuuli; MacArthur, Daniel G

    2015-05-08

    Accurate prediction of the functional effect of genetic variation is critical for clinical genome interpretation. We systematically characterized the transcriptome effects of protein-truncating variants, a class of variants expected to have profound effects on gene function, using data from the Genotype-Tissue Expression (GTEx) and Geuvadis projects. We quantitated tissue-specific and positional effects on nonsense-mediated transcript decay and present an improved predictive model for this decay. We directly measured the effect of variants both proximal and distal to splice junctions. Furthermore, we found that robustness to heterozygous gene inactivation is not due to dosage compensation. Our results illustrate the value of transcriptome data in the functional interpretation of genetic variants.

  2. Diploid yeast cells yield homozygous spontaneous mutations

    NASA Technical Reports Server (NTRS)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  3. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism.

    PubMed

    Puschmann, Andreas; Fiesel, Fabienne C; Caulfield, Thomas R; Hudec, Roman; Ando, Maya; Truban, Dominika; Hou, Xu; Ogaki, Kotaro; Heckman, Michael G; James, Elle D; Swanberg, Maria; Jimenez-Ferrer, Itzia; Hansson, Oskar; Opala, Grzegorz; Siuda, Joanna; Boczarska-Jedynak, Magdalena; Friedman, Andrzej; Koziorowski, Dariusz; Aasly, Jan O; Lynch, Timothy; Mellick, George D; Mohan, Megha; Silburn, Peter A; Sanotsky, Yanosh; Vilariño-Güell, Carles; Farrer, Matthew J; Chen, Li; Dawson, Valina L; Dawson, Ted M; Wszolek, Zbigniew K; Ross, Owen A; Springer, Wolfdieter

    2017-01-01

    SEE GANDHI AND PLUN-FAVREAU DOI101093/AWW320 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: It has been postulated that heterozygous mutations in recessive Parkinson's genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson's disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson's disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson's disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred

  4. Mutations in the delta-sarcoglycan gene are a rare cause of autosomal recessive limb-girdle muscular dystrophy (LGMD2).

    PubMed

    Duggan, D J; Manchester, D; Stears, K P; Mathews, D J; Hart, C; Hoffman, E P

    1997-05-01

    The dystrophin-based membrane cytoskeleton of muscle fibers has emerged as a critical multi-protein complex which seems to impart structural integrity on the muscle fiber plasma membrane. Deficiency of dystrophin causes the most common types of muscular dystrophy, Duchenne and Becker muscular dystrophies. Muscular dystrophy patients showing normal dystrophin protein and gene analysis are generally isolated cases with a presumed autosomal recessive inheritance pattern (limb-girdle muscular dystrophy). Recently, linkage and candidate gene analyses have shown that some cases of limb-girdle muscular dystrophy can be caused by deficiency of other components of the dystrophin membrane cytoskeleton. The most recently identified component, delta-sarcoglycan, has been found to show mutations in a series of Brazilian muscular dystrophy patients. All patients were homozygous for a protein-truncating carboxy-terminal mutation, and showed a deficiency of the four sarcoglycan proteins. To determine if delta-sarcoglycan deficiency occurred in other world populations, to identify the range of mutations and clinical phenotypes, and to test for the biochemical consequences of delta-sarcoglycan gene mutations, we studied Duchenne-like and limb-girdle muscular dystrophy patients who we had previously shown not to exhibit gene mutations of dystrophin, alpha-, beta-, or gamma-sarcoglycan for delta-sarcoglycan mutations (n = 54). We identified two American patients with novel nonsense mutations of delta-sarcoglycan (W30X, R165X). One was apparently homozygous, and we show likely consanguinity through homozygosity for 13 microsatellite loci covering a 38 cM region of chromosome 5. The second was heterozygous. Both were girls who showed clinical symptoms consistent with Duchenne muscular dystrophy in males. Our data shows that delta-sarcoglycan deficiency occurs in other world populations, and that most or all patients show a deficiency of the entire sarcoglycan complex, adding support to

  5. Heterozygosity increases microsatellite mutation rate

    PubMed Central

    Amos, William

    2016-01-01

    Whole genome sequencing of families of Arabidopsis has recently lent strong support to the heterozygote instability (HI) hypothesis that heterozygosity locally increases mutation rate. However, there is an important theoretical difference between the impact on base substitutions, where mutation rate increases in regions surrounding a heterozygous site, and the impact of HI on sequences such as microsatellites, where mutations are likely to occur at the heterozygous site itself. At microsatellite loci, HI should create a positive feedback loop, with heterozygosity and mutation rate mutually increasing each other. Direct support for HI acting on microsatellites is limited and contradictory. I therefore analysed AC microsatellites in 1163 genome sequences from the 1000 genomes project. I used the presence of rare alleles, which are likely to be very recent in origin, as a surrogate measure of mutation rate. I show that rare alleles are more likely to occur at locus-population combinations with higher heterozygosity even when all populations carry exactly the same number of alleles. PMID:26740567

  6. Screening of sarcomere gene mutations in young athletes with abnormal findings in electrocardiography: identification of a MYH7 mutation and MYBPC3 mutations.

    PubMed

    Kadota, Chika; Arimura, Takuro; Hayashi, Takeharu; Naruse, Taeko K; Kawai, Sachio; Kimura, Akinori

    2015-10-01

    There is an overlap between the physiological cardiac remodeling associated with training in athletes, the so-called athlete's heart, and mild forms of hypertrophic cardiomyopathy (HCM), the most common hereditary cardiac disease. HCM is often accompanied by unfavorable outcomes including a sudden cardiac death in the adolescents. Because one of the initial signs of HCM is abnormality in electrocardiogram (ECG), athletes may need to monitor for ECG findings to prevent any unfavorable outcomes. HCM is caused by mutations in genes for sarcomere proteins, but there is no report on the systematic screening of gene mutations in athletes. One hundred and two genetically unrelated young Japanese athletes with abnormal ECG findings were the subjects for the analysis of four sarcomere genes, MYH7, MYBPC3, TNNT2 and TNNI3. We found that 5 out of 102 (4.9%) athletes carried mutations: a heterozygous MYH7 Glu935Lys mutation, a heterozygous MYBPC3 Arg160Trp mutation and another heterozygous MYBPC3 Thr1046Met mutation, all of which had been reported as HCM-associated mutations, in 1, 2 and 2 subjects, respectively. This is the first study of systematic screening of sarcomere gene mutations in a cohort of athletes with abnormal ECG, demonstrating the presence of sarcomere gene mutations in the athlete's heart.

  7. Applications of truncated QR methods to sinusoidal frequency estimation

    NASA Technical Reports Server (NTRS)

    Hsieh, S. F.; Liu, K. J. R.; Yao, K.

    1990-01-01

    Three truncated QR methods are proposed for sinusoidal frequency estimation: (1) truncated QR without column pivoting (TQR), (2) truncated QR with preordered columns, and (3) truncated QR with column pivoting. It is demonstrated that the benefit of truncated SVD for high frequency resolution is achievable under the truncated QR approach with much lower computational cost. Other attractive features of the proposed methods include the ease of updating, which is difficult for the SVD method, and numerical stability. TQR methods thus offer efficient ways to identify sinusoidals closely clustered in frequencies under stationary and nonstationary conditions.

  8. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model.

  9. Validation of Deleterious Mutations in Vorderwald Cattle

    PubMed Central

    Reinartz, Sina; Distl, Ottmar

    2016-01-01

    In Montbéliarde cattle two candidate mutations on bovine chromosomes 19 and 29 responsible for embryonic lethality have been detected. Montbéliarde bulls have been introduced into Vorderwald cattle to improve milk and fattening performance. Due to the small population size of Vorderwald cattle and the wide use of a few Montbéliarde bulls through artificial insemination, inbreeding on Montbéliarde bulls in later generations was increasing. Therefore, we genotyped an aborted fetus which was inbred on Montbéliarde as well as Vorderwald x Montbéliarde crossbred bulls for both deleterious mutations. The abortion was observed in an experimental herd of Vorderwald cattle. The objectives of the present study were to prove if one or both lethal mutations may be assumed to have caused this abortion and to show whether these deleterious mutations have been introduced into the Vorderwald cattle population through Montbéliarde bulls. The aborted fetus was homozygous for the SLC37A2:g.28879810C>T mutation (ss2019324563) on BTA29 and both parents as well as the paternal and maternal grandsire were heterozygous for this mutation. In addition, the parents and the paternal grandsire were carriers of the MH2-haplotype linked with the T-allele of the SLC37A2:g.28879810C>T mutation. For the SHBG:g.27956790C>T mutation (rs38377500) on BTA19 (MH1), the aborted fetus and its sire were heterozygous. Among all further 341 Vorderwald cattle genotyped we found 27 SLC37A2:g.28879810C>T heterozygous animals resulting in an allele frequency of 0.0396. Among the 120 male Vorderwald cattle, there were 12 heterozygous with an allele frequency of 0.05. The SLC37A2:g.28879810C>T mutation could not be found in further nine cattle breeds nor in Vorderwald cattle with contributions from Ayrshire bulls. In 69 Vorderwald cattle without genes from Montbéliarde bulls the mutated allele of SLC37A2:g.28879810C>T could not be detected. The SHBG:g.27956790C>T mutation appeared unlikely to be responsible

  10. Impairment of kindling development in phospholipase Cγ1 heterozygous mice

    PubMed Central

    He, Xiao Ping; Wen, Renren; McNamara, James O

    2014-01-01

    Summary Objective Elucidating molecular mechanisms underlying limbic epileptogenesis may reveal novel targets for preventive therapy. Studies of TrkB mutant mice led us to hypothesize that signaling through a specific phospholipase (PLC), PLCγ1, promoted development of kindling. Methods To test this hypothesis, we examined the development of kindling in PLCγ1 heterozygous mice. We also examined the cellular and subcellular location of PLCγ1 in adult wild type mice. Results The development of kindling was impaired in PLCγ1 heterozygous mice compared to wild type controls. PLCγ1 immunoreactivity was localized to the soma and dendrites of both excitatory and inhibitory neurons in hippocampus of adult mice. Significance This study implicates PLCγ1 signaling as the dominant pathway by which TrkB activation promotes limbic epileptogenesis. Its cellular localization places PLCγ1 in a position to modify the efficacy of both excitatory and inhibitory synaptic transmission. These findings advance PLCγ1 as a novel target for therapies aimed at preventing temporal lobe epilepsy induced by status epilepticus. PMID:24502564

  11. A Novel Missense Mutation in POMT1 Modulates the Severe Congenital Muscular Dystrophy Phenotype Associated with POMT1 Nonsense Mutations

    PubMed Central

    Wallace, Stephanie E.; Conta, Jessie H.; Winder, Thomas L.; Willer, Tobias; Eskuri, Jamie M.; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P.; Moore, Steven A.; Gospe, Sidney M.

    2014-01-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  12. Block truncation signature coding for hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Chang, Chein-I.

    2008-08-01

    This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.

  13. No chiral truncation of quantum log gravity?

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  14. Unquenched Studies Using the Truncated Determinant Algorithm

    SciTech Connect

    A. Duncan, E. Eichten and H. Thacker

    2001-11-29

    A truncated determinant algorithm is used to study the physical effects of the quark eigenmodes associated with eigenvalues below 420 MeV. This initial high statistics study focuses on coarse (6{sup 4}) lattices (with O(a{sup 2}) improved gauge action), light internal quark masses and large physical volumes. Three features of full QCD are examined: topological charge distributions, string breaking as observed in the static energy and the eta prime mass.

  15. Truncated Dual-Cap Nucleation Site Development

    NASA Technical Reports Server (NTRS)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  16. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  17. Identification of a Novel Deletion Mutation (c.1780delG) and a Novel Splice-Site Mutation (c.1412-1G>A) in the CCM1/KRIT1 Gene Associated with Familial Cerebral Cavernous Malformation in the Chinese Population.

    PubMed

    Yang, Chenlong; Zhao, Jizong; Wu, Bingquan; Zhong, Haohao; Li, Yan; Xu, Yulun

    2017-01-01

    Cerebral cavernous malformation (CCM) is a congenital vascular anomaly predominantly located within the central nervous system. Its familial forms (familial cerebral cavernous malformation (FCCM)), inherited in an autosomal dominant manner with incomplete penetrance, are attributed to mutations in CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes. To date, little is known about the genetic alterations leading to FCCM in the Chinese population. We aimed to investigate the genetic defect of FCCM by DNA sequencing in Chinese families. This study enrolled five Chinese families with FCCM. All index cases underwent surgical treatment and were diagnosed with CCM by pathology; their relatives were diagnosed based on radiological and/or pathological evidence. Genomic DNA was extracted from peripheral blood and amplified using polymerase chain reaction (PCR) for DNA sequencing. The five families comprised a total of 21 affected individuals: 12 of these were symptomatic, and 9 were asymptomatic. Sequence analyses in the index patients disclosed three heterozygous loss-of-function mutations in the CCM1/KRIT1 gene in three families, respectively: a novel deletion mutation (c.1780delG; p.Ala594HisfsX67) in exon 16, a novel splice-site mutation (c.1412-1G>A) in the splice acceptor site in intron 13, and a previously described 4-bp deletion (c.1197_1200delCAAA; p.Gln401ThrfsX10) in exon 12. All of these mutations are predicted to cause a premature termination codon to generate a truncated Krev interaction trapped 1 (Krit1) protein. These mutations segregated in affected relatives. Our findings provided new CCM1 gene mutation profiles, which help to elucidate the pathogenesis of FCCM and will be of great significance in genetic counseling.

