Science.gov

Sample records for heterozygous truncating mutation

  1. Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: Detailed phenotyping of 10 new cases.

    PubMed

    Symonds, Joseph D; Joss, Shelagh; Metcalfe, Kay A; Somarathi, Suresh; Cruden, Jamie; Devlin, Anita M; Donaldson, Alan; DiDonato, Nataliya; Fitzpatrick, David; Kaiser, Frank J; Lampe, Anne K; Lees, Melissa M; McLellan, Ailsa; Montgomery, Tara; Mundada, Vivek; Nairn, Lesley; Sarkar, Ajoy; Schallner, Jens; Pozojevic, Jelena; Parenti, Ilaria; Tan, Jeen; Turnpenny, Peter; Whitehouse, William P; Zuberi, Sameer M

    2017-04-01

    The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  2. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  3. Recessive axonal Charcot-Marie-Tooth disease due to compound heterozygous mitofusin 2 mutations

    PubMed Central

    Polke, J.M.; Laurá, M.; Pareyson, D.; Taroni, F.; Milani, M.; Bergamin, G.; Gibbons, V.S.; Houlden, H.; Chamley, S.C.; Blake, J.; DeVile, C.; Sandford, R.; Sweeney, M.G.; Davis, M.B.

    2011-01-01

    Objective: Mutations in mitofusin 2 (MFN2) are the most common cause of axonal Charcot-Marie-Tooth disease (CMT2). Over 50 mutations have been reported, mainly causing autosomal dominant disease, though families with homozygous or compound heterozygous mutations have been described. We present 3 families with early-onset CMT2 associated with compound heterozygous MFN2 mutations. Transcriptional analysis was performed to investigate the effects of the mutations. Methods: Patients were examined clinically and electrophysiologically; parents were also examined where available. Genetic investigations included MFN2 DNA sequencing and dosage analysis by multiplex ligation-dependent probe amplification. MFN2 mRNA transcripts from blood lymphocytes were analyzed in 2 families. Results: Compound heterozygosity for MFN2 mutations was associated with early-onset CMT2 of varying severity between pedigrees. Parents, where examined, were unaffected and were heterozygous for the expected mutations. Four novel mutations were detected (one missense, one nonsense, an intragenic deletion of exons 7 + 8, and a 3–base pair deletion), as well as 2 previously reported missense mutations. Transcriptional analysis demonstrated aberrant splicing of the exonic deletion and indicated nonsense-mediated decay of mutant alleles with premature truncating mutations. Conclusions: Our findings confirm that MFN2 mutations can cause early-onset CMT2 with apparent recessive inheritance. Novel genetic findings include an intragenic MFN2 deletion and nonsense-mediated decay. Carrier parents were asymptomatic, suggesting that MFN2 null alleles can be nonpathogenic unless coinherited with another mutation. PMID:21715711

  4. Skeletal characteristics associated with homozygous and heterozygous WNT1 mutations.

    PubMed

    Palomo, Telma; Al-Jallad, Hadil; Moffatt, Pierre; Glorieux, Francis H; Lentle, Brian; Roschger, Paul; Klaushofer, Klaus; Rauch, Frank

    2014-10-01

    Recent reports have shown that homozygous or compound heterozygous mutations in WNT1 can give rise to severe bone fragility resembling osteogenesis imperfecta, whereas heterozygous WNT1 mutations have been found in adults with dominant early-onset osteoporosis. Here we assessed the effects of WNT1 mutations in four children with recessive severe bone fragility and in heterozygous family members. In vitro studies using the Topflash luciferase reporter system showed that two WNT1 missense mutations that were observed in these families, p.Cys143Phe and p.Val355Phe, decreased the ability of WNT1 to stimulate WNT signaling by >90%. Analyses of iliac bone samples revealed no major abnormalities in bone mineralization density distribution, an indicator of material bone properties, whereas a shift towards higher bone mineralization density is characteristic of classical osteogenesis imperfecta caused by mutations in COL1A1/COL1A2. Intravenous bisphosphonate treatment of four children with homozygous or compound heterozygous WNT1 mutations was associated with increasing lumbar spine areal bone mineral density z-scores, as measured by dual energy X-ray absorptiometry, but the effect was smaller than what had previously been reported for children with classical osteogenesis imperfecta. Family members with heterozygous WNT1 mutation tended to have low bone mass. Three of these heterozygous individuals had radiographic signs of vertebral fractures. These observations suggest that more effective treatment approaches are needed for children with recessive WNT1-related bone fragility and that a systematic work-up for osteoporosis is warranted for WNT1 mutation carriers in these families. Copyright © 2014. Published by Elsevier Inc.

  5. Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric Cardiomyopathy.

    PubMed

    Almomani, Rowida; Verhagen, Judith M A; Herkert, Johanna C; Brosens, Erwin; van Spaendonck-Zwarts, Karin Y; Asimaki, Angeliki; van der Zwaag, Paul A; Frohn-Mulder, Ingrid M E; Bertoli-Avella, Aida M; Boven, Ludolf G; van Slegtenhorst, Marjon A; van der Smagt, Jasper J; van IJcken, Wilfred F J; Timmer, Bert; van Stuijvenberg, Margriet; Verdijk, Rob M; Saffitz, Jeffrey E; du Plessis, Frederik A; Michels, Michelle; Hofstra, Robert M W; Sinke, Richard J; van Tintelen, J Peter; Wessels, Marja W; Jongbloed, Jan D H; van de Laar, Ingrid M B H

    2016-02-09

    Cardiomyopathies are usually inherited and predominantly affect adults, but they can also present in childhood. Although our understanding of the molecular basis of pediatric cardiomyopathy has improved, the underlying mechanism remains elusive in a substantial proportion of cases. This study aimed to identify new genes involved in pediatric cardiomyopathy. The authors performed homozygosity mapping and whole-exome sequencing in 2 consanguineous families with idiopathic pediatric cardiomyopathy. Sixty unrelated patients with pediatric cardiomyopathy were subsequently screened for mutations in a candidate gene. First-degree relatives were submitted to cardiac screening and cascade genetic testing. Myocardial samples from 2 patients were processed for histological and immunohistochemical studies. We identified 5 patients from 3 unrelated families with pediatric cardiomyopathy caused by homozygous truncating mutations in ALPK3, a gene encoding a nuclear kinase that plays an essential role in early differentiation of cardiomyocytes. All patients with biallelic mutations presented with severe hypertrophic and/or dilated cardiomyopathy in utero, at birth, or in early childhood. Three patients died from heart failure within the first week of life. Moreover, 2 of 10 (20%) heterozygous family members showed hypertrophic cardiomyopathy with an atypical distribution of hypertrophy. Deficiency of alpha-kinase 3 has previously been associated with features of both hypertrophic and dilated cardiomyopathy in mice. Consistent with studies in knockout mice, we provide microscopic evidence for intercalated disc remodeling. Biallelic truncating mutations in the newly identified gene ALPK3 give rise to severe, early-onset cardiomyopathy in humans. Our findings highlight the importance of transcription factor pathways in the molecular mechanisms underlying human cardiomyopathies. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Expanding the mutation spectrum for Fraser syndrome: identification of a novel heterozygous deletion in FRAS1.

    PubMed

    Hoefele, Julia; Wilhelm, Christian; Schiesser, Monika; Mack, Reinhold; Heinrich, Uwe; Weber, Lutz T; Biskup, Saskia; Daumer-Haas, Cornelia; Klein, Hanns-Georg; Rost, Imma

    2013-05-15

    Fraser syndrome (FS) is a rare autosomal recessive inherited disorder characterized by cryptophthalmos, laryngeal defects and oral clefting, mental retardation, syndactyly, and urogenital defects. To date, 250 patients have been described in the literature. Mutations in the FRAS1 gene on chromosome 4 have been identified in patients with Fraser syndrome. So far, 26 mutations have been identified, most of them are truncating mutations. The mutational spectrum includes nucleotide substitutions, splicing defects, a large insertion, and small deletions/insertions. Moreover, single heterozygous missense mutations in FRAS1 seem to be responsible for non-syndromic unilateral renal agenesis. Here we report the first case of a family with two patients affected by Fraser syndrome due to a deletion of 64 kb (deletion 4q21.21) and an additional novel frameshift mutation in exon 66 of the FRAS1 gene. To date, large deletions of the FRAS1 gene have not yet been described. Large deletions seem to be a rare cause for Fraser syndrome, but should be considered in patients with a single heterozygous mutation.

  7. Homozygous and compound heterozygous MMP20 mutations in amelogenesis imperfecta.

    PubMed

    Gasse, B; Karayigit, E; Mathieu, E; Jung, S; Garret, A; Huckert, M; Morkmued, S; Schneider, C; Vidal, L; Hemmerlé, J; Sire, J-Y; Bloch-Zupan, A

    2013-07-01

    In this article, we focus on hypomaturation autosomal-recessive-type amelogenesis imperfecta (type IIA2) and describe 2 new causal Matrix metalloproteinase 20 (MMP20) mutations validated in two unrelated families: a missense mutation p.T130I at the expected homozygous state, and a compound heterozygous mutation having the same mutation combined with a nucleotide deletion, leading to a premature stop codon (p.N120fz*2). We characterized the enamel structure of the latter case using scanning electron microscopy analysis and microanalysis (Energy-dispersive X-ray Spectroscopy, EDX) and confirmed the hypomaturation-type amelogenesis imperfecta as identified in the clinical diagnosis. The mineralized content was slightly decreased, with magnesium substituting for calcium in the crystal structure. The anomalies affected enamel with minimal inter-rod enamel present and apatite crystals perpendicular to the enamel prisms, suggesting a possible new role for MMP20 in enamel formation.

  8. Heterozygous Mutations of OTX2 Cause Severe Ocular Malformations

    PubMed Central

    Ragge, Nicola K.; Brown, Alison G.; Poloschek, Charlotte M.; Lorenz, Birgit; Henderson, R. Alex; Clarke, Michael P.; Russell-Eggitt, Isabelle; Fielder, Alistair; Gerrelli, Dianne; Martinez-Barbera, Juan Pedro; Ruddle, Piers; Hurst, Jane; Collin, J. Richard O.; Salt, Alison; Cooper, Simon T.; Thompson, Pamela J.; Sisodiya, Sanjay M.; Williamson, Kathleen A.; FitzPatrick, David R.; Heyningen, Veronica van; Hanson, Isabel M.

    2005-01-01

    Major malformations of the human eye, including microphthalmia and anophthalmia, are examples of phenotypes that recur in families yet often show no clear Mendelian inheritance pattern. Defining loci by mapping is therefore rarely feasible. Using a candidate-gene approach, we have identified heterozygous coding-region changes in the homeobox gene OTX2 in eight families with ocular malformations. The expression pattern of OTX2 in human embryos is consistent with the eye phenotypes observed in the patients, which range from bilateral anophthalmia to retinal defects resembling Leber congenital amaurosis and pigmentary retinopathy. Magnetic resonance imaging scans revealed defects of the optic nerve, optic chiasm, and, in some cases, brain. In two families, the mutations appear to have occurred de novo in severely affected offspring, and, in two other families, the mutations have been inherited from a gonosomal mosaic parent. Data from these four families support a simple model in which OTX2 heterozygous loss-of-function mutations cause ocular malformations. Four additional families display complex inheritance patterns, suggesting that OTX2 mutations alone may not lead to consistent phenotypes. The high incidence of mosaicism and the reduced penetrance have implications for genetic counseling. PMID:15846561

  9. Enhanced Tumor Formation in Mice Heterozygous for Blm Mutation

    NASA Astrophysics Data System (ADS)

    Heppner Goss, Kathleen; Risinger, Mary A.; Kordich, Jennifer J.; Sanz, Maureen M.; Straughen, Joel E.; Slovek, Lisa E.; Capobianco, Anthony J.; German, James; Boivin, Gregory P.; Groden, Joanna

    2002-09-01

    Persons with the autosomal recessive disorder Bloom syndrome are predisposed to cancers of many types due to loss-of-function mutations in the BLM gene, which encodes a recQ-like helicase. Here we show that mice heterozygous for a targeted null mutation of Blm, the murine homolog of BLM, develop lymphoma earlier than wild-type littermates in response to challenge with murine leukemia virus and develop twice the number of intestinal tumors when crossed with mice carrying a mutation in the Apctumor suppressor. These observations indicate that Blm is a modifier of tumor formation in the mouse and that Blm haploinsufficiency is associated with tumor predisposition, a finding with important implications for cancer risk in humans.

  10. Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy

    PubMed Central

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C.E.; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-01-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  11. Congenital hypofibrinogenemia associated with novel homozygous fibrinogen Aα and heterozygous Bβ chain mutations.

    PubMed

    Castaman, Giancarlo; Rimoldi, Valeria; Giacomelli, Sofia H; Duga, Stefano

    2015-07-01

    We report the molecular characterisation of two novel cases of inherited hypofibrinogenemia. After sequencing all coding regions and intron-exon boundaries of the three fibrinogen genes (FGA, FGB, and FGG), two different novel mutations were found, one homozygous and one heterozygous. The first patient, with a mild bleeding history and mild discrepancy between functional and immunological fibrinogen, showed a novel homozygous nonsense mutation in exon 5 of FGA (p.Trp373*, p.Trp354* according to the mature protein) caused by a G>A transition at nucleotide position 1,119. The resulting truncation in the Aα chain is likely to reduce the efficiency of fibrinogen assembly and secretion. The second patient, referred after ischemic stroke (functional fibrinogen 77mg/dL), had a novel heterozygous splicing mutation in intron 5 of FGB (IVS5+2T>A or c.832+2T>A), which we demonstrated to cause either exon 5 skipping or the inclusion of 75bp belonging to intron 5. Neither splicing defect alters the reading frame: one results in a 38-residue deletion and the other in a 25-residue insertion in the D domain of fibrinogen Bβ chain. This report confirms that genetically determined partial deficiencies of fibrinogen with levels greater than 50mg/dL are rarely associated with significant bleeding symptoms and that homozygous null mutations removing a significant portion of the Aα chain may be associated with mild fibrinogen deficiency.

  12. Atypical Progeroid Syndrome due to Heterozygous Missense LMNA Mutations

    PubMed Central

    Garg, Abhimanyu; Subramanyam, Lalitha; Agarwal, Anil K.; Simha, Vinaya; Levine, Benjamin; D'Apice, Maria Rosaria; Novelli, Giuseppe; Crow, Yanick

    2009-01-01

    Context: Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia are well-recognized allelic autosomal dominant and recessive progeroid disorders, respectively, due to mutations in lamin A/C (LMNA) gene. Heterozygous LMNA mutations have also been reported in a small number of patients with a less well-characterized atypical progeroid syndrome (APS). Objective: The objective of the study was to investigate the underlying genetic and molecular basis of the phenotype of patients presenting with APS. Results: We report 11 patients with APS from nine families, many with novel heterozygous missense LMNA mutations, such as, P4R, E111K, D136H, E159K, and C588R. These and previously reported patients now reveal a spectrum of clinical features including progeroid manifestations such as short stature, beaked nose, premature graying, partial alopecia, high-pitched voice, skin atrophy over the hands and feet, partial and generalized lipodystrophy with metabolic complications, and skeletal anomalies such as mandibular hypoplasia and mild acroosteolysis. Skin fibroblasts from these patients when assessed for lamin A/C expression using epifluorescence microscopy revealed variable nuclear morphological abnormalities similar to those observed in patients with HGPS. However, these nuclear abnormalities in APS patients could not be rescued with 48 h treatment with farnesyl transferase inhibitors, geranylgeranyl transferase inhibitors or trichostatin-A, a histone deacetylase inhibitor. Immunoblots of cell lysates from fibroblasts did not reveal prelamin A accumulation in any of these patients. Conclusions: APS patients have a few overlapping but some distinct clinical features as compared with HGPS and mandibuloacral dysplasia. The pathogenesis of clinical manifestations in APS patients seems not to be related to accumulation of mutant farnesylated prelamin A. PMID:19875478

  13. Compound heterozygous mutations in TTC7A cause familial multiple intestinal atresias and severe combined immunodeficiency.

    PubMed

    Yang, W; Lee, P P W; Thong, M-K; Ramanujam, T M; Shanmugam, A; Koh, M-T; Chan, K-W; Ying, D; Wang, Y; Shen, J J; Yang, J; Lau, Y L

    2015-12-01

    Familial multiple intestinal atresias is an autosomal recessive disease with or without combined immunodeficiency. In the last year, several reports have described mutations in the gene TTC7A as causal to the disease in different populations. However, exact correlation between different genotypes and various phenotypes are not clear. In this study, we report identification of novel compound heterozygous mutations in TTC7A gene in a Malay girl with familial multiple intestinal atresias and severe combined immunodeficiency (MIA-SCID) by whole exome sequencing. We found two mutations in TTC7A: one that destroyed a putative splicing acceptor at the junction of intron 17/exon 18 and one that introduced a stop codon that would truncate the last two amino acids of the encoded protein. Reviewing the recent reports on TTC7A mutations reveals correlation between the position and nature of the mutations with patient survival and clinical manifestations. Examination of public databases also suggests carrier status for healthy individuals, making a case for population screening on this gene, especially in populations with suspected frequent founder mutations.

  14. Compound heterozygous FXN mutations and clinical outcome in friedreich ataxia.

    PubMed

    Galea, Charles A; Huq, Aamira; Lockhart, Paul J; Tai, Geneieve; Corben, Louise A; Yiu, Eppie M; Gurrin, Lyle C; Lynch, David R; Gelbard, Sarah; Durr, Alexandra; Pousset, Francoise; Parkinson, Michael; Labrum, Robyn; Giunti, Paola; Perlman, Susan L; Delatycki, Martin B; Evans-Galea, Marguerite V

    2016-03-01

    Friedreich ataxia (FRDA) is an inherited neurodegenerative disease characterized by ataxia and cardiomyopathy. Homozygous GAA trinucleotide repeat expansions in the first intron of FXN occur in 96% of affected individuals and reduce frataxin expression. Remaining individuals are compound heterozygous for a GAA expansion and a FXN point/insertion/deletion mutation. We examined disease-causing mutations and the impact on frataxin structure/function and clinical outcome in FRDA. We compared clinical information from 111 compound heterozygotes and 131 individuals with homozygous expansions. Frataxin mutations were examined using structural modeling, stability analyses and systematic literature review, and categorized into four groups: (1) homozygous expansions, and three compound heterozygote groups; (2) null (no frataxin produced); (3) moderate/strong impact; and (4) minimal impact. Mean age of onset and the presence of cardiomyopathy and diabetes mellitus were compared using regression analyses. Mutations in the hydrophobic core of frataxin affected stability whereas surface residue mutations affected interactions with iron sulfur cluster assembly and heme biosynthetic proteins. The null group of compound heterozygotes had significantly earlier age of onset and increased diabetes mellitus, compared to the homozygous expansion group. There were no significant differences in mean age of onset between homozygotes and the minimal and moderate/strong impact groups. In compound heterozygotes, expression of partially functional mutant frataxin delays age of onset and reduces diabetes mellitus, compared to those with no frataxin expression from the non-expanded allele. This integrated analysis of categorized frataxin mutations and their correlation with clinical outcome provide a definitive resource for investigating disease pathogenesis in FRDA. © 2016 American Neurological Association.

  15. Heterozygous ABCB4 mutations in children with cholestatic liver disease.

    PubMed

    Gordo-Gilart, Raquel; Hierro, Loreto; Andueza, Sara; Muñoz-Bartolo, Gema; López, Carola; Díaz, Carmen; Jara, Paloma; Álvarez, Luis

    2016-02-01

    Monoallelic defects in ABCB4, which encodes the canalicular floppase for phosphatidylcholine MDR3, have been encountered in association with a variety of hepatobiliary disorders, particularly in adult subjects. In this study, we examined the presence of heterozygous ABCB4 variants in a cohort of children with chronic cholestasis and assessed the pathogenicity of the missense changes identified. Sixty-seven children with chronic liver dysfunction were studied by the sequencing of ABCB4 and multiplex ligation-dependent probe amplification analysis. The molecular defects arising from missense variants were analysed in MDCK-II and AD-293 cells. Defects in a single allele of ABCB4 were identified in nine subjects. They included one small insertion (p.I1242Nfs), one nonsense mutation (p.R144X) and six missense changes (p.T175A, p.G228R, p.A250T, p.S320F, p.P352L and p.A934T). In four children, these defects in ABCB4 co-existed with various medical conditions. In vitro phenotyping of the six missense variants revealed that four (T175A, G228R, S320F and A934T) led to reduced MDR3 protein levels. Two mutations (G228R and A934T) resulted in trapping of the protein in the endoplasmic reticulum. Phosphatidylcholine efflux activity was decreased to 56-18% of reference levels for MDR3 mutants T175A, A250T and S320F. The G228R, P352L and A934T mutants were found to be non-functional. These results illustrate the varying effects of ABCB4 missense mutations and suggest that even a modest reduction in MDR3 activity may contribute or predispose to the onset of cholestatic liver disease in the paediatric age. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Dietary factors and truncating APC mutations in sporadic colorectal adenomas.

    PubMed

    Diergaarde, Brenda; Tiemersma, Edine W; Braam, Hanneke; van Muijen, Goos N P; Nagengast, Fokko M; Kok, Frans J; Kampman, Ellen

    2005-01-01

    Inactivating mutations in APC are thought to be early, initiating events in colorectal carcinogenesis. To gain insight into the relationship between diet and inactivating APC mutations, we evaluated associations between dietary factors and the occurrence of these mutations in a Dutch case-control study of sporadic colorectal adenomas (278 cases; 414 polyp-free controls). Direct-sequencing was used to screen adenomas for mutations in the mutation cluster region of APC; truncating mutations were detected in 161 (58%) of the adenomas. Red meat consumption was significantly differently related to polyps with truncating APC mutation (APC(+) polyps) compared to polyps without truncating APC mutation (APC(-) polyps) (highest vs. lowest tertile, odds ratio [OR] = 0.5, 95% confidence interval [CI] = 0.3-1.0). High intake of red meat and fat seemed to increase the risk of APC(-) polyps only (APC(+) vs. controls: red meat, OR = 1.0, 95% CI = 0.6-1.6; fat, OR = 1.1, 95% CI = 0.6-1.9; APC(-) vs. controls: red meat, OR = 1.8, 95% CI = 1.0-3.1; fat, OR = 1.9, 95% CI = 1.0-3.7). Intake of carbohydrates was inversely associated with both polyp groups, most noticeably with APC(-) polyps. Most other evaluated dietary factors were not distinctively associated with a specific APC status. None of the dietary factors was specifically associated with a particular type of truncating APC mutation. Our data suggest that red meat and fat may increase the risk of APC(-) polyps in particular, whereas carbohydrates may especially decrease the risk of APC(-) polyps. However, most examined dietary factors do not appear to be specifically associated with the occurrence of truncating APC mutations in colorectal adenomas but seem to affect both pathways equally.

  17. Compound heterozygosity of two novel truncation mutations in RP1 causing autosomal recessive retinitis pigmentosa.

    PubMed

    Chen, Li Jia; Lai, Timothy Y Y; Tam, Pancy O S; Chiang, Sylvia W Y; Zhang, Xin; Lam, Shi; Lai, Ricky Y K; Lam, Dennis S C; Pang, Chi Pui

    2010-04-01

    Purpose. To evaluate the phenotypic effects of two novel frameshift mutations in the RP1 gene in a Chinese pedigree of autosomal recessive retinitis pigmentosa (ARRP). Methods. Family members of a proband with ARRP were screened for RP1, RHO, NR2E3, and NRL mutations by direct sequencing. Detected RP1 mutations were genotyped in 225 control subjects. Since one family member with the RP1 deletion mutation in exon 2 was found to have age-related macular degeneration (AMD) but not RP, exons 2 and 3 of RP1 were screened in 120 patients with exudative AMD. Major AMD-associated SNPs in the HTRA1 and CFH genes were also investigated. Results. Two novel frameshift mutations in RP1, c.5_6delGT and c.4941_4942insT, were identified in the pedigree. They were absent in 225 control subjects. Family members who were compound heterozygous for the nonsense mutations had early-onset and severe RP, whereas those with only one mutation did not have RP. No mutations in RHO, NR2E3, and NRL were identified in the pedigree. Subject I:2 with AMD carried both at-risk genotypes at HTRA1 rs11200638 and CFH rs800292. No mutation in RP1 exons 2 and 3 was identified in 120 AMD patients. Conclusions. This report is the first to associate ARRP with compound heterozygous nonsense mutations in RP1. Identification of the nonsense-mediated mRNA decay (NMD)-sensitive mutation c.5_6delGT provided further genetic evidence that haploinsufficiency of RP1 is not responsible for RP. The authors propose four classes of truncation mutations in the RP1 gene with different effects on the etiology of RP.

  18. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  19. Heterozygous mutations of the sodium chloride cotransporter in Chinese children: prevalence and association with blood pressure.

    PubMed

    Hsu, Yu-Juei; Yang, Sung-Sen; Chu, Nain-Feng; Sytwu, Huey-Kang; Cheng, Chih-Jen; Lin, Shih-Hua

    2009-04-01

    Gitelman's syndrome (GS), which is caused by homozygous or compound heterozygous mutations of the thiazide-sensitive sodium chloride cotransporter (NCC), usually manifests in children and is associated with low blood pressure. However, the prevalence of heterozygous NCC mutations and their association with blood pressure in children have not yet been studied. Five hundred unrelated children from the Taipei Children Heart Study were enrolled. Genomic DNA was isolated from peripheral blood and the SLC12A3 gene was amplified by polymerase chain reaction (PCR). The 15 NCC mutations previously identified in Chinese patients with GS were evaluated using restriction fragment length polymorphism (RFLP) analysis. Blood pressure, biochemistry and urine pH were measured. The allelic frequency of heterozygous NCC mutations and their association with low blood pressure were also investigated. RFLP analysis for the 15 NCC mutations revealed heterozygous T60M in 1 child, T163M in 1, S283Y in 4, R642C in 2, W844X in 2, R928C in 9 and R959frameshift in 10 children. The overall incidence of positive heterozygous NCC mutations was approximately 2.9%. There were no significant differences in systolic or diastolic blood pressure, biochemical profiles or urine pH between children with heterozygous NCC mutations (n = 29) and non-affected controls (n = 471), except for slightly higher fasting plasma glucose concentrations in NCC-heterozygous children (91 +/- 2.3 versus 88 +/- 0.4 mg/dL, P < 0.05). Examination among the different NCC mutations showed that these children also had comparable blood pressures. We found a relatively high prevalence of heterozygous NCC mutations in Chinese children, suggesting that GS may not be rare in this population. Heterozygous NCC mutations were not associated with lower blood pressure in these Chinese children.

  20. Frequent truncating mutations of STAG2 in bladder cancer.

    PubMed

    Solomon, David A; Kim, Jung-Sik; Bondaruk, Jolanta; Shariat, Shahrokh F; Wang, Zeng-Feng; Elkahloun, Abdel G; Ozawa, Tomoko; Gerard, Julia; Zhuang, Dazhong; Zhang, Shizhen; Navai, Neema; Siefker-Radtke, Arlene; Phillips, Joanna J; Robinson, Brian D; Rubin, Mark A; Volkmer, Björn; Hautmann, Richard; Küfer, Rainer; Hogendoorn, Pancras C W; Netto, George; Theodorescu, Dan; James, C David; Czerniak, Bogdan; Miettinen, Markku; Waldman, Todd

    2013-12-01

    Here we report the discovery of truncating mutations of the gene encoding the cohesin subunit STAG2, which regulates sister chromatid cohesion and segregation, in 36% of papillary non-invasive urothelial carcinomas and 16% of invasive urothelial carcinomas of the bladder. Our studies suggest that STAG2 has a role in controlling chromosome number but not the proliferation of bladder cancer cells. These findings identify STAG2 as one of the most commonly mutated genes in bladder cancer.

  1. Frequent truncating mutations of STAG2 in bladder cancer

    PubMed Central

    Solomon, David A.; Kim, Jung-Sik; Bondaruk, Jolanta; Shariat, Shahrokh F.; Wang, Zeng-Feng; Elkahloun, Abdel G.; Ozawa, Tomoko; Gerard, Julia; Zhuang, DaZhong; Zhang, Shizhen; Navai, Neema; Siefker-Radtker, Arleen; Phillips, Joanna J.; Robinson, Brian D.; Rubin, Mark A.; Volkmer, Björn; Hautmann, Richard; Küfer, Rainer; Hogendoorn, Pancras C. W.; Netto, George; Theodorescu, Dan; James, C. David; Czerniak, Bogdan; Miettinen, Markku; Waldman, Todd

    2013-01-01

    Here we report the discovery of truncating mutations of the gene encoding the cohesin subunit STAG2, which regulates sister chromatid cohesion and segregation, in 36% of papillary non-invasive urothelial carcinomas and 16% of invasive urothelial carcinomas of the bladder. Our studies suggest that STAG2 plays a role in controlling chromosome number but not proliferation of bladder cancer cells. These findings identify STAG2 as among the most commonly mutated genes in bladder cancer discovered to date. PMID:24121789

  2. Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes.

    PubMed

    Kaustio, Meri; Haapaniemi, Emma; Göös, Helka; Hautala, Timo; Park, Giljun; Syrjänen, Jaana; Einarsdottir, Elisabet; Sahu, Biswajyoti; Kilpinen, Sanna; Rounioja, Samuli; Fogarty, Christopher L; Glumoff, Virpi; Kulmala, Petri; Katayama, Shintaro; Tamene, Fitsum; Trotta, Luca; Morgunova, Ekaterina; Krjutškov, Kaarel; Nurmi, Katariina; Eklund, Kari; Lagerstedt, Anssi; Helminen, Merja; Martelius, Timi; Mustjoki, Satu; Taipale, Jussi; Saarela, Janna; Kere, Juha; Varjosalo, Markku; Seppänen, Mikko

    2017-09-01

    The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All

  3. Novel heterozygous mutation in the extracellular domain of FGFR1 associated with Hartsfield syndrome

    PubMed Central

    Takagi, Masaki; Miyoshi, Tatsuya; Nagashima, Yuka; Shibata, Nao; Yagi, Hiroko; Fukuzawa, Ryuji; Hasegawa, Tomonobu

    2016-01-01

    Heterozygous kinase domain mutations or homozygous extracellular domain mutations in FGFR1 have been reported to cause Hartsfield syndrome (HS), which is characterized by the triad of holoprosencephaly, ectrodactyly and cleft lip/palate. To date, more than 200 mutations in FGFR1 have been described; however, only 10 HS-associated mutations have been reported thus far. We describe a case of typical HS with hypogonadotropic hypogonadism (HH) harboring a novel heterozygous mutation, p.His253Pro, in the extracellular domain of FGFR1. This is the first report of an HS-associated heterozygous mutation located in the extracellular domain of FGFR1, thus expanding our understanding of the phenotypic features and further developmental course associated with FGFR1 mutations. PMID:27790375

  4. Homozygous truncating PTPRF mutation causes athelia.

    PubMed

    Borck, Guntram; de Vries, Liat; Wu, Hsin-Jung; Smirin-Yosef, Pola; Nürnberg, Gudrun; Lagovsky, Irina; Ishida, Luis Henrique; Thierry, Patrick; Wieczorek, Dagmar; Nürnberg, Peter; Foley, John; Kubisch, Christian; Basel-Vanagaite, Lina

    2014-08-01

    Athelia is a very rare entity that is defined by the absence of the nipple-areola complex. It can affect either sex and is mostly part of syndromes including other congenital or ectodermal anomalies, such as limb-mammary syndrome, scalp-ear-nipple syndrome, or ectodermal dysplasias. Here, we report on three children from two branches of an extended consanguineous Israeli Arab family, a girl and two boys, who presented with a spectrum of nipple anomalies ranging from unilateral hypothelia to bilateral athelia but no other consistently associated anomalies except a characteristic eyebrow shape. Using homozygosity mapping after single nucleotide polymorphism (SNP) array genotyping and candidate gene sequencing we identified a homozygous frameshift mutation in PTPRF as the likely cause of nipple anomalies in this family. PTPRF encodes a receptor-type protein phosphatase that localizes to adherens junctions and may be involved in the regulation of epithelial cell-cell contacts, peptide growth factor signaling, and the canonical Wnt pathway. Together with previous reports on female mutant Ptprf mice, which have a lactation defect, and disruption of one allele of PTPRF by a balanced translocation in a woman with amastia, our results indicate a key role for PTPRF in the development of the nipple-areola region.

  5. Estimation of the upper limit of the mutation rate and mean heterozygous effect of deleterious mutations.

    PubMed

    Caballero, A

    2006-12-01

    Deng et al. have recently proposed that estimates of an upper limit to the rate of spontaneous mutations and their average heterozygous effect can be obtained from the mean and variance of a given fitness trait in naturally segregating populations, provided that allele frequencies are maintained at the balance between mutation and selection. Using simulations they show that this estimation method generally has little bias and is very robust to violations of the mutation-selection balance assumption. Here I show that the particular parameters and models used in these simulations generally reduce the amount of bias that can occur with this estimation method. In particular, the assumption of a large mutation rate in the simulations always implies a low bias of estimates. In addition, the specific model of overdominance used to check the violation of the mutation-selection balance assumption is such that there is not a dramatic decline in mean fitness from overdominant mutations, again implying a low bias of estimates. The assumption of lower mutation rates and/or other models of balancing selection may imply considerably larger biases of the estimates, making the reliability of the proposed method highly questionable.

  6. Classical phenotype of Laron syndrome in a girl with a heterozygous mutation and heterozygous polymorphism of the growth hormone receptor gene.

    PubMed

    Shevah, Orit; Galli-Tsinopoulou, Assimina; Rubinstein, Menachem; Nousia-Arvanitakis, Sanda; Laron, Zvi

    2004-03-01

    We describe here a 19 month-old girl with classical Laron syndrome (LS). Molecular analysis of the GH receptor gene in the patient and her parents was performed. The patient was found to be heterozygous for a mutation in exon 4 (R43X) and heterozygous for a polymorphism in exon 6 (Gly168Gly). Her mother was also heterozygous for R43X but homozygous for the polymorphism. In the father, a heterozygous polymorphism was found. Contrary to previous assumptions that only homozygous patients express the typical phenotype, this patient shows all the classical features of LS, despite being a heterozygote for a pathological defect.

  7. Recurrent venous thromboembolism in a patient with heterozygous factor v leiden mutation.

    PubMed

    White, C Whitney; Thomason, Angela R; Prince, Valerie

    2014-09-01

    To report a patient case identifying risk for recurrent venous thromboembolism (VTE) associated with heterozygous Factor V Leiden mutation. A 54-year-old Caucasian male was diagnosed with heterozygous Factor V Leiden mutation in 2008 after experiencing a deep vein thrombosis (DVT) and bilateral pulmonary embolism. The patient was treated appropriately and started on anticoagulation therapy with warfarin through an anticoagulation management clinic. After approximately 17 months of warfarin therapy without incident, warfarin was discontinued. Within 2 months after discontinuation of anticoagulation therapy, the patient experienced his second DVT and left pulmonary artery embolus. The risk of recurrent venous thromboembolism (VTE) in patients with heterozygous Factor V Leiden mutation is documented as an approximate 1.4-fold increase compared to patients without thrombophilia. However, the risk increases dramatically when nonreversible (age) or reversible risk factors (obesity, smoking, and long air flights) are present in this population. Based on recent literature, heterozygous Factor V Leiden mutation exponentially increases the risk of recurrent VTE, especially in the presence of other risk factors. Health care providers should complete a comprehensive review of the patients' other risk factors when deciding on duration of anticoagulation therapy for patients with positive heterozygous Factor V Leiden mutation.

  8. A compound heterozygous missense mutation and a large deletion in the KCTD7 gene presenting as an opsoclonus-myoclonus ataxia-like syndrome.

    PubMed

    Blumkin, Lubov; Kivity, Sara; Lev, Dorit; Cohen, Sarit; Shomrat, Ruth; Lerman-Sagie, Tally; Leshinsky-Silver, Esther

    2012-12-01

    Mutations in the potassium channel-related gene KCTD7 were described so far in a single family with progressive myoclonus epilepsy. We describe a unique phenotype: acute onset of myoclonus and ataxia, associated with abnormal opsoclonus-like eye movements; improvement of clinical symptoms under steroid treatment; and appearance of epileptic activity on EEG 2 years later without overt seizures. After excluding possible genetic causes, whole-genome exome sequencing was performed in order to identify the causative gene. One heterozygous missense mutation (R84W) was detected by exome sequencing and a large heterozygous deletion of exons 3 and 4 by MLPA analysis. The father is heterozygous for the R84W mutation and the mother is heterozygous for the exon 3+4 deletion. The mutation affects a highly conserved segment of the predicted protein, changing a basic amino acid into neutral. The large deletion probably results in a truncated protein. The different phenotype broadens the spectrum of KCTD7-related diseases. Therefore, patients diagnosed as having opsoclonus-myoclonus with an atypical course should be evaluated for KCTD7 mutations.

  9. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis

    PubMed Central

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-01-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  10. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis.

    PubMed

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-10-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2.

    PubMed

    Yoshizawa-Ogasawara, Atsuko; Abe, Kiyomi; Ogikubo, Sayaka; Narumi, Satoshi; Hasegawa, Tomonobu; Satoh, Mari

    2016-03-01

    Here, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (DUOX2) occurring along with concurrent missense mutations in thyroid peroxidase (TPO), leading to transient congenital hypothyroidism (CH). Three Japanese boys with nonconsanguineous parents were diagnosed with CH during their neonatal screenings. All patients presented with moderate-to-severe neonatal hypothyroidism and were diagnosed with transient CH after re-evaluation of thyroid function. Two siblings were compound heterozygous for p.[R1110Q]+[Y1180X] in DUOX2; one of them was also heterozygous for p.[R361L] in TPO. The third patient was compound heterozygous for p.[L1160del]+[R1334W] in DUOX2 and heterozygous for p.[P883S] in TPO. This is the first report of a de novo L1160del mutation affecting the DUOX2 gene and of the novel mutations Y1180X in DUOX2 and R361L in TPO. R1110Q and L1160del were found to reduce H2O2 production (5%-9%, p<0.01), while Y1180X, which introduces a premature stop codon, did not confer detectable H2O2 production (-0.7%±0.6%, p<0.01). Moreover, R1334W, a missense mutation possibly affecting electron transfer, led to reduced H2O2 production (24%±0.9%, p<0.01) in vitro, and R1110Q and R1334W resulted in reduced protein expression. Y1180X was detected in a 120 kDa truncated form, whereas L1160del expression was maintained. Further, R361L, a novel missense mutation in TPO, caused partial reduction in peroxidase activity (20.6%±0.8%, p=0.01), whereas P883S, a missense variant, increased it (133.7%±2.8%, p=0.02). The protein expression levels in the case of R361L and P883S were maintained. In conclusion, we provide clinical and in vitro demonstrations of different functional defects and phenotypic heterogeneity in the same thyroid hormonogenesis pathway.

  12. Aromatase deficiency: a novel compound heterozygous mutation identified in a Chinese girl with severe phenotype and obvious maternal virilization.

    PubMed

    Zhu, Wen-Jiao; Cheng, Tong; Zhu, Hui; Han, Bing; Fan, Meng-Xia; Gu, Ting; Zhao, Shuang-Xia; Liu, Yang; Cheng, Kai-Xiang; Song, Huai-Dong; Qiao, Jie

    2016-09-15

    Aromatase deficiency is a rare autosomal recessive disorder that is caused by an impairment of androgen conversion to estrogens. Affected 46, XX individuals generally present with virilization of external genitalia at birth and mutations in CYP19A1 gene. This study described the clinical features and molecular basis of a Chinese 46, XX girl born with ambiguous genitalia and investigated the functional alteration of two novel mutations of the CYP19A1 gene. Obvious prepartum virilization and remarkably elevated testosterone were observed in the mother, who was initially suspected to have a testosterone-producing ovarian tumor. Clinical phenotypes and hormone profiles of the patient and her mother were investigated. Genotyping analyses of the CYP19A1 gene were performed in the patient and her parents. Functional impairment of the mutations was explored using three-dimensional computer model and mutagenesises in vitro transfection assays. A compound heterozygous mutation of the CYP19A1 gene was revealed in the patient, with a G deletion in nucleotide 264 of exon 3 in one allele and a 23-bp insertion in exon 9 in another allele; both mutations resulted in reading frame-shifts that led to truncated proteins of 87 and 360 amino acids, respectively. Molecular modeling analysis suggested that the two renascent truncated proteins lacked crucial amino acids that were involved in substrate access and catalysis as well as heme-binding region. Functional studies in transfected HEK-293T cells exhibited a nearly complete abolishment of enzyme activity, which may underlie the phenotype and hormone profile. Two novel CYP19A1 mutations were identified in a Chinese girl born with ambiguous genitalia and severe maternal virilization during pregnancy. Maternal virilization should prompt consideration of aromatase deficiency, preventing unnecessary interventions in pregnancy. This study broadens the spectrum of phenotype and genetic mutations of this rare disorder. Copyright © 2016

  13. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    PubMed

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-02-24

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (that is, in association with Hirschsprung disease) and heterozygous mutations in isolated Hirschsprung disease. Screening of a WS2 cohort led to the identification of an overall of 6 heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5-6% of WS2. This article is protected by copyright. All rights reserved.

  14. Compound Heterozygous Mutation of Rag1 Leading to Omenn Syndrome

    PubMed Central

    Matthews, Adam G. W.; Briggs, Christine E.; Yamanaka, Keiichi; Mooster, Jana L.; Bonilla, Francisco A.; Oettinger, Marjorie A.; Butte, Manish J.

    2015-01-01

    Omenn syndrome is a primary immunodeficiency disorder, featuring susceptibility to infections and autoreactive T cells and resulting from defective genomic rearrangement of genes for the T cell and B cell receptors. The most frequent etiologies are hypomorphic mutations in “non-core” regions of the Rag1 or Rag2 genes, the protein products of which are critical members of the cellular apparatus for V(D)J recombination. In this report, we describe an infant with Omenn syndrome with a previously unreported termination mutation (p.R142*) in Rag1 on one allele and a partially characterized substitution mutation (p.V779M) in a “core” region of the other Rag1 allele. Using a cellular recombination assay, we found that while the p.R142* mutation completely abolished V(D)J recombination activity, the p.V779M mutation conferred a severe, but not total, loss of V(D)J recombination activity. The recombination defect of the V779 mutant was not due to overall misfolding of Rag1, however, as this mutant supported wild-type levels of V(D)J cleavage. These findings provide insight into the role of this poorly understood region of Rag1 and support the role of Rag1 in a post-cleavage stage of recombination. PMID:25849362

  15. XPA gene mutations resulting in subtle truncation of protein in xeroderma pigmentosum group A patients with mild skin symptoms.

    PubMed

    Takahashi, Yoshito; Endo, Yoko; Sugiyama, Yoshinori; Inoue, Shintaro; Iijima, Masahiro; Tomita, Yasushi; Kuru, Satoshi; Takigawa, Masahiro; Moriwaki, Shinichi

    2010-10-01

    Comparisons of the clinical manifestations with gene mutations in patients with xeroderma pigmentosum group A (XPA) have suggested that those with mutations closer to the C-terminal coding region of the XPA gene have milder neurological and cutaneous symptoms. Here we report on four middle-aged, newly diagnosed Japanese XPA patients whose unusually mild symptoms, especially those affecting the skin, implicate a reduced association of a subtle defect in the C-terminus of XPA protein with skin lesions. All patients had a heterozygous G → C transversion at the splice acceptor site of XPA intron 3. We identified previously unreported heterozygous mutations in exon 6: a single-base insertion (690insT) in one patient and a four-base insertion (779insTT and 780insTT) in the other patients. These mutations led to the frameshift that created new premature termination codons, resulting in the production of truncated XPA proteins. They were longer than any previously reported truncated XPA protein, suggesting that the minimal cutaneous symptoms in these patients are due to a higher residual level of XPA protein activity and that the subtle defect in the C-terminus of XPA protein is more closely related to neurological impairment than to cutaneous abnormalities.

  16. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations.

    PubMed

    Işık, Emregül; Haliloglu, Belma; van Doorn, Jaap; Demirbilek, Hüseyin; Scheltinga, Sitha A; Losekoot, Monique; Wit, Jan M

    2017-06-01

    Acid-labile subunit (ALS) deficiency (ACLSD), caused by homozygous or compound heterozygous IGFALS mutations, is associated with moderate short stature, delayed puberty, low serum IGF-I and ALS and extremely low serum IGFBP-3. Its effect on birth weight, head circumference, bone mineral density (BMD), serum IGF-II and IGFBP-2 is uncertain, as well as the phenotype of heterozygous carriers of IGFALS mutations (partial ACLSD). From all available members of five Turkish families, carrying three mutations in exon 2 of IGFALS (c.1462G > A, p.Asp488Asn (families A, B, E); c.251A > G, p.Asn84Ser (families C and E) and c.1477del, p.Arg493fs (family D)), clinical, laboratory and BMD data were collected. Auxological and biochemical findings were expressed as SDS for age and gender. Ternary complex formation in serum was investigated by size-exclusion chromatography. BMD using DXA bone densitometry was adjusted for height and age (Ha-BMD z-score). In ACLSD (n = 24), mean ± s.d. height SDS (-2.7 ± 1.2), head circumference SDS (-2.3 ± 0.5) and body mass index (BMI) (-0.6 ± 1.0 SDS) were lower than those in partial ACLSD (n = 26, P ≤ 0.01) and birth weight SDS (n = 7) tended to be lower (-2.2 ± 1.1 vs -0.6 ± 0.3 in partial ACLSD (P = 0.07)). Serum IGF-I was -3.7 ± 1.4 vs -1.0 ± 1.0, IGF-II: -5.6 ± 0.7 vs -1.3 ± 0.7, ALS: <-4.4 ± 1.2 vs -2.1 ± 0.9 and IGFBP-3: -9.0 ± 1.9 vs -1.6 ± 0.8 SDS respectively (P < 0.001). Ha-BMD z-score was similar and normal in both groups. To the known phenotype of ACLSD (i.e. short stature, reduced serum levels of IGF-I and ALS, extremely low serum IGFBP-3 and disturbed ternary complex formation), we add reduced birth weight, head circumference and serum IGF-II. © 2017 European Society of Endocrinology.

  17. Cerebral primitive neuroectodermal tumor in an adult with a heterozygous MSH2 mutation.

    PubMed

    Jeans, Alexander F; Frayling, Ian; Jasani, Bharat; Side, Lucy; Blesing, Claire; Ansorge, Olaf

    2009-05-01

    A 37-year-old woman presented with a supratentorial cerebral mass, which was diagnosed histologically as a primitive neuroectodermal tumor. She had been treated for rectal adenocarcinoma 7 years previously. A family history revealed a young-onset colorectal carcinoma in the patient's father. Immunohistochemical analysis for DNA mismatch repair proteins, germline mutation analysis of MSH2. Lynch syndrome with a heterozygous germline mutation in MSH2. Debulking of the cerebral tumor, craniospinal axis radiotherapy, and genetic counseling of family.

  18. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy.

    PubMed

    Feigenbaum, V; Lombard-Platet, G; Guidoux, S; Sarde, C O; Mandel, J L; Aubourg, P

    1996-06-01

    X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired beta-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified.

  19. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy

    SciTech Connect

    Feigenbaum, V.; Guidoux, S.; Aubourg, P.

    1996-06-01

    X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired {beta}-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified. 35 refs., 2 figs., 2 tabs.

  20. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy.

    PubMed Central

    Feigenbaum, V.; Lombard-Platet, G.; Guidoux, S.; Sarde, C. O.; Mandel, J. L.; Aubourg, P.

    1996-01-01

    X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired beta-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified. Images Figure 1 Figure 2 PMID:8651290

  1. The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers.

    PubMed

    Laitman, Yael; Boker-Keinan, Lital; Berkenstadt, Michal; Liphsitz, Irena; Weissglas-Volkov, Daphna; Ries-Levavi, Liat; Sarouk, Ifat; Pras, Elon; Friedman, Eitan

    2016-03-01

    Cancer risks in heterozygous mutation carriers of the ATM, BLM, and FANCC genes are controversial. To shed light on this issue, cancer rates were evaluated by cross referencing asymptomatic Israeli heterozygous mutation carriers in the ATM, BLM, and FANCC genes with cancer diagnoses registered at the Israeli National Cancer Registry (INCR). Comparison of observed to expected Standardized Incidence Rates (SIR) was performed. Overall, 474 individuals participated in the study: 378 females; 25 Arab and 31 Jewish ATM carriers, 152 BLM carriers, and 170 FANCC carriers (all Ashkenazim). Age range at genotyping was 19-53 years (mean + SD 30.6 + 5 years). In addition, 96 males were included; 5, 34, and 57 ATM, BLM, and FANCC mutation carriers, respectively. Over 5-16 years from genotyping (4721 person/years), 15 new cancers were diagnosed in mutation carriers: 5 breast, 4 cervical, 3 melanomas, and one each bone sarcoma, pancreatic, and colorectal cancer. No single cancer diagnosis was more prevalent then expected in all groups combined or per gene analyzed. Specifically breast cancer SIR was 0.02-0.77. We conclude that Israeli ATM, BLM, and FANCC heterozygous mutation carriers are not at an increased risk for developing cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Detection of a novel mutation Y468X in exon 10 of the low-density lipoprotein receptor gene causing heterozygous familial hypercholesterolemia among French Canadians

    SciTech Connect

    Couture, P.; Simard, J.; Moorjani, S.

    1994-09-01

    Familial hypercholesterolemia (FH) is caused by mutations in the low-density lipoprotein (LDL) receptor gene and characterized by raised plasma LDL-cholesterol (C) and premature coronary heart disease. FH has higher frequency among French Canadians (FC) in northeastern Quebec than in most other populations, 1:154 vs. 1:500. In FC, five mutations account for all the mutant alleles in homozygous FH and 81% in heterozygous FH; thus 19% are uncharacterized at the molecular level. We investigated the possibility of additional mutations(s), and direct sequencing of asymmetric PCR fragments showed a novel mutation (468 stop-codon) in the heterozygous form in exon 10 of the LDL receptor gene. This mutation results from cytosine to guanine transversion, converting codon 468 (TAC) encoding tyrosine into TAG stop-codon (Y468X). This nonsense mutation will result in a truncated protein shortened by 371 amino acids which will be rapidly degraded. However, we did not ascertain the functional aspects. We rather assessed its effects on the extent of elevation of LDL-C in heterozygous FH children. The Y468X mutation resulted in raised LDL-C levels which were comparable to subjects with a non-functional `null` allele due to deletion of the promoter region and exon 1 (237{plus_minus}49 vs. 248 {plus_minus}41 mg/dl; mean{plus_minus}SD, p<0.05). The relative frequency of the Y468X mutation in a cohort of 343 children suspected for FH is 4.1% and it ranks number 4 in term of its prevalence. High frequency of FH among FC is attributed to a founder effect due to a high prevalence of one mutation; it is suggested that this novel mutation with low prevalence may be of later entry in this population.

  3. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue.

    PubMed

    Wijnker, Paul J M; Friedrich, Felix W; Dutsch, Alexander; Reischmann, Silke; Eder, Alexandra; Mannhardt, Ingra; Mearini, Giulia; Eschenhagen, Thomas; van der Velden, Jolanda; Carrier, Lucie

    2016-08-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein-C (cMyBP-C). We compared the pathomechanisms of a truncating mutation (c.2373_2374insG) and a missense mutation (c.1591G>C) in MYBPC3 in engineered heart tissue (EHT). EHTs enable to study the direct effects of mutants without interference of secondary disease-related changes. EHTs were generated from Mybpc3-targeted knock-out (KO) and wild-type (WT) mouse cardiac cells. MYBPC3 WT and mutants were expressed in KO EHTs via adeno-associated virus. KO EHTs displayed higher maximal force and sensitivity to external [Ca(2+)] than WT EHTs. Expression of WT-Mybpc3 at MOI-100 resulted in ~73% cMyBP-C level but did not prevent the KO phenotype, whereas MOI-300 resulted in ≥95% cMyBP-C level and prevented the KO phenotype. Expression of the truncating or missense mutation (MOI-300) or their combination with WT (MOI-150 each), mimicking the homozygous or heterozygous disease state, respectively, failed to restore force to WT level. Immunofluorescence analysis revealed correct incorporation of WT and missense, but not of truncated cMyBP-C in the sarcomere. In conclusion, this study provides evidence in KO EHTs that i) haploinsufficiency affects EHT contractile function if WT cMyBP-C protein levels are ≤73%, ii) missense or truncating mutations, but not WT do not fully restore the disease phenotype and have different pathogenic mechanisms, e.g. sarcomere poisoning for the missense mutation, iii) the direct impact of (newly identified) MYBPC3 gene variants can be evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing.

    PubMed

    Wang, Hui; Chattopadhyay, Abanti; Li, Zhe; Daines, Bryce; Li, Yumei; Gao, Chunxu; Gibbs, Richard; Zhang, Kun; Chen, Rui

    2010-07-01

    One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac(5) or sens(E2) mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.

  5. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity

    PubMed Central

    Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038

  6. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    PubMed

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  7. Neonatal Dubin-Johnson syndrome: novel compound heterozygous mutation in the ABCC2 gene.

    PubMed

    Okada, Hitoshi; Kusaka, Takashi; Fuke, Noriko; Kunikata, Jun; Kondo, Sonoko; Iwase, Takashi; Nan, Wang; Hirota, Takeshi; Ieiri, Ichiro; Itoh, Susumu

    2014-10-01

    Dubin-Johnson syndrome (DJS) is an autosomal recessive inherited disorder characterized by conjugated hyperbilirubinemia. Neonatal-onset DJS is rare. It is caused by dysfunction of adenosine triphosphate-binding cassette, sub-family C, member 2 (ABCC2). We found a novel compound heterozygous mutation of DJS-related gene: W709R (T2145C): a missense mutation in exon 17, and R768W (C2302T), a missense mutation in exon 18. Serum diglucuronosyl bilirubin/monoglucuronosyl bilirubin ratio was high. ABCC2 may excrete diglucuronosyl bilirubin preferentially over monoglucuronosyl bilirubin. © 2014 Japan Pediatric Society.

  8. A novel compound heterozygous TACI mutation in an autosomal recessive common variable immunodeficiency (CVID) family.

    PubMed

    Lougaris, V; Gallizzi, R; Vitali, M; Baronio, M; Salpietro, A; Bergbreiter, A; Salzer, U; Badolato, R; Plebani, A

    2012-08-01

    Common variable immunodeficiency (CVID) is a primary immune disorder characterized by low immunoglobulin serum levels and increased susceptibility to infections. Underlying genetic causes are only known in less than 15% of patients and encompass mutations in the genes encoding for ICOS, TACI, BAFF-R, CD19, CD20, CD81 and MSH5. TACI is the most frequently mutated gene among CVID patients. We report on two pediatric Italian male siblings with hypogammaglobulinemia and recurrent respiratory and gastrointestinal infections in association with a novel compound heterozygous TACI mutation. Both patients carry the I87N/C104R mutation that has not been reported yet. This results in aberrant TACI expression and abrogates APRIL binding on EBV B cells. This study identifies a novel combined mutation in TNFRSF13B increasing the spectrum of TACI mutations associated with CVID. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  9. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1

    PubMed Central

    LEE, JINHO; JUNG, SUNG-CHUL; HONG, YOUNG BIN; YOO, JEONG HYUN; KOO, HEASOO; LEE, JA HYUN; HONG, HYUN DAE; KIM, SANG-BEOM; CHUNG, KI WHA; CHOI, BYUNG-OK

    2016-01-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi-dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early-onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857–1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  10. Whole Genome Sequencing Identifies Novel Compound Heterozygous Lysosomal Trafficking Regulator Gene Mutations Associated with Autosomal Recessive Chediak-Higashi Syndrome

    PubMed Central

    Jin, Yaqiong; Zhang, Li; Wang, Senfen; Chen, Feng; Gu, Yang; Hong, Enyu; Yu, Yongbo; Ni, Xin; Guo, Yongli; Shi, Tieliu; Xu, Zigang

    2017-01-01

    Chediak–Higashi syndrome (CHS) is a rare autosomal recessive disease characterized by varying degrees of oculocutaneous albinism, recurrent infections, and a mild bleeding tendency, with late neurologic dysfunction. This syndrome is molecularly characterized by pathognomonic mutations in the LYST (lysosomal trafficking regulator). Using whole genome sequencing (WGS) we attempted to identify novel mutations of CHS based on a family of CHS with atypical symptoms. The two patients demonstrated a phenotypic constellation including partial oculocutaneous albinism, frequency upper respiratory infection or a marginal intelligence, without bleeding tendency and severe immunodeficiency. WGS revealed two compound LYST mutations including a maternally inherited chr1:235969126G > A (rs80338652) and a novel paternally inherited chr1: 235915327A > AT, associated with autosomal recessive CHS. These two variants fall in the coding regions of LYST, resulting in premature truncation of LYST due to R1104X/N2535KfsX2 induced incomplete translation. Notably, the heterozygous carriers (i.e. parents) were unaffected. Our finding also reveals decreased plasma serotonin levels in patients with CHS compared with unaffected individuals for the first time. The present study contributes to improved understanding of the causes of this disease and provides new ideas for possible treatments. PMID:28145517

  11. Compound Heterozygous Mutations in the Vitamin D Receptor in a Patient With Hereditary 1,25-Dihydroxyvitamin D–Resistant Rickets With Alopecia

    PubMed Central

    Zhou, Yulin; Wang, Jining; Malloy, Peter J; Dolezel, Zdenek; Feldman, David

    2009-01-01

    Hereditary vitamin D–resistant rickets (HVDRR) is a rare recessive genetic disorder caused by mutations in the vitamin D receptor (VDR). In this study, we examined the VDR in a young girl with clinical features of HVDRR including rickets, hypophosphatemia, and elevated serum 1,25(OH)2D. The girl also had total alopecia. Two mutations were found in the VDR gene: a nonsense mutation (R30X) in the DNA-binding domain and a unique 3-bp in-frame deletion in exon 6 that deleted the codon for lysine at amino acid 246 (ΔK246). The child and her mother were both heterozygous for the 3-bp deletion, whereas the child and her father were both heterozygous for the R30X mutation. Fibroblasts from the patient were unresponsive to 1,25(OH)2D3 as shown by their failure to induce CYP24A1 gene expression, a marker of 1,25(OH)2D3 responsiveness. [3H]1,25(OH)2D3 binding and immunoblot analysis showed that the patient's cells expressed the VDRΔK246 mutant protein; however, the amount of VDRΔK246 mutant protein was significantly reduced compared with wildtype controls. In transactivation assays, the recreated VDRΔK246 mutant was unresponsive to 1,25(OH)2D3. The ΔK246 mutation abolished heterodimerization of the mutant VDR with RXRα and binding to the coactivators DRIP205 and SRC-1. However, the ΔK246 mutation did not affect the interaction of the mutant VDR with the corepressor Hairless (HR). In summary, we describe a patient with compound heterozygous mutations in the VDR that results in HVDRR with alopecia. The R30X mutation truncates the VDR, whereas the ΔK246 mutation prevents heterodimerization with RXR and disrupts coactivator interactions. PMID:19049339

  12. Compound heterozygous mutations affect protein folding and function in patients with congenital sucrase-isomaltase deficiency.

    PubMed

    Alfalah, Marwan; Keiser, Markus; Leeb, Tosso; Zimmer, Klaus-Peter; Naim, Hassan Y

    2009-03-01

    Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.

  13. Congenital Sucrase-isomaltase Deficiency: A Novel Compound Heterozygous Mutation Causing Aberrant Protein Localization.

    PubMed

    Haberman, Yael; Di Segni, Ayelet; Loberman-Nachum, Nurit; Barel, Ortal; Kunik, Vered; Eyal, Eran; Kol, Nitzan; Hout-Siloni, Goni; Kochavi, Brigitte; Avivi, Camila; Schvimer, Michael; Rechavi, Gideon; Anikster, Yair; Barshack, Iris; Weiss, Batia

    2017-05-01

    Congenital diarrheal disorders is a group of inherited enteropathies presenting in early life and requiring parenteral nutrition. In most cases, genetics may be the key for precise diagnosis. We present an infant girl with chronic congenital diarrhea that resolved after introduction of fructose-based formula but had no identified mutation in the SLC5A1 gene. Using whole exome sequencing (WES) we identified other mutations that better dictated dietary adjustments. WES of the patient and her parents was performed. The analysis focused on recessive model including compound heterozygous mutations. Sanger sequencing was used to validate identified mutations and to screen the patient's newborn sister and grandparents. Expression and localization analysis were performed in the patient's duodenal biopsies using immunohistochemistry. Using WES we identified a new compound heterozygote mutation in sucrase-isomaltase (SI) gene; a maternal inherited known V577G mutation, and a novel paternal inherited C1531W mutation. Importantly, the newborn offspring carried similar compound heterozygous mutations. Computational predictions suggest that both mutations highly destabilize the protein. SI expression and localization studies determined that the mutated SI protein was not expressed on the brush border membrane in the patient's duodenal biopsies, verifying the diagnosis of congenital sucrase-isomaltase deficiency (CSID). The novel compound heterozygote V577G/C1531W SI mutations lead to lack of SI expression in the duodenal brush border, confirming the diagnosis of CSID. These cases of CSID extend the molecular spectrum of this condition, further directing a more adequate dietary intervention for the patient and newborn sibling.

  14. Two novel cases of compound heterozygous mutations in mitofusin2: Finding out the inheritance.

    PubMed

    Geroldi, Alessandro; Lastella, Patrizia; Patruno, Margherita; Gotta, Fabio; Resta, Nicoletta; Devigili, Grazia; Sabbà, Carlo; Gulli, Rossella; Lamp, Merit; Origone, Paola; Mandich, Paola; Bellone, Emilia

    2017-04-01

    MFN2 is the major gene involved in the axonal form of Charcot-Marie-Tooth disease. It usually has an autosomal dominant pattern of inheritance, but a few cases of homozygous or compound heterozygous mutations have been described. These patients usually present an earlier onset, more severe phenotype and their inheritance pattern can span from autosomal recessive to semidominant. Here we report two unrelated patients carrying two compound heterozygous MFN2 mutations. Both present a pure axonal neuropathy without any additional features. The first patient presents a mild clinical phenotype with onset in the 2nd decade, while the second patient shows a severe, early onset phenotype with loss of independent ambulation. Only a careful clinical examination as well as neurophysiological and genetic studies allowed us to establish the role and the transmission pattern of the identified variants. We discuss practical consequences of this finding in genetic counseling. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. STAT5B mutations in heterozygous state have negative impact on height: another clue in human stature heritability

    PubMed Central

    Scalco, Renata C; Hwa, Vivian; Domené, Horacio M.; Jasper, Héctor G.; Belgorosky, Alicia; Marino, Roxana; Pereira, Alberto M.; Tonelli, Carlos A.; Wit, Jan M.; Rosenfeld, Ron G.; Jorge, Alexander A.L.

    2016-01-01

    Context and objective Growth hormone insensitivity with immune dysfunction caused by signal transducer and activator of transcription 5B (STAT5B) mutations is an autosomal recessive condition. Heterozygous mutations in other genes involved in growth regulation were previously associated with a mild height reduction. Our objective was to assess for the first time the phenotype of heterozygous STAT5B mutations. Methods We genotyped and performed clinical and laboratorial evaluations in 52 relatives of 2 previously described Brazilian brothers with homozygous STAT5B c.424_427del mutation (21 heterozygous). Additionally, we obtained height data and genotype from 1,104 adult control individuals from the same region in Brazil and identified 5 additional families harboring the same mutation (18 individuals, 11 heterozygous). Furthermore, we gathered the available height data from first-degree relatives of patients with homozygous STAT5B mutations (17 individuals from 7 families). Data from heterozygous individuals and non-carriers were compared. Results Individuals carrying heterozygous STAT5B c.424_427del mutation were 0.6 SDS shorter than their non-carrier relatives (p= 0.009). Heterozygous subjects also had significantly lower SDS for serum concentrations of IGF-1 (p=0.028) and IGFBP-3 (p=0.02) than their non-carrier relatives. The 17 heterozygous first-degree relatives of patients carrying homozygous STAT5B mutations had an average height SDS of −1.4 ± 0.8 when compared with population-matched controls (p < 0.001). Conclusions STAT5B mutations in heterozygous state have a significant negative impact on height (approximately 3.9 cm). This effect is milder than the effect seen in the homozygous state, with height usually within the normal range. Our results support the hypothesis that heterozygosity of rare pathogenic variants contributes to normal height heritability. PMID:26034074

  16. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis

    PubMed Central

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis. PMID:28819563

  17. Permanent Neonatal Diabetes Caused by Dominant, Recessive, or Compound Heterozygous SUR1 Mutations with Opposite Functional Effects

    PubMed Central

    Ellard, Sian ; Flanagan, Sarah E. ; Girard, Christophe A. ; Patch, Ann-Marie ; Harries, Lorna W. ; Parrish, Andrew ; Edghill, Emma L. ; Mackay, Deborah J. G. ; Proks, Peter ; Shimomura, Kenju ; Haberland, Holger ; Carson, Dennis J. ; Shield, Julian P. H. ; Hattersley, Andrew T. ; Ashcroft, Frances M. 

    2007-01-01

    Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell KATP channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the KATP channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present. PMID:17668386

  18. Short communication: novel truncating mutations in the CFTR gene causing a severe form of cystic fibrosis in Italian patients.

    PubMed

    Lenarduzzi, S; Morgutti, M; Crovella, S; Coiana, A; Rosatelli, M C

    2014-11-14

    Cystic fibrosis (CF) is a common recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. More than 1800 different mutations have been described to date. Here, we report 3 novel mutations in CFTR in 3 Italian CF patients. To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). Our first analysis did not reveal both of the responsible mutations; thus, direct sequencing of the CFTR gene coding region was performed. The 3 patients were compound heterozygous. In one allele, the F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11 was observed in each case. For the second allele, in patient No.1, direct sequencing revealed an 11-base pair deletion (GAGGCGATACT) in exon 14 (c.2236_2246del; pGlu746Alafs*29). In patient No. 2, direct sequencing revealed a nonsense mutation at nucleotide 3892 (c.3892G>T) in exon 24. In patient No. 3, direct sequencing revealed a deletion of cytosine in exon 27 (c.4296delC; p.Asn1432Lysfs*16). These 3 novel mutations indicate the production of a truncated protein, which consequently results in a non-functional polypeptide.

  19. Compound heterozygous PANK2 mutations confirm HARP and Hallervorden-Spatz syndromes are allelic.

    PubMed

    Houlden, H; Lincoln, S; Farrer, M; Cleland, P G; Hardy, J; Orrell, R W

    2003-11-25

    The authors describe a patient with hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration (HARP) who has two compound heterozygote mutations of the PANK2 gene. IVS4-1 G>T segregates with the lipid and erythrocyte changes in the mother and sister. No other family members have the lipid, erythrocyte, or clinical abnormalities. The father and two brothers are heterozygous for Met327Thr. One other mutation has been found in this PANK2 region associated with the HARP phenotype, suggesting a local genotype effect.

  20. Identification of a novel heterozygous mutation in exon 50 of the COL1A1 gene causing osteogenesis imperfecta

    PubMed Central

    Aftab, S A S; Reddy, N; Owen, N L; Pollitt, R; Harte, A; McTernan, P G; Tripathi, G; Barber, T M

    2013-01-01

    Summary A 19-year-old woman was diagnosed with osteogenesis imperfecta (OI). She had sustained numerous low-trauma fractures throughout her childhood, including a recent pelvic fracture (superior and inferior ramus) following a low-impact fall. She had the classical blue sclerae, and dual energy X-ray absorptiometry (DEXA) bone scanning confirmed low bone mass for her age in the lumbar spine (Z-score was −2.6). However, despite these classical clinical features, the diagnosis of OI had not been entertained throughout the whole of her childhood. Sequencing of her genomic DNA revealed that she was heterozygous for the c.3880_3883dup mutation in exon 50 of the COL1A1 gene. This mutation is predicted to result in a frameshift at p.Thr1295, and truncating stop codon 3 amino acids downstream. To our knowledge, this mutation has not previously been reported in OI. Learning points OI is a rare but important genetic metabolic bone and connective tissue disorder that manifests a diverse clinical phenotype that includes recurrent low-impact fractures.Most mutations that underlie OI occur within exon 50 of the COL1A1 gene (coding for protein constituents of type 1 pro-collagen).The diagnosis of OI is easily missed in its mild form. Early diagnosis is important, and there is a need for improved awareness of OI among health care professionals.OI is a diagnosis of exclusion, although the key diagnostic criterion is through genetic testing for mutations within the COL1A1 gene.Effective management of OI should be instituted through a multidisciplinary team approach that includes a bone specialist (usually an endocrinologist or rheumatologist), a geneticist, an audiometrist and a genetic counsellor. Physiotherapy and orthopaedic surgery may also be required. PMID:24616757

  1. [Infantile hypophosphatasia caused by a novel compound heterozygous mutation: a case report and pedigree analysis].