  18. A second case of Gerstmann-Sträussler-Scheinker disease linked to the G131V mutation in the prion protein gene in a Dutch patient.

    PubMed

    Jansen, Casper; Parchi, Piero; Capellari, Sabina; Strammiello, Rosaria; Dopper, Elise G P; van Swieten, John C; Kamphorst, Wouter; Rozemuller, Annemieke J M

    2011-08-01

    A rare case of Gerstmann-Sträussler-Scheinker disease in a 36-year-old Dutch man is reported. The clinical phenotype was characterized by slowly progressive cognitive decline, later followed by ataxia and parkinsonism. Neuropathologic findings consisted of numerous amyloid plaques in the cerebellum, which showed positive staining for the abnormal prion protein (PrP(Sc)). In addition, there were tau accumulations around numerous amyloid deposits in the cerebral cortex, striatum, hippocampal formation, and midbrain. There was no spongiform degeneration. Western blot analysis showed the co-occurrence of 2 distinct abnormal prion protein species comprising an unglycosylated, protease-resistant fragment of approximately 8 kd, which was found to be truncated at both N- and C-terminal ends by epitope mapping, and a detergent-insoluble but protease-sensitive form of full-length PrP(Sc). Sequence analysis disclosed a mutation at codon 131 of the prion protein gene (PRNP), resulting in a valine-for-glycine substitution (G131V). The patient was heterozygous at the polymorphic codon 129 and carried the mutation on the methionine allele. To our knowledge, this is the second family worldwide in which this mutation has been identified. Gerstmann-Sträussler-Scheinker disease should be considered in patients with a clinical diagnosis of familial frontotemporal dementia.

  19. Role of ADAMTSL4 mutations in FBN1 mutation-negative ectopia lentis patients.

    PubMed

    Aragon-Martin, Jose Antonio; Ahnood, Dana; Charteris, David G; Saggar, Anand; Nischal, Ken K; Comeglio, Paolo; Chandra, Aman; Child, Anne H; Arno, Gavin

    2010-08-01

    Ectopia lentis (EL) is genetically heterogeneous with both autosomal-dominant and -recessive forms. The dominant disorder can be caused by mutations in FBN1, at the milder end of the type-1 fibrillinopathies spectrum. Recently in a consanguineous Jordanian family, recessive EL was mapped to locus 1q21 containing the ADAMTSL4 gene and a nonsense mutation was found in exon 11 (c.1785T>G, p.Y595X). In this study, 36 consecutive probands with EL who did not fulfill the Ghent criteria for MFS were screened for mutations in FBN1 and ADAMTSL4. Causative FBN1 mutations were identified in 23/36 (64%) of probands while homozygous or compound heterozygous ADAMTSL4 mutations were identified in 6/12 (50%) of the remaining probands. Where available, familial screening of these families confirmed the mutation co-segregated with the EL phenotype. This study confirms that homozygous mutations in ADAMTSL4 are associated with autosomal-recessive EL in British families. Furthermore; the first compound heterozygous mutation is described resulting in a PTC and a missense mutation in the PLAC (protease and lacunin) domain. The identification of a causative mutation in ADAMTSL4 may allow the exclusion of Marfan syndrome in these families and guide the clinical management, of particular relevance in young children affected by EL.

  20. Performance of an artificial absorber for truncating FEM meshes

    NASA Astrophysics Data System (ADS)

    Gong, Jian; Volakis, John L.

    1995-01-01

    We investigate the effectiveness of an artificial absorber for truncating finite element (FE) meshes. Specifically, we present the implementation of a novel mesh truncation approach using a perfectly matched anisotropic absorber for waveguides and stripline circuits. This truncation scheme is useful in many applications, including antennas, scattering, and microwave circuits.

  1. Hyperammonemic encephalopathy in a child with ornithine transcarbamylase deficiency due to a novel combined heterozygous mutations.

    PubMed

    Gao, Jiandi; Gao, Feng; Hong, Fang; Yu, Huimin; Jiang, Peifang

    2015-03-01

    Ornithine transcarbamylase deficiency (OTCD) is an X-linked disorder of metabolism of the urea cycle. It usually causes hyperammonemic encephalopathy in males during the neonatal to-infantile period, whereas female carriers present with variable manifestations depending on their pattern of random chromosome X inactivation in the liver. Early clinical manifestations of hyperammonemiaare nonspecific often leading to a delay in the diagnosis of OTCD.Unfortunately, delays in initiating treatment often lead to poor neurologic outcomes and overall survival. Presentation of hyperammonemic encephalopathy in children with OTCD is rare, and the mortality and morbidity rates are high. The diagnosis of OTCD and aggressive management of hyperammonemia were of paramount importance for appropriate treatment and successful recovery. Here, we report theclinical, biochemical, and molecular findings in a child with OTCD who presented with acute hyperammonemic encephalopathy.

  2. A study of women heterozygous for colour deficiencies.

    PubMed

    Jordan, G; Mollon, J D

    1993-07-01

    We have examined the colour vision of 43 female subjects in the age range 30-59 yr of whom 31 were obligate carriers of various forms of colour deficiency and the rest were women who had no known colour-deficient relatives. In the case of all the carriers we established the phenotypes of their colour-deficient sons. As a group, carriers made significantly more errors on the Ishihara plates and showed enlarged matching ranges on the Nagel anomaloscope, but we could not replicate earlier reports of increased error scores on the Farnsworth-Munsell 100-Hue test or of systematic shifts in Rayleigh match mid-points. We did find that the colour matches of carriers of deuteranomaly were significantly displaced from those of normals in a ratio-matching task in which a mixture of 546 and 600 nm was matched with a mixture of 570 and 690 nm. Owing to X-chromosome inactivation, women who are heterozygous for anomalous trichromacy ought to have at least four types of cone in their retinae and we ask whether this affords them an extra dimension of colour vision, by analogy to New World monkeys where heterozygous females gain trichromacy in a basically dichromatic species. Many carriers of anomalous trichromacy exhibited no evidence for tetrachromacy, in that they accepted large-field Rayleigh matches following a rod bleach and they were unable to set unique matches in our ratio-matching task. However, eight carriers of anomalous trichromacy--and no other subject--refused large-field Rayleigh matches; and we found one carrier of deuteranomaly who was apparently able to make unique matches in the ratio-matching task.

  3. Irradiated HMEC from A-T Heterozygous Breast Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Bors, Karen; Cruz, Angela; Pettengil, Olive; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Women who are heterozygous for ataxia-telangiectasia (A-T) carry a single defective ATM gene in chromosome 11 q22-23, and have been statistically determined with high significance within a defined database to be approximately 5-fold more susceptible for developing breast cancer than their noma1 counterpart. Breast cancer susceptibility of these A-T heterozygotes has been hypothesized to include consequence of response to damage caused by low levels of ionizing radiation. Prophylactic mastectomy specimens were donated by a 41 year-old obligate A-T heterozygote who was located prior to her elective surgery through an existing pedigree. Harvest of that breast tissue provided an isolate of long-term growth human mammary epithelial cells (HMEC), designated WH612/3. An isolate of presumed normal long-term growth HMEC, designated 48R, was obtained from Dr. Martha Stampfer (Lawrence Berkeley Laboratory, University of California), and the A-T heterozygous HMEC were transformed with E6 and E7 oncogenes of human papilloma virus Type-16 in the laboratory of Dr. Ray White (Hunt- Cancer Institute, University of Utah) for use in this study. The objective of this study is to study the expression of end points that may bear on cancer outcome following irradiation of HMEC. Specific end points are cell survival, cell cycle, p53 expression, and apoptosis. Survival curves, immunostaining, and flow cytometery are used to examine these end points. Radiation-induced cell killing shows less shoulder development in the survival curve for WH61U3 compared to 48R HMEC, suggesting less repair of damage in the former HMEC. Additional information is included in the original extended abstract.

  4. Three Novel Mutations in the NPHS1 Gene in Vietnamese Patients with Congenital Nephrotic Syndrome

    PubMed Central

    Nguyen, Thi Kim Lien; Pham, Van Dem; Nguyen, Thu Huong; Pham, Trung Kien; Nguyen, Thi Quynh Huong

    2017-01-01

    Congenital nephrotic syndrome, a rare and severe disease, is inherited as an autosomal recessive trait. The disease manifests shortly after birth and occurs predominantly in families of Finnish origin but has now been observed in all countries and races. Mutations in the NPHS1 gene, which encodes nephrin, are the main causes of congenital nephrotic syndrome in patients. In this study, we report the first mutational analysis of the NPHS1 gene in three unrelated children from three different Vietnamese families. These patients were examined and determined to be suffering from congenital nephrotic syndrome in the Department of Pediatrics, Vietnam National Hospital of Pediatrics. All 29 exons and exon-intron boundaries of NPHS1 were analyzed by PCR and DNA sequencing. Genetic analysis of the NPHS1 gene revealed one compound heterozygous variant p.Glu117Lys, one heterozygous missense mutation p.Asp310Asn, and one heterozygous frame-shifting mutation (c.3250_3251insG causing p.Val1084Glyfs⁎12) in patient 1. In patient 2, one heterozygous variant p.Glu117Lys and one novel heterozygous missense mutation p.Ser324Ala were identified. Finally, a novel missense mutation p.Arg802Leu and a novel nonsense mutation (c.2442C>G causing p.K792⁎) were identified in patient 3.

  5. Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence.

    PubMed

    Frisch, Uriel; Kurien, Susan; Pandit, Rahul; Pauls, Walter; Ray, Samriddhi Sankar; Wirth, Achim; Zhu, Jian-Zhou

    2008-10-03

    It is shown that the use of a high power alpha of the Laplacian in the dissipative term of hydrodynamical equations leads asymptotically to truncated inviscid conservative dynamics with a finite range of spatial Fourier modes. Those at large wave numbers thermalize, whereas modes at small wave numbers obey ordinary viscous dynamics [C. Cichowlas et al., Phys. Rev. Lett. 95, 264502 (2005)10.1103/Phys. Rev. Lett. 95.264502]. The energy bottleneck observed for finite alpha may be interpreted as incomplete thermalization. Artifacts arising from models with alpha>1 are discussed.

  6. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    PubMed Central

    Craig Cohen, J; Lundblad, Lennart KA; Bates, Jason HT; Levitzky, Michael; Larson, Janet E

    2004-01-01

    Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung. PMID:15279681

  7. Comprehensive behavioral analysis of RNG105 (Caprin1) heterozygous mice: Reduced social interaction and attenuated response to novelty

    PubMed Central

    Ohashi, Rie; Takao, Keizo; Miyakawa, Tsuyoshi; Shiina, Nobuyuki

    2016-01-01

    RNG105 (also known as Caprin1) is a major RNA-binding protein in neuronal RNA granules, and is responsible for mRNA transport to dendrites and neuronal network formation. A recent study reported that a heterozygous mutation in the Rng105 gene was found in an autism spectrum disorder (ASD) patient, but it remains unclear whether there is a causal relation between RNG105 deficiency and ASD. Here, we subjected Rng105+/− mice to a comprehensive behavioral test battery, and revealed the influence of RNG105 deficiency on mouse behavior. Rng105+/− mice exhibited a reduced sociality in a home cage and a weak preference for social novelty. Consistently, the Rng105+/− mice also showed a weak preference for novel objects and novel place patterns. Furthermore, although the Rng105+/− mice exhibited normal memory acquisition, they tended to have relative difficulty in reversal learning in the spatial reference tasks. These findings suggest that the RNG105 heterozygous knockout leads to a reduction in sociality, response to novelty and flexibility in learning, which are implicated in ASD-like behavior. PMID:26865403

  8. Comprehensive behavioral analysis of RNG105 (Caprin1) heterozygous mice: Reduced social interaction and attenuated response to novelty.

    PubMed

    Ohashi, Rie; Takao, Keizo; Miyakawa, Tsuyoshi; Shiina, Nobuyuki

    2016-02-11

    RNG105 (also known as Caprin1) is a major RNA-binding protein in neuronal RNA granules, and is responsible for mRNA transport to dendrites and neuronal network formation. A recent study reported that a heterozygous mutation in the Rng105 gene was found in an autism spectrum disorder (ASD) patient, but it remains unclear whether there is a causal relation between RNG105 deficiency and ASD. Here, we subjected Rng105(+/-) mice to a comprehensive behavioral test battery, and revealed the influence of RNG105 deficiency on mouse behavior. Rng105(+/-) mice exhibited a reduced sociality in a home cage and a weak preference for social novelty. Consistently, the Rng105(+/-) mice also showed a weak preference for novel objects and novel place patterns. Furthermore, although the Rng105(+/-) mice exhibited normal memory acquisition, they tended to have relative difficulty in reversal learning in the spatial reference tasks. These findings suggest that the RNG105 heterozygous knockout leads to a reduction in sociality, response to novelty and flexibility in learning, which are implicated in ASD-like behavior.

  9. Mutations in Centrosomal Protein CEP152 in Primary Microcephaly Families Linked to MCPH4

    PubMed Central

    Guernsey, Duane L.; Jiang, Haiyan; Hussin, Julie; Arnold, Marc; Bouyakdan, Khalil; Perry, Scott; Babineau-Sturk, Tina; Beis, Jill; Dumas, Nadine; Evans, Susan C.; Ferguson, Meghan; Matsuoka, Makoto; Macgillivray, Christine; Nightingale, Mathew; Patry, Lysanne; Rideout, Andrea L.; Thomas, Aidan; Orr, Andrew; Hoffmann, Ingrid; Michaud, Jacques L.; Awadalla, Philip; Meek, David C.; Ludman, Mark; Samuels, Mark E.

    2010-01-01

    Primary microcephaly is a rare condition in which brain size is substantially diminished without other syndromic abnormalities. Seven autosomal loci have been genetically mapped, and the underlying causal genes have been identified for MCPH1, MCPH3, MCPH5, MCPH6, and MCPH7 but not for MCPH2 or MCPH4. The known genes play roles in mitosis and cell division. We ascertained three families from an Eastern Canadian subpopulation, each with one microcephalic child. Homozygosity analysis in two families using genome-wide dense SNP genotyping supported linkage to the published MCPH4 locus on chromosome 15q21.1. Sequencing of coding exons of candidate genes in the interval identified a nonconservative amino acid change in a highly conserved residue of the centrosomal protein CEP152. The affected children in these two families were both homozygous for this missense variant. The third affected child was compound heterozygous for the missense mutation plus a second, premature-termination mutation truncating a third of the protein and preventing its localization to centrosomes in transfected cells. CEP152 is the putative mammalian ortholog of Drosphila asterless, mutations in which affect mitosis in the fly. Published data from zebrafish are also consistent with a role of CEP152 in centrosome function. By RT-PCR, CEP152 is expressed in the embryonic mouse brain, similar to other MCPH genes. Like some other MCPH genes, CEP152 shows signatures of positive selection in the human lineage. CEP152 is a strong candidate for the causal gene underlying MCPH4 and may be an important gene in the evolution of human brain size. PMID:20598275

  10. Creutzfeldt-Jakob disease associated with a V203I homozygous mutation in the prion protein gene.

    PubMed

    Komatsu, Junji; Sakai, Kenji; Hamaguchi, Tsuyoshi; Sugiyama, Yu; Iwasa, Kazuo; Yamada, Masahito

    2014-01-01

    We report a Japanese patient with Creutzfeldt-Jakob disease (CJD) with a V203I homozygous mutation of the prion protein gene (PRNP). A 73-year-old woman developed rapidly progressive gait disturbance and cognitive dysfunction. Four months after the onset, she entered a state of an akinetic mutism. Gene analysis revealed a homozygous V203I mutation in the PRNP. Familial CJD with a V203I mutation is rare, and all previously reported cases had a heterozygous mutation showing manifestations similar to those of typical sporadic CJD. Although genetic prion diseases with homozygous PRNP mutations often present with an earlier onset and more rapid clinical course than those with heterozygous mutations, no difference was found in clinical phenotype between our homozygous case and reported heterozygous cases.

  11. Incorporating Truncating Variants in PALB2, CHEK2 and ATM into the BOADICEA Breast Cancer Risk Model

    PubMed Central

    Lee, Andrew J.; Cunningham, Alex P.; Tischkowitz, Marc; Simard, Jacques; Pharoah, Paul D.; Easton, Douglas F.; Antoniou, Antonis C.

    2016-01-01

    Purpose The proliferation of gene-panel testing precipitates the need for a breast cancer (BC) risk model that incorporates the effects of mutations in several genes and family history (FH). We extended the BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2 and ATM. Methods The BC incidence was modelled via the explicit effects of truncating variants in BRCA1/2, PALB2, CHEK2 and ATM and other unobserved genetic effects using segregation analysis methods. Results The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for PALB2, 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH-burden. In families with mutations, predicted risks for mutation-negative members depend on both FH and the specific mutation. The reduction in BC risk after negative predictive-testing is greatest when a BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM mutation, the risks decrease slightly. Conclusions The model may be a valuable tool for counselling women who have undergone gene-panel testing for providing consistent risks and harmonizing their clinical management. A web-application can be used to obtain BC- risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/). PMID:27464310

  12. Novel method for genomic analysis of PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease.

    PubMed

    Tan, Ying-Cai; Blumenfeld, Jon D; Anghel, Raluca; Donahue, Stephanie; Belenkaya, Rimma; Balina, Marina; Parker, Thomas; Levine, Daniel; Leonard, Debra G B; Rennert, Hanna

    2009-02-01

    Genetic testing of PKD1 and PKD2 is useful for diagnosis and prognosis of autosomal dominant polycystic kidney disease (ADPKD), particularly in asymptomatic individuals or those without a family history. PKD1 testing is complicated by the large transcript size, complexity of the gene region, and the extent of gene variations. A molecular assay was developed using Transgenomic's SURVEYOR Nuclease and WAVE Nucleic Acid High Sensitivity Fragment Analysis System to screen for PKD1 and PKD2 variants, followed by sequencing of variant gene segments, thereby reducing the sequencing reactions by 80%. This method was compared to complete DNA sequencing performed by a reference laboratory for 25 ADPKD patients from 22 families. The pathogenic potential of gene variations of unknown significance was examined by evolutionary comparison, effects of amino acid substitutions on protein structure, and effects of splice-site alterations. A total of 90 variations were identified, including all 82 reported by the reference laboratory (100% sensitivity). A total of 76 variations (84.4%) were in PKD1 and 14 (15.6%) in PKD2. Definite pathogenic mutations (seven nonsense, four truncation, and three splicing defects) were detected in 64% (14/22) of families. The remaining 76 variants included 26 missense, 33 silent, and 17 intronic changes. Two heterozygous nonsense mutations were incorrectly determined by the reference laboratory as homozygous. "Probably pathogenic" mutations were identified in an additional five families (overall detection rate 86%). In conclusion, the SURVEYOR nuclease method was comparable to direct sequencing for detecting ADPKD mutations, achieving high sensitivity with lower cost, providing an important tool for genetic analysis of complex genes.

  13. A syndrome of congenital microcephaly, intellectual disability and dysmorphism with a homozygous mutation in FRMD4A.

    PubMed

    Fine, Dina; Flusser, Hagit; Markus, Barak; Shorer, Zamir; Gradstein, Libe; Khateeb, Shareef; Langer, Yshia; Narkis, Ginat; Birk, Ruth; Galil, Aharon; Shelef, Ilan; Birk, Ohad S

    2015-12-01

    A consanguineous Bedouin Israeli kindred presented with a novel autosomal recessive intellectual disability syndrome of congenital microcephaly, low anterior hairline, bitemporal narrowing, low-set protruding ears, strabismus and tented thick eyebrows with sparse hair in their medial segment. Brain imaging demonstrated various degrees of agenesis of corpus callosum and hypoplasia of the vermis and cerebellum. Genome-wide linkage analysis followed by fine mapping defined a 7.67 Mb disease-associated locus (LOD score 4.99 at θ=0 for marker D10S1653). Sequencing of the 48 genes within the locus identified a single non-synonymous homozygous duplication frameshift mutation of 13 nucleotides (c.2134_2146dup13) within the coding region of FRMD4A, that was common to all affected individuals and not found in 180 non-related Bedouin controls. Three of 50 remotely related healthy controls of the same tribe were heterozygous for the mutation. FRMD4A, member of the FERM superfamily, is involved in cell structure, transport and signaling. It regulates cell polarity by playing an important role in the activation of ARF6, mediating the interaction between Par3 and the ARF6 guanine nucleotide exchange factor. ARF6 is known to modulate cell polarity in neurons, and regulates dendritic branching in hippocampal neurons and neurite outgrowth. The FRMD4 domain that is essential for determining cell polarity through interaction with Par3 is truncated by the c.2134_2146dup13 mutation. FRMD4A polymorphisms were recently suggested to be a risk factor for Alzheimer's disease. We now show a homozygous frameshift mutation of the same gene in a severe neurologic syndrome with unique dysmorphism.

  14. Mutation analysis in F9 gene of 17 families with haemophilia B from Iran.

    PubMed

    Enayat, M S; Karimi, M; Chana, G; Farjadian, S; Theophilus, B D M; Hill, F G H

    2004-11-01

    Seventeen haemophilia B families from Iran were investigated to determine the causative mutation. All the essential regions of the F9 gene were initially screened by conformational sensitive gel electrophoresis and exons with band shift were sequenced. Seven of the 15 mutations identified in these families were novel mutations. The mutations were authenticated in nine families as other affected members or heterozygous female carriers were available for verification.

  15. Truncation of the Down Syndrome Candidate Gene DYRK1A in Two Unrelated Patients with Microcephaly

    PubMed Central

    Møller, Rikke S.; Kübart, Sabine; Hoeltzenbein, Maria; Heye, Babett; Vogel, Ida; Hansen, Christian P.; Menzel, Corinna; Ullmann, Reinhard; Tommerup, Niels; Ropers, Hans-Hilger; Tümer, Zeynep; Kalscheuer, Vera M.

    2008-01-01

    We have identified and characterized two unrelated patients with prenatal onset of microcephaly, intrauterine growth retardation, feeding problems, developmental delay, and febrile seizures/epilepsy who both carry a de novo balanced translocation that truncates the DYRK1A gene at chromosome 21q22.2. DYRK1A belongs to the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family, which is highly conserved throughout evolution. Given its localization in both the Down syndrome critical region and in the minimal region for partial monosomy 21, the gene has been studied intensively in animals and in humans, and DYRK1A has been proposed to be involved in the neurodevelopmental alterations associated with these syndromes. In the present study, we show that truncating mutations of DYRK1A result in a clinical phenotype including microcephaly. PMID:18405873

  16. Norepinephrine transporter heterozygous knockout mice exhibit altered transport and behavior.

    PubMed

    Fentress, H M; Klar, R; Krueger, J J; Sabb, T; Redmon, S N; Wallace, N M; Shirey-Rice, J K; Hahn, M K

    2013-11-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET(+/-) ), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET(+/-) mouse establishes an activated state of existing surface NET proteins. The NET(+/-) mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET(+/-) mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET(+/-) mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders.

  17. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Leonardi, Simona; Tanori, Mirella; Rebessi, Simonetta; Di Majo, Vincenzo; Pazzaglia, Simonetta; Toni, Maria Pia; Pimpinella, Maria; Covelli, Vincenzo; Saran, Anna

    2008-08-26

    The central dogma of radiation biology, that biological effects of ionizing radiation are a direct consequence of DNA damage occurring in irradiated cells, has been challenged by observations that genetic/epigenetic changes occur in unexposed "bystander cells" neighboring directly-hit cells, due to cell-to-cell communication or soluble factors released by irradiated cells. To date, the vast majority of these effects are described in cell-culture systems, while in vivo validation and assessment of biological consequences within an organism remain uncertain. Here, we describe the neonatal mouse cerebellum as an accurate in vivo model to detect, quantify, and mechanistically dissect radiation-bystander responses. DNA double-strand breaks and apoptotic cell death were induced in bystander cerebellum in vivo. Accompanying these genetic events, we report bystander-related tumor induction in cerebellum of radiosensitive Patched-1 (Ptch1) heterozygous mice after x-ray exposure of the remainder of the body. We further show that genetic damage is a critical component of in vivo oncogenic bystander responses, and provide evidence supporting the role of gap-junctional intercellular communication (GJIC) in transmission of bystander signals in the central nervous system (CNS). These results represent the first proof-of-principle that bystander effects are factual in vivo events with carcinogenic potential, and implicate the need for re-evaluation of approaches currently used to estimate radiation-associated health risks.

  18. Postsynaptic Deregulation in GAP-43 Heterozygous Mouse Barrel Cortex

    PubMed Central

    Kelly, Emily A.; Tremblay, Marie-Ève; McCasland, James S.

    2010-01-01

    Formation of whisker-related barrels in primary somatosensory cortex (S1) requires communication between presynaptic thalamocortical afferents (TCAs) and postsynaptic cortical neurons. GAP-43 is crucially involved in targeting TCAs to postsynaptic S1 neurons but its influence on the interactions between these 2 elements has not been explored. Here, we tested the hypothesis that reduced early expression of presynaptic GAP-43 (GAP-43 heterozygous [HZ] mice) alters postsynaptic differentiation of barrel cells. We found a transient increase in cytochrome oxidase staining between P6 and P14 in HZ animals, indicative of increased metabolic activity in barrel cortex during this time. Golgi impregnation and microtubule-associated protein 2 immunohistochemistry showed anomalous dendritic patterning in GAP-43 HZ cortex at P5, with altered dendritic length and branching and abnormal retention of dendrites that extend into developing septa. This deficiency was no longer apparent at P7, suggesting partial recovery of dendritic pruning processes. Finally, we showed early defects in synaptogenesis from P4 to P5 with increased colocalization of NR1 and GluR1 staining in HZ mice. By P7, this colocalization had normalized to wild type levels. Taken together, our findings suggest abnormal postsynaptic differentiation in GAP-43 HZ cortex during early barrel development, followed by adaptive compensation and partial phenotypic rescue. PMID:19915093

  19. Norepinephrine Transporter Heterozygous Knockout Mice Exhibit Altered Transport and Behavior

    PubMed Central

    Fentress, HM; Klar, R; Krueger, JK; Sabb, T; Redmon, SN; Wallace, NM; Shirey-Rice, JK; Hahn, MK

    2013-01-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically-driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/−), demonstrating that they display an ~50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity, assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/− mouse establishes an activated state of existing, surface NET proteins. NET+/− mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris Water Maze. These data suggest recovery of near basal activity in NET+/− mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/− mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders. PMID:24102798

  20. Vortex breakdown in a truncated conical bioreactor

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2015-12-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air-water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small Hw, the AMF effect dominates. As Hw increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors.

  1. Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects.