    PubMed

    Li, Deng-Feng; Lan, Dan; Zhong, Jing-Zi; Dewan, Roma Kajal; Xie, Yan-Shu; Yang, Ying

    2017-05-01

    This article reported the clinical features of one child with infantile hypophosphatasia (HPP) and his pedigree information. The proband was a 5-month-old boy with multiple skeletal dysplasia (koilosternia, bending deformity of both radii, and knock-knee deformity of both knees), feeding difficulty, reduction in body weight, developmental delay, recurrent pneumonia and respiratory failure, and a significant reduction in blood alkaline phosphatase. Among his parents, sister, uncle, and aunt (other family members did not cooperate with us in the examination), his parents and aunt had a slight reduction in alkaline phosphatase and his aunt had scoliosis; there were no other clinical phenotypes or abnormal laboratory testing results. His ALPL gene mutation came from c.228delG mutation in his mother and c.407G>A compound heterozygous mutation in his father. His aunt carried c.228delG mutation. The c.407G>A mutation had been reported as the pathogenic mutation of HPP, and c.228delG mutation was a novel pathogenic mutation. Hypophosphatasia is caused by ALPL gene mutation, and ALPL gene detection is an effective diagnostic method. This study expands the mutation spectrum of ALPL gene and provides a theoretical basis for genetic diagnosis of this disease.

  2. Novel compound heterozygous mutations in ABCA4 in a Chinese pedigree with Stargardt disease

    PubMed Central

    Zhang, Jianping; Qi, Anhui; Wang, Xi; Pan, Hong; Mo, Haiming; Huang, Jiwei; Li, Honghui; Chen, Zhenwen; Wei, Meirong

    2016-01-01

    Purpose Stargardt disease (STGD) is a common macular dystrophy in juveniles that is commonly inherited as an autosomal recessive trait. Mutations in five genes (ABCA4, PROM1, ELOVL4, BEST1, and PRPH2) have been reported to be associated with STGD. In the present study, we aimed to identify the pathogenic mutations in affected members in a Chinese STGD pedigree. Methods One patient was selected for whole-exome sequencing. Variants in five candidate genes were identified initially, followed by several filtering steps against public and private variation databases (1000Genomes, ESP6500si, ExAC, and in-house database), as well as bioinformatic analysis of the putative pathogenic roles. Sanger sequencing was used for cosegregation analysis among all members with available DNA. Results Two mutations in ABCA4 (NM_000350.2; c.5646G>A; p.Met1882Ile and NM_000350.2; c.3523–2A>G) were found using whole-exome sequencing. Cosegregation analysis confirmed all the affected members carried the compound heterozygous mutations while the other healthy members had at most one. The missense mutation was extremely rare in public databases and predicted to be deleterious. The splice-site mutation was absent from all public and private databases and was predicted to alter the splice pattern, resulting in an exon skip and a frameshift. Conclusions Using whole-exome sequencing, we found novel compound heterozygous mutations in ABCA4 in a Chinese STGD pedigree. These mutations are reported for the first time, therefore widening the mutation spectrum of Stargardt disease. The present study also illustrates the potential of whole-exome sequencing in determining the genetic cause of STGD. PMID:28050124

  3. Cortisone-reductase deficiency associated with heterozygous mutations in 11beta-hydroxysteroid dehydrogenase type 1.

    PubMed

    Lawson, Alexander J; Walker, Elizabeth A; Lavery, Gareth G; Bujalska, Iwona J; Hughes, Beverly; Arlt, Wiebke; Stewart, Paul M; Ride, Jonathan P

    2011-03-08

    In peripheral target tissues, levels of active glucocorticoid hormones are controlled by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a dimeric enzyme that catalyzes the reduction of cortisone to cortisol within the endoplasmic reticulum. Loss of this activity results in a disorder termed cortisone reductase deficiency (CRD), typified by increased cortisol clearance and androgen excess. To date, only mutations in H6PD, which encodes an enzyme supplying cofactor for the reaction, have been identified as the cause of disease. Here we examined the HSD11B1 gene in two cases presenting with biochemical features indicative of a milder form of CRD in whom the H6PD gene was normal. Novel heterozygous mutations (R137C or K187N) were found in the coding sequence of HSD11B1. The R137C mutation disrupts salt bridges at the subunit interface of the 11β-HSD1 dimer, whereas K187N affects a key active site residue. On expression of the mutants in bacterial and mammalian cells, activity was either abolished (K187N) or greatly reduced (R137C). Expression of either mutant in a bacterial system greatly reduced the yield of soluble protein, suggesting that both mutations interfere with subunit folding or dimer assembly. Simultaneous expression of mutant and WT 11β-HSD1 in bacterial or mammalian cells, to simulate the heterozygous condition, indicated a marked suppressive effect of the mutants on both the yield and activity of 11β-HSD1 dimers. Thus, these heterozygous mutations in the HSD11B1 gene have a dominant negative effect on the formation of functional dimers and explain the genetic cause of CRD in these patients.

  4. Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies.

    PubMed

    Ortiz-Genga, Martín F; Cuenca, Sofía; Dal Ferro, Matteo; Zorio, Esther; Salgado-Aranda, Ricardo; Climent, Vicente; Padrón-Barthe, Laura; Duro-Aguado, Iria; Jiménez-Jáimez, Juan; Hidalgo-Olivares, Víctor M; García-Campo, Enrique; Lanzillo, Chiara; Suárez-Mier, M Paz; Yonath, Hagith; Marcos-Alonso, Sonia; Ochoa, Juan P; Santomé, José L; García-Giustiniani, Diego; Rodríguez-Garrido, Jorge L; Domínguez, Fernando; Merlo, Marco; Palomino, Julián; Peña, María L; Trujillo, Juan P; Martín-Vila, Alicia; Stolfo, Davide; Molina, Pilar; Lara-Pezzi, Enrique; Calvo-Iglesias, Francisco E; Nof, Eyal; Calò, Leonardo; Barriales-Villa, Roberto; Gimeno-Blanes, Juan R; Arad, Michael; García-Pavía, Pablo; Monserrat, Lorenzo

    2016-12-06

    Filamin C (encoded by the FLNC gene) is essential for sarcomere attachment to the plasmatic membrane. FLNC mutations have been associated with myofibrillar myopathies, and cardiac involvement has been reported in some carriers. Accordingly, since 2012, the authors have included FLNC in the genetic screening of patients with inherited cardiomyopathies and sudden death. The aim of this study was to demonstrate the association between truncating mutations in FLNC and the development of high-risk dilated and arrhythmogenic cardiomyopathies. FLNC was studied using next-generation sequencing in 2,877 patients with inherited cardiovascular diseases. A characteristic phenotype was identified in probands with truncating mutations in FLNC. Clinical and genetic evaluation of 28 affected families was performed. Localization of filamin C in cardiac tissue was analyzed in patients with truncating FLNC mutations using immunohistochemistry. Twenty-three truncating mutations were identified in 28 probands previously diagnosed with dilated, arrhythmogenic, or restrictive cardiomyopathies. Truncating FLNC mutations were absent in patients with other phenotypes, including 1,078 patients with hypertrophic cardiomyopathy. Fifty-four mutation carriers were identified among 121 screened relatives. The phenotype consisted of left ventricular dilation (68%), systolic dysfunction (46%), and myocardial fibrosis (67%); inferolateral negative T waves and low QRS voltages on electrocardiography (33%); ventricular arrhythmias (82%); and frequent sudden cardiac death (40 cases in 21 of 28 families). Clinical skeletal myopathy was not observed. Penetrance was >97% in carriers older than 40 years. Truncating mutations in FLNC cosegregated with this phenotype with a dominant inheritance pattern (combined logarithm of the odds score: 9.5). Immunohistochemical staining of myocardial tissue showed no abnormal filamin C aggregates in patients with truncating FLNC mutations. Truncating mutations in FLNC

  5. Severe mandibuloacral dysplasia caused by novel compound heterozygous ZMPSTE24 mutations in two Japanese siblings

    PubMed Central

    Miyoshi, Y; Akagi, M; Agarwal, AK; Namba, N; Kato-Nishimura, K; Mohri, I; Yamagata, M; Nakajima, S; Mushiake, S; Shima, M; Auchus, RJ; Taniike, M; Garg, A; Ozono, K

    2009-01-01

    Mandibuloacral dysplasia (MAD) is a rare autosomal recessive progeroid syndrome, characterized by mandibular hypoplasia, acroosteolysis affecting distal phalanges and clavicles, delayed closure of the cranial sutures, atrophic skin, and lipodystrophy. Recently, mutations in lamin A/C (LMNA) and zinc metalloprotease (ZMPSTE24), involved in post-translational processing of prelamin A to mature lamin A, have been identified in MAD kindreds. We now report novel compound heterozygous mutations in exon 1 (c.121C>T; p.Q41X) and exon 6 (c.743C>T; p.P248L) in ZMPSTE24 in two Japanese sisters, 7- and 3-year old, with severe MAD and characteristic facies and atrophic skin. The older sister had lipodystrophy affecting the chest and thighs but sparing abdomen. Their parents and a brother, who were healthy, had heterozygous mutations. The missense mutation, P248L, was not found in 100 normal subjects of Japanese origin. The mutant Q41X was inactive in a yeast halo assay; however, the mutant P248L retained near normal ZMPSTE24 activity. Immunoblots demonstrated accumulation of prelamin A in the patients’ cell lysates from lymphoblasts. The lymphoblasts from the patients also revealed less intense staining for lamin A/C on immunofluorescence. We conclude that ZMPSTE24 deficiency results in accumulation of farnesylated prelamin A, which may be responsible for cellular toxicity and the MAD phenotype. PMID:18435794

  6. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation.

    PubMed

    Qi, Chunxia; Jia, Xiaopeng; Lu, Lingling; Ma, Ping; Wei, Min

    2016-01-01

    C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.

  7. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation

    PubMed Central

    Qi, Chunxia; Jia, Xiaopeng; Lu, Lingling; Ma, Ping; Wei, Min

    2016-01-01

    C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis. PMID:27042825

  8. Two double heterozygous mutations in the F7 gene show different manifestations.

    PubMed

    Nagaizumi, Keiko; Inaba, Hiroshi; Suzuki, Takashi; Hatta, Yoshihiro; Hagiwara, Takeshi; Amano, Kagehiro; Arai, Morio; Fukutake, Katsuyuki

    2002-12-01

    We sequenced the factor VII gene (F7) in two unrelated Japanese patients with factor VII (FVII) deficiency. In the first (an asymptomatic 46-year-old man with FVII activity and antigen levels of 1.2% and 21% of normal respectively), novel E25K and H348Q mutations were identified in the doubly heterozygous state. In transiently transfected HEK293 cells, the level of FVII-E25K mutant activity in the culture media was significantly lower than that of FVII wild type, whereas the antigen levels of both proteins were similar. This suggests that the E25K mutation is associated with a dysfunctional FVII molecule. In the second patient (a 47-year-old woman with FVII activity and antigen levels of less than 1% and 6% respectively), an IVS4+1 mutation and a novel -96C to T transition were detected in the double heterozygous state. In electrophoretic mobility shift assays, the -96T mutation was shown to disrupt binding of Sp1.

  9. Genotype-phenotype correlation in cystic fibrosis patients compound heterozygous for the A455E mutation.

    PubMed

    De Braekeleer, M; Allard, C; Leblanc, J P; Simard, F; Aubin, G

    1997-12-01

    Cystic fibrosis (CF) has a high incidence in the French-Canadian population of Saguenay Lac-Saint-Jean (Quebec). The A455E mutation accounts for 8.3% of the CF chromosomes. This mutation was shown to be associated with a milder lung disease in the Dutch population. Twenty two CF patients distributed in 17 families and compound heterozygotes for the A455E mutation have been followed at the Clinique de Fibrose Kystique de Chicoutimi. Fourteen patients also carried the delta F508 mutation while the remaining eight patients had the 621 + 1G-->T mutation. Each patient was matched by sex and age to a patient homozygous for the delta F508 mutation. The pairs were analyzed for several clinical and laboratory variables. The A455E compound heterozygotes were diagnosed at a later age (P = 0.003) and had chloride concentrations at the sweat test lower than those homozygous for the delta F508 mutation (P = 0.007). More patients were pancreatic sufficient (P = 0.004). They had a higher Shwachman score (P = 0.001) and better pulmonary function tests (P < 0.02). CF patients compound heterozygous for the A455E mutation have a milder pancreatic and lung disease than the delta F508 homozygotes. Therefore, the A455E should be associated with a better prognosis.

  10. Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene

    PubMed Central

    Barrett, Timothy; Stals, Karen; Shield, Julian P; Ellard, Sian; Ferrer, Jorge; Hattersley, Andrew T

    2007-01-01

    Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Methods and Findings We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic β-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth. Conclusions HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and

  11. Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters.

    PubMed

    Arnadottir, Gudny A; Jensson, Brynjar O; Marelsson, Sigurdur E; Sulem, Gerald; Oddsson, Asmundur; Kristjansson, Ragnar P; Benonisdottir, Stefania; Gudjonsson, Sigurjon A; Masson, Gisli; Thorisson, Gudmundur A; Saemundsdottir, Jona; Magnusson, Olafur Th; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Arngrimsson, Reynir; Sulem, Patrick; Stefansson, Kari

    2017-10-02

    Epileptic encephalopathies are a group of childhood epilepsies that display high phenotypic and genetic heterogeneity. The recent, extensive use of next-generation sequencing has identified a large number of genes in epileptic encephalopathies, including UBA5 in which biallelic mutations were first described as pathogenic in 2016 (Colin E et al., Am J Hum Genet 99(3):695-703, 2016. Muona M et al., Am J Hum Genet 99(3):683-694, 2016). UBA5 encodes an activating enzyme for a post-translational modification mechanism known as ufmylation, and is the first gene from the ufmylation pathway that is linked to disease. We sequenced the genomes of two sisters with early-onset epileptic encephalopathy along with their unaffected parents in an attempt to find a genetic cause for their condition. The sisters, born in 2004 and 2006, presented with infantile spasms at six months of age, which later progressed to recurrent, treatment-resistant seizures. We detected a compound heterozygous genotype in UBA5 in the sisters, a genotype not seen elsewhere in an Icelandic reference set of 30,067 individuals nor in public databases. One of the mutations, c.684G > A, is a paternally inherited exonic splicing mutation, occuring at the last nucleotide of exon 7 of UBA5. The mutation is predicted to disrupt the splice site, resulting in loss-of-function of one allele of UBA5. The second mutation is a maternally inherited missense mutation, p.Ala371Thr, previously reported as pathogenic when in compound heterozygosity with a loss-of-function mutation in UBA5 and is believed to produce a hypomorphic allele. Supportive of this, we have identified three adult Icelanders homozygous for the p.Ala371Thr mutation who show no signs of neurological disease. We describe compound heterozygous mutations in the UBA5 gene in two sisters with early-onset epileptic encephalopathy. To our knowledge, this is the first description of mutations in UBA5 since the initial discovery that pathogenic biallelic

  12. [Sanger sequencing for the diagnosis of spinal muscular atrophy patients with survival motor neuron gene 1 compound heterozygous mutation].

    PubMed

    Yang, L; Cao, Y Y; Qu, Y J; Bai, J L; Wang, H; Jin, Y W; Han, Y L; Song, F

    2017-02-14

    Objective: To detect the subtle variant of survival motor neuron gene 1(SMN1) by Sanger sequencing, and to assess the value of Sanger sequencing for the diagnosis of spinal muscular atrophy(SMA) with compound heterozygous mutation of SMN1. Methods: Fifty-two patients suspected SMA were recruited by the Capital Institute of Pediatrics from Jan.2014 to June.2016. PCR was used for amplifying exon7 of SMN1 and SMN2 in 52 patients. Natural different base peaks on the sequencing chromatogram in the SMN1 and SMN2 within the amplified segments were identified with Sanger DNA sequencing to detect the homozygous deletion or heterozygous deletion of SMN1. Then we screened the SMN1 subtle variants in heterozygous deletion patients by genomic Sanger sequencing for the other SMN exons. At last, multiplex ligation-dependent probe amplification(MLPA) was carried out to confirm the results of SMN1 heterozygous deletion, and T-A cloning confirmed the subtle variants were located in SMN1. Results: Forty-seven of 52 cases were homozygous deletion of SMN1, while 5 cases were heterozygous deletion which were confirmed by MLPA.Then, by genomic and T-A cloning sequencing, five SMN1 subtle mutations were separately identified in 5 cases of heterozygous deletion. Conclusion: Sanger sequencing is an effective method for the clinical diagnosis of compound heterozygous mutation of SMN1, and is meaningful for improving genetic diagnosis rate of SMA.

  13. Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation.

    PubMed

    Fishbein, Ianai; Kuo, Yien-Ming; Giasson, Benoit I; Nussbaum, Robert L

    2014-12-01

    The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson's disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson's disease; and (ii) Lewy bodies in sporadic Parkinson's disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson's disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson's disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson's disease.

  14. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS.

    PubMed

    Kuehn, H S; Boisson, B; Cunningham-Rundles, C; Reichenbach, J; Stray-Pedersen, A; Gelfand, E W; Maffucci, P; Pierce, K R; Abbott, J K; Voelkerding, K V; South, S T; Augustine, N H; Bush, J S; Dolen, W K; Wray, B B; Itan, Y; Cobat, A; Sorte, H S; Ganesan, S; Prader, S; Martins, T B; Lawrence, M G; Orange, J S; Calvo, K R; Niemela, J E; Casanova, J-L; Fleisher, T A; Hill, H R; Kumánovics, A; Conley, M E; Rosenzweig, S D

    2016-03-17

    Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates. Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients. Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.).

  15. Novel Compound Heterozygous CBS Mutations Cause Homocystinuria in a Han Chinese Family.

    PubMed

    Gong, Bo; Liu, Liping; Li, Zhiwei; Ye, Zimeng; Xiao, Ying; Zeng, Guangqun; Shi, Yi; Wang, Yumeng; Feng, Xiaoyun; Li, Xiulan; Hao, Fang; Liu, Xiaoqi; Qu, Chao; Li, Yuanfeng; Mu, Guoying; Yang, Zhenglin

    2015-12-15

    The cystathionine β-synthase (CBS) gene has been shown to be related to homocystinuria. This study was aimed to detect the mutations in CBS in a Han Chinese family with homocystinuria. A four-generation family from Shandong Province of China was recruited in this study. All available members of the family underwent comprehensive medical examinations. Genomic DNA was collected from peripheral blood of all the participants. The coding sequence of CBS was amplified by polymerase chain reaction (PCR), followed by direct DNA sequencing. Among all the family members, three affected individuals showed typical clinical features of homocystinuria. Two novel compound heterozygous mutations in the CBS gene, c.407T > C (p. L136P) and c.473C > T (p.A158V), were identified by sequencing analysis in this family. Both of the two missense mutations were detected in the three patients. Other available normal individuals, including the patients' parents, grand parents, her younger sister and brother in this family either carried one of the two mutations, or none. In addition, the two mutations were not found in 600 ethnically matched normal controls. This study provides a mutation spectrum of CBS resulting in homocystinuriain a Chinese population, which may shed light on the molecular pathogenesis and clinical diagnosis of CBS-associated homocystinuria.

  16. Novel Compound Heterozygous CBS Mutations Cause Homocystinuria in a Han Chinese Family

    PubMed Central

    Gong, Bo; Liu, Liping; Li, Zhiwei; Ye, Zimeng; Xiao, Ying; Zeng, Guangqun; Shi, Yi; Wang, Yumeng; Feng, Xiaoyun; Li, Xiulan; Hao, Fang; Liu, Xiaoqi; Qu, Chao; Li, Yuanfeng; Mu, Guoying; Yang, Zhenglin

    2015-01-01

    The cystathionine β-synthase (CBS) gene has been shown to be related to homocystinuria. This study was aimed to detect the mutations in CBS in a Han Chinese family with homocystinuria. A four-generation family from Shandong Province of China was recruited in this study. All available members of the family underwent comprehensive medical examinations. Genomic DNA was collected from peripheral blood of all the participants. The coding sequence of CBS was amplified by polymerase chain reaction (PCR), followed by direct DNA sequencing. Among all the family members, three affected individuals showed typical clinical features of homocystinuria. Two novel compound heterozygous mutations in the CBS gene, c.407T > C (p. L136P) and c.473C > T (p.A158V), were identified by sequencing analysis in this family. Both of the two missense mutations were detected in the three patients. Other available normal individuals, including the patients’ parents, grand parents, her younger sister and brother in this family either carried one of the two mutations, or none. In addition, the two mutations were not found in 600 ethnically matched normal controls. This study provides a mutation spectrum of CBS resulting in homocystinuriain a Chinese population, which may shed light on the molecular pathogenesis and clinical diagnosis of CBS-associated homocystinuria. PMID:26667307

  17. A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy

    PubMed Central

    Galant, Damien; Gaborit, Bénédicte; Desgrouas, Camille; Abdesselam, Ines; Bernard, Monique; Levy, Nicolas; Merono, Françoise; Coirault, Catherine; Roll, Patrice; Lagarde, Arnaud; Bonello-Palot, Nathalie; Bourgeois, Patrice; Dutour, Anne; Badens, Catherine

    2016-01-01

    ZMPSTE24 encodes the only metalloprotease, which transforms prelamin into mature lamin A. Up to now, mutations in ZMPSTE24 have been linked to Restrictive Dermopathy (RD), Progeria or Mandibulo-Acral Dysplasia (MAD). We report here the phenotype of a patient referred for severe metabolic syndrome and cardiomyopathy, carrying a mutation in ZMPSTE24. The patient presented with a partial lipodystrophic syndrome associating hypertriglyceridemia, early onset type 2 diabetes, and android obesity with truncal and abdominal fat accumulation but without subcutaneous lipoatrophy. Other clinical features included acanthosis nigricans, liver steatosis, dilated cardiomyopathy, and high myocardial and hepatic triglycerides content. Mutated fibroblasts from the patient showed increased nuclear shape abnormalities and premature senescence as demonstrated by a decreased Population Doubling Level, an increased beta-galactosidase activity and a decreased BrdU incorporation rate. Reduced prelamin A expression by siRNA targeted toward LMNA transcripts resulted in decreased nuclear anomalies. We show here that a central obesity without subcutaneous lipoatrophy is associated with a laminopathy due to a heterozygous missense mutation in ZMPSTE24. Given the high prevalence of metabolic syndrome and android obesity in the general population, and in the absence of familial study, the causative link between mutation and phenotype cannot be formally established. Nevertheless, altered lamina architecture observed in mutated fibroblasts are responsible for premature cellular senescence and could contribute to the phenotype observed in this patient. PMID:27120622

  18. A novel loss-of-function heterozygous BRCA2 c.8946_8947delAG mutation found in a Chinese woman with family history of breast cancer.

    PubMed

    Ma, Jing; Yang, Jichun; Jian, Wenjing; Wang, Xianming; Xiao, Deyong; Xia, Wenjun; Xiong, Likuan; Ma, Duan

    2017-04-01

    Breast cancer is the most frequent female malignancy worldwide. Among them, some cases have hereditary susceptibility in two leading genes, BRCA1 and BRCA2. Heterozygous germ line mutations in them are related with increased risk of breast, ovarian and other cancer, following autosomal dominant inheritance mode. For purpose of early finding, early diagnosis and early treatment, mutation detecting of BRCA1/2 genes was performed in unselected 300 breast or ovarian patients and unaffected women using next-generation sequencing and then confirmed by Sanger sequencing. A non-previously reported heterozygous mutation c.8946_8947delAG (p.D2983FfsX34) of BRCA2 gene was identified in an unaffected Chinese woman with family history of breast cancer (her breast cancer mother, also carrying this mutation). The BRCA2-truncated protein resulted from the frame shift mutation was found to lose two putative nuclear localization signals and a Rad51-binding motif in the extreme C-terminal region by bioinformatic prediction. And then in vitro experiments showed that nearly all the mutant protein was unable to translocate to the nucleus to perform DNA repair activity. This novel mutant BRCA2 protein is dysfunction. We classify the mutation into disease causing and conclude that it is the risk factor for breast cancer in this family. So, conducting the same mutation test and providing genetic counseling for this family is practically meaningful and significant. Meanwhile, the identification of this new mutation enriches the Breast Cancer Information Core database, especially in China.

  19. Two novel compound heterozygous BMP1 mutations in a patient with osteogenesis imperfecta: a case report.

    PubMed

    Sangsin, Apiruk; Kuptanon, Chulaluck; Srichomthong, Chalurmpon; Pongpanich, Monnat; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2017-03-04

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia leading to a susceptibility to fractures. OI can be caused by mutations in several genes including BMP1. It encodes two isoforms, bone morphogenetic protein 1 (BMP1) and mammalian tolloid (mTLD); both have proteolytic activity to remove the C-propeptide from procollagen. We report a Thai OI patient who had his first fracture at the age of three months. Using next generation sequencing, we successfully identified two novel compound heterozygous BMP1 mutations. One mutation, c.796_797delTT (p.Phe266Argfs*25) affects both BMP1 and mTLD isoforms, while the other, c.2108-2A > G, affects only the BMP1 isoform. Preservation of the mTLD may explain the relatively less severe clinical phenotype in this patient. Intravenous bisphosphonate was given from the age of 8 months to 5 years. He was free from fractures for 9 months before discontinuation. This case expands the mutation spectrum of BMP1, strengthens the correlation between genotype and phenotype, and supports the benefits of bisphosphonate in OI patients with BMP1 mutations.

  20. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations

    PubMed Central

    Munot, Pinki; Saunders, Dawn E.; Milewicz, Dianna M.; Regalado, Ellen S.; Ostergaard, John R.; Braun, Kees P.; Kerr, Timothy; Lichtenbelt, Klaske D.; Philip, Sunny; Rittey, Christopher; Jacques, Thomas S.; Cox, Timothy C.

    2012-01-01

    Mutations in the ACTA2 gene lead to diffuse and diverse vascular diseases; the Arg179His mutation is associated with an early onset severe phenotype due to global smooth muscle dysfunction. Cerebrovascular disease associated with ACTA2 mutations has been likened to moyamoya disease, but appears to have distinctive features. This study involved the analysis of neuroimaging of 13 patients with heterozygous missense mutations in ACTA2 disrupting Arg179. All patients had persistent ductus arteriosus and congenital mydriasis, and variable presentation of pulmonary hypertension, bladder and gastrointestinal problems associated with this mutation. Distinctive cerebrovascular features were dilatation of proximal internal carotid artery, occlusive disease of terminal internal carotid artery, an abnormally straight course of intracranial arteries, and absent basal ‘moyamoya’ collaterals. Patterns of brain injury supported both large and small vessel disease. Key differences from moyamoya disease were more widespread arteriopathy, the combination of arterial ectasia and stenosis and, importantly, absence of the typical basal ‘moyamoya’ collaterals. Evaluation of previously published cases suggests some of these features are also seen in the ACTA2 mutations disrupting Arg258. The observation that transition from dilated to normal/stenotic arterial calibre coincides with where the internal carotid artery changes from an elastic to muscular artery supports the hypothesis that abnormal smooth muscle cell proliferation caused by ACTA2 mutations is modulated by arterial wall components. Patients with persistent ductus arteriosus or congenital mydriasis with a label of ‘moyamoya’ should be re-evaluated to ensure the distinctive neuroimaging features of an ACTA2 mutation have not been overlooked. This diagnosis has prognostic and genetic implications, and mandates surveillance of other organ systems, in particular the aorta, to prevent life-threatening aortic dissection

  1. Gastric intrinsic factor deficiency with combined GIF heterozygous mutations and FUT2 secretor variant.

    PubMed

    Chery, Celine; Hehn, Alain; Mrabet, Nadir; Oussalah, Abderrahim; Jeannesson, Elise; Besseau, Cyril; Alberto, Jean-Marc; Gross, Isabelle; Josse, Thomas; Gérard, Philippe; Guéant-Rodriguez, Rosa Maria; Freund, Jean-Noel; Devignes, Jean; Bourgaud, Frédérique; Peyrin-Biroulet, Laurent; Feillet, François; Guéant, Jean-Louis

    2013-05-01

    Several genome-wide association studies (GWAS) have identified a strong association between serum vitamin B12 and fucosyltransferase 2 (FUT2), a gene associated with susceptibility to Helicobacter pylori infection. Hazra et al. conducted a meta-analysis of three GWAS and found three additional loci in MUT, CUBN and TCN1. Other GWAS conducted in Italy and China confirmed the association for FUT2 gene. Alpha-2-fucosyltransferase (FUT2) catalyzes fucose addition to form H-type antigens in exocrine secretions. FUT2 non-secretor variant produces no secretion of H-type antigens and is associated with high-plasma vitamin B12 levels. This association was explained by the influence of FUT2 on H. pylori, which is a risk factor of gastritis, a main cause of vitamin B12 impaired absorption. However, we recently showed that H. pylori serology had no influence on FUT2 association with vitamin B12, in a large sample population, suggesting the involvement of an alternative mechanism. GIF is another gene associated with plasma levels of vitamin B12 and gastric intrinsic factor (GIF) is a fucosylated protein needed for B12 absorption. Inherited GIF deficiency produces B12 deficiency unrelated with gastritis. We report 2 families with heterozygous GIF mutation, 290T>C, M97T, with decreased binding affinity of GIF for vitamin B12 and one family with heterozygous GIF mutation 435_437delGAA, K145_N146delinsN and no B12 binding activity of mutated GIF. All cases with vitamin B12 deficit carried the FUT2 rs601338 secretor variant. Ulex europeus binding to GIF was influenced by FUT2 genotypes and GIF concentration was lower, in gastric juice from control subjects with the secretor genotype. GIF290C allele was reported in 5 European cases and no Africans among 1282 ambulatory subjects and was associated with low plasma vitamin B12 and anaemia in the single case bearing the FUT2 secretor variant. We concluded that FUT2 secretor variant worsens B12 status in cases with heterozygous GIF

  2. Novel compound heterozygous mutations identified by whole exome sequencing in a Japanese patient with geroderma osteodysplastica.

    PubMed

    Takeda, Ryojun; Takagi, Masaki; Shinohara, Hiroyuki; Futagawa, Hiroshi; Narumi, Satoshi; Hasegawa, Tomonobu; Nishimura, Gen; Yoshihashi, Hiroshi

    2017-08-12

    Geroderma osteodysplastica (GO) is a subtype of cutis laxa syndrome characterized by congenital wrinkly skin, a prematurely aged face, extremely short stature, and osteoporosis leading to recurrent fractures. GO exhibits an autosomal recessive inheritance pattern and is caused by loss-of-function mutations in GORAB, which encodes a protein important for Golgi-related transport. Using whole exome sequencing, we identified novel compound heterozygous nonsense mutations in the GORAB in a GO patient. The patient was a 14-year-old Japanese boy. Wrinkled skin and joint laxity were present at birth. At 1 year of age, he was clinically diagnosed with cutis laxa syndrome based on recurrent long bone fractures and clinical features, including wrinkled skin, joint laxity, and a distinctive face. He did not show retarded gross motor and cognitive development. At 11 years of age, he was treated with oral bisphosphonate and vitamin D owing to recurrent multiple spontaneous fractures of the vertebral and extremity bones associated with a low bone mineral density (BMD). Bisphosphonate treatment improved his BMD and fracture rate. Whole exome sequencing revealed two novel compound heterozygous nonsense mutations in the GORAB gene (p.Arg60* and p.Gln124*), and the diagnosis of GO was established. GO is a rare connective tissue disorder. Approximately 60 cases have been described to date, and this is the first report of a patient from Japan. Few studies have reported the effects of bisphosphonate treatment in GO patients with recurrent spontaneous fractures. Based on this case study, we hypothesize that oral bisphosphonate and vitamin D are effective and safe treatment options for the management of recurrent fractures in GO patients. It is important to establish a precise diagnosis of GO to prevent recurrent fractures and optimize treatment plans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation.

    PubMed

    Ito, Hidefumi; Nakamura, Masataka; Komure, Osamu; Ayaki, Takashi; Wate, Reika; Maruyama, Hirofumi; Nakamura, Yoshimi; Fujita, Kengo; Kaneko, Satoshi; Okamoto, Yoko; Ihara, Masafumi; Konishi, Tetsuro; Ogasawara, Kazumasa; Hirano, Asao; Kusaka, Hirofumi; Kaji, Ryuji; Takahashi, Ryosuke; Kawakami, Hideshi

    2011-08-01

    We investigated a family manifesting amyotrophic lateral sclerosis (ALS) with a heterozygous E478G mutation in the optineurin (OPTN) gene. Clinically, slow deterioration of motor function, mood and personality changes, temporal lobe atrophy on neuroimaging, and bizarre finger deformity were noted. Neuropathologically, TAR DNA-binding protein 43 (TDP-43)-positive neuronal intracytoplasmic inclusions were observed in the spinal and medullary motor neurons. In these cells, the immunoreactivity of nuclear TDP-43 was reduced. Consecutive sections revealed that the inclusions were also reactive with anti-ubiquitin and anti-p62 antibodies, but noticeably negative for OPTN. In addition, TDP-43/p62-positive glial cytoplasmic inclusions (GCIs) were scattered throughout the spinal cord and the medullary motor nuclei. Furthermore, Golgi fragmentation was identified in 70% of the anterior horn cells (AHCs). The presence of AHCs with preserved nuclear TDP-43 and a fragmented Golgi apparatus, which are unrecognizable in sporadic ALS, indicates that patients with the E4787G OPTN mutation would manifest Golgi fragmentation before loss of nuclear TDP-43. In the neocortex, GCIs were sparsely scattered among the primary motor and temporal cortices, but no neuronal TDP-43-positive inclusions were detected. In the amygdala and the ambient gyrus, argyrophilic grains and ballooned neurons were seen. The thorough neuropathologic investigations performed in this work demonstrated that OPTN-positive inclusion bodies, if any, were not prominent. We postulate that optineurinopathy is closely linked with TDP-proteinopathy and speculate that this heterozygous E478G mutation would cause ALS by acting through a dominant-negative mechanism.

  4. Late-onset cutaneous porphyria in a patient heterozygous for a uroporphyrinogen III synthase gene mutation.

    PubMed

    Aguilera, P; Badenas, C; Whatley, S D; To-Figueras, J

    2016-12-01

    Deficiency of uroporphyrinogen III synthase (UROS) causes congenital erythropoietic porphyria (CEP). The disease, originating from the inheritance of mutations within the UROS gene, presents a recessive form of transmission. In a few patients, a late-onset CEP-like phenotype without UROS mutations appears to be associated with a myelodysplastic syndrome. We report a 60-year-old man with late-onset signs of cutaneous porphyria and accumulation in urine, plasma and faeces of type I porphyrin isomers characteristic of CEP. Analysis of DNA from peripheral leucocytes, skin and bone marrow aspirate showed that he was a heterozygous carrier of a Cys73Arg (c.217 T>C) mutation within UROS. Sequencing of cDNA from peripheral blood confirmed heterozygosity and expression of the normal allele. Measurement of UROS enzymatic activity in erythrocytes showed values ~70% of normal, indirectly indicating expression of the normal allele. Differently from other cases of late-onset uroporphyria, the patient did not present thrombocytopenia or any evidence of a myelodysplastic syndrome. Five years of clinical follow-up showed persistence of skin signs and increased excretion of porphyrins, independently of lifestyle factors or changes in medication regimes. We hypothesize acquired mosaicism (in the bone marrow) affecting the UROS gene. Thus, unstable cellular clones initiated overproduction of isomer I porphyrins leading to a CEP phenotype. This could be explained either by a clonal expansion of the porphyric (Cys73Arg) allele or by loss of function of the normal allele. Cellular turnover would facilitate release of uroporphyrins into circulation and subsequent skin lesions. This is the first case of a CEP heterozygous carrier presenting clinical manifestations.

  5. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene.

    PubMed

    Alder, Jonathan K; Parry, Erin M; Yegnasubramanian, Srinivasan; Wagner, Christa L; Lieblich, Lawrence M; Auerbach, Robert; Auerbach, Arleen D; Wheelan, Sarah J; Armanios, Mary

    2013-11-01

    Dyskeratosis congenita (DC) is a telomere-mediated syndrome defined by mucocutaneous features. The X-linked mode of inheritance accounts for half the cases, and is thought to predominantly manifest in childhood as bone marrow failure. We identified two male probands who presented in the fifth decade with idiopathic pulmonary fibrosis and cancer. Their pedigrees displayed consecutively affected generations. Five of six females (83%) manifested mucocutaneous features of DC, and two had wound-healing complications. No mutations in autosomal dominant telomere genes were present, but exome sequencing revealed novel variants in the X-chromosome DKC1 gene that predicted missense mutations in conserved residues, p.Thr49Ser and p.Pro409Arg. Variants segregated with the telomere phenotype, and affected females were heterozygotes, showing skewed X-inactivation. Telomerase RNA levels were compromised in cells from DKC1 mutation carriers, consistent with their pathogenic role. These findings indicate that females with heterozygous DKC1 mutations may be at increased risk for developing penetrant telomere phenotypes that, at times, may be associated with clinical morbidity.

  6. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene

    PubMed Central

    Alder, Jonathan K.; Parry, Erin M.; Yegnasubramanian, Srinivasan; Wagner, Christa L.; Lieblich, Lawrence M.; Auerbach, Robert; Auerbach, Arleen D.; Wheelan, Sarah J.; Armanios, Mary

    2013-01-01

    Dyskeratosis congenita is a telomere-mediated syndrome defined by mucocutaneous features. The X-linked mode of inheritance accounts for half the cases, and is thought to predominantly manifest in childhood as bone marrow failure. We identified two male probands who presented in the fifth decade with idiopathic pulmonary fibrosis and cancer. Their pedigrees displayed consecutively affected generations. Five of six females (83%) manifested mucocutaneous features of dyskeratosis congenita, and two had wound-healing complications. No mutations in autosomal dominant telomere genes were present, but exome sequencing revealed novel variants in the X-chromosome DKC1 gene that predicted missense mutations in conserved residues, p.Thr49Ser and p.Pro409Arg. Variants segregated with the telomere phenotype, and affected females were heterozygotes showing skewed X-inactivation. Telomerase RNA levels were compromised in cells from DKC1 mutation carriers, consistent with their pathogenic role. These findings indicate that females with heterozygous DKC1 mutations may be at increased risk for developing telomere phenotypes that, at times, may be associated with clinical morbidity. PMID:23946118

  7. Congenital microcephaly and chorioretinopathy due to de novo heterozygous KIF11 mutations: five novel mutations and review of the literature

    PubMed Central

    Mirzaa, Ghayda M.; Enyedi, Laura; Parsons, Gretchen; Collins, Sarah; Medne, Livija; Adams, Carissa; Ward, Thomas; Davitt, Bradley; Bicknese, Alma; Zackai, Elaine; Toriello, Helga; Dobyns, William B.; Christian, Susan

    2014-01-01

    The microcephaly-lymphedema-chorioretinal dysplasia (MLCRD) syndrome is a distinct microcephaly syndrome. The hallmark features, microcephaly, chorioretinopathy, and lymphedema, are frequently recognized at birth. Another clinical entity, the chorioretinal dysplasia, microcephaly and mental retardation syndrome (CDMMR) is a highly overlapping syndrome characterized by more variable lymphedema. Recently, heterozygous mutations in KIF11, a gene encoding a critical spindle motor protein of the Kinesin family, have been reported in individuals with MLCRD, and in individuals with CDMMR. This finding is suggestive of a single clinically variable spectrum. Here, we report on de novo novel mutations of KIF11 in five individuals with severe microcephaly, marked simplification of the gyral pattern on neuroimaging, bilateral chorioretinopathy and developmental delay. Three patients had congenital lymphedema, and one had congenital bilateral sensorineural hearing loss. This report therefore further expands the clinical and molecular spectrum of KIF11-associated microcephaly. PMID:25115524

  8. Analysis of the presence of the GJB6 mutations in patients heterozygous for GJB2 mutation in Brazil.

    PubMed

    Esteves, Maria Carolina Braga Norte; de Lima Isaac, Myriam; Francisco, Anete Maria; da Silva Junior, Wilson Araújo; Ferreira, Cristiane Ayres; Dell'Aringa, Ana Helena Banwart

    2014-04-01

    Mutations in the GJB2 gene, mainly 35delG, are responsible for most autosomal recessive inherited genetic hearing loss. The audiometric standard of these hearing losses remains inconsistent and other genes, such as GJB6, have been involved in association with GJB2. The objective of the study was to identify the deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) in patients heterozygous for 35delG/GJB2 and analyze the phenotype they present. 101 patients with mild to profound degree of sensorineural hypoacusis were evaluated. The allele-specific PCR technique was used to identify 35delG. The del(GJB6-D13S1830) and del(GJB6-D13S1854) were identified through the PCR multiplex technique. 90% of the subjects presented a normal genotype for the analyzed mutations; 6.93% were shown to be heterozygous for 35delG/GJB2 and 1% presented compound heterozygosis GJB2/GJB6). The data found reinforced the hypothesis of an interaction of more than one gene as the cause of autosomal recessive genetic hearing loss and emphasized the importance of an early diagnosis for appropriate intervention.

  9. A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson-Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS.

    PubMed

    Denecke, Jonas; Brune, Thomas; Feldhaus, Tobias; Robenek, Horst; Kranz, Christian; Auchus, Richard J; Agarwal, Anil K; Marquardt, Thorsten

    2006-06-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder normally caused by a spontaneous heterozygous mutation in the LMNA gene that codes for the nuclear lamina protein lamin A. Several enzymes are involved in the processing of its precursor, prelamin A, to the mature lamin A. A functional knockout of one of the enzymes involved in prelamin A processing, the zinc metalloprotease ZMPSTE24, causes an even more severe disorder with early neonatal death described as restrictive dermatopathy (RD). This work describes a HGPS patient with a combined defect of a homozygous loss-of-function mutation in the ZMPSTE24 gene and a heterozygous mutation in the LMNA gene that results in a C-terminal elongation of the final lamin A. Whereas the loss of function mutation of ZMPSTE24 normally results in lethal RD, the truncation of LMNA seems to be a salvage alteration alleviating the clinical picture to the HGPS phenotype. The mutations of our patient indicate that farnesylated prelamin A is the deleterious agent leading to the HGPS phenotype, which gives further insights into the pathophysiology of the disorder.

  10. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease.

    PubMed

    Verdura, Edgard; Hervé, Dominique; Scharrer, Eva; Amador, Maria Del Mar; Guyant-Maréchal, Lucie; Philippi, Anne; Corlobé, Astrid; Bergametti, Françoise; Gazal, Steven; Prieto-Morin, Carol; Beaufort, Nathalie; Le Bail, Benoit; Viakhireva, Irina; Dichgans, Martin; Chabriat, Hugues; Haffner, Christof; Tournier-Lasserve, Elisabeth

    2015-08-01

    Cerebral small vessel disease represents a heterogeneous group of disorders leading to stroke and cognitive impairment. While most small vessel diseases appear sporadic and related to age and hypertension, several early-onset monogenic forms have also been reported. However, only a minority of patients with familial small vessel disease carry mutations in one of known small vessel disease genes. We used whole exome sequencing to identify candidate genes in an autosomal dominant small vessel disease family in which known small vessel disease genes had been excluded, and subsequently screened all candidate genes in 201 unrelated probands with a familial small vessel disease of unknown aetiology, using high throughput multiplex polymerase chain reaction and next generation sequencing. A heterozygous HTRA1 variant (R166L), absent from 1000 Genomes and Exome Variant Server databases and predicted to be deleterious by in silico tools, was identified in all affected members of the index family. Ten probands of 201 additional unrelated and affected probands (4.97%) harboured a heterozygous HTRA1 mutation predicted to be damaging. There was a highly significant difference in the number of likely deleterious variants in cases compared to controls (P = 4.2 × 10(-6); odds ratio = 15.4; 95% confidence interval = 4.9-45.5), strongly suggesting causality. Seven of these variants were located within or close to the HTRA1 protease domain, three were in the N-terminal domain of unknown function and one in the C-terminal PDZ domain. In vitro activity analysis of HTRA1 mutants demonstrated a loss of function effect. Clinical features of this autosomal dominant small vessel disease differ from those of CARASIL and CADASIL by a later age of onset and the absence of the typical extraneurological features of CARASIL. They are similar to those of sporadic small vessel disease, except for their familial nature. Our data demonstrate that heterozygous HTRA1 mutations are an important cause

  11. TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions

    PubMed Central

    Shirole, Nitin H; Pal, Debjani; Kastenhuber, Edward R; Senturk, Serif; Boroda, Joseph; Pisterzi, Paola; Miller, Madison; Munoz, Gustavo; Anderluh, Marko; Ladanyi, Marc; Lowe, Scott W; Sordella, Raffaella

    2016-01-01

    TP53 truncating mutations are common in human tumors and are thought to give rise to p53-null alleles. Here, we show that TP53 exon-6 truncating mutations occur at higher than expected frequencies and produce proteins that lack canonical p53 tumor suppressor activities but promote cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resemble the naturally occurring alternative p53 splice variant, p53-psi. Accordingly, these mutants can localize to the mitochondria where they promote tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator, Cyclophilin D (CypD). Together, our studies reveal that TP53 exon-6 truncating mutations, contrary to current beliefs, act beyond p53 loss to promote tumorigenesis, and could inform the development of strategies to target cancers driven by these prevalent mutations. DOI: http://dx.doi.org/10.7554/eLife.17929.001 PMID:27759562

  12. Cerebral arteriopathy associated with heterozygous Arg179Cys mutation in the ACTA2 gene: Report in 2 newborn siblings.

    PubMed

    de Grazia, Jose; Delgado, Ignacio; Sanchez-Montanez, Angel; Boronat, Susana; Del Campo, Miguel; Vazquez, Elida

    2017-01-01

    Mutations in the ACTA2 gene lead to a multisystemic smooth muscle dysfunction syndrome that causes vascular disease, congenital mydriasis, and variable presentation of urinary and gastrointestinal problems. The heterozygous Arg179 mutation is associated with a distinctive cerebrovascular phenotype. We report the cases of two newborn siblings with heterozygous ACTA2 Arg179Cys substitution and provide neuroimaging exams that demonstrate the distinctive cerebrovascular phenotype, also associated with variable degree of hypoplasia of the vertebro-basilar circulation as well as hypoxic-ischemic lesions.

  13. Age-associated cardiomyopathy in heterozygous carrier mice of a pathological mutation of carnitine transporter gene, OCTN2.

    PubMed

    Xiaofei, E; Wada, Yasuhiko; Dakeishi, Miwako; Hirasawa, Fujiko; Murata, Katsuyuki; Masuda, Hirotake; Sugiyama, Toshihiro; Nikaido, Hiroko; Koizumi, Akio

    2002-07-01

    The purpose of this study was to test whether heterozygotes of juvenile visceral steatosis mice, a model for systemic carnitine deficiency, may develop age-associated cardiomyopathy. Tissue morphological observations were carried out by light and electron microscopy to compare the heterozygous and age-matched control mice at periods of 1 and 2 years. Possible effects of the pathological mutation on lipid and glucose levels was also evaluated in humans and mice. Except mild increases in serum cholesterol levels in male heterozygous mice and humans, no changes were found in other factors, indicating that none of the confounding factors seems to be profound. Results demonstrated that heterozygous mice had larger left ventriclular myocyte diameters than the control mice. Morphological changes in cardiac muscles by electron microscopy revealed age-associated changes of lipid deposition and abnormal mitochondria in heterozygous mice. Two out of 60 heterozygous cohort and one out of nine heterozygous trim-kill mice had cardiac hypertrophy at ages older than 2 years. The present study and our previous work suggest that the carrier state of OCTN2 pathological mutations might be a risk factor for age-associated cardiomyopathy.

  14. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia

    PubMed Central

    Gray, Belinda; Bagnall, Richard D.; Lam, Lien; Ingles, Jodie; Turner, Christian; Haan, Eric; Davis, Andrew; Yang, Pei-Chi; Clancy, Colleen E.; Sy, Raymond W.; Semsarian, Christopher

    2017-01-01

    Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal inherited arrhythmia syndrome characterized by adrenergically stimulated ventricular tachycardia. Mutations in the cardiac ryanodine receptor gene (RYR2) cause an autosomal dominant form of CPVT, while mutations in the cardiac calsequestrin 2 gene (CASQ2) cause an autosomal recessive form. Objective The aim of this study was to clinically and genetically evaluate a large family with severe autosomal dominant CPVT. Methods Clinical evaluation of family members was performed, including detailed history, physical examination, electrocardiogram, exercise stress test, and autopsy review of decedents. We performed genome-wide linkage analysis in 12 family members and exome sequencing in 2 affected family members. In silico models of mouse and rabbit myocyte electrophysiology were used to predict potential disease mechanisms. Results Severe CPVT with dominant inheritance in 6 members was diagnosed in a large family with 2 sudden deaths, 2 resuscitated cardiac arrests, and multiple appropriate implantable cardioverter-defibrillator shocks. A comprehensive analysis of cardiac arrhythmia genes did not reveal a pathogenic variant. Exome sequencing identified a novel heterozygous missense variant in CASQ2 (Lys180Arg) affecting a highly conserved residue, which cosegregated with disease and was absent in unaffected family members. Genome-wide linkage analysis confirmed a single linkage peak at the CASQ2 locus (logarithm of odds ratio score 3.01; θ = 0). Computer simulations predicted that haploinsufficiency was unlikely to cause the severe CPVT phenotype and suggested a dominant negative mechanism. Conclusion We show for the first time that a variant in CASQ2 causes autosomal dominant CPVT. Genetic testing in dominant CPVT should include screening for heterozygous CASQ2 variants. PMID:27157848

  15. Compound heterozygous GFM2 mutations with Leigh syndrome complicated by arthrogryposis multiplex congenita.

    PubMed

    Fukumura, Shinobu; Ohba, Chihiro; Watanabe, Toshihide; Minagawa, Kimio; Shimura, Masaru; Murayama, Kei; Ohtake, Akira; Saitsu, Hirotomo; Matsumoto, Naomichi; Tsutsumi, Hiroyuki

    2015-09-01

    Defects in the mitochondrial translation apparatus can impair energy production in affected tissues and organs. Most components of this apparatus are encoded by nuclear genes, including GFM2, which encodes a mitochondrial ribosome recycling factor. A few patients with mutations in some of these genes have been reported to date. Here, we present two female siblings with arthrogryposis multiplex congenita, optic atrophy and severe mental retardation. The younger sister had a progressive cerebellar atrophy and bilateral neuropathological findings in the brainstem. Although her cerebrospinal fluid (CSF) levels of lactate and pyruvate were not increased, brain magnetic resonance spectroscopy showed a lactate peak. Additionally, her CSF lactate/pyruvate and serum beta-hydroxybutyrate/acetoacetate ratios were high, and levels of oxidative phosphorylation in skin fibroblasts were reduced. We therefore diagnosed Leigh syndrome. Genomic investigation confirmed the presence of compound heterozygous GFM2 mutations (c.206+4A>G and c.2029-1G>A) in both siblings, causing aberrant splicing with premature stop codons (p.Gly50Glufs*4 and p.Ala677Leufs*2, respectively). These findings suggest that GFM2 mutations could be causative of a phenotype of Leigh syndrome with arthrogryposis multiplex congenita.

  16. Heterozygous frameshift mutation in keratin 5 in a family with Galli-Galli disease.

    PubMed

    Reisenauer, A K; Wordingham, S V; York, J; Kokkonen, E W J; Mclean, W H I; Wilson, N J; Smith, F J D

    2014-06-01

    Reticulate pigmentary disorders include the rare autosomal dominant Galli-Galli disease (GGD) and Dowling-Degos disease (DDD). Clinical diagnosis between some of the subtypes can be difficult due to a degree of overlap between clinical features, therefore analysis at the molecular level may be necessary to confirm the diagnosis. To identify the underlying genetic defect in a 48-year-old Asian-American woman with a clinical diagnosis of GGD. Histological analysis was performed on a skin biopsy using haematoxylin-eosin staining. KRT5 (the gene encoding keratin 5) was amplified from genomic DNA and directly sequenced. The patient had a history of pruritus and hyperpigmented erythematous macules and thin papules along the flexor surfaces of her arms, her upper back and neck, axillae and inframammary areas. Hypopigmented macules were seen among the hyperpigmentation. A heterozygous 1-bp insertion mutation in KRT5 (c.38dupG; p.Ser14GlnfsTer3) was identified in the proband. This mutation occurs within the head domain of the keratin 5 protein leading to a frameshift and premature stop codon. From the histological findings and mutation analysis the individual was identified as having GGD due to haploinsufficiency of keratin 5. © 2013 The Authors British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

  17. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency.

    PubMed

    Amor, David J; Marsh, Ashley P L; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B; Pope, Kate; Bromhead, Catherine; Leventer, Richard J; Bahlo, Melanie; Lockhart, Paul J

    2016-12-01

    To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency.

  18. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Amor, David J.; Marsh, Ashley P.L.; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B.; Pope, Kate; Bromhead, Catherine; Leventer, Richard J.; Bahlo, Melanie

    2016-01-01

    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency. PMID:27790638

  19. A novel type heterozygous mutation in the glucose-6-phosphatase gene in a Chinese patient with glycogen storage disease Ia.

    PubMed

    Zhu, Jie; Xing, Yan; Xing, Xuenong; Ren, An; Ye, Shandong; He, Guoping

    2012-12-10

    Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). By genotype analysis of the affected pedigree, we identified a novel type mutation in a Chinese patient with GSD Ia. Mutation analysis was performed for the coding region of G6Pase gene using DNA sequencing and TaqMan gene expression assay was used to further confirm the novel mutation. The proband was compound heterozygous for c.311A>T/c.648G>T. Our report expands the spectrum of G6Pase gene mutation in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Novel Compound Heterozygous Mutations in the Pantothenate Kinase 2 Gene in a Korean Patient with Atypical Pantothenate Kinase Associated Neurodegeneration

    PubMed Central

    Kim, Sung-Hyouk; Sung, Young-Hee; Park, Kee-Hyung; Lee, Yeung-Bae; Park, Hyeon-Mi; Shin, Dong Jin; Kim, Gu-Hwan

    2009-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder that is characterized by mutations in the pantothenate kinase 2 gene (PANK2) and typical magnetic resonance imaging findings. We report a case of atypical PKAN presenting with generalized dystonia. Our patient had compound heterozygous mutations in the PANK2 gene, including mutation in exon 3 (p.D268G) and exon 4 (p.R330P). To our knowledge, this patient is the first to have the p.R330P mutation and the second to have the p.D268G mutation. PMID:24868354

  1. Novel compound heterozygous mutations in the pantothenate kinase 2 gene in a korean patient with atypical pantothenate kinase associated neurodegeneration.

    PubMed

    Kim, Sung-Hyouk; Sung, Young-Hee; Park, Kee-Hyung; Lee, Yeung-Bae; Park, Hyeon-Mi; Shin, Dong Jin; Kim, Gu-Hwan

    2009-05-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder that is characterized by mutations in the pantothenate kinase 2 gene (PANK2) and typical magnetic resonance imaging findings. We report a case of atypical PKAN presenting with generalized dystonia. Our patient had compound heterozygous mutations in the PANK2 gene, including mutation in exon 3 (p.D268G) and exon 4 (p.R330P). To our knowledge, this patient is the first to have the p.R330P mutation and the second to have the p.D268G mutation.

  2. Renal transplantation experience in a patient with factor V Leiden homozygous, MTHFR C677T heterozygous, and PAI heterozygous mutation.

    PubMed

    Gülhan, Bora; Tavil, Betül; Gümrük, Fatma; Aki, Tuncay F; Topaloglu, Rezan

    2015-08-01

    Vascular complications are important causes of allograft loss in renal transplantation. A two and a half-month-old boy was diagnosed with posterior urethral valve and progressed to end-stage renal disease at eight yr of age. During the HD period, a central venous catheter was replaced three times for repeated thrombosis. The boy was found to be homozygous for FVL and heterozygous for both MTHFR (C677T) and PAI. At the age of 12, renal transplantation was performed from a deceased donor. Postoperative anticoagulation therapy was initiated with continuous intravenous administration of heparin at the dose of 10 IU/kg/h. HD was performed for the first three days. By the fourth day of transplantation, his urine output had increased gradually. Heparin infusion was continued for 18 days during hospitalization at the same dosage. Thereafter, he was discharged with LMWH. On the third month after transplantation, his serum creatinine level was 1.1 mg/dL and eGFR was 75.7 mL/min/1.73 m(2). He has still been using LMWH, and his eGFR was 78.7 mL/min/1.73 m(2) eight months after transplantation. Postoperative low-dose heparin treatment is a safe strategy for managing a patient with multiple thrombotic risk factors. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    PubMed

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. A compound heterozygous mutation in the FMO3 gene: the first pediatric case causes fish odor syndrome in Korea

    PubMed Central

    Cho, Sung Min; Chae, Jong-Hee

    2017-01-01

    Trimethylaminuria (TMAuria), known as “fish odor syndrome,” is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase 3 (FMO3). Most TMAuria cases are caused by missense mutations, but nonsense mutations have also been reported in these cases. Here, we describe the identification of a novel FMO3 gene mutation in a patient with TMAuria and her family. A 3-year-old girl presented with a strong corporal odor after ingesting fish. Genomic DNA sequence analysis revealed that she had compound heterozygous FMO3 mutations; One mutation was the missense mutation p.Val158Ile in exon 3, and the other was a novel nonsense mutation, p.Ser364X, in exon 7 of the FMO3 gene. Familial genetic analyses showed that the p.Val158Ile mutation was derived from the same allele in the father, and the p.Ser364X mutation was derived from the mother. This is the first description of the p.Ser364X mutation, and the first report of a Korean patient with TMAuria caused by novel compound heterozygous mutations. PMID:28392825

  5. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions

    PubMed Central

    Dubourg, C.; Bonnet-Brilhault, F.; Toutain, A.; Mignot, C.; Jacquette, A.; Dieux, A.; Gérard, M.; Beaumont-Epinette, M.-P.; Julia, S.; Isidor, B.; Rossi, M.; Odent, S.; Bendavid, C.; Barthélémy, C.; Verloes, A.; David, V.

    2014-01-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions. PMID:24715852

  6. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions.

    PubMed

    Dubourg, C; Bonnet-Brilhault, F; Toutain, A; Mignot, C; Jacquette, A; Dieux, A; Gérard, M; Beaumont-Epinette, M-P; Julia, S; Isidor, B; Rossi, M; Odent, S; Bendavid, C; Barthélémy, C; Verloes, A; David, V

    2014-02-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions.

  7. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain.

    PubMed Central

    Touraine, R L; Attié-Bitach, T; Manceau, E; Korsch, E; Sarda, P; Pingault, V; Encha-Razavi, F; Pelet, A; Augé, J; Nivelon-Chevallier, A; Holschneider, A M; Munnes, M; Doerfler, W; Goossens, M; Munnich, A; Vekemans, M; Lyonnet, S

    2000-01-01

    Waardenburg syndrome type 4 (WS4), also called Shah-Waardenburg syndrome, is a rare neurocristopathy that results from the absence of melanocytes and intrinsic ganglion cells of the terminal hindgut. WS4 is inherited as an autosomal recessive trait attributable to EDN3 or EDNRB mutations. It is inherited as an autosomal dominant condition when SOX10 mutations are involved. We report on three unrelated WS4 patients with growth retardation and an as-yet-unreported neurological phenotype with impairment of both the central and autonomous nervous systems and occasionally neonatal hypotonia and arthrogryposis. Each of the three patients was heterozygous for a SOX10 truncating mutation (Y313X in two patients and S251X [corrected] in one patient). The extended spectrum of the WS4 phenotype is relevant to the brain expression of SOX10 during human embryonic and fetal development. Indeed, the expression of SOX10 in human embryo was not restricted to neural-crest-derived cells but also involved fetal brain cells, most likely of glial origin. These data emphasize the important role of SOX10 in early development of both neural-crest-derived tissues, namely melanocytes, autonomic and enteric nervous systems, and glial cells of the central nervous system. PMID:10762540

  8. Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy.

    PubMed

    Johnstone, Devon L; Nguyen, Thi-Tuyet-Mai; Murakami, Yoshiko; Kernohan, Kristin D; Tétreault, Martine; Goldsmith, Claire; Doja, Asif; Wagner, Justin D; Huang, Lijia; Hartley, Taila; St-Denis, Anik; le Deist, Françoise; Majewski, Jacek; Bulman, Dennis E; Kinoshita, Taroh; Dyment, David A; Boycott, Kym M; Campeau, Philippe M

    2017-05-01

    There are over 150 known human proteins which are tethered to the cell surface via glycosylphosphatidylinositol (GPI) anchors. These proteins play a variety of important roles in development, and particularly in neurogenesis. Not surprisingly, mutations in the GPI anchor biosynthesis and remodeling pathway cause a number of developmental disorders. This group of conditions has been termed inherited GPI deficiencies (IGDs), a subgroup of congenital disorders of glycosylation; they present with variable phenotypes, often including seizures, hypotonia and intellectual disability. Here, we report two siblings with compound heterozygous variants in the gene phosphatidylinositol glycan anchor biosynthesis, class P (PIGP) (NM_153681.2: c.74T > C;p.Met25Thr and c.456delA;p.Glu153AsnFs*34). PIGP encodes a subunit of the enzyme that catalyzes the first step of GPI anchor biosynthesis. Both children presented with early-onset refractory seizures, hypotonia, and profound global developmental delay, reminiscent of other IGD phenotypes. Functional studies with patient cells showed reduced PIGP mRNA levels, and an associated reduction of GPI-anchored cell surface proteins, which was rescued by exogenous expression of wild-type PIGP. This work associates mutations in the PIGP gene with a novel autosomal recessive IGD, and expands our knowledge of the role of PIG genes in human development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Thiamine responsive megaloblastic anemia: a novel SLC19A2 compound heterozygous mutation in two siblings.

    PubMed

    Mozzillo, Enza; Melis, Daniela; Falco, Mariateresa; Fattorusso, Valentina; Taurisano, Roberta; Flanagan, Sarah E; Ellard, Sian; Franzese, Adriana

    2013-08-01

    Thiamine responsive megaloblastic anemia (TRMA) is an autosomal recessive disease caused by loss of function mutations in the SLC19A2 gene. TRMA is characterized by anemia, deafness, and diabetes. In some cases, optic atrophy or more rarely retinitis pigmentosa is noted. We now report two sisters, the eldest of which presented to a different hospital during childhood with sensorineural deafness, which was treated with a hearing prosthesis, insulin requiring diabetes, retinitis pigmentosa, optic atrophy, and macrocytic anemia. These features initially suggested a clinical diagnosis of Wolfram syndrome (WS). Therapy with thiamine was initiated which resulted in the resolution of the anemia. The younger sister, who was affected with sensorineural deafness, was referred to our hospital for non-autoimmune diabetes. She was found to have macrocytosis and ocular abnormalities. Because a diagnosis of TRMA was suspected, therapy with insulin and thiamine was started. Sequencing analysis of the SLC19A2 gene identified a compound heterozygous mutation p.Y81X/p.L457X (c.242insA/c.1370delT) in both sisters. Non-autoimmune diabetes associated with deafness and macrocytosis, without anemia, suggests a diagnosis of TRMA. Patients clinically diagnosed with WS with anemia and/or macrocytosis should be reevaluated for TRMA. © 2012 John Wiley & Sons A/S.

  10. Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK) is caused by heterozygous KCNC1 mutations.

    PubMed

    Nascimento, Fábio A; Andrade, Danielle M

    2016-09-01

    Progressive myoclonus epilepsy (PME) is a distinct group of seizure disorders characterized by gradual neurological decline with ataxia, myoclonus and recurring seizures. There are several forms of PME, among which the most recently described is MEAK - myoclonus epilepsy and ataxia due to potassium channel mutation. This particular subtype is caused by a recurrent de novo heterozygous mutation (c.959G>A, p.Arg320His) in the KCNC1 gene, which maps to chromosome 11 and encodes for the Kv3.1 protein (a subunit of the Kv3 subfamily of voltage-gated potassium channels). Loss of Kv3 function disrupts the firing properties of fast-spiking neurons, affects neurotransmitter release and induces cell death. Specifically regarding Kv3.1 malfunctioning, the most affected neurons include inhibitory GABAergic interneurons and cerebellar neurons. Impairment of the former cells is believed to contribute to myoclonus and seizures, whereas dysfunction of the latter to ataxia and tremor. Phenotypically, MEAK patients generally have a normal early development. At the age of 6 to 14 years, they present with myoclonus, which tends to progressively worsen with time. Tonic-clonic seizures may or may not be present, and some patients develop mild cognitive impairment following seizure onset. Typical electroencephalographic features comprise generalized epileptiform discharges and, in some cases, photosensitivity. Brain imaging is either normal or shows cerebellar atrophy. The identification of MEAK has both expanded the phenotypic and genotypic spectra of PME and established an emerging role for de novo mutations in PME.

  11. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood

    PubMed Central

    Herman, Melina; Ciancanelli, Michael; Ou, Yi-Hung; Lorenzo, Lazaro; Klaudel-Dreszler, Maja; Pauwels, Elodie; Sancho-Shimizu, Vanessa; Pérez de Diego, Rebeca; Abhyankar, Avinash; Israelsson, Elisabeth; Guo, Yiqi; Cardon, Annabelle; Rozenberg, Flore; Lebon, Pierre; Tardieu, Marc; Heropolitańska-Pliszka, Edyta; Chaussabel, Damien; White, Michael A.; Abel, Laurent; Zhang, Shen-Ying

    2012-01-01

    Childhood herpes simplex virus-1 (HSV-1) encephalitis (HSE) may result from single-gene inborn errors of TLR3 immunity. TLR3-dependent induction of IFN-α/β or IFN-λ is crucial for protective immunity against primary HSV-1 infection in the central nervous system (CNS). We describe here two unrelated children with HSE carrying different heterozygous mutations (D50A and G159A) in TBK1, the gene encoding TANK-binding kinase 1, a kinase at the crossroads of multiple IFN-inducing signaling pathways. Both mutant TBK1 alleles are loss-of-function but through different mechanisms: protein instability (D50A) or a loss of kinase activity (G159A). Both are also associated with an autosomal-dominant (AD) trait but by different mechanisms: haplotype insufficiency (D50A) or negative dominance (G159A). A defect in polyinosinic-polycytidylic acid–induced TLR3 responses can be detected in fibroblasts heterozygous for G159A but not for D50A TBK1. Nevertheless, viral replication and cell death rates caused by two TLR3-dependent viruses (HSV-1 and vesicular stomatitis virus) were high in fibroblasts from both patients, and particularly so in G159A TBK1 fibroblasts. These phenotypes were rescued equally well by IFN-α2b. Moreover, the IFN responses to the TLR3-independent agonists and viruses tested were maintained in both patients’ peripheral blood mononuclear cells and fibroblasts. The narrow, partial cellular phenotype thus accounts for the clinical phenotype of these patients being limited to HSE. These data identify AD partial TBK1 deficiency as a new genetic etiology of childhood HSE, indicating that TBK1 is essential for the TLR3- and IFN-dependent control of HSV-1 in the CNS. PMID:22851595

  12. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae.

    PubMed

    Szafraniec, Krzysztof; Wloch, Dominika M; Sliwa, Piotr; Borts, Rhona H; Korona, Ryszard

    2003-08-01

    Rare, random mutations were induced in budding yeast by ethyl methanesulfonate (EMS). Clones known to bear a single non-neutral mutation were used to obtain mutant heterozygotes and mutant homozygotes that were later compared with wild-type homozygotes. The average homozygous effect of mutation was an approximately 2% decrease in the growth rate. In heterozygotes, the harmful effect of these relatively mild mutations was reduced approximately fivefold. In a test of epistasis, two heterozygous mutant loci were paired at random. Fitness of the double mutants was best explained by multiplicative action of effects at single loci, with little evidence for epistasis and essentially excluding synergism. In other experiments, the same mutations in haploid and heterozygous diploid clones were compared. Regardless of the haploid phenotypes, mildly deleterious or lethal, fitness of the heterozygotes was decreased by less than half a per cent on average. In general, the results presented here suggest that most mutations tend to exhibit small and weakly interacting effects in heterozygous loci regardless of how harmful they are in haploids or homozygotes.