    PubMed

    Steffes, Georg; Lorente-Cánovas, Beatriz; Pearson, Selina; Brooker, Rachael H; Spiden, Sarah; Kiernan, Amy E; Guénet, Jean-Louis; Steel, Karen P

    2012-01-01

    Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3' splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system.

  2. Age-Related Instability in Spermatogenic Cell Nuclear and Mitochondrial DNA Obtained from Apex1 Heterozygous Mice

    PubMed Central

    Vogel, Kristine S.; Perez, Marissa; Momand, Jamila R.; Acevedo-Torres, Karina; Hildreth, Kim; Garcia, Rebecca A.; Torres-Ramos, Carlos A.; Ayala-Torres, Sylvette; Prihoda, Thomas J.; McMahan, C. Alex; Walter, Christi A.

    2011-01-01

    The prevalence of spontaneous mutations increases with age in the male germline; consequently, older men have an increased risk of siring children with genetic disease due to de novo mutations. The lacI transgenic mouse can be used to study paternal age effects, and in this system, the prevalence of de novo mutations increases in the male germline at old ages. Mutagenesis is linked with DNA repair capacity, and base excision repair, which can ameliorate spontaneous DNA damage, decreases in nuclear extracts of spermatogenic cells from old mice. Mice heterozygous for a null allele of the Apex1 gene, which encodes apurinic/apyrimidinic endonuclease I (APEN), an essential base excision repair enzyme, display an accelerated increase in spontaneous germline mutagenesis early in life. Here, the consequences of lifelong reduction of APEN on genetic instability in the male germline were examined, for the first time, at middle and old ages. Mutation frequency increased earlier in spermatogenic cells from Apex1+/− mice (by 6 months of age). Nuclear DNA damage increased with age in the spermatogenic lineage for both wild-type and Apex1+/− mice. By old age, mutation frequencies were similar for wild-type and APEN-deficient mice. Mitochondrial genome repair also depends on APEN, and novel analysis of mitochondrial DNA damage revealed an increase in the Apex1+/− spermatogenic cells by middle age. Thus, Apex1 heterozygosity results in accelerated damage to mitochondrial DNA and spontaneous mutagenesis, consistent with an essential role for APEN in maintaining nuclear and mitochondrial DNA integrity in spermatogenic cells throughout life. PMID:21919107

  3. RELN Mutations in Autism Spectrum Disorder

    PubMed Central

    Lammert, Dawn B.; Howell, Brian W.

    2016-01-01

    RELN encodes a large, secreted glycoprotein integral to proper neuronal positioning during development and regulation of synaptic function postnatally. Rare, homozygous, null mutations lead to lissencephaly with cerebellar hypoplasia (LCH), accompanied by developmental delay and epilepsy. Until recently, little was known about the frequency or consequences of heterozygous mutations. Several lines of evidence from multiple studies now implicate heterozygous mutations in RELN in autism spectrum disorders (ASD). RELN maps to the AUTS1 locus on 7q22, and at this time over 40 distinct mutations have been identified that would alter the protein sequence, four of which are de novo. The RELN mutations that are most clearly consequential are those that are predicted to inactivate the signaling function of the encoded protein and those that fall in a highly conserved RXR motif found at the core of the 16 Reelin subrepeats. Despite the growing evidence of RELN dysfunction in ASD, it appears that these mutations in isolation are insufficient and that secondary genetic or environmental factors are likely required for a diagnosis. PMID:27064498

  4. Biallelic IRF8 Mutations Causing NK Cell Deficiency.

    PubMed

    López-Soto, Alejandro; Lorenzo-Herrero, Seila; Gonzalez, Segundo

    2017-03-01

    Human primary immunodeficiencies result in an exacerbated susceptibility to contracting infectious diseases. Recent work by Mace et al., published in the Journal of Clinical Investigation, unveils a novel genetic cause for the development of familial natural killer (NK) cell deficiency: a biallelic compound heterozygous mutation in IRF8, which leads to impaired NK cell development and cytotoxic activity.

  5. Comparative Analyses of Lung Transcriptomes in Patients with Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins and in Foxf1 Heterozygous Knockout Mice

    PubMed Central

    Majewski, Tadeusz; Mohammad, Mahmoud A.; Kalin, Tanya V.; Zabielska, Joanna; Ren, Xiaomeng; Bray, Molly; Brown, Hannah M.; Welty, Stephen; Thevananther, Sundararajah; Langston, Claire; Szafranski, Przemyslaw; Justice, Monica J.; Kalinichenko, Vladimir V.; Gambin, Anna; Belmont, John; Stankiewicz, Pawel

    2014-01-01

    Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority of mice with heterozygous loss-of-function of Foxf1 exhibit neonatal lethality with evidence of pulmonary hemorrhage in some of them. By comparing transcriptomes of human ACDMPV lungs with control lungs using expression arrays, we found that several genes and pathways involved in lung development, angiogenesis, and in pulmonary hypertension development, were deregulated. Similar transcriptional changes were found in lungs of the postnatal day 0.5 Foxf1+/− mice when compared to their wildtype littermate controls; 14 genes, COL15A1, COL18A1, COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL, NOS3, RASL11B, MATN2, PRKCDBP, and SIRPA, were found common to both ACDMPV and Foxf1 heterozygous lungs. Our results advance knowledge toward understanding of the molecular mechanism of ACDMPV, lung development, and its vasculature pathology. These data may also be useful for understanding etiologies of other lung disorders, e.g. pulmonary hypertension, bronchopulmonary dysplasia, or cancer. PMID:24722050

  6. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    SciTech Connect

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  7. Next-generation sequencing (NGS) as a fast molecular diagnosis tool for left ventricular noncompaction in an infant with compound mutations in the MYBPC3 gene.

    PubMed

    Schaefer, Elise; Helms, Pauline; Marcellin, Luc; Desprez, Philippe; Billaud, Philippe; Chanavat, Valérie; Rousson, Robert; Millat, Gilles

    2014-03-01

    Left ventricular noncompaction (LVNC) is a clinically heterogeneous disorder characterized by a trabecular meshwork and deep intertrabecular myocardial recesses that communicate with the left ventricular cavity. LVNC is classified as a rare genetic cardiomyopathy. Molecular diagnosis is a challenge for the medical community as the condition shares morphologic features of hypertrophic and dilated cardiomyopathies. Several genetic causes of LVNC have been reported, with variable modes of inheritance, including autosomal dominant and X-linked inheritance, but relatively few responsible genes have been identified. In this report, we describe a case of a severe form of LVNC leading to death at 6 months of life. NGS sequencing using a custom design for hypertrophic cardiomyopathy panel allowed us to identify compound heterozygosity in the MYBPC3 gene (p.Lys505del, p.Pro955fs) in 3 days, confirming NGS sequencing as a fast molecular diagnosis tool. Other studies have reported neonatal presentation of cardiomyopathies associated with compound heterozygous or homozygous MYBPC3 mutations. In this family and in families in which parental truncating MYBPC3 mutations are identified, preimplantation or prenatal genetic screening should be considered as these genotypes leads to neonatal mortality and morbidity.

  8. Heterozygous genome assembly via binary classification of homologous sequence

    PubMed Central

    2015-01-01

    Background Genome assemblers to date have predominantly targeted haploid reference reconstruction from homozygous data. When applied to diploid genome assembly, these assemblers perform poorly, owing to the violation of assumptions during both the contigging and scaffolding phases. Effective tools to overcome these problems are in growing demand. Increasing parameter stringency during contigging is an effective solution to obtaining haplotype-specific contigs; however, effective algorithms for scaffolding such contigs are lacking. Methods We present a stand-alone scaffolding algorithm, ScaffoldScaffolder, designed specifically for scaffolding diploid genomes. The algorithm identifies homologous sequences as found in "bubble" structures in scaffold graphs. Machine learning classification is used to then classify sequences in partial bubbles as homologous or non-homologous sequences prior to reconstructing haplotype-specific scaffolds. We define four new metrics for assessing diploid scaffolding accuracy: contig sequencing depth, contig homogeneity, phase group homogeneity, and heterogeneity between phase groups. Results We demonstrate the viability of using bubbles to identify heterozygous homologous contigs, which we term homolotigs. We show that machine learning classification trained on these homolotig pairs can be used effectively for identifying homologous sequences elsewhere in the data with high precision (assuming error-free reads). Conclusion More work is required to comparatively analyze this approach on real data with various parameters and classifiers against other diploid genome assembly methods. However, the initial results of ScaffoldScaffolder supply validity to the idea of employing machine learning in the difficult task of diploid genome assembly. Software is available at http://bioresearch.byu.edu/scaffoldscaffolder. PMID:25952609

  9. Could Heterozygous Beta Thalassemia Provide Protection Against Multiple Sclerosis?

    PubMed Central

    Cikrikcioglu, Mehmet Ali; Ozcan, Muhammed Emin; Halac, Gulistan; Gultepe, Ilhami; Celik, Kenan; Sekin, Yahya; Eser, Elif Ece; Burhan, Sebnem; Cetin, Guven; Uysal, Omer

    2016-01-01

    Background Heterozygous beta thalassemia (HBT) has been proposed to increase the risk of developing autoimmune disease. Our aim in this study was to examine the prevalence of HBT among multiple sclerosis (MS) patients. Material/Methods HBT frequency was investigated in our MS group (243 patients with MS). Hemoglobin electrophoresis (HE) was carried out if MS patients had a mean corpuscular volume of (MCV) <80 fL and a mean corpuscular hemoglobin level of (MCH) <27 pg/L according to a complete blood count (CBC). If MCV was lower than 80 fL, MCH was lower than 27 pg/L, and Hemoglobin A2 equal to or higher than 3.5%, a diagnosis of HBT was established. The frequency of patients with HBT in our MS patient group was statistically compared with the prevalence of HBT in the city of Istanbul, where our MS patients lived. Results The HBT prevalence was 0.823% (2 patients) in the MS patient group. The prevalence of HBT in Istanbul has been reported to be 4.5%. According to the z-test, the HBT prevalence in our MS patient group was significantly lower than that in Istanbul (Z=6.3611, two-sided p value <0.0001, 95% confidence interval of prevalence of HBT in our MS patient group: 0.000998–0.029413). Conclusions Contrary to our hypothesis at the outset of study, the reduced HBT prevalence in the MS group compared to HBT frequency in the city of Istanbul might indicate that HBT is protective against MS. PMID:27941710

  10. A temperature-sensitive splicing mutation in the bimG gene of Aspergillus produces an N-terminal fragment which interferes with type 1 protein phosphatase function.

    PubMed Central

    Hughes, M; Arundhati, A; Lunness, P; Shaw, P J; Doonan, J H

    1996-01-01

    Progression through anaphase requires high levels of type 1 protein phosphatase (PP1) activity in a variety of eukaryotes, including Aspergillus nidulans. A conditional lethal, temperature-sensitive mutant in one of the Aspergillus PP1 genes, bimG, prevents the normal completion of anaphase when cells are grown at restrictive temperature and this has been shown to be due to a reduction in type 1 phosphatase activity. We show that the bimG11 allele is recessive to the wild-type allele in heterozygous diploids, implying that the mutation is due to loss of function at restrictive temperature, but molecular disruption of the wild-type bimG gene shows that the gene is not essential and has no discernable phenotype under laboratory conditions. Sequence comparison of wild-type and mutant alleles reveals a single base pair difference between the two genes, within the 5' splicing site of the second intron. We demonstrate that the conditional lethal phenotype of bimG11 strains is due to impaired splicing of the mutant mRNA and that this leads to the production of a truncated protein comprising an intact N-subdomain and a modified C-terminus. Over-expression of this truncated form of PP1 in a wild-type haploid produces a lethal phenotype and reduced PP1 activity, supporting the idea that a toxic interfering protein is produced. PP1, therefore, may have at least two spatially separated sites, both of which are required for function. Temperature-sensitive splicing mutations may provide a novel means of engineering conditional versions of other proteins, particularly other phosphatases. Images PMID:8887549

  11. Heterozygous Deletion of Ventral Anterior Homeobox (Vax1) Causes Subfertility in Mice

    PubMed Central

    Hoffmann, Hanne M.; Tamrazian, Anika; Xie, Huimin; Pérez-Millán, María Inés; Kauffman, Alexander S.

    2014-01-01

    The known genetic causes of idiopathic hypogonadotropic hypogonadism (IHH) are often associated with the loss of GnRH neurons, leading to the disruption of the hypothalamic pituitary gonadal axis and subfertility. The majority of IHH cases have unknown origins and likely arise from compound mutations in more than one gene. Here we identify the homeodomain transcription factor ventral anterior homeobox1 (Vax1) as a potential genetic contributor to polygenic IHH. Although otherwise healthy, male and female Vax1 heterozygous (HET) mice are subfertile, indicating dosage sensitivity for the Vax1 allele. Although Vax1 mRNA is expressed in the pituitary, hypothalamus, and testis, we did not detect Vax1 mRNA in the sperm, ovary, or isolated pituitary gonadotropes. Whereas Vax1 HET females produced normal numbers of superovulated oocytes, corpora lutea numbers were reduced along with a slight increase in circulating basal LH and estrogen. The subfertility originated in the hypothalamus in which kisspeptin and GnRH transcripts were altered along with a substantial reduction of GnRH neuron number. Although the pituitary responded normally to a GnRH challenge, diestrus females had reduced LHβ and FSHβ in diestrus. Furthermore, Vax1 HET males had reduced GnRH mRNA and neuron numbers, whereas the pituitary had normal transcript levels and response to GnRH. Interestingly, the Vax1 HET males had an 88% reduction of motile sperm. Taken together, our data suggest that Vax1 HET subfertility originates in the hypothalamus by disrupting the hypothalamic-pituitary-gonadal axis. In addition, male subfertility may also be due to an unknown effect of Vax1 in the testis. PMID:25060364

  12. Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse

    PubMed Central

    Frank, Elisabeth; Shaw, Alex; Liu, Shijie; Huang, Xu-Feng; Pinault, Didier; Karl, Tim; O’Brien, Terence J.; Shannon Weickert, Cynthia; Jones, Nigel C.

    2015-01-01

    Background The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET) mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma) electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile. Methods Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF)-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT) mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine. Results In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III) domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice. Interpretation We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function. PMID

  13. An inherited LMNA gene mutation in atypical Progeria syndrome.

    PubMed

    Doubaj, Yassamine; De Sandre-Giovannoli, Annachiara; Vera, Esteves-Vieira; Navarro, Claire Laure; Elalaoui, Siham Chafai; Tajir, Mariam; Lévy, Nicolas; Sefiani, Abdelaziz

    2012-11-01

    Hutchinson-Gilford Progeria syndrome (HGPS) is a rare genetic disorder, characterized by several clinical features that begin in early childhood, recalling an accelerated aging process. The diagnosis of HGPS is based on the recognition of common clinical features and detection of the recurrent heterozygous c.1824C>T (p.Gly608Gly) mutation within exon 11 in the Lamin A/C encoding gene (LMNA). Besides "typical HGPS," several "atypical progeria" syndromes (APS) have been described, in a clinical spectrum ranging from mandibuloacral dysplasia to atypical Werner syndrome. These patients's clinical features include progeroid manifestations, such as short stature, prominent nose, premature graying of hair, partial alopecia, skin atrophy, lipodystrophy, skeletal anomalies, such as mandibular hypoplasia and acroosteolyses, and in some cases severe atherosclerosis with metabolic complications. APS are due in several cases to de novo heterozygous LMNA mutations other than the p.Gly608Gly, or due to homozygous BAFN1 mutations in Nestor-Guillermo Progeria syndrome (NGPS). We report here and discuss the observation of a non-consanguineous Moroccan patient presenting with atypical progeria. The molecular studies showed the heterozygous mutation c.412G>A (p.Glu138Lys) of the LMNA gene. This mutation, previously reported as a de novo mutation, was inherited from the apparently healthy father who showed a somatic cell mosaicism.

  14. BCFT moduli space in level truncation

    NASA Astrophysics Data System (ADS)

    Kudrna, Matěj; Maccaferri, Carlo

    2016-04-01

    We propose a new non-perturbative method to search for marginal deformations in level truncated open string field theory. Instead of studying the flatness of the effective potential for the marginal field (which is not expected to give a one-to-one parametrization of the BCFT moduli space), we identify a new non-universal branch of the tachyon potential which, from known analytic examples, is expected to parametrize the marginal flow in a much larger region of the BCFT moduli space. By a level 18 computation in Siegel gauge we find an increasingly flat effective potential in the non-universal sector, connected to the perturbative vacuum and we confirm that the coefficient of the marginal field ( λ SFT) has a maximum compatible with the value where the solutions stop existing in the standard Sen-Zwiebach approach. At the maximal reachable level the effective potential still deviates from flatness for large values of the tachyon, but the Ellwood invariants stay close to the correct BCFT values on the whole branch and the full periodic moduli space of the cosine deformation is covered.

  15. Truncation and Accumulated Errors in Wave Propagation

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Ling F.

    1988-12-01

    The approximation of the truncation and accumulated errors in the numerical solution of a linear initial-valued partial differential equation problem can be established by using a semidiscretized scheme. This error approximation is observed as a lower bound to the errors of a finite difference scheme. By introducing a modified von Neumann solution, this error approximation is applicable to problems with variable coefficients. To seek an in-depth understanding of this newly established error approximation, numerical experiments were performed to solve the hyperbolic equation {∂U}/{∂t} = -C 1(x)C 2(t) {∂U}/{∂x}, with both continuous and discontinuous initial conditions. We studied three cases: (1) C1( x)= C0 and C2( t)=1; (2) C1( x)= C0 and C2( t= t; and (3) C 1(x)=1+( {solx}/{a}) 2 and C2( t)= C0. Our results show that the errors are problem dependent and are functions of the propagating wave speed. This suggests a need to derive problem-oriented schemes rather than the equation-oriented schemes as is commonly done. Furthermore, in a wave-propagation problem, measurement of the error by the maximum norm is not particularly informative when the wave speed is incorrect.

  16. Understanding biases when fitting disk truncations

    NASA Astrophysics Data System (ADS)

    Cardiel, Nicolás; Marino, Raffaella A.; Pascual, Sergio; Ceballos, M. Teresa; Gil de Paz, Armando; Sánchez, Sebastián F.

    2017-03-01

    Truncations in the stellar population at the edges of disk galaxies are thought to be a common morphological feature (e.g., Erwin et al. 2005; and more recently Marino et al. 2016). In fact, using imaging data from the SDSS, Pohlen & Trujillo (2006) showed that only ~ 10% of face-on to intermediate inclined, nearby, late-type (Sb-Sdm) spiral galaxies have a normal/standard purely exponential disk down to the noise limit. In situations like these, the simultaneous fit of two lines, joined or not at an intermediate point (the break radius), constitutes a natural step towards the modelling of radial variation in surface brightness, metallicity, or any other relevant parameter. This work shows the results of simple simulations in which the simultaneous fit to two joined lines is compared to the simultaneous fit of two independent lines (i.e., two lines that do not necessarily coincide at an intermediate point), and also to the traditional single ordinary least squares fit. These simulations reveal some biases that should be taken into account when facing these kind of fitting procedures.

  17. FKRP mutations, including a founder mutation, cause phenotype variability in Chinese patients with dystroglycanopathies.

    PubMed

    Fu, Xiaona; Yang, Haipo; Wei, Cuijie; Jiao, Hui; Wang, Shuo; Yang, Yanling; Han, Chunxi; Wu, Xiru; Xiong, Hui

    2016-12-01

    Mutations in the fukutin-related protein (FKRP) gene have been associated with dystroglycanopathies, which are common in Europe but rare in Asia. Our study aimed to retrospectively analyze and characterize the clinical, myopathological and genetic features of 12 Chinese patients with FKRP mutations. Three patients were diagnosed with congenital muscular dystrophy type 1C (MDC1C) and nine patients were diagnosed with limb girdle muscular dystrophy type 2I (LGMD2I). Three muscle biopsy specimens had dystrophic changes and reduced glycosylated α-dystroglycan staining, and two showed reduced expression of laminin α2. Two known and 13 novel mutations were identified in our single center cohort. Interestingly, the c.545A>G mutation was found in eight of the nine LGMD2I patients as a founder mutation and this founder mutation in Chinese patients differs from the one seen in European patients. Moreover, patients homozygous for the c.545A>G mutation were clinically asymptomatic, a less severe phenotype than in compound heterozygous patients with the c.545A>G mutation. The 13 novel mutations of FKRP significantly expanded the mutation spectrum of MDC1C and LGMD2I, and the different founder mutations indicate the ethnic difference in FKRP mutations.

  18. Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2

    PubMed Central

    Dodé, Catherine; Teixeira, Luis; Levilliers, Jacqueline; Fouveaut, Corinne; Bouchard, Philippe; Kottler, Marie-Laure; Lespinasse, James; Lienhardt-Roussie, Anne; Mathieu, Michèle; Moerman, Alexandre; Morgan, Graeme; Murat, Arnaud; Toublanc, Jean-Edmont; Wolczynski, Slawomir; Delpech, Marc; Petit, Christine; Young, Jacques; Hardelin, Jean-Pierre

    2006-01-01

    Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome. PMID:17054399

  19. Mutations of Human NARS2, Encoding the Mitochondrial Asparaginyl-tRNA Synthetase, Cause Nonsyndromic Deafness and Leigh Syndrome

    PubMed Central

    Shahzad, Mohsin; Huang, Vincent H.; Qaiser, Tanveer A.; Potluri, Prasanth; Mahl, Sarah E.; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-sheqaih, Nada; Newman, William G.; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N.; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B.; Wu, Doris K.; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C.; Ahmed, Zubair M.; Huang, Taosheng; Riazuddin, Saima

    2015-01-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. PMID:25807530

  20. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome.

    PubMed

    Simon, Mariella; Richard, Elodie M; Wang, Xinjian; Shahzad, Mohsin; Huang, Vincent H; Qaiser, Tanveer A; Potluri, Prasanth; Mahl, Sarah E; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-Sheqaih, Nada; Newman, William G; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B; Wu, Doris K; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C; Ahmed, Zubair M; Huang, Taosheng; Riazuddin, Saima

    2015-03-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome.

  1. A novel mutation in the CDH1 gene in a Spanish family with hereditary diffuse gastric cancer.

    PubMed

    López, María; Cervera-Acedo, Cristina; Santibáñez, Paula; Salazar, Raquel; Sola, Jesús-Javier; Domínguez-Garrido, Elena

    2016-01-01

    Hereditary diffuse gastric cancer (HDGC) is an inherited form of diffuse type gastric cancer. Germline CDH1 mutations have been identified in approximately 15-50 % of affected kindred that meet the clinical criteria for HDGC. If any of the criteria is met the individual is referred to genetic counseling and CDH1 testing is offered. In this report we present the case of a Spanish family with HDGC harboring a novel CDH1 mutation. A 47 year-old female with a diagnostic of gastric adenocarcinoma and some of her relatives were tested. Study of the entire CDH1 gene, including intron-exon boundaries, by PCR and sequencing and immunohistochemical determination of the expression of E-cadherin were performed. A novel heterozygous deletion in exon 9 of CDH1 gene (c.1220_1220delC, p.P407Qfs10), was found in the proband, one sister and a nephew. It generates a premature stop codon giving rise to a truncated protein that leads to a pathogenic variant. Expression of E-cadherin was absent or frankly reduced in the proband's tumor but normal in tumor cells of great-uncle. After these results, the sister underwent prophylactic total gastrectomy, and the nephew is under annual endoscopic surveillance. Personal or familial history of diffuse gastric cancer, above all at young age, should encourage CDH1 genetic testing. In this sense, the review of the criteria and the addition in the last guideline of the recommendation: "other families in which genetic testing may also be considered" broadens the number of individuals at risk detected. Since there are not reliable methods for early detection, DGC is usually diagnosed at an advanced stage and consequently associated with a poorer outcome. Thus, CDH1 mutations detection contributes to an improvement in diagnosis and therapeutic intervention.

  2. Permanent neonatal diabetes caused by a homozygous nonsense mutation in the glucokinase gene.

    PubMed

    Rubio-Cabezas, O; Díaz González, F; Aragonés, A; Argente, J; Campos-Barros, A

    2008-06-01

    Glucokinase deficiency is an unfrequent cause of permanent neonatal diabetes (PND), as only seven patients have been reported, either homozygous for a missense or frameshift mutation or compound heterozygous for both of them. We report here the first known case caused by a homozygous nonsense mutation (Y61X) in the glucokinase gene (GCK) that introduces a premature stop codon, generating a truncated protein that is predicted to be completely inactive as it lacks both the glucose- and the adenosine triphosphate-binding sites. The proband, born to consanguineous parents, was a full-term, intra-uterine growth-retarded male newborn who presented with a glycaemia of 129 mg/dL (7.16 mmol/L) on his second day of life, increasing thereafter up to 288 mg/dL (15.98 mmol/L) and 530 mg/dL (29.41 mmol/L) over the next 24 h, in the face of low serum insulin (<3 muIU/mL; <20.83 pmol/L). He was put on insulin on the third day of life. Insulin has never been discontinued since then. The patient was tested negative for anti-insulin and islet cell antibodies at age 5 months. His father had non-progressive, impaired fasting glucose for several years. The mother was found to be mildly hyperglycaemic only when her glucose was checked after the child was diagnosed. In conclusion, biallelic GCK loss should be considered as a potential cause of PND in children born to consanguineous parents, even if they are not known to be diabetic at the time of PND presentation.