  13. A heterozygous putative null mutation in ROM1 without a mutation in peripherin/RDS in a family with retinitis pigmentosa

    SciTech Connect

    Sakuma, Hitoshi; Inana, G.; Murakami, Akira

    1995-05-20

    ROM1 is a 351-amino-acid, 37-kDa outer segment membrane protein of rod photoreceptors. ROM1 is related to peripherin/RDS, another outer segment membrane protein found in both rods and cones. The precise function of ROM1 or peripherin/RDS is not known, but they have been suggested to play important roles in the function and/or structure of the rod photoreceptor outer segment disks. A recent report implicated ROM1 in disease by suggesting that RP can be caused by a heterozygous null mutation in ROM1 but only in combination with another heterozygous mutation in peripherin/RDS. Screening of the ROM1 gene using polymerase chain reaction amplification, denaturing gradient gel electrophoresis, and direct DNA sequencing identified the same heterozygous putative null mutation in a family with RP.

  14. Ataxia-telangiectasia: Mutations in ATM cDNA detected by protein-truncation screening

    SciTech Connect

    Telatar, M.; Wang, Z.; Udar, N.

    1996-07-01

    We have examined the distal half of the ataxia-telangiectasia (A-T) gene transcript for truncation mutations in 48 A-T affecteds. We found 21 mutations; 4 of the mutations were seen in more than one individual. Genotyping of the individuals sharing mutations, by using nearby microsatellite markers, established that three of the four groups shared common haplotypes, indicating that these were probably founder effects, not public mutations. The one public mutation was found in two American families, one of Ashkenazi Jewish background and the other not. Most truncations deleted the PI3-kinase domain, although some exceptions to this were found in patients with typical A-T phenotypes. All patients not previously known to be consanguineous were found to be compound heterozygotes when mutations could be identified - that is, normal and abnormal protein segments were seen on SDS-PAGE gels. All 48 patients gave RT-PCR products, indicating the presence of relatively stable mRNAs despite their mutations. These results suggest that few public mutations or hot spots can be expected in the A-T gene and that epidemiological studies of A-T carrier status and associated health risks will have to be designed around populations with frequent founder-effect mutations, despite the obvious limitations of this approach. 20 refs., 4 figs., 1 tab.

  15. Novel compound heterozygous mutations in CNGA1in a Chinese family affected with autosomal recessive retinitis pigmentosa by targeted sequencing.

    PubMed

    Wang, Min; Gan, Dekang; Huang, Xin; Xu, Gezhi

    2016-07-08

    About 37 genes have been reported to be involved in autosomal recessive retinitis pigmentosa, a hereditary retinal disease. However, causative genes remain unclear in a lot of cases. Two sibs of a Chinese family with ocular disease were diagnosed in Eye and ENT Hospital of Fudan University. Targeted sequencing performed on proband to screen pathogenic mutations. PCR combined Sanger sequencing then performed on eight family members including two affected and six unaffected individuals to determine whether mutations cosegregate with disease. Two affected members exhibited clinical features that fit the criteria of autosomal recessive retinitis pigmentosa. Two heterozygous mutations (NM000087, p.Y82X and p.L89fs) in CNGA1 were revealed on proband. Affected members were compound heterozygotes for the two mutations whereas unaffected members either had no mutation or were heterozygote carriers for only one of the two mutations. That is, these mutations cosegregate with autosomal recessive retinitis pigmentosa. Compound heterozygous mutations (NM000087, p.Y82X and p.L89fs) in exon 6 of CNGA1are pathogenic mutations in this Chinese family. Of which, p.Y82X is firstly reported in patient with autosomal recessive retinitis pigmentosa.

  16. Acquired Gitelman Syndrome in an Anti-SSA Antibody-positive Patient with a SLC12A3 Heterozygous Mutation

    PubMed Central

    Kusuda, Takeshi; Hosoya, Tadashi; Mori, Takayasu; Ihara, Katsuhito; Nishida, Hidenori; Chiga, Motoko; Sohara, Eisei; Rai, Tatemitsu; Koike, Ryuji; Uchida, Shinichi; Kohsaka, Hitoshi

    2016-01-01

    A 36-year-old woman developed hypokalemic metabolic alkalosis after anti SS-A antibody was found to be positive. Diuretic loading test results were compatible with Gitelman syndrome (GS). The patient had a heterozygous mutation in SLC12A3, which encodes for thiazide-sensitive NaCl cotransporter (NCCT). While the mutation may be responsible for a latent hypofunction of NCCTs, the underlying anti-SSA antibody-associated autoimmunity induced the manifestation of its hypofunction. To the best of our knowledge, this is the first report to demonstrate that anti SS-A antibody-associated autoimmunity may induce GS in a patient with a SLC12A3 heterozygous mutation. PMID:27803420

  17. De Novo Truncating FUS Gene Mutation as a Cause of Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    DeJesus-Hernandez, Mariely; Kocerha, Jannet; Finch, NiCole; Crook, Richard; Baker, Matt; Desaro, Pamela; Johnston, Amelia; Rutherford, Nicola; Wojtas, Aleksandra; Kennelly, Kathleen; Wszolek, Zbigniew K.; Graff-Radford, Neill; Boylan, Kevin; Rademakers, Rosa

    2010-01-01

    Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402 P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS. PMID:20232451

  18. Novel germline PALB2 truncating mutations in African-American breast cancer patients

    PubMed Central

    Zheng, Yonglan; Zhang, Jing; Niu, Qun; Huo, Dezheng; Olopade, Olufunmilayo I.

    2011-01-01

    Background It has been demonstrated that PALB2 acts as a bridging molecule between the BRCA1 and BRCA2 proteins and is responsible for facilitating BRCA2-mediated DNA repair. Truncating mutations in the PALB2 gene have been reported to be enriched in Fanconi anemia and breast cancer patients in various populations. Methods We evaluated the contribution of PALB2 germline mutations in 279 African-American breast cancer patients including 29 patients with a strong family history, 29 patients with a moderate family history, 75 patients with a weak family history, and 146 non-familial or sporadic breast cancer cases. Results After direct sequencing of all the coding exons, exon/intron boundaries, 5′UTR and 3′UTR of PALB2, three (1.08%; 3 in 279) novel monoallelic truncating mutations were identified: c.758dupT (exon4), c.1479delC (exon4) and c.3048delT (exon 10); together with 50 sequence variants, 27 of which are novel. None of the truncating mutations were found in 262 controls from the same population. Conclusions PALB2 mutations are present in both familial and non-familial breast cancer among African-Americans. Rare PALB2 mutations account for a small but substantial proportion of breast cancer patients. PMID:21932393

  19. Tumorigenesis in mice carrying a truncating Brca1 mutation

    PubMed Central

    Ludwig, Thomas; Fisher, Peter; Ganesan, Shridar; Efstratiadis, Argiris

    2001-01-01

    We generated mouse mutants carrying in the Brca1 locus a modification (Brca1tr) that eliminates the C-terminal half of the protein product and obtained results indicating that, depending on genetic background, the missing BRCT and/or other domains are dispensable for survival, but essential for tumor suppression. Most of the apparently hypomorphic Brca1tr/tr mutants developed various tumors. Lymphomas were detected at all ages, whereas sarcomas and carcinomas, including breast cancer, appeared after a long latency. The mammary tumors showed striking variability in histopathological patterns suggesting stochastic engagement of tumorigenic pathways in their progression, to which the Brca1tr/tr mutation was apparently a late participant. PMID:11358863

  20. [Formation of para-Bombay phenotype caused by homozygous or heterozygous mutation of FUT1 gene].

    PubMed

    Zhang, Jin-Ping; Zheng, Yan; Sun, Dong-Ni

    2014-02-01

    This study was aimed to explore the molecular mechanisms for para-Bombay phenotype formation. The H antigen of these individuals were identified by serological techniques. The full coding region of alpha (1, 2) fucosyltransferase (FUT1) gene of these individuals was amplified by high-fidelity polymerase chain reaction (PCR). PCR product was identified by TOPO cloning sequencing. Analysis and comparison were used to explore the mechanisms of para-bombay phenotype formation in individuals. The results indicated that the full coding region of FUT1 DNA was successfully amplified by PCR and gel electrophoresis. DNA sequencing and analysis found that h1 (547-552delAG) existed in one chromosome and h4 (35C > T) existed in the other chromosome of NO.1 individual. Meantime, h1 (547-552delAG) was found in two chromosomes of NO.2 and NO.3 individual. It also means that FUT1 gene of NO.1 individual was h1h4 heterozygote, FUT1 gene of NO.2 and NO.3 individuals were h1h1 homozygote. It is concluded that homozygous and heterozygous mutation of FUT1 gene can lead to the formation of para-Bombay phenotype.

  1. Glucose transporter isoform-3-null heterozygous mutation causes sexually dimorphic adiposity with insulin resistance.

    PubMed

    Ganguly, Amit; Devaskar, Sherin U

    2008-06-01

    We examined male and female glucose transporter isoform-3 (GLUT3; placenta)-null heterozygous(+/-) mutation-carrying mice and compared them with age- and sex-matched wild-type(+/+) littermates. No difference in postnatal (1-2 days, 6-7 days, 12-13 days, 20-21 days), postsuckling (1-2 mo), and adult (3-6 mo) growth pattern was seen except for an increase in body weight of 9- to 11-mo-old male but not female GLUT3(+/-) mice. This change in male mutant mice was associated with increased total body fat mass, perirenal and epididymal white adipose tissue weight, and hepatic lipid infiltration. These minimally glucose-intolerant male mutant mice demonstrated no change in caloric intake but a decline in basal metabolic rate and insulin resistance. No perturbation in basal circulating glucose concentrations but an increase in insulin concentrations, triglycerides, and total cholesterol was observed in GLUT3(+/-) male mice. Tissue analysis in males and females demonstrated diminished GLUT3 protein in GLUT3(+/-) brain and skeletal muscle with no change in brain and adipose tissue GLUT1 protein concentrations. Furthermore, the male GLUT3(+/-) mice expressed decreased insulin-responsive GLUT4 in white adipose tissue and skeletal muscle sarcolemma. We conclude that the GLUT3(+/-) male mice develop adult-onset adiposity with insulin resistance.

  2. Slow ventricular conduction in mice heterozygous for a connexin43 null mutation.

    PubMed Central

    Guerrero, P A; Schuessler, R B; Davis, L M; Beyer, E C; Johnson, C M; Yamada, K A; Saffitz, J E

    1997-01-01

    To characterize the role of the gap junction protein connexin43 (Cx43) in ventricular conduction, we studied hearts of mice with targeted deletion of the Cx43 gene. Mice homozygous for the Cx43 null mutation (Cx43 -/-) die shortly after birth. Attempts to record electrical activity in neonatal Cx43 -/- hearts (n = 5) were unsuccessful. Ventricular epicardial conduction of paced beats, however, was 30% slower in heterozygous (Cx43 -/+) neonatal hearts (0.14+/-0.04 m/s, n = 27) than in wild-type (Cx43 +/+) hearts (0.20+/-0.07 m/s, n = 32; P < 0.001). This phenotype was even more severe in adult mice; ventricular epicardial conduction was 44% slower in 6-9 mo-old Cx43 -/+ hearts (0.18+/-0.03 m/s, n = 5) than in wild-type hearts (0.32+/-0.07 m/s, n = 7, P < 0.001). Electrocardiograms revealed significant prolongation of the QRS complex in adult Cx43 -/+ mice (13.4+/-1.8 ms, n = 13) compared with Cx43 +/+ mice (11.5+/-1.4 ms, n = 12, P < 0.01). Whole-cell recordings of action potential parameters in cultured disaggregated neonatal ventricular myocytes from Cx43 -/+ and +/+ hearts showed no differences. Thus, reduction in the abundance of a major cardiac gap junction protein through targeted deletion of a Cx43 allele directly leads to slowed ventricular conduction. PMID:9109444

  3. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype

    PubMed Central

    Toubiana, Julie; Okada, Satoshi; Hiller, Julia; Oleastro, Matias; Lagos Gomez, Macarena; Aldave Becerra, Juan Carlos; Ouachée-Chardin, Marie; Fouyssac, Fanny; Girisha, Katta Mohan; Etzioni, Amos; Van Montfrans, Joris; Camcioglu, Yildiz; Kerns, Leigh Ann; Belohradsky, Bernd; Blanche, Stéphane; Bousfiha, Aziz; Rodriguez-Gallego, Carlos; Meyts, Isabelle; Kisand, Kai; Reichenbach, Janine; Renner, Ellen D.; Rosenzweig, Sergio; Grimbacher, Bodo; van de Veerdonk, Frank L.; Traidl-Hoffmann, Claudia; Picard, Capucine; Marodi, Laszlo; Morio, Tomohiro; Kobayashi, Masao; Lilic, Desa; Milner, Joshua D.; Holland, Steven; Casanova, Jean-Laurent

    2016-01-01

    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A–producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis. PMID:27114460

  4. Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study.

    PubMed

    Cools, M; Goemaere, S; Baetens, D; Raes, A; Desloovere, A; Kaufman, J M; De Schepper, J; Jans, I; Vanderschueren, D; Billen, J; De Baere, E; Fiers, T; Bouillon, R

    2015-12-01

    Bi-allelic CYP24A1 mutations can cause idiopathic infantile hypercalcemia (IIH), adult-onset nephrocalcinosis, and possibly bone metabolism disturbances. It is currently unclear if heterozygous carriers experience clinical problems or biochemical abnormalities. Our objective is to gain insight in the biochemical profile and health problems in CYP24A1 heterozygotes. Cross-sectional evaluation of participants. Data of previously reported carriers are reviewed. Outpatient clinic of a tertiary care hospital. Participants were eight family members of an infant with a well-characterized homozygous CYP24A1 mutation c.1186C>T p.(Arg396Trp). Serum vitamin D metabolites. Symptoms or biochemical signs of hypercalcemia, hypercalciuria or nephrocalcinosis. Bone health in heterozygous as compared to wild type (WT) subjects. Genotyping by Sanger sequencing; vitamin D metabolites by liquid chromatography tandem mass spectrometry; renal, calcium and bone markers by biochemical analyses; presence of nephrocalcinosis by renal ultrasound; bone health by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Six participants were heterozygous carriers of the mutation. None of the heterozygous subjects had experienced IIH. One had a documented history of nephrolithiasis, two others had complaints compatible with this diagnosis. No major differences between WT and heterozygous subjects were found regarding bone health, serum or urinary calcium or 25OHD/24,25(OH)2D ratio. Literature reports on three out of 33 heterozygous cases suffering from IIH. In all three, the 25OHD/24,25(OH)2D ratio was highly elevated. Nephrocalcinosis was frequently reported in family members of IIH cases. Small sample size, lack of a large control group. Our and literature data suggest that most heterozygous CYP24A1 mutation carriers have a normal 25OHD/24,25(OH)2D ratio, are usually asymptomatic and have a normal skeletal status but may possibly be at increased risk of nephrocalcinosis

  5. A novel compound heterozygous mutation in the GJB2 gene causing non-syndromic hearing loss in a family.

    PubMed

    Wei, Qinjun; Liu, Youguo; Wang, Shuai; Liu, Tingting; Lu, Yajie; Xing, Guangqian; Cao, Xin

    2014-02-01

    Mutations in the GJB2 gene are responsible for up to 50% of cases of non-syndromic recessive hearing loss, with c.35delG, c.167delT and c.235delC being the predominant mutations in many world populations. However, a large number of rare mutations in this gene may also contribute to hearing loss. The aim of the present study was to conduct a clinical and molecular characterization of a Chinese family with non-syndromic hearing loss. Sequence analysis of the GJB2 gene led to the identification of a novel compound heterozygous mutation c.257C>G (p.T86R)/c.605ins46 in two profoundly deaf siblings whose hearing parents were each heterozygous, either for the c.257C>G (paternal) or for the c.605ins46 (maternal) mutations. Both c.257C>G and c.605ins46 are rare GJB2 mutations that have previously been reported to segregate with autosomal recessive hearing loss exclusively in East Asian populations. To study the pathogenic effect of the compound heterozygous mutation, a three-dimensional model was constructed and Anolea mean force potential energy was predicted for a bioinformatic structural analysis. HEK293 cells were used to study the pathogenic effect of mutant connexin 26 proteins. The results suggested that the c.257C>G (p.T86R)/c.605ins46 mutations in the GJB2 gene provides a novel molecular explanation for the role of the GJB2 gene in hearing loss.

  6. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations.

    PubMed

    Agier, Virginie; Oliviero, Patricia; Lainé, Jeanne; L'Hermitte-Stead, Caroline; Girard, Samantha; Fillaut, Sandrine; Jardel, Claude; Bouillaud, Frédéric; Bulteau, Anne Laure; Lombès, Anne

    2012-10-01

    Deleterious consequences of heterozygous OPA1 mutations responsible for autosomal dominant optic atrophy remain a matter of debate. Primary skin fibroblasts derived from patients have shown diverse mitochondrial alterations that were however difficult to resolve in a unifying scheme. To address the potential use of these cells as disease model, we undertook parallel and quantitative analyses of the diverse reported alterations in four fibroblast lines harboring different OPA1 mutations, nonsense or missense, in the guanosine triphosphatase or the C-terminal coiled-coil domains. We tackled several factors potentially underlying discordant reports and showed that fibroblasts with heterozygous OPA1 mutations present with several mitochondrial alterations. These included defective mitochondrial fusion during pharmacological challenge with the protonophore carbonyl cyanide m-chlorophenyl hydrazone, significant mitochondrial elongation with decreased OPA1 and DRP1 proteins, and abnormal mitochondrial fragmentation during glycolysis shortage or exogenous oxidative stress. Respiratory complex IV activity and subunits steady-state were decreased without alteration of the mitochondrial deoxyribonucleic acid size, amount or transcription. Physical link between OPA1 protein and oxidative phosphorylation was shown by reciprocal immunoprecipitation. Altered cristae structure coexisted with normal response to pro-apoptotic stimuli and expression of Bax or Bcl2 proteins. Skin fibroblasts with heterozygous OPA1 mutations thus share significant mitochondrial remodeling, and may therefore be useful for analyzing disease pathophysiology. Identifying whether the observed alterations are also present in ganglion retinal cells, and which of them underlies their degeneration process remains however an essential goal for therapeutic strategy.

  7. [Aquagenic palmar keratoderma in a patient heterozygous for the mutation c.3197G>C in the CFTR gene].

    PubMed

    Nadal, M; Laudier, B; Malinge, M C; Binois, R; Estève, E

    2015-03-01

    Aquagenic palmar keratoderma is an entity recently described in the literature by English and McCollough in 1996. It is a rare condition affecting young women and is of unknown incidence. It causes a wrinkled and oedematous appearance in the skin of the hands that may be seen a few minutes after immersion in water. This condition may be associated with a heterozygous mutation in CFTR, the gene involved in cystic fibrosis. We report the first case of aquagenic keratoderma associated with a new mutation in the CFTR gene. An 18-year-old patient with no particular history was referred for a painful rash on both palms occurring whenever she showered, and which had been ongoing for several months. The clinical examination was normal except for an appearance of moderate palmar hyperhidrosis. Following a test in which both hands were immersed in cold water for 5minutes, the patient presented itching, burning and pain localized to the hands. The palms were wrinkled and oedematous with white, translucent and confluent papules. A clinical diagnosis of aquagenic palmar keratoderma was made. Since this condition may be associated with mutations in the CFTR gene, a genetic study was performed for this patient and revealed the presence of a new mutation in the CFTR gene for cystic fibrosis in the heterozygous state inherited from her mother: c.3197G>C or p.Arg1066.Pro and a heterozygous polypyrimidic 5T variant inherited from her father. We report a new case of aquagenic palmar keratoderma in a patient heterozygous for a new mutation of the gene involved in cystic fibrosis. Several studies have shown association of aquagenic keratoderma with the CFTR gene for heterozygotes (carriers without cystic fibrosis), for patients with cystic fibrosis and for a patient presenting CFTRopathy with pancreatic insufficiency. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID).

    PubMed

    Garibyan, Lilit; Lobito, Adrian A; Siegel, Richard M; Call, Matthew E; Wucherpfennig, Kai W; Geha, Raif S

    2007-06-01

    B cells from patients with common variable immunodeficiency (CVID) who are heterozygous for transmembrane activator and CAML interactor (TACI) mutation C104R, which abolishes ligand binding, fail to produce Igs in response to TACI ligand. It is not known whether this is due to haploinsufficiency or dominant interference. Using in vitro transfection assays, here we demonstrate that C104R and the corresponding murine TACI mutant, C76R, which also does not bind ligand, dominantly interfere with TACI signaling. This effect was dependent on preassociation of the mutants with WT TACI in the absence of ligand. The mutants did not interfere with ligand binding by WT TACI, suggesting that they may act by disrupting ligand-induced receptor rearrangement and signaling. This work demonstrates that TACI preassembles as an oligomeric complex prior to ligand binding and provides a mechanistic insight into how the heterozygous C104R TACI mutation can potentially lead to CVID.

  9. PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations

    SciTech Connect

    Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.

    1994-09-01

    The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called the protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.

  10. A compound heterozygous EARS2 mutation associated with mild leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL).

    PubMed

    Güngör, Olcay; Özkaya, Ahmet Kağan; Şahin, Yavuz; Güngör, Gülay; Dilber, Cengiz; Aydın, Kürşad

    2016-10-01

    Mitochondrial glutamyl-tRNA synthetase is a major component of protein biosynthesis that loads tRNAs with cognate amino acids. Mutations in the gene encoding this enzyme have been associated with a variety of disorders related to oxidative phosphorylation. Here, we present a case of leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) presenting a biphasic clinical course characterized by delayed psychomotor development and seizure. High-throughput sequencing revealed a novel compound heterozygous mutation in mitochondrial glutamyl-tRNA synthetase 2 (EARS2), which appears to be causative of disease symptoms.

  11. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking.

    PubMed

    Dixon, P H; Weerasekera, N; Linton, K J; Donaldson, O; Chambers, J; Egginton, E; Weaver, J; Nelson-Piercy, C; de Swiet, M; Warnes, G; Elias, E; Higgins, C F; Johnston, D G; McCarthy, M I; Williamson, C

    2000-05-01

    Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy with serious consequences for the mother and fetus. Two pedigrees have been reported with ICP in the mothers of children with a subtype of autosomal recessive progressive familial intrahepatic cholestasis (PFIC) with raised serum gamma-glutamyl transpeptidase (gamma-GT). Affected children have homozygous mutations in the MDR3 gene (also called ABCB4 ), and heterozygous mothers have ICP. More frequently, however, ICP occurs in women with no known family history of PFIC and the genetic basis of this disorder is unknown. We investigated eight women with ICP and raised serum gamma-GT, but with no known family history of PFIC. DNA sequence analysis revealed a C to A transversion in codon 546 in exon 14 of MDR3 in one patient, which results in the missense substitution of the wild-type alanine with an aspartic acid. We performed functional studies of this mutation introduced into MDR1, a closely related homologue of MDR3. Fluorescence activated cell sorting (FACS) and western analysis indicated that this missense mutation causes disruption of protein trafficking with a subsequent lack of functional protein at the cell surface. The demonstration of a heterozygous missense mutation in the MDR3 gene in a patient with ICP with no known family history of PFIC, analysed by functional studies, is a novel finding. This shows that MDR3 mutations are responsible for the additional phenotype of ICP in a subgroup of women with raised gamma-GT.

  12. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    PubMed

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  13. Prospective study on the potential of RAAS blockade to halt renal disease in Alport syndrome patients with heterozygous mutations.

    PubMed

    Stock, Johanna; Kuenanz, Johannes; Glonke, Niklas; Sonntag, Joseph; Frese, Jenny; Tönshoff, Burkhard; Höcker, Britta; Hoppe, Bernd; Feldkötter, Markus; Pape, Lars; Lerch, Christian; Wygoda, Simone; Weber, Manfred; Müller, Gerhard-Anton; Gross, Oliver

    2017-01-01

    Patients with autosomal or X-linked Alport syndrome (AS) with heterozygous mutations in type IV collagen genes have a 1-20 % risk of progressing to end-stage renal disease during their lifetime. We evaluated the long-term renal outcome of patients at risk of progressive disease (chronic kidney disease stages 1-4) with/without nephroprotective therapy. This was a prospective, non-interventional, observational study which included data from a 4-year follow-up of AS patients with heterozygous mutations whose datasets had been included in an analysis of the 2010 database of the European Alport Registry. Using Kaplan-Meier estimates and logrank tests, we prospectively analyzed the updated datasets of 52 of these patients and 13 new datasets (patients added to the Registry after 2011). The effects of therapy, extrarenal symptoms and inheritance pattern on renal outcome were analyzed. The mean prospective follow-up was 46 ± 10 months, and the mean time on therapy was 8.4 ± 4.4 (median 7; range 2-18) years. The time from the appearance of the first symptom to diagnosis was 8.1 ± 14.2 (range 0-52) years. At the time of starting therapy, 5.4 % of patients had an estimated glomerular filtration rate of <60 ml/min, 67.6 % had proteinuria and 27.0 % had microalbuminuria. Therapeutic strategies included angiotensin-converting enzymer inhibitors (97.1 %), angiotensin receptor antagonists (1 patient), dual therapy (11.8 %) and statins (8.8 %). Among patients included in the prospective dataset, prevented the need for dialysis. Among new patients, no patient at risk for renal failure progressed to the next disease stage after 4 years follow-up; three patients even regressed to a lower stage during therapy. Treatment with blockers of the renin-angiotensin-aldosterone system prevents progressive renal failure in AS patients with heterozygous mutations in the genes causing AS. Considerable numbers of aging AS patients on dialysis may have heterozygous mutations in these

  14. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus.

    PubMed

    Rao, Yan; Dong, Sufang; Li, Zuhua; Yang, Guohua; Peng, Chunyan; Yan, Ming; Zheng, Fang

    2017-01-01

    To identify the potential candidate genes for a large Chinese family with autosomal dominant congenital cataract (ADCC) and nystagmus, and investigate the possible molecular mechanism underlying the role of the candidate genes in cataractogenesis. We combined the linkage analysis and direct sequencing for the candidate genes in the linkage regions to identify the causative mutation. The molecular and bio-functional properties of the proteins encoded by the candidate genes was further explored with biophysical and biochemical studies of the recombinant wild-type and mutant proteins. We identified a c. C749T (p.Q227X) transversion in exon 6 of CRYBB1, a cataract-causative gene. This nonsense mutation changes a phylogenetically conserved glutamine to a stop codon and is predicted to truncate the C-terminus of the wild-type protein by 26 amino acids. Comparison of the biophysical and biochemical properties of the recombinant full-length and truncated βB1-crystallins revealed that the mutation led to the insolubility and the phase separation phenomenon of the truncated protein with a changed conformation. Meanwhile, the thermal stability of the truncated βB1-crystallin was significantly decreased, and the mutation diminished the chaperoning ability of αA-crystallin with the mutant under heating stress. Our findings highlight the importance of the C-terminus in βB1-crystallin in maintaining the crystalline function and stability, and provide a novel insight into the molecular mechanism underlying the pathogenesis of human autosomal dominant congenital cataract.

  15. The Impact of Heterozygous KCNK3 Mutations Associated With Pulmonary Arterial Hypertension on Channel Function and Pharmacological Recovery.

    PubMed

    Bohnen, Michael S; Roman-Campos, Danilo; Terrenoire, Cecile; Jnani, Jack; Sampson, Kevin J; Chung, Wendy K; Kass, Robert S

    2017-09-09

    Heterozygous loss of function mutations in the KCNK3 gene cause hereditary pulmonary arterial hypertension (PAH). KCNK3 encodes an acid-sensitive potassium channel, which contributes to the resting potential of human pulmonary artery smooth muscle cells. KCNK3 is widely expressed in the body, and dimerizes with other KCNK3 subunits, or the closely related, acid-sensitive KCNK9 channel. We engineered homomeric and heterodimeric mutant and nonmutant KCNK3 channels associated with PAH. Using whole-cell patch-clamp electrophysiology in human pulmonary artery smooth muscle and COS7 cell lines, we determined that homomeric and heterodimeric mutant channels in heterozygous KCNK3 conditions lead to mutation-specific severity of channel dysfunction. Both wildtype and mutant KCNK3 channels were activated by ONO-RS-082 (10 μmol/L), causing cell hyperpolarization. We observed robust gene expression of KCNK3 in healthy and familial PAH patient lungs, but no quantifiable expression of KCNK9, and demonstrated in functional studies that KCNK9 minimizes the impact of select KCNK3 mutations when the 2 channel subunits co-assemble. Heterozygous KCNK3 mutations in PAH lead to variable loss of channel function via distinct mechanisms. Homomeric and heterodimeric mutant KCNK3 channels represent novel therapeutic substrates in PAH. Pharmacological and pH-dependent activation of wildtype and mutant KCNK3 channels in pulmonary artery smooth muscle cells leads to membrane hyperpolarization. Co-assembly of KCNK3 with KCNK9 subunits may provide protection against KCNK3 loss of function in tissues where both KCNK9 and KCNK3 are expressed, contributing to the lung-specific phenotype observed clinically in patients with PAH because of KCNK3 mutations. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia.

    PubMed

    Chen, Wan-Jin; Lin, Yu; Xiong, Zhi-Qi; Wei, Wei; Ni, Wang; Tan, Guo-He; Guo, Shun-Ling; He, Jin; Chen, Ya-Fang; Zhang, Qi-Jie; Li, Hong-Fu; Lin, Yi; Murong, Shen-Xing; Xu, Jianfeng; Wang, Ning; Wu, Zhi-Ying

    2011-11-20

    Paroxysmal kinesigenic dyskinesia is the most common type of paroxysmal movement disorder and is often misdiagnosed clinically as epilepsy. Using whole-exome sequencing followed by Sanger sequencing, we identified three truncating mutations within PRRT2 (NM_145239.2) in eight Han Chinese families with histories of paroxysmal kinesigenic dyskinesia: c.514_517delTCTG (p.Ser172Argfs*3) in one family, c.649dupC (p.Arg217Profs*8) in six families and c.972delA (p.Val325Serfs*12) in one family. These truncating mutations co-segregated exactly with the disease in these families and were not observed in 1,000 control subjects of matched ancestry. PRRT2 is a newly discovered gene consisting of four exons encoding the proline-rich transmembrane protein 2, which encompasses 340 amino acids and contains two predicted transmembrane domains. PRRT2 is highly expressed in the developing nervous system, and a truncating mutation alters the subcellular localization of the PRRT2 protein. The function of PRRT2 and its role in paroxysmal kinesigenic dyskinesia should be further investigated.

  17. A novel C-terminal truncating NR5A1 mutation in dizygotic twins

    PubMed Central

    Hattori, Atsushi; Zukeran, Hiroaki; Igarashi, Maki; Toguchi, Suzuka; Toubaru, Yuji; Inoue, Takanobu; Katoh-Fukui, Yuko; Fukami, Maki

    2017-01-01

    Nuclear receptor subfamily 5, group A, member 1 (NR5A1) is a nuclear receptor involved in gonadal and adrenal development. We identified a novel C-terminally truncating NR5A1 mutation, p.Leu423Trpfs*7, in dizygotic twins with 46,XY disorders of sex development. Our results highlight the functional importance of C-terminal region of NR5A1 and indicate that NR5A1 mutations can be associated with intrafamilial phenotypic variations, progressive testicular dysfunction, hypogonadotropic hypogonadism, and borderline adrenal dysfunction. PMID:28326187

  18. A novel C-terminal truncating NR5A1 mutation in dizygotic twins.

    PubMed

    Hattori, Atsushi; Zukeran, Hiroaki; Igarashi, Maki; Toguchi, Suzuka; Toubaru, Yuji; Inoue, Takanobu; Katoh-Fukui, Yuko; Fukami, Maki

    2017-01-01

    Nuclear receptor subfamily 5, group A, member 1 (NR5A1) is a nuclear receptor involved in gonadal and adrenal development. We identified a novel C-terminally truncating NR5A1 mutation, p.Leu423Trpfs*7, in dizygotic twins with 46,XY disorders of sex development. Our results highlight the functional importance of C-terminal region of NR5A1 and indicate that NR5A1 mutations can be associated with intrafamilial phenotypic variations, progressive testicular dysfunction, hypogonadotropic hypogonadism, and borderline adrenal dysfunction.

  19. A Truncating De Novo Point Mutation in a Young Infant with Severe Menkes Disease.

    PubMed

    Lin, Yi-Jie; Ho, Che-Sheng; Hsu, Chyong-Hsin; Lin, Ju-Li; Chuang, Chih-Kuang; Tsai, Jen-Daw; Chiu, Nan-Chang; Lin, Hsiang-Yu; Lin, Shuan-Pei

    2017-02-01

    Menkes disease is a rare neurodegenerative disorder caused by mutations in ATP7A gene. Deficiency in copper-dependent enzymes results in the unique kinky hair appearance, neurodegeneration, developmental delay, seizures, failure to thrive and other connective tissue or organ abnormalities. Other than biochemical tests, DNA-based diagnosis is now playing an important role. More than two hundred mutations in ATP7A gene were identified. Early copper supplementation can help improve neurological symptoms, but not non-neurological problems. Further molecular studies are needed to identify additional mutation types and to understand the mechanism of pathogenesis. This may help in discovering the possible treatment measures to cure the disease. We present a case with the clinical features and biochemical findings, abnormal brain magnetic resonance imaging as well as the effects of treatment with copper-histidine. Direct sequencing of ATP7A gene revealed a de novo point mutation which resulted in an early stop codon with truncated protein.

  20. Heterozygous mutation of cysteine528 in XPO1 is sufficient for resistance to selective inhibitors of nuclear export.

    PubMed

    Neggers, Jasper Edgar; Vanstreels, Els; Baloglu, Erkan; Shacham, Sharon; Landesman, Yosef; Daelemans, Dirk

    2016-10-18

    Exportin-1 (CRM1/XPO1) is a crucial nuclear export protein that transports a wide variety of proteins from the nucleus to the cytoplasm. These cargo proteins include tumor suppressors and growth-regulatory factors and as such XPO1 is considered a potential anti-cancer target. From this perspective, inhibition of the XPO1-mediated nuclear export by selective inhibitor of nuclear export (SINE) compounds has shown broad-spectrum anti-cancer activity. Furthermore, the clinical candidate SINE, selinexor, is currently in multiple phase I/II/IIb trials for treatment of cancer. Resistance against selinexor has not yet been observed in the clinic, but in vitro selection of resistance did not reveal any mutations in the target protein, XPO1. However, introduction of a homozygous mutation at the drug's target site, the cysteine 528 residue inside the XPO1 cargo-binding pocket, by genetic engineering, confers resistance to selinexor. Here we investigated whether this resistance to selinexor is recessive or dominant. For this purpose we have engineered multiple leukemia cell lines containing heterozygous or homozygous C528S substitutions using CRISPR/Cas9-mediated genome editing. Our findings show that heterozygous mutation confers similar resistance against selinexor as homozygous substitution, demonstrating that SINE resistance can be obtained by a single and dominant mutation of the cysteine528 residue in XPO1.

  1. Heterozygous gsp mutation renders ion channels of human somatotroph adenoma cells unresponsive to growth hormone-releasing hormone.

    PubMed

    Yasufuku-Takano, J; Takano, K; Takei, T; Fukumoto, S; Teramoto, A; Takakura, K; Yamashita, N; Fujita, T

    1999-05-01

    Ionic mechanisms play an important role in the regulation of hormone secretion. The GHRH-induced GH release by human GH-secreting cells is transmitted through protein kinase A (PKA), which activates nonselective cation current (NSCC) and induces membrane depolarization, intracellular Ca2+ increase, and GH secretion. To evaluate whether ionic mechanisms have pathophysiological significance in GH oversecretion of GH-secreting pituitary adenomas, we examined four adenomas with constitutively active Gs alpha mutation (gsp mutation) and compared with three gsp-negative adenomas. In primary-cultured cells of gsp-positive adenomas, GHRH did not increase the NSCC under voltage-clamp experiments. Detailed examination showed that NSCC was maximally activated at the basal level and application of GHRH did not increase the current in these adenomas. Furthermore, by using single-cell RT-PCR method, we demonstrated for the first time at the single cell level that gsp mutation is heterozygous in GH-secreting pituitary adenomas. These indicate that heterozygous gsp mutation fully activates NSCC at the basal level, which may account for the GH oversecretion in gsp-positive GH-secreting pituitary adenomas.

  2. Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients

    PubMed Central

    Zajkowicz, A; Butkiewicz, D; Drosik, A; Giglok, M; Suwiński, R; Rusin, M

    2015-01-01

    Background: PPM1D (WIP1) negatively regulates by dephosphorylation many proteins including p53 tumour suppressor. The truncating mutations (nonsense and frameshift) in exon 6 of PPM1D were found recently in blood cells of patients with breast, ovarian or colorectal cancer. These mutants code for gain-of-function PPM1D with retained phosphatase activity. Their significance in carcinogenesis is unknown. Methods: The exon 6 of PPM1D was sequenced in blood DNA of 543 non-small-cell lung cancer patients (NSCLC). The functional significance of selected PPM1D alterations (Arg458X, Lys469Glu) was compared with the wild-type gene and examined by recombinant DNA techniques, immunoblotting and luciferase reporter assays. Results: The frameshift mutations were found in five NSCLC patients (5/543; 0.92%), all of them had squamous cell carcinomas (5/328; 1.5%). All patients with the mutations were exposed, before the blood collection, to the DNA damaging agents as a part of chemotherapeutic regimen. Functional tests demonstrated that truncating mutation Arg458X causes enhancement of dephosphorylation activity of PPM1D toward serine 15 of p53, whereas Lys469Glu version is equivalent to the wild-type. Neither version of PPM1D (wild-type, Arg458X, Lys469Glu) significantly modulated the ability of p53 to transactivate promoters of the examined p53-target genes (BAX and MDM2). Conclusions: The truncating mutations of PPM1D are present in blood DNA of NSCLC patients at frequency similar to percentage determined for ovarian cancer patients. Our findings raise a question if the detected lesions are a result of chemotherapy. PMID:25742468

  3. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    PubMed Central

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  4. A compound heterozygous mutation in SLC34A3 causes hereditary hypophosphatemic rickets with hypercalciuria in a Chinese patient.

    PubMed

    Chi, Yue; Zhao, Zhen; He, Xiaodong; Sun, Yue; Jiang, Yan; Li, Mei; Wang, Ou; Xing, Xiaoping; Sun, Andrew Y; Zhou, Xueying; Meng, Xunwu; Xia, Weibo

    2014-02-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder inherited in an autosomal recessive fashion and characterized by hypophosphatemia, short stature, rickets and/or osteomalacia, and secondary absorptive hypercalciuria. HHRH was recently mapped to chromosome 9q34, which contains the gene SLC34A3 which encodes the renal proximal tubular sodium-phosphate cotransporter NaPi-IIc. Here we describe a 29-year-old man with a history of childhood rickets who presented with increased renal phosphate clearance leading to hypophosphatemia, hypercalciuria, low serum parathyroid hormone (PTH), elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) and recurrent nephrolithiasis. We performed a mutation analysis of SLC34A3 (exons and adjacent introns) of the proband and his parents to determine if there was a genetic contribution. The proband proved to be compound heterozygous for two missense mutations in SLC34A3: one novel mutation in exon 7 c.571G>C (p.G191R) and one previously identified mutation in exon 13 c.1402C>T (p.R468W). His parents were both asymptomatic heterozygous carriers of one of these two mutations. We also performed an oral phosphate loading test and compared serum phosphate, intact PTH, and intact fibroblast growth factor 23 (iFGF23) in this patient versus patients with other forms of hypophosphatemic rickets, the results of which further revealed that the mechanism of hypophosphatemia in HHRH is independent of FGF23. This is the first report of HHRH in the Chinese population. Our findings of the novel mutation in exon 7 add to the list of more than 20 reported mutations of SLC34A3. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The first Japanese case of leukodystrophy with ovarian failure arising from novel compound heterozygous AARS2 mutations.

    PubMed

    Hamatani, Mio; Jingami, Naoto; Tsurusaki, Yoshinori; Shimada, Shino; Shimojima, Keiko; Asada-Utsugi, Megumi; Yoshinaga, Kenji; Uemura, Norihito; Yamashita, Hirofumi; Uemura, Kengo; Takahashi, Ryosuke; Matsumoto, Naomichi; Yamamoto, Toshiyuki

    2016-10-01

    Even now, only a portion of leukodystrophy patients are correctly diagnosed, though various causative genes have been identified. In the present report, we describe a case of adult-onset leukodystrophy in a woman with ovarian failure. By whole-exome sequencing, a compound heterozygous mutation consisting of NM_020745.3 (AARS2_v001):c.1145C>A and NM_020745.3 (AARS2_v001):c.2255+1G>A was identified. Neither of the mutations has been previously reported, and this is the first report of alanyl-transfer RNA synthetase 2 mutation in Asia. We anticipate that further studies of the molecular basis of leukodystrophy will provide insight into its pathogenesis and hopefully lead to sophisticated diagnostic and treatment strategies.

  6. Jansen Metaphyseal Chondrodysplasia due to Heterozygous H223R-PTH1R Mutations With or Without Overt Hypercalcemia.

    PubMed

    Nampoothiri, Sheela; Fernández-Rebollo, Eduardo; Yesodharan, Dhanya; Gardella, Thomas J; Rush, Eric T; Langman, Craig B; Jüppner, Harald

    2016-11-01

    Jansen's metaphyseal chondrodysplasia (JMC) is a rare skeletal dysplasia characterized by abnormal endochondral bone formation and typically severe hypercalcemia despite normal/low levels of PTH. Five different heterozygous activating PTH/PTHrP receptor (PTH1R) mutations that change one of three different amino acid residues are known to cause JMC. Establishing the diagnosis of JMC during infancy or early childhood can be challenging, especially in the absence of family history and/or overt hypercalcemia. We therefore sought to provide radiographic findings supporting this diagnosis early in life. Three patients, a mother and her two sons, had radiographic evidence for JMC. However, obvious hypercalcemia and suppressed PTH levels were encountered only in both affected children. Sanger sequencing and endonuclease (SphI) digestion of PCR-amplified genomic DNA were performed to search for the H223R-PTH1R mutation. The heterozygous H223R mutation was identified in all three affected individuals. Surprisingly, however, the now 38-year-old mother was never overtly hypercalcemic and was therefore not diagnosed until her sons were found to be affected by JMC at the ages of 28 months and 40 days, respectively. The presented radiographic findings at different ages will help diagnose other infants/toddlers suspected of having JMC. The H223R mutation is typically associated with profound hypercalcemia despite low/normal PTH levels. However, the findings presented herein show that overt hypercalcemia is not always encountered in JMC, even if caused by this relatively frequent mutation, which is similar to observations with other PTH1R mutations that show less constitutive activity.

  7. Clinical Features and Long-Term Outcome of Nephrotic Syndrome Associated with Heterozygous NPHS1 and NPHS2 Mutations

    PubMed Central

    Caridi, Gianluca; Gigante, Maddalena; Ravani, Pietro; Trivelli, Antonella; Barbano, Giancarlo; Scolari, Francesco; Dagnino, Monica; Murer, Luisa; Murtas, Corrado; Edefonti, Alberto; Allegri, Landino; Amore, Alessandro; Coppo, Rosanna; Emma, Francesco; De Palo, Tommaso; Penza, Rosa; Gesualdo, Loreto; Ghiggeri, Gian Marco

    2009-01-01

    Background and objectives: Mutations in nephrin (NPHS1) and podocin (NPHS2) genes represent a major cause of idiopathic nephrotic syndrome (NS) in children. It is not yet clear whether the presence of a single mutation acts as a modifier of the clinical course of NS. Design, setting, participants, & measurements: We reviewed the clinical features of 40 patients with NS associated with heterozygous mutations or variants in NPHS1 (n = 7) or NPHS2 (n = 33). Long-term renal survival probabilities were compared with those of a concurrent cohort with idiopathic NS. Results: Patients with a single mutation in NPHS1 received a diagnosis before those with potentially nongenetic NS and had a good response to therapies. Renal function was normal in all cases. For NPHS2, six patients had single heterozygous mutations, six had a p.P20L variant, and 21 had a p.R229Q variant. Age at diagnosis and the response to drugs were comparable in all NS subgroups. Overall, they had similar renal survival probabilities as non-NPHS1/NPHS2 cases (log-rank χ2 0.84, P = 0.656) that decreased in presence of resistance to therapy (P < 0.001) and in cases with renal lesions of glomerulosclerosis and IgM deposition (P < 0.001). Cox regression confirmed that the only significant predictor of dialysis was resistance to therapy. Conclusions: Our data indicate that single mutation or variant in NPHS1 and NPHS2 does not modify the outcome of primary NS. These patients should be treated following consolidated schemes and have good chances for a good long-term outcome. PMID:19406966

  8. Novel compound heterozygous mutations in TELO2 in a patient with severe expression of You-Hoover-Fong syndrome.

    PubMed

    Moosa, Shahida; Altmüller, Janine; Lyngbye, Troels; Christensen, Rikke; Li, Yun; Nürnberg, Peter; Yigit, Gökhan; Vogel, Ida; Wollnik, Bernd

    2017-09-01

    Very recently, compound heterozygous loss-of-function mutations in TELO2 were shown to underlie the newly-described You-Hoover-Fong syndrome. TELO2 forms part of the co-chaperone triple T complex (TTT complex), which plays an important role in the maturation and stabilization of the phosphatidylinositol 3-kinase-related protein kinases (PIKKs). Patients with mutations in TELO2 present with microcephaly and associated intellectual disability, postnatal growth retardation and dysmorphic features. Here, we describe Danish sisters with two novel mutations in TELO2. In particular, we highlight the clinical features of the 22-year index patient, which are more severe than the original patients described, thereby expanding the clinical spectrum of YHFS. The index patient was clinically examined and subsequently exome sequencing on her DNA was performed using the NimbleGen SeqCap EZ Human Exome Library v2.0 enrichment kit on an Illumina HiSeq2000 sequencer. Two novel, compound heterozygous mutations in TELO2 were identified in the index patient and her deceased older sister. Both have clinical features in keeping with the original YHFS patients, although the index patient seems to represent the severe end of the clinical spectrum with very marked prenatal onset growth retardation and microcephaly, severe global developmental delay and facial dysmorphic features. Additional clinical findings include eye anomalies (bilateral congenital cataracts, retinitis pigmentosa, convergent squint), bilateral conductive hearing loss, an abnormal kidney and seizures. This report of Danish siblings with YHFS serves to expand the presentation of this new syndrome to include features in keeping with a form of microcephalic primordial dwarfism on the severe end of the clinical spectrum, and adds two novel mutations to the TELO2 mutational spectrum.

  9. A novel heterozygous missense mutation in uromodulin gene in an Indian family with familial juvenile hyperuricemic nephropathy

    PubMed Central

    Saxena, D.; Srivastava, P.; Phadke, S. R.

    2016-01-01

    Familial juvenile hyperuricemic nephropathy (FJHN), characterized by early-onset hyperuricemia, reduced fractional excretion of uric acid, and chronic renal failure is caused due to mutation in uromodulin (UMOD) gene. We identified a novel mutation in a family with multiple members affected with FJHN. Ten coding exons of UMOD gene in three family members with clinical and biochemical features of FJHN and one unaffected family member were sequenced, and sequence variants were analyzed for the pathogenicity by bioinformatics studies. A heterozygous novel missense mutation (c. 949 T >G) in exon 5 leading to the replacement of cysteine by glycine at position 317 was identified in all three affected family members. This mutation has not been reported earlier in Human Gene Mutation Database, Human Genome Variation, Clinvar, and 1000 Genome. The mutation lies in the cysteine-rich 2 domain of the protein, and the affected residue is evolutionary conserved in other species. To our knowledge, this is the first report of the identification of UMOD mutation in an Indian family. PMID:27795632

  10. Possible incorrect genotyping of heterozygous factor V Leiden and Prothrombin 20210 gene mutations by the GeneXpert assay.

    PubMed

    Marturano, Alessandro; Bury, Loredana; Gresele, Paolo

    2014-08-05

    The GeneXpert analyzer is a hands-off system for the detection of Factor V Leiden and of Prothrombin G20210A (GPRO) gene thrombophilic mutations. Although the system is efficient and easy to use, we report the rare possibility of incorrect genotyping. 1648 samples were evaluated using the GeneXpert HemosIL Factor II and Factor V assay: 1319 were freshly analyzed while 329 were frozen, thawed and diluted with saline prior to analysis to avoid clogging of the instrument syringe. Two samples, both heterozygous, one for the factor V Leiden and the other for the GPRO gene, were incorrectly genotyped as homozygous for the relative mutation. Inspection of the Ct values and amplification curves and genotyping with PCR revealed the correct genotype as heterozygous for factor V Leiden and GPRO mutation. The GeneXpert HemosIL Factor II and Factor V assay is an automated, fast genotyping assay requiring almost no sample manipulation, advantageous characteristics if compared with other PCR-based methods. However, an inattentive use of it can generate incorrect diagnosis. A careful handling of the sample, in particular correct dilution of frozen/thawed samples before analysis, and the inspection of the amplification curves and Ct values are required to avoid artifacts. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Heterozygous mutations in the tumor suppressor gene PATCHED provoke basal cell carcinoma-like features in human organotypic skin cultures.

    PubMed

    Brellier, F; Bergoglio, V; Valin, A; Barnay, S; Chevallier-Lagente, O; Vielh, P; Spatz, A; Gorry, P; Avril, M-F; Magnaldo, T

    2008-11-20

    Basal cell carcinoma of the skin is the most common type of cancer in humans. The majority of these tumors displays aberrant activation of the SONIC HEDGEHOG (SHH)/PATCHED pathway, triggered by mutations in the PATCHED tumor suppressor gene, which encodes a transmembrane receptor of SHH. In this study, we took advantage of the natural genotype (PATCHED(+/-)) of healthy keratinocytes expanded from patients with the nevoid basal cell carcinoma or Gorlin syndrome to mimic heterozygous somatic mutations thought to occur in the PATCHED gene early upon basal cell carcinoma development in the general population. PATCHED(+/-) epidermis developed on a dermal equivalent containing wild-type (WT) PATCHED(+/+) fibroblasts exhibited striking invasiveness and hyperproliferation, as well as marked differentiation impairment. Deciphering the phenotype of PATCHED(+/-) keratinocytes revealed slight increases of the transcriptional activators GLI1 and GLI2-the latter known to provoke basal cell carcinoma-like tumors when overexpressed in transgenic mice. PATCHED(+/-) keratinocytes also showed a substantial increase of the cell cycle regulator cyclin D1. These data show for the first time the physiological impact of constitutive heterozygous PATCHED mutations in primary human keratinocytes and strongly argue for a yet elusive mechanism of haploinsufficiency leading to cancer proneness.

  12. Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn).

    PubMed

    Schröder, J M; Durling, H; Laing, N

    2004-09-01

    Mutations in the skeletal muscle alpha-actin gene ( ACTA1) are associated by and large with three muscle diseases (1) congenital actin myopathy, (2) nemaline myopathy, and (3) intranuclear rod myopathy. More than 70 mutations have now been identified. The majority of ACTA1 mutations are dominant, a small number are recessive and most isolated cases with no previous family history have de novo dominant mutations. The present case, a boy of healthy Turkish parents, had a severe form of the disease of the latter type due to a heterozygous, presumably de novo mutation of the ACTA1 gene in exon 4 (Asp154Asn), with lack of spontaneous movements at birth requiring immediate mechanical ventilation. He died at the age of 9 weeks due to respiratory failure, secondary pneumonia, and chylothorax. The biopsy specimen of the femoral muscle was characterized by pleomorphic alterations with numerous muscle fibers showing accumulation of actin filaments, but, in addition, both nemaline bodies and intranuclear rod bodies. This was also seen in several other muscles investigated at autopsy. No developmental abnormalities of the central nervous system, and no loss of spinal motor neurons were detected despite atrophy or hypotrophy of a considerable number of muscle fibers. The peripheral nervous system, which has not been studied before in patients with ACTA1 mutations, showed no loss of motor or sensory myelinated fibers and no loss of sensory neurons in spinal ganglia.

  13. Two novel compound heterozygous mutations in the BCKDHB gene that cause the intermittent form of maple syrup urine disease.

    PubMed

    Guo, Yi; Liming, Liu; Jiang, Li

    2015-12-01

    Intermittent maple syrup urine disease (MSUD) is a potentially life-threatening metabolic disorder caused by a deficiency of branched chain α-ketoacid dehydrogenase (BCKD) complex. In contrast to classic MSUD, children with the intermittent form usually have an atypical clinical manifestation. Here, we describe the presenting symptoms and clinical course of a Chinese boy with intermittent MSUD. Mutation analysis identified two previously unreported mutations in exon 7 of the BCKDHB gene: c.767A > G (p.Y256C) and c.768C > G (p.Y256X); the parents were each heterozygous for one of these mutations. In silico analysis predicted Y256C probably affects protein structure; Y256X leads to a premature stop codon. This case demonstrates intermittent MSUD should be suspected in cases with symptoms of recurrent encephalopathy, especially ataxia or marked drowsiness, which usually present after the neonatal period and in conjunction with infection. symmetrical basal ganglia damage but normal myelination in the posterior limb will assist differential diagnosis; alloisoleucine is a useful diagnostic marker and mutation analysis may be of prognostic value. These novel mutations Y256C and Y256X result in the clinical manifestation of a variant form of MSUD, expanding the mutation spectrum of this disease.

  14. Compound heterozygous PNPLA6 mutations cause Boucher-Neuhäuser syndrome with late-onset ataxia.

    PubMed

    Deik, A; Johannes, B; Rucker, J C; Sánchez, E; Brodie, S E; Deegan, E; Landy, K; Kajiwara, Y; Scelsa, S; Saunders-Pullman, R; Paisán-Ruiz, C

    2014-12-01

    PNPLA6 mutations, known to be associated with the development of motor neuron phenotypes, have recently been identified in families with Boucher-Neuhäuser syndrome. Boucher-Neuhäuser is a rare autosomal recessive syndrome characterized by the co-occurrence of cerebellar ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. Gait ataxia in Boucher-Neuhäuser usually manifests before early adulthood, although onset in the third or fourth decade has also been reported. However, given the recent identification of PNPLA6 mutations as the cause of this condition, the determining factors of age of symptom onset still need to be established. Here, we have identified a sporadic Boucher-Neuhäuser case with late-onset gait ataxia and relatively milder retinal changes due to compound heterozygous PNPLA6 mutations. Compound heterozygosity was confirmed by cloning and sequencing the patient's genomic DNA from coding exons 26-29. Furthermore, both mutations (one novel and one known) fell in the phospholipase esterase domain, where most pathogenic mutations seem to cluster. Taken together, we herein confirm PNPLA6 mutations as the leading cause of Boucher-Neuhäuser syndrome and suggest inquiring about a history of hypogonadism or visual changes in patients presenting with late-onset gait ataxia. We also advocate for neuroophthalmologic evaluation in suspected cases.

  15. Similar patterns of clonally expanded somatic mtDNA mutations in the colon of heterozygous mtDNA mutator mice and ageing humans

    PubMed Central

    Baines, Holly L.; Stewart, James B.; Stamp, Craig; Zupanic, Anze; Kirkwood, Thomas B.L.; Larsson, Nils-Göran; Turnbull, Douglass M.; Greaves, Laura C.

    2014-01-01

    Clonally expanded mitochondrial DNA (mtDNA) mutations resulting in focal respiratory chain deficiency in individual cells are proposed to contribute to the ageing of human tissues that depend on adult stem cells for self-renewal; however, the consequences of these mutations remain unclear. A good animal model is required to investigate this further; but it is unknown whether mechanisms for clonal expansion of mtDNA mutations, and the mutational spectra, are similar between species. Here we show that mice, heterozygous for a mutation disrupting the proof-reading activity of mtDNA polymerase (PolgA+/mut) resulting in an increased mtDNA mutation rate, accumulate clonally expanded mtDNA point mutations in their colonic crypts with age. This results in focal respiratory chain deficiency, and by 81 weeks of age these animals exhibit a similar level and pattern of respiratory chain deficiency to 70-year-old human subjects. Furthermore, like in humans, the mtDNA mutation spectrum appears random and there is an absence of selective constraints. Computer simulations show that a random genetic drift model of mtDNA clonal expansion can accurately model the data from the colonic crypts of wild-type, PolgA+/mut animals, and humans, providing evidence for a similar mechanism for clonal expansion of mtDNA point mutations between these mice and humans. PMID:24915468

  16. Compound heterozygous TRPV4 mutations in two siblings with a complex phenotype including severe intellectual disability and neuropathy.

    PubMed

    Thibodeau, My Linh; Peters, Colin H; Townsend, Katelin N; Shen, Yaoqing; Hendson, Glenda; Adam, Shelin; Selby, Kathryn; Macleod, Patrick M; Gershome, Cynthia; Ruben, Peter; Jones, Steven J M; Friedman, Jan M; Gibson, William T; Horvath, Gabriella A

    2017-09-12

    TRPV4 encodes a polymodal calcium-permeable plasma membrane channel. Dominant pathogenic mutations in TRPV4 lead to a wide spectrum of abnormal phenotypes. This is the first report of biallelic TRPV4 mutations and we describe two compound heterozygous siblings presenting with a complex phenotype including severe neuromuscular involvement. In light of previously well described dominant inheritance for TRPV4-related neuromuscular disease, our study suggests a role for compound heterozygosity and loss-of-function as a potential novel disease mechanism for this group of disorders. Profound intellectual disability was also noted in both affected children, suggesting that TRPV4 may be necessary for normal brain development. © 2017 Wiley Periodicals, Inc.

  17. Polyneuropathy in a young Belgian patient: A novel heterozygous mutation in the WNK1/HSN2 gene.

    PubMed

    de Filette, Jeroen; Hasaerts, Danielle; Seneca, Sara; Gheldof, Alexander; Stouffs, Katrien; Keymolen, Kathelijn; Velkeniers, Brigitte

    2016-02-01

    Hereditary sensory autonomic neuropathy (HSAN) is a rare condition, predominantly affecting the peripheral sensory nervous system, although variable motor and dysautonomic symptoms can be present. At least 7 clinical types of HSAN have been described, and different genetic mutations have been identified for each of these. HSAN IIA (OMIM #201300) is characterized by loss of pain and loss of temperature and touch sensation, with onset usually before the first decade. The mode of inheritance is autosomal recessive.(1) The causative gene, WNK1/HSN2, is located on locus 12p13.33 and is an isoform of the WNK1 (lysine deficient protein kinase 1) gene, which contains the HSN2 exon.(2,3) We describe 2 new heterozygous mutations in the WNK1/HSN2 gene in a Belgian patient with early-onset sensory polyneuropathy.

  18. Novel Compound Heterozygous Mutations in the PANK2 Gene in a Chinese Patient With Atypical Pantothenate Kinase-Associated Neurodegeneration

    PubMed Central

    Zhang, Yu-hu; Tang, Bei-sha; Zhao, Ai-ling; Xia, Kun; Long, Zhi-gao; Guo, Ji-feng; Westaway, Shawn K.; Hayflick, Susan J.

    2007-01-01

    We investigated the presence of mutations in the pantothenate kinase (PANK2) gene in a 27-year-old male Chinese patient with atypical pantothenate kinase-associated neurodegeneration (PKAN), formerly Hallervorden-Spatz syndrome. Automated DNA sequence analyses revealed compound heterozygous mutations in the exon 3 and 5. This patient had a 10-year history of PKAN characterized by a slight tremor of the right hand when writing at onset and a slow progressive rigidity of the neck and the right arm and resting tremor in upper extremities. Dysarthria, dysphagia, and dystonic-athetoid movements of the face and right fingers were marked. Magnetic resonance showed the typical “eye-of-the-tiger” sign. PMID:15747360

  19. Novel compound heterozygous mutations in the PANK2 gene in a Chinese patient with atypical pantothenate kinase-associated neurodegeneration.

    PubMed

    Zhang, Yu-hu; Tang, Bei-sha; Zhao, Ai-ling; Xia, Kun; Long, Zhi-gao; Guo, Ji-feng; Westaway, Shawn K; Hayflick, Susan J

    2005-07-01

    We investigated the presence of mutations in the pantothenate kinase (PANK2) gene in a 27-year-old male Chinese patient with atypical pantothenate kinase-associated neurodegeneration (PKAN), formerly Hallervorden-Spatz syndrome. Automated DNA sequence analyses revealed compound heterozygous mutations in the exon 3 and 5. This patient had a 10-year history of PKAN characterized by a slight tremor of the right hand when writing at onset and a slow progressive rigidity of the neck and the right arm and resting tremor in upper extremities. Dysarthria, dysphagia, and dystonic-athetoid movements of the face and right fingers were marked. Magnetic resonance showed the typical "eye-of-the-tiger" sign. Copyright 2005 Movement Disorder Society.

  20. Extreme muscle development in sheep heterozygous for both myostatin and callipyge mutations

    USDA-ARS?s Scientific Manuscript database

    Two mutations causing increased muscle size and decreased fat content in sheep have been described. The callipyge (CLPG) syndrome is only exhibited after 4 to 6 weeks of age in animals inheriting the mutation solely from their sire. In contrast, a mutation of the myostatin gene (MSTN) in the Texel...

  1. Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures.

    PubMed

    Platzer, Konrad; Hüning, Irina; Obieglo, Carolin; Schwarzmayr, Thomas; Gabriel, Rainer; Strom, Tim M; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J

    2014-08-01

    In patients with genetically heterogeneous disorders such as intellectual disability or epilepsy, exome sequencing is a powerful tool to elucidate the underlying genetic cause. Homozygous and compound heterozygous mutations in C12orf57 have recently been described to cause an autosomal recessive syndromic form of intellectual disability, including agenesis/hypoplasia of the corpus callosum, optic coloboma, and intractable seizures. Here, we report on two siblings from nonconsanguineous parents harboring two compound heterozygous loss-of-function mutations in C12orf57 identified by exome sequencing, including a novel nonsense mutation, and review the patients described in the literature. © 2014 Wiley Periodicals, Inc.

  2. Bap1 Is a Bona Fide Tumor Suppressor: Genetic Evidence from Mouse Models Carrying Heterozygous Germline Bap1 Mutations.

    PubMed

    Kadariya, Yuwaraj; Cheung, Mitchell; Xu, Jinfei; Pei, Jianming; Sementino, Eleonora; Menges, Craig W; Cai, Kathy Q; Rauscher, Frank J; Klein-Szanto, Andres J; Testa, Joseph R

    2016-05-01

    Individuals harboring inherited heterozygous germline mutations in BAP1 are predisposed to a range of benign and malignant tumor types, including malignant mesothelioma, melanoma, and kidney carcinoma. However, evidence to support a tumor-suppressive role for BAP1 in cancer remains contradictory. To test experimentally whether BAP1 behaves as a tumor suppressor, we monitored spontaneous tumor development in three different mouse models with germline heterozygous mutations in Bap1, including two models in which the knock-in mutations are identical to those reported in human BAP1 cancer syndrome families. We observed spontaneous malignant tumors in 54 of 93 Bap1-mutant mice (58%) versus 4 of 43 (9%) wild-type littermates. All three Bap1-mutant models exhibited a high incidence and similar spectrum of neoplasms, including ovarian sex cord stromal tumors, lung and mammary carcinomas, and spindle cell tumors. Notably, we also observed malignant mesotheliomas in two Bap1-mutant mice, but not in any wild-type animals. We further confirmed that the remaining wild-type Bap1 allele was lost in both spontaneous ovarian tumors and mesotheliomas, resulting in the loss of Bap1 expression. Additional studies revealed that asbestos exposure induced a highly significant increase in the incidence of aggressive mesotheliomas in the two mouse models carrying clinically relevant Bap1 mutations compared with asbestos-exposed wild-type littermates. Collectively, these findings provide genetic evidence that Bap1 is a bona fide tumor suppressor gene and offer key insights into the contribution of carcinogen exposure to enhanced cancer susceptibility. Cancer Res; 76(9); 2836-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Dual mechanisms for the low plasma levels of truncated apolipoprotein B proteins in familial hypobetalipoproteinemia. Analysis of a new mouse model with a nonsense mutation in the Apob gene.

    PubMed Central

    Kim, E; Cham, C M; Véniant, M M; Ambroziak, P; Young, S G

    1998-01-01

    Familial hypobetalipoproteinemia (FHbeta), a syndrome characterized by low plasma cholesterol levels, is caused by mutations in the apo-B gene that interfere with the synthesis of apo-B100. FHbeta mutations frequently lead to the synthesis of a truncated form of apo-B, which typically is present in plasma at < 5% of the levels of apo-B100. Although many FHbeta mutations have been characterized, the basic mechanisms causing the low plasma levels of truncated apo-B variants have not been defined. We used gene targeting to create a mutant allele that exclusively yields a truncated apo-B, apo-B83. In mice heterozygous for the Apob83 allele, plasma levels and the size and density distribution of apo-B83-containing lipoproteins were strikingly similar to those observed in humans with FHbeta and an apo-B83 mutation. Analysis of mice carrying the Apob83 mutation revealed two mechanisms for the low plasma levels of apo-B83. First, Apob83 mRNA levels and apo-B83 secretion were reduced 76 and 72%, respectively. Second, apo-B83 was removed rapidly from the plasma, compared with apo-B100. This mouse model provides a new level of understanding of FHbeta and adds new insights into apo-B metabolism. PMID:9502790

  4. Truncation and microdeletion of EVC/EVC2 with missense mutation of EFCAB7 in Ellis-van Creveld syndrome.

    PubMed

    Nguyen, Tran Quynh Nhu; Saitoh, Makiko; Trinh, Huu Tung; Doan, Nguyen Minh Thien; Mizuno, Yoko; Seki, Masafumi; Sato, Yusuke; Ogawa, Seishi; Mizuguchi, Masashi

    2016-09-01

    Ellis-van Creveld syndrome (EvC) is a ciliopathy with cardiac anomalies, disproportionate short stature, polydactyly, dystrophic nails and oral defects. To obtain further insight into the genetics of EvC, we screened EVC/EVC2 mutations in eight Vietnamese EvC patients. All the patients had a congenital heart defect with atypical oral and/or skeletal abnormalities. One had compound heterozygous EVC2 mutations: a novel mutation c.769G > T-p.E177X in exon 6 inherited from father and another previously reported c.2476C > T-p.R826X mutation in exon 14 inherited from mother. The EVC2 mRNA expression level was significantly lower in the patient and her parents compared to controls. Another case had a novel heterozygous EVC mutation (c.1717C > G-p.S572X) in exon 12, inherited from his father. Of note, the mother without any EVC mutation on Sanger sequencing showed a lower expression level of EVC mRNA compared with controls. SNP array analysis revealed that the patient and mother had a heterozygous 16.4 kb deletion in EVC. This patient also had a heterozygous novel variant in exon 9 of EFCAB7 (c.1171 T > C-p.Y391H), inherited from his father. The atypical cardiac phenotype of this patient and the father suggested that EFCAB7 may modify the phenotype by interacting with EVC. In conclusion, we detected two novel nonsense mutations and a partial deletion of EVC/EVC2 in two Vietnamese families with EvC. Moreover, we found in one family a missense mutation of EFCAB7, a possible modifier gene in EvC and its related disorders. © 2016 Japanese Teratology Society.

  5. Causative mutations and premature cardiovascular disease in patients with heterozygous familial hypercholesterolaemia.