  3. Expanding CEP290 mutational spectrum in ciliopathies.

    PubMed

    Travaglini, Lorena; Brancati, Francesco; Attie-Bitach, Tania; Audollent, Sophie; Bertini, Enrico; Kaplan, Josseline; Perrault, Isabelle; Iannicelli, Miriam; Mancuso, Brunella; Rigoli, Luciana; Rozet, Jean-Michel; Swistun, Dominika; Tolentino, Jerlyn; Dallapiccola, Bruno; Gleeson, Joseph G; Valente, Enza Maria; Zankl, A; Leventer, R; Grattan-Smith, P; Janecke, A; D'Hooghe, M; Sznajer, Y; Van Coster, R; Demerleir, L; Dias, K; Moco, C; Moreira, A; Kim, C Ae; Maegawa, G; Petkovic, D; Abdel-Salam, G M H; Abdel-Aleem, A; Zaki, M S; Marti, I; Quijano-Roy, S; Sigaudy, S; de Lonlay, P; Romano, S; Touraine, R; Koenig, M; Lagier-Tourenne, C; Messer, J; Collignon, P; Wolf, N; Philippi, H; Kitsiou Tzeli, S; Halldorsson, S; Johannsdottir, J; Ludvigsson, P; Phadke, S R; Udani, V; Stuart, B; Magee, A; Lev, D; Michelson, M; Ben-Zeev, B; Fischetto, R; Benedicenti, F; Stanzial, F; Borgatti, R; Accorsi, P; Battaglia, S; Fazzi, E; Giordano, L; Pinelli, L; Boccone, L; Bigoni, S; Ferlini, A; Donati, M A; Caridi, G; Divizia, M T; Faravelli, F; Ghiggeri, G; Pessagno, A; Briguglio, M; Briuglia, S; Salpietro, C D; Tortorella, G; Adami, A; Castorina, P; Lalatta, F; Marra, G; Riva, D; Scelsa, B; Spaccini, L; Uziel, G; Del Giudice, E; Laverda, A M; Ludwig, K; Permunian, A; Suppiej, A; Signorini, S; Uggetti, C; Battini, R; Di Giacomo, M; Cilio, M R; Di Sabato, M L; Leuzzi, V; Parisi, P; Pollazzon, M; Silengo, M; De Vescovi, R; Greco, D; Romano, C; Cazzagon, M; Simonati, A; Al-Tawari, A A; Bastaki, L; Mégarbané, A; Sabolic Avramovska, V; de Jong, M M; Stromme, P; Koul, R; Rajab, A; Azam, M; Barbot, C; Martorell Sampol, L; Rodriguez, B; Pascual-Castroviejo, I; Teber, S; Anlar, B; Comu, S; Karaca, E; Kayserili, H; Yüksel, A; Akcakus, M; Al Gazali, L; Sztriha, L; Nicholl, D; Woods, C G; Bennett, C; Hurst, J; Sheridan, E; Barnicoat, A; Hennekam, R; Lees, M; Blair, E; Bernes, S; Sanchez, H; Clark, A E; DeMarco, E; Donahue, C; Sherr, E; Hahn, J; Sanger, T D; Gallager, T E; Dobyns, W B; Daugherty, C; Krishnamoorthy, K S; Sarco, D; Walsh, C A; McKanna, T; Milisa, J; Chung, W K; De Vivo, D C; Raynes, H; Schubert, R; Seward, A; Brooks, D G; Goldstein, A; Caldwell, J; Finsecke, E; Maria, B L; Holden, K; Cruse, R P; Swoboda, K J; Viskochil, D

    2009-10-01

    Ciliopathies are an expanding group of rare conditions characterized by multiorgan involvement, that are caused by mutations in genes encoding for proteins of the primary cilium or its apparatus. Among these genes, CEP290 bears an intriguing allelic spectrum, being commonly mutated in Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS), Senior-Loken syndrome and isolated Leber congenital amaurosis (LCA). Although these conditions are recessively inherited, in a subset of patients only one CEP290 mutation could be detected. To assess whether genomic rearrangements involving the CEP290 gene could represent a possible mutational mechanism in these cases, exon dosage analysis on genomic DNA was performed in two groups of CEP290 heterozygous patients, including five JSRD/MKS cases and four LCA, respectively. In one JSRD patient, we identified a large heterozygous deletion encompassing CEP290 C-terminus that resulted in marked reduction of mRNA expression. No copy number alterations were identified in the remaining probands. The present work expands the CEP290 genotypic spectrum to include multiexon deletions. Although this mechanism does not appear to be frequent, screening for genomic rearrangements should be considered in patients in whom a single CEP290 mutated allele was identified.

  4. Expanding CEP290 mutational spectrum in ciliopathies

    PubMed Central

    Travaglini, Lorena; Brancati, Francesco; Attie-Bitach, Tania; Audollent, Sophie; Bertini, Enrico; Kaplan, Josseline; Perrault, Isabelle; Iannicelli, Miriam; Mancuso, Brunella; Rigoli, Luciana; Rozet, Jean-Michel; Swistun, Dominika; Tolentino, Jerlyn; Dallapiccola, Bruno; Gleeson, Joseph G.; Valente, Enza Maria

    2015-01-01

    Ciliopathies are an expanding group of rare conditions characterised by multiorgan involvement, that are caused by mutations in genes encoding for proteins of the primary cilium or its apparatus. Among these genes, CEP290 bears an intriguing allelic spectrum, being commonly mutated in Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS), Senior-Loken syndrome and isolated Leber congenital amaurosis (LCA). Although these conditions are recessively inherited, in a subset of patients only one CEP290 mutation could be detected. To assess whether genomic rearrangements involving the CEP290 gene could represent a possible mutational mechanism in these cases, exon dosage analysis on genomic DNA was performed in two groups of CEP290 heterozygous patients, including five JSRD/MKS cases and four LCA, respectively. In one JSRD patient, we identified a large heterozygous deletion encompassing CEP290 C-terminus, that resulted in marked reduction of mRNA expression. No copy number alterations were identified in the remaining probands. The present work expands the CEP290 genotypic spectrum to include multiexon deletions. Although this mechanism does not appear to be frequent, screening for genomic rearrangements should be considered in patients in whom a single CEP290 mutated allele was identified. PMID:19764032

  5. Rescue of functional DeltaF508-CFTR channels by co-expression with truncated CFTR constructs in COS-1 cells.

    PubMed

    Owsianik, Grzegorz; Cao, Lishuang; Nilius, Bernd

    2003-11-06

    The most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR), DeltaF508-CFTR, is misprocessed and subsequently degraded in the endoplasmic reticulum. Using the patch-clamp technique, we showed that co-expressions of DeltaF508-CFTR with the N-terminal CFTR truncates containing bi-arginine (RXR) retention/retrieval motifs result in a functional rescue of the DeltaF508-CFTR mutant channel in COS-1 cells. This DeltaF508-CFTR rescue process was strongly impaired when truncated CFTR constructs possessed either the DeltaF508 mutation or arginine-to-lysine mutations in RXRs. In conclusions, our data demonstrated that expression of truncated CFTR constructs could be a novel promising approach to improve maturation of DeltaF508-CFTR channels.

  6. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells

    PubMed Central

    McNeill, Alisdair; Magalhaes, Joana; Shen, Chengguo; Chau, Kai-Yin; Hughes, Derralyn; Mehta, Atul; Foltynie, Tom; Cooper, J. Mark; Abramov, Andrey Y.; Gegg, Matthew

    2014-01-01

    Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson’s disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson’s disease in the general population. Therefore there is an urgent need to understand the mechanisms by which glucocerebrosidase mutations predispose to neurodegeneration to facilitate development of novel treatments. To study this we generated fibroblast lines from skin biopsies of five patients with Gaucher disease and six heterozygous glucocerebrosidase mutation carriers with and without Parkinson’s disease. Glucosylceramidase protein and enzyme activity levels were assayed. Oxidative stress was assayed by single cell imaging of dihydroethidium. Glucosylceramidase enzyme activity was significantly reduced in fibroblasts from patients with Gaucher disease (median 5% of controls, P = 0.0001) and heterozygous mutation carriers with (median 59% of controls, P = 0.001) and without (56% of controls, P = 0.001) Parkinson’s disease compared with controls. Glucosylceramidase protein levels, assessed by western blot, were significantly reduced in fibroblasts from Gaucher disease (median glucosylceramidase levels 42% of control, P < 0.001) and heterozygous mutation carriers with (median 59% of control, P < 0.001) and without (median 68% of control, P < 0.001) Parkinson’s disease. Single cell imaging of dihydroethidium demonstrated increased production of cytosolic reactive oxygen species in fibroblasts from patients with Gaucher disease (dihydroethidium oxidation rate increased by a median of 62% compared to controls, P < 0.001) and heterozygous mutation carriers with (dihydroethidium oxidation rate increased by a median of 68% compared with controls, P < 0.001) and without (dihydroethidium oxidation rate increased

  7. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells.

    PubMed

    McNeill, Alisdair; Magalhaes, Joana; Shen, Chengguo; Chau, Kai-Yin; Hughes, Derralyn; Mehta, Atul; Foltynie, Tom; Cooper, J Mark; Abramov, Andrey Y; Gegg, Matthew; Schapira, Anthony H V

    2014-05-01

    Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson's disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson's disease in the general population. Therefore there is an urgent need to understand the mechanisms by which glucocerebrosidase mutations predispose to neurodegeneration to facilitate development of novel treatments. To study this we generated fibroblast lines from skin biopsies of five patients with Gaucher disease and six heterozygous glucocerebrosidase mutation carriers with and without Parkinson's disease. Glucosylceramidase protein and enzyme activity levels were assayed. Oxidative stress was assayed by single cell imaging of dihydroethidium. Glucosylceramidase enzyme activity was significantly reduced in fibroblasts from patients with Gaucher disease (median 5% of controls, P = 0.0001) and heterozygous mutation carriers with (median 59% of controls, P = 0.001) and without (56% of controls, P = 0.001) Parkinson's disease compared with controls. Glucosylceramidase protein levels, assessed by western blot, were significantly reduced in fibroblasts from Gaucher disease (median glucosylceramidase levels 42% of control, P < 0.001) and heterozygous mutation carriers with (median 59% of control, P < 0.001) and without (median 68% of control, P < 0.001) Parkinson's disease. Single cell imaging of dihydroethidium demonstrated increased production of cytosolic reactive oxygen species in fibroblasts from patients with Gaucher disease (dihydroethidium oxidation rate increased by a median of 62% compared to controls, P < 0.001) and heterozygous mutation carriers with (dihydroethidium oxidation rate increased by a median of 68% compared with controls, P < 0.001) and without (dihydroethidium oxidation rate increased by a

  8. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease.

    PubMed

    Zhou, Qing; Wang, Hongying; Schwartz, Daniella M; Stoffels, Monique; Park, Yong Hwan; Zhang, Yuan; Yang, Dan; Demirkaya, Erkan; Takeuchi, Masaki; Tsai, Wanxia Li; Lyons, Jonathan J; Yu, Xiaomin; Ouyang, Claudia; Chen, Celeste; Chin, David T; Zaal, Kristien; Chandrasekharappa, Settara C; P Hanson, Eric; Yu, Zhen; Mullikin, James C; Hasni, Sarfaraz A; Wertz, Ingrid E; Ombrello, Amanda K; Stone, Deborah L; Hoffmann, Patrycja; Jones, Anne; Barham, Beverly K; Leavis, Helen L; van Royen-Kerkof, Annet; Sibley, Cailin; Batu, Ezgi D; Gül, Ahmet; Siegel, Richard M; Boehm, Manfred; Milner, Joshua D; Ozen, Seza; Gadina, Massimo; Chae, JaeJin; Laxer, Ronald M; Kastner, Daniel L; Aksentijevich, Ivona

    2016-01-01

    Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet's disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-κB signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB-mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB-dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.

  9. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early onset autoinflammatory syndrome

    PubMed Central

    Zhou, Qing; Wang, Hongying; Schwartz, Daniella M.; Stoffels, Monique; Park, Yong Hwan; Zhang, Yuan; Yang, Dan; Demirkaya, Erkan; Takeuchi, Masaki; Tsai, Wanxia Li; Lyons, Jonathan J.; Yu, Xiaomin; Ouyang, Claudia; Chen, Celeste; Chin, David T.; Zaal, Kristien; Chandrasekharappa, Settara C.; Hanson, Eric P.; Yu, Zhen; Mullikin, James C.; Hasni, Sarfaraz A.; Wertz, Ingrid; Ombrello, Amanda K.; Stone, Deborah L.; Hoffmann, Patrycja; Jones, Anne; Barham, Beverly K.; Leavis, Helen L.; van Royen-Kerkof, Annet; Sibley, Cailin; Batu, Ezgi D.; Gül, Ahmet; Siegel, Richard M.; Boehm, Manfred; Milner, Joshua D.; Ozen, Seza; Gadina, Massimo; Chae, JaeJin; Laxer, Ronald M.; Kastner, Daniel L.; Aksentijevich, Ivona

    2016-01-01

    Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity1. Herein we describe a new syndrome caused by high penetrance heterozygous germline mutations in the NFκB regulatory protein TNFAIP3 (A20) in six unrelated families with early onset systemic inflammation. The syndrome resembles Behçet’s disease (BD), which is typically considered a polygenic disorder with onset in early adulthood2. A20 is a potent inhibitor of the NFκB signaling pathway3. TNFAIP3 mutant truncated proteins are likely to act by haploinsufficiency since they do not exert a dominant-negative effect in overexpression experiments. Patients’ cells show increased degradation of IκBα and nuclear translocation of NFκB p65, and increased expression of NFκB-mediated proinflammatory cytokines. A20 restricts NFκB signals via deubiquitinating (DUB) activity. In cells expressing the mutant A20 protein, there is defective removal of K63-linked ubiquitin from TRAF6, NEMO, and RIP1 after TNF stimulation. NFκB-dependent pro-inflammatory cytokines are potential therapeutic targets for these patients. PMID:26642243

  10. Heterozygous PINK1 p.G411S increases risk of Parkinson’s disease via a dominant-negative mechanism

    PubMed Central

    Fiesel, Fabienne C.; Caulfield, Thomas R.; Hudec, Roman; Ando, Maya; Truban, Dominika; Hou, Xu; Ogaki, Kotaro; Heckman, Michael G.; James, Elle D.; Swanberg, Maria; Jimenez-Ferrer, Itzia; Hansson, Oskar; Opala, Grzegorz; Siuda, Joanna; Boczarska-Jedynak, Magdalena; Friedman, Andrzej; Koziorowski, Dariusz; Rudzińska-Bar, Monika; Aasly, Jan O.; Lynch, Timothy; Mellick, George D.; Mohan, Megha; Silburn, Peter A.; Sanotsky, Yanosh; Vilariño-Güell, Carles; Farrer, Matthew J.; Chen, Li; Dawson, Valina L.; Dawson, Ted M.; Wszolek, Zbigniew K.; Ross, Owen A.