    PubMed

    Rubba, Paolo; Gentile, Marco; Marotta, Gennaro; Iannuzzi, Arcangelo; Sodano, Marta; De Simone, Biagio; Jossa, Fabrizio; Iannuzzo, Gabriella; Giacobbe, Carola; Di Taranto, Maria D; Fortunato, Giuliana

    2017-07-01

    Background Familial hypercholesterolemia is a common autosomal dominant disease, caused by mutations leading to elevated low-density lipoprotein (LDL) cholesterol and, if untreated, to premature cardiovascular disease. Methods Patients (young adults with a family history of hypercholesterolaemia or premature cardiovascular disease) with LDL cholesterol concentration ≥4.9 mmol/l, after excluding Familial Combined Hyperlipidaemia, were evaluated for causative mutations, Dutch Lipid Clinic Network score calculation and non-invasive ultrasound examination of carotid arteries. Results Of the 263 patients, 210 were heterozygotes for LDL receptor ( LDLR) mutations, four had APOB gene mutations, one PCSK9 gene mutation, while 48 had no evidence of mutations. Among 194 unrelated index cases 149 had mutations (77%). Among patients with LDLR mutations ( n = 145), there were five compound heterozygotes, 75 patients with null mutations and 65 with missense mutations. As many as 178 patients underwent a follow-up and treatment (statin ± ezetimibe), achieving a mean reduction of 49% in LDL cholesterol, with 21% of patients reaching the LDL goal of 2.6 mmol/l. In a multivariate analysis, carotid plaques, at ultrasound examination, were associated with the presence of genetic mutation ( p = 0.001), LDL cholesterol ( p < 0.001), Dutch Lipid Clinic Network score ( p < 0.001), independently of age, gender, smoking habits and systolic blood pressure. The presence of carotid plaque ( p = 0.017), LDL cholesterol ( p < 0.003), Dutch Lipid Clinic Network score ( p < 0.001) were independently associated with premature cardiovascular disease. Conclusions We identified patients with causative mutations in 82% of the cases under study. In addition to LDL cholesterol and Dutch Lipid Clinic Network score, carotid plaques in ultrasound evaluation provide direct evidence of premature vascular disease and are associated with high risk for cardiovascular events.

  6. A truncating mutation in Alzheimer's disease inactivates neuroligin-1 synaptic function.

    PubMed

    Tristán-Clavijo, Enriqueta; Camacho-Garcia, Rafael J; Robles-Lanuza, Estefanía; Ruiz, Agustín; van der Zee, Julie; Van Broeckhoven, Christine; Hernandez, Isabel; Martinez-Mir, Amalia; Scholl, Francisco G

    2015-12-01

    Neuroligins (NLs) are cell-adhesion proteins that regulate synapse formation and function. Neuroligin 1 (NL1) promotes the formation of glutamatergic synapses and mediates long-term potentiation in mouse models. Thus, altered NL1 function could mediate the synaptic and memory deficits associated with Alzheimer's disease (AD). Here, we describe a frameshift mutation, c.875_876insTT, in the neuroligin 1 gene (NLGN1) in a patient with AD and familial history of AD. The insertion generates a premature stop codon in the extracellular domain of NL1 (p.Thr271fs). Expression of mutant NL1 shows accumulation of truncated NL1 proteins in the endoplasmic reticulum. In hippocampal neurons, the p.Thr271fs mutation abolishes the ability of NL1 to promote the formation of glutamatergic synapses. Our data support a role for inactivating mutations in NLGN1 in AD. Previous studies have reported rare mutations in X-linked NLGNL3 and NLGNL4 genes in patients with autism, which result in the inactivation of the mutant alleles. Therefore, together with a role in neurodevelopmental disorders, altered NL function could underlie the molecular mechanisms associated with brain diseases in the elderly.

  7. A case surviving for over a year of renal tubular dysgenesis with compound heterozygous angiotensinogen gene mutations.

    PubMed

    Uematsu, Mitsugu; Sakamoto, Osamu; Nishio, Toshiyuki; Ohura, Toshihiro; Matsuda, Tadashi; Inagaki, Tetsuji; Abe, Takaaki; Okamura, Kunihiro; Kondo, Yoshiaki; Tsuchiya, Shigeru

    2006-11-01

    Renal tubular dysgenesis (RTD) is a developmental abnormality of the renal proximal tubules found in patients with Potter syndrome. We report a female newborn with RTD who has survived for more than 18 months. Infusions of fresh frozen plasma (FFP) in the early neonatal period were effective in raising and maintaining her blood pressure. Peritoneal dialysis was required until the appearance of spontaneous urination at 29 days after birth. Histopathological examinations of the kidney revealed dilated renal tubular lumina and foamy columnar epithelial cells in the renal tubules. Endocrinological studies showed a discrepancy between low plasma renin activity (<0.1 ng/ml/hr) and high active renin concentration (135,000 pg/ml), suggesting an aberration in the renin substrate, angiotensinogen. Direct sequencing analysis revealed two novel mutations in the coding region of the angiotensinogen gene (AGT): a nonsense mutation in exon 2 (c.604C > T) and a frameshift deletion at nucleotide 1290 in exon 5 (c.1290delT). The mutations were in the compound heterozygous state, because each parent had each mutation. These findings suggest that angiotensinogen deficiency is one of the causes of RTD. A treatment of the condition with FFP may help to promote long survival.

  8. Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism.

    PubMed

    Köroğlu, Çiğdem; Seven, Mehmet; Tolun, Aslihan

    2013-08-01

    Infantile neuroaxonal dystrophy (INAD) is a recessive disease that results in total neurological degeneration and death in childhood. PLA2G6 mutation is the underlying genetic defect, but rare genetic heterogeneity has been demonstrated. One of the five families we studied did not link to PLA2G6 locus, and in the family one of the two affected siblings additionally had atypical features including facial dysmorphism, pectus carinatum, scoliosis, pes varus, zygodactyly and bilateral cryptorchidism as well as cerebellar atrophy, as previously reported. Sural biopsy was investigated by electron microscopy. PLA2G6 was screened for mutations by Sanger sequencing. In the mutation-free family, candidate disease loci were found via linkage analysis using data from single nucleotide polymorphism genome scans. Exome sequencing was applied to find the variants at the loci. PLA2G6 mutations were identified in four families including the one with an unusually severe phenotype that led to death within the first 2 years of life. In the remaining family, seven candidate loci totalling 15.2 Mb were found and a homozygous truncating mutation p.Q642X was identified in NALCN at 13q32.3. The patients are around 20-years-old. NALCN is the gene responsible for INAD with facial dysmorphism. The patients have lived to adulthood despite severe growth and neuromotor retardation. NALCN forms a voltage-independent ion channel with a role in the regulation of neuronal excitability. Our findings broaden the spectrum of genes associated with neuroaxonal dystrophy. Testing infants with idiopathic severe growth retardation and neurodegeneration for NALCN mutations could benefit families.

  9. A novel compound heterozygous mutation (35delG, 363delC) in the Connexin 26 gene causes non-syndromic autosomal recessive hearing loss.

    PubMed

    Onsori, Habib; Rahmati, Mohammad; Fazli, Davood

    2014-01-01

    Mutations in the Connexin 26 (Cx26) gene are a common cause of hereditary hearing loss in different populations. In the present study, an Iranian patient with bilateral hearing loss underwent molecular analysis for the causative mutation. DNA studies were performed for the Cx26 gene by PCR and sequencing methods. We describe a novel compound heterozygous mutation (35delG, 363delC) in the Cx26 gene that is strongly associated with congenital non-syndromic hearing loss (NSHL).

  10. Venous thromboembolism at a young age in a brother and sister with coinheritance of homozygous 20210A/A prothrombin mutation and heterozygous 1691G/A factor V Leiden mutation.

    PubMed

    Halbmayer, W M; Kalhs, T; Haushofer, A; Breier, F; Fischer, M

    1999-07-01

    We report on members of a Turkish thrombophilic family with coinheritance of the prothrombin mutation PT20210A and the factor V Leiden mutation. The 23-year-old propositus and his elder sister both had episodes of venous theomboembolism at a young age (23 years and 26 years, respectively) and are homozygous for the PT20210A mutation and heterozygous for the factor V Leiden mutation. The 51-year-old father is suffering from coronary heart disease and is heterozygous for both thrombophilic mutations. The asymptomatic 43-year-old mother is heterozygous for the PT20210A mutation, but without activated protein C resistance. Two other children, a 20-year-old girl who is homozygous for the PT20210A mutation and a 13-year-old boy who is heterozygous for the PT20210A mutation, are both free from activated protein C resistance and thrombosis. This report provides further evidence for an early onset of thromboembolic disorders in individuals with an homozygous state of the prothrombin variant 20210A/A and coinheritance of another thrombophilic mutation. Consensus guidelines are required for the treatment and prophylaxis of patients and subjects who remain asymptomatic with homozygous or more than one heterozygous genetic defect associated with thrombophilia.

  11. Impact of heterozygous c.657-661del, p.I171V and p.R215W mutations in NBN on nibrin functions.

    PubMed

    Dzikiewicz-Krawczyk, Agnieszka; Mosor, Maria; Januszkiewicz, Danuta; Nowak, Jerzy

    2012-05-01

    Nibrin, product of the NBN gene, together with MRE11 and RAD50 is involved in DNA double-strand breaks (DSBs) sensing and repair, induction of apoptosis and cell cycle control. Biallelic NBN mutations cause the Nijmegen breakage syndrome, a chromosomal instability disorder characterised by, among other things, radiosensitivity, immunodeficiency and an increased cancer risk. Several studies have shown an association of heterozygous c.657-661del, p.I171V and p.R215W mutations in the NBN gene with a variety of malignancies but the data are controversial. Little is known, however, whether and to what extent do these mutations in heterozygous state affect nibrin functions. We examined frequency of chromatid breaks, DSB repair, defects in S-phase checkpoint and radiosensitivity in X-ray-irradiated cells from control individuals, NBS patients and heterozygous carriers of the c.657-661del, p.I171V and p.R215W mutations. While cells homozygous for c.657-661del displayed a significantly increased number of chromatid breaks and residual γ-H2AX foci, as well as abrogation of the intra-S-phase checkpoint following irradiation, which resulted in increased radiosensitivity, cells with heterozygous c.657-661del, p.I171V and p.R215W mutations behaved similarly to control cells. Significant differences in the frequency of spontaneous and ionising radiation-induced chromatid breaks and the level of persistent γ-H2AX foci were observed when comparing control and mutant cells heterozygous for c.657-661del. However, it is still possible that heterozygous NBN mutations may contribute to cancer development.

  12. JAK1 truncating mutations in gynecologic cancer define new role of cancer-associated protein tyrosine kinase aberrations.

    PubMed

    Ren, Yuan; Zhang, Yonghong; Liu, Richard Z; Fenstermacher, David A; Wright, Kenneth L; Teer, Jamie K; Wu, Jie

    2013-10-24

    Cancer-associated protein tyrosine kinase (PTK) mutations usually are gain-of-function (GOF) mutations that drive tumor growth and metastasis. We have found 50 JAK1 truncating mutations in 36 of 635 gynecologic tumors in the Total Cancer Care® (TCC®) tumor bank. Among cancer cell lines containing JAK1 truncating mutations in the Cancer Cell Line Encyclopedia databank, 68% are gynecologic cancer cells. Within JAK1 the K142, P430, and K860 frame-shift mutations were identified as hot spot mutation sites. Sanger sequencing of cancer cell lines, primary tumors, and matched normal tissues confirmed the JAK1 mutations and showed that these mutations are somatic. JAK1 mediates interferon (IFN)-γ-regulated tumor immune surveillance. Functional assays show that JAK1 deficient cancer cells are defective in IFN-γ-induced LMP2 and TAP1 expression, loss of which inhibits presentation of tumor antigens. These findings identify recurrent JAK1 truncating mutations that could contribute to tumor immune evasion in gynecologic cancers, especially in endometrial cancer.

  13. Charcot-Marie-Tooth Disease Type 4H Resulting from Compound Heterozygous Mutations in FGD4 from Nonconsanguineous Korean Families.

    PubMed

    Hyun, Young Se; Lee, Jinho; Kim, Hye Jin; Hong, Young Bin; Koo, Heasoo; Smith, Alec S T; Kim, Deok-Ho; Choi, Byung-Ok; Chung, Ki Wha

    2015-11-01

    Charcot-Marie-Tooth disease type 4H (CMT4H) is an autosomal recessive demyelinating subtype of peripheral enuropathies caused by mutations in the FGD4 gene. Most CMT4H patients are in consanguineous Mediterranean families characterized by early onset and slow progression. We identified two CMT4H patients from a Korean CMT cohort, and performed a detailed genetic and clinical analysis in both cases. Both patients from nonconsanguineous families showed characteristic clinical manifestations of CMT4H including early onset, scoliosis, areflexia, and slow disease progression. Exome sequencing revealed novel compound heterozygous mutations in FGD4 as the underlying cause in both families (p.Arg468Gln and c.1512-2A>C in FC73, p.Met345Thr and c.2043+1G>A (p.Trp663Trpfs*30) in FC646). The missense mutations were located in highly conserved RhoGEF and PH domains which were predicted to be pathogenic in nature by in silico modeling. The CMT4H occurrence frequency was calculated to 0.7% in the Korean demyelinating CMT patients. This study is the first report of CMT4H in Korea. FGD4 assay could be considered as a means of molecular diagnosis for sporadic cases of demyelinating CMT with slow progression. © 2015 John Wiley & Sons Ltd/University College London.

  14. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa.

    PubMed

    Wang, Yun; Guo, Liheng; Cai, Su-Ping; Dai, Meizhi; Yang, Qiaona; Yu, Wenhan; Yan, Naihong; Zhou, Xiaomin; Fu, Jin; Guo, Xinwu; Han, Pengfei; Wang, Jun; Liu, Xuyang

    2012-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of progressive retinal degenerations characterized by pigmentation and atrophy in the mid-periphery of the retina. Twenty two subjects from a four-generation Chinese family with RP and thin cornea, congenital cataract and high myopia is reported in this study. All family members underwent complete ophthalmologic examinations. Patients of the family presented with bone spicule-shaped pigment deposits in retina, retinal vascular attenuation, retinal and choroidal dystrophy, as well as punctate opacity of the lens, reduced cornea thickness and high myopia. Peripheral venous blood was obtained from all patients and their family members for genetic analysis. After mutation analysis in a few known RP candidate genes, exome sequencing was used to analyze the exomes of 3 patients III2, III4, III6 and the unaffected mother II2. A total of 34,693 variations shared by 3 patients were subjected to several filtering steps against existing variation databases. Identified variations were verified in the rest family members by PCR and Sanger sequencing. Compound heterozygous c.802-8_810del17insGC and c.1091-2A>G mutations of the CYP4V2 gene, known as genetic defects for Bietti crystalline corneoretinal dystrophy, were identified as causative mutations for RP of this family.

  15. A heterozygous 4-bp deletion mutation in the Gs alpha gene (GNAS1) in a patient with Albright hereditary osteodystrophy.

    PubMed

    Weinstein, L S; Gejman, P V; de Mazancourt, P; American, N; Spiegel, A M

    1992-08-01

    Several heterozygous mutations within the gene encoding the alpha-subunit of Gs (GNAS1), the G protein that stimulates adenylyl cyclase, have been previously identified in patients with Albright hereditary osteodystrophy (AHO). We have now identified a fourth GNAS1 mutation from an AHO patient. Amplification by the polymerase chain reaction (PCR) of a genomic fragment encompassing GNAS1 exons 7 and 8 from one patient resulted in a product with aberrant migration on nondenaturing polyacrylamide and agarose gels. Direct DNA sequencing identified a 4-bp deletion in one allele of exon 7 encoding a frameshift with a premature stop codon. Analysis of lymphocyte RNA by reverse transcription-PCR and direct sequencing showed that the GNAS1 allele bearing the mutation is not expressed as mRNA. Consistent with this, Northern analysis revealed an approximate 50% deficiency in steady-state levels of GNAS1 mRNA. These findings further illustrate the heterogeneity of GNAS1 gene defects in AHO.

  16. Osteogenesis imperfecta Type VI with severe bony deformities caused by novel compound heterozygous mutations in SERPINF1.

    PubMed

    Cho, Sung Yoon; Ki, Chang-Seok; Sohn, Young Bae; Kim, Su Jin; Maeng, Se Hyun; Jin, Dong-Kyu

    2013-07-01

    Osteogenesis imperfecta (OI) comprises a heterogeneous group of disorders characterized by bone fragility, frequent fractures, and low bone mass. Dominantly inherited COL1A1 or COL1A2 mutations appear to be causative in the majority of OI types, but rare recessively inherited genes have also been reported. Recently, SERPINF1 has been reported as another causative gene in OI type VI. To date, only eight SERPINF1 mutations have been reported and all are homozygous. Our patient showed no abnormalities at birth, frequent fractures, osteopenia, and poor response on pamidronate therapy. At the time of her most recent evaluation, she was 8 yr old, and could not walk independently due to frequent lower-extremity fractures, resulting in severe deformity. No clinical signs were seen of hearing impairment, blue sclera, or dentinogenesis imperfecta. In this study, we describe the clinical and radiological findings of one Korean patient with novel compound heterozygous mutations (c.77dupC and c.421dupC) of SERPINF1.

  17. Osteogenesis Imperfecta Type VI with Severe Bony Deformities Caused by Novel Compound Heterozygous Mutations in SERPINF1

    PubMed Central

    Cho, Sung Yoon; Ki, Chang-Seok; Sohn, Young Bae; Kim, Su Jin; Maeng, Se Hyun

    2013-01-01

    Osteogenesis imperfecta (OI) comprises a heterogeneous group of disorders characterized by bone fragility, frequent fractures, and low bone mass. Dominantly inherited COL1A1 or COL1A2 mutations appear to be causative in the majority of OI types, but rare recessively inherited genes have also been reported. Recently, SERPINF1 has been reported as another causative gene in OI type VI. To date, only eight SERPINF1 mutations have been reported and all are homozygous. Our patient showed no abnormalities at birth, frequent fractures, osteopenia, and poor response on pamidronate therapy. At the time of her most recent evaluation, she was 8 yr old, and could not walk independently due to frequent lower-extremity fractures, resulting in severe deformity. No clinical signs were seen of hearing impairment, blue sclera, or dentinogenesis imperfecta. In this study, we describe the clinical and radiological findings of one Korean patient with novel compound heterozygous mutations (c.77dupC and c.421dupC) of SERPINF1. PMID:23853499

  18. Large deletion of the GJB6 gene in deaf patients heterozygous for the GJB2 gene mutation: genotypic and phenotypic analysis.

    PubMed

    Feldmann, Delphine; Denoyelle, Françoise; Chauvin, Pierre; Garabédian, Eréa-Noël; Couderc, Rémy; Odent, Sylvie; Joannard, Alain; Schmerber, Sébastien; Delobel, Bruno; Leman, Jacques; Journel, Hubert; Catros, Hélène; Le Maréchal, Cédric; Dollfus, Hélène; Eliot, Marie-Madeleine; Delaunoy, Jean-Pierre; David, Albert; Calais, Catherine; Drouin-Garraud, Valérie; Obstoy, Marie-Françoise; Bouccara, Didier; Sterkers, Olivier; Huy, Patrice Tran Ba; Goizet, Cyril; Duriez, Françoise; Fellmann, Florence; Hélias, Jocelyne; Vigneron, Jacqueline; Montaut, Bétina; Lewin, Patricia; Petit, Christine; Marlin, Sandrine

    2004-06-15

    Recent investigations identified a large deletion of the GJB6 gene in trans to a mutation of GJB2 in deaf patients. We looked for GJB2 mutations and GJB6 deletions in 255 French patients presenting with a phenotype compatible with DFNB1. 32% of the patients had biallelic GJB2 mutations and 6% were a heterozygous for a GJB2 mutation and a GJB6 deletion. Biallelic GJB2 mutations and combined GJB2/GJB6 anomalies were more frequent in profoundly deaf children. Based on these results, we are now assessing GJB6 deletion status in cases of prelingual hearing loss. Copyright 2004 Wiley-Liss, Inc.

  19. POC1A truncation mutation causes a ciliopathy in humans characterized by primordial dwarfism.

    PubMed

    Shaheen, Ranad; Faqeih, Eissa; Shamseldin, Hanan E; Noche, Ramil R; Sunker, Asma; Alshammari, Muneera J; Al-Sheddi, Tarfa; Adly, Nouran; Al-Dosari, Mohammed S; Megason, Sean G; Al-Husain, Muneera; Al-Mohanna, Futwan; Alkuraya, Fowzan S

    2012-08-10

    Primordial dwarfism (PD) is a phenotype characterized by profound growth retardation that is prenatal in onset. Significant strides have been made in the last few years toward improved understanding of the molecular underpinning of the limited growth that characterizes the embryonic and postnatal development of PD individuals. These include impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA-damage response, defective spliceosomal machinery, and abnormal replication licensing. In three families affected by a distinct form of PD, we identified a founder truncating mutation in POC1A. This gene is one of two vertebrate paralogs of POC1, which encodes one of the most abundant proteins in the Chlamydomonas centriole proteome. Cells derived from the index individual have abnormal mitotic mechanics with multipolar spindles, in addition to clearly impaired ciliogenesis. siRNA knockdown of POC1A in fibroblast cells recapitulates this ciliogenesis defect. Our findings highlight a human ciliopathy syndrome caused by deficiency of a major centriolar protein.

  20. POC1A Truncation Mutation Causes a Ciliopathy in Humans Characterized by Primordial Dwarfism

    PubMed Central

    Shaheen, Ranad; Faqeih, Eissa; Shamseldin, Hanan E.; Noche, Ramil R.; Sunker, Asma; Alshammari, Muneera J.; Al-Sheddi, Tarfa; Adly, Nouran; Al-Dosari, Mohammed S.; Megason, Sean G.; Al-Husain, Muneera; Al-Mohanna, Futwan; Alkuraya, Fowzan S.

    2012-01-01

    Primordial dwarfism (PD) is a phenotype characterized by profound growth retardation that is prenatal in onset. Significant strides have been made in the last few years toward improved understanding of the molecular underpinning of the limited growth that characterizes the embryonic and postnatal development of PD individuals. These include impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA-damage response, defective spliceosomal machinery, and abnormal replication licensing. In three families affected by a distinct form of PD, we identified a founder truncating mutation in POC1A. This gene is one of two vertebrate paralogs of POC1, which encodes one of the most abundant proteins in the Chlamydomonas centriole proteome. Cells derived from the index individual have abnormal mitotic mechanics with multipolar spindles, in addition to clearly impaired ciliogenesis. siRNA knockdown of POC1A in fibroblast cells recapitulates this ciliogenesis defect. Our findings highlight a human ciliopathy syndrome caused by deficiency of a major centriolar protein. PMID:22840364

  1. A novel MYOC heterozygous mutation identified in a Chinese Uygur pedigree with primary open-angle glaucoma.

    PubMed

    Cai, Su-ping; Muhemaiti, Paerheti; Yin, Yan; Cheng, Hongbo; Di Ya, A; Keyimu, Maliyamu; Cao, Xu; Fan, Ning; Jiang, Liqiong; Yan, Naihong; Zhou, Xiaomin; Wang, Yun; Liu, Xuyang

    2012-01-01

    To characterize the clinical features of a Chinese Uygur pedigree with primary open-angle glaucoma (POAG) and to identify mutations in two candidate genes, trabecular meshwork inducible glucocorticoid response (MYOC/TIGR) and human dioxin-inducible cytochrome P450 (CYP1B1). Twenty one members from a Chinese Uygur family of four generations were included in the study. All participants underwent complete ophthalmologic examinations. Five were diagnosed as POAG, four as glaucoma suspects, and the rest were asymptomatic. Molecular genetic analysis was performed on all subjects included in the study. All exons of CYP1B1 and MYOC were amplified by polymerase chain reaction (PCR), sequenced and compared with a reference database. The variations detected were evaluated in available family members as well as 102 normal controls. Possible changes in structure and function of the protein induced by amino acid variance were predicted by bioinformatics analysis. Elevated intraocular pressure and late-stage glaucomatous cupping of the optic disc were found in five patients of this family. A novel heterozygous missense mutation c.1151 A>G in exon 3 of MYOC was found in all five patients diagnosed as POAG and four glaucoma suspects, but not in the rest of the family members and 102 normal controls. This mutation caused an amino acid substitution of aspartic acid to glycine at position 384 (p. D384G) of the MYOC protein. This substitution may cause structural and functional changes of the protein based on bioinformatics analysis. No mutations were found in CYP1B1. Our study suggests that the novel mutation D384G of MYOC is likely responsible for the pathogenesis of POAG in this pedigree.

  2. Novel compound heterozygous mutations in a child with Ataxia-Telangiectasia showing unrelated cerebellar disorders.

    PubMed

    Piane, Maria; Molinaro, Anna; Soresina, Annarosa; Costa, Silvia; Maffeis, Marianna; Germani, Aldo; Pinelli, Lorenzo; Meschini, Roberta; Plebani, Alessandro; Chessa, Luciana; Micheli, Roberto

    2016-12-15

    We report the case of a 6-year-old female patient with Ataxia Telangiectasia, an extremely rare condition, who developed in addition a left cerebellar astrocytoma and a right cerebellar infarction, considered as two independent events. Children with AT have an increased risk of developing cancer, but only few cases of glioma are reported and, at our knowledge, no other case of unrelated cerebellar glioma and cerebellar infarction in with the same AT patient have been described. The molecular analysis of ATM (Ataxia Telangiectasia Mutated) gene showed that the patient is compound heterozygote for two previously unreported mutations: c.3291delC (p.Phe1097fs) at exon 25 and c.8198A>C (p.Gln2733Pro) at exon 58. The role of the identified ATM gene mutations in the pathogenesis of Ataxia Telangiectasia and the coexisting cerebellar disorders is discussed.

  3. Neurofibromatosis type 1 (NF1): a protein truncation assay yielding identification of mutations in 73% of patients.

    PubMed Central

    Park, V M; Pivnick, E K

    1998-01-01

    Neurofibromatosis type 1 (NF1) is caused by mutations in a tumour suppressor gene located on chromosome 17 (17q11.2). Disease causing mutations are dispersed throughout the gene, which spans 350 kilobases and includes 59 exons. A common consequence of NF1 mutations is introduction of a premature stop codon, and the majority of mutant genes encode truncated forms of neurofibromin. We used a protein truncation assay to screen for mutations in 15 NF1 patients and obtained positive results in 11 of them (73%). Sequencing of cDNA and genomic DNA yielded identification of 10 different mutations, including four splicing errors, three small deletions, two nonsense mutations, and one small insertion. Nine mutations were predicted to cause premature termination of translation, while one mutation caused in frame deletion as a result ofexon skipping. In one other case involving abnormal splicing, five different aberrantly spliced transcripts were detected. One germline nonsense mutation (R1306X, 3916C>T) corresponded to the same base change that occurs by mRNA editing in normal subjects. The second nonsense mutation (R2496X) was the sole germline mutation that has been previously described. The subjects studied represented typically affected NF1 patients and no correlations between genotype and phenotype were apparent. A high incidence of ocular hypertelorism was observed. Images PMID:9783703

  4. Exome sequencing identifies RDH12 compound heterozygous mutations in a family with severe retinitis pigmentosa.

    PubMed

    Chacon-Camacho, Oscar F; Jitskii, Serguei; Buentello-Volante, Beatriz; Quevedo-Martinez, Jonathan; Zenteno, Juan C

    2013-10-10

    Retinitis pigmentosa (RP) is the most prevalent type of inherited retinal degeneration and one of the commonest causes of genetically determined visual dysfunction worldwide. To date, approximately 35 genes have been associated with nonsyndromic autosomal recessive RP (arRP), however the small contribution of each gene to the total prevalence of arRP and the lack of a clear genotype-phenotype correlation complicate the genetic analysis in affected patients. Next generation sequencing technologies are powerful and cost-effective methods for detecting causative mutations in both sporadic and familial RP cases. A Mexican family with 5 members affected from arRP was studied. All patients underwent a complete ophthalmologic examination. Molecular methods included genome-wide SNP homozygosity mapping, exome sequencing analysis, and Sanger-sequencing confirmation of causal mutations. No regions of shared homozygosity among affected subjects were identified. Exome sequencing in a single patient allowed the detection of two missense mutations in the RDH12 gene: a c.446T>C transition predicting a novel p.L149P substitution, and a c.295C>A transversion predicting a previously reported p.L99I replacement. Sanger sequencing confirmed that all affected subjects carried both RDH12 mutations. This study adds to the molecular spectrum of RDH12-related retinopathy and offers an additional example of the power of exome sequencing in the diagnosis of recessively inherited retinal degenerations. © 2013 Elsevier B.V. All rights reserved.

  5. A novel c132-134del mutation in Unverricht-Lundborg disease and the review of literature of heterozygous compound patients.

    PubMed

    Assenza, Giovanni; Benvenga, Antonella; Gennaro, Elena; Tombini, Mario; Campana, Chiara; Assenza, Federica; Di Pino, Giovanni; Di Lazzaro, Vincenzo

    2017-02-01

    Unverricht-Lundborg disease or progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disease caused by mutation of the cystatin B gene (CSTB), located on chromosome 21q22.3. The most common mutation is an expansion of unstable dodecamer repetition (CCCCGCCCCGCG), whereas other types of mutations are rare. Among these, heterozygous compound mutations are described to induce a more severe phenotype than that of homozygous dodecameric repetition. We report two siblings affected by heterozygous compound mutations carrying a novel mutation of the deletion of three nucleotides in exon 2 of the gene in position 132-134 of the coding sequence (c.132-134del) in the allele not including the dodecamer repetition. This mutation results in the loss of two amino acid residues and insertion of an asparagine in position 44 (p.Lys44_Ser45delinsAsn). Our patients presented a very different clinical picture. The male patient had a severe myoclonus, drug-resistant epilepsy and psychiatric comorbidity, while his affected sister had only very rare seizures and sporadic myoclonic jerks at awakening. The revision of literature about heterozygous compound EPM1 patients confirms this gender phenotypic expressivity, with female patients carrying less severe symptoms than male patients. These data lead to the hypothesis of complex gender-specific factors interacting with CSTB expressivity in EPM1 patients.

  6. Life-threatening methylenetetrahydrofolate reductase (MTHFR) deficiency with extremely early onset: characterization of two novel mutations in compound heterozygous patients.

    PubMed

    Forges, Thierry; Chery, Céline; Audonnet, Sandra; Feillet, François; Gueant, Jean-Louis

    2010-06-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzymatic component of the folate cycle, converting 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, the methyl donor for remethylation of homocysteine into methionine. Severe MTHFR deficiency is a rare recessive disease leading to major hyperhomocysteinemia, homocystinuria, and progressive neurological distress within the two first decades of life. More than 50 mutations have been reported so far in affected patients but only a few cases with very early onset of symptoms during the first weeks have been described, most of them showing a particular severe clinical course. We detected two novel mutations by direct sequencing of MTHFR in compound heterozygous patients with extremely low or undetectable enzyme activity; one of them had clinical onset during the first week of life and fatal issue at the age of six weeks. Prenatal diagnosis of his sibling allowed for early treatment with B vitamins and betaine and a favorable outcome. One of these mutations (c.523G>A) led to an Ala>Thr transition in the catalytic domain of the enzyme, the other (c.1166G>A) induced alternative splicing of exon 7 at the junction of the catalytic and regulatory domains. Both parents carried only one of these mutations and presented with moderate and intermediate hyperhomocysteinemia, respectively, without neurological symptoms. Severe MTHFR deficiency thus has to be taken into consideration when investigating neurological distress even in the newborn, regarding the need for an earliest possible treatment. Characterization of the relatives further allows for preventive measure to limit the risks of chronic hyperhomocysteinemia.

  7. Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects.

    PubMed

    Williamson, Kathleen A; Rainger, Joe; Floyd, James A B; Ansari, Morad; Meynert, Alison; Aldridge, Kishan V; Rainger, Jacqueline K; Anderson, Carl A; Moore, Anthony T; Hurles, Matthew E; Clarke, Angus; van Heyningen, Veronica; Verloes, Alain; Taylor, Martin S; Wilkie, Andrew O M; Fitzpatrick, David R

    2014-02-06

    Exome sequence analysis of affected individuals from two families with autosomal-dominant inheritance of coloboma identified two different cosegregating heterozygous nonsense mutations (c.370C>T [p.Arg124*] and c. 1066G>T [p.Glu356*]) in YAP1. The phenotypes of the affected families differed in that one included no extraocular features and the other manifested with highly variable multisystem involvement, including hearing loss, intellectual disability, hematuria, and orofacial clefting. A combined LOD score of 4.2 was obtained for the association between YAP1 loss-of-function mutations and the phenotype in these families. YAP1 encodes an effector of the HIPPO-pathway-induced growth response, and whole-mount in situ hybridization in mouse embryos has shown that Yap1 is strongly expressed in the eye, brain, and fusing facial processes. RT-PCR showed that an alternative transcription start site (TSS) in intron 1 of YAP1 and Yap1 is widely used in human and mouse development, respectively. Transcripts from the alternative TSS are predicted to initiate at codon Met179 relative to the canonical transcript (RefSeq NM_001130145). In these alternative transcripts, the c.370C>T mutation in family 1305 is within the 5' UTR and cannot result in nonsense-mediated decay (NMD). The c. 1066G>T mutation in family 132 should result in NMD in transcripts from either TSS. Amelioration of the phenotype by the alternative transcripts provides a plausible explanation for the phenotypic differences between the families.

  8. Compound heterozygous mutations in the SCN5A-encoded Nav1.5 cardiac sodium channel resulting in atrial standstill and His-Purkinje system disease.

    PubMed

    Baskar, Shankar; Ackerman, Michael J; Clements, Diane; Mayuga, Kenneth A; Aziz, Peter F

    2014-11-01

    An 11-year-old girl on evaluation for syncope was found to have progressive sinus node dysfunction and His-Purkinje system disease with atrial standstill. Genetic analysis revealed compound heterozygous mutations of the SCN5A gene in a novel combination.

  9. NF1 truncating mutations associated to aggressive clinical phenotype with elephantiasis neuromatosa and solid malignancies.

    PubMed

    Ponti, Giovanni; Martorana, Davide; Pellacani, Giovanni; Ruini, Cristel; Loschi, Pietro; Baccarani, Alessio; De Santis, Giorgio; Pollio, Annamaria; Neri, Tauro Maria; Mandel, Victor Desmond; Maiorana, Antonio; Maccio, Livia; Maccaferri, Monia; Tomasi, Aldo

    2014-06-01

    Von Recklinghausen disease is a syndrome characterized by a wide phenotypic variability giving rise to both, cutaneous and visceral benign and malignant neoplasms. The first include cutaneous neurofibromas, subcutaneous and plexiform neurofibromas. The latter can undergo malignant transformation and/or determine elephantiasis neuromatosa. Visceral tumors may include malignant peripheral nerve sheet tumors, gastrointestinal stromal tumors, cerebral gliomas and abdominal neurofibromas. In the present study, the authors discuss the clinical and biomolecular characterization of a cohort of 20 families with a diagnosis of type 1 neurofibromatosis. Clinically, the cohort includes three probands with elephantiasis neuromatosa and a peculiarly high incidence of breast and gastrointestinal cancer. Among the 14 NF1 mutations documented, 10 encoding for a truncated protein have been associated to particularly aggressive clinical phenotypes including elephantiasis neuromatosa, malignant peripheral nerve sheet tumors, breast cancer, gastrointestinal stromal tumors. This effect on protein synthesis, rather than the type of NF1 mutation, is the key to the explanation of the genotype-phenotype correlations in the context of neurofibromatosis type 1. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. AB168. Novel DYM compound heterozygous mutations in a Malaysian boy with Dyggve-Melchior-Clausen syndrome

    PubMed Central

    Ong, Winnie Peitee; Md Haniffa, Muzhirah Aisha; Leong, Huey Yin; Chew, Hui Bein; Ch’ng, Gaik Siew; Ngu, Lock Hock; Patel, Nisha; Hashem, Mais Omar; Alkuraya, Fowzan Sami; Keng, Wee Teik

    2015-01-01

    Background Dyggve-Melchior-Clausen (DMC) syndrome and Smith-McCort Dysplasia (SMC) are rare, progressive, autosomal recessive skeletal dysplasias caused by mutations in the Dymeclin (DYM) gene, mapped to chromosome 18q21.1. These are allelic disorders and share many features including short stature, a barrel-shaped chest, platyspondyly, abnormalities of the epiphyses and metaphyses, and a distinctive lacy appearance of the iliac crest. The distinguishing feature is that individuals with DMC have intellectual disabilities whereas SMC is associated with normal intelligence. Case presentation We present a 6-year-old Malaysian boy, the elder of two children born to a non-consanguineous Chinese couple. He was a term baby but was small and short for gestational age at birth. He initially presented to the paediatric endocrinologist for concerns of short stature and was subsequently referred prior to the age of three for suspicion of mucopolysaccharidosis (MPS) from his vertebral radiological findings. Clinical evaluation revealed that he had short stature, microcephaly and prominent pectus carinatum. He had normal early developmental milestones but on follow-up, it became obvious he had learning difficulties with expressive speech delay. His skeletal radiographs showed platyspondyly with a double hump and anterior breaking, broad ribs, widened metacarpals, abnormally shaped femoral heads and lacy crests of the iliac wings. Molecular testing of the DYM gene identified novel compound heterozygous mutations—a deletion c.242_249del8 in exon 4 was inherited from his father and a single nucleotide duplication c.1917dupT in exon 17 was inherited from his mother. Both these mutations cause a frameshift and result in aberrant mRNA processing. The parents are therefore heterozygous carriers. Our patient was initially thought to have Smith-McCort dysplasia SMC but his diagnosis had since been revised to DMC when it became evident he had speech delay and was faltering with his

  11. Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in IκBα

    PubMed Central

    Mooster, Jana L.; Le Bras, Severine; Massaad, Michel J.; Jabara, Haifa; Yoon, Juhan; Galand, Claire; Heesters, Balthasar A.; Burton, Oliver T.; Mattoo, Hamid; Manis, John

    2015-01-01

    Patients with ectodermal dysplasia with immunodeficiency (ED-ID) caused by mutations in the inhibitor of NF-κB α (IκBα) are susceptible to severe recurrent infections, despite normal T and B cell numbers and intact in vitro lymphocyte function. Moreover, the outcome of hematopoietic stem cell transplantation (HSCT) in these patients is poor despite good engraftment. Mice heterozygous for the IκBα S32I mutation found in patients exhibited typical features of ED-ID. Strikingly, the mice lacked lymph nodes, Peyer’s patches, splenic marginal zones, and follicular dendritic cells and failed to develop contact hypersensitivity (CHS) or form germinal centers (GCs), all features not previously recognized in patients and typical of defective noncanonical NF-κB signaling. Lymphotoxin β receptor (LTβR)–driven induction of chemokines and adhesion molecules mediated by both canonical and noncanonical NF-κB pathways was impaired, and levels of p100 were markedly diminished in the mutant. IκBα mutant→Rag2−/−, but not WT→IκBα mutant, bone marrow chimeras formed proper lymphoid organs and developed CHS and GCs. Defective architectural cell function explains the immunodeficiency and poor outcome of HSCT in patients with IκBα deficiency and suggests that correction of this niche is critical for reconstituting their immune function. PMID:25601653

  12. Whole Exome Sequencing Identifies De Novo Heterozygous CAV1 Mutations Associated with a Novel Neonatal Onset Lipodystrophy Syndrome

    PubMed Central

    Garg, Abhimanyu; Kircher, Martin; del Campo, Miguel; Amato, R. Stephen; Agarwal, Anil K.

    2016-01-01

    Despite remarkable progress in identifying causal genes for many types of genetic lipodystrophies in the last decade, the molecular basis of many extremely rare lipodystrophy patients with distinctive phenotypes remains unclear. We conducted whole exome sequencing of the parents and probands from six pedigrees with neonatal onset of generalized loss of subcutaneous fat with additional distinctive phenotypic features and report de novo heterozygous null mutations, c.424C>T (p. Q142*) and c.479_480delTT (p.F160*), in CAV1 in a 7-year-old male and a 3-year-old female of European origin, respectively. Both the patients had generalized fat loss, thin mottled skin and progeroid features at birth. The male patient had cataracts requiring extraction at age 30 months and the female patient had pulmonary arterial hypertension. Dermal fibroblasts of the female patient revealed negligible CAV1 immunofluorescence staining compared to control but there were no differences in the number and morphology of caveolae upon electron microscopy examination. Based upon the similarities in the clinical features of these two patients, previous reports of CAV1 mutations in patients with lipodystrophies and pulmonary hypertension, and similar features seen in CAV1 null mice, we conclude that these variants are the most likely cause of one subtype of neonatal onset generalized lipodystrophy syndrome. PMID:25898808

  13. Effect of LDL cholesterol, statins and presence of mutations on the prevalence of type 2 diabetes in heterozygous familial hypercholesterolemia.

    PubMed

    Climent, Elisenda; Pérez-Calahorra, Sofía; Marco-Benedí, Victoria; Plana, Nuria; Sánchez, Rosa; Ros, Emilio; Ascaso, Juan F; Puzo, Jose; Almagro, Fátima; Lahoz, Carlos; Civeira, Fernando; Pedro-Botet, Juan

    2017-07-17

    Patients with heterozygous familial hypercholesterolemia (HeFH) have been reported to be less vulnerable to type 2 diabetes mellitus (T2DM), although the mechanism is unknown. The aims of the present study were to assess the effects of low density lipoprotein (LDL) cholesterol concentration and the presence of FH-causing mutations on T2DM prevalence in HeFH. Data were collected from the Dyslipidemia Registry of the Spanish Arteriosclerosis Society. Inclusion criteria were definite or probable HeFH in patients aged ≥18 years. T2DM prevalence in HeFH patients was compared with data of the general population. 1732 patients were included. The prevalence of T2DM was lower in patients with HeFH compared with the general population (5.94% vs 9.44%; OR: 0.606, 95% CI 0.486-0.755, p < 0.001). Risk factors for developing T2DM were male sex, age, body mass index, hypertension, baseline triglyceride levels and years on statin therapy. The prevalence of T2DM in HeFH patients was 40% lower than that observed in the general population. Gene mutations and LDL cholesterol concentrations were not risk factors associated with the prevalence of T2DM in patients with HeFH. The prevalence of T2DM in patients with HeFH was 40% lower than in the general population matched for age and sex.

  14. Autosomal Recessive Multiple Epiphyseal Dysplasia in a Korean Girl Caused by Novel Compound Heterozygous Mutations in the DTDST (SLC26A2) Gene

    PubMed Central

    Kim, Ok-Hwa; Lee, Hye-Ran; Shin, Sung Jin; Yoo, Won Joon; Park, Woong Yang; Park, Sung Sup; Cho, Sung Im; Choi, In Ho

    2010-01-01

    Multiple epiphyseal dysplasia is caused by heterogenous genotypes involving more than six genes. Recessive mutations in the DTDST gene cause a phenotype of recessive multiple epiphyseal dysplasia (rMED). The authors report a 9-yr old Korean girl with the rMED phenotype having novel compound heterozygous mutations in the DTDST gene, which were inherited from both parents. This is the first Korean rMED case attributed to DTDST mutations, and expands the spectrum of diseases caused by DTDST mutations. PMID:20592910

  15. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    SciTech Connect

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  16. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro.

    PubMed

    van der Zee, Julie; Urwin, Hazel; Engelborghs, Sebastiaan; Bruyland, Marc; Vandenberghe, Rik; Dermaut, Bart; De Pooter, Tim; Peeters, Karin; Santens, Patrick; De Deyn, Peter P; Fisher, Elizabeth M; Collinge, John; Isaacs, Adrian M; Van Broeckhoven, Christine

    2008-01-15

    The charged multivesicular body protein 2B gene (CHMP2B) was recently associated with frontotemporal lobar degeneration (FTLD) linked to chromosome 3 in a Danish FTLD family (FTD-3). In this family, a mutation in the acceptor splice site of exon 6 produced two aberrant transcripts predicting two C-truncated CHMP2B proteins due to a read through of intron 5 (p.Met178ValfsX2) and a cryptic splicing event within exon 6 (p.Met178LeufsX30). Extensive mutation analysis of CHMP2B in Belgian patients (N = 146) identified one nonsense mutation in exon 5 (c.493C>T) in a familial FTLD patient, predicting a C-truncated protein p.Gln165X analogous to the Danish mutant proteins. Overexpression of Belgian p.Gln165X in human neuroblastoma SK-N-SH cells showed the formation of large, aberrant endosomal structures that were highly similar to those observed for Danish p.Met178ValfsX2. Together, these data suggest that C-truncating mutations in CHMP2B might underlie the pathogenic mechanism in FTLD by disturbing endosome function. We also describe a missense mutation in exon 5 of CHMP2B (p.Asn143Ser) in a familial patient with cortical basal degeneration. However, the pathogenic character of this mutation remains elusive.

  17. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    PubMed

    Williams, Alison A; Mehler, Vera J; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  18. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations

    PubMed Central

    Mehler, Vera J.; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  19. Chromosomal breakage in human spermatozoa, a heterozygous effect of the bloom syndrome mutation

    SciTech Connect

    Martin, R.H.; Rademaker, A.; German, J.

    1994-12-01

    The chromosome complements of 662 spermatozoa produced by the three fathers of individuals with Bloom syndrome (BS) were analyzed to determine whether the BS mutation could affect chromosome segregation and the frequency of aneuploidy in sperm. The frequency of numerical abnormalities was not significantly different from that in normal controls studied in our laboratory, but the frequencies of structural abnormalities were significantly increased in two of the men, 14.3% and 15.9%, versus 8.6% in controls. More striking was the increase in these two men of cells with multiple structural abnormalities: 8.1% and 6.7% with multiple abnormalities, versus 2.3% in controls.

  20. Neuromyelitis optica, atypical hemophagocytic lymphohistiocytosis and heterozygous perforin A91V mutation.

    PubMed

    Palterer, Boaz; Brugnolo, Francesca; Sieni, Elena; Barilaro, Alessandro; Parronchi, Paola

    2017-10-15

    Neuromyelitis optica is an autoimmune demyelinating inflammatory disease characterized by optic neuritis and myelitis with anti-aquaporin 4 antibodies. Hemophagocytic lymphohistiocytosis is a severe systemic inflammatory syndrome that can present in a genetic primary form or secondarily to infective, neoplastic or autoimmune diseases. Our case discusses the first reported case of atypical late-onset hemophagocytic lymphohistiocytosis in a patient with neuromyelitis optica, with multiple triggering factors and carrying the common A91V hypomorphic perforin mutation, that blurs the distinction between primary and secondary forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Congenital thrombotic thrombocytopenic purpura caused by new compound heterozygous mutations of the ADAMTS13 gene.

    PubMed

    Rank, Cecilie Utke; Kremer Hovinga, Johanna; Taleghani, Magnus Mansouri; Lämmle, Bernhard; Gøtze, Jens Peter; Nielsen, Ove Juul

    2014-02-01

    Upshaw-Schulman syndrome (USS) is due to severe congenital deficiency of von Willebrand factor (VWF)-cleaving protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 domains, nr 13) activity resulting in the presence of unusually large forms of VWF in the circulation, causing intravascular platelet clumping and thrombotic microangiopathy. Our patient, a 26-year-old man, had attacks of thrombotic thrombocytopenic purpura (TTP) with thrombocytopenia and a urine dipstick positive for hemoglobin (4+), often as the only sign of hemolytic activity. He had ADAMTS13 activity of <1% of normal plasma without the presence of inhibitors of ADAMTS13. ADAMTS13 deficiency was caused by two new mutations of the ADAMTS13 gene: a deletion of a single nucleotide in exon17 (c. 2042 delA) leading to a frameshift (K681C fs X16), and a missense mutation in exon 25 (c.3368G>A) leading to p.R1123H. This case report confirms the importance of the analysis of the ADAMTS13 activity and its inhibitor in patients who have episodes of TTP, with a very low platelet count and sometimes without the classic biochemical signs of hemolysis.

  2. De novo, heterozygous, loss‐of‐function mutations in SYNGAP1 cause a syndromic form of intellectual disability

    PubMed Central

    Fryer, Alan E.; Shears, Deborah J.; Lachlan, Katherine L.; McKee, Shane A.; Magee, Alex C.; Mohammed, Shehla; Vasudevan, Pradeep C.; Park, Soo‐Mi; Benoit, Valérie; Lederer, Damien; Maystadt, Isabelle; study, DDD; FitzPatrick, David R.

    2015-01-01

    De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase‐activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi‐gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss‐of‐function (3 nonsense; 3 frameshift; 1 whole gene deletion). The remaining two mutations, one of which affected the monozygotic twins, were missense variants. Each individual carrying a DNM in SYNGAP1 had moderate‐to‐severe ID and 7/10 had epilepsy; typically myoclonic seizures, absences or drop attacks. 8/10 had hypotonia, 5/10 had significant constipation, 7/10 had wide‐based/unsteady gait, 3/10 had strabismus, and 2/10 had significant hip dysplasia. A proportion of the affected individuals had a similar, myopathic facial appearance, with broad nasal bridge, relatively long nose and full lower lip vermilion. A distinctive behavioral phenotype was also observed with aggressive/challenging behavior and significant sleep problems being common. 7/10 individuals had MR imaging of the brain each of which was reported as normal. The clinical features of the individuals reported here show significant overlap with those associated with 6p21.3 microdeletions, confirming that haploinsufficiency for SYNGAP1 is responsible for both disorders. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:26079862

  3. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His

    PubMed Central

    Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan

    2016-01-01

    Abstract Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees. Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS–PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM). The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS–PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal. Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen. PMID

  4. De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability.

    PubMed

    Parker, Michael J; Fryer, Alan E; Shears, Deborah J; Lachlan, Katherine L; McKee, Shane A; Magee, Alex C; Mohammed, Shehla; Vasudevan, Pradeep C; Park, Soo-Mi; Benoit, Valérie; Lederer, Damien; Maystadt, Isabelle; Study, Ddd; FitzPatrick, David R

    2015-10-01

    De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase-activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi-gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss-of-function (3 nonsense; 3 frameshift; 1 whole gene deletion). The remaining two mutations, one of which affected the monozygotic twins, were missense variants. Each individual carrying a DNM in SYNGAP1 had moderate-to-severe ID and 7/10 had epilepsy; typically myoclonic seizures, absences or drop attacks. 8/10 had hypotonia, 5/10 had significant constipation, 7/10 had wide-based/unsteady gait, 3/10 had strabismus, and 2/10 had significant hip dysplasia. A proportion of the affected individuals had a similar, myopathic facial appearance, with broad nasal bridge, relatively long nose and full lower lip vermilion. A distinctive behavioral phenotype was also observed with aggressive/challenging behavior and significant sleep problems being common. 7/10 individuals had MR imaging of the brain each of which was reported as normal. The clinical features of the individuals reported here show significant overlap with those associated with 6p21.3 microdeletions, confirming that haploinsufficiency for SYNGAP1 is responsible for both disorders. © 2015 Wiley Periodicals, Inc.

  5. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His.

    PubMed

    Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan

    2016-09-01

    Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees.Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS-PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM).The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS-PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal.Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen.

  6. Gene Expression Patterns of Hemizygous and Heterozygous KIT Mutations Suggest Distinct Oncogenic Pathways: A Study in NIH3T3 Cell Lines and GIST Samples

    PubMed Central

    Dessaux, Sophie; Besse, Anthony; Brahimi-Adouane, Sabrina; Emile, Jean-François; Blay, Jean-Yves; Alberti, Laurent

    2013-01-01

    Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways. PMID:23593401

  7. A study in Polish patients with cardiomyopathy emphasizes pathogenicity of phospholamban (PLN) mutations at amino acid position 9 and low penetrance of heterozygous null PLN mutations.

    PubMed

    Truszkowska, Grażyna T; Bilińska, Zofia T; Kosińska, Joanna; Śleszycka, Justyna; Rydzanicz, Małgorzata; Sobieszczańska-Małek, Małgorzata; Franaszczyk, Maria; Bilińska, Maria; Stawiński, Piotr; Michalak, Ewa; Małek, Łukasz A; Chmielewski, Przemysław; Foss-Nieradko, Bogna; Machnicki, Marcin M; Stokłosa, Tomasz; Ponińska, Joanna; Szumowski, Łukasz; Grzybowski, Jacek; Piwoński, Jerzy; Drygas, Wojciech; Zieliński, Tomasz; Płoski, Rafał

    2015-04-03

    In humans mutations in the PLN gene, encoding phospholamban - a regulator of sarcoplasmic reticulum calcium ATPase (SERCA), cause cardiomyopathy with prevalence depending on the population. Our purpose was to identify PLN mutations in Polish cardiomyopathy patients. We studied 161 unrelated subjects referred for genetic testing for cardiomyopathies: 135 with dilated cardiomyopathy, 22 with hypertrophic cardiomyopathy and 4 with other cardiomyopathies. In 23 subjects multiple genes were sequenced by next generation sequencing and in all subjects PLN exons were analyzed by Sanger sequencing. Control group included 200 healthy subjects matched with patients for ethnicity, sex and age. Large deletions/insertions were screened by real time polymerase chain reaction. We detected three different heterozygous mutations in the PLN gene: a novel null c.9_10insA:(p.Val4Serfs*15) variant and two missense variants: c.25C > T:(p.Arg9Cys) and c.26G > T:(p.Arg9Leu). The (p.Val4Serfs*15) variant occurred in the patient with Wolff-Parkinson-White syndrome in whom the diagnosis of cardiomyopathy was not confirmed and his mother who had concentric left ventricular remodeling but normal left ventricular mass and function. We did not detect large deletions/insertions in PLN in cohort studied. In Poland, similar to most populations, PLN mutations rarely cause cardiomyopathy. The 9(th) PLN residue is apparently a mutation hot spot whereas a single dose of c.9_10insA, and likely other null PLN mutations, cause the disease only with low penetrance or are not pathogenic.

  8. Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer.

    PubMed

    Guo, Jianhui; Zheng, Li; Liu, Wenyong; Wang, Xianshu; Wang, Zemin; Wang, Zehua; French, Amy J; Kang, Dongchon; Chen, Lin; Thibodeau, Stephen N; Liu, Wanguo

    2011-04-15

    The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA (mtDNA) replication and transcription. Disruption of TFAM results in heart failure and premature aging in mice. But very little is known about the role of TFAM in cancer development. Here, we report the identification of frequent frameshift mutations in the coding mononucleotide repeat of TFAM in sporadic colorectal cancer (CRC) cell lines and in primary tumors with microsatellite instability (MSI), but not in microsatellite stable (MSS) CRC cell lines and tumors. The presence of the TFAM truncating mutation, in CRC cells with MSI, reduced the TFAM protein level in vivo and in vitro and correlated with mtDNA depletion. Furthermore, forced overexpression of wild-type TFAM in RKO cells carrying a TFAM truncating mutation suppressed cell proliferation and inhibited RKO cell-induced xenograft tumor growth. Moreover, these cells showed more susceptibility to cisplatin-induced apoptosis due to an increase of cytochrome b (Cyt b) expression and its release from mitochondria. An interaction assay between TFAM and the heavy-strand promoter (HSP) of mitochondria revealed that mutant TFAM exhibited reduced binding to HSP, leading to reduction in Cyt b transcription. Collectively, these data provide evidence that a high incidence of TFAM truncating mutations leads to mitochondrial copy number reduction and mitochondrial instability, distinguishing most CRC with MSI from MSS CRC. These mutations may play an important role in tumorigenesis and cisplatin-induced apoptotic resistance of most microsatellite-unstable CRCs.

  9. De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome.

    PubMed

    Jansen, Sandra; Geuer, Sinje; Pfundt, Rolph; Brough, Rachel; Ghongane, Priyanka; Herkert, Johanna C; Marco, Elysa J; Willemsen, Marjolein H; Kleefstra, Tjitske; Hannibal, Mark; Shieh, Joseph T; Lynch, Sally Ann; Flinter, Frances; FitzPatrick, David R; Gardham, Alice; Bernhard, Birgitta; Ragge, Nicola; Newbury-Ecob, Ruth; Bernier, Raphael; Kvarnung, Malin; Magnusson, E A Helena; Wessels, Marja W; van Slegtenhorst, Marjon A; Monaghan, Kristin G; de Vries, Petra; Veltman, Joris A; Lord, Christopher J; Vissers, Lisenka E L M; de Vries, Bert B A

    2017-04-06

    Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.

  10. Heterozygous germline mutations in NBS1 among Korean patients with high-risk breast cancer negative for BRCA1/2 mutation.

    PubMed

    Kim, Haeyoung; Cho, Dae-Yeon; Choi, Doo Ho; Jung, Gee Hue; Shin, Inkyung; Park, Won; Huh, Seung Jae; Kim, Sung-Won; Park, Sue K; Lee, Jong Won; Nam, Seok Jin; Lee, Jeong Eon; Gil, Won Ho; Kim, Seok Won

    2015-09-01

    The purpose of the present study was to analyze genetic variations in the NBS1 gene and to evaluate the contribution of heterozygous NBS1 mutation to the risk of breast cancer among Korean patients with high-risk breast cancer negative for BRCA1/2 mutation. We screened 235 non-BRCA1/2 Korean patients with high-risk breast cancer for NBS1 mutations. The entire NBS1 gene was sequenced using fluorescent conformation-sensitive capillary electrophoresis. In silico analysis of the NBS1 variants was performed using PolyPhen-2 and SIFT. The frequency of variants predicted to be deleterious by in silico analysis was compared between breast cancer patients and controls. Twenty-eight sequence variants in the NBS1 gene were identified: 9 exonic variants, including 5 missense mutations (p.R169C, p.I171V, p.E185Q, p.E564K, and p.F603L) and 4 silent mutations, and 19 variants within introns. Among the five missense variants, p.I171V (c.511A > G) was the only variant predicted to be deleterious by in silico analysis. Heterozygosity for p.I171V was found in 4/235 patients with breast cancer and 3/281 individuals in the control group. The frequency of p.I171V was not significantly different between the patient and control groups (1.7 vs. 1.06%, p = 0.7). Heterozygosity of p.I171V in the NBS1 gene was found in a small proportion of Korean patients with high-risk breast cancer. The contribution of the p.I171V variant to the development of breast cancer among Korean patients was not significant.

  11. Diffuse Angiopathy in Adams-Oliver syndrome Associated with Truncating DOCK6 Mutations

    PubMed Central

    Lehman, Anna; Stittrich, Anna-Barbara; Glusman, Gustavo; Zong, Zheyuan; Li, Hong; Eydoux, Patrice; Senger, Christof; Lyons, Christopher; Roach, Jared C.; Patel, Millan

    2014-01-01

    Adams-Oliver syndrome (AOS) is a rare malformation syndrome characterized by the presence of two anomalies: aplasia cutis congenita of the scalp and transverse terminal limb defects. Many affected individuals also have additional malformations, including a variety of intracranial anomalies such as periventricular calcification in keeping with cerebrovascular microbleeds, impaired neuronal migration, epilepsy, and microcephaly. Cardiac malformations can be present, as can vascular dysfunction in the forms of cutis marmorata telangiectasia congenita, pulmonary vein stenoses, and abnormal hepatic microvasculature. Elucidated genetic causes include four genes in different pathways, leading to a model of AOS as a multi-pathway disorder. We identified an infant with mild aplasia cutis congenita and terminal transverse limb defects, developmental delay and a severe, diffuse angiopathy with incomplete microvascularization. Whole-genome sequencing documented two rare truncating variants in DOCK6, a gene associated with a type of autosomal recessive AOS that recurrently features periventricular calcification and impaired neurodevelopment. We highlight an unexpectedly high frequency of likely deleterious mutations in this gene in the general population, relative to the rarity of the disease, and discuss possible explanations for this discrepancy. PMID:25091416

  12. Bernard-Soulier syndrome in a patient doubly heterozygous for two frameshift mutations in the glycoprotein ib alpha gene.

    PubMed

    Afshar-Kharghan, V; Craig, F E; López, J A

    2000-09-01

    We report here the genetic basis of Bernard-Soulier syndrome in a compound heterozygote for two mutant glycoprotein (GP) Ib alpha alleles. One allele contained a novel four base-pair deletion (TGAG) that eliminated the last base of the codon for Ser39 (AGT) and the entire codon for Glu40 (GAG), causing a reading frame shift that yielded a stretch of 51 amino acids before a premature stop codon. The other allele also contained a frame-shift mutation, caused by deletion of the last two bases of the codon for Tyr492 (TAT). This allele produced a truncated glycoprotein Ib alpha that, although not expressed on the surface of the patient's platelets, was detectable in the plasma. The second allele has been identified previously by our group and other investigators as the cause of Bernard-Soulier syndrome in patients of northern European ancestry. This allele carried a haplotype identical to those of the previously reported cases, with the following polymorphic markers: two tandem repeats in the VNTR region, C at nucleotide -5 from the ATG start codon and a substitution of G for A in the third base for codon Arg342. These findings suggest that this particular Bernard-Soulier mutation occurred once on the background of a rare haplotype and has spread throughout the northern European population.

  13. A heterozygous mutation in GOT1 is associated with familial macro-aspartate aminotransferase.

    PubMed

    Kulecka, Maria; Wierzbicka, Aldona; Paziewska, Agnieszka; Mikula, Michal; Habior, Andrzej; Janczyk, Wojciech; Dabrowska, Michalina; Karczmarski, Jakub; Lazniewski, Michal; Ginalski, Krzysztof; Czlonkowska, Anna; Socha, Piotr; Ostrowski, Jerzy

    2017-07-15

    Macro-aspartate aminotransferase (macro-AST) manifests as a persistent elevation of AST levels, because of association of the protein with immunoglobulins in the circulation. Macro-AST is a rare, benign condition without a previously confirmed genetic basis. Whole exome sequencing (WES)-based screening was performed on 32 participants with suspected familial macro-AST, while validation of variants was performed on an extended cohort of 92 probands and 1,644 healthy controls using Taqman genotyping. A missense variant (p.Gln208Glu, rs374966349) in glutamate oxaloacetate transaminase 1 (GOT1) was found, as a putative causal variant predisposing to familial macro-AST. The GOT1 p.Gln208Glu mutation was detected in 50 (54.3%) of 92 probands from 20 of 29 (69%) families, while its prevalence in healthy controls was only 0.18%. In silico analysis demonstrated that the amino acid at this position is not conserved among different species and that, functionally, a negatively charged glutamate on the GOT1 surface could strongly anchor serum immunoglobulins. Our data highlight that testing for the p.Gln208Glu genetic variant may be useful in diagnosis of macro-AST. Higher than normal levels of aspartate aminotransferase (AST) in the bloodstream may be a sign of a health problem. Individuals with macro-AST have elevated blood AST levels, without ongoing disease and often undergo unnecessary medical tests before the diagnosis of macro-AST is established. We found a genetic variant in the GOT1 gene associated with macro-AST. Genetic testing for this variant may aid diagnosis of macro-AST. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Novel compound heterozygous mutations in inositol polyphosphate phosphatase-like 1 in a family with severe opsismodysplasia.

    PubMed

    Feist, Cori; Holden, Paul; Fitzgerald, Jamie

    2016-10-01

    This study aimed to identify the genetic basis of a severe skeletal lethal dysplasia. The main clinical features of two affected fetuses included short limbs with flared metaphyses, bowed radii, femora and tibiae, irregular ossification of hands and feet, and marked platyspondyly. Affected and nonaffected family members were subjected to whole-exome sequencing, followed by immunoblot analysis on amniocytes isolated from one of the affected individuals. Unique compound heterozygous variants in the inositol polyphosphate phosphatase-like 1 (INPPL1) gene encoding the SHIP2 protein were identified in both affected individuals. One variant was inherited from each unaffected parent. Both allelic variants, c.(2327-1G>C);(1150_1151delGA), are predicted to result in premature stop codons leading to nonsense-mediated mRNA decay of the mutant alleles and no production of SHIP2. The absence of SHIP2 was confirmed by immunoblot analysis of proband amniocytes. This skeletal disorder is caused by the complete absence of the SHIP2 protein. INPPL1 mutations have been reported in opsismodysplasia, an autosomal recessive skeletal dysplasias with significant delayed bone formation. Our finding highlights the critical role that INPPL1/SHIP2 plays in skeletal development.

  15. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype

    PubMed Central

    Iqbal, Zafar; Shahzad, Mohsin; Vissers, Lisenka E L M; van Scherpenzeel, Monique; Gilissen, Christian; Razzaq, Attia; Zahoor, Muhammad Yasir; Khan, Shaheen N; Kleefstra, Tjitske; Veltman, Joris A; de Brouwer, Arjan P M; Lefeber, Dirk J; van Bokhoven, Hans; Riazuddin, Sheikh

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a large group of recessive multisystem disorders caused by impaired protein or lipid glycosylation. The CDG-I subgroup is characterized by protein N-glycosylation defects originating in the endoplasmic reticulum. The genetic defect is known for 17 different CDG-I subtypes. Patients in the few reported DPAGT1-CDG families exhibit severe intellectual disability (ID), epilepsy, microcephaly, severe hypotonia, facial dysmorphism and structural brain anomalies. In this study, we report a non-consanguineous family with two affected adults presenting with a relatively mild phenotype consisting of moderate ID, epilepsy, hypotonia, aggressive behavior and balance problems. Exome sequencing revealed a compound heterozygous missense mutation, c.85A>T (p.I29F) and c.503T>C (p.L168P), in the DPAGT1 gene. The affected amino acids are located in the first and fifth transmembrane domains of the protein. Isoelectric focusing and high-resolution mass spectrometry analyses of serum transferrin revealed glycosylation profiles that are consistent with a CDG-I defect. Our results show that the clinical spectrum of DPAGT1-CDG is much broader than appreciated so far. PMID:23249953

  16. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency.

    PubMed

    Tamura, Shinobu; Higuchi, Kohei; Tamaki, Masaharu; Inoue, Chizuko; Awazawa, Ryoko; Mitsuki, Noriko; Nakazawa, Yuka; Mishima, Hiroyuki; Takahashi, Kenzo; Kondo, Osamu; Imai, Kohsuke; Morio, Tomohiro; Ohara, Osamu; Ogi, Tomoo; Furukawa, Fukumi; Inoue, Masami; Yoshiura, Koh-ichiro; Kanazawa, Nobuo

    2015-10-01

    We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.

  17. Novel compound heterozygous mutations in ZAP70 in a Chinese patient with leaky severe combined immunodeficiency disorder.

    PubMed

    Liu, Qing; Wang, Yan-Ping; Liu, Qiao; Zhao, Qin; Chen, Xue-Mei; Xue, Xiu-Hong; Zhou, Li-Na; Ding, Yuan; Tang, Xue-Mei; Zhao, Xiao-Dong; Zhang, Zhi-Yong

    2017-01-26

    In humans, the complete lack of tyrosine kinase ZAP70 function results in combined immunodeficiency (CID), with abnormal thymic development and defective T cell receptor (TCR) signaling of peripheral T cells, characterized by the selective absence of CD8(+) T cells. So far, 15 unique ZAP70 mutations have been identified in approximately 20 patients with CID, with variable clinical presentations. Herein, we report the first case from China of novel compound heterozygous mutations in ZAP70 (c.598-599delCT, p.L200fsX28; c.847 C>T, R283H). The patient suffered from early-onset and recurrent infections, but showed normal growth and development without signs of failure to thrive, thus presenting as leaky SCID. The patient also had clinical manifestations of autoimmunity, such as eczematous skin lesion, inflammatory bowel disease (IBD), and intractable diarrhea, suggesting compromised T cell tolerogenic functions. Residual ZAP70 expression was identified. Immunological analysis revealed the selective absence of CD8(+) T cells in the periphery and the presence of CD4(+) T cells that failed to respond to phytohemagglutinin. Stimulation with lectin from pokeweed mitogen also failed to stimulate B cell proliferation in the patient. The frequency of Tfhs and Tregs in the patient was lower compared with the normal reference. Compared with the age-matched healthy control, the level of IL-17 was higher and the levels of IFN-γ, IL-4, and IL-21 were lower. Infants with selected CD8 deficiency and severe autoimmune disorders or exaggerated inflammation should be screened for ZAP70 deficiency.

  18. Early-Onset X-Linked Retinitis Pigmentosa in a Heterozygous Female Harboring an Intronic Donor Splice Site Mutation in the Retinitis Pigmentosa GTPase Regulator Gene.

    PubMed

    Shifera, Amde Selassie; Kay, Christine Nichols

    2015-01-01

    To report a heterozygous female presenting with an early-onset and severe form of X-linked retinitis pigmentosa (XLRP). This is a case series presenting the clinical findings in a heterozygous female with XLRP and two of her family members. Fundus photography, fundus autofluorescence, ocular coherence tomography, and visual perimetry are presented. The proband reported here is a heterozygous female who presented at the age of 8 years with an early onset and aggressive form of XLRP. The patient belongs to a four-generation family with a total of three affected females and four affected males. The patient was initially diagnosed with retinitis pigmentosa (RP) at the age of 4 years. Genetic testing identified a heterozygous donor splice site mutation in intron 1 (IVS1 + 1G > A) of the retinitis pigmentosa GTPase regulator gene. The father of the proband was diagnosed with RP when he was a young child. The sister of the proband, evaluated at the age of 6 years, showed macular pigmentary changes. Although carriers of XLRP are usually asymptomatic or have a mild disease of late onset, the proband presented here exhibited an early-onset, aggressive form of the disease. It is not clear why some carrier females manifest a severe phenotype. A better understanding of the genetic processes involved in the penetrance and expressivity of XLRP in heterozygous females could assist in providing the appropriate counseling to affected families.