    2017-01-01

    See Gandhi and Plun-Favreau (doi:10.1093/aww320) for a scientific commentary on this article. It has been postulated that heterozygous mutations in recessive Parkinson’s genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson’s disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson’s disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson’s disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect

  11. Selective loss of parvalbumin-positive GABAergic interneurons in the cerebral cortex of maternally stressed Gad1-heterozygous mouse offspring.

    PubMed

    Uchida, T; Furukawa, T; Iwata, S; Yanagawa, Y; Fukuda, A

    2014-03-11

    Exposure to maternal stress (MS) and mutations in GAD1, which encodes the γ-aminobutyric acid (GABA) synthesizing enzyme glutamate decarboxylase (GAD) 67, are both risk factors for psychiatric disorders. However, the relationship between these risk factors remains unclear. Interestingly, the critical period of MS for psychiatric disorders in offspring corresponds to the period of GABAergic neuron neurogenesis and migration in the fetal brain, that is, in the late stage of gestation. Indeed, decrement of parvalbumin (PV)-positive GABAergic interneurons in the medial prefrontal cortex (mPFC) and hippocampus (HIP) has often been observed in schizophrenia patients. In the present study, we used GAD67-green fluorescent protein (GFP) knock-in mice (that is, mice in which the Gad1 gene is heterozygously deleted; GAD67(+/GFP)) that underwent prenatal stress from embryonic day 15.0 to 17.5 and monitored PV-positive GABAergic neurons to address the interaction between Gad1 disruption and stress. Administration of 5-bromo-2-deoxyuridine revealed that neurogenesis of GFP-positive GABAergic neurons, but not cortical plate cells, was significantly diminished in fetal brains during MS. Differential expression of glucocorticoid receptors by different progenitor cell types may underlie this differential outcome. Postnatally, the density of PV-positive, but not PV-negative, GABAergic neurons was significantly decreased in the mPFC, HIP and somatosensory cortex but not in the motor cortex of GAD67(+/GFP) mice. By contrast, these findings were not observed in wild-type (GAD67(+/+)) offspring. These results suggest that prenatal stress, in addition to heterozygous deletion of Gad1, could specifically disturb the proliferation of neurons destined to be PV-positive GABAergic interneurons.

  12. Mutation analysis of the ERCC4/FANCQ gene in hereditary breast cancer.

    PubMed

    Kohlhase, Sandra; Bogdanova, Natalia V; Schürmann, Peter; Bermisheva, Marina; Khusnutdinova, Elza; Antonenkova, Natalia; Park-Simon, Tjoung-Won; Hillemanns, Peter; Meyer, Andreas; Christiansen, Hans; Schindler, Detlev; Dörk, Thilo

    2014-01-01

    The ERCC4 protein forms a structure-specific endonuclease involved in the DNA damage response. Different cancer syndromes such as a subtype of Xeroderma pigmentosum, XPF, and recently a subtype of Fanconi Anemia, FA-Q, have been attributed to biallelic ERCC4 gene mutations. To investigate whether monoallelic ERCC4 gene defects play some role in the inherited component of breast cancer susceptibility, we sequenced the whole ERCC4 coding region and flanking untranslated portions in a series of 101 Byelorussian and German breast cancer patients selected for familial disease (set 1, n = 63) or for the presence of the rs1800067 risk haplotype (set 2, n = 38). This study confirmed six known and one novel exonic variants, including four missense substitutions but no truncating mutation. Missense substitution p.R415Q (rs1800067), a previously postulated breast cancer susceptibility allele, was subsequently screened for in a total of 3,698 breast cancer cases and 2,868 controls from Germany, Belarus or Russia. The Gln415 allele appeared protective against breast cancer in the German series, with the strongest effect for ductal histology (OR 0.67; 95%CI 0.49; 0.92; p = 0.003), but this association was not confirmed in the other two series, with the combined analysis yielding an overall Mantel-Haenszel OR of 0.94 (95% CI 0.81; 1.08). There was no significant effect of p.R415Q on breast cancer survival in the German patient series. The other three detected ERCC4 missense mutations included two known rare variants as well as a novel substitution, p.E17V, that we identified on a p.R415Q haplotype background. The p.E17V mutation is predicted to be probably damaging but was present in just one heterozygous patient. We conclude that the contribution of ERCC4/FANCQ coding mutations to hereditary breast cancer in Central and Eastern Europe is likely to be small.

  13. An histologically atypical NF-type 1 patient with a new pathogenic mutation.

    PubMed

    Bianco, Giovanni; Greco, Giuseppe; Antonelli, Manila; Casali, Stefania; Castagnini, Cinzia

    2012-12-01

    Here we describe a case of Neurofibromatosis type 1 (NF1) associated with an atypical histiocytic lesion and a new pathogenic mutation. The genetic analysis revealed an heterozygous mutation in the 5' splice site of intron 32, 6,084+1G → T. Histopathological findings are compatible with juvenile xanthogranuloma. The new, not already described, splicing mutation, is possibly partly responsible of the association between NF1 and the histiocitic lesion.

  14. Effect of age and of screening pigment mutations on the phototactic behavior of Drosophila melanogaster.

    PubMed

    Markow, T A; Scavarda, N J

    1977-03-01

    Five different eye color mutations of Drosophila melanogaster have been tested for their effect on phototactic behavior. All five mutations seem to cause flies to be less photonegative than Canton-S control flies. The mutation sepia was found to produce this effect when heterozygous as well. It was also found that wild-type flies from highly photopositive and photonegative strains seem to be more photoneutral with age.

  15. POMT2 mutation in a patient with 'MEB-like' phenotype.

    PubMed

    Mercuri, E; D'Amico, A; Tessa, A; Berardinelli, A; Pane, M; Messina, S; van Reeuwijk, J; Bertini, E; Muntoni, F; Santorelli, F M

    2006-07-01

    Mutations in POMT2 have so far only been reported in patients with Walker-Warburg phenotype. We report heterozygous POMT2 mutations in an a girl with a milder phenotype characterized by mental retardation, microcephaly, hypertrophy of the quadriceps and calf muscles, and structural brain changes mostly affecting the posterior fossa. Our findings suggest that, as previously reported for POMT1 and FKRP, mutations in the POMT2 can also be associated with clinical heterogeneity.

  16. Novel homozygous mutation, c.400C>T (p.Arg134*), in the PVRL1 gene underlies cleft lip/palate-ectodermal dysplasia syndrome in an Asian patient.

    PubMed

    Yoshida, Kazue; Hayashi, Ryota; Fujita, Hideki; Kubota, Masaya; Kondo, Mai; Shimomura, Yutaka; Niizeki, Hironori

    2015-07-01

    Cleft lip/palate-ectodermal dysplasia syndrome is a rare, autosomal recessive disorder caused by homozygous loss-of-function mutations of the poliovirus receptor-like 1 (PVRL1) gene encoding nectin-1. Nectin-1 is a cell-cell adhesion molecule that is important for the initial step in the formation of adherens junctions and tight junctions; it is expressed in keratinocytes, neurons, and the developing face and palate. Clinical manifestations comprise a unique facial appearance with cleft lip/palate, ectodermal dysplasia, cutaneous syndactyly of the fingers and/or toes, and in some cases, mental retardation. We present the first report, to our knowledge, of an Asian individual with cleft lip/palate-ectodermal dysplasia syndrome with a novel PVRL1 mutation. A 7-year-old Japanese boy, the first child of a consanguineous marriage, showed hypohidrotic ectodermal dysplasia with sparse, brittle, fine, dry hair and hypodontia, the unique facial appearance with cleft lip/palate, cutaneous syndactyly of the fingers and mild mental retardation. Scanning electron microscopic examination of the hair demonstrated pili torti and pili trianguli et canaliculi. Mutation analysis of exon 2 of PVRL1 revealed a novel homozygous nonsense mutation, c.400C>T (p.Arg134*). His parents were heterozygous for the mutant alleles. All four PVRL1 mutations identified in cleft lip/palate-ectodermal dysplasia syndrome to date, including this study, resulted in truncated proteins that lack the transmembrane domain and intracellular domain of nectin-1, which is necessary to initiate the cell-cell adhesion process.

  17. Novel parkin mutations detected in patients with early-onset Parkinson's disease.

    PubMed

    Bertoli-Avella, Aida M; Giroud-Benitez, José L; Akyol, Ali; Barbosa, Egberto; Schaap, Onno; van der Linde, Herma C; Martignoni, Emilia; Lopiano, Leonardo; Lamberti, Paolo; Fincati, Emiliana; Antonini, Angelo; Stocchi, Fabrizio; Montagna, Pasquale; Squitieri, Ferdinando; Marini, Paolo; Abbruzzese, Giovanni; Fabbrini, Giovanni; Marconi, Roberto; Dalla Libera, Alessio; Trianni, Giorgio; Guidi, Marco; De Gaetano, Antonio; Boff Maegawa, Gustavo; De Leo, Antonino; Gallai, Virgilio; de Rosa, Giulia; Vanacore, Nicola; Meco, Giuseppe; van Duijn, Cornelia M; Oostra, Ben A; Heutink, Peter; Bonifati, Vincenzo

    2005-04-01

    A multiethnic series of patients with early-onset Parkinson's disease (EOP) was studied to assess the frequency and nature of parkin/PARK2 gene mutations and to investigate phenotype-genotype relationships. Forty-six EOP probands with an onset age of < 45 years, and 14 affected relatives were ascertained from Italy, Brazil, Cuba, and Turkey. The genetic screening included direct sequencing and exon dosage using a new, cost-effective, real-time polymerase chain reaction method. Mutations were found in 33% of the indexes overall, and in 53% of those with family history compatible with autosomal recessive inheritance. Fifteen parkin alterations (10 exon deletions and five point mutations) were identified, including four novel mutations: Arg402Cys, Cys418Arg, IVS11-3C > G, and exon 8-9-10 deletion. Homozygous mutations, two heterozygous mutations, and a single heterozygous mutation were found in 8, 6, and 1 patient, respectively. Heterozygous exon deletions represented 28% of the mutant alleles. The patients with parkin mutations showed significantly earlier onset, longer disease duration, more frequently symmetric onset, and slower disease progression than the patients without mutations, in agreement with previous studies. This study confirms the frequent involvement of parkin and the importance of genetic testing in the diagnostic work-up of EOP.

  18. Spectrum of small mutations in the dystrophin coding region.

    PubMed Central

    Prior, T W; Bartolo, C; Pearl, D K; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Mendell, J R

    1995-01-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened approximately 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3' of exon 55. The extent of protein truncation caused by the 3' mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. Images Figure 2 PMID:7611292

  19. Spectrum of small mutations in the dystrophin coding region.

    PubMed

    Prior, T W; Bartolo, C; Pearl, D K; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Mendell, J R

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened approximately 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3' of exon 55. The extent of protein truncation caused by the 3' mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications.

  20. Measuring a Truncated Disk in Aquila X-1

    NASA Technical Reports Server (NTRS)

    King, Ashley L.; Tomsick, John A.; Miller, Jon M.; Chenevez, Jerome; Barret, Didier; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn E.; Craig, William W.; Feurst, Felix; V, Charles J.; Harrison, Fiona A.; Parker, Michael L.; Stern, Daniel; Romano, Patrizia; Walton, Dominic J.; Zhang, William W.

    2016-01-01

    We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its 2014 July outburst. The spectrum is soft with strong evidence for a broad Fe K(alpha) line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner radius of 15 +/- 3RG. The disk is likely truncated by either the boundary layer and/or a magnetic field. Associating the truncated inner disk with pressure from a magnetic field gives an upper limit of B < 5+/- 2x10(exp 8) G. Although the radius is truncated far from the stellar surface, material is still reaching the neutron star surface as evidenced by the X-ray burst present in the NuSTAR observation.

  1. Enhanced light trapping in periodically truncated cone silicon nanowire structure

    NASA Astrophysics Data System (ADS)

    Kai, Qiu; Yuhua, Zuo; Tianwei, Zhou; Zhi, Liu; Jun, Zheng; Chuanbo, Li; Buwen, Cheng

    2015-10-01

    Light trapping plays an important role in improving the conversion efficiency of thin-film solar cells. The good wideband light trapping is achieved using our periodically truncated cone Si nanowire (NW) structures, and their inherent mechanism is analyzed and simulated by FDTD solution software. Ordered cylinder Si NW structure with initial size of 80 nm and length of 200 nm is grown by pattern transfer and selective epitaxial growth. Truncated cone Si NW array is then obtained by thermal oxidation treatment. Its mean reflection in the range of 300-900 nm is lowered to be 5% using 140 nm long truncated cone Si NW structure, compared with that of 20% using cylinder counterparts. It indicates that periodically truncated Si cone structures trap the light efficiently to enhance the light harvesting in a wide spectral range and have the potential application in highly efficient NW solar cells. Project supported by the National Natural Science Foundation of China (Nos. 51072194, 61021003, 61036001, 61376057).

  2. Adaptive bit truncation and compensation method for EZW image coding

    NASA Astrophysics Data System (ADS)

    Dai, Sheng-Kui; Zhu, Guangxi; Wang, Yao

    2003-09-01

    The embedded zero-tree wavelet algorithm (EZW) is widely adopted to compress wavelet coefficients of images with the property that the bits stream can be truncated and produced anywhere. The lower bit plane of the wavelet coefficents is verified to be less important than the higher bit plane. Therefore it can be truncated and not encoded. Based on experiments, a generalized function, which can provide a glancing guide for EZW encoder to intelligently decide the number of low bit plane to be truncated, is deduced in this paper. In the EZW decoder, a simple method is presented to compensate for the truncated wavelet coefficients, and finally it can surprisingly enhance the quality of reconstructed image and spend scarcely any additional cost at the same time.