  19. A novel truncating AIP mutation, p.W279*, in a familial isolated pituitary adenoma (FIPA) kindred.

    PubMed

    Cansu, Güven Barış; Taşkıran, Bengür; Trivellin, Giampaolo; Faucz, Fabio R; Stratakis, Constantine A

    2016-07-01

    Familial isolated pituitary adenomas (FIPA) constitute 2-3% of pituitary tumours. AIP is the most commonly mutated gene in FIPA. We herein report a novel germline mutation of the AIP gene in a family with FIPA. We present two patients, a father and his 12-year-old daughter, diagnosed clinically and using laboratory measures with acromegaly-gigantism. Both underwent transsphenoidal hypophyseal surgery for macroadenomas. We initially detected a novel heterozygous germline AIP mutation, c.836G>A (p.W279*), in the father's DNA. We then found the same mutation in his affected daughter. Pituitary adenomas associated with AIP mutations mostly present as FIPA (68%) at an early age (78% occur at <30 years old). They are often growth hormone (GH) - or prolactin - secreting macroadenomas (88%) that have already extended beyond the sella at the time of diagnosis. Acromegalic cases are resistant to somatostatin analogues and multimodal management is frequently essential to control the disease. Our patients had normalized GH/IGF-1 values soon after surgery, although enough time may not have elapsed to reach final cure. While penetrance of the disease can be as low as 10% in FIPA, especially children and young patients with somatotropinoma and prolactinoma should be surveyed for inactivating mutations or deletions in AIP. Determining the causative mutations may be of assistance in early diagnosis, treatment success, and genetic counseling.

  20. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis.

    PubMed

    Frosk, Patrick; Arts, Heleen H; Philippe, Julien; Gunn, Carter S; Brown, Emma L; Chodirker, Bernard; Simard, Louise; Majewski, Jacek; Fahiminiya, Somayyeh; Russell, Chad; Liu, Yangfan P; Hegele, Robert; Katsanis, Nicholas; Goerz, Conrad; Del Bigio, Marc R; Davis, Erica E

    2017-07-01

    Hydranencephaly is a congenital anomaly leading to replacement of the cerebral hemispheres with a fluid-filled cyst. The goals of this work are to describe a novel autosomal-recessive syndrome that includes hydranencephaly (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly (MARCH)); to identify its genetic cause(s) and to provide functional insight into pathomechanism. We used homozygosity mapping and exome sequencing to identify recessive mutations in a single family with three affected fetuses. Immunohistochemistry, RT-PCR and imaging in cell lines, and zebrafish models, were used to explore the function of the gene and the effect of the mutation. We identified a homozygous nonsense mutation in CEP55 segregating with MARCH. Testing the effect of this allele on patient-derived cells indicated both a reduction of the overall CEP55 message and the production of a message that likely gives rise to a truncated protein. Suppression or ablation of cep55l in zebrafish embryos recapitulated key features of MARCH, most notably renal dysplasia, cerebellar hypoplasia and craniofacial abnormalities. These phenotypes could be rescued by full-length but not truncated human CEP55 message. Finally, we expressed the truncated form of CEP55 in human cells, where we observed a failure of truncated protein to localise to the midbody, leading to abscission failure and multinucleated daughter cells. CEP55 loss of function mutations likely underlie MARCH, a novel multiple congenital anomaly syndrome. This association expands the involvement of centrosomal proteins in human genetic disorders by highlighting a role in midbody function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Compound heterozygous β(+) β(0) mutation of HBB gene leading to β-thalassemia major in a Gujarati family - A case study.

    PubMed

    Chaudhary, Spandan; Dhawan, Dipali; Bagali, Prashanth G; S Chaudhary, Pooja; Chaudhary, Abhinav; Singh, Sanjay; Vudathala, Srinivas

    2016-06-01

    β-Thalassemia is a genetic disease characterized by reduced or non-functionality of β-globin gene expression, which is caused due to a number of variations and indels (insertions and deletions). In this case study, we have reported a rare occurrence of compound heterozygosity of two different variants, namely, HBBc.92G > C and HBBc.92 + 5G > C in maternal amniotic fluid sample. Prenatal β-thalassemia mutation detection in fetal DNA was carried out using nucleotide sequencing method. After analysis, the father was found to be heterozygous for HBBc.92G > C (Codon 30 (G > C)) mutation which is β(0) type and the mother was heterozygous for HBBc.92 + 5G > C (IVS I-5 (G > C)) mutation which is β(+) type. When amniotic fluid sample was analyzed for β-globin gene (HBB), we found the occurrence of heterozygous allelic pattern for aforesaid mutations. This compound heterozygous state of fetus sample was considered as β(+)/β(0) category of β thalassemia which was clinically and genotypically interpreted as β-thalassemia major. Regular blood transfusions are required for the survival of thalassemia major patients hence prenatal diagnosis is imperative for timely patient management. Prenatal diagnosis helps the parents to know the thalassemic status of the fetus and enables an early decision on the pregnancy. In the present study, we have identified compound heterozygosity for β-thalassemia in the fetus which portrays the importance of prenatal screening.

  2. Mutations in the TSC2 gene: analysis of the complete coding sequence using the protein truncation test (PTT).

    PubMed

    van Bakel, I; Sepp, T; Ward, S; Yates, J R; Green, A J

    1997-09-01

    Mutations in the TSC2 gene on chromosome 16p13.3 are responsible for approximately 50% of familial tuberous sclerosis (TSC). The gene has 41 small exons spanning 45 kb of genomic DNA and encoding a 5.5 kb mRNA. Large germline deletions of TSC2 occur in <5% of cases, and a number of small intragenic mutations have been described. We analysed mRNA from 18 unrelated cases of TSC for TSC2 mutations using the protein truncation test (PTT). Three cases were predicted to be TSC2 mutations on the basis of linkage analysis or because a hamartoma from the patient showed loss of heterozygosity for 16p13.3 markers. Three overlapping PCR products, covering the complete coding sequence of mRNA, were generated from lymphoblastoid cell lines, translated into 35S-methionine labelled protein, and analysed by SDS-PAGE. PCR products showing PTT shifts were directly sequenced, and mutations confirmed by restriction enzyme digestion where possible. Six PTT shifts were identified. Five of these were caused by mutations predicted to produce a truncated protein: (i) a sporadic case showed a 32 bp deletion in exon 11, and a mutant mRNA without exon 11 was produced; the normal exon 10 was also spliced out; (ii) a sporadic case had a 1 bp deletion in exon 12 (1634delT); (iii) a TSC2-linked mother and daughter pair had a G-->T transversion in exon 23 (G2715T) introducing a cryptic splice site causing a 29 bp truncation of mRNA from exon 23; (iv) a sporadic case showed a 2 bp deletion in exon 36; (v) a sporadic case showed a 1 bp insertion disrupting the donor splice site of exon 37 (5007+2insA), resulting in the use of an upstream exonic cryptic splice site to cause a 29 bp truncation of mRNA from exon 37. In one case, the PTT shift was explained by in-frame splicing out of exon 10, in the presence of a normal exon 10 genomic sequence. Alternative splicing of exon 10 of the TSC2 gene may be a normal variant. Three 3rd base substitution polymorphisms were also detected during direct sequencing

  3. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations.

    PubMed

    Pharoah, Paul D P; Song, Honglin; Dicks, Ed; Intermaggio, Maria P; Harrington, Patricia; Baynes, Caroline; Alsop, Kathryn; Bogdanova, Natalia; Cicek, Mine S; Cunningham, Julie M; Fridley, Brooke L; Gentry-Maharaj, Aleksandra; Hillemanns, Peter; Lele, Shashi; Lester, Jenny; McGuire, Valerie; Moysich, Kirsten B; Poblete, Samantha; Sieh, Weiva; Sucheston-Campbell, Lara; Widschwendter, Martin; Whittemore, Alice S; Dörk, Thilo; Menon, Usha; Odunsi, Kunle; Goode, Ellen L; Karlan, Beth Y; Bowtell, David D; Gayther, Simon A; Ramus, Susan J

    2016-03-01

    Mosaic truncating mutations in the protein phosphatase, Mg(2+)/Mn(2+)-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC.

  4. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations

    PubMed Central

    Pharoah, Paul D. P.; Song, Honglin; Dicks, Ed; Intermaggio, Maria P.; Harrington, Patricia; Baynes, Caroline; Alsop, Kathryn; Bogdanova, Natalia; Cicek, Mine S.; Cunningham, Julie M.; Fridley, Brooke L.; Gentry-Maharaj, Aleksandra; Hillemanns, Peter; Lele, Shashi; Lester, Jenny; McGuire, Valerie; Moysich, Kirsten B.; Poblete, Samantha; Sieh, Weiva; Sucheston-Campbell, Lara; Widschwendter, Martin; Whittemore, Alice S.; Dörk, Thilo; Menon, Usha; Odunsi, Kunle; Goode, Ellen L.; Karlan, Beth Y.; Bowtell, David D.; Gayther, Simon A.; Ramus, Susan J.

    2016-01-01

    Mosaic truncating mutations in the protein phosphatase, Mg2+/Mn2+-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC. PMID:26823519

  5. Clinical and genetic analysis of recurrent adult-type granulosa cell tumor of the ovary: Persistent preservation of heterozygous c.402C>G FOXL2 mutation.

    PubMed

    Yanagida, Satoshi; Anglesio, Michael S; Nazeran, Tayyebeh M; Lum, Amy; Inoue, Momoko; Iida, Yasushi; Takano, Hirokuni; Nikaido, Takashi; Okamoto, Aikou; Huntsman, David G

    2017-01-01

    Adult-type granulosa cell tumors of the ovary (aGCTs) are rare tumors that represent 2-5% of ovarian malignancies. The prognosis of this tumor is favorable, and it is characterized by slow progression. 10-30% of these tumors recur after 4-7 years of the primary surgery and the 5-year survival rate from the first recurrence is 55%, for the incompletely resected patients. At this time, complete resection is the only prognostic factor for better outcome, and establishing a novel strategy for identification and/or treatment of recurrent tumors is crucial. After the discovery of heterozygous c.402C>G FOXL2 mutations in 97% of cases of aGCT, much effort has been made to find the role of the mutation on the pathogenesis of aGCT, however, little is known about the role of the mutation in disease progression. We analyzed the clinical data of 56 aGCT patients to find a marker of recurrence. In particular, we compared the FOXL2 status in 5 matched primary and recurrent samples by immunohistochemistry, and TaqMan allelic discrimination assay to address the role of FOXL2 in potential mechanisms of recurrence. The clinical data analysis was consistent with complete resection as an indicator of disease eradication, though the sample size was limited. The genetic analysis showed all the samples, including recurrent tumor samples up to 14 years after the primary surgery, expressed heterozygous c.402C>G FOXL2 mutation and the FOXL2 protein expression. This report describes the preservation of heterozygous c.402C>G FOXL2 mutation in recurrent aGCTs. This finding adds further credence to the concept that the c.402C>G FOXL2 mutation is oncogenic and integral to this disease.

  6. Clinical and genetic analysis of recurrent adult-type granulosa cell tumor of the ovary: Persistent preservation of heterozygous c.402C>G FOXL2 mutation

    PubMed Central

    Anglesio, Michael S.; Nazeran, Tayyebeh M.; Lum, Amy; Inoue, Momoko; Iida, Yasushi; Takano, Hirokuni; Nikaido, Takashi; Okamoto, Aikou; Huntsman, David G.

    2017-01-01

    Background Adult-type granulosa cell tumors of the ovary (aGCTs) are rare tumors that represent 2–5% of ovarian malignancies. The prognosis of this tumor is favorable, and it is characterized by slow progression. 10–30% of these tumors recur after 4–7 years of the primary surgery and the 5-year survival rate from the first recurrence is 55%, for the incompletely resected patients. At this time, complete resection is the only prognostic factor for better outcome, and establishing a novel strategy for identification and/or treatment of recurrent tumors is crucial. After the discovery of heterozygous c.402C>G FOXL2 mutations in 97% of cases of aGCT, much effort has been made to find the role of the mutation on the pathogenesis of aGCT, however, little is known about the role of the mutation in disease progression. Methods We analyzed the clinical data of 56 aGCT patients to find a marker of recurrence. In particular, we compared the FOXL2 status in 5 matched primary and recurrent samples by immunohistochemistry, and TaqMan allelic discrimination assay to address the role of FOXL2 in potential mechanisms of recurrence. Results The clinical data analysis was consistent with complete resection as an indicator of disease eradication, though the sample size was limited. The genetic analysis showed all the samples, including recurrent tumor samples up to 14 years after the primary surgery, expressed heterozygous c.402C>G FOXL2 mutation and the FOXL2 protein expression. Conclusion This report describes the preservation of heterozygous c.402C>G FOXL2 mutation in recurrent aGCTs. This finding adds further credence to the concept that the c.402C>G FOXL2 mutation is oncogenic and integral to this disease. PMID:28594898

  7. Clinical consequences in truncating mutations in exon 34 of NOTCH2: report of six patients with Hajdu-Cheney syndrome and a patient with serpentine fibula polycystic kidney syndrome.

    PubMed

    Narumi, Yoko; Min, Byung-Joo; Shimizu, Kenji; Kazukawa, Itsuro; Sameshima, Kiyoko; Nakamura, Koichi; Kosho, Tomoki; Rhee, Yumie; Chung, Yoon-Sok; Kim, Ok-Hwa; Fukushima, Yoshimitsu; Park, Woong-Yang; Nishimura, Gen

    2013-03-01

    It is debatable whether Hajdu-Cheney syndrome (HCS) and serpentine fibula-polycystic kidney syndrome (SFPKS) represent a single clinical entity with a variable degree of expression or two different entities, because both disorders share common clinical and radiological manifestations, including similar craniofacial characteristics, and defective bone mineralization. Since it was shown that heterozygous truncating mutations in NOTCH2 are responsible for both HCS and SFPKS, 37 patients with HCS and four patients with SFPKS are reported. To elucidate the clinical consequences of NOTCH2 mutations, we present detailed clinical information for seven patients with truncating mutations in exon 34 of NOTCH2, six with HCS and one with SFPKS. In addition, we review all the reported patients whose clinical manifestations are available. We found 13 manifestations including craniofacial features, acroosteolysis, Wormian bones, and osteoporosis in >75% of NOTCH2-positive patients. Acroosteolysis was observed in two patients with SFPKS and bowing fibulae were found in two patients with HCS. These clinical and molecular data would support the notion that HCS and SFPKS are a single disorder. Copyright © 2013 Wiley Periodicals, Inc.

  8. [A new mutation c.422C>G (p.S141C) in homo- and heterozygous forms of the human leptin gene].

    PubMed

    Chekhranova, M K; Karpova, S K; Iatsyshina, S B; Pankov, Iu A

    2008-01-01

    Mutation g.15409C>G, c.422C>G (p.S141C) in homo- and heterozygous forms of the human LEP gene was identified among some patients of the high mountain village of Karaul, Ashkhabad oblast, Turkmenistan, some of which suffer from adiposity. It causes the substitution S120C in the secreted leptin. The mature leptin molecule (146 aa) has only two Cys residues (C96 and C146) forming an S-S bridge, which is important for the hormone function. A third mutation, C120, in the molecule might disturb the correct formation of the S-S bond and could alter the leptin activity.

  9. Frequent incidence of BARD1-truncating mutations in germline DNA from triple-negative breast cancer patients.

    PubMed

    De Brakeleer, S; De Grève, J; Desmedt, C; Joris, S; Sotiriou, C; Piccart, M; Pauwels, I; Teugels, E

    2016-03-01

    Triple-negative breast cancer (TNBC) accounts for 10-20% of all breast cancers (BCs), and conventional chemotherapy is the only effective systemic treatment. Germline BRCA1/2 mutations are found in approximately 15% of TNBC patients. In the past, we have documented pathogenic mutations in BARD1, a BRCA1 interacting protein, in families at high risk for BC. In this study, we have analyzed germline DNA from 61 estrogen receptor negative patients (of which 42 were TNBC) for the presence of mutations in the BRCA1, BRCA2 and BARD1 gene. BRCA1/2 mutations were found in 8 out of 42 (19%) TNBC patients, but not in the ER-/HER2+ cohort. We also found four good candidate pathogenic BARD1 mutations in the TNBC cohort, including two protein-truncating mutations (p.Gln564Ter and p.Arg641Ter). Our data suggest that TNBC patients are enriched for pathogenic BARD1 germline mutations as compared to control samples and high BC risk families. Ten of the 42 investigated TNBC patients carry a BRCA pathway mutation (in BRCA1, BRCA2 or BARD1) rendering them susceptible to homologous recombination deficiency. These patients should become eligible for exploring the efficacy of poly (ADP-ribose) polymerase (PARP) inhibitors.

  10. Analysis of p.V37I compound heterozygous mutations in the GJB2 gene in Chinese infants and young children.

    PubMed

    Du, Yating; Huang, Lihui; Cheng, Xiaohua; Zhao, Liping; Ruan, Yu; Ni, Tingting

    2016-07-19

    The p.V37I (c.109G>A) mutation in the GJB2 gene is the common frequent cause of congenital deafness; however, its pathogenicity is debated. The present study investigated the prevalence of p.V37I in Chinese infants and young children and associated clinical characteristics. The subjects of the present study were screened for mutations in GJB2 (235delC, 299delAT, 176dell6, 35delG), SLC26A4 (IVS7-2A>G, 2168A>G), GJB3 (538C>T), and in the mitochondrial 12S rRNA gene (1555A>G, 1494C>T). Subjects with p.V37I underwent an audiological evaluation. GJB2 exon sequencing revealed that 20 subjects had p.V37I compound heterozygous mutations, one of whom had a family history; the mutations included c.235delC/p.V37I (n = 12), c.299AT/p.V37I (n = 7), and c.176del16/p.V37I (n = 1). Of the 20 subjects, 12 were referred for Universal Newborn Hearing Screening (UNHS). Nine of the 20 subjects had mild hearing loss in the better ear and 5 had moderate hearing loss in the better ear while 4 had normal hearing. Among subjects with the c.235delC/p.V37I mutation, 5 had mild hearing loss and 2 had moderate hearing loss while 3 had normal hearing. Among subjects with the c.299AT/p.V37I mutation, 3 had mld hearing loss and 3 had moderate hearing loss while 1 had normal hearing. One subject with the c.176del16/p.V37I mutation had mild hearing loss. Few studies have reported on the clinical characteristics of Chinese infants with p.V37I compound heterozygous mutations identified via screening for deafness genes and GJB2 sequencing. The c.235delC/p.V37I mutation was the most prevalent mutation found in subjects. The degree of hearing loss associated with p.V37I compound heterozygous mutations was mainly mild to moderate.

  11. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases.

    PubMed

    Ueki, Masahiro; Yamada, Masafumi; Ito, Kenta; Tozawa, Yusuke; Morino, Saeko; Horikoshi, Yuho; Takada, Hidetoshi; Abdrabou, Shimaa Said Mohamed Ali; Takezaki, Shunichiro; Kobayashi, Ichiro; Ariga, Tadashi

    2017-01-01

    Heterozygous dominant-negative mutations of STAT1 are responsible for autosomal-dominant Mendelian susceptibility to mycobacterial diseases (AD-MSMD). So far, only 7 mutations have been previously described and are localized to 3 domains: the DNA-binding domain, the SH2 domain, and the tail segment. In this study, we demonstrated the first coiled-coil domain (CCD) mutation of c.749G>C, p.G250A (G250A) in STAT1 as a genetic cause of AD-MSMD in a patient with mycobacterial multiple osteomyelitis. This de novo heterozygous mutation was shown to have a dominant-negative effect on the gamma-activated sequence (GAS) transcriptional activity following IFN-γ stimulation, which could be attributable to the abolished phosphorylation of STAT1 from the wild-type (WT) allele. The three-dimensional structure of STAT1 revealed the G250 residue was located distant from a cluster of residues affected by gain-of-function mutations responsible for chronic mucocutaneous candidiasis.

  12. Novel homozygous, heterozygous and hemizygous FRMD7 gene mutations segregated in the same consanguineous family with congenital X-linked nystagmus

    PubMed Central

    Radhakrishna, Uppala; Ratnamala, Uppala; Deutsch, Samuel; Bartoloni, Lucia; Kuracha, Murali R; Singh, Raminder; Banwait, Jasjit; Bastola, Dhundy K; Johar, Kaid; Nath, Swapan K; Antonarakis, Stylianos E

    2012-01-01

    Congenital nystagmus (NYS) is characterized by bilateral, spontaneous, and involuntary movements of the eyeballs that most commonly presents between 2 and 6 months of life. To date, 44 different FRMD7 gene mutations have been found to be etiological factors for the NYS1 locus at Xq26-q27. The aim of this study was to find the FRMD7 gene mutations in a large eleven-generation Indian pedigree with 71 members who are affected by NYS. Mutation analysis of the entire coding region and splice junctions of the FRMD7 gene revealed a novel missense mutation, c.A917G, predicts a substitution of Arg for Gln at codon 305 (Q305R) within exon 10 of FRMD7. The mutation was detected in hemizygous males, and in homozygous and heterozygous states in affected female members of the family. This mutation was not detected in unaffected members of the family or in 100 unrelated control subjects. This mutation was found to be at a highly conserved residue within the FERM-adjacent domain in affected members of the family. Structure prediction and energetic analysis of wild-type FRMD7 compared with mutant (Q305R) revealed that this change in amino acid led to a change in secondary structure predicted to be an energetically unstable protein. The present study represents the first confirmation of FRMD7 gene mutations in a multigenerational Indian family and expands the mutation spectrum for this locus. PMID:22490987

  13. A novel ZRS mutation leads to preaxial polydactyly type 2 in a heterozygous form and Werner mesomelic syndrome in a homozygous form.

    PubMed

    VanderMeer, Julia E; Lozano, Reymundo; Sun, Miao; Xue, Yuan; Daentl, Donna; Jabs, Ethylin Wang; Wilcox, William R; Ahituv, Nadav

    2014-08-01

    Point mutations in the zone of polarizing activity regulatory sequence (ZRS) are known to cause human limb malformations. Although most mutations cause preaxial polydactyly (PPD), triphalangeal thumb (TPT) or both, a mutation in position 404 of the ZRS causes more severe Werner mesomelic syndrome (WMS) for which malformations include the distal arm or leg bones in addition to the hands and/or feet. Of more than 15 reported families with ZRS mutations, only one homozygous individual has been reported, with no change in phenotype compared with heterozygotes. Here, we describe a novel point mutation in the ZRS, 402C>T (AC007097.4:g.105548C>T), that is transmitted through two Mexican families with one homozygous individual. The homozygous phenotype for this mutation, WMS, is more severe than the numerous heterozygous individuals genotyped from both families who have TPT and PPD. A mouse transgenic enhancer assay shows that this mutation causes an expansion of the enhancer's expression domain in the developing mouse limb, confirming its pathogenicity. Combined, our results identify a novel ZRS mutation in the Mexican population, 402C>T, and suggest that a dosage effect exists for this ZRS mutation.

  14. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses.

    PubMed

    Park, Sehee; Il Kim, Jin; Lee, Ilseob; Bae, Joon-Yong; Yoo, Kirim; Nam, Misun; Kim, Juwon; Sook Park, Mee; Song, Ki-Joon; Song, Jin-Won; Kee, Sun-Ho; Park, Man-Seong

    2017-09-07

    It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.

  15. Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII.

    PubMed

    Huang, Yanru; Mei, Libin; Lv, Weigang; Li, Haoxian; Zhang, Rui; Pan, Qian; Tan, Hu; Guo, Jing; Luo, Xiaomei; Chen, Chen; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Osteogenesis imperfecta (OI) is a highly clinically and genetically heterogeneous group of disorders. It is difficult to identify severe OI in the perinatal period. Here, a Chinese woman with a suspected history of fetal OI was referred to our institution at 19weeks of gestation, due to ultrasound inspection during antenatal screening, which revealed bulbous metaphyses, short humeri, and short thick bent femora in the fetus. Using targeted exome sequencing of 248 genes known to be involved in skeletal system diseases, we identified novel compound heterozygous mutation in the P3H1 gene in the fetus with OI type VIII: c.105_120del (p.D36Rfs*16) and c.2164C>T (p.Q722*). These two mutations were inherited from the father and mother, respectively. The mRNA level of P3H1 wasn't changed suggested that mRNA with this mutation escaped from nonsense-mediated RNA decay. Besides, the level of P3H1 was absence while the CRTAP was mildly decreased. In conclusion, our findings imply this novel compound heterozygous mutation as the molecular pathogenetic in a Chinese fetus with OI type VIII, and demonstrate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia with genetic and clinical heterogeneity, especially for autosomal recessive skeletal disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Probing the Effect of Two Heterozygous Mutations in Codon 723 of SLC26A4 on Deafness Phenotype Based on Molecular Dynamics Simulations

    PubMed Central

    Yao, Jun; Qian, Xuli; Bao, Jingxiao; Wei, Qinjun; Lu, Yajie; Zheng, Heng; Cao, Xin; Xing, Guangqian

    2015-01-01

    A Chinese family was identified with clinical features of enlarged vestibular aqueduct syndrome (EVAS). The mutational analysis showed that the proband (III-2) had EVAS with bilateral sensorineural hearing loss and carried a rare compound heterozygous mutation of SLC26A4 (IVS7-2A>G, c.2167C>G), which was inherited from the same mutant alleles of IVS7-2A>G heterozygous father and c.2167C>G heterozygous mother. Compared with another confirmed pathogenic biallelic mutation in SLC26A4 (IVS7-2A>G, c.2168A>G), these two biallelic mutations shared one common mutant allele and the same codon of the other mutant allele, but led to different changes of amino acid (p.H723D, p.H723R) and both resulted in the deafness phenotype. Structure-modeling indicated that these two mutant alleles changed the shape of pendrin protein encoded by SLC26A4 with increasing randomness in conformation, and might impair pendrin’s ability as an anion transporter. The molecular dynamics simulations also revealed that the stability of mutant pendrins was reduced with increased flexibility of backbone atoms, which was consistent with the structure-modeling results. These evidences indicated that codon 723 was a hot-spot region in SLC26A4 with a significant impact on the structure and function of pendrin, and acted as one of the genetic factors responsible for the development of hearing loss. PMID:26035154

  17. An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy.

    PubMed

    Dixon, Peter H; Sambrotta, Melissa; Chambers, Jennifer; Taylor-Harris, Pamela; Syngelaki, Argyro; Nicolaides, Kypros; Knisely, A S; Thompson, Richard J; Williamson, Catherine

    2017-09-18

    Intrahepatic cholestasis of pregnancy (ICP) affects 1/140 UK pregnancies; with pruritus, hepatic impairment and elevated serum bile acids. Severe disease is complicated by spontaneous preterm delivery and stillbirth. Previous studies have reported mutations in hepatocellular transporters (ABCB4, ABCB11). High throughput sequencing in 147 patients was performed in the transporters ABCB4, ABCB11, ATP8B1, ABCC2 and tight junction protein 2 (TJP2). Twenty-six potentially damaging variants were identified with the following predicted protein changes: Twelve ABCB4 mutations - Arg47Gln, Met113Val, Glu161Gly, Thr175Ala, Glu528Glyfs*6, Arg590Gln, Ala601Ser, Glu884Ter, Gly722Ala, Tyr775Met (x2), Trp854Ter. Four potential ABCB11 mutations - Glu297Gly (x3) and a donor splice site mutation (intron 19). Five potential ATP8B1 mutations - Asn45Thr (x3), and two others, Glu114Gln and Lys203Glu. Two ABCC2 mutations - Glu1352Ala and a duplication (exons 24 and 25). Three potential mutations were identified in TJP2; Thr62Met (x2) and Thr626Ser. No patient harboured more than one mutation. All were heterozygous. An additional 545 cases were screened for the potential recurrent mutations of ATP8B1 (Asn45Thr) and TJP2 (Thr62Met) identifying three further occurrences of Asn45Thr. This study has expanded known mutations in ABCB4 and ABCB11 and identified roles in ICP for mutations in ATP8B1 and ABCC2. Possible novel mutations in TJP2 were also discovered.

  18. An ABCA1 truncation shows no dominant negative effect in a familial hypoalphalipoproteinemia pedigree with three ABCA1 mutations

    SciTech Connect

    Sorrenson, Brie; Suetani, Rachel J.; Bickley, Vivienne M.; George, Peter M.; Williams, Michael J.A.; Scott, Russell S.; McCormick, Sally P.A.

    2011-06-10

    Highlights: {yields} Characterisation of an ABCA1 truncation mutant, C978fsX988, in a pedigree with three ABCA1 mutations. {yields} Functional analysis of C978fsX988 in patient fibroblasts and HEK 293 cells shows no cholesterol efflux function. {yields} Allele-specific quantification shows C978fsX988 not expressed at mRNA level in fibroblasts. {yields} Unlike other ABCA1 truncations, C978fsX988 mutant shows no dominant negative effect at mRNA or protein level. -- Abstract: The ATP binding cassette transporter (ABCA1) A1 is a key determinant of circulating high density lipoprotein cholesterol (HDL-C) levels. Mutations in ABCA1 are a major genetic contributor to low HDL-C levels within the general population. Following the finding of three different ABCA1 mutations, p.C978fsX988, p.T1512M and p.N1800H in a subject with hypoalphalipoproteinemia, we aimed to establish whether the p.C978fsX988 truncation exerted a dominant negative effect on the full-length ABCA1 alleles within family members as has been reported for other ABCA1 truncations. Characterisation of the p.C978fsX988 mutant in transfected HEK 293 cells showed it to be expressed as a GFP fusion protein but lacking in cholesterol efflux function. This was in keeping with results from cholesterol efflux assays in the fibroblasts of p.C978fsX988 carriers which also showed impaired efflux. Allele- specific quantification of p.C978fsX988 mRNA and analysis of ABCA1 protein levels in the fibroblasts of p.C978fsX988 heterozygotes showed negligible levels of mRNA and protein expression. There was no evidence of a dominant negative effect on wildtype or p.N1800H protein levels. We conclude that in the case of the p.C978fsX988 truncated mutant a lack of expression precludes it from having a dominant negative effect.

  19. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function.

    PubMed

    Sheffer, Ruth; Douiev, Liza; Edvardson, Simon; Shaag, Avraham; Tamimi, Khaled; Soiferman, Devorah; Meiner, Vardiella; Saada, Ann

    2016-06-01

    An emerging class of mitochondrial disorders is caused by mutations in nuclear genes affecting mitochondrial dynamics and function. One of these is the DNM1L gene encoding the dynamin-related protein 1 (DRP1), which is pivotal in the mitochondrial fission process. Here, we describe a patient with a novel dominant-negative, de novo DNM1L mutation, which expands the clinical spectrum. The patient reported here exhibits a chronic neurological disorder, characterized by postnatal microcephaly, developmental delay, and pain insensitivity. Muscle biopsy disclosed decreased respiratory chain complex IV activity. Exome sequencing showed a de novo heterozygous c.1084G>A (p.G362S) mutation. Subsequent studies of patient skin fibroblasts showed markedly impaired mitochondrial fission and a partial respiratory chain defect while peroxisomal morphology remained intact. Human foreskin fibroblasts over-expressing the mutant DNM1L gene displayed aberrant mitochondrial morphology. © 2016 Wiley Periodicals, Inc.

  20. Congenital FX deficiency Rio Tercero: a new heterozygous missense mutation (Cys241Gly) with a potentiating effect by a polymorphism (c. 503-57C>T).

    PubMed

    Girolami, Antonio; Minoldo, Salvador; Ferrari, Silvia; Colussi, Diego; Lombardi, Anna Maria; Guglielmone, Hugo

    2017-09-07

    To report a new family with congenital FX deficiency. The proposita is a 41 years old female with a moderate bleeding tendency (easy bruising, menorrhagia). Parents were not consanguineous. Family history was positive for a mild bleeding tendency. Coagulation and genetics studies revealed that the proposita and two of her siblings were heterozygotes for a new mutation Cys241Gly in exon 6 but had different FX level (2-3% of normal in the proposita and about 50% in the two siblings. The same was true for one of her three children. The mother and the other two children of the proposita had also slightly decreased FX levels but no mutation. On the suspicion that the proposita was carrying another defect which had escaped the Sanger method, we carried out a whole exome analysis and discovered that the proposita and one of her siblings were also homozigous for a mutation of a known polymorphism (c.503-57C>T). The daughter of the proposita was instead, besides being a carrier of the missense new mutation Cys241Gly, heterozygous for the same polymorphism. The mother and two other daughters were also heterozygous for the polymorphism. There were no deletions or duplications. The polymorphism present in the family seems to be capable of potentiating the defect induced by the new mutation. This, safe for epigenetics phenomena, is the only possible explanation for the discrepancy found in the FX level between mother and daughter despite of the fact that both carried the same new mutation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Follow-up Findings in a Turkish Girl with Pseudohypoparathyroidism Type Ia Caused by a Novel Heterozygous Mutation in the GNAS Gene

    PubMed Central

    Şahin, Sezgin; Hiort, Olaf; Thiele, Susanne; Evliyaoğlu, Olcay; Tüysüz, Beyhan

    2017-01-01

    Pseudohypoparathyroidism type Ia (PHP-Ia) is characterized by multihormone resistance and an Albright hereditary osteodystrophy (AHO) phenotype. It is caused by heterozygous mutations in GNAS gene. Clinical and biochemical findings of a female PHP-Ia patient were evaluated from age of diagnosis (6.5 years) to 14.5 years of age. The patient had short stature, brachydactyly, and subcutaneous heterotopic ossifications. Serum calcium and phosphorus levels were normal, but parathyroid hormone levels were high. Based on the typical clinical findings of AHO phenotype and biochemical findings, she was diagnosed as having PHP-Ia. A novel heterozygous mutation (c.128T>C) was found in the GNAS gene. Follow-up examinations revealed resistance to thyroid-stimulating hormone and a bioinactive growth hormone. Clinicians should take into consideration PHP-Ia in patients referred with short stature, and patients with an AHO phenotype must be further evaluated for hormone resistance, GNAS gene mutation, Gsα activity. To our knowledge, this is the first case report describing bioinactive growth hormone in PHP-Ia. PMID:27425121

  2. Follow-up Findings in a Turkish Girl with Pseudohypoparathyroidism Type Ia Caused by a Novel Heterozygous Mutation in the GNAS Gene.

    PubMed

    Şahin, Sezgin; Hiort, Olaf; Thiele, Susanne; Evliyaoğlu, Olcay; Tüysüz, Beyhan

    2017-03-01

    Pseudohypoparathyroidism type Ia (PHP-Ia) is characterized by multihormone resistance and an Albright hereditary osteodystrophy (AHO) phenotype. It is caused by heterozygous mutations in GNAS gene. Clinical and biochemical findings of a female PHP-Ia patient were evaluated from age of diagnosis (6.5 years) to 14.5 years of age. The patient had short stature, brachydactyly, and subcutaneous heterotopic ossifications. Serum calcium and phosphorus levels were normal, but parathyroid hormone levels were high. Based on the typical clinical findings of AHO phenotype and biochemical findings, she was diagnosed as having PHP-Ia. A novel heterozygous mutation (c.128T>C) was found in the GNAS gene. Follow-up examinations revealed resistance to thyroid-stimulating hormone and a bioinactive growth hormone. Clinicians should take into consideration PHP-Ia in patients referred with short stature, and patients with an AHO phenotype must be further evaluated for hormone resistance, GNAS gene mutation, Gsα activity. To our knowledge, this is the first case report describing bioinactive growth hormone in PHP-Ia.

  3. A case of 22q11.2 deletion syndrome with Peters anomaly, congenital glaucoma, and heterozygous mutation in CYP1B1.

    PubMed

    Reis, Linda M; Tyler, Rebecca C; Zori, Roberto; Burgess, Jennifer; Mueller, Jennifer; Semina, Elena V

    2015-03-01

    We read with interest the recent publication by Tarlan and colleagues 1 describing a patient with 22q11.2 deletion syndrome and ocular features of right microphthalmia and left anterior segment dysgenesis. While anterior segment dysgenesis disorders are occasionally reported with 22q11.2 deletions, 2-5 this remains a rare association. We report here an 8-year-old patient with 22q11.2 deletion syndrome and bilateral Peters anomaly with congenital glaucoma; in addition, our patient was found to have a single heterozygous mutation in CYP1B1, c.83C > T, p.(Ser28Trp).

  4. A unique case of limb-girdle muscular dystrophy type 2A carrying novel compound heterozygous mutations in the human CAPN3 gene.

    PubMed

    Matsubara, E; Tsuchiya, A; Minami, N; Nishino, I; Pappolla, M A; Shoji, M; Abe, K

    2007-07-01

    A unique sib pair afflicted by limb girdle muscular dystrophy type 2A (LGMD2A) is described showing a slowly progressive autosomal recessive type of muscular dystrophy with onset in the third and fourth decades. The patients had early asymmetric muscle involvement characterized by prominent biceps brachii atrophy with sparing of the knee extensors. Additional findings included elevation of serum creatine kinase level, myopathic EMG changes and dystrophic type of pathology on muscle biopsy. Asymmetrical wasting of muscles in the extremities exhibited uniform and highly selective CT imaging patterns. RNA and DNA analyses confirmed novel compound heterozygous mutations (R147X/L212F) in the human CAPN3 gene.

  5. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus.

    PubMed

    Takai, Hiroyuki; Jenkinson, Emma; Kabir, Shaheen; Babul-Hirji, Riyana; Najm-Tehrani, Nasrin; Chitayat, David A; Crow, Yanick J; de Lange, Titia

    2016-04-01

    Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1(CP)) in two siblings with CP. POT1(CP)induced a proliferative arrest that could be bypassed by telomerase. POT1(CP)was expressed at normal levels, bound TPP1 and telomeres, and blocked ATR signaling. POT1(CP)was defective in regulating telomerase, leading to telomere elongation rather than the telomere shortening observed in other telomeropathies. POT1(CP)was also defective in the maintenance of the telomeric C strand, causing extended 3' overhangs and stochastic telomere truncations that could be healed by telomerase. Consistent with shortening of the telomeric C strand, metaphase chromosomes showed loss of telomeres synthesized by leading strand DNA synthesis. We propose that CP is caused by a defect in POT1/CST-dependent telomere fill-in. We further propose that deficiency in the fill-in step generates truncated telomeres that halt proliferation in cells lacking telomerase, whereas, in tissues expressing telomerase (e.g., bone marrow), the truncations are healed. The proposed etiology can explain why CP presents with features distinct from those associated with telomerase defects (e.g., dyskeratosis congenita). © 2016 Takai et al.; Published by Cold Spring Harbor Laboratory Press.

  6. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus

    PubMed Central

    Takai, Hiroyuki; Jenkinson, Emma; Kabir, Shaheen; Babul-Hirji, Riyana; Najm-Tehrani, Nasrin; Chitayat, David A.; Crow, Yanick J.; de Lange, Titia

    2016-01-01

    Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1CP) in two siblings with CP. POT1CP induced a proliferative arrest that could be bypassed by telomerase. POT1CP was expressed at normal levels, bound TPP1 and telomeres, and blocked ATR signaling. POT1CP was defective in regulating telomerase, leading to telomere elongation rather than the telomere shortening observed in other telomeropathies. POT1CP was also defective in the maintenance of the telomeric C strand, causing extended 3′ overhangs and stochastic telomere truncations that could be healed by telomerase. Consistent with shortening of the telomeric C strand, metaphase chromosomes showed loss of telomeres synthesized by leading strand DNA synthesis. We propose that CP is caused by a defect in POT1/CST-dependent telomere fill-in. We further propose that deficiency in the fill-in step generates truncated telomeres that halt proliferation in cells lacking telomerase, whereas, in tissues expressing telomerase (e.g., bone marrow), the truncations are healed. The proposed etiology can explain why CP presents with features distinct from those associated with telomerase defects (e.g., dyskeratosis congenita). PMID:27013236

  7. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    PubMed

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  8. Dominant and recessive compound heterozygous mutations in epidermolysis bullosa simplex demonstrate the role of the stutter region in keratin intermediate filament assembly.

    PubMed

    Yasukawa, Kana; Sawamura, Daisuke; McMillan, James R; Nakamura, Hideki; Shimizu, Hiroshi

    2002-06-28

    Keratin intermediate filaments are important cytoskeletal structural proteins involved in maintaining cell shape and function. Mutations in the epidermal keratin genes, keratin 5 or keratin 14 lead to the disruption of keratin filament assembly, resulting in an autosomal dominant inherited blistering skin disease, epidermolysis bullosa simplex (EBS). We investigated a large EBS kindred who exhibited a markedly heterogeneous clinical presentation and detected two distinct keratin 5 mutations in the proband, the most severely affected. One missense mutation (E170K) in the highly conserved helix initiation peptide sequence of the 1A rod domain was found in all the affected family members. In contrast, the other missense mutation (E418K) was found only in the proband. The E418K mutation was located in the stutter region, an interruption in the heptad repeat regularity, whose function as yet remains unclear. We hypothesized that this mutated stutter allele was clinically silent when combined with the wild type allele but aggravates the clinical severity of EBS caused by the E170K mutation on the other allele. To confirm this in vitro, we transfected mutant keratin 5 cDNA into cultured cells. Although only 12.7% of the cells transfected with the E170K mutation alone showed disrupted keratin filament aggregations, significantly more cells (30.0%) cotransfected with both E170K and E418K mutations demonstrated keratin aggregation (p < 0.05). These transfection assay results corresponded to the heterogeneous clinical findings of the EBS patient in this kindred. We have identified the first case of both compound heterozygous dominant (E170K) and recessive (E418K) mutations in any keratin gene and confirmed the significant involvement of the stutter region in the assembly and organization of the keratin intermediate filament network in vitro.

  9. Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans

    PubMed Central

    Roessler, Erich; Ma, Yong; Ouspenskaia, Maia V.; Lacbawan, Felicitas; Bendavid, Claude; Dubourg, Christèle; Beachy, Philip A.; Muenke, Maximilian

    2009-01-01

    Defective function of the Sonic Hedgehog (SHH) signaling pathway is the most frequent alteration underlying holoprosencephaly (HPE) or its various clinical microforms. We performed an extensive mutational analysis of the entire human DISP1 gene, required for secretion of all hedgehog ligand(s) and which maps to the HPE 10 locus of human chromosome 1q41, as a HPE candidate gene. Here, we describe two independent families with truncating mutations in human DISP1 that resemble the cardinal craniofacial and neuro-developmental features of a recently described microdeletion syndrome that includes this gene; therefore, we suggest that DISP1 function contributes substantially to both of these signs in humans. While these clinical features are consistent with common HPE microforms, especially those linked to defective signaling by Sonic Hedgehog, we have insufficient evidence so far that functionally abnormal DISP1 alleles will commonly contribute to the more severe features of typical HPE. PMID:19184110

  10. Compound heterozygous KCNQ1 mutations (A300T/P535T) in a child with sudden unexplained death: Insights into possible molecular mechanisms based on protein modeling.

    PubMed

    Antúnez-Argüelles, Erika; Rojo-Domínguez, Arturo; Arregui-Mena, Ana Leticia; Jacobo-Albavera, Leonor; Márquez, Manlio Fabio; Iturralde-Torres, Pedro; Villarreal-Molina, María Teresa

    2017-09-05

    Sudden death in a child is a devastating event with important medical implications for surviving relatives. Because it may be the first manifestation of unknown inherited cardiac disease, molecular autopsy can be helpful to determine the cause of death and identify at risk family members. The aim of the study was to perform a molecular autopsy in a seven year-old girl with sudden unexplained death, to find evidence supporting the possible pathogenicity of mutations identified in inherited cardiac disease genes, and to clinically and genetically assess first-degree relatives. DNA from the index case was extracted from umbilical cord cells stored at birth, and DNA of first-degree relatives from blood samples. Targeted sequencing was performed using a Haloplex design including 81 cardiogenes. Possible functional consequences of the mutations were analyzed using protein modeling and structural mobility analyses. The child was compound heterozygous for KCNQ1 variants p.Ala300Thr and p.Pro535Thr. Ala300Thr is known to cause long QT syndrome in the homozygous state, while Pro535Thr is novel and of unknown clinical significance. The father and sibling were Ala300Thr heterozygous, and had normal QTc intervals at rest and during exercise. The asymptomatic mother was heterozygous for Pro535Thr, and showed borderline QTc at rest, but prolonged QTc during exercise. Protein modeling predicted that Ala300Thr alters the mobility profile of the Kv7.1 tetramer and Thr535 disrupts a calmodulin-binding site, probably causing co-assembly or trafficking defects of the mutant monomer. Altogether, the evidence strongly suggests that this child was affected with a recessive form of Romano Ward syndrome. Copyright © 2017. Published by Elsevier B.V.

  11. Congenital polycythemia with homozygous and heterozygous mutations of von Hippel-Lindau gene: five new Caucasian patients.

    PubMed

    Bento, Maria Celeste; Chang, Ko Tung; Guan, Yongli; Liu, Enli; Caldas, Gabriela; Gatti, Richard A; Prchal, Josef T

    2005-01-01

    We report on five Caucasian patients with congenital polycythemia and mutations of the von Hipple-Lindau (VHL) gene: a compound heterozygote for the novel exon 1 (VHL 235C->T) and previously reported VHL 562C->G mutations; three homozygotes for Chuvash VHL 598C->T mutation; and a heterozygote for VHL 523->G mutation who also has ataxia-telangiectasia; a rare autosomal disease of childhood onset.

  12. Novel compound heterozygous mutations in DYNC2H1 in a patient with severe short-rib polydactyly syndrome type III phenotype.

    PubMed

    Okamoto, Toshio; Nagaya, Ken; Kawata, Yumi; Asai, Hiroko; Tsuchida, Etsushi; Nohara, Fumikatsu; Okajima, Kazuki; Azuma, Hiroshi

    2015-08-01

    Short-rib polydactyly syndrome type III is an autosomal recessive lethal skeletal ciliopathy, which is phenotypically similar to nonlethal asphyxiating thoracic dystrophy. Mutations in DYNC2H1 have been identified in both of these disorders, indicating that they are variants of a single disorder. However, short-rib polydactyly syndrome type III is the more severe variant. Here, we report novel compound heterozygous mutations in DYNC2H1 (p.E1894fsX10 and p.R3004C) in a patient with typical short-rib polydactyly syndrome type III phenotype. R3004 is located within the microtubule-binding domain of DYNC2H1, and its substitution is predicted to disrupt the interaction with microtubules. Considering the severe phenotype of our patient, our findings suggest that R3004 may be a key residue for the microtubule-binding affinity of dynein.

  13. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens

    PubMed Central

    Pedersen, Gabriel K.; Ádori, Monika; Stark, Julian M.; Khoenkhoen, Sharesta; Arnold, Carrie; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2016-01-01

    Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens. PMID:26973645

  14. A new heterozygous mutation (D196N) in the Gs alpha gene as a cause for pseudohypoparathyroidism type IA in a boy who had gallstones.

    PubMed

    Winter, Julia; Hiort, Olaf; Hermanns, Pia; Thiele, Susanne; Pohlenz, Joachim

    2011-01-01

    Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia in association with an increased secretion of parathyroid hormone (PTH) due to decreased target tissue responsiveness to PTH. Patients with PHP type Ia are not only resistant to PTH, but also to other hormones that bind to receptors coupled to stimulatory G protein (Gsalpha). PHP Ia and Albright hereditary osteodystrophy (AHO) are caused by a reduced activity of the Gsalpha protein. Heterozygous inactivating Gs alpha (GNAS) gene mutations have been identified in these patients. We studied a boy with PHP Ia. During follow-up the patient developed elevated liver enzyme serum levels and abdominal discomfort. Gsalpha activity was measured in erythrocyte membranes from the patient and the GNAS coding region of Gsalpha sequenced. Gsalpha activity was reduced (62%) and molecular analysis revealed a new heterozygous GNAS gene mutation (D196N). Gallstones were diagnosed and cholecystectomy was performed. Biochemical analysis revealed cholesterol stones, a condition that was not reported before in PHP Ia. Cholesterol gallstones may rarely be associated with PHP Ia and should be taken into account.

  15. A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency.

    PubMed

    Lasry, Inbal; Seo, Young Ah; Ityel, Hadas; Shalva, Nechama; Pode-Shakked, Ben; Glaser, Fabian; Berman, Bluma; Berezovsky, Igor; Goncearenco, Alexander; Klar, Aharon; Levy, Jacob; Anikster, Yair; Kelleher, Shannon L; Assaraf, Yehuda G

    2012-08-24

    Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.

  16. A Dominant Negative Heterozygous G87R Mutation in the Zinc Transporter, ZnT-2 (SLC30A2), Results in Transient Neonatal Zinc Deficiency

    PubMed Central

    Lasry, Inbal; Seo, Young Ah; Ityel, Hadas; Shalva, Nechama; Pode-Shakked, Ben; Glaser, Fabian; Berman, Bluma; Berezovsky, Igor; Goncearenco, Alexander; Klar, Aharon; Levy, Jacob; Anikster, Yair; Kelleher, Shannon L.; Assaraf, Yehuda G.

    2012-01-01

    Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation. PMID:22733820

  17. A novel DMD IRES results in a functional N-truncated dystrophin, providing a potential route to therapy for patients with 5’ mutations

    PubMed Central

    Wein, Nicolas; Vulin, Adeline; Sofia Falzarano, Maria; Al-Khalili Szigyarto, Christina; Maiti, Baijayanta; Findlay, Andrew; Heller, Kristin N; Uhlén, Mathias; Bakthavachalu, Baskar; Messina, Sonia; Vita, Giuseppe; Passarelli, Chiara; Gualandi, Francesca; Wilton, Steve D; Rodino-Klapac, Louise; Yang, Lin; Dunn, Diane M.; Schoenberg, Daniel; Weiss, Robert B.; Howard, Michael T.; Ferlini, Alessandra; Flanigan, Kevin M.

    2014-01-01

    Most mutations that truncate the reading frame of the DMD gene cause loss of dystrophin expression and lead to Duchenne muscular dystrophy. However, amelioration of disease severity can result from alternate translation initiation beginning in DMD exon 6 that leads to expression of a highly functional N-truncated dystrophin. This novel isoform results from usage of an internal ribosome entry site (IRES) within exon 5 that is glucocorticoid-inducible. IRES activity is confirmed in patient muscle by both peptide sequencing and ribosome profiling. Generation of a truncated reading frame upstream of the IRES by exon skipping leads to synthesis of a functional N-truncated isoform in both patient-derived cell lines and in a new DMD mouse model, where expression protects muscle from contraction-induced injury and corrects muscle force to the same level as control mice. These results support a novel therapeutic approach for patients with mutations within the 5’ exons of DMD. PMID:25108525

  18. A Novel Heterozygous Mutation in the STAT1 SH2 Domain Causes Chronic Mucocutaneous Candidiasis, Atypically Diverse Infections, Autoimmunity, and Impaired Cytokine Regulation

    PubMed Central

    Meesilpavikkai, Kornvalee; Dik, Willem A.; Schrijver, Benjamin; Nagtzaam, Nicole M. A.; van Rijswijk, Angelique; Driessen, Gertjan J.; van der Spek, Peter J.; van Hagen, P. Martin; Dalm, Virgil A. S. H.

    2017-01-01

    Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency characterized by persistent or recurrent skin and mucosal surface infections with Candida species. Different gene mutations leading to CMC have been identified. These include various heterozygous gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) that are not only associated with infections but also with autoimmune manifestations. Recently, two STAT1 GOF mutations involving the Src homology 2 (SH2) domain have been reported, while so far, over 50 mutations have been described mainly in the coiled coil and the DNA-binding domains. Here, we present two members of a Dutch family with a novel STAT1 mutation located in the SH2 domain. T lymphocytes of these patients revealed STAT1 hyperphosphorylation and higher expression of STAT1 target genes. The clinical picture of CMC in our patients could be explained by diminished production of interleukin (IL)-17 and IL-22, cytokines important in the protection against fungal infections. PMID:28348565

  19. Heterozygous carriers of the I171V mutation of the NBS1 gene have a significantly increased risk of solid malignant tumours.

    PubMed

    Nowak, Jerzy; Mosor, Maria; Ziółkowska, Iwona; Wierzbicka, Malgorzta; Pernak-Schwarz, Monika; Przyborska, Marta; Roznowski, Krzysztof; Pławski, Andrzej; Słomski, Ryszard; Januszkiewicz, Danuta

    2008-03-01

    Homozygous mutation 657del5 within the NBS1 gene is responsible for the majority of Nijmegen breakage syndrome (NBS) cases. NBS patients are characterised by increased susceptibility to malignancies mainly of lymphoid origin. Recently it has been postulated that heterozygous carriers of 657del5 NBS1 mutation are at higher risk of cancer development. The aim of the study was to analyse the frequency of I171V mutation in NBS1 gene in 270 women with breast cancer, 176 patients with larynx cancer, 81 with second primary tumours of head and neck, 131 with colorectal carcinoma and 600 healthy individuals. I171V mutation was present in 17 cancer patients compared with only one in healthy individuals. This constitutes 2.58% in studied patients with malignancies and 0.17% in the control group (P=0.0002; relative risk 1.827; odds ratio 15.886; 95% confidence interval 2.107-119.8). Since DNA was isolated from non malignant cells, all mutations found in cancer patients appeared to be of germinal origin. It can be concluded that NBS1 allele I171V may be a general susceptibility gene in solid tumours.

  20. 5'UTR point substitutions and N-terminal truncating mutations of ANKRD26 in acute myeloid leukemia.

    PubMed

    Marconi, Caterina; Canobbio, Ilaria; Bozzi, Valeria; Pippucci, Tommaso; Simonetti, Giorgia; Melazzini, Federica; Angori, Silvia; Martinelli, Giovanni; Saglio, Giuseppe; Torti, Mauro; Pastan, Ira; Seri, Marco; Pecci, Alessandro

    2017-01-18

    Thrombocytopenia 2 (THC2) is an inherited disorder caused by monoallelic single nucleotide substitutions in the 5'UTR of the ANKRD26 gene. Patients have thrombocytopenia and increased risk of myeloid malignancies, in particular, acute myeloid leukemia (AML). Given the association of variants in the ANKRD26 5'UTR with myeloid neoplasms, we investigated whether, and to what extent, mutations in this region contribute to apparently sporadic AML. To this end, we studied 250 consecutive, non-familial, adult AML patients and screened the first exon of ANKRD26 including the 5'UTR. We found variants in four patients. One patient had the c.-125T>G substitution in the 5'UTR, while three patients carried two different variants in the 5' end of the ANKRD26 coding region (c.3G>A or c.105C>G). Review of medical history showed that the patient carrying the c.-125T>G was actually affected by typical but unrecognized THC2, highlighting that some apparently sporadic AML cases represent the evolution of a well-characterized familial predisposition disorder. As regards the c.3G>A and the c.105C>G, we found that both variants result in the synthesis of N-terminal truncated ANKRD26 isoforms, which are stable and functional in cells, in particular, have a strong ability to activate the MAPK/ERK signaling pathway. Moreover, investigation of one patient with the c.3G>A showed that mutation was associated with strong ANKRD26 overexpression in vivo, which is the proposed mechanism for predisposition to AML in THC2 patients. These data provide evidence that N-terminal ANKRD26 truncating mutations play a potential pathogenetic role in AML. Recognition of AML patients with germline ANKRD26 pathogenetic variants is mandatory for selection of donors for bone marrow transplantation.

  1. Impaired secretion of carboxyl-terminal truncated factor VII due to an F7 nonsense mutation associated with FVII deficiency.

    PubMed

    Tanaka, Ryoko; Nakashima, Daisuke; Suzuki, Atsuo; Miyawaki, Yuhri; Fujimori, Yuta; Yamada, Takayuki; Takagi, Akira; Murate, Takashi; Yamamoto, Koji; Katsumi, Akira; Matsushita, Tadashi; Naoe, Tomoki; Kojima, Tetsuhito

    2010-03-01

    Factor VII (FVII) is a vitamin K-dependent glycoprotein secreted into the blood circulation from hepatic cells. We investigated the molecular basis of the congenital FVII deficiency found in a Japanese patient. We analyzed the F7 gene of the patient, who was diagnosed with a FVII deficiency at pregnancy. We expressed a carboxyl-terminal truncated FVII (Arg462X FVII) corresponding to the identified mutation in CHO-K1 cells. To study roles of the carboxyl-terminus in the secretion of FVII, we also expressed a series of recombinant FVIIs deleted of limited numbers of carboxyl-terminal amino acids (462Arg-466Pro). We identified a nonsense mutation (c.1384C>T: p.Arg462X) in F7, leading to a lack of five amino acids in the carboxyl-terminus. In expression experiments, Arg462X FVII was undetectable not only by Western blotting, but also by ELISA. A Western blot analysis of the truncated FVIIs revealed that all mutants were expressed in the cells the same as the wild type, but were secreted into the culture medium in lesser amounts than the wild type depending on the length of the deletion, which was confirmed by ELISA. Arg462X FVII did not colocalize with the Golgi on immunofluorescence staining, suggesting that it might be retained in the ER and degraded in the cell. The carboxyl-terminal amino acids of FVII play an important role in its secretion, and the p.Arg462X mutation was likely to have caused the FVII deficiency in this patient. (c) 2009 Elsevier Ltd. All rights reserved.

  2. Novel truncating mutations in PKP1 and DSP cause similar skin phenotypes in two Brazilian families.

    PubMed

    Tanaka, A; Lai-Cheong, J E; Café, M E M; Gontijo, B; Salomão, P R; Pereira, L; McGrath, J A

    2009-03-01

    Inherited mutations in components of desmosomes result in a spectrum of syndromes characterized by variable abnormalities in the skin and its appendages, including blisters and erosions, palmoplantar hyperkeratosis, woolly hair or hypotrichosis and, in some cases, extracutaneous features such as cardiomyopathy. We investigated the molecular basis of two Brazilian patients presenting with clinical features consistent with ectodermal dysplasia-skin fragility syndrome. In patient 1 we identified a homozygous nonsense mutation, p.R672X, in the PKP1 gene (encoding plakophilin 1). This particular mutation has not been reported previously but is similar to the molecular pathology underlying other cases of this syndrome. In patient 2 we found compound heterozygosity for two frameshift mutations, c.2516del4 and c.3971del4, in the DSP gene (encoding desmoplakin). Although there was considerable clinical overlap in the skin and hair abnormalities in these two cases, patient 2 also had early-onset cardiomyopathy. The mutation c.3971del4 occurs in the longer desmoplakin-I isoform (which is the major cardiac transcript) but not in the more ubiquitous desmoplakin-II. In contrast, PKP1 is not expressed in the heart, which accounts for the lack of cardiomyopathy in patient 1. Collectively, these cases represent the first desmosomal genodermatoses to be reported from Brazil and add to genotype-phenotype correlation in this group of inherited disorders. Loss-of-function mutations in the DSP gene can result in a phenotype similar to ectodermal dysplasia-skin fragility syndrome resulting from PKP1 mutations but only DSP pathology is associated with cardiac disease.

  3. Venous thrombosis with both heterozygous factor V Leiden (R507Q) and factor II (G20210A) mutations.

    PubMed

    Bhaijee, Feriyl; Jordan, Brenda; Pepper, Dominique J; Leacock, Rodney; Rock, William A

    2012-01-01

    Both hereditary and acquired factors increase the risk of venous thromboembolism, thus the clinical management of affected patients involves evaluation of genetic factors that predispose to hypercoagulability. Factor V Leiden (R507Q) and factor II (prothrombin) mutation (G20210A) are the two most common inherited hypercoagulability disorders among populations of European origin. Both factor V Leiden and factor II mutation (G20210A) represent gain-of-function mutations: factor V Leiden causes resistance to activated protein C, and factor II mutation (G20210A) results in higher levels of plasma prothrombin. Herein, we present an uncommon case of combined factor V Leiden mutation (R507Q) and factor II mutation (G20210A), and discuss the prevalence and features of each entity, as well as their role in the clinical management of affected patients.

  4. Exome Sequencing Identifies Compound Heterozygous Mutations in SCN5A Associated with Congenital Complete Heart Block in the Thai Population

    PubMed Central

    Thongnak, Chuphong; Tangviriyapaiboon, Duangkamol; Silvilairat, Suchaya; Puangpetch, Apichaya; Pasomsub, Ekawat

    2016-01-01

    Background. Congenital heart block is characterized by blockage of electrical impulses from the atrioventricular node (AV node) to the ventricles. This blockage can be caused by ion channel impairment that is the result of genetic variation. This study aimed to investigate the possible causative variants in a Thai family with complete heart block by using whole exome sequencing. Methods. Genomic DNA was collected from a family consisting of five family members in three generations in which one of three children in generation III had complete heart block. Whole exome sequencing was performed on one complete heart block affected child and one unaffected sibling. Bioinformatics was used to identify annotated and filtered variants. Candidate variants were validated and the segregation analysis of other family members was performed. Results. This study identified compound heterozygous variants, c.101G>A and c.3832G>A, in the SCN5A gene and c.28730C>T in the TTN gene. Conclusions. Compound heterozygous variants in the SCN5A gene were found in the complete heart block affected child but these two variants were found only in the this affected sibling and were not found in other unaffected family members. Hence, these variants in the SCN5A gene were the most possible disease-causing variants in this family. PMID:28018021

  5. Truncating mutation in the nitric oxide synthase 1 gene is associated with infantile achalasia.

    PubMed

    Shteyer, Eyal; Edvardson, Simon; Wynia-Smith, Sarah L; Pierri, Ciro Leonardo; Zangen, Tzili; Hashavya, Saar; Begin, Michal; Yaacov, Barak; Cinamon, Yuval; Koplewitz, Benjamin Z; Vromen, Amos; Elpeleg, Orly; Smith, Brian C

    2015-03-01

    Nitric oxide is thought to have a role in the pathogenesis of achalasia. We performed a genetic analysis of 2 siblings with infant-onset achalasia. Exome analysis revealed that they were homozygous for a premature stop codon in the gene encoding nitric oxide synthase 1. Kinetic analyses and molecular modeling showed that the truncated protein product has defects in folding, nitric oxide production, and binding of cofactors. Heller myotomy had no effect in these patients, but sildenafil therapy increased their ability to drink. The finding recapitulates the previously reported phenotype of nitric oxide synthase 1-deficient mice, which have achalasia. Nitric oxide signaling appears to be involved in the pathogenesis of achalasia in humans.

  6. Mouse Model of Human Congenital Heart Disease: Progressive Atrioventricular Block Induced by a Heterozygous Nkx2-5 Homeodomain Missense Mutation.

    PubMed

    Chowdhury, Rajib; Ashraf, Hassan; Melanson, Michelle; Tanada, Yohei; Nguyen, Minh; Silberbach, Michael; Wakimoto, Hiroko; Benson, D Woodrow; Anderson, Robert H; Kasahara, Hideko

    2015-10-01

    Heterozygous human NKX2-5 homeodomain (DNA-binding domain) missense mutations are highly penetrant for varied congenital heart defects, including progressive atrioventricular (AV) block requiring pacemaker implantation. We recently replicated this genetic defect in a murine knockin model, in which we demonstrated highly penetrant, pleiotropic cardiac anomalies. In this study, we examined postnatal AV conduction in the knockin mice. A murine knockin model (Arg52Gly, Nkx2-5(+/R52G)) in a 129/Sv background was analyzed by histopathology, surface, and telemetry ECG, and in vivo electrophysiology studies, comparing with control Nkx2-5(+/+) mice at diverse postnatal stages, ranging from postnatal day 1 (P1) to 17 months. PR prolongation (first degree AV block) was present at 4 weeks, 7 months, and 17 months of age, but not at P1 in the mutant mice. Advanced AV block was also occasionally demonstrated in the mutant mice. Electrophysiology studies showed that AV nodal function and right ventricular effective refractory period were impaired in the mutant mice, whereas sinus nodal function was not affected. AV nodal size was significantly smaller in the mutant mice than their controls at 4 weeks of age, corresponding to the presence of PR prolongation, but not P1, suggesting, at least in part, that the conduction abnormalities are the result of a morphologically atrophic AV node. The highly penetrant and progressive AV block phenotype seen in human heterozygous missense mutations in NKX2-5 homeodomain was replicated in mice by knocking in a comparable missense mutation. © 2015 American Heart Association, Inc.

  7. The severe clinical phenotype for a heterozygous Fabry female patient correlates to the methylation of non-mutated allele associated with chromosome 10q26 deletion syndrome.

    PubMed

    Hossain, Mohammad Arif; Yanagisawa, Hiroko; Miyajima, Takashi; Wu, Chen; Takamura, Ayumi; Akiyama, Keiko; Itagaki, Rina; Eto, Kaoru; Iwamoto, Takeo; Yokoi, Takayuki; Kurosawa, Kenji; Numabe, Hironao; Eto, Yoshikatsu

    2017-03-01

    Heterozygous Fabry females usually have an attenuated form of Fabry disease, causing them to be symptomatic; however, in rare cases, they can present with a severe phenotype. In this study, we report on a 37-year-old woman with acroparesthesia, a dysmorphic face, left ventricular hypertrophy, and intellectual disability. Her father had Fabry disease and died due to chronic renal and congestive cardiac failure. Her paternal uncle had chronic renal failure and intellectual disability, and her paternal aunt was affected with congestive cardiac failure. The patient has two sisters with no significant medical illness. However, her nephew has acroparesthesia, anhidrosis, and school phobia, and her niece shows mild phenotypes. The patient's enzyme analysis showed very low α-galactosidase A (α-gal A) activity in dried blood spot (DBS), lymphocytes, and skin fibroblasts with massive excretion of Gb3 and Gb2 in urine and lyso-Gb3 in DBS and plasma. Electron microscopic examination showed a large accumulation of sphingolipids in vascular endothelial cells and keratinocytes. Chromosomal analysis and comparative genomic hybridization microarray showed 10q26 terminal deletion. Molecular data showed a novel heterozygous stop codon mutation in exon 1 of the GLA gene in her sisters and niece, and a hemizygous state in her nephew. When we checked the methylation status, we found her non-mutated allele in the GLA gene was methylated. However, the non-mutated alleles of her sisters were non-methylated, and those of her niece were partially methylated. The chromosomal and methylation study may speculate the severity of her clinical phenotypes.

  8. Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1-40 Dimer Structures from Atomistic Simulations.

    PubMed

    Nguyen, Phuong H; Sterpone, Fabio; Campanera, Josep M; Nasica-Labouze, Jessica; Derreumaux, Philippe

    2016-06-15

    The A2V mutation was reported to protect from Alzheimer's disease in its heterozygous form and cause an early Alzheimer's disease type dementia in its homozygous form. Experiments showed that the aggregation rate follows the order A2V > WT (wild-type) > A2V-WT. To understand the impact of this mutation, we carried out replica exchange molecular dynamics simulations of Aβ1-40 WT-A2V and A2V-A2V dimers and compared to the WT dimer. Our atomistic simulations reveal that the mean secondary structure remains constant, but there are substantial differences in the intramolecular and intermolecular conformations upon single and double A2V mutation. Upon single mutation, the intrinsic disorder is reduced, the intermolecular potential energies are reduced, the population of intramolecular three-stranded β-sheets is increased, and the number of all α dimer topologies is decreased. Taken together, these results offer an explanation for the reduced aggregation rate of the Aβ1-40 A2V-WT peptides and the protective effect of A2V in heterozygotes.

  9. Exome sequencing reveals a heterozygous DLX5 mutation in a Chinese family with autosomal-dominant split-hand/foot malformation

    PubMed Central

    Wang, Xue; Xin, Qian; Li, Lin; Li, Jiangxia; Zhang, Changwu; Qiu, Rongfang; Qian, Chenmin; Zhao, Hailing; Liu, Yongchao; Shan, Shan; Dang, Jie; Bian, Xianli; Shao, Changshun; Gong, Yaoqin; Liu, Qiji

    2014-01-01

    Split-hand/foot malformation (SHFM) is a congenital limb deformity due to the absence or dysplasia of central rays of the autopod. Six SHFM loci have already been identified. Here we describe a Chinese family with autosomal-dominant SHFM1 that has previously been mapped to 7q21.2-21.3. The two affected family members, mother and son, showed deep median clefts between toes, ectrodactyly and syndactyly; the mother also showed triphalangeal thumbs. Exome sequencing and variant screening of candidate genes in the six loci known to be responsible for SHFM revealed a novel heterozygous mutation, c.558G>T (p.(Gln186His)), in distal-less homeobox 5 (DLX5). As DLX5 encodes a transcription factor capable of transactivating MYC, we also tested whether the mutation could affect DLX5 transcription acitivity. Results from luciferase reporter assay revealed that a mutation in DLX5 compromised its transcriptional activity. This is the first report of a mutation in DLX5 leading to autosomal-dominant SHFM1. PMID:24496061

  10. Bile salt export pump deficiency: A de novo mutation in a child compound heterozygous for ABCB11. Laboratory investigation to study pathogenic role and transmission of two novel ABCB11 mutations.

    PubMed

    Francalanci, Paola; Giovannoni, Isabella; Candusso, Manila; Bellacchio, Emanuele; Callea, Francesco

    2013-03-01

    Progressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal disorders. PFIC type 2 is due to mutation in ABCB11, the gene encoding the bile salt export pump (BSEP) protein. The aim of the study was to describe a child with a de novo mutation in a compound heterozygous for ABCB11 gene. We report a 1.7-year-old girl who presented with pruritus, jaundice and liver dysfunction of PFIC type 2. Immunohistochemistry and molecular analysis are described. Liver biopsy showed micronodular cirrhosis and immunohistochemical staining for BSEP, the protein encoded by ABCB11, displayed a patchy and faint reactivity. Molecular analysis revealed two novel mutations of ABCB11. We give details that one mutation is transmitted by the mother while the second one appears a de novo mutation as mutations or a potential mosaicism were ruled out in the natural father. We further speculate that the ABCB11 mutations do not prevent BSEP glycoprotein to be expressed at the canalicular pole of hepatocytes, but interfere with its ability to export bile salts. As in most instances, mutational analysis is performed following the histochemical demonstration of an undetectable BSEP on liver biopsy specimen. This case stresses that clinical PFIC with an attenuated rather than absent BSEP immunostaining can still be due to ABCB11 mutations presumably encoding a functionally deficient protein.

  11. Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy.

    PubMed

    Kremer, Laura S; Distelmaier, Felix; Alhaddad, Bader; Hempel, Maja; Iuso, Arcangela; Küpper, Clemens; Mühlhausen, Chris; Kovacs-Nagy, Reka; Satanovskij, Robin; Graf, Elisabeth; Berutti, Riccardo; Eckstein, Gertrud; Durbin, Richard; Sauer, Sascha; Hoffmann, Georg F; Strom, Tim M; Santer, René; Meitinger, Thomas; Klopstock, Thomas; Prokisch, Holger; Haack, Tobias B

    2016-02-04

    Molecular diagnosis of mitochondrial disorders is challenging because of extreme clinical and genetic heterogeneity. By exome sequencing, we identified three different bi-allelic truncating mutations in TANGO2 in three unrelated individuals with infancy-onset episodic metabolic crises characterized by encephalopathy, hypoglycemia, rhabdomyolysis, arrhythmias, and laboratory findings suggestive of a defect in mitochondrial fatty acid oxidation. Over the course of the disease, all individuals developed global brain atrophy with cognitive impairment and pyramidal signs. TANGO2 (transport and Golgi organization 2) encodes a protein with a putative function in redistribution of Golgi membranes into the endoplasmic reticulum in Drosophila and a mitochondrial localization has been confirmed in mice. Investigation of palmitate-dependent respiration in mutant fibroblasts showed evidence of a functional defect in mitochondrial β-oxidation. Our results establish TANGO2 deficiency as a clinically recognizable cause of pediatric disease with multi-organ involvement.

  12. Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy

    PubMed Central

    Kremer, Laura S.; Distelmaier, Felix; Alhaddad, Bader; Hempel, Maja; Iuso, Arcangela; Küpper, Clemens; Mühlhausen, Chris; Kovacs-Nagy, Reka; Satanovskij, Robin; Graf, Elisabeth; Berutti, Riccardo; Eckstein, Gertrud; Durbin, Richard; Sauer, Sascha; Hoffmann, Georg F.; Strom, Tim M.; Santer, René; Meitinger, Thomas; Klopstock, Thomas; Prokisch, Holger; Haack, Tobias B.

    2016-01-01

    Molecular diagnosis of mitochondrial disorders is challenging because of extreme clinical and genetic heterogeneity. By exome sequencing, we identified three different bi-allelic truncating mutations in TANGO2 in three unrelated individuals with infancy-onset episodic metabolic crises characterized by encephalopathy, hypoglycemia, rhabdomyolysis, arrhythmias, and laboratory findings suggestive of a defect in mitochondrial fatty acid oxidation. Over the course of the disease, all individuals developed global brain atrophy with cognitive impairment and pyramidal signs. TANGO2 (transport and Golgi organization 2) encodes a protein with a putative function in redistribution of Golgi membranes into the endoplasmic reticulum in Drosophila and a mitochondrial localization has been confirmed in mice. Investigation of palmitate-dependent respiration in mutant fibroblasts showed evidence of a functional defect in mitochondrial β-oxidation. Our results establish TANGO2 deficiency as a clinically recognizable cause of pediatric disease with multi-organ involvement. PMID:26805782

  13. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition

    PubMed Central

    Shaheen, Ranad; Han, Lu; Faqeih, Eissa; Ewida, Nour; Alobeid, Eman; Phizicky, Eric M.; Alkuraya, Fowzan S.

    2016-01-01

    Intellectual disability is a common and highly heterogeneous disorder etiologically. In a multiplex consanguineous family, we applied autozygosity mapping and exome sequencing and identified a novel homozygous truncating mutation in PUS3 that fully segregates with the intellectual disability phenotype. Consistent with the known role of Pus3 in isomerizing uracil to pseudouridine at positions 38 and 39 in tRNA, we found a significant reduction in this post-transcriptional modification of tRNA in patient cells. Our finding adds to a growing list of intellectual disability disorders that are caused by perturbation of various tRNA modifications, which highlights the sensitivity of the brain to these highly conserved processes. PMID:27055666

  14. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa

    PubMed Central

    Méndez-Vidal, Cristina; González-del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J.; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud

    2013-01-01

    Purpose Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. Methods We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Results Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Conclusions Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with

  15. Adult-onset congenital thrombotic thrombocytopenic purpura caused by a novel compound heterozygous mutation of the ADAMTS13 gene.

    PubMed

    Krabbe, Johannes G; Kemna, Evelien W M; Strunk, Annuska L M; Jobse, Pieter A; Kramer, P A; Dikkeschei, L D; van den Heuvel, L P W J; Fijnheer, Rob; Verdonck, Leo F

    2015-10-01

    Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease, characterized by microangiopathic hemolytic anaemia and thrombocytopenia, resulting in neurologic and/or renal abnormalities. We report a 49-year-old patient with a history of thrombotic events, renal failure, and thrombocytopenia. Blood analysis demonstrated no ADAMTS13 activity in the absence of antibodies against ADAMTS13. The complete ADAMTS13 gene was sequenced, and two mutations were identified: one mutation on exon 24 (Arg1060Asp), which had previously been described, and a mutation on exon 27 (Met1260IlefsX34), which has not been reported. For these mutations, compound heterozygosity appears to be necessary to cause TTP, as family members of the patient display only one of the mutations and all displayed normal ADAMTS13 activity.

  16. Compound heterozygous mutations in the SRD5A2 gene exon 4 in a male pseudohermaphrodite patient of Chinese origin.

    PubMed

    Fernández-Cancio, Mónica; Nistal, Manuel; Gracia, Ricardo; Molina, M Antonia; Tovar, Juan Antonio; Esteban, Cristina; Carrascosa, Antonio; Audí, Laura

    2004-01-01

    The goal of this study was to perform 5-alpha-reductase type 2 gene (SRD5A2) analysis in a male pseudohermaphrodite (MPH) patient with normal testosterone (T) production and normal androgen receptor (AR) gene coding sequences. A patient of Chinese origin with ambiguous genitalia at 14 months, a 46,XY karyotype, and normal T secretion under human chorionic gonadotropin (hCG) stimulation underwent a gonadectomy at 20 months. Exons 1-8 of the AR gene and exons 1-5 of the SRD5A2 gene were sequenced from peripheral blood DNA. AR gene coding sequences were normal. SRD5A2 gene analysis revealed 2 consecutive mutations in exon 4, each located in a different allele: 1) a T nucleotide deletion, which predicts a frameshift mutation from codon 219, and 2) a missense mutation at codon 227, where the substitution of guanine (CGA) by adenine (CAA) predicts a glutamine replacement of arginine (R227Q). Testes located in the inguinal canal showed a normal morphology for age. The patient was a compound heterozygote for SRD5A2 mutations, carrying 2 mutations in exon 4. The patient showed an R227Q mutation that has been described in an Asian population and MPH patients, along with a novel frameshift mutation, Tdel219. Testis morphology showed that, during early infancy, the 5-alpha-reductase enzyme deficiency may not have affected interstitial or tubular development.

  17. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes.

    PubMed

    Gil-Rodríguez, María Concepción; Deardorff, Matthew A; Ansari, Morad; Tan, Christopher A; Parenti, Ilaria; Baquero-Montoya, Carolina; Ousager, Lilian B; Puisac, Beatriz; Hernández-Marcos, María; Teresa-Rodrigo, María Esperanza; Marcos-Alcalde, Iñigo; Wesselink, Jan-Jaap; Lusa-Bernal, Silvia; Bijlsma, Emilia K; Braunholz, Diana; Bueno-Martinez, Inés; Clark, Dinah; Cooper, Nicola S; Curry, Cynthia J; Fisher, Richard; Fryer, Alan; Ganesh, Jaya; Gervasini, Cristina; Gillessen-Kaesbach, Gabriele; Guo, Yiran; Hakonarson, Hakon; Hopkin, Robert J; Kaur, Maninder; Keating, Brendan J; Kibaek, María; Kinning, Esther; Kleefstra, Tjitske; Kline, Antonie D; Kuchinskaya, Ekaterina; Larizza, Lidia; Li, Yun R; Liu, Xuanzhu; Mariani, Milena; Picker, Jonathan D; Pié, Ángeles; Pozojevic, Jelena; Queralt, Ethel; Richer, Julie; Roeder, Elizabeth; Sinha, Anubha; Scott, Richard H; So, Joyce; Wusik, Katherine A; Wilson, Louise; Zhang, Jianguo; Gómez-Puertas, Paulino; Casale, César H; Ström, Lena; Selicorni, Angelo; Ramos, Feliciano J; Jackson, Laird G; Krantz, Ian D; Das, Soma; Hennekam, Raoul C M; Kaiser, Frank J; FitzPatrick, David R; Pié, Juan

    2015-04-01

    Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for ∼ 1%-2% of CdLS-like phenotypes. © 2015 WILEY PERIODICALS, INC.

  18. Compound heterozygous desmoplakin mutations result in a phenotype with a combination of myocardial, skin, hair, and enamel abnormalities.

    PubMed

    Mahoney, My G; Sadowski, Sara; Brennan, Donna; Pikander, Pekka; Saukko, Pekka; Wahl, James; Aho, Heikki; Heikinheimo, Kristiina; Bruckner-Tuderman, Leena; Fertala, Andrzej; Peltonen, Juha; Uitto, Jouni; Peltonen, Sirkku

    2010-04-01

    Desmoplakin (DP) anchors the intermediate filament cytoskeleton to the desmosomal cadherins and thereby confers structural stability to tissues. In this study, we present a patient with extensive mucocutaneous blisters, epidermolytic palmoplantar keratoderma, nail dystrophy, enamel dysplasia, and sparse woolly hair. The patient died at the age of 14 years from undiagnosed cardiomyopathy. The skin showed hyperplasia and acantholysis in the mid- and lower epidermal layers, whereas the heart showed extensive fibrosis and fibrofatty replacement in both ventricles. Immunofluorescence microscopy showed a reduction in the C-terminal domain of DP in the skin and oral mucosa. Sequencing of the DP gene showed undescribed mutations in the maternal and paternal alleles. Both mutations affected exon 24 encoding the C-terminal domain. The paternal mutation, c.6310delA, leads to a premature stop codon. The maternal mutation, c.7964 C to A, results in a substitution of an aspartic acid for a conserved alanine residue at amino acid 2655 (A2655D). Structural modeling indicated that this mutation changes the electrostatic potential of the mutated region of DP, possibly altering functions that depend on intermolecular interactions. To conclude, we describe a combination of DP mutation phenotypes affecting the skin, heart, hair, and teeth. This patient case emphasizes the importance of heart examination of patients with desmosomal genodermatoses.

  19. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish

    PubMed Central

    Zou, Jun; Tran, Diana; Baalbaki, Mai; Tang, Ling Fung; Poon, Annie; Pelonero, Angelo; Titus, Erron W; Yuan, Christiana; Shi, Chenxu; Patchava, Shruthi; Halper, Elizabeth; Garg, Jasmine; Movsesyan, Irina; Yin, Chaoying; Wu, Roland; Wilsbacher, Lisa D; Liu, Jiandong; Hager, Ronald L; Coughlin, Shaun R; Jinek, Martin; Pullinger, Clive R; Kane, John P; Hart, Daniel O; Kwok, Pui-Yan; Deo, Rahul C

    2015-01-01

    Truncating mutations in the giant sarcomeric protein Titin result in dilated cardiomyopathy and skeletal myopathy. The most severely affected dilated cardiomyopathy patients harbor Titin truncations in the C-terminal two-thirds of the protein, suggesting that mutation position might influence disease mechanism. Using CRISPR/Cas9 technology, we generated six zebrafish lines with Titin truncations in the N-terminal and C-terminal regions. Although all exons were constitutive, C-terminal mutations caused severe myopathy whereas N-terminal mutations demonstrated mild phenotypes. Surprisingly, neither mutation type acted as a dominant negative. Instead, we found a conserved internal promoter at the precise position where divergence in disease severity occurs, with the resulting protein product partially rescuing N-terminal truncations. In addition to its clinical implications, our work may shed light on a long-standing mystery regarding the architecture of the sarcomere. DOI: http://dx.doi.org/10.7554/eLife.09406.001 PMID:26473617

  20. Non-truncating LIFR mutation: causal for prominent congenital pain insensitivity phenotype with progressive vertebral destruction?

    PubMed

    Elsaid, M F; Chalhoub, N; Kamel, H; Ehlayel, M; Ibrahim, N; Elsaid, A; Kumar, P; Khalak, H; Ilyin, V A; Suhre, K; Abdel Aleem, A

    2016-02-01

    We present a Qatari family with two children who displayed a characteristic phenotype of congenital marked pain insensitivity with hypohidrosis and progressive aseptic destruction of joints and vertebrae resembling that of hereditary sensory and autonomic neuropathies (HSANs). The patients, aged 10 and 14, remained of uncertain genetic diagnosis until whole genome sequencing was pursued. Genome sequencing identified a novel homozygous C65S mutation in the LIFR gene that is predicted to markedly destabilize and alter the structure of a particular domain and consequently to affect the functionality of the whole multi-domain LIFR protein. The C65S mutant LIFR showed altered glycosylation and an elevated expression level that might be attributed to a slow turnover of the mutant form. LIFR mutations have been reported in Stüve-Wiedemann syndrome (SWS), a severe autosomal recessive skeletal dysplasia often resulting in early death. Our patients share some clinical features of rare cases of SWS long-term survivors; however, they also phenocopy HSAN due to the marked pain insensitivity phenotype and progressive bone destruction. Screening for LIFR mutations might be warranted in genetically unresolved HSAN phenotypes.

  1. Heterozygous Cylindromatosis Gene Mutation c.1628_1629delCT in a Family with Brook-Spiegler Syndrome

    PubMed Central

    Aguilera, Cintia Arjona; De la Varga Martínez, Raquel; García, Lidia Ossorio; Jiménez-Gallo, David; Planelles, Cristina Albarrán; Barrios, Mario Linares

    2016-01-01

    Brooke–Spiegler Syndrome (BSS) is a rare genodermatosis characterized by the progressive formation of adnexal skin tumors in the scalp and face, mainly trichoepitheliomas, cylindromas, and spiradenomas. It has also been associated with salivary glands neoplasms. It is due to mutations in the tumor suppressor gene cylindromatosis (CYLD gene) localized on chromosome 16q12−q13. Around 93 mutations have been described. The study of CYLD gene in patients and their relatives is of vital importance to establish the molecular diagnosis and offer appropriate genetic counseling. There is a low risk of malignancy and patients require long-term follow-up. A case of BSS in a family is described. The existence of the genetic mutation at the CYLD gene c. 1628_1629delCT in three of the women affected was demonstrated. This mutation has only been described once in a previous study. PMID:27688459

  2. Acquired Gitelman syndrome in a primary Sjögren syndrome patient with a SLC12A3 heterozygous mutation: A case report and literature review.

    PubMed

    Gu, Xiangchen; Su, Zheling; Chen, Min; Xu, Yanqiu; Wang, Yi

    2017-08-01

    Acquired Gitelman's syndrome (GS) associated with Sjögren syndrome (SS) is rare. A 50-year-old woman was admitted to our department because of nausea, acratia and sicca complex. Laboratory tests after admission showed renal failure, hypokalaemia, metabolic alkalosis, hypomagnesaemia and hypocalciuria, all of which met the diagnostic criteria for GS. Diagnostic evaluation identified primary SS as the cause of the acquired GS. Light microscopy of the renal tissue from the patient showed severe membranoproliferative glomerunephritis and tubulointerstitial nephritis. Immunohistochemical staining of the renal tissue showed the absence of sodium-chloride co-transporter (NCCT) in distal convoluted tubules. Genetic analysis of chromosomal DNA extracted from the patient's peripheral blood showed SLC12A3 gene heterozygous mutation. The reported case was comprehensively analyzed on the basis of the clinical features, and laboratory, pathological and genetic test findings. The patient has achieved a complete remission after meticulous care and appropriate treatment. © 2017 Asian Pacific Society of Nephrology.

  3. A complex microcephaly syndrome in a Pakistani family associated with a novel missense mutation in RBBP8 and a heterozygous deletion in NRXN1.

    PubMed

    Agha, Zehra; Iqbal, Zafar; Azam, Maleeha; Siddique, Maimoona; Willemsen, Marjolein H; Kleefstra, Tjitske; Zweier, Christiane; de Leeuw, Nicole; Qamar, Raheel; van Bokhoven, Hans

    2014-03-15

    We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18 p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A>G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607kb deletion, encompassing exons 13-19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Characterization of a Case of Pigmentary Retinopathy in Sanfilippo Syndrome Type IIIA Associated with Compound Heterozygous Mutations in the SGSH Gene.

    PubMed

    Wilkin, Justin; Kerr, Natalie C; Byrd, Kathryn W; Ward, Jewell C; Iannaccone, Alessandro

    2016-06-01

    To report longitudinal phenotypic findings in a patient with Sanfilippo syndrome type IIIA, harboring SGSH mutations, one of which is novel. Heparan-N-sulfatidase enzyme function testing in skin fibroblasts and white blood cells and SGSH gene sequencing were obtained. Clinical office examinations, examinations under anesthesia, electroretinogram, spectral domain optical coherence tomography (SD-OCT), and fundus photography were performed over a 5-year period. Fundus examination revealed a progressive breadcrumb-like pigmentary retinopathy with perifoveal pigmentary involvement. SD-OCT showed loss of normal neuroretinal lamination and cystic macular changes responsive to treatment with carbonic anhydrase inhibitors. Electroretinography exhibited complex characteristics indicative of a generalized retinal rod > cone dysfunction with significant ON > OFF postreceptoral response compromise. Sequencing revealed compound heterozygous mutations in the SGSH gene, the novel c.88G > C (p.A30P) change and a second, previously reported one (c.734G > A, p.R245H). We have identified ocular features of a patient with Sanfilippo syndrome type IIIA harboring a novel SGHS mutation that were not previously known to occur in this disease - namely, a progressive retinopathy with distinctive features, cystic macular changes responsive to carbonic anhydrase inhibitors, and complex electroretinographic abnormalities consistent with postreceptoral dysfunction. SD-OCT imaging revealed retinal lamination changes consistent with previously reported histologic studies. Both the SD-OCT and the electroretinogram changes appear attributable to intraretinal deposition of heparan sulfate.

  5. Dunnigan-type familial partial lipodystrophy associated with the heterozygous R482W mutation in LMNA gene - case study of three women from one family.

    PubMed

    Nabrdalik, Katarzyna; Strózik, Agnieszka; Minkina-Pędras, Mariola; Jarosz-Chobot, Przemysława; Młynarski, Wojciech; Grzeszczak, Władysław; Gumprecht, Janusz

    2013-01-01

    Lipodystrophies are a heterogeneous group of diseases affecting adipose tissue distribution. Familial partial lipodystrophy of the Dunnigantype (FPLD) is a rare autosomal, dominant disorder caused by missense mutations in lamin A/C (LMNA) gene where selective loss of subcutaneous adipose tissue from the limbs and trunk, and accumulation of fat in the neck and face, is usually associated with a variety of metabolic disorders including insulin resistance, diabetes mellitus, dyslipidemia, hepatic steatosis and high blood pressure.In this report we present clinical and molecular features of three Polish women with FLPD phenotype coming from one family (a motherand her two daughters). FPLD was recognised under the circumstances of diabetes treatment, where sequencing of LMNA gene revealed heterozygous R482W mutation. In order to be able to recognise monogenic diabetes associated with lipodystrophy, it is important to bevery precise in physical examination while diagnosing diabetes and to be aware of the necessity of performing genetic testing. Diabetes appropriate differential diagnosis is essential for the treatment strategy, anticipation of the disease progression, and determination of the prognosis. It is necessary for an individual mutation carrier to look carefully at the patient's family.

  6. De Novo Truncating Mutations in AHDC1 in Individuals with Syndromic Expressive Language Delay, Hypotonia, and Sleep Apnea

    PubMed Central

    Xia, Fan; Bainbridge, Matthew N.; Tan, Tiong Yang; Wangler, Michael F.; Scheuerle, Angela E.; Zackai, Elaine H.; Harr, Margaret H.; Sutton, V. Reid; Nalam, Roopa L.; Zhu, Wenmiao; Nash, Margot; Ryan, Monique M.; Yaplito-Lee, Joy; Hunter, Jill V.; Deardorff, Matthew A.; Penney, Samantha J.; Beaudet, Arthur L.; Plon, Sharon E.; Boerwinkle, Eric A.; Lupski, James R.; Eng, Christine M.; Muzny, Donna M.; Yang, Yaping; Gibbs, Richard A.

    2014-01-01

    Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 “known” disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome. PMID:24791903

  7. De Novo Truncating Mutations in the Kinetochore-Microtubules Attachment Gene CHAMP1 Cause Syndromic Intellectual Disability.

    PubMed

    Isidor, Bertrand; Küry, Sébastien; Rosenfeld, Jill A; Besnard, Thomas; Schmitt, Sébastien; Joss, Shelagh; Davies, Sally J; Lebel, Robert Roger; Henderson, Alex; Schaaf, Christian P; Streff, Haley E; Yang, Yaping; Jain, Vani; Chida, Nodoka; Latypova, Xenia; Le Caignec, Cédric; Cogné, Benjamin; Mercier, Sandra; Vincent, Marie; Colin, Estelle; Bonneau, Dominique; Denommé, Anne-Sophie; Parent, Philippe; Gilbert-Dussardier, Brigitte; Odent, Sylvie; Toutain, Annick; Piton, Amélie; Dina, Christian; Donnart, Audrey; Lindenbaum, Pierre; Charpentier, Eric; Redon, Richard; Iemura, Kenji; Ikeda, Masanori; Tanaka, Kozo; Bézieau, Stéphane

    2016-04-01

    A rare syndromic form of intellectual disability with impaired speech was recently found associated with mutations in CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), the protein product of which is directly involved in microtubule-kinetochore attachment. Through whole-exome sequencing in six unrelated nonconsanguineous families having a sporadic case of intellectual disability, we identified six novel de novo truncating mutations in CHAMP1: c.1880C>G p.(Ser627*), c.1489C>T; p.(Arg497*), c.1876_1877delAG; p.(Ser626Leufs*4), c.1043G>A; p.(Trp348*), c.1002G>A; p.(Trp334*), and c.958_959delCC; p.(Pro320*). Our clinical observations confirm the phenotypic homogeneity of the syndrome, which represents therefore a distinct clinical entity. Besides, our functional studies show that CHAMP1 protein variants are delocalized from chromatin and are unable to bind to two of its direct partners, POGZ and HP1. These data suggest a pathogenic mechanism of the CHAMP1-associated intellectual disability syndrome mediated by direct interacting partners of CHAMP1, several of which are involved in chromo/kinetochore-related disorders. © 2016 WILEY PERIODICALS, INC.

  8. Homozygous/Compound Heterozygous Triadin Mutations Associated With Autosomal-Recessive Long-QT Syndrome and Pediatric Sudden Cardiac Arrest: Elucidation of the Triadin Knockout Syndrome.

    PubMed

    Altmann, Helene M; Tester, David J; Will, Melissa L; Middha, Sumit; Evans, Jared M; Eckloff, Bruce W; Ackerman, Michael J

    2015-06-09

    Long-QT syndrome (LQTS) may result in syncope, seizures, or sudden cardiac arrest. Although 16 LQTS-susceptibility genes have been discovered, 20% to 25% of LQTS remains genetically elusive. We performed whole-exome sequencing child-parent trio analysis followed by recessive and sporadic inheritance modeling and disease-network candidate analysis gene ranking to identify a novel underlying genetic mechanism for LQTS. Subsequent mutational analysis of the candidate gene was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing on a cohort of 33 additional unrelated patients with genetically elusive LQTS. After whole-exome sequencing and variant filtration, a homozygous p.D18fs*13 TRDN-encoded triadin frameshift mutation was discovered in a 10-year-old female patient with LQTS with a QTc of 500 milliseconds who experienced recurrent exertion-induced syncope/cardiac arrest beginning at 1 year of age. Subsequent mutational analysis of TRDN revealed either homozygous or compound heterozygous frameshift mutations in 4 of 33 unrelated cases of LQTS (12%). All 5 TRDN-null patients displayed extensive T-wave inversions in precordial leads V1 through V4, with either persistent or transient QT prolongation and severe disease expression of exercise-induced cardiac arrest in early childhood (≤3 years of age) and required aggressive therapy. The overall yield of TRDN mutations was significantly greater in patients ≤10 years of age (5 of 10, 50%) compared with older patients (0 of 24, 0%; P=0.0009). We identified TRDN as a novel underlying genetic basis for recessively inherited LQTS. All TRDN-null patients had strikingly similar phenotypes. Given the recurrent nature of potential lethal arrhythmias, patients fitting this phenotypic profile should undergo cardiac TRDN genetic testing. © 2015 American Heart Association, Inc.

  9. The heterozygous A53T mutation in the alpha-synuclein gene in a Chinese Han patient with Parkinson disease: case report and literature review.

    PubMed

    Xiong, Wei-Xi; Sun, Yi-Min; Guan, Rong-Yuan; Luo, Su-Shan; Chen, Chen; An, Yu; Wang, Jian; Wu, Jian-Jun

    2016-10-01

    The missense mutation A53T of alpha-synuclein gene (SNCA) was reported to be a rare but definite cause of sporadic and familial Parkinson disease (PD). It seemed to be restricted geographically in Greece and Italy. We aimed to identify the SNCA mutations in a Chinese PD cohort. Ninety-one early onset PD patients or familial PD probands were collected consecutively for the screening of PD-related genes. The genetic analysis was carried out by target sequencing of the exons and the corresponding flanking regions of the PD-related genes using Illumina HiSeq 2000 sequencer and further confirmed by Sanger sequencing or restriction fragment length polymorphism. Dosage mutations of exons in these genes were carried out by multiple ligation-dependent probe amplification. Among the 91 patients, we found only one heterozygous mutation of SNCA A53T, in a 23-year-old male patient with negative family history. The [(11)C]-2β-carbomethoxy-3β-(4-fluorophenyl) tropan (CFT) PET and PD-related spatial covariance pattern (PDRP) via [(18)F]-fluorodeoxyglucos (FDG) PET confirmed a typical pattern of PD. After examining his parents, we found his mother was an asymptomatic carrier, with declined hand dexterity detected by quantitative motor tests. Reduced dopamine transporter uptake of his mother was identified by CFT PET, and abnormal PDRP pattern was found by FDG PET. Our investigation expanded the clinical and genetic spectrum of Chinese PD patients, and we suggested SNCA mutations to be screened in familial and early onset Chinese PD patients.

  10. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy.

    PubMed

    Pena, S D J; Coimbra, R L M

    2015-02-01

    We have recently performed exome analysis in a 7 year boy who presented in infancy with an encephalopathy characterized by ataxia and myoclonic epilepsy. Parents were not consanguineous and there was no family history of the disease. Exome analysis did not show any pathogenic variants in genes known to be associated with seizures and/or ataxia in children, including all known human channelopathies. However, we have identified a mutation in KCNA2 that we believe to be responsible for the disease in our patient. This gene, which encodes a member of the potassium channel, voltage-gated, shaker-related subfamily, has not been previously described as a cause of disease in humans, but mutations of the orthologous gene in mice (Kcna2) are known to cause both ataxia and convulsions. The mutation is c.890C>A, leading to the amino acid substitution p.Arg297Gln, which involves the second of the critical arginines in the S4 voltage sensor. This mutation is characterized as pathogenic by five different prediction programs. RFLP analysis and Sanger sequencing confirmed the presence of the mutation in the patient, but not in his parents, characterizing it as de novo. We believe that this discovery characterizes a new channelopathy. © 2014 John Wiley | Clinical Exome Genome Reports.

  11. Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations.

    PubMed

    Tamiello, Chiara; Kamps, Miriam A F; van den Wijngaard, Arthur; Verstraeten, Valerie L R M; Baaijens, Frank P T; Broers, Jos L V; Bouten, Carlijn C V

    2013-01-01

    Laminopathies, mainly caused by mutations in the LMNA gene, are a group of inherited diseases with a highly variable penetrance; i.e., the disease spectrum in persons with identical LMNA mutations range from symptom-free conditions to severe cardiomyopathy and progeria, leading to early death. LMNA mutations cause nuclear abnormalities and cellular fragility in response to cellular mechanical stress, but the genotype/phenotype correlations in these diseases remain unclear. Consequently, tools such as mutation analysis are not adequate for predicting the course of the disease.   Here, we employ growth substrate stiffness to probe nuclear fragility in cultured dermal fibroblasts from a laminopathy patient with compound progeroid syndrome. We show that culturing of these cells on substrates with stiffness higher than 10 kPa results in malformations and even rupture of the nuclei, while culture on a soft substrate (3 kPa) protects the nuclei from morphological alterations and ruptures. No malformations were seen in healthy control cells at any substrate stiffness. In addition, analysis of the actin cytoskeleton organization in this laminopathy cells demonstrates that the onset of nuclear abnormalities correlates to an increase in cytoskeletal tension. Together, these data indicate that culturing of these LMNA mutated cells on substrates with a range of different stiffnesses can be used to probe the degree of nuclear fragility. This assay may be useful in predicting patient-specific phenotypic development and in investigations on the underlying mechanisms of nuclear and cellular fragility in laminopathies.

  12. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    SciTech Connect

    Gardner, R.J.; Bobrow, M.; Roberts, R.G.

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  13. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    PubMed

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  14. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing

    PubMed Central

    Merico, Daniele; Roifman, Maian; Braunschweig, Ulrich; Yuen, Ryan K. C.; Alexandrova, Roumiana; Bates, Andrea; Reid, Brenda; Nalpathamkalam, Thomas; Wang, Zhuozhi; Thiruvahindrapuram, Bhooma; Gray, Paul; Kakakios, Alyson; Peake, Jane; Hogarth, Stephanie; Manson, David; Buncic, Raymond; Pereira, Sergio L.; Herbrick, Jo-Anne; Blencowe, Benjamin J.; Roifman, Chaim M.; Scherer, Stephen W.

    2015-01-01

    Roifman Syndrome is a rare congenital disorder characterized by growth retardation, cognitive delay, spondyloepiphyseal dysplasia and antibody deficiency. Here we utilize whole-genome sequencing of Roifman Syndrome patients to reveal compound heterozygous rare variants that disrupt highly conserved positions of the RNU4ATAC small nuclear RNA gene, a minor spliceosome component that is essential for minor intron splicing. Targeted sequencing confirms allele segregation in six cases from four unrelated families. RNU4ATAC rare variants have been recently reported to cause microcephalic osteodysplastic primordial dwarfism, type I (MOPD1), whose phenotype is distinct from Roifman Syndrome. Strikingly, all six of the Roifman Syndrome cases have one variant that overlaps MOPD1-implicated structural elements, while the other variant overlaps a highly conserved structural element not previously implicated in disease. RNA-seq analysis confirms extensive and specific defects of minor intron splicing. Available allele frequency data suggest that recessive genetic disorders caused by RNU4ATAC rare variants may be more prevalent than previously reported. PMID:26522830

  15. Loop-tail phenotype in heterozygous mice and neural tube defects in homozygous mice result from a nonsense mutation in the Vangl2 gene.

    PubMed

    Chen, B; Mao, H H; Chen, L; Zhang, F L; Li, K; Xue, Z F

    2013-01-22

    N-ethyl-N-nitrosourea (ENU) is a powerful point mutagen that can generate random mutations. It has been used to generate mouse mutations to produce phenotypic models of human disease. Neural tube defects (NTD) are common birth defects in which the brain and/or spinal cord can be exposed; however, the mechanisms of these defects are poorly understood. Craniorachischisis is one type of NTD that bears a close resemblance to the phenotype of the loop-tail (Lp) mouse. Here we describe a C57BL/6J Lp mouse generated by ENU-induced mutagenesis. The mutation was mapped to the Vangl2 gene on chromosome 1, near markers D1Mit113 and D1Mit149. Sequence analysis of Vangl2 heterozygotes (Vangl2(m1Yzcm)/+) revealed a C/T transition mutation that resulted in substitution of a glutamine codon for a stop (nonsense) codon at position 449. The Vangl2 protein is involved in epithelium planar cell polarity. The predicted truncated protein would lack the PDZ-domain binding motif involved in protein-protein interaction; therefore, Vangl2(m1Yzcm) may be a loss-of-function mutant. Morphological and histological examination of homozygous mouse embryos revealed a neural tube closure defect that leads to craniorachischisis. This Vangl2(m1Yzcm) mouse represents a valuable model for the study of NTDs in humans.

  16. A patient with lissencephaly, developmental delay, and infantile spasms, due to de novo heterozygous mutation of KIF2A.

    PubMed

    Tian, Guoling; Cristancho, Ana G; Dubbs, Holly A; Liu, Grant T; Cowan, Nicholas J; Goldberg, Ethan M

    2016-11-01

    Microtubules are dynamic polymers of α/β tubulin heterodimers that play a critical role in cerebral cortical development, by regulating neuronal migration, differentiation, and morphogenesis. Mutations in genes that encode either α- or β-tubulin or a spectrum of proteins involved in the regulation of microtubule dynamics lead to clinically devastating malformations of cortical development, including lissencephaly. This is a single case report or a patient with lissencephaly, developmental delay, nystagmus, persistent hyperplastic primary vitreous, and infantile spasms, and undertook a neurogenetic workup. We include studies of mutant function in Escherichia coli and HeLa cells. The patient was found to have a novel de novo mutation in kinesin family member 2A (KIF2A). This mutation results in a substitution of isoleucine at a highly conserved threonine residue within the ATP-binding domain. The KIF2A p.Thr320Ile mutant protein exhibited abnormal solubility, and KIF2A p.Thr320Ile overexpression in cultured cells led to the formation of aberrant microtubule networks. Findings support the pathogenic link between KIF2A mutation and lissencephaly, and expand the range of presentation to include infantile spasms and congenital anomalies.

  17. A novel compound heterozygous mutation in an adolescent with insulin-dependent diabetes: The challenge of characterizing Wolfram syndrome.

    PubMed

    Maltoni, Giulio; Minardi, Raffaella; Cristalli, Carlotta Pia; Nardi, Laura; D'Alberton, Franco; Mantovani, Vilma; Zucchini, Stefano

    2016-11-01

    WS diagnosis is often delayed since misdiagnosed as autoimmune diabetes. The rarity of the condition and the absence of other diseases at diabetes diagnosis might make extremely challenging the recognition of WS. However the novel compound heterozygosity for the here reported mutations, seems to confer a mild phenotype among the spectrum of WS manifestations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Sequencing the GRHL3 Coding Region Reveals Rare Truncating Mutations and a Common Susceptibility Variant for Nonsyndromic Cleft Palate

    PubMed Central

    Mangold, Elisabeth; Böhmer, Anne C.; Ishorst, Nina; Hoebel, Ann-Kathrin; Gültepe, Pinar; Schuenke, Hannah; Klamt, Johanna; Hofmann, Andrea; Gölz, Lina; Raff, Ruth; Tessmann, Peter; Nowak, Stefanie; Reutter, Heiko; Hemprich, Alexander; Kreusch, Thomas; Kramer, Franz-Josef; Braumann, Bert; Reich, Rudolf; Schmidt, Gül; Jäger, Andreas; Reiter, Rudolf; Brosch, Sibylle; Stavusis, Janis; Ishida, Miho; Seselgyte, Rimante; Moore, Gudrun E.; Nöthen, Markus M.; Borck, Guntram; Aldhorae, Khalid A.; Lace, Baiba; Stanier, Philip; Knapp, Michael; Ludwig, Kerstin U.

    2016-01-01

    Nonsyndromic cleft lip with/without cleft palate (nsCL/P) and nonsyndromic cleft palate only (nsCPO) are the most frequent subphenotypes of orofacial clefts. A common syndromic form of orofacial clefting is Van der Woude syndrome (VWS) where individuals have CL/P or CPO, often but not always associated with lower lip pits. Recently, ∼5% of VWS-affected individuals were identified with mutations in the grainy head-like 3 gene (GRHL3). To investigate GRHL3 in nonsyndromic clefting, we sequenced its coding region in 576 Europeans with nsCL/P and 96 with nsCPO. Most strikingly, nsCPO-affected individuals had a higher minor allele frequency for rs41268753 (0.099) than control subjects (0.049; p = 1.24 × 10−2). This association was replicated in nsCPO/control cohorts from Latvia, Yemen, and the UK (pcombined = 2.63 × 10−5; ORallelic = 2.46 [95% CI 1.6–3.7]) and reached genome-wide significance in combination with imputed data from a GWAS in nsCPO triads (p = 2.73 × 10−9). Notably, rs41268753 is not associated with nsCL/P (p = 0.45). rs41268753 encodes the highly conserved p.Thr454Met (c.1361C>T) (GERP = 5.3), which prediction programs denote as deleterious, has a CADD score of 29.6, and increases protein binding capacity in silico. Sequencing also revealed four novel truncating GRHL3 mutations including two that were de novo in four families, where all nine individuals harboring mutations had nsCPO. This is important for genetic counseling: given that VWS is rare compared to nsCPO, our data suggest that dominant GRHL3 mutations are more likely to cause nonsyndromic than syndromic CPO. Thus, with rare dominant mutations and a common risk variant in the coding region, we have identified an important contribution for GRHL3 in nsCPO. PMID:27018475

  19. Two novel heterozygous mutations of EVC2 cause a mild phenotype of Ellis-van Creveld syndrome in a Chinese family.

    PubMed

    Shen, Wenjing; Han, Dong; Zhang, Jin; Zhao, Hongshan; Feng, Hailan

    2011-09-01

    Ellis-van Creveld syndrome (EvC, chondroectodermal dysplasia; OMIM 225500) is an autosomal recessive skeletal dysplasia with associated multisystem involvement. The syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails, and abnormal teeth. Congenital heart defects occur in 50-60% of cases. In this study, we report EvC in a 6-year-old Chinese girl with hypodontia and polydactyly, mild short stature, and abnormalities of the knee joints. No signs of short ribs, narrow thorax, or congenital heart defects were found in this patient. The EvC phenotype shares some similarity with Weyers acrofacial dysostosis (Weyer; OMIM 193530), an autosomal dominant disorder clinically characterized by mild short stature, postaxial polydactyly, nail dystrophy, and dysplastic teeth. Mutations in EVC or EVC2 are associated with both EvC syndrome and Weyers acrodental dysostosis, but the two conditions differ in the severity of the phenotype and their pattern of inheritance. In this study, two novel heterozygous EVC2 mutations, IVS5-2A > G and c.2653C > T (Arg885X), were identified in the patient. The IVS5-2A > G mutation was inherited from the patient's mother and the c.2653C > T from her father. Her parents have no phenotypic symptoms similar to those of the patient. These findings extend the mutation spectrum of this malformation syndrome and provide the possibility of prenatal diagnosis for future offspring in this family. Copyright © 2011 Wiley-Liss, Inc.

  20. Identification of a De Novo Heterozygous Missense FLNB Mutation in Lethal Atelosteogenesis Type I by Exome Sequencing

    PubMed Central

    Jeon, Ga Won; Lee, Mi-Na; Jung, Ji Mi; Hong, Seong Yeon; Kim, Young Nam; Sin, Jong Beom

    2014-01-01

    Background Atelosteogenesis type I (AO-I) is a rare lethal skeletal dysplastic disorder characterized by severe short-limbed dwarfism and dislocated hips, knees, and elbows. AO-I is caused by mutations in the filamin B (FLNB) gene; however, several other genes can cause AO-like lethal skeletal dysplasias. Methods In order to screen all possible genes associated with AO-like lethal skeletal dysplasias simultaneously, we performed whole-exome sequencing in a female newborn having clinical features of AO-I. Results Exome sequencing identified a novel missense variant (c.517G>A; p.Ala173Thr) in exon 2 of the FLNB gene in the patient. Sanger sequencing validated this variant, and genetic analysis of the patient's parents suggested a de novo occurrence of the variant. Conclusions This study shows that exome sequencing can be a useful tool for the identification of causative mutations in lethal skeletal dysplasia patients. PMID:24624349

  1. Girl with signs of Pelizaeus-Merzbacher disease heterozygous for a mutation in exon 2 of the proteolipid protein gene

    SciTech Connect

    Hodes, M.E.; DeMyer, W.E.; Pratt, V.M.

    1995-02-13

    We studied a female infant with clinical signs of Pelizaeus-Merzbacher disease (PMD), who has a familial mutation (C{sup 41}{r_arrow}T) in exon 2 of the proteolipid protein gene (PLP), and selected relatives. While the carrier mother and grandmother of the proposita currently are neurologically normal and show normal T2 magnetic resonance imaging (MRI) of the brain, the infant has a neurological picture, MRIs, and brain auditory evoked response (BAER) consistent with that diagnosis. The data here presented show that PMD can occur in females carrying a mutation in the PLP gene. Our experience with the MRIs of this patient, her mother and grandmother, and those of a previously reported family show that molecular genetic analysis and not MRI is the appropriate means for carrier detection. 22 refs., 5 figs.

  2. Hereditary spastic paraplegia caused by compound heterozygous mutations outside the motor domain of the KIF1A gene.

    PubMed

    Krenn, M; Zulehner, G; Hotzy, C; Rath, J; Stogmann, E; Wagner, M; Haack, T B; Strom, T M; Zimprich, A; Zimprich, F

    2017-05-01

    Hereditary spastic paraplegia is a clinically and genetically heterogeneous group of rare, inherited disorders causing an upper motor neuron syndrome with (complex) or without (pure) additional neurological symptoms. Mutations in the KIF1A gene have already been associated with recessive and dominant forms of hereditary spastic paraplegia (SPG30) in a few cases. All family members included in the study were examined neurologically. Whole-exome sequencing was used in affected individuals to identify the responsible candidate gene. Conventional Sanger sequencing was conducted to validate familial segregation. A family of Macedonian origin with two affected siblings, one with slowly progressive and the other one with a more complex and rapidly progressing hereditary spastic paraplegia is reported. In both affected individuals, two novel pathogenic mutations outside the motor domain of the KIF1A gene were found (NM_001244008.1:c.2909G>A, p.Arg970His and c.1214dup, p.Asn405Lysfs*40) that segregate with the disease within the family establishing the diagnosis of autosomal recessive SPG30. This report provides the first evidence that mutations outside the motor domain of the gene can cause (recessive) SPG30 and extends the genotype-phenotype association for KIF1A-related diseases. © 2017 EAN.

  3. Thiamine-responsive megaloblastic anemia (TRMA) in an Austrian boy with compound heterozygous SLC19A2 mutations.

    PubMed

    Pichler, Herbert; Zeitlhofer, Petra; Dworzak, Michael N; Diakos, Christopher; Haas, Oskar A; Kager, Leo

    2012-11-01

    Thiamine-responsive megaloblastic anemia (TRMA) is a rare disorder typically characterized by megaloblastic anemia, non-type I diabetes and sensorineural deafness. It is caused by various mutations in the SLC19A2 gene that impair the encoded thiamine transporter. So far, only 70 affected individuals mainly from consanguineous families of Middle and Far Eastern origin with a wide spectrum of signs and symptoms, variable onset of disease, and primarily homozygote mutations in SLC19A2 have been reported. We present the first genuine central European descendent with combined heterozygote mutations in SLC19A2, an Austrian boy suffering from pancytopenia and non-type I diabetes. Both manifestations resolved completely under continuous oral thiamine supplementation. Our observation underlines that despite its rarity, TRMA must be considered as an important differential diagnosis in native central European patients with suggestive signs and symptoms. An early molecular genetic verification of the diagnosis provides a sound basis for a successful and simple treatment that helps to prevent severe sequelae.

  4. Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2).

    PubMed

    Iolascon, Achille; d'Apolito, Maria; Servedio, Veronica; Cimmino, Flora; Piga, Antonio; Camaschella, Clara

    2006-01-01

    Divalent metal transporter 1 (DMT1) mediates apical iron uptake in duodenal enterocytes and iron transfer from the transferrin receptor endosomal cycle into the cytosol in erythroid cells. Both mk mice and Belgrade rats, which carry an identical DMT1 mutation, exhibit severe microcytic anemia at birth and defective intestinal iron use and erythroid iron use. We report the hematologic phenotype of a child, compound heterozygote for 2 DMT1 mutations, who was affected by severe anemia since birth and showed hepatic iron overload. The novel mutations were a 3-bp deletion in intron 4 (c.310-3_5del CTT) resulting in a splicing abnormality and a C>T transition at nucleotide 1246(p. R416C). A striking reduction of DMT1 protein in peripheral blood mononuclear cells was demonstrated by Western blot analysis. The proband required blood transfusions until erythropoietin treatment allowed transfusion independence when hemoglobin levels between 75 and 95 g/L (7.5 and 9.5 g/dL) were achieved. Hematologic data of this patient at birth and in the first years of life strengthen the essential role of DMT1 in erythropoiesis. The early onset of iron overload indicates that, as in animal models, DMT1 is dispensable for liver iron uptake, whereas its deficiency in the gut is likely bypassed by the up-regulation of other pathways of iron use.

  5. Two novel mutations in exon 3 and 4 of low density lipoprotein (LDL) receptor gene in patients with heterozygous familial hypercholesterolemia.

    PubMed

    Khan, Samia Perwaiz; Ghani, Rubina; Ahmed, Khwaja Zafar; Yaqoob, Zia

    2011-07-01

    To determine the common mutation of low density lipoprotein receptor in hypercholesterolemia patients requiring screening for heterozygous familial hypercholesterolemia (HeFH) in Karachi. Case-series. Dr. Ziauddin Hospital Laboratory and Dr. Rubina Ghani's Pathological and Molecular Laboratories, Karachi, for the PCR bench work from June 2008 to October 2009. All the patients selected for this study were from Dr. Ziauddin Hospital and National Institute of Cardiovascular Diseases. All the patients having high total cholesterol and LDL-cholesterol were included in this study with premature coronary artery diseases or a family history of hypercholesterolemia. Exclusion criteria included Diabetes mellitus, hypertension, renal disease, hypothyroidism and steroid therapy. After lipid profile with overnight fasting, DNA was extracted from whole blood collected in EDTA (ethylenediamine tetra acetic acid) tube and multiplex PCR (polymerase chain reaction) using forward and reverse primers of exons 3, 4, 9 and 14 of base pairs 162, 431, 550 and 496 respectively. Out of total of 120 hypercholesterolemia cases, 42 patients were classical cases of HeFH (heterozygous familial hypercholesterolemia) with xanthomas, xanthelasmas and LDL-C > 160 mg/dl. The total cholesterol (260± 57 mg/dL) and LDL-C (192 ± 39 mg/dL ) of cases was significantly high as compared to, controls having total cholesterol (184 ± 27 mg/dL) and LDL-C (105 ± 22 mg/dL), p > 0.001. Two novel point mutations were noted in exon 3 and exon 4. The other 78 cases were probable with raised LDL-C (low density lipoprotein cholesterol) and family history of premature coronary heart diseases. The frequency of HeFH was 35% classical and 65% probable cases out of total 120 hypercholesterolemia patients from two tertiary care hospitals in Karachi. The point mutation on exon 3 and exon 4 of LDLR gene was the most common. PCR is useful for the detection of large re-arrangements in the LDL-receptor gene and is a rapid and

  6. Compound heterozygous mutations of ACADS gene in newborn with short chain acyl-CoA dehydrogenase deficiency: case report and literatures review

    PubMed Central

    An, Se Jin; Kim, Sook Za; Kim, Gu Hwan; Yoo, Han Wook

    2016-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive mitochondrial disorder of fatty acid β-oxidation, and is associated with mutations in the acyl-CoA dehydrogenase (ACADS) gene. Recent advances in spectrometric screening for inborn errors of metabolism have helped detect several metabolic disorders, including SCADD, without symptoms in the neonate period. This allows immediate initiation of treatment and monitoring, so they remain largely symptomless metabolic disease. Here, we report a 15-month-old asymptomatic male, who was diagnosed with SCADD by newborn screening. Spectrometric screening for inborn errors of metabolism 72 hours after birth revealed an elevated butyrylcarnitine (C4) concentration of 2.25 µmol/L (normal, <0.99 µmol/L). Urinary excretion of ethylmalonic acid was also elevated, as detected by urine organic acid analysis. To confirm the diagnosis of SCADD, direct sequencing analysis of 10 coding exons and the exon-intron boundaries of the ACADS gene were performed. Subsequent sequence analysis revealed compound heterozygous missense mutations c.164C>T (p.Pro55Leu) and c.1031A>G (p.Glu344Gly) on exons 2 and 9, respectively. The patient is now growing up, unretarded by symptoms such as seizure and developmental delay. PMID:28018444

  7. Wiskott-Aldrich syndrome in a girl caused by heterozygous WASP mutation and extremely skewed X-chromosome inactivation: a novel association with maternal uniparental isodisomy 6.

    PubMed

    Takimoto, Tomohito; Takada, Hidetoshi; Ishimura, Masataka; Kirino, Makiko; Hata, Kenichiro; Ohara, Osamu; Morio, Tomohiro; Hara, Toshiro

    2015-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked disease characterized by microthrombocytopenia, eczema and immune deficiency, caused primarily by mutations in the WASP (Wiskott-Aldrich syndrome protein) gene. Female carriers are usually asymptomatic because of the preferential activation of the normal, nonmutated X-chromosome in their hematopoietic cells. We report our observations of a female child with WAS, who displayed symptoms of congenital thrombocytopenia. DNA sequencing analysis of the WASP gene revealed a heterozygous nonsense mutation in exon 10. The expressions of WASP and normal WASP mRNA were defective. We found preferential inactivation of the X-chromosome on which wild-type WASP was located. Single-nucleotide polymorphism microarray testing and the analysis of the polymorphic variable number of tandem repeat regions revealed maternal uniparental isodisomy of chromosome 6 (UPD6). Our results underscore the importance of WASP evaluation in females with congenital thrombocytopenia and suggest that UPD6 might be related to the pathophysiology of nonrandom X-chromosome inactivation.

  8. Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III.

    PubMed

    Mei, Libin; Huang, Yanru; Pan, Qian; Su, Wei; Quan, Yi; Liang, Desheng; Wu, Lingqian

    2015-07-20

    A 26-year-old woman with a past history of fetal skeletal dysplasia was referred to our institution at 24weeks of gestation following a routine sonographic diagnosis of short limbs in the fetus. A fetal ultrasound showed short limbs, a narrow thorax, short ribs with marginal spurs, and polydactyly. Conventional cytogenetics analysis of cultured amniocytes demonstrated that the fetal karyotype was normal. Using targeted exome sequencing of 226 known genes implicated in inherited skeletal dysplasia, we identified compound heterozygous mutations in the DYNC2H1 gene in the fetus with short rib-polydactyly syndrome, type III (SRPS III), c.1151 C>T(p.Ala384Val) and c.4351 C>T (p.Gln1451*), which were inherited from paternally and maternally, respectively. These variants were further confirmed using Sanger sequencing and have not been previously reported. To our knowledge, this is the first report of DYNC2H1 mutations causing SRPS III, in the Chinese population. Our findings expand the number of reported cases of this rare disease, and indicate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia.

  9. A new heterozygous mutation (L338N) in the human Gsalpha (GNAS1) gene as a cause for congenital hypothyroidism in Albright's hereditary osteodystrophy.

    PubMed

    Pohlenz, Joachim; Ahrens, Wiebke; Hiort, Olaf

    2003-04-01

    To identify the molecular defect by which psychomotor retardation is caused in two brothers with congenital hypothyroidism who received adequate treatment with l-thyroxine. A six-year-old boy presented with psychomotor retardation and congenital primary hypothyroidism (CH). The patient had a normal blood thyrotrophin (TSH) level on neonatal screening, but low total serum thyroxine and triiodothyronine concentrations prompting thyroid hormone substitution shortly after birth. Nevertheless, psychomotor development was retarded and the patient underwent further investigation. Typical features of Albright's hereditary osteodystrophy (AHO) such as round face, obesity, and shortened 1st, 4th and 5th metacarpals were found. Further investigation confirmed AHO with pseudohypoparathyroidism (PHP) type Ia. The boy had a mild resistance to parathyroid hormone and a reduced adenylyl cyclase stimulating protein (Gsalpha) activity in erythrocytes. DNA analysis detected a new heterozygous mutation (L338N) in the Gsalpha protein (GNAS1) gene. This mutation was also present in the patient's brother who had similar features and was also treated with thyroid hormone because of CH, and in the phenotypically normal-looking mother who had a normal calcium metabolism but a reduced Gsalpha protein activity in erythrocytes suggestive of pseudopseudohypoparathyroidism. In patients with CH, in whom the neurological outcome is poor even under adequate thyroid hormone substitution, PHP Ia may be suspected, especially when symptoms of AHO are present.

  10. Hereditary Xerocytosis due to Mutations in PIEZO1 Gene Associated with Heterozygous Pyruvate Kinase Deficiency and Beta-Thalassemia Trait in Two Unrelated Families

    PubMed Central

    Vercellati, Cristina; Marcello, Anna Paola; Zaninoni, Anna; van Wijk, Richard; Mirra, Nadia; Curcio, Cristina; Cortelezzi, Agostino; Zanella, Alberto; Barcellini, Wilma; Bianchi, Paola

    2017-01-01

    Hereditary xerocytosis (HX) is a rare disorder caused by defects of RBC permeability, associated with haemolytic anaemia of variable degree and iron overload. It is sometimes misdiagnosed as hereditary spherocytosis or other congenital haemolytic anaemia. Splenectomy is contraindicated due to increased risk of thromboembolic complications. We report the clinical, haematological, and molecular characteristics of four patients from two unrelated Italian families affected by HX, associated with beta-thalassemia trait and heterozygous pyruvate kinase deficiency, respectively. Two patients had been splenectomised and displayed thrombotic episodes. All patients had iron overload in the absence of transfusion, two of them requiring iron chelation. The diagnosis of HX was confirmed by LoRRca Osmoscan analysis showing a left-shifted curve. PIEZO1 gene sequencing revealed the presence of mutation p.E2496ELE, showing that this is one of the most frequent mutations in this disease. The concomitant defects did not aggravate the clinical phenotype; however, in one patient, the initial diagnosis of pyruvate kinase deficiency delayed the correct diagnosis of HX for many years and resulted in splenectomy followed by thrombotic complications. The study underlines the importance of a precise diagnosis in HX, particularly in view of splenectomy, and the need of a molecular confirmation of suspected RBC enzymopathy. PMID:28367341

  11. Hereditary Xerocytosis due to Mutations in PIEZO1 Gene Associated with Heterozygous Pyruvate Kinase Deficiency and Beta-Thalassemia Trait in Two Unrelated Families.

    PubMed

    Fermo, Elisa; Vercellati, Cristina; Marcello, Anna Paola; Zaninoni, Anna; van Wijk, Richard; Mirra, Nadia; Curcio, Cristina; Cortelezzi, Agostino; Zanella, Alberto; Barcellini, Wilma; Bianchi, Paola

    2017-01-01

    Hereditary xerocytosis (HX) is a rare disorder caused by defects of RBC permeability, associated with haemolytic anaemia of variable degree and iron overload. It is sometimes misdiagnosed as hereditary spherocytosis or other congenital haemolytic anaemia. Splenectomy is contraindicated due to increased risk of thromboembolic complications. We report the clinical, haematological, and molecular characteristics of four patients from two unrelated Italian families affected by HX, associated with beta-thalassemia trait and heterozygous pyruvate kinase deficiency, respectively. Two patients had been splenectomised and displayed thrombotic episodes. All patients had iron overload in the absence of transfusion, two of them requiring iron chelation. The diagnosis of HX was confirmed by LoRRca Osmoscan analysis showing a left-shifted curve. PIEZO1 gene sequencing revealed the presence of mutation p.E2496ELE, showing that this is one of the most frequent mutations in this disease. The concomitant defects did not aggravate the clinical phenotype; however, in one patient, the initial diagnosis of pyruvate kinase deficiency delayed the correct diagnosis of HX for many years and resulted in splenectomy followed by thrombotic complications. The study underlines the importance of a precise diagnosis in HX, particularly in view of splenectomy, and the need of a molecular confirmation of suspected RBC enzymopathy.

  12. A novel exon duplication event leading to a truncating germ-line mutation of the APC gene in a familial adenomatous polyposis family.

    PubMed

    McCart, Amy; Latchford, Andrew; Volikos, Emmanouil; Rowan, Andrew; Tomlinson, Ian; Silver, Andrew

    2006-01-01

    Familial Adenomatous Polyposis (FAP) is an autosomal dominant condition predisposing to multiple adenomatous polyps of the colon. FAP patients frequently carry heterozygous mutations of the APC tumour suppressor gene. Affected individuals from a cohort of FAP families (n=22), where no germ-line APC mutation was detected by direct sequencing, were analysed by Multiplex Ligation-dependent Probe Amplification (MLPA). MLPA identified a previously unreported APC mutation involving duplication of exon 4. Subsequent analysis of cDNA from affected family members revealed expression of mutant mRNA species containing two copies of exon 4, resulting in a frameshift and premature stop codon. Bioinformatic analysis of the relevant APC genomic segment predicted a role for homologous recombination possibly involving Alu repeats in the generation of this genotype. Our results highlight the importance of MLPA as an adjunct to exon-by-exon sequencing in identifying infrequent mutational events in cancer predisposing genes.

  13. Congenital IL-12R1β receptor deficiency and thrombophilia in a girl homozygous for an IL12RB1 mutation and compound heterozygous for MTFHR mutations: A case report and literature review

    PubMed Central

    Kose, M.; Ceylan, O.; Patiroglu, T.; Bustamante, J.; Casanova, J. L.; Akyildiz, B. N.; Doganay, S.

    2014-01-01

    Interleukin-12 (IL-12) plays an important role in the production of interferon gamma from T cells and natural killer cells and is essential for protection against intra-macrophagic pathogens such as Mycobacterium and Salmonella. Here, we describe a 16-year-old girl with homozygous mutation in exon 12 of the IL12RB1 gene, which causes complete IL-12Rβ1 deficiency in association with heterozygous mutation (C677T and A1298C) in the methylenetetrahydrofolate reductase gene. She presented with disseminated Mycobacterium tuberculosis complex infection, retroperitoneal fungal abscess and also thrombosis in the superior mesenteric–portal vein junction. This is the first case report of a primary immunodeficiency associated with a genetically determined venous thrombosis. PMID:24678409

  14. Novel de novo heterozygous FGFR1 mutation in two siblings with Hartsfield syndrome: a case of gonadal mosaicism.

    PubMed

    Dhamija, Radhika; Kirmani, Salman; Wang, Xiangling; Ferber, Matthew J; Wieben, Eric D; Lazaridis, Konstantinos N; Babovic-Vuksanovic, Dusica

    2014-09-01

    Hartsfield syndrome has been recently reported to be associated with mutations in FGFR1 however, to this date; no familial cases have been reported. In this report, we describe two siblings with Hartsfield syndrome and a novel de novo FGFR1 mutation suggesting gonadal mosaicism. The proband presented at our institution at age 6 years with a clinical diagnosis of Hartsfield syndrome and requesting further genetic evaluation. Previous studies included a normal karyotype, oligonucleotide array, and single gene testing for nonsyndromic holoprosencephaly (SHH, SIX3, ZIC2, TGIF). At the age of 6 years, exome sequencing was performed and a de novo novel missense variant was identified in FGFR1 (coding for fibroblast growth factor-1) on chromosome 8p12: c.1880G>C (p.R627T). Subsequently, a younger sibling was born with the same phenotype (holoprosencephaly, ectrodactyly of bilateral hands and feet and bilateral cleft lip and palate). Targeted sequencing of FGFR1 revealed the identical variant that was previously identified in the proband. To our knowledge this observation is the first documentation of familial recurrence of Hartsfield syndrome. As both parents were negative for the sequence variant in FGFR1 gene by testing peripheral blood samples, this suggests gonadal mosaicism. The frequency of gonadal mosaicism in Hartsfield syndrome is not known however given our case, this possibility should be taken in to consideration for recurrence risk estimation in children of clinically unaffected parents. © 2014 Wiley Periodicals, Inc.

  15. A novel heterozygous mutation in the ATP6V0A4 gene encoding the V-ATPase a4 subunit in an adult patient with incomplete distal renal tubular acidosis

    PubMed Central

    Imai, Eri; Kaneko, Shuzo; Mori, Takayasu; Okado, Tomokazu; Uchida, Shinichi; Tsukamoto, Yusuke

    2016-01-01

    A 40-year-old Japanese man who had a medical history of hypokalemic periodic paralysis 4 months prior was hospitalized to undergo a cholecystectomy. Hypokalemia, nephrocalcinosis and alkaluria suggesting distal renal tubular acidosis (dRTA) were detected, but metabolic acidosis was not evident. An ammonium chloride/furosemide–fludrocortisone/bicarbonate loading test demonstrated a remarkable disability in urinary H+ excretion. A novel heterozygous mutation in the ATP6V0A4 gene encoding the vacuolar H+-ATPase (V-ATPase) a4 subunit p.S544L was detected. Among cases of V-ATPase a4 mutations, this is the first case in which a heterozygous mutation developed to an incomplete or latent form of dRTA. PMID:27274828

  16. Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice

    PubMed Central

    Short, Kieran M.; Wiradjaja, Fenny; Janssen, Irene M.; Jehee, Fernanda; Bertola, Debora; Liu, Jia; Yagnik, Garima; Sekiguchi, Kiyotoshi; Kiyozumi, Daiji; van Bokhoven, Hans; Marcelis, Carlo; Cunningham, Michael L.; Anderson, Peter J.; Boyadjiev, Simeon A.; Passos-Bueno, Maria Rita; Veltman, Joris A.; Smyth, Ian; Buckley, Michael F.; Roscioli, Tony

    2011-01-01

    The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia. PMID:21931569

  17. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice

    PubMed Central

    Papale, Ligia A.; Beyer, Barbara; Jones, Julie M.; Sharkey, Lisa M.; Tufik, Sergio; Epstein, Michael; Letts, Verity A.; Meisler, Miriam H.; Frankel, Wayne N.; Escayg, Andrew

    2009-01-01

    In a chemical mutagenesis screen, we identified the novel Scn8a8J allele of the gene encoding the neuronal voltage-gated sodium channel Nav1.6. The missense mutation V929F in this allele alters an evolutionarily conserved residue in the pore loop of domain 2 of Nav1.6. Electroencephalography (EEG) revealed well-defined spike-wave discharges (SWD), the hallmark of absence epilepsy, in Scn8a8J heterozygotes and in heterozygotes for two classical Scn8a alleles, Scn8amed (null) and Scn8amed-jo (missense). Mouse strain background had a significant effect on SWD, with mutants on the C3HeB/FeJ strain showing a higher incidence than on C57BL/6J. The abnormal EEG patterns in heterozygous mutant mice and the influence of genetic background on SWD make SCN8A an attractive candidate gene for common human absence epilepsy, a genetically complex disorder. PMID:19254928

  18. Identification of a Heterozygous SPG11 Mutation by Clinical Exome Sequencing in a Patient With Hereditary Spastic Paraplegia: A Case Report

    PubMed Central

    2016-01-01

    Next-generation sequencing, such as whole-genome sequencing, whole-exome sequencing, and targeted panel sequencing have been applied for diagnosis of many genetic diseases, and are in the process of replacing the traditional methods of genetic analysis. Clinical exome sequencing (CES), which provides not only sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to genetic diagnosis. Sequencing of genes with clinical relevance rather than whole exome sequencing might be more suitable for the diagnosis of known hereditary disease with genetic heterogeneity. Here, we present the clinical usefulness of CES for the diagnosis of hereditary spastic paraplegia (HSP). We report a case of patient who was strongly suspected of having HSP based on her clinical manifestations. HSP is one of the diseases with high genetic heterogeneity, the 72 different loci and 59 discovered genes identified so far. Therefore, traditional approach for diagnosis of HSP with genetic analysis is very challenging and time-consuming. CES with TruSight One Sequencing Panel, which enriches about 4,800 genes with clinical relevance, revealed compound heterozygous mutations in SPG11. One workflow and one procedure can provide the results of genetic analysis, and CES with enrichment of clinically relevant genes is a cost-effective and time-saving diagnostic tool for diseases with genetic heterogeneity, including HSP. PMID:28119845

  19. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia.

    PubMed

    Bolar, Nikhita Ajit; Golzio, Christelle; Živná, Martina; Hayot, Gaëlle; Van Hemelrijk, Christine; Schepers, Dorien; Vandeweyer, Geert; Hoischen, Alexander; Huyghe, Jeroen R; Raes, Ann; Matthys, Erve; Sys, Emiel; Azou, Myriam; Gubler, Marie-Claire; Praet, Marleen; Van Camp, Guy; McFadden, Kelsey; Pediaditakis, Igor; Přistoupilová, Anna; Hodaňová, Kateřina; Vyleťal, Petr; Hartmannová, Hana; Stránecký, Viktor; Hůlková, Helena; Barešová, Veronika; Jedličková, Ivana; Sovová, Jana; Hnízda, Aleš; Kidd, Kendrah; Bleyer, Anthony J; Spong, Richard S; Vande Walle, Johan; Mortier, Geert; Brunner, Han; Van Laer, Lut; Kmoch, Stanislav; Katsanis, Nicholas; Loeys, Bart L

    2016-07-07

    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.

  20. Heterozygous mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in male tilapia, Oreochromis niloticus

    PubMed Central

    Chen, Jinlin; Jiang, Dongneng; Tan, Dejie; Fan, Zheng; Wei, Yingying; Li, Minghui; Wang, Deshou

    2017-01-01

    Eukaryotic elongation factor 1 alpha (eEF1A) is an essential component of the translational apparatus. In the present study, eEF1A1b was isolated from the Nile tilapia. Real-time PCR and Western blot revealed that eEF1A1b was expressed highly in the testis from 90 dah (days after hatching) onwards. In situ hybridization and immunohistochemistry analyses showed that eEF1A1b was highly expressed in the spermatogonia of the testis. CRISPR/Cas9 mediated mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in the F0 XY fish. Consistently, heterozygous mutation of eEF1A1b (eEF1A1b+/−) resulted in an absence of spermatocytes at 90 dah, very few spermatocytes, spermatids and spermatozoa at 180 dah, and decreased Cyp11b2 and serum 11-ketotestosterone level at both stages. Further examination of the fertilization capacity of the sperm indicated that the eEF1A1b+/− XY fish were infertile due to abnormal spermiogenesis. Transcriptomic analyses of the eEF1A1b+/− testis from 180 dah XY fish revealed that key elements involved in spermatogenesis, steroidogenesis and sperm motility were significantly down-regulated compared with the control XY. Transgenic overexpression of eEF1A1b rescued the spermatogenesis arrest phenotype of the eEF1A1b+/− testis. Taken together, our data suggested that eEF1A1b is crucial for spermatogenesis and male fertility in the Nile tilapia. PMID:28266557

  1. A case of sitosterolemia due to compound heterozygous mutations in ABCG5: clinical features and treatment outcomes obtained with colestimide and ezetimibe

    PubMed Central

    Ono, Sahoko; Matsuda, Junko; Saito, Aki; Yamamoto, Takenobu; Fujimoto, Wataru; Shimizu, Hitomi; Dateki, Sumito; Ouchi, Kazunobu

    2017-01-01

    Abstract. Sitosterolemia is a rare, autosomal recessively inherited disorder of lipid metabolism caused by mutations in the “ATP-binding cassette, subfamily G” member 5 and 8 proteins (encoded by the ABCG5 and ABCG8 genes, respectively), which play critical roles in the intestinal and biliary excretion of plant sterols. We report the clinical features and treatment outcomes of an 18-month-old Japanese girl with sitosterolemia, who presented with multiple linear and intertriginous xanthomas around the joint areas. Serum lipid analyses revealed elevated levels of total cholesterol (T-Chol: 866 mg/dL), low density lipoprotein-cholesterol (LDL-C: 679 mg/dL), and plant sterols (sitosterol: 24.6 mg/dL, campesterol: 19.2 mg/dL, stigmasterol: 1.8 mg/dL). Compound heterozygous mutations (p.R419H and p.R389H) were identified in ABCG5. The patient was placed on a low cholesterol/low plant sterol diet and treated with colestimide (a bile acid sequestrant) and ezetimibe (an NPC1L1 inhibitor). Serum T-Chol and LDL-C levels decreased to normal within 2 mo, and plant sterol levels decreased by 30% within 4 mo. The xanthomas regressed gradually, and almost completely disappeared after 1.5 yr of treatment. No further reductions of plant sterol levels were observed. Long-term follow-up is important to verify appropriate therapeutic goals to prevent premature atherosclerosis and coronary artery disease. PMID:28203044

  2. Compound Heterozygous CORO1A Mutations in Siblings with a Mucocutaneous-Immunodeficiency Syndrome of Epidermodysplasia Verruciformis-HPV, Molluscum Contagiosum and Granulomatous Tuberculoid Leprosy

    PubMed Central

    Stray-Pedersen, Asbjorg; Jouanguy, Emmanuelle; Crequer, Amandine; Bertuch, Alison A.; Brown, Betty S.; Jhangiani, Shalini N.; Muzny, Donna M.; Gambin, Tomasz; Sorte, Hanne; Sasa, Ghadir; Metry, Denise; Campbell, Judith; Sockrider, Marianna M.; Dishop, Megan K.; Scollard, David M.; Gibbs, Richard A.; Mace, Emily M.; Orange, Jordan S.; Lupski, James R.; Casanova, Jean-Laurent

    2015-01-01

    Purpose Coronin-1A deficiency is a recently recognized autosomal recessive primary immunodeficiency caused by mutations in CORO1A (OMIM 605000) that results in T-cell lymphopenia and is classified as T-B+NK+severe combined immunodeficiency (SCID). Only two other CORO1A-kindred are known to date, thus the defining characteristics are not well delineated. We identified a unique CORO1A-kindred. Methods We captured a 10-year analysis of the immuneclinical phenotypes in two affected siblings from disease debut of age 7 years. Target-specific genetic studies were pursued but unrevealing. Telomere lengths were also assessed. Whole exome sequencing (WES) uncovered the molecular diagnosis and Western blot validated findings. Results We found the compound heterozygous CORO1A variants: c.248_249delCT (p.P83RfsX10) and a novel mutation c.1077delC (p.Q360RfsX44) (NM_007074.3) in two affected non-consanguineous siblings that manifested as absent CD4CD45RA+ (naïve) T and memory B cells, low NK cells and abnormally increased doublenegative (DN) ϒδ T-cells. Distinguishing characteristics were late clinical debut with an unusual mucocutaneous syndrome of epidermodysplasia verruciformis-human papilloma virus (EV-HPV), molluscum contagiosum and oral-cutaneous herpetic ulcers; the older female sibling also had a disfiguring granulomatous tuberculoid leprosy. Both had bilateral bronchiectasis and the female died of EBV+ lymphomas at age 16 years. The younger surviving male, without malignancy, had reproducibly very short telomere lengths, not before appreciated in CORO1A mutations. Conclusion We reveal the third CORO1A-mutated kindred, with the immune phenotype of abnormal naïve CD4 and DN T-cells and newfound characteristics of a late/hypomorphiclike SCID of an EV-HPV mucocutaneous syndrome with also B and NK defects and shortened telomeres. Our findings contribute to the elucidation of the CORO1A-SCID-CID spectrum. PMID:25073507

  3. Heterozygous p53V172F mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53

    PubMed Central

    Xie, Xiaolei; Lozano, Guillermina; Siddik, Zahid H.

    2017-01-01

    Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism, affected by either mutation in the DNA binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4 that destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53V172F mutation, which reduced p53 half-life by 2- to 3-fold compared to homozygous wild-type p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (5- to 8-fold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53V172F mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a hetromeric p53wt/p53V172F complex was confirmed in 2780CP/Cl-24 cells transfected with wild-type (wt) p53 or multimer-inhibiting p53L344P mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5°C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37°C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by siRNA in either resistant cell line induced p53 and restored p21 transactivation at 37°C, as did cisplatin-induced DNA damage at 32.5°C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53V172F mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4

  4. "CADASIL coma" in an Italian homozygous CADASIL patient: comparison with clinical and MRI findings in age-matched heterozygous patients with the same G528C NOTCH3 mutation.

    PubMed

    Ragno, Michele; Pianese, Luigi; Morroni, Manrico; Cacchiò, Gabriella; Manca, Antonio; Di Marzio, Fabio; Silvestri, Serena; Miceli, Cristina; Scarcella, Maria; Onofrj, Marco; Trojano, Luigi

    2013-11-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic disorder caused by mutations in the NOTCH3 gene, with a striking variability in phenotypic expression. To date, only two homozygous patients have been reported, with divergent phenotypic features. We describe an Italian CADASIL patient, homozygous for G528C mutation, in whom early manifestation of the disease was migraine, but whose clinical evolution was characterized by a reversible acute encephalopathy followed by full recovery ("CADASIL coma"). Clinical evaluation, MR scan, neuropsychological and neurophysiological investigation did not reveal substantial differences between our homozygous patient and her heterozygous relatives sharing the same mutation, or between our patient and a group of heterozygous individuals with the same mutation but from different families. Skin biopsy identified peculiar features in the homozygous patient, with cytoplasmic pseudoinclusions likely containing granular osmiophilic material (GOM) in the vascular smooth muscle cells, but further studies are necessary to substantiate their possible relationships with CADASIL homozygosis. "CADASIL coma" did not seem to be specific of patient's homozygosis, since it was observed in one of her heterozygous relatives, whereas its pathogenesis seems to be related to peculiar constellations of unknown predisposing factors. The present study demonstrated that CADASIL conforms to the classical definition of dominant diseases, according to which homozygotes and heterozygotes for a defect are phenotypically indistinguishable.

  5. Homozygous truncating mutation in prenatally expressed skeletal isoform of TTN gene results in arthrogryposis multiplex congenita and myopathy without cardiac involvement.

    PubMed

    Fernández-Marmiesse, Ana; Carrascosa-Romero, M Carmen; Alfaro Ponce, Blanca; Nascimento, Andres; Ortez, Carlos; Romero, Norma; Palacios, Lourdes; Jimenez-Mallebrera, Cecilia; Jou, Cristina; Gouveia, Sofía; Couce, María L

    2017-02-01

    We report the case of a newborn with arthrogryposis multiplex congenita and severe axial hypotonia without cardiac involvement in which, using a customized targeted next-generation sequencing assay for 64 myopathy-associated genes, we detected a novel homozygous truncating mutation, c.38661_38665del, in exon 197 of the TTN gene that is expressed only in the fetal skeletal isoform. Its pathogenicity is supported by evidence of maternal isodisomy for chromosome 2. Muscle pathology showed fibers with core-like areas devoid of oxidative staining and cytoplasmic bodies. Electron microscopy showed the replacement of the sarcomeric structure with filamentous material. Identification of this mutation expands the phenotypic spectrum of the TTN gene and shows for the first time that a mutation not found in adult TTN isoforms is involved in the development of a neuromuscular disorder. TTN mutations should be considered in all severe congenital myopathies with arthrogryposis without cardiac involvement.

  6. Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women

    PubMed Central

    Foulkes, William D; Ghadirian, Parviz; Akbari, Mohammed Reza; Hamel, Nancy; Giroux, Sylvie; Sabbaghian, Nelly; Darnel, Andrew; Royer, Robert; Poll, Aletta; Fafard, Eve; Robidoux, André; Martin, Ginette; Bismar, Tarek A; Tischkowitz, Marc; Rousseau, Francois; Narod, Steven A

    2007-01-01

    Background PALB2 has recently been identified as a breast cancer susceptibility gene. PALB2 mutations are rare causes of hereditary breast cancer but may be important in countries such as Finland where a founder mutation is present. We sought to estimate the contribution of PALB2 mutations to the burden of breast cancer in French Canadians from Quebec. Methods We screened all coding exons of PALB2 in a sample of 50 French-Canadian women diagnosed with either early-onset breast cancer or familial breast cancer at a single Montreal hospital. The genetic variants identified in this sample were then studied in 356 additional women with breast cancer diagnosed before age 50 and in 6,448 newborn controls. Results We identified a single protein-truncating mutation in PALB2 (c.2323 C>T, resulting in Q775X) in 1 of the 50 high-risk women. This variant was present in 2 of 356 breast cancer cases and in none of 6,440 newborn French-Canadian controls (P = 0.003). We also identified two novel new non-synonymous single nucleotide polymorphisms in exon 4 of PALB2 (c.5038 A>G [I76V] and c.5156 G>T [G115V]). G115V was found in 1 of 356 cases and in 15 of 6,442 controls (P = 0.6). The I76V variant was not identified in either the extended case series or the controls. Conclusion We have identified a novel truncating mutation in PALB2. The mutation was found in approximately 0.5% of unselected French-Canadian women with early-onset breast cancer and appears to have a single origin. Although mutations are infrequent, PALB2 can be added to the list of breast cancer susceptibility genes for which founder mutations have been identified in the French-Canadian population. PMID:18053174

  7. p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1 mRNA expression in primary human sarcomas

    PubMed Central

    Mousses, S; Gokgoz, N; Wunder, J S; Ozcelik, H; Bull, S; Bell, R S; Andrulis, I L

    2001-01-01

    Many growth-suppressing signals converge to control the levels of the CDK inhibitor p21CIP1/WAF1. Some human cancers exhibit low levels of expression of p21CIP1/WAF1and mutations in p53 have been implicated in this down-regulation. To evaluate whether the presence of p53 mutations was related to the in vivo expression of p21CIP1/WAF1 mRNA in sarcomas we measured the p21CIP1/WAF1 mRNA levels for a group of 71 primary bone and soft tissue tumours with known p53 status. As expected, most tumours with p53 mutations expressed low levels of p21CIP1/WAF1 mRNA. However, we identified a group of tumours with p53 gene mutations that exhibited normal or higher levels of p21CIP1/WAF1 mRNA. The p53 mutations in the latter group were not the common missense mutations in exons 4–9, but were predominantly nonsense mutations predicted to result in truncation of the p53 protein. The results of this study suggest that different types of p53 mutations can have different effects on the expression of downstream genes such as p21CIP1/WAF1 in human sarcomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11401317

  8. Compound Heterozygous Mutations in SLC30A2/ZnT2 Results in Low Milk Zinc Concentrations: A Novel Mechanism for Zinc Deficiency in a Breast-Fed Infant

    PubMed Central

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant. PMID:23741301

  9. No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins.

    PubMed

    Murdoch, John D; Gupta, Abha R; Sanders, Stephan J; Walker, Michael F; Keaney, John; Fernandez, Thomas V; Murtha, Michael T; Anyanwu, Samuel; Ober, Gordon T; Raubeson, Melanie J; DiLullo, Nicholas M; Villa, Natalie; Waqar, Zainabdul; Sullivan, Catherine; Gonzalez, Luis; Willsey, A Jeremy; Choe, So-Yeon; Neale, Benjamin M; Daly, Mark J; State, Matthew W

    2015-01-01

    Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk.

  10. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test.

    PubMed Central

    Gardner, R J; Bobrow, M; Roberts, R G

    1995-01-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frame-shifting deletions in the dystrophin gene that are detectable by a multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be a mutation in the ORF. We believe that reverse-transcription--PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. Images Figure 2 PMID:7668256

  11. Recurrent truncating mutations in alanine-glyoxylate aminotransferase gene in two South Indian families with primary hyperoxaluria type 1 causing later onset end-stage kidney disease

    PubMed Central

    Dutta, A. K.; Paulose, B. K.; Danda, S.; Alexander, S.; Tamilarasi, V.; Omprakash, S.

    2016-01-01

    Primary hyperoxaluria type 1 is an autosomal recessive inborn error of metabolism due to liver-specific peroxisomal enzyme alanine-glyoxylate transaminase deficiency. Here, we describe two unrelated patients who were diagnosed to have primary hyperoxaluria. Homozygous c.445_452delGTGCTGCT (p.L151Nfs*14) (Transcript ID: ENST00000307503; human genome assembly GRCh38.p2) (HGMD ID CD073567) mutation was detected in both the patients and the parents were found to be heterozygous carriers. Our patients developed end-stage renal disease at 23 years and 35 years of age. However, in the largest series published from OxalEurope cohort, the median age of end-stage renal disease for null mutations carriers was 9.9 years, which is much earlier than our cases. Our patients had slower progressions as compared to three unrelated patients from North India and Pakistan, who had homozygous c.302T>C (p.L101P) (HGMD ID CM093792) mutation in exon 2. Further, patients need to be studied to find out if c.445_452delGTGCTGCT mutation represents a founder mutation in Southern India. PMID:27512303

  12. Recurrent truncating mutations in alanine-glyoxylate aminotransferase gene in two South Indian families with primary hyperoxaluria type 1 causing later onset end-stage kidney disease.

    PubMed

    Dutta, A K; Paulose, B K; Danda, S; Alexander, S; Tamilarasi, V; Omprakash, S

    2016-01-01

    Primary hyperoxaluria type 1 is an autosomal recessive inborn error of metabolism due to liver-specific peroxisomal enzyme alanine-glyoxylate transaminase deficiency. Here, we describe two unrelated patients who were diagnosed to have primary hyperoxaluria. Homozygous c.445_452delGTGCTGCT (p.L151Nfs*14) (Transcript ID: ENST00000307503; human genome assembly GRCh38.p2) (HGMD ID CD073567) mutation was detected in both the patients and the parents were found to be heterozygous carriers. Our patients developed end-stage renal disease at 23 years and 35 years of age. However, in the largest series published from OxalEurope cohort, the median age of end-stage renal disease for null mutations carriers was 9.9 years, which is much earlier than our cases. Our patients had slower progressions as compared to three unrelated patients from North India and Pakistan, who had homozygous c.302T>C (p.L101P) (HGMD ID CM093792) mutation in exon 2. Further, patients need to be studied to find out if c.445_452delGTGCTGCT mutation represents a founder mutation in Southern India.

  13. Stimulus-evoked release of neuropeptides is enhanced in sensory neurons from mice with a heterozygous mutation of the Nf1 gene.

    PubMed

    Hingtgen, C M; Roy, S L; Clapp, D W

    2006-01-01

    Neurofibromatosis type I is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibrinomin, the protein product of the NF1 gene (neurofibromin gene (human)), is a guanosine triphosphate activating protein for p21(ras). Loss of NF1 results in an increase in activity of the p21(ras) transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the p21(ras) transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P and calcitonin gene-related peptide, from primary sensory neurons of mice with a mutation of the Nf1 gene (neurofibromin gene (mouse)) (Nf1+/-). Measuring immunoreactive substance P and immunoreactive calcitonin gene-related peptide by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropeptides is three to five-fold higher in spinal cord slices from Nf1+/- mice than from wildtype mouse tissue. In addition, the potassium and capsaicin-stimulated release of immunoreactive calcitonin gene-related peptide from cultures of sensory neurons isolated from Nf1+/- mice was more than double that from cultures of wildtype neurons. Treatment of wildtype sensory neurons with nerve growth factor for 5-7 days mimicked the enhanced stimulus-evoked release observed from the Nf1+/- neurons. When nerve growth factor was removed 48 h before conducting release experiments, nerve growth factor-induced augmentation of immunoreactive calcitonin gene-related peptide release from Nf1+/- neurons was more pronounced than in Nf1+/- sensory neurons that were treated with nerve growth factor continuously for 5-7 days. Thus, sensory neurons from mice with a heterozygous mutation of the Nf1 gene that is analogous to the human disease neurofibromatosis type I, exhibit increased sensitivity to chemical

  14. A Novel Method to Screen for Dominant Negative ATM Mutations in Familial Breast Cancer

    DTIC Science & Technology

    2005-04-01

    carry dominant negative mutation in ATM due to natural variation amongst LCLs. Microarrays have been performed to determine differences in gene expression... genes that are altered in their expression in ATMmutation carriers. The validation of this data in carriers of different ATM mutation indicated that the...heterozygous carriers of T727 1 G mutation display a gene expression phenotype that appears identical to carriers of protein truncating mutations in

  15. Diploids heterozygous for a vma13Delta mutation in Saccharomyces cerevisiae highlight the importance of V-ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity.

    PubMed

    Rizzo, Jason M; Tarsio, Maureen; Martínez-Muñoz, Gloria A; Kane, Patricia M

    2007-03-16

    The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.

  16. Protein C Sapporo (protein C Glu 25 --> Lys): a heterozygous missense mutation in the Gla domain provides new insight into the interaction between protein C and endothelial protein C receptor.

    PubMed

    Nakabayashi, Toru; Mizukami, Kazuhiro; Naitoh, Sumiyoshi; Takeda, Mika; Shikamoto, Yasuo; Nakagawa, Takafumi; Kaneko, Hiroki; Tarumi, Takashi; Mizoguchi, Itaru; Mizuno, Hiroshi; Ieko, Masahiro; Koike, Takao

    2005-11-01

    Interaction of the gamma-carboxyglutamic acid (Gla) domain of protein C with endothelial protein C receptor (EPCR) is a critical step for efficient activation of protein C, though interactions by mutants in the Gla domain of protein C with EPCR have been rarely evaluated. We identified a 44-year-old Japanese woman with a history of recurrent thromboembolism as an inherited missense mutation, the first such case reported in Japan, which involved a protein C Gla 25 mutation. Total protein C antigen and Gla protein C antigen levels in the proband were normal. Protein C activity measured with an anticoagulant assay was reduced, whereas that measured with an amidolytic assay was normal. She was therefore phenotypically diagnosed as type IIb protein C deficiency. Direct sequencing of the PCR fragments revealed a heterozygous G to A transition at nucleotide position 1462 in exon 3, which predicted an amino acid substitution of Glu 25 by Lys. Her mother and one son were also heterozygous for this mutation. A molecular dynamics simulation of Gla 25-->Lys/EPCR complex in water suggested that the affinity between the molecules was decreased compared to the wild type Gla domain/EPCR complex. Since Gla 25 has been shown to play an important role in protein C function, not only in membrane phospholipid binding but also in binding to EPCR, our findings provide new insight into the mechanism by which the Glu 25-->Lys mutation induces type IIb protein C deficiency in individuals.

  17. Biallelic truncating SCN9A mutation identified in four families with congenital insensitivity to pain from Pakistan.

    PubMed

    Sawal, H A; Harripaul, R; Mikhailov, A; Dad, R; Ayub, M; Jawad Hassan, M; Vincent, J B

    2016-12-01

    (a) Homozygosity-mapping-by-descent of four Bhakkar congenital indifference/insensitivity to pain (CIP) families. (b) Identification of mutation Met1190* in SCN9A. (c) SCN9A/NaV1.7 2D structure (as predicted by CCTOP and SMART) and approximate position of known nonsense (*) and missense (M) mutations ( www.hgmd.cf.ac.uk), as well as the Bhakkar mutation (this study) in red.

  18. Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail

    SciTech Connect

    Bhatia, Ajay K.; Kaushik, Rajnish; Campbell, Nancy A.; Pontow, Suzanne E.; Ratner, Lee

    2009-02-05

    The human immunodeficiency virus type 1 (HIV-1) matrix (MA) domain is involved in both early and late events of the viral life cycle. Simultaneous mutation of critical serine residues in MA has been shown previously to dramatically reduce phosphorylation of MA. However, the role of phosphorylation in viral replication remains unclear. Viruses harboring serine to alanine substitutions at positions 9, 67, 72, and 77 are severely impaired in their ability to infect target cells. In addition, the serine mutant viruses are defective in their ability to fuse with target cell membranes. Interestingly, both the fusion defect and the infectivity defect can be rescued by truncation of the long cytoplasmic tail of gp41 envelope protein (gp41CT). Sucrose density gradient analysis also reveals that these mutant viruses have reduced levels of gp120 envelope protein incorporated into the virions as compared to wild type virus. Truncation of the gp41CT rescues the envelope incorporation defect. Here we propose a model in which mutation of specific serine residues prevents MA interaction with lipid rafts during HIV-1 assembly and thereby impairs recruitment of envelope to the sites of viral budding.

  19. Acute intermittent porphyria: A single-base deletion and a nonsense mutation in the human hydroxymethylbilane synthase gene, predicting truncations of the enzyme polypeptide

    SciTech Connect

    Lee, G.L.; Astrin, K.H.; Desnick, R.J.

    1995-08-28

    Acute intermittent porphyria (AIP) is an autosomal-dominant inborn error of metabolism that results from the half-normal activity of the third enzyme in the heme biosynthetic pathway, hydroxymethylbilane synthase (HMB-synthase). AIP is an ecogenetic condition, since the life-threatening acute attacks are precipitated by various factors, including drugs, alcohol, fasting, and certain hormones. Biochemical diagnosis is problematic, and the identification of mutations in the HMB-synthase gene provides accurate detection of presymptomatic heterozygotes, permitting avoidance of the acute precipitating factors. By direct solid-phase sequencing, two mutations causing AIP were identified, an adenine deletion at position 629 in exon 11(629delA), which alters the reading frame and predicts premature truncation of the enzyme protein after amino acid 255, and a nonsense mutation in exon 12 (R225X). These mutations were confirmed by either restriction enzyme analysis or family studies of symptomatic patients, permitting accurate presymptomatic diagnosis of affected relatives. 29 refs., 2 figs.

  20. A truncating mutation in the IL1RAPL1 gene is responsible for X-linked mental retardation in the MRX21 family.

    PubMed

    Tabolacci, Elisabetta; Pomponi, M Grazia; Pietrobono, Roberta; Terracciano, Alessandra; Chiurazzi, Pietro; Neri, Giovanni

    2006-03-01

    X-linked mental retardation (XLMR) is a genetically heterogeneous condition, due to mutations in at least 50 genes, involved in functioning of the central nervous system and located on the X chromosome. Nonspecific XLMR (MRX) is characterized essentially by mental retardation transmitted by X-linked inheritance. More than 80 extended MRX pedigrees have been reported to date, which have been distinguished exclusively by physical position of the corresponding gene on the X chromosome, established by linkage analysis. One such family, MRX21, which was described by us in 1993 and localized to Xp11.4-pter, has now been reanalyzed with additional markers and after one more affected individual had became available. This extra information allowed a significant reduction of the linkage interval and, eventually, identification of the mutant gene. A stop mutation in exon 10 of the IL1RAPL1 gene (in Xp21) was found in the four affected males and in obligate carriers, allowing conclusive counseling of other family members of uncertain carrier status. The W487X mutation results in the production of a truncated IL1RAPL protein, comprised of the extracellular Ig-like domain and transmembrane tract, but lacking the last 210 aminoacids of the cytoplasmic domain. MRX21 is the first extended MRX family with a point mutation in IL1RAPL1 and the second with a stop mutation, which had been previously found only in a small family. Our report confirms the role of the IL1RAPL1 gene in causing nonspecific mental retardation in males and underlines the importance of detailed linkage analysis before candidate gene mutational screening.

  1. Sequential mutations in the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor beta-subunit genes are necessary for the complete conversion to growth autonomy mediated by a truncated beta C subunit.

    PubMed

    Hannemann, J; Hara, T; Kawai, M; Miyajima, A; Ostertag, W; Stocking, C

    1995-05-01

    An amino-terminally truncated beta C receptor (beta C-R) subunit of the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor complex mediates factor-independent and tumorigenic growth in two spontaneous mutants of a promyelocytic cell line. The constitutive activation of the JAK2 protein kinase in these mutants confirms that signaling occurs through the truncated receptor protein. Noteworthily, in addition to a 10-kb deletion in the beta C-R subunit gene encoding the truncated receptor, several secondary and independent mutations that result in the deletion or functional inactivation of the allelic beta C-R subunit and the closely related beta IL3-R subunit genes were observed in both mutants, suggesting that such mutations are necessary for the full oncogenic penetrance of the truncated beta C-R subunit. Reversion of these mutations by the expression of the wild-type beta C-R in the two mutants resulted in a fivefold decrease in cloning efficiency of the mutants in the absence of IL3, confirming a functional interaction between the wild-type and truncated proteins. Furthermore, expression of the truncated beta C-R subunit in factor-dependent myeloid cells did not immediately render the cells autonomous but increased the spontaneous frequency to factor-independent growth by 4 orders of magnitude. Implications for both leukemogenic progression and receptor-subunit interaction and signaling are discussed.

  2. Naturally occurring core immune-escape and carboxy-terminal mutations\\truncations in patients with e antigen negative chronic hepatitis B.

    PubMed

    Chauhan, Ranjit; Sarin, Shiv K; Kumar, Manoj; Bhattacharjee, Jayashree

    2012-10-01

    Hepatocellular injury is often progressive in patients with hepatitis B e antigen negative chronic hepatitis B (HBeAg -ve CHB). There is scant data on association of core mutations occurring in patients with HBeAg -ve CHB with severity of liver disease. Hundred and eighteen patients with chronic infection who were HBeAg negative, anti-HBe, and HBV DNA positive were enrolled. Precore and core regions were amplified, sequenced, and analyzed for precore, T helper, cytotoxic T lymphocytes (CTLs), B-cell epitope, and core carboxy-terminal region mutations. Majority of patients were infected with HBV genotype D: 96 (81%) [D1: 16, D2: 55 and D5: 25] followed by genotype A1: 15 (13%) and genotype C: 7 (6%) [C1: 5 and unidentified subgenotype C: 2]. Classical (A1896) as well as nonclassical precore region mutations were detected in 30 (25%) and in 9 (7.6%) patients, respectively. Core immune escape, core carboxy-terminal mutations and truncations were detected in 61 (52%), 11 (9.3%), and 14 (12%) patients, respectively. Three core immune escape mutations were significantly higher in patients with coexisting precore stop codon compared with patients without precore stop codon mutation, cT12S (43 vs. 8%, p < 0.001), cS21T (16 vs. 3.4%, p < 0.026), and cE77D (30 vs. 4.5%, p < 0.002). When frequency of core immune escape mutations was compared among CHB and decompensated patients, and cT12S: (27 vs. 10%, p < 0.05), cS21T (16 vs. 1.35%, p < 0.01), cT67P/N: (20 vs. 4%, p < 0.001), cE113D (11.37 vs. 1.35%, p < 0.05), and cP130T/Q (7 vs. 0%, p < 0.001) mutations were found to be significantly higher in decompensated patients. Core immune-escape mutations cT12S, cS21T, cT67P, cE113D, and cP130T/Q are significantly higher in decompensated liver disease patients and could influence the severity of liver disease in HBeAg -ve CHB patients.

  3. A novel homozygous Fas ligand mutation leads to early protein truncation, abrogation of death receptor and reverse signaling and a severe form of the autoimmune lymphoproliferative syndrome.

    PubMed

    Nabhani, Schafiq; Hönscheid, Andrea; Oommen, Prasad T; Fleckenstein, Bernhard; Schaper, Jörg; Kuhlen, Michaela; Laws, Hans-Jürgen; Borkhardt, Arndt; Fischer, Ute

    2014-12-01

    We report a novel type of mutation in the death ligand FasL that was associated with a severe phenotype of the autoimmune lymphoproliferative syndrome in two patients. A frameshift mutation in the intracellular domain led to complete loss of FasL expression. Cell death signaling via its receptor and reverse signaling via its intracellular domain were completely abrogated. In vitro lymphocyte proliferation induced by weak T cell receptor stimulation could be blocked and cell death was induced by engagement of FasL in T cells derived from healthy individuals and a heterozygous carrier, but not in FasL-deficient patient derived cells. Expression of genes implicated in lymphocyte proliferation and activation (CCND1, NFATc1, NF-κB1) was increased in FasL-deficient T cells and could not be downregulated by FasL engagement as in healthy cells. Our data thus suggest, that deficiency in FasL reverse signaling may contribute to the clinical lymphoproliferative phenotype of ALPS.

  4. Analysis of PALB2 in a cohort of Italian breast cancer patients: identification of a novel PALB2 truncating mutation.

    PubMed

    Vietri, Maria Teresa; Caliendo, Gemma; Schiano, Concetta; Casamassimi, Amelia; Molinari, Anna Maria; Napoli, Claudio; Cioffi, Michele

    2015-09-01

    PALB2 gene is mutated in about 1-2% of familial breast cancer as well as in 3-4% of familial pancreatic cancer cases. Few studies have reported mutations in Italian patients with breast or pancreatic cancer. We evaluate the occurrence of PALB2 mutations in Italian patients affected with hereditary breast and ovarian cancers and define the pathological significance of the putative allelic variants. We recruited 98 patients (F = 93, M = 5) affected with breast and/or ovarian cancer, negative for mutations in BRCA1 and BRCA2 (BRCAX). Genomic DNA was isolated from peripheral blood lymphocytes, PALB2 coding regions and adjacent intronic were sequenced; in silico predictions were carried out using prediction programs. Mutational analysis of PALB2 gene revealed the novel mutation c.1919C>A (p.S640X) in a 29 years old woman with breast cancer. The c.1919C>A (p.S640X) mutation causes the lack of C-terminus region inducing alteration of MORF4L1-PALB2 association and the lack of interaction of PALB2 with RAD51 and BRCA2. In addition, we identified two novel PALB2 variants, c.3047T>C (p.F1016S) and c.*146A>G. In silico analysis conducted for c.*146A>G indicates that this variant does not affect the splicing while c.3047T>C (p.F1016S) was predicted as damaging in three classifier algorithms. The proband carrier of c.3047T>C (p.F1016S) showed two breast cancer cases, two ovarian cancer cases and one pancreatic cancer in mother's family. c.3047T>C (p.F1016S) and c.*146A>G should be considered PALB2 UVs even though the genotype-phenotype correlation for these variants remains still unclear. Our findings indicate that the presence of PALB2 mutation should be routinely investigated in hereditary breast and ovarian cancers families since it could be of clinical relevance for clinical management.

  5. A novel mutation in the XPA gene results in two truncated protein variants and leads to a severe XP/neurological symptoms phenotype.

    PubMed

    Lehmann, J; Schubert, S; Schäfer, A; Laspe, P; Haenssle, H A; Ohlenbusch, A; Gratchev, A; Emmert, S

    2015-12-01

    The nucleotide excision repair (NER) pathway repairs UV-induced DNA lesions in an accurate fashion and prevents UV-irradiated areas of the skin from tumour formation. The XPA protein plays a major role in DNA damage demarcation as well as stabilization of other NER factors and was found to be defective in xeroderma pigmentosum (XP) complementation group A patients. Characterization of four new XP-A patients. Genomic and cDNA sequencing, post-UV cell survival of living cells, host-cell reactivation of patients' fibroblasts and Western blotting. One of the four investigated patients shows a novel mutation leading to two different truncated protein variants. Three patients contain the already described p.R228X mutation. All patient cell lines exhibit a strong UVC sensitivity and reduced NER capability. In most of the cases stable protein expression was detected. We discovered four new XP-A patients and a novel XPA mutation resulting in two diverse patient alleles. © 2014 European Academy of Dermatology and Venereology.

  6. Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for “double trouble” overlapping syndromes

    PubMed Central

    Ricci, Giulia; Scionti, Isabella; Alì, Greta; Volpi, Leda; Zampa, Virna; Fanin, Marina; Angelini, Corrado; Politano, Luisa; Tupler, Rossella; Siciliano, Gabriele

    2012-01-01

    We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient’s muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient. PMID:22245016

  7. Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for "double trouble" overlapping syndromes.

    PubMed

    Ricci, Giulia; Scionti, Isabella; Alì, Greta; Volpi, Leda; Zampa, Virna; Fanin, Marina; Angelini, Corrado; Politano, Luisa; Tupler, Rossella; Siciliano, Gabriele

    2012-06-01

    We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient's muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient.

  8. Cerebral infarction and femoral venous thrombosis detected in a patient with diabetic ketoacidosis and heterozygous factor V Leiden G1691A and PAI-1 4G/5G mutations.

    PubMed

    Yaroglu Kazanci, Selcen; Yesilbas, Osman; Ersoy, Melike; Kihtir, Hasan Serdar; Yildirim, Hamdi Murat; Sevketoglu, Esra

    2015-09-01

    Cerebral infarction is one of the serious neurological complications of diabetic ketoacidosis (DKA). Especially in patients who are genetically prone to thrombosis, cerebral infarction may develop due to inflammation, dehydration, and hyperviscocity secondary to DKA. A 6-year-old child with DKA is diagnosed with cerebral infarction after respiratory insufficiency, convulsion, and altered level of consciousness. Femoral and external iliac venous thrombosis also developed in a few hours after central femoral catheter had been inserted. Heterozygous type of factor V Leiden and PAI-14G/5G mutation were detected. In patients with DKA, cerebral infarction may be suspected other than cerebral edema when altered level of consciousness, convulsion, and respiratory insufficiency develop and once cerebral infarction occurs the patients should also be evaluated for factor V Leiden and PAI-14G/5G mutation analysis in addition to the other prothrombotic risk factors.

  9. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism

    PubMed Central

    Buxton, Jessica L.; Zekavati, Anna; Sosinsky, Alona; Yiorkas, Andrianos M.; Holder, Susan; Klaber, Robert E.; Bridges, Nicola; van Haelst, Mieke M.; le Roux, Carel W.; Walley, Andrew J.; Walters, Robin G.; Mueller, Michael; Blakemore, Alexandra I. F.

    2015-01-01

    Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans. PMID:26120850

  10. Next-generation sequencing detection and characterization of a heterozygous novel splice junction mutation in the 2B domain of KRT1 in a family with diffuse palmoplantar keratoderma.

    PubMed

    Banerjee, Santasree; Ren, Yunqing; Wei, Tianying; Zhou, Zhongwei; Yu, Ping; Guan, Fenghui; Wei, Xiaonming; Ye, Sheng; Yan, Shaofeng; Zheng, Min; Raff, Michael L; Qi, Ming

    2015-02-01

    Diffuse palmoplantar keratoderma (DPPK) is an autosomal-dominant genodermatosis characterized by restricted, uniform hyperkeratosis on the palm and sole epidermis. DPPK is normally associated with dominant-negative mutations in the keratin-encoding gene, KRT1. We report a heterozygous novel point mutation in the exon 6 splice donor site of KRT1 (c.1254G>C) by next-generation sequencing, resulting in the formation of two alternative transcripts, which segregates with DPPK in a four-generation Chinese family. This results in both the complete loss of exon 6 and the simultaneous utilization of a novel in-frame splice site 54 bases downstream of the mutation with the subsequent deletion of 42 amino acids and the insertion of 18 amino acids into the protein's 2B domain. This is the first report of a novel splice donor site mutation with aberrant splicing and the formation of two alternative transcripts causing DPPK. This study also demonstrates the value of next-generation sequencing in the identification of novel disease-causing mutations.

  11. The impact of an early truncating founder ATM mutation on immunoglobulins, specific antibodies and lymphocyte populations in ataxia-telangiectasia patients and their parents

    PubMed Central

    STRAY-PEDERSEN, A; JÓNSSON, T; HEIBERG, A; LINDMAN, C R; WIDING, E; AABERGE, I S; BORRESEN-DALE, A L; ABRAHAMSEN, T G

    2004-01-01

    Eleven Norwegian patients (aged 2–33 years, seven males and four females) with Ataxia-telangiectasia (A-T) and their parents were investigated. Five of the patients were homozygous for the same ATM mutation, 3245delATCinsTGAT, a Norwegian founder mutation. They had the lowest IgG2 levels; mean (95% confidence interval) 0·23 (0·05–0·41) g/l versus 0·91 (0·58–1·26) g/l in the other patients (P = 0·002). Among the 11 A-T patients, six had IgG2 deficiency, six had IgA deficiency (three in combination with IgG2 deficiency) and seven had low/undetectable IgE values. All patients had very low levels of antibodies to Streptococcus pneumoniae 0·9 (0·4–1·4) U/ml, while normal levels were found in their parents 11·1 (8·7–13·4) U/ml (P < 0·001). A positive linear relationship between pneumococcal antibodies and IgG2 (r = 0·85, P = 0·001) was found in the patients. Six of 11 had diphtheria antibodies and 7 of 11 tetanus antibodies after childhood vaccinations, while 4 of 7 Hemophilus influenzae type b (Hib) vaccinated patients had protective antibodies. Ten patients had low B cell (CD19+) counts, while six had low T cell (CD3+) counts. Of the T cell subpopulations, 11 had low CD4+ cell counts, six had reduced CD8+ cell counts, and four had an increased portion of double negative (CD3+/CD4-/CD8-) gamma delta T cells. Of the 22 parents (aged 23–64 years) 12 were heterozygous for the ATM founder mutation. Abnormalities in immunoglobulin levels and/or lymphocyte subpopulations were also observed in these carriers, with no correlation to a special ATM genotype. PMID:15196260

  12. Reduced chlorophyll biosynthesis in heterozygous barley magnesium chelatase mutants.

    PubMed

    Braumann, Ilka; Stein, Nils; Hansson, Mats

    2014-05-01

    Chlorophyll biosynthesis is initiated by magnesium chelatase, an enzyme composed of three proteins, which catalyzes the insertion of Mg2+ into protoporphyrin IX to produce Mg-protoporphyrin IX. In barley (Hordeum vulgare L.) the three proteins are encoded by Xantha-f, Xantha-g and Xantha-h. Two of the gene products, XanH and XanG, belong to the structurally conserved family of AAA+ proteins (ATPases associated with various cellular activities) and form a complex involving six subunits of each protein. The complex functions as an ATP-fueled motor of the magnesium chelatase that uses XanF as substrate, which is the catalytic subunit responsible for the insertion of Mg2+ into protoporphyrin IX. Previous studies have shown that semi-dominant Xantha-h mutations result in non-functional XanH subunits that participate in the formation of inactive AAA complexes. In the present study, we identify severe mutations in the barley mutants xantha-h.38, -h.56 and -h.57. A truncated form of the protein is seen in xantha-h.38, whereas no XanH is detected in xantha-h.56 and -h.57. Heterozygous mutants show a reduction in chlorophyll content by 14-18% suggesting a slight semi-dominance of xantha-h.38, -h.56 and -h.57, which otherwise have been regarded as recessive mutations.

  13. The Arctic AβPP mutation leads to Alzheimer’s disease pathology with highly variable topographic deposition of differentially truncated

    PubMed Central

    2013-01-01

    Background The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precursor protein gene causes an autosomal dominant disease with clinical picture of typical Alzheimer’s disease. Here we report the special character of Arctic AD neuropathology in four deceased patients. Results Aβ deposition in the brains was wide-spread (Thal phase 5) and profuse. Virtually all parenchymal deposits were composed of non-fibrillar, Congo red negative Aβ aggregates. Congo red only stained angiopathic vessels. Mass spectrometric analyses showed that Aβ deposits contained variably truncated and modified wild type and mutated Aβ species. In three of four Arctic AD brains, most cerebral cortical plaques appeared targetoid with centres containing C-terminally (beyond aa 40) and variably N-terminally truncated Aβ surrounded by coronas immunopositive for Aβx-42. In the fourth patient plaque centres contained almost no Aβ making the plaques ring-shaped. The architectural pattern of plaques also varied between different anatomic regions. Tau pathology corresponded to Braak stage VI, and appeared mainly as delicate neuropil threads (NT) enriched within Aβ plaques. Dystrophic neurites were scarce, while neurofibrillary tangles were relatively common. Neuronal perikarya within the Aβ plaques appeared relatively intact. Conclusions In Arctic AD brain differentially truncated abundant Aβ is deposited in plaques of variable numbers and shapes in different regions of the brain (including exceptional targetoid plaques in neocortex). The extracellular non-fibrillar Aβ does not seem to cause overt damage to adjacent neurons or to induce formation of neurofibrillary tangles, supporting the view that intracellular Aβ oligomers are more neurotoxic than extracellular Aβ deposits. However, the enrichment of NTs within plaques suggests some degree of intra-plaque axonal damage including accumulation of hp-tau, which may impair axoplasmic transport, and

  14. Congenital hypomyelinating neuropathy due to the association of a truncating mutation in PMP22 with the classical HNPP deletion.

    PubMed

    Jouaud, Maxime; Gonnaud, Pierre-Marie; Richard, Laurence; Latour, Philippe; Ollagnon-Roman, Elisabeth; Sturtz, Franck; Mathis, Stéphane; Magy, Laurent; Vallat, Jean-Michel

    2016-01-01

    Congenital hypomyelinating neuropathy appears early in life, resulting in a delay of motor and sensory development. Mutations involve genes such as myelin protein zero (MPZ), peripheral myelin protein 22 (PMP22), and early growth response 2 (EGR2). We present a patient with two compound mutations in PMP22: a point mutation causing a premature STOP codon in exon 3 was inherited from the mother on the first allele, and the "typical" PMP22 deletion in the 17p11.2-p12 region was inherited from the father on the other allele. A sural biopsy was performed at age four. The patient has been followed from 28 months to 21 years of age; he presented significant sensory disturbances, with a slight motor deficit. PMP22 mRNA quantitation showed a severe decrease of PMP22 protein. No myelin sheaths were observed in the biopsy; mesaxons failed to form. The absence of PMP22 provides new insights into the role of this protein.

  15. A truncating mutation in the laminin-332α chain highlights the role of the LG45 proteolytic domain in regulating keratinocyte adhesion and migration.

    PubMed

    Di Zenzo, G; El Hachem, M; Diociaiuti, A; Boldrini, R; Calabresi, V; Cianfarani, F; Fortugno, P; Piccinni, E; Zambruno, G; Castiglia, D

    2014-05-01

    Altered function of laminin-332 (α3β3γ2) consequent to mutations in the LAMA3, LAMB3 and LAMC2 genes causes junctional epidermolysis bullosa non-Herlitz (JEB-nH). JEB-nH patients suffer from skin blistering and have an increased risk of developing aggressive skin carcinomas in adulthood. Laminin-332 is proteolytically processed and its extracellular mature form lacks the α3 chain C-terminal globules 4 and 5 (LG45). The LG45 tandem has cell adhesion and protumorigenic properties. However, mutations that affect this domain are very rare and their functional effects in patients have not been explored to date. To characterize molecularly an adult patient with JEB-nH and altered laminin-332 expression presenting multiple skin carcinomas, and to analyse LG45-mediated biological functions using keratinocytes from the patient. A mutational search in laminin-332 genes was performed by hetero-duplex analysis. LAMA3 mRNA and laminin-332 protein levels in patient keratinocytes were investigated by real-time reverse transcriptase polymerase chain reaction and radioimmunoprecipitation assay, respectively. Keratinocyte migration was examined by scratch and Boyden chamber assays. We identified a homozygous LAMA3 mutation, p.Leu1648TrpfsX32, which truncates the last 45 amino acids of the carboxyl terminal LG5 subdomain. Gene expression studies revealed that the mutant transcripts were stable and even increased, precursor laminin-332 molecules were retained intracellularly and the amount of mature extracellular heterotrimers was reduced to about 50%. Finally, the patient's keratinocytes migrated faster than normal keratinocytes. Structural disruption of LG5 highlights the critical functions of the LG45 proteolytic region in precursor laminin-332 secretion and keratinocyte adhesion and migration. Perturbation of LG45 function might explain the non-aggressive behaviour of carcinomas in this patient. © 2014 British Association of Dermatologists.

  16. EDAR-induced hypohidrotic ectodermal dysplasia: a clinical study on signs and symptoms in individuals with a heterozygous c.1072C > T mutation.

    PubMed

    Kieri, Catarina Falk; Bergendal, Birgitta; Lind, Lisbet K; Schmitt-Egenolf, Marcus; Stecksén-Blicks, Christina

    2014-05-16

    Mutations in the EDAR-gene cause hypohidrotic ectodermal dysplasia, however, the oral phenotype has been described in a limited number of cases. The aim of the present study was to clinically describe individuals with the c.1072C > T mutation (p. Arg358X) in the EDAR gene with respect to dental signs and saliva secretion, symptoms from other ectodermal structures and to assess orofacial function. Individuals in three families living in Sweden, where some members had a known c.1072C > T mutation in the EDAR gene with an autosomal dominant inheritance (AD), were included in a clinical investigation on oral signs and symptoms and self-reported symptoms from other ectodermal structures (n = 37). Confirmation of the c.1072C > T mutation in the EDAR gene were performed by genomic sequencing. Orofacial function was evaluated with NOT-S. The mutation was identified in 17 of 37 family members. The mean number of missing teeth due to agenesis was 10.3 ± 4.1, (range 4-17) in the mutation group and 0.1 ± 0.3, (range 0-1) in the non-mutation group (p < 0.01). All individuals with the mutation were missing the maxillary lateral incisors and one or more of the mandibular incisors; and 81.3% were missing all four. Stimulated saliva secretion was 0.9 ± 0.5 ml/min in the mutation group vs 1.7 ± 0.6 ml/min in the non-mutation group (p < 0.01). Reduced ability to sweat was reported by 82% in the mutation group and by 20% in the non-mutation group (p < 0.01). The mean NOT-S score was 3.0 ± 1.9 (range 0-6) in the mutation group and 1.5 ± 1.1 (range 0-5) in the non-mutation group (p < 0.01). Lisping was present in 56% of individuals in the mutation group. Individuals with a c.1072C > T mutation in the EDAR-gene displayed a typical pattern of congenitally missing teeth in the frontal area with functional consequences. They therefore have a need for special attention in dental care, both with reference to tooth agenesis and

  17. [Selection on viability of individuals heterozygous for the temperature-sensitive lethal mutation l(2)M167(DTS) in experimental populations of Drosophila melanogaster].

    PubMed

    Kulikov, A M; Marec, F; Mitrofanov, V G

    2005-06-01

    In experiments on introduction of mutation l(2)M167(DTS) in Drosophila melanogaster populations, larval and pupal viability and developmental rate are limiting factors determining the intensity of selection on the l(2)M167(DTS) mutation. Notwithstanding the rapid elimination of the mutation from the population, positive selection for viability was shown, which increased fitness of the mutation carriers in generations. The fitness component viability was estimated in individuals l(2)M167(DTS)/+; relative to that of wild-type individuals, it varied from 0.1 to 1. Factors affecting this trait in overcrowded populations were found.

  18. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia.

    PubMed Central

    Bai, M; Pearce, S H; Kifor, O; Trivedi, S; Stauffer, U G; Thakker, R V; Brown, E M; Steinmann, B

    1997-01-01

    We characterized the in vivo, cellular and molecular pathophysiology of a case of neonatal hyperparathyroidism (NHPT) resulting from a de novo, heterozygous missense mutation in the gene for the extracellular Ca2+ (Ca2+(o))-sensing receptor (CaR). The female neonate presented with moderately severe hypercalcemia, markedly undermineralized bones, and multiple metaphyseal fractures. Subtotal parathyroidectomy was performed at 6 wk; hypercalcemia recurred rapidly but the bone disease improved gradually with reversion to an asymptomatic state resembling familial benign hypocalciuric hypercalcemia (FBHH). Dispersed parathyroid cells from the resected tissue showed a set-point (the level of Ca2+(o) half maximally inhibiting PTH secretion) substantially higher than for normal human parathyroid cells (approximately 1.8 vs. approximately 1.0 mM, respectively); a similar increase in set-point was observed in vivo. The proband's CaR gene showed a missense mutation (R185Q) at codon 185, while her normocalcemic parents were homozygous for wild type (WT) CaR sequence. Transient expression of the mutant R185Q CaR in human embryonic kidney (HEK293) cells revealed a substantially attenuated Ca2+(o)-evoked accumulation of total inositol phosphates (IP), while cotransfection of normal and mutant receptors showed an EC50 (the level of Ca2+(o) eliciting a half-maximal increase in IPs) 37% higher than for WT CaR alone (6.3+/-0.4 vs. 4.6+/-0.3 mM Ca2+(o), respectively). Thus this de novo, heterozygous CaR mutation may exert a dominant negative action on the normal CaR, producing NHPT and more severe hypercalcemia than typically seen with FBHH. Moreover, normal maternal calcium homeostasis promoted additional secondary hyperparathyroidism in the fetus, contributing to the severity of the NHPT in this case with FBHH. PMID:9011580

  19. Biallelic Truncating Mutations in FMN2, Encoding the Actin-Regulatory Protein Formin 2, Cause Nonsyndromic Autosomal-Recessive Intellectual Disability

    PubMed Central

    Law, Rosalind; Dixon-Salazar, Tracy; Jerber, Julie; Cai, Na; Abbasi, Ansar A.; Zaki, Maha S.; Mittal, Kirti; Gabriel, Stacey B.; Rafiq, Muhammad Arshad; Khan, Valeed; Nguyen, Maria; Ali, Ghazanfar; Copeland, Brett; Scott, Eric; Vasli, Nasim; Mikhailov, Anna; Khan, Muhammad Nasim; Andrade, Danielle M.; Ayaz, Muhammad; Ansar, Muhammad; Ayub, Muhammad; Vincent, John B.; Gleeson, Joseph G.

    2014-01-01

    Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density. PMID:25480035

  20. Mutational and structural studies of the active-site residues in truncated Fibrobacter succinogenes1,3-1,4-beta-D-glucanase.

    PubMed

    Tsai, Li-Chu; Huang, Hsiao-Chuan; Hsiao, Ching-Hua; Chiang, Yuan-Neng; Shyur, Lie-Fen; Lin, Yu-Shiun; Lee, Shu-Hua

    2008-12-01

    1,3-1,4-beta-D-Glucanases (EC 3.2.1.73) specifically hydrolyze beta-1,4-glycosidic bonds located prior to beta-1,3-glycosidic linkages in lichenan or beta-D-glucans. It has been suggested that truncated Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (TFsbeta-glucanase) can accommodate five glucose rings in its active site upon enzyme-substrate interaction. In this study, 12 mutant enzymes were created by mutating the conserved residues Gln70, Asn72, Gln81 and Glu85 proposed to bind to substrate subsites +1 and +2 and the catalytic properties of these mutants were determined. The most significant change in catalytic activity was observed on mutation of Gln70, with a 299-fold and 498-fold lower k(cat)/K(m) for the mutants Q70A and Q70I, respectively, compared with the wild-type enzyme. Mutagenesis, kinetic and structural studies revealed that the conserved residues surrounding the active site of TFsbeta-glucanase at substrate subsites +1 and +2 play an important role in its catalytic function, with the following order of importance: Gln70 > Asn72 > Glu85 > Gln81. The crystal structure of mutant E85I was determined at 2.2 A resolution. Further analysis of the E85I mutant structure revealed that the loop located at the concave site moved approximately 2 A from its position in the native enzyme complex without changing the core structure.

  1. Little phenotypic variability in three CF sibs compound heterozygous for the 621 + 1G-->T and the 711 + 1G-->T mutations.

    PubMed

    De Braekeleer, M; Simard, F; Aubin, G

    1997-03-01

    We describe a family in which three sibs are compound heterozygotes for two rather rare CFTR splice-site mutations, the 621 + 1G-->T and the 711 + 1G-->T mutations. Little phenotypic variation was observed between sibs, of whom two are deceased. Their disease is characterized by pancreatic insufficiency, a severe pulmonary involvement and major growth retardation.

  2. Establishment and rapid detection of a heterozygous missense mutation in the CACNA1F gene by ARMS technique with double-base mismatched primers.

    PubMed

    Yang, W C; Zhu, L; Zhou, B X; Tania, S; Zhou, Q; Khan, M A; Fu, X L; Cheng, J L; Lv, H B; Fu, J J

    2015-09-25

    Retinitis pigmentosa (RP) is a retinal degenerative disorder that often causes complete blindness. Mutations of more than 50 genes have been identified as associated with RP, including the CACNA1F gene. In a recent study, by employing next-generation sequencing, we identified a novel mutation in the CACNA1F gene. In this study, we used the amplification refractory mutation system (ARMS) and identified a single nucleotide change c.1555C>T in exon 13 of the CACNA1F gene, leading to the substitution of arginine by tryptophan (p.R519W) in a Chinese individual affected by RP. This study actually confirms this novel mutation, and establishes the ARMS technique for the detection of mutations in RP.

  3. A truncating SOD1 mutation, p.Gly141X, is associated with clinical and pathologic heterogeneity, including frontotemporal lobar degeneration

    PubMed Central

    Nakamura, Masataka; Bieniek, Kevin F.; Lin, Wen-Lang; Graff-Radford, Neill R.; Murray, Melissa E.; Castanedes-Casey, Monica; Desaro, Pamela; Baker, Matthew C.; Rutherford, Nicola J.; Robertson, Janice; Rademakers, Rosa; Dickson, Dennis W.; Boylan, Kevin B.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative disorder affecting upper and lower motor neurons, but it is increasingly recognized to affect other systems, with cognitive impairment resembling frontotemporal dementia (FTD) in some patients. We report clinical and pathologic findings of a family with ALS due to a truncating mutation, p.Gly141X, in copper/zinc superoxide dismutase (SOD1). The proband presented clinically with FTD and later showed progressive motor neuron disease, while all other family members had early-onset and rapidly progressive ALS without significant cognitive deficits. Pathologic examination of both the proband and her daughter revealed degeneration of corticospinal tracts and motor neurons in brain and spinal cord compatible with ALS. On the other hand, the proband also had neocortical and limbic system degeneration with pleomorphic neuronal cytoplasmic inclusions. Extramotor pathology in her daughter was relatively restricted to the hypothalamus and extrapyramidal system, but not the neocortex. The inclusions in the proband and her daughter were immunoreactive for SOD1, but negative for TAR DNA binding protein of 43 kDa (TDP-43). In the proband, a number of the neocortical inclusions were immunopositive for α-internexin, initially suggesting a diagnosis of atypical FTLD, but there was no evidence of fused in sarcoma (FUS) immunoreactivity, which is often detected in atypical FTLD. Analogous to atypical FTLD, neuronal inclusions had variable co-localization of SOD1 and α-internexin. The current classification of FTLD is based on the major constituent protein: FTLD-tau, FTLD-TDP-43, and FTLD-FUS. The proband in this family indicates that SOD1, while rare, can also be the substrate of FTLD, in addition to the more common presentation of ALS. The explanation for clinical and pathologic heterogeneity of SOD1 mutations, including the p.Gly141X mutation, remains unresolved. PMID:25917047

  4. A patient with multisystem dysfunction carries a truncation mutation in human SLC12A2, the gene encoding the Na-K-2Cl cotransporter, NKCC1

    PubMed Central

    Wolfe, Lynne; Flores, Bianca; Koumangoye, Rainelli; Schornak, Cara C.; Omer, Salma; Pusey, Barbara; Lau, Christopher; Markello, Thomas; Adams, David R.

    2016-01-01

    This study describes a 13-yr-old girl with orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency, and multiorgan failure involving the gut and bladder. Exome sequencing revealed a de novo, loss-of-function allele in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1. The 11-bp deletion in exon 22 results in frameshift (p.Val1026Phefs*2) and truncation of the carboxy-terminal tail of the cotransporter. Preliminary studies in heterologous expression systems demonstrate that the mutation leads to a nonfunctional transporter, which is expressed and trafficked to the plasma membrane alongside wild-type NKCC1. The truncated protein, visible at higher molecular sizes, indicates either enhanced dimerization or misfolded aggregate. No significant dominant-negative effect was observed. K+ transport experiments performed in fibroblasts from the patient showed reduced total and NKCC1-mediated K+ influx. The absence of a bumetanide effect on K+ influx in patient fibroblasts only under hypertonic conditions suggests a deficit in NKCC1 regulation. We propose that disruption in NKCC1 function might affect sensory afferents and/or smooth muscle cells, as their functions depend on NKCC1 creating a Cl− gradient across the plasma membrane. This Cl− gradient allows the γ-aminobutyric acid (GABA) receptor or other Cl− channels to depolarize the membrane affecting processes such as neurotransmission or cell contraction. Under this hypothesis, disrupted sensory and smooth muscle function in a diverse set of tissues could explain the patient's phenotype. PMID:27900370

  5. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    PubMed

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-09-26

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  6. Infertility due to congenital absence of vas deferens in mainly caused by variable exon 9 skipping of the CFTR gene in heterozygous males for cystic fibrosis mutations

    SciTech Connect

    Chillon, M.; Casals, T.; Nunes, V.

    1994-09-01

    About 65% or the individuals with congenital bilateral absence of the vas deferens (CBAVD) have mutations in at least one of the CFTR alleles. We have studied the phenotypic effects of the CFTR gene intron 8 polyT tract 5T allele in 90 CBAVD subjects and in parents of CF patients. This group was compared with normal individuals, and with fathers and mothers of CF patients. Allele 5T was significantly associated with CBAVD (19.6%) when compared to the general population (5.2%) ({chi}{sup 2} = 33.3%; p<<0.0001). It was represented poorly in fathers of CF patients (1.3%). Mutations were identified in one (60%) or both CFTR alleles (8.9%) of CBAVD patients. Heterozygosity for the 5T allele was strongly associated with heterozygosity for CF mutations ({chi}{sup 2} = 10.9; p<0.0004). The strong correlation between allele 5T and CBAVD, together with the low frequency of this allele in fathers of CF patients, demonstrates that variable {Delta}exon 9 produces infertility in males if associated with a CF mutation on the other chromosome. The 30% of CBAVD cases with only one CFTR mutation and without a 5T-allele may be due to other molecular mechanisms involving CFTR, distinct from {Delta}exon 9. Since there is a relatively high proportion of CBAVD without CF mutations (25%), other gene(s), distinct from CFTR, may have a role in the CBAVD phenotype.

  7. A female patient with incomplete hemophagocytic lymphohistiocytosis caused by a heterozygous XIAP mutation associated with non-random X-chromosome inactivation skewed towards the wild-type XIAP allele.

    PubMed

    Yang, Xi; Hoshino, Akihiro; Taga, Takashi; Kunitsu, Tomoaki; Ikeda, Yuhachi; Yasumi, Takahiro; Yoshida, Kenichi; Wada, Taizo; Miyake, Kunio; Kubota, Takeo; Okuno, Yusuke; Muramatsu, Hideki; Adachi, Yuichi; Miyano, Satoru; Ogawa, Seishi; Kojima, Seiji; Kanegane, Hirokazu

    2015-04-01

    X-linked lymphoproliferative disease (XLP) is a rare inherited immunodeficiency that often leads to hemophagocytic lymphohistiocytosis (HLH). XLP can be classified as XLP1 or XLP2, caused by mutations in SH2D1A and XIAP, respectively. In women, X-chromosome inactivation (XCI) of most X-linked genes occurs on one of the X chromosomes in each cell. The choice of which X chromosome remains activated is generally random, although genetic differences and selective advantage may cause one of the X chromosomes to be preferentially inactivated. Here we describe three patients with pancytopenia, including one female patient, in a Japanese family with a novel XIAP mutation. All three patients exhibited deficient XIAP protein expression, impaired NOD2/XIAP signaling, and augmented activation-induced cell death. In the female patient, the paternally derived X chromosome was non-randomly and exclusively inactivated in her peripheral blood and hair root cells. In contrast to asymptomatic females, this patient exhibied non-random XCI skewed towards the wild-type XIAP allele. This is the first report of a female patient with incomplete HLH resulting from a heterozygous XIAP mutation in association with non-random XCI.

  8. Insights Into the Pathogenicity of Rare Missense GCK Variants From the Identification and Functional Characterization of Compound Heterozygous and Double Mutations Inherited in Cis

    PubMed Central

    Beer, Nicola L.; Osbak, Kara K.; van de Bunt, Martijn; Tribble, Nicholas D.; Steele, Anna M.; Wensley, Kirsty J.; Edghill, Emma L.; Colcough, Kevin; Barrett, Amy; Valentínová, Lucia; Rundle, Jana K.; Raimondo, Anne; Grimsby, Joseph; Ellard, Sian; Gloyn, Anna L.

    2012-01-01

    OBJECTIVE To demonstrate the importance of using a combined genetic and functional approach to correctly interpret a genetic test for monogenic diabetes. RESEARCH DESIGN AND METHODS We identified three probands with a phenotype consistent with maturity-onset diabetes of the young (MODY) subtype GCK-MODY, in whom two potential pathogenic mutations were identified: [R43H/G68D], [E248 K/I225M], or [G261R/D217N]. Allele-specific PCR and cosegregation were used to determine phase. Single and double mutations were kinetically characterized. RESULTS The mutations occurred in cis (double mutants) in two probands and in trans in one proband. Functional studies of all double mutants revealed inactivating kinetics. The previously reported GCK-MODY mutations R43H and G68D were inherited from an affected father and unaffected mother, respectively. Both our functional and genetic studies support R43H as the cause of GCK-MODY and G68D as a neutral rare variant. CONCLUSIONS These data highlight the need for family/functional studies, even for previously reported pathogenic mutations. PMID:22611063

  9. Novel compound heterozygous mutations for lipoprotein lipase deficiency. A G-to-T transversion at the first position of exon 5 causing G154V missense mutation and a 5' splice site mutation of intron 8.

    PubMed

    Ikeda, Y; Takagi, A; Nakata, Y; Sera, Y; Hyoudou, S; Hamamoto, K; Nishi, Y; Yamamoto, A

    2001-07-01

    We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.

  10. Establishment of mouse model of MYH9 disorders: heterozygous R702C mutation provokes macrothrombocytopenia with leukocyte inclusion bodies, renal glomerulosclerosis and hearing disability.

    PubMed

    Suzuki, Nobuaki; Kunishima, Shinji; Ikejiri, Makoto; Maruyama, Shoichi; Sone, Michihiko; Takagi, Akira; Ikawa, Masahito; Okabe, Masaru; Kojima, Tetsuhito; Saito, Hidehiko; Naoe, Tomoki; Matsushita, Tadashi

    2013-01-01

    Nonmuscle myosin heavy chain IIA (NMMHCIIA) encoded by MYH9 is associated with autosomal dominantly inherited diseases called MYH9 disorders. MYH9 disorders are characterized by macrothrombocytopenia and very characteristic inclusion bodies in granulocytes. MYH9 disorders frequently cause nephritis, sensorineural hearing disability and cataracts. One of the most common and deleterious mutations causing these disorders is the R702C missense mutation. We generated knock-in mice expressing the Myh9 R702C mutation. R702C knock-in hetero mice (R702C+/- mice) showed macrothrombocytopenia. We studied megakaryopoiesis of cultured fetal liver cells of R702C+/- mice and found that proplatelet formation was impaired: the number of proplatelet tips was decreased, proplatelet size was increased, and proplatelet shafts were short and enlarged. Although granulocyte inclusion bodies were not visible by May-Grünwald Giemsa staining, immunofluorescence analysis indicated that NMMHCIIA proteins aggregated and accumulated in the granulocyte cytoplasm. In other organs, R702C+/- mice displayed albuminuria which increased with age. Renal pathology examination revealed glomerulosclerosis. Sensory hearing loss was indicated by lowered auditory brainstem response. These findings indicate that Myh9 R702C knock-in mice mirror features of human MYH9 disorders arising from the R702C mutation.

  11. Establishment of Mouse Model of MYH9 Disorders: Heterozygous R702C Mutation Provokes Macrothrombocytopenia with Leukocyte Inclusion Bodies, Renal Glomerulosclerosis and Hearing Disability

    PubMed Central

    Suzuki, Nobuaki; Kunishima, Shinji; Ikejiri, Makoto; Maruyama, Shoichi; Sone, Michihiko; Takagi, Akira; Ikawa, Masahito; Okabe, Masaru; Kojima, Tetsuhito; Saito, Hidehiko; Naoe, Tomoki; Matsushita, Tadashi

    2013-01-01

    Nonmuscle myosin heavy chain IIA (NMMHCIIA) encoded by MYH9 is associated with autosomal dominantly inherited diseases called MYH9 disorders. MYH9 disorders are characterized by macrothrombocytopenia and very characteristic inclusion bodies in granulocytes. MYH9 disorders frequently cause nephritis, sensorineural hearing disability and cataracts. One of the most common and deleterious mutations causing these disorders is the R702C missense mutation. We generated knock-in mice expressing the Myh9 R702C mutation. R702C knock-in hetero mice (R702C+/− mice) showed macrothrombocytopenia. We studied megakaryopoiesis of cultured fetal liver cells of R702C+/− mice and found that proplatelet formation was impaired: the number of proplatelet tips was decreased, proplatelet size was increased, and proplatelet shafts were short and enlarged. Although granulocyte inclusion bodies were not visible by May–Grünwald Giemsa staining, immunofluorescence analysis indicated that NMMHCIIA proteins aggregated and accumulated in the granulocyte cytoplasm. In other organs, R702C+/− mice displayed albuminuria which increased with age. Renal pathology examination revealed glomerulosclerosis. Sensory hearing loss was indicated by lowered auditory brainstem response. These findings indicate that Myh9 R702C knock-in mice mirror features of human MYH9 disorders arising from the R702C mutation. PMID:23976996

  12. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific heterozygous mutation in CHMP2B.

    PubMed

    Zhang, Yu; Schmid, Benjamin; Nielsen, Troels T; Nielsen, Jørgen E; Clausen, Christian; Hyttel, Poul; Holst, Bjørn; Freude, Kristine K

    2016-06-16

    Frontotemporal dementia (FTD) is an early onset neurodegenerative disease. Mutations in several genes cause familial FTD and one of them is charged multivesicular body protein 2B (CHMP2B) on chromosome 3 (FTD3), a component of the endosomal sorting complex required for transport III (ESCRT-III). We have generated an induced pluripotent stem cell (iPSC) line of a healthy individual and inserted the CHMP2B IVS5AS G-C gene mutation into one of the alleles, resulting in aberrant splicing. This human iPSC line provides an ideal model to study CHMP2B-dependent phenotypes of FTD3. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Mutation analysis of NR2E3 and NRL genes in Enhanced S Cone Syndrome.

    PubMed

    Wright, Alan F; Reddick, Adam C; Schwartz, Sharon B; Ferguson, Julie S; Aleman, Tomas S; Kellner, Ulrich; Jurklies, Bernhard; Schuster, Andreas; Zrenner, Eberhart; Wissinger, Bernd; Lennon, Alan; Shu, Xinhua; Cideciyan, Artur V; Stone, Edwin M; Jacobson, Samuel G; Swaroop, Anand

    2004-11-01

    Ten new and seventeen previously reported Enhanced S Cone Syndrome (ESCS) subjects were used to search for genetic heterogeneity. All subjects were diagnosed with ESCS on the basis of clinical, psychophysical and/or electroretinography testing using published criteria. Mutation analysis was performed on the NR2E3 nuclear receptor gene by single strand conformation analysis and direct sequencing, which revealed either homozygous (N=13) or compound heterozygous (N=11) mutations in 24 subjects (89%), heterozygous mutations in 2 subjects (7%) and no mutations in 1 subject (4%). Fifteen different mutations were identified, including six not previously reported. The subject (Patient A) with no detected NR2E3 mutation had features not usually associated with ESCS, in particular moderate rod photoreceptor function in peripheral retina and an abnormally thick retinal nerve fibre layer. Mutation analysis of the NRL, CRX, NR1D1 and THRB genes in this individual revealed a heterozygous one base-pair insertion in exon 2 of the NRL gene, which results in a predicted truncation of the NRL protein. Loss-of-function NRL alleles have not been described previously in humans, but since the same mutation was present in unaffected family members, it raises the possibility that the abnormal ESCS phenotype in Patient A may result from a digenic mechanism, with a heterozygous NRL mutation and a mutation in another unknown gene. Copyright 2004 Wiley-Liss, Inc.

  14. Double heterozygous mutations Gln100Leu and His348Gln of the F7 gene in a patient with factor VII deficiency.

    PubMed

    Li, Min; Zheng, Fangxiu; Jin, Yanhui; Wang, Mingshan; Zhu, Liqing; Yang, Lihong

    2013-03-01

    A 25-year-old Chinese woman who had a history of easy bruising was admitted to hospital due to uncontrolled epistaxis. She showed factor VII activity level of 2% and factor VII antigen level of 4% of the normal value. We detected a novel missense mutation g.8355 A>T (p.Gln100Leu) in the second epidermal growth factor-like (EGF) domain and a g.11482 T>G (p.His348Gln) in the catalytic domain. Although the Gln100 residue is close to the junction of EGF-2 domain with the serine protease domain, we infer that the substitution of polar negatively charged Gln residue at the position 100 with introduction of nonpolar Leu residue may be likely to perturb proper folding, resulting in decreasing factor VII activity.

  15. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities

    PubMed Central

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  16. A case of familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome due to a compound heterozygous mutation in GALNT3 demonstrating new phenotypic features

    PubMed Central

    Dumitrescu, Claudia E.; Kelly, Marilyn H.; Khosravi, Azarmindokht; Hart, Thomas C.; Brahim, Jaime; White, Kenneth E.; Farrow, Emily G.; Nathan, Muriel H.; Murphey, Mark D.; Collins, Michael T.

    2008-01-01

    Introduction Familial tumoral calcinosis (FTC) and hyperostosis-hyperphosphatemia syndrome (HHS) are caused by mutations in FGF23, GALNT3, or KLOTHO. They are characterized by hyperphosphatemia, increased phosphate reabsorption, and elevated or inappropriately normal serum 1, 25-dihydroxyvitamin D3 (1,25-D); FTC is associated with calcific masses, and HHS with diaphyseal hyperostosis. Methods A 36-year-old woman presented with abnormal dental x-rays at age 12, and was hyperphosphatemic at 22. She underwent radiographic, biochemical and genetic testing, and medical treatment. Results Serum phosphorus was 7.3 mg/dl (2.5-4.8), TmP/GFR 6.99 mg/100 ml (2.97-4.45), 1,25-D3 35 pg/ml (22-67). Radiographs revealed tooth anomalies, thyroid cartilage calcification, calcific masses in vertebral spaces, calcification of the interstitial septae of the soft tissue in the lower extremities, and cortical thickening of the long bones. Her total hip Z-Score was 1.9. C-terminus serum FGF23 was 1210 RU/ml (20-108), but intact FGF23 was 7.4 pg/ml (10-50). DNA sequencing determined she was a compound heterozygote for mutations in GALNT3. Treatment with niacinamide and acetazolamide decreased TmP/GFR and serum phosphate, which was paralleled by a decrease in serum C-terminus FGF23. Conclusions This case broadens the spectrum of phenotypic and genotypic features of FTC/HHS, and suggests treatments to decrease renal phosphate reabsorption in the setting of a low intact FGF23. PMID:18982401

  17. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits.

    PubMed

    MacDermot, Kay D; Bonora, Elena; Sykes, Nuala; Coupe, Anne-Marie; Lai, Cecilia S L; Vernes, Sonja C; Vargha-Khadem, Faraneh; McKenzie, Fiona; Smith, Robert L; Monaco, Anthony P; Fisher, Simon E

    2005-06-01

    FOXP2, the first gene to have been implicated in a developmental communication disorder, offers a unique entry point into neuromolecular mechanisms influencing human speech and language acquisition. In multiple members of the well-studied KE family, a heterozygous missense mutation in FOXP2 causes problems in sequencing muscle movements required for articulating speech (developmental verbal dyspraxia), accompanied by wider deficits in linguistic and grammatical processing. Chromosomal rearrangements involving this locus have also been identified. Analyses of FOXP2 coding sequence in typical forms of specific language impairment (SLI), autism, and dyslexia have not uncovered any etiological variants. However, no previous study has performed mutation screening of children with a primary diagnosis of verbal dyspraxia, the most overt feature of the disorder in affected members of the KE family. Here, we report investigations of the entire coding region of FOXP2, including alternatively spliced exons, in 49 probands affected with verbal dyspraxia. We detected variants that alter FOXP2 protein sequence in three probands. One such variant is a heterozygous nonsense mutation that yields a dramatically truncated protein product and cosegregates with speech and language difficulties in the proband, his affected sibling, and their mother. Our discovery of the first nonsense mutation in FOXP2 now opens the door for detailed investigations of neurodevelopment in people carrying different etiological variants of the gene. This endeavor will be crucial for gaining insight into the role of FOXP2 in human cognition.

  18. Novel TACSTD2 mutation in gelatinous drop-like corneal dystrophy

    PubMed Central

    Jongkhajornpong, Passara; Lekhanont, Kaevalin; Ueta, Mayumi; Kitazawa, Koji; Kawasaki, Satoshi; Kinoshita, Shigeru

    2015-01-01

    We identified a novel mutation in the tumor-associated calcium signal transducer 2 (TACSTD2) gene in a consanguineous Thai family with gelatinous drop-like corneal dystrophy (GDLD). All affected family members presented with an intense amyloid substance deposited on the cornea, which required surgical management. Genetic analysis of these individuals revealed a homozygous mutation c.79delC, in the TACSTD2 gene. Both parents of these individuals were unaffected and showed heterozygous mutations in the TACSTD2 gene. The mutation produced a truncated protein sequence that might be the cause of GDLD. PMID:27081552

  19. Truncated forms of the insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor encompassing the IGF-II binding site: characterization of a point mutation that abolishes IGF-II binding.

    PubMed

    Garmroudi, F; Devi, G; Slentz, D H; Schaffer, B S; MacDonald, R G

    1996-06-01

    Complete understanding of the functional significance of insulin-like growth factor II (IGF-II) binding by the IGF-II/mannose-6-phosphate (Man-6-P) receptor requires mapping and ultimately mutational analysis of the receptor's IGF-II binding domain. Recent advances have localized the IGF-II binding site to extracytoplasmic repeats 10-11. To improve resolution of the binding site map, a nested set of epitope-tagged, truncated forms of the human IGF-II/Man-6-P receptor were transiently expressed in COS-7 cells. The IGF-II binding properties of truncated receptors immunoprecipitated from cell lysates and conditioned media were determined by affinity cross-linking. From the largest truncated receptor, encompassing extracytoplasmic repeats 8-11 (M(r) 68 K), through the smallest, comprised primarily of repeat 11 (M(r) 23 K), all were able to bind and cross-link to IGF-II. As a group, the truncated receptors had similar affinities for IGF-II, but with relative binding affinities 5-to 10-fold lower than those of full-length receptors. A point mutation substituting threonine for isoleucine at residue 1572, located in the NH2-terminal half of repeat 11, completely abolished IGF-II binding. We conclude that repeat 11 of the IGF-II/Man-6-P receptor's extracytoplasmic domain contains the minimal elements required for binding and cross-linking to IGF-II, and that lle1572 and other residues within the NH2-terminal half of repeat 11 are particularly important for IGF-II interaction.

  20. Diagnostic conundrums in antenatal presentation of a skeletal dysplasia with description of a heterozygous C-propeptide mutation in COL1A1 associated with a severe presentation of osteogenesis imperfecta.

    PubMed

    Marshall, Charlotte J; Arundel, Paul; Mushtaq, Talat; Offiah, Amaka C; Pollitt, Rebecca C; Bishop, Nicholas J; Balasubramanian, Meena

    2016-12-01

    Prompt and accurate diagnosis of skeletal dysplasias can play a crucial role in ensuring appropriate counseling and management (both antenatal and postnatal). When a skeletal dysplasia is detected during the antenatal period, especially early in the pregnancy, it can be associated with a poor prognosis. It is important to make a diagnosis in antenatal presentation of skeletal dysplasias to inform diagnosis, predict prognosis, provide accurate recurrence risks, and options for prenatal genetic testing in future pregnancies. Prenatal ultrasound scanning is a useful tool to detect several skeletal dysplasias and sonographic measurements serve as reliable indicators of lethality. The lethality depends on various factors including gestational age at which features are identified, size of the chest and progression of malformations. Although, it is important to type the skeletal presentation as accurately as possible, this is not always possible in an antenatal presentation and it is important to acknowledge this uncertainty. In the case of a live birth, it is always important to reassess the infant. Osteogenesis imperfecta (OI) is a heterogeneous group of disorders characterized by fragile bones. Here, we report an infant with severe OI born following a twin pregnancy in whom the bone disease is caused by a heterozygous pathogenic mutation, c.4160C >T, p.(Ala1387Val) located in the C-propeptide region of COL1A1. An assumption of lethality antenatally complicated his management in early life. We discuss this patient with particular emphasis on the neonatal presentation of a severe skeletal dysplasia and the lessons that may be learned in such situations. © 2016 Wiley Periodicals, Inc.

  1. Periodontal disease and FAM20A mutations.

    PubMed

    Kantaputra, Piranit Nik; Bongkochwilawan, Chotika; Lubinsky, Mark; Pata, Supansa; Kaewgahya, Massupa; Tong, Huei Jinn; Ketudat Cairns, James R; Guven, Yeliz; Chaisrisookumporn, Nipon

    2017-03-16

    Enamel-renal-gingival syndrome (ERGS; OMIM #204690), a rare autosomal recessive disorder caused by mutations in FAM20A, is characterized by nephrocalcinosis, nephrolithiasis, amelogenesis imperfecta, hypoplastic type, gingival fibromatosis and other dental abnormalities, including hypodontia and unerupted teeth with large dental follicles. We report three patients and their families with findings suggestive of ERGS. Mutation analysis of FAM20A was performed in all patients and their family members. Patients with homozygous frameshift and compound heterozygous mutations in FAM20A had typical clinical findings along with periodontitis. The other had a novel homozygous missense mutation in exon 10, mild gingival fibromatosis and renal calcifications. The periodontitis in our patients may be a syndrome component, and similar findings in previous reports suggest more than coincidence. Fam20a is an allosteric activator that increases Fam20c kinase activity. It is hypothesized that lack of FAM20A activation of FAM20C in our patients with FAM20A mutations might have caused amelogenesis imperfecta, abnormal bone remodeling and periodontitis. Nephrocalcinosis appears not to be a consistent finding of the syndrome and the missense mutation may correlate with mild gingival fibromatosis. Here we report three patients with homozygous or compound heterozygous mutations in FAM20A and findings that extend the phenotypic spectrum of this disorder, showing that protein truncation is associated with greater clinical severity.Journal of Human Genetics advance online publication, 16 March 2017; doi:10.1038/jhg.2017.26.

  2. The Intronic GABRG2 Mutation, IVS6+2T→G, Associated with CAE Altered Subunit mRNA Intron Splicing, Activated Nonsense-Mediated Decay and Produced a Stable Truncated γ2 Subunit

    PubMed Central

    Tian, Mengnan; Macdonald, Robert L.

    2012-01-01

    The intronic GABRG2 mutation, IVS6+2T→G, was identified in an Australian family with childhood absence epilepsy (CAE) and febrile seizures (Kananura et al., 2002). The GABRG2 intron 6 splice donor site was found to be mutated from GT to GG. We generated wildtype and mutant γ2S subunit bacterial artificial chromosomes (BACs) driven by a CMV promoter and expressed them in HEK293T cells and expressed wildtype and mutant γ2S subunit BACs containing the endogenous hGABRG2 promoter in transgenic mice. Wildtype and mutant GABRG2 mRNA splicing patterns were determined in both BAC transfected HEK293T cells and transgenic mouse brain, and in both, the mutation abolished intron 6 splicing at the donor site, activated a cryptic splice site, generated partial intron 6 retention and produced a frame shift in exon 7 that created a premature translation-termination codon (PTC). The resultant mutant mRNA was either degraded partially by nonsense mediated mRNA decay (NMD) or translated to a stable, truncated subunit (the γ2-PTC subunit) containing the first 6 GABRG2 exons and a novel frame-shifted 29 aa C terminal tail. The γ2-PTC subunit was homologous to the mollusk acetylcholine binding protein (AChBP) but was not secreted from cells. It was retained in the ER and not expressed on the surface membrane, but it did oligomerize with α1 and β2 subunits. These results suggested that the GABRG2 mutation, IVS6+2T→G, reduced surface αβγ2 receptor levels, thus reducing GABAergic inhibition, by reducing GABRG2 transcript level and producing a stable, nonfunctional truncated subunit that had a dominant negative effect on αβγ2 receptor assembly. PMID:22539854

  3. New mutation of the PTCH gene in nevoid basal-cell carcinoma syndrome with West syndrome.

    PubMed

    Tachi, Nobutada; Fujii, Katsunori; Kimura, Mitsugu; Seki, Kouhei; Hirakai, Masahisa; Miyashita, Toshiyuki

    2007-11-01

    Neurologic involvement in nevoid basal-cell carcinoma syndrome includes intracranial calcification, congenital hydrocephalus, intracranial neoplasms, and mental retardation. A few cases of epilepsy with nevoid basal-cell carcinoma syndrome were reported. We report on a patient with nevoid basal-cell carcinoma syndrome and West syndrome. The patient had a heterozygous mutation (insertion of TGGC) in the PTCH gene. This mutation causes a shift of the reading frame, and creates a stop codon predicting the truncation of the PTCH protein. This mutation was not found in previously described patients with nevoid basal-cell carcinoma syndrome.

  4. Increased rate of missense/in-frame mutations in individuals with NF1-related pulmonary stenosis: a novel genotype-phenotype correlation.

    PubMed

    Ben-Shachar, Shay; Constantini, Shlomi; Hallevi, Hen; Sach, Emma K; Upadhyaya, Meena; Evans, Gareth D; Huson, Susan M

    2013-05-01

    Neurofibromatosis type 1 (NF1) and its related disorders (NF1-Noonan syndrome (NFNS) and Watson syndrome (WS)) are caused by heterozygous mutations in the NF1 gene. Pulmonary stenosis (PS) occurs more commonly in NF1 and its related disorders than in the general population. This study investigated whether PS is associated with specific types of NF1 gene mutations in NF1, NFNS and WS. The frequency of different NF1 mutation types in a cohort of published and unpublished cases with NF1/NFNS/WS and PS was examined. Compared with NF1 in general, NFNS patients had higher rates of PS (9/35=26% vs 25/2322=1.1%, P value<0.001). Stratification according to mutation type showed that the increased PS rate appears to be driven by the NFNS group with non-truncating mutations. Eight of twelve (66.7%) NFNS cases with non-truncating mutations had PS compared with a 1.1% PS frequency in NF1 in general (P<0.001); there was no increase in the frequency of PS in NFNS patients with truncating mutations. Eight out of eleven (73%) individuals with NF1 and PS, were found to have non-truncating mutations, a much higher frequency than the 19% reported in NF1 cohorts (P<0.015). Only three cases of WS have been published with intragenic mutations, two of three had non-truncating mutations. Therefore, PS in NF1 and its related disorders is clearly associated with non-truncating mutations in the NF1 gene providing a new genotype-phenotype correlation. The data indicate a specific role of non-truncating mutations on the NF1 cardiac phenotype.

  5. A novel RLBP1 gene geographical area-related mutation present in a young patient with retinitis punctata albescens.

    PubMed

    Scimone, Concetta; Donato, Luigi; Esposito, Teresa; Rinaldi, Carmela; D'Angelo, Rosalia; Sidoti, Antonina

    2017-08-01

    Autosomal recessive forms of retinitis punctata albescens (RPA) have been described. RPA is characterized by progressive retinal degeneration due to alteration in visual cycle and consequent deposit of photopigments in retinal pigment epithelium. Five loci have been linked to RPA onset. Among these, the retinaldehyde-binding protein 1 gene, RLBP1, is the most frequently involved and several founder mutations were reported. We report results of a genetic molecular investigation performed on a large Sicilian family in which appears a young woman with RPA. The proband is in homozygous condition for a novel RLBP1 single-pair deletion, and her healthy parents, both heterozygous, are not consanguineous. Thenovelc.398delC (p.P133Qfs*258) involves the exon 6 and leads to a premature stop codon, resulting in a truncated protein entirely missing of CRAL-TRIO lipid-binding domain. Pedigree analysis showed other non-consanguineous relatives heterozygous for the same mutation in the family. Extension of mutation research in the native town of the proband revealed its presence also in healthy subjects, in a heterozygous condition. A novel RLBP1 truncating mutation was detected in a young girl affected by RPA. Although her parents are not consanguineous, the mutation was observed in a homozygous condition. Being them native of the same small Sicilian town of Fiumedinisi, the hypothesis of a geographical area-related mutation was assessed and confirmed.

  6. Upper beak truncation in chicken embryos with the cleft primary palate mutation is due to an epithelial defect in the frontonasal mass.

    PubMed

    MacDonald, Mary E; Abbott, Ursula K; Richman, Joy M

    2004-06-01

    In this study, we used the chicken mutant strain known as cleft primary palate (cpp) to study the mechanisms of beak outgrowth. cpp mutants have complete truncation of the upper beak with normal development of the lower beak. Based on structural analysis and grafts of facial prominences, we localized the defect to the frontonasal mass and its derivatives. Several explanations that would account for the outgrowth defect were investigated, including abnormal expression of genes in the frontonasal epithelium, intrinsic defects in epithelium and/or mesenchyme defects in epithelial-mesenchymal signalling, a localized decrease in cell proliferation or a localized increase in programmed cell death. One of the genes expressed in the frontonasal epithelial growth zone, Fgf8, failed to down-regulate and was maintained for at least 48 hr beyond the time when down-regulation normally occurs. Recombination experiments further illustrated that the frontonasal mass epithelium was abnormal in the cpp mutants, whereas mutant mesenchyme was capable of normal outgrowth when combined with wild-type epithelium. Cell proliferation was not decreased in mutant embryos nor was cell death initially increased. Later, at stages 31-32, when the prenasal cartilage begins directed outgrowth, there was an increase in cell death within the mutant upper but not lower beak cartilage. The cpp beak truncation, therefore, is due to an epithelial defect in the frontonasal mass that is coincident with a failure to down-regulate expression of Fgf8.

  7. Merkel cell polyomavirus infection in both components of a combined Merkel cell carcinoma and basal cell carcinoma with ductal differentiation; each component had a similar but different novel Merkel cell polyomavirus large T antigen truncating mutation.

    PubMed

    Iwasaki, Takeshi; Kodama, Hajime; Matsushita, Michiko; Kuroda, Naoto; Yamasaki, Yoshikazu; Murakami, Ichiro; Yamamoto, Osamu; Hayashi, Kazuhiko

    2013-03-01

    Merkel cell polyomavirus infects up to 80% of patients with Merkel cell carcinoma. Combined Merkel cell carcinoma and cutaneous tumors occur occasionally. Previous reports have suggested that Merkel cell polyomavirus is absent from combined Merkel cell carcinoma and squamous cell carcinomas. This is the first report that Merkel cell polyomavirus infected in both lesions of a combined Merkel cell carcinoma and basal cell carcinoma. A 92-year-old Japanese man presented with a right thigh small subcutaneous mass. Histologic examination revealed a combined tumor with Merkel cell carcinoma and basal cell carcinoma with ductal differentiation. Both tumors and intermingled Merkel cells in basal cell carcinoma expressed Merkel cell polyomavirus large T antigen, and 17 and 240 copies of Merkel cell polyomavirus/cell were detected in the microdissected Merkel cell carcinoma and basal cell carcinoma specimens, respectively. Mutation analysis of Merkel cell polyomavirus large T antigen revealed a novel truncating mutation in Merkel cell carcinoma and a similar but different mutation in the basal cell carcinoma. These results suggest that each was infected by a different Merkel cell polyomavirus subclone derived from a single Merkel cell polyomavirus.

  8. A novel GNAS1 mutation in a German family with Albright's hereditary osteodystrophy.

    PubMed

    Klagge, A; Jessnitzer, B; Pfaeffle, R; Stumvoll, M; Fuhrer, D

    2010-10-01

    Albright's hereditary osteodystrophy (AHO) is an inherited disorder and results from heterozygous loss of function mutation within the human G (s)α gene (GNAS1). AHO appears in two phenotypes, that may occur within the same family. Pseudohypoparathyroidism type Ia (PHP Ia) comprises the clinical features of AHO associated with parathyroid hormone (PTH) resistance while pseudo-pseudohypoparathyroidism (PPHP) includes AHO features without PTH resistance. In the present study we report a mother and a daughter with PPHP and PHP Ia respectively. The 13 exons of GNAS1 were analysed by PCR and direct sequencing. We identified a heterozygous missense mutation in exon 1. This novel mutation results in a stop at codon 35 and a truncated non-functional GNAS1 protein. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  9. Specific Podocin Mutations Correlate with Age of Onset in Steroid-Resistant Nephrotic Syndrome

    PubMed Central

    Hinkes, Bernward; Vlangos, Christopher; Heeringa, Saskia; Mucha, Bettina; Gbadegesin, Rasheed; Liu, Jinhong; Hasselbacher, Katrin; Ozaltin, Fatih; Hildebrandt, Friedhelm

    2008-01-01

    Mutations in the gene encoding podocin (NPHS2) cause autosomal recessive steroid-resistant nephrotic syndrome (SRNS). For addressing the possibility of a genotype–phenotype correlation between podocin mutations and age of onset, a worldwide cohort of 430 patients from 404 different families with SRNS were screened by direct sequencing. Recessive podocin mutations were present in 18.1% (73 of 404) of families with SRNS, and 69.9% of these mutations were nonsense, frameshift, or homozygous R138Q. Patients with these mutations manifested symptoms at a significantly earlier age (mean onset <1.75 years) than any other patient group, with or without podocin mutations, in this study (mean onset >4.17 yr). All but one patient affected by truncating or homozygous R138Q mutations developed SRNS before 6 yr of age. Patient groups with other recessive podocin mutations, with single heterozygous podocin mutations, with sequence variants, and with no podocin changes could not be distinguished from each other on the basis of age of onset. In conclusion, nephrotic syndrome in children with truncating or homozygous R138Q mutations manifests predominantly before 6 yr of life, and the onset of disease is significantly earlier than for any other podocin mutations. Because the age of onset can vary by several years among those with identical mutations, additional factors may modify the phenotype. PMID:18216321

  10. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73.

    PubMed

    Jinks, Robert N; Puffenberger, Erik G; Baple, Emma; Harding, Brian; Crino, Peter; Fogo, Agnes B; Wenger, Olivia; Xin, Baozhong; Koehler, Alanna E; McGlincy, Madeleine H; Provencher, Margaret M; Smith, Jeffrey D; Tran, Linh; Al Turki, Saeed; Chioza, Barry A; Cross, Harold; Harlalka, Gaurav V; Hurles, Matthew E; Maroofian, Reza; Heaps, Adam D; Morton, Mary C; Stempak, Lisa; Hildebrandt, Friedhelm; Sadowski, Carolin E; Zaritsky, Joshua; Campellone, Kenneth; Morton, D Holmes; Wang, Heng; Crosby, Andrew; Strauss, Kevin A

    2015-08-01

    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology. © The Author (2015

  11. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

    PubMed Central

    Puffenberger, Erik G.; Baple, Emma; Harding, Brian; Crino, Peter; Fogo, Agnes B.; Wenger, Olivia; Xin, Baozhong; Koehler, Alanna E.; McGlincy, Madeleine H.; Provencher, Margaret M.; Smith, Jeffrey D.; Tran, Linh; Al Turki, Saeed; Chioza, Barry A.; Cross, Harold; Harlalka, Gaurav V.; Hurles, Matthew E.; Maroofian, Reza; Heaps, Adam D.; Morton, Mary C.; Stempak, Lisa; Hildebrandt, Friedhelm; Sadowski, Carolin E.; Zaritsky, Joshua; Campellone, Kenneth; Morton, D. Holmes; Wang, Heng; Crosby, Andrew; Strauss, Kevin A.

    2015-01-01

    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology. PMID:26070982

  12. A Truncated Cauchy Distribution

    ERIC Educational Resources Information Center

    Nadarajah, Saralees; Kotz, Samuel

    2006-01-01

    A truncated version of the Cauchy distribution is introduced. Unlike the Cauchy distribution, this possesses finite moments of all orders and could therefore be a better model for certain practical situations. One such situation in finance is discussed. Explicit expressions for the moments of the truncated distribution are also derived.

  13. RP1 in Chinese: Eight novel variants and evidence that truncation of the extreme C-terminal does not cause retinitis pigmentosa.

    PubMed

    Baum, L; Chan, W M; Yeung, K Y; Lam, D S; Kwok, A K; Pang, C P

    2001-05-01

    Heterozygous truncating mutations in the RP1 gene cause approximately 7% of autosomal dominant retinitis pigmentosa (RP) cases. To examine the role of RP1 mutations in RP, we screened 101 unrelated Chinese RP patients (unselected for mode of inheritance) and 190 elderly normal control subjects for sequence changes in the coding exons for the 2156 amino acid RP1 protein. One patient had a mutation, thus RP1 mutations cause about 0.0% to 5.4% (95% confidence interval) of all RP among Chinese. The mutation was R677X, the most common found in Americans. Five other known sequence changes were found. In addition, nine novel sequence alterations were identified: 746G>A (R249H), 1437G>T (M479I), 2116G>C (G706R), 3024G>A (Q1008Q), 3188G>A (Q1063R), 5797C>T (R1933X), 6423A>G (I2141M), and the variants 6542C>T and 6676T>A, both in the 3' untranslated region. One control subject and three members of a non-RP family were heterozygous for R1933X, which is therefore likely to be a non-disease-causing variant. The most C-terminal truncation previously reported was due to Tyr1053 (1-bp del) and occurred in RP patients. Thus the presence of a normal level of at least part of RP1 between amino acids 1052 and 1933 appears necessary to prevent RP. Hum Mutat 17:436, 2001. Copyright 2001 Wiley-Liss, Inc.

  14. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees

    PubMed Central

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258

  15. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees.

    PubMed

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling.

  16. Atypical phenotype in two patients with LAMA2 mutations.

    PubMed

    Marques, Joana; Duarte, Sofia T; Costa, Sónia; Jacinto, Sandra; Oliveira, Jorge; Oliveira, Márcia E; Santos, Rosário; Bronze-da-Rocha, Elsa; Silvestre, Ana Rita; Calado, Eulália; Evangelista, Teresinha

    2014-05-01

    Congenital muscular dystrophy type 1A is caused by mutations in the LAMA2 gene, which encodes the α2-chain of laminin. We report two patients with partial laminin-α2 deficiency and atypical phenotypes, one with almost exclusive central nervous system involvement (cognitive impairment and refractory epilepsy) and the second with marked cardiac dysfunction, rigid spine syndrome and limb-girdle weakness. Patients underwent clinical, histopathological, imaging and genetic studies. Both cases have two heterozygous LAMA2 variants sharing a potentially pathogenic missense mutation c.2461A>C (p.Thr821Pro) located in exon 18. Brain MRI was instrumental for the diagnosis, since muscular examination and motor achievements were normal in the first patient and there was a severe cardiac involvement in the second. The clinical phenotype of the patients is markedly different which could in part be explained by the different combination of mutations types (two missense versus a missense and a truncating mutation).

  17. Dominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44.

    PubMed

    Watson, Lauren M; Bamber, Elizabeth; Schnekenberg, Ricardo Parolin; Williams, Jonathan; Bettencourt, Conceição; Lickiss, Jennifer; Jayawant, Sandeep; Fawcett, Katherine; Clokie, Samuel; Wallis, Yvonne; Clouston, Penny; Sims, David; Houlden, Henry; Becker, Esther B E; Németh, Andrea H

    2017-09-07

    The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different families to adult-onset cerebellar ataxia, and a de novo truncation mutation resulting in a dominant-negative effect that is associated with juvenile-onset ataxia and intellectual disability. Crucially, the gain-of-function mutations could be pharmacologically modulated in vitro using an existing FDA-approved drug, Nitazoxanide, suggesting a possible avenue for treatment, which is currently unavailable for ataxias. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts.

    PubMed

    Akiyama, Masashi

    2010-10-01

    Mutations in ABCA12 have been described in autosomal recessive congenital ichthyoses (ARCI) including harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). HI shows the most severe phenotype. CIE and LI are clinically characterized by fine, whitish scales on a background of erythematous skin, and large, thick, dark scales over the entire body without serious background erythroderma, respectively. To date, a total of 56 ABCA12 mutations have been reported in 66 ARCI families including 48 HI, 10 LI, and 8 CIE families of African, European, Pakistani/Indian, and Japanese origin (online database: http://www.derm-hokudai.jp/ABCA12/). A total of 62.5% of reported ABCA12 mutations are expected to lead to truncated proteins. Most mutations in HI are truncation mutations and homozygous or compound heterozygous truncation mutations always results in HI phenotype. In CIE families, at least one mutation on each allele is typically a missense mutation. Combinations of missense mutations in the first ATP-binding cassette of ABCA12 underlie the LI phenotype. ABCA12 is a keratinocyte lipid transporter associated with lipid transport in lamellar granules, and loss of ABCA12 function leads to a defective lipid barrier in the stratum corneum, resulting in an ichthyotic phenotype. Recent work using mouse models confirmed ABCA12 roles in skin barrier formation.

  19. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31). A unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins.

    PubMed Central

    Young, S G; Hubl, S T; Smith, R S; Snyder, S M; Terdiman, J F

    1990-01-01

    Apolipoprotein B-100 has a crucial structural role in the formation of VLDL and LDL. Familial hypobetalipoproteinemia, a syndrome in which the concentration of LDL cholesterol in plasma is abnormally low, can be caused by mutations in the apo B gene that prevent the translation of a full-length apo B-100 molecule. Prior studies have revealed that truncated species of apo B [e.g., apo B-37 (1728 amino acids), apo B-46 (2057 amino acids)] can occasionally be identified in the plasma of subjects with familial hypobetalipoproteinemia; in each of these cases, the truncated apo B species has been a prominent protein component of VLDL. In this report, we describe a kindred with hypobetalipoproteinemia in which the plasma of four affected heterozygotes contained a unique truncated apo B species, apo B-31. Apolipoprotein B-31 is caused by the deletion of a single nucleotide in the apo B gene, and it is predicted to contain 1425 amino acids. Apolipoprotein B-31 is the shortest of the mutant apo B species to be identified in the plasma of a subject with hypobetalipoproteinemia. In contrast to longer truncated apo B species, apo B-31 was undetectable in the VLDL and the LDL; however, it was present in the HDL fraction and the lipoprotein-deficient fraction of plasma. The density distribution of apo B-31 in the plasma suggests the possibility that the amino-terminal 1425 amino acids of apo B-100 are sufficient to permit the formation and secretion of small, dense lipoproteins but are inadequate to support the formation of the more lipid-rich VLDL and LDL particles. Images PMID:2312735

  20. Mutations in MTP gene in abeta- and hypobeta-lipoproteinemia.

    PubMed

    Di Leo, Enza; Lancellotti, Sandra; Penacchioni, Junia Y; Cefalù, Angelo B; Averna, Maurizio; Pisciotta, L; Bertolini, Stefano; Calandra, Sebastiano; Gabelli, Carlo; Tarugi, Patrizia

    2005-06-01

    Familial hypobetalipoproteinemia (FHBL) and abetalipoproteinemia (ABL) are inherited disorders of apolipoprotein B (apo B)-containing lipoproteins that result from mutations in apo B and microsomal triglyceride transfer protein (MTP) genes, respectively. Here we report three patients with severe deficiency of plasma low-density lipoprotein (LDL) and apo B. Two of them (probands F.A. and P.E.) had clinical and biochemical phenotype consistent with ABL. Proband F.A. was homozygous for a minute deletion/insertion (c.1228delCCCinsT) in exon 9 of MTP gene predicted to cause a truncated MTP protein of 412 amino acids. Proband P. E. was heterozygous for a mutation in intron 9 (IVS9-1G>A), previously reported in an ABL patient. We failed to find the second pathogenic mutation in MTP gene of this patient. No mutations were found in apo B gene. The third proband (D.F.) had a less severe lipoprotein phenotype which was similar to that of heterozygous FHBL and appeared to be inherited as a co-dominant trait. However, he had no mutations in apo B gene. He was found to be a compound heterozygote for two missense mutations (D384A and G661A), involving highly conserved regions of MTP. Since this proband was also homozygous for varepsilon2 allele of apolipoprotein E (apo E), it is likely that his hypobetalipoproteinemia derives from a combined effect of a mild MTP deficiency and homozygosity for apo E2 isoform.

  1. Variation in breast cancer risk associated with factors related to pregnancies according to truncating mutation location, in the French National BRCA1 and BRCA2 mutations carrier cohort (GENEPSO)

    PubMed Central

    2012-01-01

    Introduction Mutations in BRCA1 and BRCA2 confer a high risk of breast cancer (BC), but the magnitude of this risk seems to vary according to the study and various factors. Although controversial, there are data to support the hypothesis of allelic risk heterogeneity. Methods We assessed variation in BC risk according to factors related to pregnancies by location of mutation in the homogeneous risk region of BRCA1 and BRCA2 in 990 women in the French study GENEPSO by using a weighted Cox regression model. Results Our results confirm the existence of the protective effect of an increasing number of full-term pregnancies (FTPs) toward BC among BRCA1 and BRCA2 mutation carriers (≥3 versus 0 FTPs: hazard ratio (HR) = 0.51, 95% confidence interval (CI) = 0.33 to 0.81). Additionally, the HR shows an association between incomplete pregnancies and a higher BC risk, which reached 2.39 (95% CI = 1.28 to 4.45) among women who had at least three incomplete pregnancies when compared with women with zero incomplete pregnancies. This increased risk appeared to be restricted to incomplete pregnancies occurring before the first FTP (HR = 1.77, 95% CI = 1.19 to 2.63). We defined the TMAP score (defined as the Time of Breast Mitotic Activity during Pregnancies) to take into account simultaneously the opposite effect of full-term and interrupted pregnancies. Compared with women with a TMAP score of less than 0.35, an increasing TMAP score was associated with a statistically significant increase in the risk of BC (P trend = 0.02) which reached 1.97 (95% CI = 1.19 to 3.29) for a TMAP score >0.5 (versus TMAP ≤0.35). All these results appeared to be similar in BRCA1 and BRCA2. Nevertheless, our results suggest a variation in BC risk associated with parity according to the location of the mutation in BRCA1. Indeed, parity seems to be associated with a significantly decreased risk of BC only among women with a mutation in the central region of BRCA1 (low-risk region) (≥1 versus 0 FTP

  2. Reduced ACh release at neuromuscular synapses of heterozygous leaner Ca(v)2.1-mutant mice.

    PubMed

    Kaja, Simon; Van De Ven, Rob C G; Frants, Rune R; Ferrari, Michel D; Van Den Maagdenberg, Arn M J M; Plomp, Jaap J

    2008-05-01

    Episodic ataxia type 2 (EA2) is an autosomal dominantly inherited neurological disorder. Patients have CACNA1A gene mutations resulting in truncation or single amino acid changes in the pore-forming subunit of Ca(v)2.1 (P/Q-type) Ca(2+) channels. These neuronal channels mediate synaptic neurotransmitter release. EA2 symptoms are thought to result from disturbed neurotransmission at cerebellar and neuromuscular synapses, caused by loss-of-function of Ca(v)2.1 channels. Heterozygous leaner (Ln/wt) mice, carrying a Cacna1a truncation mutation, as well as heterozygous Ca(v)2.1 null-mutant (KO/wt) mice may model synaptic aspects of EA2. We studied Ca(v)2.1-mediated acetylcholine (ACh) release at their neuromuscular junctions (NMJs) ex vivo. KO/wt mice did not show any ACh release abnormalities, not even at older age. However, Ln/wt mice had approximately 25% reduced spontaneous uniquantal ACh release and approximately 10% reduced nerve-stimulation evoked release, compared with wild-type. EA2 is treated with acetazolamide (AZA), but the pharmacotherapeutic mechanism is unknown. We tested the possibility of a direct influence on (mutant) presynaptic Ca(v)2.1 channel function by studying the acute effect of 50 muM AZA on ACh release at ex vivo NMJs of wild-type, KO/wt, and Ln/wt mice. No changes were found in any of the release parameters. Our results indicate that Ln-mutated Ca(v)2.1 channels at Ln/wt NMJs are either normally inserted in the presynaptic membrane but have reduced function, or that they inhibit wild-type channels by hampering their expression, trafficking, membrane insertion and/or function. In this respect Ln/wt NMJs may model EA2 synapses. Furthermore, AZA does not exert an acute, direct influence on the function of presynaptic (mutant) Ca(v)2.1 channels. (c) 2008 Wiley-Liss, Inc.

  3. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    SciTech Connect

    Wright, J.; Teraoka, S.; Concannon, P.

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  4. A new heterozygous mutation of the FOXL2 gene is associated with a large ovarian cyst and ovarian dysfunction in an adolescent girl with blepharophimosis/ptosis/epicanthus inversus syndrome.

    PubMed

    Raile, K; Stobbe, H; Tröbs, R B; Kiess, W; Pfäffle, R

    2005-09-01

    Blepharophimosis/ptosis/epicanthus inversus syndrome (BPES), an autosomal dominant syndrome in which eyelid malformation is associated with (type I BPES) or without premature ovarian failure (type II BPES). Mutations of a putative winged helix/forkhead transcription factor FOXL2 account for both types of BPES. We report on a 16-year-old adolescent girl with blepharophimosis and ptosis. Subsequently she developed oligomenorrhea, secondary amenorrhea for 6 months, and an extremely large cyst of one ovary. The cyst contained 8 l of cyst fluid and histopathology displayed a large corpus luteum cyst. Following laparotomy, gonadotropin levels were elevated (LH 17.2 U/l, FSH 29.4 U/l) and estradiol levels decreased (67 pmol/l). Because of clinical aspects of BPES and abnormal ovarian function we suspected a mutation of her FOXL2 gene and found a new in-frame mutation (904_939dup36) on one allele, leading to a 12 alanine expansion within the polyalanine domain. We conclude that the FOXL2 mutation 904_939dup36 may account not only for blepharophimosis and ptosis but also for ovarian dysfunction and growth of the large corpus luteum cyst. In contrast to known FOXL2 mutations with polyalanine expansions and association with BPES type II, clinical aspects of our girl may indicate some degree of ovarian dysfunction that might finally lead to BPES type I with premature ovarian failure.

  5. A Mouse Model That Reproduces the Developmental Pathways and Site Specificity of the Cancers Associated With the Human BRCA1 Mutation Carrier State.

    PubMed

    Liu, Ying; Yen, Hai-Yun; Austria, Theresa; Pettersson, Jonas; Peti-Peterdi, Janos; Maxson, Robert; Widschwendter, Martin; Dubeau, Louis

    2015-10-01

    Predisposition to breast and extrauterine Müllerian carcinomas in BRCA1 mutation carriers is due to a combination of cell-autonomous consequences of BRCA1 inactivation on cell cycle homeostasis superimposed on cell-nonautonomous hormonal factors magnified by the effects of BRCA1 mutations on hormonal changes associated with the menstrual cycle. We used the Müllerian inhibiting substance type 2 receptor (Mis2r) promoter and a truncated form of the Follicle stimulating hormone receptor (Fshr) promoter to introduce conditional knockouts of Brca1 and p53 not only in mouse mammary and Müllerian epithelia, but also in organs that control the estrous cycle. Sixty percent of the double mutant mice developed invasive Müllerian and mammary carcinomas. Mice carrying heterozygous mutations in Brca1 and p53 also developed invasive tumors, albeit at a lesser (30%) rate, in which the wild type alleles were no longer present due to loss of heterozygosity. While mice carrying heterozygous mutations in both genes developed mammary tumors, none of the mice carrying only a heterozygous p53 mutation developed such tumors (P < 0.0001), attesting to a role for Brca1 mutations in tumor development. This mouse model is attractive to investigate cell-nonautonomous mechanisms associated with cancer predisposition in BRCA1 mutation carriers and to investigate the merit of chemo-preventive drugs targeting such mechanisms.

  6. A Mouse Model That Reproduces the Developmental Pathways and Site Specificity of the Cancers Associated With the Human BRCA1 Mutation Carrier State

    PubMed Central

    Liu, Ying; Yen, Hai-Yun; Austria, Theresa; Pettersson, Jonas; Peti-Peterdi, Janos; Maxson, Robert; Widschwendter, Martin; Dubeau, Louis

    2015-01-01

    Predisposition to breast and extrauterine Müllerian carcinomas in BRCA1 mutation carriers is due to a combination of cell-autonomous consequences of BRCA1 inactivation on cell cycle homeostasis superimposed on cell-nonautonomous hormonal factors magnified by the effects of BRCA1 mutations on hormonal changes associated with the menstrual cycle. We used the Müllerian inhibiting substance type 2 receptor (Mis2r) promoter and a truncated form of the Follicle stimulating hormone receptor (Fshr) promoter to introduce conditional knockouts of Brca1 and p53 not only in mouse mammary and Müllerian epithelia, but also in organs that control the estrous cycle. Sixty percent of the double mutant mice developed invasive Müllerian and mammary carcinomas. Mice carrying heterozygous mutations in Brca1 and p53 also developed invasive tumors, albeit at a lesser (30%) rate, in which the wild type alleles were no longer present due to loss of heterozygosity. While mice carrying heterozygous mutations in both genes developed mammary tumors, none of the mice carrying only a heterozygous p53 mutation developed such tumors (P < 0.0001), attesting to a role for Brca1 mutations in tumor development. This mouse model is attractive to investigate cell-nonautonomous mechanisms associated with cancer predisposition in BRCA1 mutation carriers and to investigate the merit of chemo-preventive drugs targeting such mechanisms. PMID:26629527

  7. Superalgebraic truncations in supergravities

    SciTech Connect

    Kim, C. ); Park, Y.; Kim, K.Y.; Kim, Y. ); l'Yi, W.S. Department of Physics and Astronomy, University of Maryland, College Park, Maryland )

    1991-11-15

    We study {ital D}=5 and {ital D}=8 supergravities in the context of superalgebra. These are analyzed in SU(4/2) superalgebra and its branching patterns in terms of Kac-Dynkin weight techniques. Consistent truncations can be easily realized as subalgebra chains of SU(4/2) superalgebras.

  8. Novel mutations of ABCA1 transporter in patients with Tangier disease and familial HDL deficiency.

    PubMed

    Fasano, Tommaso; Zanoni, Paolo; Rabacchi, Claudio; Pisciotta, Livia; Favari, Elda; Adorni, Maria Pia; Deegan, Patrick B; Park, Adrian; Hlaing, Thinn; Feher, Michael D; Jones, Ben; Uzak, Asli Subasioglu; Kardas, Fatih; Dardis, Andrea; Sechi, Annalisa; Bembi, Bruno; Minuz, Pietro; Bertolini, Stefano; Bernini, Franco; Calandra, Sebastiano

    2012-11-01

    The objective of the study was the characterization of ABCA1 gene mutations in 10 patients with extremely low HDL-cholesterol. Five patients (aged 6 months to 76 years) presented with splenomegaly and thrombocytopenia suggesting the diagnosis of Tangier disease (TD). Three of them were homozygous for novel mutations either in intron (c.4465-34A>G) or in exons (c.4376delT and c.5449C>T), predicted to encode truncated proteins. One patient was compound heterozygous for a nucleotide insertion (c.1758_1759insG), resulting in a truncated protein and for a nucleotide substitution c.4799A>G, resulting in a missense mutation (p.H1600R). The last TD patient, found to be heterozygous for a known mutation (p.D1009Y), had a complete defect in ABCA1-mediated cholesterol efflux in fibroblasts, suggesting the presence of a second undetected mutant allele. Among the other patients, four were asymptomatic, but one, with multiple risk factors, had severe peripheral artery disease. Three of these patients were heterozygous for known mutations (p.R130K+p.N1800H, p.R1068C, p.N1800H), while two were carriers of novel mutations (c.1195-27G>A and c.396_397insA), predicted to encode truncated proteins. The pathogenic effect of the two intronic mutations (c. 1195-27G>A and c.4465-34A>G) was demonstrated by the analysis of the transcripts of splicing reporter mutant minigenes expressed in COS-1 cells. Both mutations activated an intronic acceptor splice site which resulted in a partial intron retention in mature mRNA with the production of truncated proteins. This study confirms the allelic heterogeneity of TD and suggests that the diagnosis of TD must be considered in patients with an unexplained splenomegaly, associated with thrombocytopenia and hypocholesterolemia. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The heterozygous R1441C mutation of leucine-rich repeat kinase 2 gene in a Chinese patient with Parkinson disease: A five-year follow-up and literatures review.

    PubMed

    Peng, Fang; Sun, Yi-Min; Chen, Chen; Luo, Su-Shan; Li, Da-Ke; Wang, Yi-Xuan; Yang, Ke; Liu, Feng-Tao; Zuo, Chuan-Tao; Ding, Zheng-Tong; An, Yu; Wu, Jian-Jun; Wang, Jian

    2017-02-15

    Leucine-rich repeat kinase 2 gene (LRRK2) was recognized associated with both familial and sporadic Parkinson Disease (PD). Seven missense mutations (G2019S, R1441C, R1441G, R1441H, Y1699C, I2020T, N1437H) of it have been confirmed disease- causing. They were common among Caucasian PD patients, but rarely reported in Asian, especially in Chinese Han population. We aimed to identify the frequencies of these seven mutations of LRRK2 in Chinese early-onset PD (EOPD) patients and analyze the phenotypes. One hundred and thirty seven EOPD patients were enrolled for genetic testing. The seven disease-causing mutations of LRRK2 were carried out by target sequencing using Illumina HiSeq 2000 Sequencer. The identified variants were further confirmed by Sanger sequence. The clinical materials were investigated retrospectively. Only one patient (0.73%) was found carrying pathogenetic LRRK2 mutation of R1441C. The age at onset of the female patient was 44. She manifested typical motor symptoms of PD and responded well to levodopa therapy. Longitudinal evaluation showed progression of motor symptoms and depression but no cognitive impairment. The dopamine transporter (DAT) imaging via [11C]-2β-carbomethoxy-3β-(4-fluorophenyl) tropan (CFT) and Positron emission computed tomography (PET) revealed typical dopamine transporter uptake reduction. The LRRK2 R1441C mutation was found in a Chinese EOPD patient for the first time. The manifestations of LRRK2-R1441C carriers were indistinguishable from sporadic PD patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Clinical, biochemical and morphologic diagnostic markers in an infant male pseudohermaphrodite patient with compound heterozygous mutations (G115D/R246W) in SRD5A2 gene.

    PubMed

    Fernández-Cancio, Mónica; Rodó, Joan; Andaluz, Pilar; Martínez de Osaba, María Jesús; Rodríguez-Hierro, Francisco; Esteban, Cristina; Carrascosa, Antonio; Audí, Laura

    2004-01-01

    A patient with male pseudohermaphroditism and clinical diagnosis of partial androgen insensitivity in the neonatal period was studied at pubertal age for a molecular diagnosis. Hormone studies were conducted at baseline and under hCG stimulation for testosterone and dihydrotestosterone determinations at 2 months of age. Gonadectomy was performed at 4 months. At the age of 13 years genital skin fibroblasts were studied for androgen binding and 5alpha-reductase activity and peripheral blood DNA was available for androgen receptor (AR) and 5alpha-reductase (SRD5A2) gene analysis. Exons 1-8 of AR gene and exons 1-5 of SRD5A2 gene were sequenced. AR gene coding sequences were normal. SRD5A2 gene analysis revealed two heterozygote mutations (G115D and R246W), with the mother carrying the G115D and the father the R246W mutations. The compound heterozygote mutations in SRD5A2 gene explained an extremely low 5alpha-reductase enzyme activity in genital skin fibroblasts. Revision of hormonal data from the neonatal period revealed an increased testosterone-to-dihydrotestosterone ratio at the end of an hCG stimulation test, which concurred with the molecular diagnosis. Testis morphology at 4 months of age was normal. Clinical and biochemical differential diagnosis between partial androgen insensitivity syndrome and 5alpha-reductase enzyme deficiency is difficult in the neonatal period and before puberty. Our results show that in our patient the testosterone-to-dihydrotestosterone ratio would have adequately orientated the diagnosis. The two mutations in SRD5A2 gene have been described in patients of different lineages, though not in combination to date. Testis morphology showed that, during early infancy, the 5alpha-reductase deficiency may not have affected interstitial or tubular development. Copyright (c) 2004 S. Karger AG, Basel.

  11. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    PubMed

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype.

  12. Investigation of Truncated Waveguides

    NASA Technical Reports Server (NTRS)

    Lourie, Nathan P.; Chuss, David T.; Henry, Ross M.; Wollack, Edward J.

    2013-01-01

    The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to sub-millimeter wavebands.

  13. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia.

    PubMed

    Nieminen, P; Arte, S; Tanner, D; Paulin, L; Alaluusua, S; Thesleff, I; Pirinen, S

    2001-10-01

    Development of dentition is controlled by numerous genes, as has been shown by experimental animal studies and mutations that have been identified by genetic studies in man. Here we report a nonsense mutation in the PAX9 gene that is associated with molar tooth agenesis in a Finnish family. The A340T transversion creates a stop codon at lysine 114, and truncates the coded PAX9 protein at the end of the DNA-binding paired-box. All the affected members of the family were heterozygous for the mutation. The tooth agenesis phenotype involves all permanent second and third molars and most of the first molars and resembles the earlier reported phenotype that was also associated with a PAX9 mutation. The phenotype is presumably a consequence of haploinsufficiency of PAX9. In another Finnish family with molar tooth agenesis, we could not find similar sequence changes in PAX9.

  14. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome

    PubMed Central

    El Husny, Antonette Souto; Raiol-Moraes, Milene; Fernandes-Caldato, Milena Coelho; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the João de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease. PMID:25328414

  15. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy

    PubMed Central

    Halbritter, Jan; Porath, Jonathan D.; Diaz, Katrina A.; Braun, Daniela A.; Kohl, Stefan; Chaki, Moumita; Allen, Susan J.; Soliman, Neveen A.; Hildebrandt, Friedhelm

    2015-01-01

    Nephronophthisis-related ciliopathies (NPHP-RC) are autosomal-recessive cystic kidney diseases. More than 13 genes are implicated in its pathogenesis to date, accounting for only 40 % of all cases. High-throughput mutation screenings of large patient cohorts represent a powerful tool for diagnostics and identification of novel NPHP genes. We here performed a new high-throughput mutation analysis method to study 13 established NPHP genes (NPHP1–NPHP13) in a worldwide cohort of 1,056 patients diagnosed with NPHP-RC. We first applied multiplexed PCR-based amplification using Fluidigm Access-Array™ technology followed by barcoding and next-generation resequencing on an Illumina platform. As a result, we established the molecular diagnosis in 127/1,056 independent individuals (12.0 %) and identified a single heterozygous truncating mutation in an additional 31 individuals (2.9 %). Altogether, we detected 159 different mutations in 11 out of 13 different NPHP genes, 99 of which were novel. Phenotypically most remarkable were two patients with truncating mutations in INVS/NPHP2 who did not present as infants and did not exhibit extrarenal manifestations. In addition, we present the first case of Caroli disease due to mutations in WDR19/NPHP13 and the second case ever with a recessive mutation in GLIS2/NPHP7. This study represents the most comprehensive mutation analysis in NPHP-RC patients, identifying the largest number of novel mutations in a single study worldwide. PMID:23559409

  16. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome.

    PubMed

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander; Jhangiani, Shalini N; Gambin, Tomasz; Alcino, Michele Calijorne; Penney, Samantha; Saraiva, Jorge M; Hove, Hanne; Skovby, Flemming; Kayserili, Hülya; Estrella, Elicia; Vulto-van Silfhout, Anneke T; Steehouwer, Marloes; Muzny, Donna M; Sutton, V Reid; Gibbs, Richard A; Lupski, James R; Brunner, Han G; van Bon, Bregje W M; Carvalho, Claudia M B

    2015-04-02

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical signaling gene WNT5A underlie a subset of autosomal-dominant Robinow syndrome (DRS) cases, but most individuals with DRS remain without a molecular diagnosis. We performed whole-exome sequencing in four unrelated DRS-affected individuals without coding mutations in WNT5A and found heterozygous DVL1 exon 14 mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within the penultimate exon of DVL1. In five families in which samples from unaffected parents were available, the variants were demonstrated to represent de novo mutations. All variant alleles are predicted to result in a premature termination codon within the last exon, escape nonsense-mediated decay (NMD), and most likely generate a C-terminally truncated protein with a distinct -1 reading-frame terminus. Study of the transcripts extracted from affected subjects' leukocytes confirmed expression of both wild-type and variant alleles, supporting the hypothesis that mutant mRNA escapes NMD. Genomic variants identified in our study suggest that truncation of the C-terminal domain of DVL1, a protein hypothesized to have a downstream role in the Wnt-5a non-canonical pathway, is a common cause of DRS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Ultra-Deep Sequencing of Mouse Mitochondrial DNA: Mutational Patterns and Their Origins

    PubMed Central

    Freyer, Christoph; Hagström, Erik; Ingman, Max; Larsson, Nils-Göran; Gyllensten, Ulf

    2011-01-01

    Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading–deficient mtDNA polymerase (mtDNA mutator mice) have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life. PMID:21455489

  18. Truncated Gaussians as tolerance sets

    NASA Technical Reports Server (NTRS)

    Cozman, Fabio; Krotkov, Eric

    1994-01-01

    This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.

  19. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment

    PubMed Central

    Marçais, Christophe; Verges, Bruno; Charrière, Sybil; Pruneta, Valérie; Merlin, Micheline; Billon, Stéphane; Perrot, Laurence; Drai, Jocelyne; Sassolas, Agnès; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles; Durlach, Vincent; Moulin, Philippe

    2005-01-01

    While type 1 hyperlipidemia is associated with lipoprotein lipase or apoCII deficiencies, the etiology of type 5 hyperlipidemia remains largely unknown. We explored a new candidate gene, APOA5, for possible causative mutations in a pedigree of late-onset, vertically transmitted hyperchylomicronemia. A heterozygous Q139X mutation in APOA5 was present in both the proband and his affected son but was absent in 200 controls. It was subsequently found in 2 of 140 cases of hyperchylomicronemia. Haplotype analysis suggested the new Q139X as a founder mutation. Family studies showed that 5 of 9 total Q139X carriers had hyperchylomicronemia, 1 patient being homozygote. Severe hypertriglyceridemia in 8 heterozygotes was strictly associated with the presence on the second allele of 1 of 2 previously described triglyceride-raising minor APOA5 haplotypes. Furthermore, ultracentrifugation fraction analysis indicated in carriers an altered association of Apoa5 truncated and WT proteins to lipoproteins, whereas in normal plasma, Apoa5 associated with VLDL and HDL/LDL fractions. APOB100 kinetic studies in 3 severely dyslipidemic patients with Q139X revealed a major impairment of VLDL catabolism. Lipoprotein lipase activity and mass were dramatically reduced in dyslipidemic carriers, leading to severe lipolysis defect. Our observations strongly support in humans a role for APOA5 in lipolysis regulation and in familial hyperchylomicronemia. PMID:16200213

  20. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn2+ for Normal Growth and Development

    PubMed Central

    Miletta, Maria Consolata; Kernland, Kristin; Schöni, Martin H.; Petkovic, Vibor; Flück, Christa E.; Eblé, Andrée; Mullis, Primus E.

    2013-01-01

    Suboptimal dietary zinc (Zn2+) intake is increasingly appreciated as an important public health issue. Zn2+ is an essential mineral, and infants are particularly vulnerable to Zn2+ deficiency, as they require large amounts of Zn2+ for their normal growth and development. Although term infants are born with an important hepatic Zn2+ storage, adequate Zn2+ nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn2+ to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn2+ deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn2+ homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn2+ by transporting it from the cytoplasm into various intracellular organelles and by moving Zn2+ into extracellular space. Zips increase intracellular Zn2+ by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn2+ homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone. PMID:24194756

  1. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease

    PubMed Central

    Roberts, Angharad M.; Ware, James S.; Herman, Daniel S.; Schafer, Sebastian; Baksi, John; Bick, Alexander G.; Buchan, Rachel J.; Walsh, Roddy; John, Shibu; Wilkinson, Samuel; Mazzarotto, Francesco; Felkin, Leanne E.; Gong, Sungsam; MacArthur, Jacqueline A.L.; Cunningham, Fiona; Flannick, Jason; Gabriel, Stacey B.; Altshuler, David M.; Macdonald, Peter S.; Heinig, Matthias; Keogh, Anne M.; Hayward, Christopher S.; Banner, Nicholas R.; Pennell, Dudley J.; O’Regan, Declan; San, Tan Ru; de Marvao, Antonio; Dawes, Timothy J. W.; Gulati, Ankur; Birks, Emma J.; Yacoub, Magdi H.; Radke, Michael; Gotthardt, Michael; Wilson, James G.; O’Donnell, Christopher J.; Prasad, Sanjay K.; Barton, Paul J.R.; Fatkin, Diane; Hubner, Norbert; Seidman, J. G.; Seidman, Christine E.; Cook, Stuart A.

    2015-01-01

    The recent discovery of heterozygous human mutations that truncate full-length titin (TTN, an abundant structural, sensory, and signaling filament in muscle) as a common cause of end-stage dilated cardiomyopathy (DCM) provides new prospects for improving heart failure management. However, realization of this opportunity has been hindered by the burden of TTN truncating variants (TTNtv) in the general population and uncertainty about their consequences in health or disease. To elucidate the effects of TTNtv, we coupled TTN gene sequencing with cardiac phenotyping in 5,267 individuals across the spectrum of cardiac physiology, and integrated these data with RNA and protein analyses of human heart tissues. We report diversity of TTN isoform expression in the heart, define the relative inclusion of TTN exons in different isoforms, and demonstrate that these data, coupled with TTNtv position, provide a robust strategy to discriminate pathogenic from benign TTNtv. We show that TTNtv is the most common genetic cause for DCM in ambulant patients in the community, identify clinically important manifestations of TTNtv-positive DCM, and define the penetrance and outcomes of TTNtv in the general population. By integrating genetic, transcriptome, and protein analyses we provide evidence for a length-dependent, dominant negative mechanism of disease. These data inform diagnostic criteria and management strategies for TTNtv-positive DCM patients and for TTNtv that are identified as incidental findings. PMID:25589632

  2. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease.

    PubMed

    Roberts, Angharad M; Ware, James S; Herman, Daniel S; Schafer, Sebastian; Baksi, John; Bick, Alexander G; Buchan, Rachel J; Walsh, Roddy; John, Shibu; Wilkinson, Samuel; Mazzarotto, Francesco; Felkin, Leanne E; Gong, Sungsam; MacArthur, Jacqueline A L; Cunningham, Fiona; Flannick, Jason; Gabriel, Stacey B; Altshuler, David M; Macdonald, Peter S; Heinig, Matthias; Keogh, Anne M; Hayward, Christopher S; Banner, Nicholas R; Pennell, Dudley J; O'Regan, Declan P; San, Tan Ru; de Marvao, Antonio; Dawes, Timothy J W; Gulati, Ankur; Birks, Emma J; Yacoub, Magdi H; Radke, Michael; Gotthardt, Michael; Wilson, James G; O'Donnell, Christopher J; Prasad, Sanjay K; Barton, Paul J R; Fatkin, Diane; Hubner, Norbert; Seidman, Jonathan G; Seidman, Christine E; Cook, Stuart A

    2015-01-14

    The recent discovery of heterozygous human mutations that truncate full-length titin (TTN, an abundant structural, sensory, and signaling filament in muscle) as a common cause of end-stage dilated cardiomyopathy (DCM) promises new prospects for improving heart failure management. However, realization of this opportunity has been hindered by the burden of TTN-truncating variants (TTNtv) in the general population and uncertainty about their consequences in health or disease. To elucidate the effects of TTNtv, we coupled TTN gene sequencing with cardiac phenotyping in 5267 individuals across the spectrum of cardiac physiology and integrated these data with RNA and protein analyses of human heart tissues. We report diversity of TTN isoform expression in the heart, define the relative inclusion of TTN exons in different isoforms (using the TTN transcript annotations available at http://cardiodb.org/titin), and demonstrate that these data, coupled with the position of the TTNtv, provide a robust strategy to discriminate pathogenic from benign TTNtv. We show that TTNtv is the most common genetic cause of DCM in ambulant patients in the community, identify clinically important manifestations of TTNtv-positive DCM, and define the penetrance and outcomes of TTNtv in the general population. By integrating genetic, transcriptome, and protein analyses, we provide evidence for a length-dependent mechanism of disease. These data inform diagnostic criteria and management strategies for TTNtv-positive DCM patients and for TTNtv that are identified as incidental findings.

  3. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach.

  4. Relative high frequency of the c.255delA parkin gene mutation in Spanish patients with autosomal recessive parkinsonism

    PubMed Central

    Munoz, E; Tolosa, E; Pastor, P; Marti, M; Valldeoriola, F; Campdelacreu, J; Oliva, R

    2002-01-01

    Objectives: To search for the presence of parkin gene mutations in Spanish patients with Parkinson's disease (PD) and characterise the phenotype associated with these mutations. Methods: Thirty seven PD patients with either early onset or autosomal recessive pattern of inheritance were selected for genetic study. Results: Mutations were identified in seven index patients (19%). Homozygous mutations were detected in six patients and a heterozygous mutation in one. The age at onset was lower in patients with mutations than in patients without mutations. Dystonia at onset was present in two patients with parkin gene mutations. The disease began in two patients with postural tremor in the upper limbs mimicking essential tremor. Four patients exhibited a long term response to dopamine agonists. The c.255delA mutation was identified in four unrelated families. This is a frameshift mutation leading to protein truncation. Conclusions: Parkin gene mutations are present in Spanish patients with early onset and/or an autosomal recessive parkinsonism. The c.255delA is the most frequent mutation found, suggesting a relative high prevalence in the Spanish population. PMID:12397156

  5. One novel Dravet syndrome causing mutation and one recurrent MAE causing mutation in SCN1A gene.

    PubMed

    Yordanova, Iglika; Todorov, Tihomir; Dimova, Petia; Hristova, Dimitrina; Tincheva, Radka; Litvinenko, Ivan; Yotovska, Olga; Kremensky, Ivo; Todorova, Albena

    2011-04-25

    Mutations in SCN1A gene, encoding the voltage-gated sodium channel α1-subunit, are found to be associated with severe myoclonic epilepsy in infancy or Dravet syndrome (DS), but only rarely with the myoclonic astatic epilepsy (MAE, or Doose syndrome). We report on two patients with SCN1A mutations and severe epilepsy within the spectrum of generalized epilepsy with febrile seizures plus syndrome (GEFS+), the phenotypes being consistent with DS and MAE, respectively. Analysis of SCN1A revealed a heterozygous de novo frameshift mutation (c.4205_4208delGAAA) in the patient with DS, and a recurrent missense mutation (c.3521C>G) in that suffering from MAE. The missense mutation has been reported in patients with neurological diseases of various manifestations, which suggests that this variability is likely to result from the modifying effects of other genetic or environmental factors. DS phenotype has been mainly found associated with truncation mutations, while predominantly missense mutations and very few prematurely terminating substitutions have been reported in GEFS+ patients.

  6. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta.

    PubMed

    Kim, J W; Seymen, F; Lee, K E; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Shin, T J; Kyun, H K; Simmer, J P; Hu, J C-C

    2013-10-01

    Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.

  7. Thyroglobulin gene mutations in Chinese patients with congenital hypothyroidism.

    PubMed

    Hu, Xuyun; Chen, Rongyu; Fu, Chunyun; Fan, Xin; Wang, Jin; Qian, Jiale; Yi, Shang; Li, Chuan; Luo, Jingsi; Su, Jiasun; Zhang, Shujie; Xie, Bobo; Zheng, Haiyang; Lai, Yunli; Chen, Yun; Li, Hongdou; Gu, Xuefan; Chen, Shaoke; Shen, Yiping

    2016-03-05

    Mutations in Thyroglobulin (TG) are common genetic causes of congenital hypothyroidism (CH). But the TG mutation spectrum and its frequency in Chinese CH patients have not been investigated. Here we conducted a genetic screening of TG gene in a cohort of 382 Chinese CH patients. We identified 22 rare non-polymorphic variants including six truncating variants and 16 missense variants of unknown significance (VUS). Seven patients carried homozygous pathogenic variants, and three patients carried homozygous or compound heterozygous VUS. 48 out of 382 patients carried one of 18 heterozygous VUS which is significantly more often than their occurrences in control cohort (P < 0.0001). Unique to Asian population, the c.274+2T>G variant is the most common pathogenic variant with an allele frequency of 0.021. The prevalence of CH due to TG gene defect in Chinese population was estimated to be approximately 1/101,000. Our study uncovered ethnicity specific TG mutation spectrum and frequency.

  8. Molecular basis of severe factor XI deficiency in seven families from the west of France. Seven novel mutations, including an ancient Q88X mutation.

    PubMed

    Quélin, F; Trossaërt, M; Sigaud, M; Mazancourt, P D E; Fressinaud, E

    2004-01-01

    Inherited factor (F)XI deficiency is a rare disorder in the general population, though it is commonly found in individuals of Ashkenazi Jewish ancestry. In particular, two mutations--a stop mutation (type II) and a missense mutation (type III)--which are responsible for FXI deficiency, predominate. The bleeding tendency associated with plasma FXI deficiency in patients is variable, with approximately 50% of patients exhibiting excessive post-traumatic or postsurgical bleeding. In this study, we identified the molecular basis of FXI deficiency in 10 patients belonging to six unrelated families of the Nantes area in France and one family of Lebanese origin. As in Ashkenazi Jewish or in French Basque patients, we have identified a new ancient mutation in exon 4 resulting in Q88X, specific to patients from Nantes, that can result in a severely truncated polypeptide. Homozygous Q88X was found in a severely affected patient with an inhibitor to FXI and in three other unrelated families, either as homozygous, heterozygous or compound heterozygous states. Other identified mutations are two nonsense mutations in the FXI gene, in exon 7 and 15, resulting in R210X and C581X, respectively, which were identified in three families. A novel insertion in exon 3 (nucleotide 137 + G), which causes a stop codon, was characterized. Finally, sequence analysis of all 15 exons of the FXI gene revealed three missense mutations resulting in G336R and G350A (exon 10) and T575M (exon 15). Two mutations (T575M and G350A) with discrepant antigen and functional values are particularly interesting because most of the described mutations are associated with the absence of secreted protein.

  9. Tay-Sachs disease in an Arab family due to c.78G>A HEXA nonsense mutation encoding a p.W26X early truncation enzyme peptide.

    PubMed

    Haghighi, Alireza; Masri, Amira; Kornreich, Ruth; Desnick, Robert J

    2011-12-01

    Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient β-hexosaminidase A activity due to β-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient β-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations.

  10. Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia.

    PubMed

    Sirmaci, Asli; Spiliopoulos, Michail; Brancati, Francesco; Powell, Eric; Duman, Duygu; Abrams, Alex; Bademci, Guney; Agolini, Emanuele; Guo, Shengru; Konuk, Berrin; Kavaz, Asli; Blanton, Susan; Digilio, Maria Christina; Dallapiccola, Bruno; Young, Juan; Zuchner, Stephan; Tekin, Mustafa

    2011-08-12

    KBG syndrome is characterized by intellectual disability associated with macrodontia of the upper central incisors as well as distinct craniofacial findings, short stature, and skeletal anomalies. Although believed to be genetic in origin, the specific underlying defect is unknown. Through whole-exome sequencing, we identified deleterious heterozygous mutations in ANKRD11 encoding ankyrin repeat domain 11, also known as ankyrin repeat-containing cofactor 1. A splice-site mutation, c.7570-1G>C (p.Glu2524_Lys2525del), cosegregated with the disease in a family with three affected members, whereas in a simplex case a de novo truncating mutation, c.2305delT (p.Ser769GlnfsX8), was detected. Sanger sequencing revealed additional de novo truncating ANKRD11 mutations in three other simplex cases. ANKRD11 is known to interact with nuclear receptor complexes to modify transcriptional activation. We demonstrated that ANKRD11 localizes mainly to the nuclei of neurons and accumulates in discrete inclusions when neurons are depolarized, suggesting that it plays a role in neural plasticity. Our results demonstrate that mutations in ANKRD11 cause KBG syndrome and outline a fundamental role of ANKRD11 in craniofacial, dental, skeletal, and central nervous system development and function.

  11. Mutations