  3. Truncation Depth Rule-of-Thumb for Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Moision, Bruce

    2009-01-01

    In this innovation, it is shown that a commonly used rule of thumb (that the truncation depth of a convolutional code should be five times the memory length, m, of the code) is accurate only for rate 1/2 codes. In fact, the truncation depth should be 2.5 m/(1 - r), where r is the code rate. The accuracy of this new rule is demonstrated by tabulating the distance properties of a large set of known codes. This new rule was derived by bounding the losses due to truncation as a function of the code rate. With regard to particular codes, a good indicator of the required truncation depth is the path length at which all paths that diverge from a particular path have accumulated the minimum distance of the code. It is shown that the new rule of thumb provides an accurate prediction of this depth for codes of varying rates.

  4. Mutations in Known Monogenic High Bone Mass Loci Only Explain a Small Proportion of High Bone Mass Cases.

    PubMed

    Gregson, Celia L; Wheeler, Lawrie; Hardcastle, Sarah A; Appleton, Louise H; Addison, Kathryn A; Brugmans, Marieke; Clark, Graeme R; Ward, Kate A; Paggiosi, Margaret; Stone, Mike; Thomas, Joegi; Agarwal, Rohan; Poole, Kenneth E S; McCloskey, Eugene; Fraser, William D; Williams, Eleanor; Bullock, Alex N; Davey Smith, George; Brown, Matthew A; Tobias, Jon H; Duncan, Emma L

    2016-03-01

    High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3'). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (∼prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small

  5. Identification of a novel SBF2 missense mutation associated with a rare case of thrombocytopenia using whole-exome sequencing.

    PubMed

    Abuzenadah, Adel M; Zaher, Galila F; Dallol, Ashraf; Damanhouri, Ghazi A; Chaudhary, Adeel G; Al-Sayes, Faten; Gari, Mamdooh A; AlZahrani, Mofareh; Hindawi, Salwa; Al-Qahtani, Mohammed H

    2013-11-01

    We describe in this report a case of a 6-years-old female who presented at the age of 1 month with a mucocutaneous bleeding and suspected thrombocytopenia. The patient's condition was refractory to the known idiopathic thrombocytopenic purpura treatments and congenital form of Thrombocytopenia was suspected following the delivery of a male sibling with the same phenotype. The patient also manifested fair colored hair and skin relative to her family however she did not have any detectable neurologic or other immunologic abnormalities. In order to further understand this condition, we have used whole-exome sequencing of the patient's DNA as well as her father's with the assumption that her condition is transmitted in an autosomal recessive manner. We have identified a missense change c.659C>G (p.Thr220Arg) in the SBF2 (also known as MTMR13) gene that causes a mutation in the DENN domain of the protein. This mutation was validated by traditional Sanger sequencing and analyzed in the remaining family members were it was found to segregate in the homozygous state in the affected siblings and in the heterozygous state in both parents. This novel mutation in the DENN domain of SBF2 maybe interfering with its putative association with the Rab family of small GTPases which are important mediators of vesicle transport and membrane trafficking. In conclusion, we have identified a novel mutation that is associated with severe thrombocytopenia. The fact that this mutation is found in SBF2 gene may indicate that the underlying cause of thrombocytopenia in our patient is either a new variant form of Griscelli syndrome (through the Rab GTPases action) or a variant Charcot-Marie-Tooth type 4 disease as SBF2 truncating mutations were previously identified in sufferers of this disease. This finding will help to accurately diagnose and classify similar cases of congenital thrombocytopenia and provide further proof to the power of whole-exome sequencing in personalizing patients

  6. Mutations in Known Monogenic High Bone Mass Loci Only Explain a Small Proportion of High Bone Mass Cases

    PubMed Central

    Wheeler, Lawrie; Hardcastle, Sarah A; Appleton, Louise H; Addison, Kathryn A; Brugmans, Marieke; Clark, Graeme R; Ward, Kate A; Paggiosi, Margaret; Stone, Mike; Thomas, Joegi; Agarwal, Rohan; Poole, Kenneth ES; McCloskey, Eugene; Fraser, William D; Williams, Eleanor; Bullock, Alex N; Davey Smith, George; Brown, Matthew A; Tobias, Jon H; Duncan, Emma L

    2015-01-01

    ABSTRACT High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52‐kb intronic deletion 3′). Family members were assessed for HBM segregation with identified variants. Three‐dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (∼prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non‐LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5‐HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST‐LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z‐scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z‐scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only

  7. The Mach disc in truncated plug nozzle flows

    NASA Technical Reports Server (NTRS)

    Giel, T. V., Jr.; Mueller, T. J.

    1975-01-01

    The first shock reflection within truncated plug nozzle propulsive jets is investigated experimentally using a free jet blow-down facility. The locations and sizes of these reflections in axisymmetric plug nozzles, with cylindrical shrouds and conical truncated plugs, are presented. Data are presented for a range of ambient to nozzle total pressure ratios. The effects of Mach disk location and size resulting from changing plug length and from varying amounts of base bleed are documented.

  8. Truncated horseshoes and formal languages in chaotic scattering.

    PubMed

    Troll, G.

    1993-10-01

    In this paper we study parameter families of truncated horseshoes as models of multiscattering systems which show a transition to chaos without losing hyperbolicity, so that the topological features of the transition are completely describable by a parametrized family of symbolic dynamics. At a fixed parameter value the corresponding horseshoe represents the set of orbits trapped in the scattering region. The bifurcations are a pure boundary effect and no other bifurcations such as saddle center bifurcations occur in this transition scenario. Truncated horseshoes actually arise in concrete potential scattering under suitable conditions. It is shown that a simple scattering model introduced earlier can realize this scenario in a certain parameter range (the "truncated sawshoe"). For this purpose, we solve the inverse scattering problem of finding the central potential associated to the sawshoe model. Furthermore, we review classification schemes for the transition to chaos of truncated horseshoes originating from symbolic dynamics and formal language theory and apply them to the truncated double horseshoe and the truncated sawshoe.

  9. A Truncated Variant of ASCC1, a Novel Inhibitor of NF-κB, Is Associated with Disease Severity in Patients with Rheumatoid Arthritis.

    PubMed

    Torices, Silvia; Alvarez-Rodríguez, Lorena; Grande, Lara; Varela, Ignacio; Muñoz, Pedro; Pascual, Dora; Balsa, Alejandro; López-Hoyos, Marcos; Martinez-Taboada, Víctor; Fernández-Luna, Jose L

    2015-12-01

    Loss of the regulatory mechanisms that avoid excessive or constitutive activation of NF-κB may be associated with chronic inflammatory disorders, including rheumatoid arthritis (RA). After massive sequencing of 158 regulators of the NF-κB pathway in RA patients, we focused on a scarcely known gene, ASCC1, and showed that it potently inhibits the expression of NF-κB target genes (TRAIL, TNF-α, cIAP-1, IL8) and blocks activation of a NF-κB-luciferase reporter construct in five different human cell lines. Therefore, ASCC1 may contribute to avoiding a pathologic activation of this transcription factor. A truncated variant of ASCC1 (p.S78*) was found in RA patients and control individuals. Functional in vitro studies revealed that truncation abrogated the NF-κB inhibition capacity of ASCC1. In contrast with full-length protein, truncated ASCC1 did not reduce the transcriptional activation of NF-κB and the secretion of TNF-α in response to inflammatory stimuli. We analyzed the clinical impact of p.S78* variant in 433 patients with RA and found that heterozygous carriers of this variant needed more disease-modifying antirheumatic drugs, and more patients with this genotype needed treatment with corticoids and biologic agents. Moreover, the truncated allele-carrier group had lower rates of remission compared with the full-length variant carriers. Overall, our findings show for the first time, to our knowledge, that ASCC1 inhibits NF-κB activation and that a truncated and inactive variant of ASCC1 is associated with a more severe disease, which could have clinical value for assessing the progression and prognosis of RA.

  10. A novel insA2933 causes premature termination of translation and is accompanied by overexpression of truncated androgen receptor gene in a patient with complete androgen insensitivity syndrome.

    PubMed

    Turek-Plewa, J; Starzyk, J B; Trzeciak, W H

    2015-11-01

    A patient with a female phenotype, 46,XY karyotype, and a diagnosis of complete androgen insensitivity syndrome (CAIS) was examined. Her mother and three 46,XX sisters were also included in the study. Sequence analysis of the androgen receptor gene (AR) revealed a novel A2933 insertion that alters the Tyr codon to a termination codon (Y857X), resulting in a truncated form of the receptor. Computer simulation revealed major conformational changes in the hydrophobic pocket that accommodates the hormone. An insA2933 results in a truncated receptor incapable of binding the ligand and is responsible for the clinical symptoms of CAIS in the patient. The levels of the AR transcript in peripheral blood leukocytes were higher in the patient than in her heterozygous mother and her heterozygous sister, as well as in the two healthy sisters. It is hypothesized that elevated levels of the AR transcript in the patient might be caused by the inability of the truncated receptor to react with IFI-16, which functions in complex with AR to inhibit the expression of the AR gene.

  11. Truncation of LEAFY COTYLEDON1 protein is required for asexual reproduction in Kalanchoë daigremontiana.

    PubMed

    Garcês, Helena M P; Koenig, Daniel; Townsley, Brad T; Kim, Minsung; Sinha, Neelima R

    2014-05-01

    Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively.

  12. Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1

    PubMed Central

    Ramkissoon, Lori A.; Horowitz, Peleg M.; Craig, Justin M.; Ramkissoon, Shakti H.; Rich, Benjamin E.; Schumacher, Steven E.; McKenna, Aaron; Lawrence, Michael S.; Bergthold, Guillaume; Brastianos, Priscilla K.; Tabak, Barbara; Ducar, Matthew D.; Van Hummelen, Paul; MacConaill, Laura E.; Pouissant-Young, Tina; Cho, Yoon-Jae; Taha, Hala; Mahmoud, Madeha; Bowers, Daniel C.; Margraf, Linda; Tabori, Uri; Hawkins, Cynthia; Packer, Roger J.; Hill, D. Ashley; Pomeroy, Scott L.; Eberhart, Charles G.; Dunn, Ian F.; Goumnerova, Liliana; Getz, Gad; Chan, Jennifer A.; Santagata, Sandro; Hahn, William C.; Stiles, Charles D.; Ligon, Azra H.; Kieran, Mark W.; Beroukhim, Rameen; Ligon, Keith L.

    2013-01-01

    Pediatric low-grade gliomas (PLGGs) are among the most common solid tumors in children but, apart from BRAF kinase mutations or duplications in specific subclasses, few genetic driver events are known. Diffuse PLGGs comprise a set of uncommon subtypes that exhibit invasive growth and are therefore especially challenging clinically. We performed high-resolution copy-number analysis on 44 formalin-fixed, paraffin-embedded diffuse PLGGs to identify recurrent alterations. Diffuse PLGGs exhibited fewer such alterations than adult low-grade gliomas, but we identified several significantly recurrent events. The most significant event, 8q13.1 gain, was observed in 28% of diffuse astrocytoma grade IIs and resulted in partial duplication of the transcription factor MYBL1 with truncation of its C-terminal negative-regulatory domain. A similar recurrent deletion-truncation breakpoint was identified in two angiocentric gliomas in the related gene v-myb avian myeloblastosis viral oncogene homolog (MYB) on 6q23.3. Whole-genome sequencing of a MYBL1-rearranged diffuse astrocytoma grade II demonstrated MYBL1 tandem duplication and few other events. Truncated MYBL1 transcripts identified in this tumor induced anchorage-independent growth in 3T3 cells and tumor formation in nude mice. Truncated transcripts were also expressed in two additional tumors with MYBL1 partial duplication. Our results define clinically relevant molecular subclasses of diffuse PLGGs and highlight a potential role for the MYB family in the biology of low-grade gliomas. PMID:23633565

  13. Plant microRNAs display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species.

    PubMed

    Zhai, Jixian; Zhao, Yuanyuan; Simon, Stacey A; Huang, Sheng; Petsch, Katherine; Arikit, Siwaret; Pillay, Manoj; Ji, Lijuan; Xie, Meng; Cao, Xiaofeng; Yu, Bin; Timmermans, Marja; Yang, Bing; Chen, Xuemei; Meyers, Blake C

    2013-07-01

    Plant small RNAs are 3' methylated by the methyltransferase HUA1 ENHANCER1 (HEN1). In plant hen1 mutants, 3' modifications of small RNAs, including oligo-uridylation (tailing), are associated with accelerated degradation of microRNAs (miRNAs). By sequencing small RNAs of the wild type and hen1 mutants from Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays), we found 3' truncation prior to tailing is widespread in these mutants. Moreover, the patterns of miRNA truncation and tailing differ substantially among miRNA families but are conserved across species. The same patterns are also observable in wild-type libraries from a broad range of species, only at lower abundances. ARGONAUTE (AGO1), even with defective slicer activity, can bind these truncated and tailed variants of miRNAs. An ago1 mutation in hen1 suppressed such 3' modifications, indicating that they occur while miRNAs are in association with AGO1, either during or after RNA-induced silencing complex assembly. Our results showed AGO1-bound miRNAs are actively 3' truncated and tailed, possibly reflecting the activity of cofactors acting in conserved patterns in miRNA degradation.

  14. Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene