Sample records for hexadecanoic acid

  1. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria.

    PubMed Central

    Fautz, E; Rosenfelder, G; Grotjahn, L

    1979-01-01

    The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group. PMID:118159

  2. Chemical composition of the leaf and stem essential oil of Adenophorae Radix

    NASA Astrophysics Data System (ADS)

    Lan, Weijie; Lin, Shang; Li, Xindan; Zhang, Qing; Qin, Wen

    2017-03-01

    The chemical composition of the essential oil extracted from leaves and stems of Adenophorae Radix was determined for the first time in this study. Twenty-six compounds were identified by gas chromatography coupled to mass spectrometry (GC-MS). n-Hexadecanoic acid (29.14%), 9,12-octadecadienoic acid (Z,Z)- (17.22%), hexadecanoic acid, methyl ester(8.98%), 9-octadecenoic acid, methyl ester, (E)- (7.03%), 9,12-octadecadienoic acid (Z,Z)-, methyl ester (5.93%), phytol (5.50%), and estradiol (4.43%) were measured as the major compounds in stem oil. The leaf essential oil was dominated by n-hexadecanoic acid (50.78%), 9-octadecenoic acid, methyl ester, (E)- (9.04%), phytol (8.47%), d-mannitol (5.81%), 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (4.31%), hexadecanoic acid, methyl ester (2.19%) and 9,12-octadecadienoic acid (Z,Z)-(1.7%). The leaves yield was 0.12% (v/w) and the stems yield showed only 0.073% (v/w). The results might provide reference basis for further exploration of its application value.

  3. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoicmore » acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging.« less

  4. Pheromone biosynthetic pathways in the moths Heliothis subflexa and Heliothis virescens.

    PubMed

    Choi, Man-Yeon; Groot, Astrid; Jurenka, Russell A

    2005-06-01

    Sex pheromones of many moth species have relatively simple structures consisting of a hydrocarbon chain with a functional group and one to several double bonds. These sex pheromones are derived from fatty acids through specific biosynthetic pathways. We investigated the incorporation of deuterium-labeled tetradecanoic, hexadecanoic, and octadecanoic acid precursors into pheromone components of Heliothis subflexa and Heliothis virescens. The two species utilize (Z)11-hexadecenal as the major pheromone component, which is produced by Delta11 desaturation of hexadecanoic acid. H. subflexa also produced (Z)11-hexadecanol and (Z)-11-hexadecenyl acetate via Delta11 desaturation. In H. subflexa, octadecanoic acid was used to biosynthesize the minor pheromone components (Z)9-hexadecenal, (Z)9-hexadecenol, and (Z)9-hexadecenyl acetate. These minor components are produced by Delta11 desaturation of octadecanoic acid followed by one round of chain-shortening. In contrast, H. virescens used hexadecanoic acid as a substrate to form (Z)11-hexadecenal and (Z)11-hexadecenol and hexadecenal. H. virescens also produced (Z)9-tetradecenal by Delta11 desaturation of the hexadecanoic acid followed by one round of chain-shortening and reduction. Tetradecanoic acid was not utilized as a precursor to form Z9-14:Ald in H. virescens. This labeling pattern indicates that the Delta11 desaturase is the only active desaturase present in the pheromone gland cells of both species.

  5. Metabonomics study on Polygonum multiflorum induced liver toxicity in rats by GC-MS

    PubMed Central

    Zhang, Yuan; Wang, Nannan; Zhang, Meiling; Diao, Tingting; Tang, Jingyue; Dai, Mingzhu; Chen, Suhong; Lin, Guanyang

    2015-01-01

    Polygonum multiflorum, a traditional Chinese medicinal herb, is widely used in liver and liver nourishing. Recent years, drug regulatory departments reported that Polygonum multiflorum caused serious adverse reaction in clinic, especially liver injury. In this study, we detected the changes in rat serum and liver tissue metabolites through gas chromatography-mass spectrometry (GC-MS). Mass spectrometry, partial least squares-discriminate analysis (PLS-DA) and other diversified techniques were used to analyze the differences among their metabolites. Compared to the control group, the serum concentrations of L-threonine and serine in water extraction groups increased. The serum concentrations of 9,12-octadecadienoic acid, hexadecanoic acid, oleic acid, D-glucose and octadecanoic acid in alcohol extraction groups increased, while lactic acid decreased to a great extent. For liver tissue, compared to the control group, the concentrations of myo-inositol, oleic acid and cholesterol in water extraction groups increased, while those of hexadecanoic acid, octadecanoic acid, ribitol and butanedioic acid decreased to a great extent. The concentrations of myo-inositol, phosphoric acid, uridine, oleic acid, cholesterol and butanoic acid in alcohol extraction groups increased to a great extent, while those of hexadecanoic acid, octadecanoic acid, ribitol and butanedioic acid decreased. The results indicate that Polygonum multiflorum induces the metabolic disorders of energy metabolism, amino acid and lipid metabolism. What’s more, liver injury of alcohol extraction group was more serious than group of water extraction. PMID:26379894

  6. Identification of a novel fatty acid elongase with a wide substrate specificity from arachidonic acid-producing fungus Mortierella alpina 1S-4.

    PubMed

    Sakuradani, Eiji; Nojiri, Masutoshi; Suzuki, Haruna; Shimizu, Sakayu

    2009-09-01

    The isolation and characterization of a gene (MALCE1) that encodes a fatty acid elongase from arachidonic acid-producing fungus Mortierella alpina 1S-4 are described. MALCE1 was confirmed to encode a fatty acid elongase by its expression in yeast Saccharomyces cerevisiae, resulting in the accumulation of 18-, 19-, and 20-carbon monounsaturated fatty acids and eicosanoic acid. Furthermore, the MALCE1 yeast transformant efficiently elongated exogenous 9-hexadecenoic acid, 9,12-octadecadienoic acid, and 9,12,15-octadecatrienoic acid. The MALCE1 gene-silenced strain obtained from M. alpina 1S-4 exhibited a low content of octadecanoic acid and a high content of hexadecanoic acid, compared with those in the wild strain. The enzyme encoded by MALCE1 was demonstrated to be involved in the conversion of hexadecanoic acid to octadecanoic acid, its main role in M. alpina 1S-4.

  7. 16-Cyclopentadienyl tricarbonyl 99mTc 16-oxo-hexadecanoic acid: synthesis and evaluation of fatty acid metabolism in mouse myocardium.

    PubMed

    Lee, Byung Chul; Kim, Dong Hyun; Lee, Iljung; Choe, Yearn Seong; Chi, Dae Yoon; Lee, Kyung-Han; Choi, Yong; Kim, Byung-Tae

    2008-06-26

    We synthesized 16-cyclopentadienyl tricarbonyl 99mTc 16-oxo-hexadecanoic acid (99mTc-CpTT-16-oxo-HDA, 1) and investigated its potential as a radiotracer for evaluating fatty acid metabolism in myocardium. Radiotracer 1 was synthesized in 22.6 +/- 6.3% decay-corrected yield by a double ligand transfer reaction between the ferrocene adduct of methyl hexadecanoate ( 2) and Na99mTcO 4 in the presence of Cr(CO)6 and CrCl3, followed by hydrolysis of the methyl ester group. Radiotracer 1 was found to be chemically stable (99% at 6 h) when incubated in human serum. A tissue distribution study in mice showed that high radioactivity accumulated in heart (9.03%ID/g at 1 min and 5.41%ID/g at 5 min postinjection) with rapid clearance and that heart to blood uptake ratios increased with time (2.13 at 5 min and 3.76 at 30 min postinjection). Metabolite analysis of the heart tissues using a simple extraction method showed that 99mTc-CpTT-4-oxo-butyric acid was detected as the major radioactive metabolite by HPLC, suggesting that 1 is metabolized to 99mTc-CpTT-4-oxo-butyric acid via beta-oxidation in myocardium.

  8. Chemical composition of the essential oils of Centaurea tomentella Hand.-Mazz. and C. haussknechtii Boiss. (Asteraceae) collected wild in Turkey and their activity on microorganisms affecting historical art craft.

    PubMed

    Bruno, Maurizio; Modica, Aurora; Catinella, Giorgia; Canlı, Cem; Arasoglu, Tülin; Çelik, Sezgin

    2018-04-18

    In the present study the chemical composition of the essential oils from aerial parts of Centaurea tomentella Hand.-Mazz. and C. haussknechtii Boiss. collected in Turkey was evaluated by GC and GC-MS. The main components of C. tomentella L. were hexadecanoic acid (19.7%), caryophyllene oxide (6.6%) and spathulenol (4.8%) whereas C. haussknechtii was rich in hexadecanoic acid (26.2%), (Z,Z)-9,12-octadecadienoic acid (19.3%), heptacosane (5.3%) and nonacosane (5.1%). Antibacterial and antifungal activities against some microorganisms infesting historical art craft, were also determined.

  9. Identification and biosynthesis of novel male specific esters in the wings of the tropical butterfly, Bicyclus martius sanaos.

    PubMed

    Wang, Hong-Lei; Brattström, Oskar; Brakefield, Paul M; Francke, Wittko; Löfstedt, Christer

    2014-06-01

    Representatives of the highly speciose tropical butterfly genus Bicyclus (Lepidoptera: Nymphalidae) are characterized by morphological differences in the male androconia, a set of scales and hair pencils located on the surface of the wings. These androconia are assumed to be associated with the release of courtship pheromones. In the present study, we report the identification and biosynthetic pathways of several novel esters from the wings of male B. martius sanaos. We found that the volatile compounds in this male butterfly were similar to female-produced moth sex pheromones. Components associated with the male wing androconial areas were identified as ethyl, isobutyl and 2-phenylethyl hexadecanoates and (11Z)-11-hexadecenoates, among which the latter are novel natural products. By topical application of deuterium-labelled fatty acid and amino acid precursors, we found these pheromone candidates to be produced in patches located on the forewings of the males. Deuterium labels from hexadecanoic acid were incorporated into (11Z)-11-hexadecenoic acid, providing experimental evidence of a Δ11-desaturase being active in butterflies. This unusual desaturase was found previously to be involved in the biosynthesis of female-produced sex pheromones of moths. In the male butterflies, both hexadecanoic acid and (11Z)-11-hexadecenoic acid were then enzymatically esterified to form the ethyl, isobutyl and 2-phenylethyl esters, incorporating ethanol, isobutanol, and 2-phenylethanol, derived from the corresponding amino acids L-alanine, L-valine, and L-phenylalanine.

  10. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  11. Fatty acid constituents of Peganum harmala plant using Gas Chromatography-Mass Spectroscopy.

    PubMed

    Moussa, Tarek A A; Almaghrabi, Omar A

    2016-05-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC-MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.

  12. Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy

    PubMed Central

    Moussa, Tarek A.A.; Almaghrabi, Omar A.

    2015-01-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol. PMID:27081366

  13. Constituents of leaves and flowers essential oils of Helichrysum pallasii (Spreng.) Ledeb. growing wild in Lebanon.

    PubMed

    Formisano, Carmen; Mignola, Enrico; Rigano, Daniela; Senatore, Felice; Arnold, Nelly Apostolides; Bruno, Maurizio; Rosselli, Sergio

    2009-02-01

    The chemical compositions of the essential oils obtained from leaves and flowers of Helichrysum pallasii were analyzed by gas chromatography and gas chromatography-mass spectrometry. Among the 102 identified constituents, hexadecanoic acid (16.2%), (Z,Z)-9,12-octadecadienoic acid (6.8%), tetradecanoic acid (2.6%), and (Z)-caryophyllene (4.2%) were the main constituent of the oil from leaves, while in the oil from flowers hexadecanoic acid (14.7%), (Z,Z)-9,12-octadecadienoic acid (14.2%), (Z)-caryophyllene (3.6%), and delta-cadinene (3.1%) predominated. The oils were both characterized by sesquiterpenes (33.4% for leaves and 33.7% for flowers, respectively) and fatty acids and esters (30.3% in leaves and 35% in flowers, respectively). The in vitro activity of the essential oils of the plant against some microorganisms in comparison with chloramphenicol by the broth dilution method was determined. The oils exhibited a weak activity as inhibitors of growth of Staphylococcus epidermidis in vitro (minimum inhibitory concentration = 100 microg/mL).

  14. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  15. The Fatty Acid Composition of Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol of Higher Plants in Relation to Chilling Sensitivity

    PubMed Central

    Kenrick, Janette R.; Bishop, David G.

    1986-01-01

    The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol has been measured in the leaves of 27 species of higher plants from six families whose members differed in their degrees of chilling sensitivity. The content of high melting point fatty acids (represented by the sum of hexadecanoic, trans-3-hexadecenoic and octadecanoic acids) in phosphatidylglycerols varied little between members of the same plant family and was not obviously related to the relative chilling sensitivity of members of that family. The saturated fatty acid content (hexadecanoic + octadecanoic acids) of sulfoquinovosyldiacylglycerols also appeared to be characteristic of a plant family, although some exceptions were found. In one case, (Carica papaya) the content of saturated fatty acids in sulfoquinovosyldiacylglycerol was sufficiently high to suggest that this lipid could undergo phase separations above 0°C. It is concluded that the content of high melting point fatty acids in leaf phosphatidylglycerol is not a direct indication of the chilling sensitivity of a plant, but rather may be a reflection of the genetic origin of that plant. PMID:16664962

  16. Lipid composition of positively buoyant eggs of reef building corals

    NASA Astrophysics Data System (ADS)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 μm diameter lipid droplets which fill most of the central mass of the coral eggs.

  17. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.

    PubMed

    Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise

    2009-05-31

    Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.

  18. Triterpene Esters and Biological Activities from Edible Fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae

    PubMed Central

    Fernandes, Caio P.; Corrêa, Arthur L.; Lobo, Jonathas F. R.; Caramel, Otávio P.; de Almeida, Fernanda B.; Castro, Elaine S.; Souza, Kauê F. C. S.; Burth, Patrícia; Amorim, Lidia M. F.; Santos, Marcelo G.; Ferreira, José Luiz P.; Falcão, Deborah Q.; Carvalho, José C. T.; Rocha, Leandro

    2013-01-01

    Manilkara subsericea (Mart.) Dubard (Sapotaceae) is popularly known in Brazil as “guracica.” Studies with Manilkara spp indicated the presence of triterpenes, saponins, and flavonoids. Several activities have been attributed to Manilkara spp such as antimicrobial, antiparasitic and antitumoral, which indicates the great biological potential of this genus. In all, 87.19% of the hexanic extract from fruits relative composition were evaluated, in which 72.81% were beta- and alpha-amyrin esters, suggesting that they may be chemical markers for M. subsericea. Hexadecanoic acid, hexadecanoic acid ethyl ester, (E)-9-octadecenoic acid ethyl ester, and octadecanoic acid ethyl ester were also identified. Ethanolic crude extracts from leaves, stems, and hexanic extract from fruits exhibited antimicrobial activity against Staphylococcus aureus ATCC25923. These extracts had high IC50 values against Vero cells, demonstrating weak cytotoxicity. This is the first time, to our knowledge, that beta- and alpha-amyrin caproates and caprylates are described for Manilkara subsericea. PMID:23509702

  19. Lysis of Bacillus subtilis Cells by Glycerol and Sucrose Esters of Fatty Acids

    PubMed Central

    Tsuchido, Tetsuaki; Ahn, Yung-Hoon; Takano, Mitsuo

    1987-01-01

    The lytic action of glycerol and sucrose esters of fatty acids with different carbon chain lengths on the exponentially growing cells of Bacillus subtilis 168 was investigated. Of each series of esters, glycerol dodecanoate and sucrose hexadecanoate were the most active. Lysis at 1 h after the addition of 0.1 mM glycerol dodecanoate or 20 μg of sucrose hexadecanoate per ml was 81 or 79%, respectively, as evaluated by the reduction in optical density. During this treatment a great loss of viability occurred that preceded lysis. The results that were obtained suggest that autolysis is induced by these esters. The esters caused morphological changes in the cells, but a seeming adaptation of the cells to esters was seen. Images PMID:16347300

  20. Lipid monolayer structure and interactions in the presence of peptides and proteins

    NASA Astrophysics Data System (ADS)

    Freites, Juan Alfredo

    Structural aspects of two simple model systems, protein-lipid monolayer and peptide-lipid monolayer, were studied by experimental and computer simulation techniques. In both cases, both the choice of system and the approach employed to studying it, were motivated by specific biological problems. The interaction of annexin A1 with monolayers of dipalmitoylphosphatidylcholine (DPPC) was studied by fluorescence microscopy as a function of lipid monolayer phase and pH. It was shown that the annexin A1-DPPC interaction depends strongly on both the domain structure and phase behavior of the DPPC monolayer, and only weakly on the subphase pH. Annexin A1 was found to be line-active, adsorbing preferentially at phase boundaries. Also, annexin A1 was found to form networks in the presence of a domain structure in the lipid monolayer. Molecular dynamics simulations were carried out on a model system composed of a surfactant protein B peptide, SP-B1--25, and a monolayer of hexadecanoic acid. A detailed structural characterization was performed as a function of the lipid monolayer specic area. It was found that the peptide remains inserted in the monolayer up to values of specific area corresponding to an untilted condensed phase of the pure hexadecanoic acid monolayer. The system remains stable by altering the conformational order of both the anionic lipid monolayer and the peptide secondary structure, and effectively constitutes a unique disordered lipid-peptide monolayer phase. Two elements appear to be key for the constitution of this phase: an electrostatic interaction between the cationic residues of the peptide with the anionic headgroups of the lipids, and an exclusion of the aromatic residues on the hydrophobic end of the peptide from the hydrophilic and aqueous regions of the system. A direct comparison between molecular dynamics simulations and laboratory experiments was performed for hexadecanoic acid monolayer systems. In order to simulate specific points on the surface pressure vs. area isotherm, an algorithm for the control of surface pressure was developed based on previous work by Martyna, Tobias and Klein. The algorithm was implemented and tested with the hexadecanoic acid monolayer system.

  1. (-)-3 beta,4 beta-epoxyvalerenic acid from Valeriana officinalis.

    PubMed

    Dharmaratne, H Ranjith; Nanayakkara, N P; Khan, Ikhlas A

    2002-07-01

    Chemical investigation of the root extract of Valeriana officinalis afforded a new bicyclic sesquiterpene acid, (-)-3 beta,4 beta-epoxyvalerenic acid together with valerenic acid and hexadecanoic acid. The structure of the new compound was elucidated by spectroscopic data and confirmed by partial synthesis of its methyl ester from valerenic acid. Methyl (-)-3 alpha,4 alpha-epoxyvalerenate was obtained as a minor product from the above reaction.

  2. Fatty Acid Profile, Phenolics and Flavonoids Contents in Olea europaea L. Callus Culture cv. cornicabra.

    PubMed

    Rodríguez-Hernandez, Ludwi; Nájera-Gomez, Humberto; Luján-Hidalgo, Maria Celína; Ruiz-Lau, Nancy; Lecona-Guzmán, Carlos Alberto; Abud-Archila, Miguel; Ruíz-Valdiviezo, Víctor Manuel; Gutiérrez-Miceli, Federico Antonio

    2018-05-01

    Olive trees are one of the most important oil crops in the world due to the sensorial and nutritional characteristics of olive oil, such as lipid composition and antioxidant content, and the medicinal properties of its leaves. In this paper, callus formation was induced using nodal segments of olive tree (Olea europaea cv. cornicabra) as explants. Fatty acid profile, total phenolic compounds and total flavonoid compounds were determined in callus culture after 15 weeks and compared with leaf and nodal segments tissues. There was no statistical difference in phenolic compounds among leaf, nodal segments and callus culture, whereas flavonoid compounds were higher in leaf. Fatty acid profile was similar in leaf, nodal segments and callus culture and was constituted by hexadecanoic acid, octadecanoic acid, cis-9-octadecenoic acid, cis-9,12-octadecadienoic acid, cis-9,12,15-octadecatrienoic acid. Hexadecanoic acid was the main fatty acid in callus, leaf and nodal segments with 35.0, 39.0 and 40.0% (w/w), of the lipid composition, respectively. With this paper, it is being reported for the first time the capacity of callus culture to accumulate fatty acids. Our results could serve to continue studying the production of fatty acids in callus cultivation as a biotechnological tool to improve different olive cultivars.

  3. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed Central

    Kawai, Y; Moribayashi, A

    1982-01-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719

  4. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed

    Kawai, Y; Moribayashi, A

    1982-08-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.

  5. Evaluation of Fatty Acid Composition and Antioxidant Activity of Wild-Growing Mushrooms from Southwest China.

    PubMed

    Luo, Yu; Huang, Yi; Yuan, Xiaohong; Zhang, Lei; Zhang, Xinyi; Gao, Ping

    2017-01-01

    To better understand the medicinal and nutritional value of mushrooms, we studied the fatty acid (FA) compositions and DPPH scavenging abilities of 11 mushrooms from Southwest China. The crude fat (CF) contents were examined initially, then 3 methods of FA methyl esterification were compared to identify which acid treatment was the most appropriate method. Then methyl esterification methods for 12 CFs were performed with acid treatment and the FA compositions were analyzed with gas chromatography-mass spectrometry. The results showed that tetradecanoic acid (14:0), hexadecenoic acid (16:1), hexadecanoic acid (16:0), heptadecanoic acid (17:0), octadecadienoic acid (18:2), octadecenoic acid (18:1), octadecanoic acid (18:0), docosanoic acid (22:0), and tetracosanoic acid (24:0) were detected in all the samples, with large amounts of hexadecanoic acid (16:0), octadecadienoic acid (18:2), octadecenoic acid (18:1), and octadecanoic acid (18:0). Daldinia eschscholtzii and Sarcodon imbricatus had the highest ratio value of unsaturated FAs to saturated FAs (4.33 and 3.03, respectively). The DPPH scavenging ability of 12 CFs was also tested. The free radical scavenging rates of the CFs were almost < 10% at a concentration of 0.10 mg/mL, except that of S. imbricatus, which reached 81.25%, with a half-maximal inhibitory concentration of 0.054 mg/mL. This strong DPPH free radical scavenging ability of S. imbricatus may be related to α-hydroxy FA.

  6. Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa.

    PubMed

    Goodwin, C S; McCulloch, R K; Armstrong, J A; Wee, S H

    1985-04-01

    Spiral bacteria, named Campylobacter pyloridis, were obtained from endoscopic biopsies of the gastric antrum of 14 patients with active chronic gastritis. Methyl esters of their cellular fatty acids were prepared by acid-catalysed transmethylation of whole cells. Their major fatty acids were tetradecanoic acid (14:0) and cis-9,10-methyleneoctadecanoic acid (19:0 delta), with a very small amount of hexadecanoic acid (16:0). This is markedly different from the fatty acids of other Campylobacter sp. whose major fatty acids are hexadecanoic, octadecenoic (18:1) and hexadecenoic acids (16:1). This is also different from other enterobacteria. Thin-section electronmicroscopy of gastric mucosal biopsies, and negative staining of cultured C. pyloridis, revealed features that differ from those of other campylobacters so far studied. C. pyloridis has a smooth not a rugose surface and multiple unipolar flagella of the sheathed type, each with a terminal bulb. Flagellar sheaths were in continuity with the unit membrane of the outer cell wall. The proposed species C. pyloridis does not belong among the spirochaetes and its DNA composition is incompatible with membership of the genera Spirillum or Vibrio but is compatible with Campylobacter. Thus C. pyloridis is either an atypical member of the genus Campylobacter, the limits of which may have to be redefined to accommodate the new species, or a representative of a new genus.

  7. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white to yellow powder. Commercially...

  8. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  9. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  10. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  11. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  12. Biosynthesis of Cutin

    PubMed Central

    Kolattukudy, P.E.; Croteau, Rodney; Walton, T.J.

    1975-01-01

    Long chain dicarboxylic acids are constituents of the protective biopolymers cutin and suberin of plants. Cell-free extracts from the excised epidermis of Vicia faba leaves catalyzed conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with nicotinamide-adenine dinucleotide phosphate as the preferred cofactor. This enzymatic activity, located largely in the 100,000g supernatant fraction, had a pH optimum near 8. This dehydrogenase showed an apparent Km of 1.25 × 10−5m and 3.6 × 10−4m for 16-hydroxyhexadecanoic acid and NADP, respectively. Modification of the substrate, either by esterification of the carboxyl group or by introduction of another hydroxyl group at C-10, resulted in a substantial (two-thirds) decrease in the rate of reaction, and hexadecanol was not a good substrate. The enzyme was inhibited by thiol reagents such as N-ethylmaleimide and p-chloromercuribenzoate. The aldehyde intermediate was trapped by the inclusion of dinitrophenyl hydrazine in the reaction mixture, and the 16-oxo compound was regenerated and identified. Furthermore, synthetic 16-oxo-[G-3H] hexadecanoic acid was readily converted to the dicarboxylic acid by the cell-free preparation. These results demonstrate that epidermis of Vicia faba contains an ω-hydroxyacid dehydrogenase and an ω-oxoacid dehydrogenase. PMID:16659184

  13. Essential oils in the ranunculaceae family: chemical composition of hydrodistilled oils from Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum seeds.

    PubMed

    Kokoska, Ladislav; Urbanova, Klara; Kloucek, Pavel; Nedorostova, Lenka; Polesna, Lucie; Malik, Jan; Jiros, Pavel; Havlik, Jaroslav; Vadlejch, Jaroslav; Valterova, Irena

    2012-01-01

    In this study, we analyzed the chemical composition of volatile oils hydrodistilled from seeds of Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum using GC and GC/MS. In C. regalis, octadecenoic (77.79%) and hexadecanoic acid (8.34%) were the main constituents. Similarly, the oils from D. elatum and N. hispanica seeds consisted chiefly of octadecadienoic (42.83 and 35.58%, resp.), hexadecanoic (23.87 and 28.59%, resp.), and octadecenoic acid (21.67 and 19.76%, resp.). Contrastingly, the monoterpene hydrocarbons α-pinene (34.67%) and β-pinene (36.42%) were the main components of N. nigellastrum essential oil. Our results confirm the presence of essential oils in the family Ranunculaceae and suggest chemotaxonomical relationships within the representatives of the genera Consolida, Delphinium, and Nigella. In addition, the presence of various bioactive constituents such as linoleic acid, (-)-β-pinene, squalene, or carotol in seeds of D. elatum, N. hispanica, and N. nigellastrum indicates a possible industrial use of these plants. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  14. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens.

    PubMed

    Cullen, J; Phillips, M C; Shipley, G G

    1971-12-01

    1. Pseudomonas fluorescens was grown at various temperatures between 5 degrees C and 33 degrees C. The extractable lipids from organisms at various stages of growth and grown at different temperatures were examined. 2. The extractable lipids contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an ornithine-containing lipid. The relative amounts of these lipids did not vary significantly during growth or with the changes in growth temperature. 3. The major fatty acids were hexadecanoic, hexadecenoic and octadecenoic acids and the cyclopropane acids methylene-hexadecanoic and methylene-octadecanoic acids. The relative amount of unsaturated acids (including cyclopropane acids) did not change significantly during growth, but increased with decreasing temperature. 4. Phosphatidylethanolamines with different degrees of unsaturation and containing different amounts of cyclopropane acids were isolated from organisms grown at 5 degrees C and 22 degrees C and their surface and phase behaviour in water was investigated. Thermodynamic parameters for fusion and monolayer results for cyclopropane and other fatty acids were examined. 5. The surface pressure-area isotherms of phosphatidylethanolamines containing different amounts of unsaturated fatty acids show small differences but the individual isotherms remain essentially unchanged over the temperature range 5-22 degrees C. X-ray-diffraction methods show that the structures (lamellar+hexagonal) formed in water by phosphatidylethanolamine, isolated from organisms grown at 5 degrees C and 22 degrees C, are identical when compared at the respective growth temperatures. This points to a control mechanism of the physical state of the lipids that is sensitive to the operating temperature of the organism. 6. The molecular packing of cyclopropane acids is intermediate between that of the corresponding cis- and trans-monoenoic acids. However, substitution of a cyclopropane acid for a cis-unsaturated acid has insignificant effects on the molecular packing of phospholipids containing these acids.

  15. [Analysis of constituents of essential oil from the skin of water caltrop].

    PubMed

    Liang, Rui; Peng, Qi-Jun

    2006-01-01

    To analyze the constituents of essential oil from the skin of water caltrop. Water steam distillation and GC-MS were used. 58 componds were separated respectively. 56 componds being identified which were 96. 5% of the totle essential oil. Diethyl phthalate, acetamide, N-acetyl-N, N'-1,2-ethanediylbis-, isopropyl palmitate, hexadecanoic acid, Z-11 and octadecanoic acid are the main component of essential oil from the skin of water caltrop.

  16. Antituberculotic activity of actinobacteria isolated from the rare habitats.

    PubMed

    Hussain, A; Rather, M A; Shah, A M; Bhat, Z S; Shah, A; Ahmad, Z; Parvaiz Hassan, Q

    2017-09-01

    A distinctive screening procedure resulted in the isolation and identification of antituberculotic actinobacteria. In this course, a total of 125 actinobacteria were isolated from various soil samples from untapped areas in Northwestern Himalayas, India. The antibacterial screening showed that 26 isolates inhibited the growth of at least one of the tested bacterial pathogens including Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228), Bacillus subtilis (ATCC 11774), Micrococcus luteus (ATCC 10240), Escherichia coli (10536), Pseudomonas aeruginosa (ATCC 10145) and Klebsiella pneumonia (ATCC BAA-2146). The production media was optimized for the active strains by estimation of their extract value by the quantification of the ethyl acetate extract. The screening of fermentation products from the selected 26 bioactive isolates revealed that 10 strains have metabolites antagonistic against the standard H37Rv strain of Mycobacterium tuberculosis. The characterization by 16S rRNA gene sequencing and phylogenetic analysis demonstrated the diverse nature of these antituberculosis strains. The secondary metabolites of potent, rare strain, Lentzea violacea AS08 exhibited promising antituberculosis activity with minimal inhibitory concentration (MIC) of 3·9 μg ml -1 . The metabolites identified by gas chromatography-mass spectrometry (GC-MS) included, Phenol, 2,5-bis (1, 1-dimethylethyl), n-Hexadecanoic acid, Hexadecanoic acid methyl-ester, Hexadecanoic acid ethyl-ester and, 9,12-Octadecadienoyl chloride(Z,Z) are biologically significant molecules. The study presents the isolation of rare actinobacteria from untapped sites in the Northwestern Himalayas and their in vitro potential against Mycobacterium tuberculosis for their metabolites. The study revealed that exploring the untapped natural sources as one of the resourceful approaches for the discovery of new natural products. This study also provided strong evidence for the ability of rare and potent actinobacterial strains to produce bioactive compounds with antagonistic activity and these metabolites can be studied for inhibitory potential. © 2017 The Society for Applied Microbiology.

  17. [Chemical constituents from Ajuga nipponensis].

    PubMed

    He, Gui-xia; Liang, Xiao-lan; Ouyang, Wen; Yi, Gang-qiang; Li, Yun-yao; Zhao, Jian-ping; Ikhlas, Khan

    2013-12-01

    To study the chemical constituents of Ajuga nipponensis. The chemical constituents were isolated by repeated silica gel column chromatography and their structures were elucidated by phyisochemical properties and spectral analysis. Ten compounds were isolated and identified as:hexadecanoic acid(1), ajuforrestin A(2), beta-sitosterol(3), acacetin(4), apigenin(5), ajugamacrin B(6), ursolic acid(7), beta-ecdysone(8), 8-acetylharpagide(9) and daucosterol(10). Compounds 1-7 and 10 are isolated from this plant for the first time.

  18. Authentication of Polygonati Odorati Rhizoma and other two Chinese Materia Medica of the Liliaceae family by pharmacognosy technique with GC-MS analysis.

    PubMed

    Liu, Yingjiao; Liu, Canhuang; Yu, Yafei; Xu, Bei; Gong, Limin; Zeng, Xiaoyan; Xiao, Lan; Cheng, Qilai; Liu, Tasi

    2015-02-01

    Yuzhu (Polygonati Odorati Rhizoma), Kangdingyuzhu (Polygonati Prattii Rhizoma), and zhugenqiyuzhu (Disporopsis Fuscopictae Rhizoma) are of the same family, but of different genera. They have all often used in Chinese Materia Medica (CMM) as Polygonati Odorati Rhizoma in China market. Three species of CMM are confused. For better application, we need to identify these plants accurately. This study use pharmacognosy technique and GC-MS analysis, three species of CMM were authenticated. In macroscopic characteristics, the fruit of Polygonati Odorati Rhizoma is blue-black, while the other two are maroon and dark purple orderly. Nodes of Polygonati Odorati Rhizoma are upward and light uplift, about 1 cm spacing, while the other are not. As for microscopic characteristics, the cortex of Polygonati Odorati Rhizoma only occupies about 1/5 of the radius of the transverse section with inconspicuous endodermis, which is much smaller than others. The type of vascular bundles of Polygonati Odorati Rhizoma is closed collateral, but the other is amphivasal. Raphides of calcium oxalate are scattered, but Raphides of the other two are like brooms and neat rows. GC-MS analysis of essential oil could provide different characteristics to distinguish three species. Twenty-three compounds were identified from essential oil of Polygonati Odorati Rhizoma and the main components were n-hexadecanoic acid (49.45%), while n-hexadecanoic acid of the other two are 23.92% and 9.45%. The content of n-hexadecanoic is strongly different. This research was aimed to establish a method by pharmacognosy and GC-MS analysis to identify three CMM and for providing scientifical data to ensure accuracy of origin of three species. © 2014 Wiley Periodicals, Inc.

  19. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens

    PubMed Central

    Cullen, J.; Phillips, M. C.; Shipley, G. G.

    1971-01-01

    1. Pseudomonas fluorescens was grown at various temperatures between 5°C and 33°C. The extractable lipids from organisms at various stages of growth and grown at different temperatures were examined. 2. The extractable lipids contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an ornithine-containing lipid. The relative amounts of these lipids did not vary significantly during growth or with the changes in growth temperature. 3. The major fatty acids were hexadecanoic, hexadecenoic and octadecenoic acids and the cyclopropane acids methylene-hexadecanoic and methylene-octadecanoic acids. The relative amount of unsaturated acids (including cyclopropane acids) did not change significantly during growth, but increased with decreasing temperature. 4. Phosphatidylethanolamines with different degrees of unsaturation and containing different amounts of cyclopropane acids were isolated from organisms grown at 5°C and 22°C and their surface and phase behaviour in water was investigated. Thermodynamic parameters for fusion and monolayer results for cyclopropane and other fatty acids were examined. 5. The surface pressure–area isotherms of phosphatidylethanolamines containing different amounts of unsaturated fatty acids show small differences but the individual isotherms remain essentially unchanged over the temperature range 5–22°C. X-ray-diffraction methods show that the structures (lamellar+hexagonal) formed in water by phosphatidylethanolamine, isolated from organisms grown at 5°C and 22°C, are identical when compared at the respective growth temperatures. This points to a control mechanism of the physical state of the lipids that is sensitive to the operating temperature of the organism. 6. The molecular packing of cyclopropane acids is intermediate between that of the corresponding cis- and trans-monoenoic acids. However, substitution of a cyclopropane acid for a cis-unsaturated acid has insignificant effects on the molecular packing of phospholipids containing these acids. PMID:5004336

  20. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    PubMed

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev desert].

    PubMed

    Dembitskiĭ, V M; Dor, I; Shkrob, I; Aki, M

    2001-01-01

    Gas chromatography-mass spectrometry on serially coupled capillary columns with different polarity of stationary phases showed that the soil cyanobacterium Microcoleus vaginatus from the Negev desert produces an unusual mixture of 4 normal and more than 60 branched alkanes, as well as a number of fatty acids, cyclic and unsaturated hydrocarbons, aldehydes, alcohols, and ketones. The dominant compounds were heptadecane (12%), 7-methylheptadecane (7.8%), hexadecanoic acid (6.5%), (Z)-9-hexadecenoic acid (5.6%), 4-ethyl-2,2,6,6-tetramethylheptane (2.8%), (Z)-9-octadecenoic acid (2.8%), and 4-methyl-5-propylnonane (2.7%).

  2. Intermediates of peroxisomal beta-oxidation. A study of the fatty acyl-CoA esters which accumulate during peroxisomal beta-oxidation of [U-14C]hexadecanoate.

    PubMed Central

    Bartlett, K; Hovik, R; Eaton, S; Watmough, N J; Osmundsen, H

    1990-01-01

    1. 14C-labelled fatty acyl-CoA esters resulting from beta-oxidation of [U-14C]hexadecanoate by peroxisomal fractions isolated from rats treated with clofibrate showed the presence of the full range of saturated intermediates down to acetyl-CoA. 2. The pattern of intermediates generated was fairly constant. At low concentrations of [U-14C]hexadecanoate (50 microM), decanoyl-CoA was present in lowest amounts. At higher concentrations of [U-14C]hexadecanoate (greater than 100 microM), all intermediates of chain length shorter than 12 carbon atoms (except acetyl-CoA) were present at similar low concentrations; the process of beta-oxidation now resembling chain-shortening of hexadecanoate by two cycles of beta-oxidation. 3. In the absence of an NAD(+)-regenerating system [pyruvate and lactate dehydrogenase (EC 1.1.1.28)] 2-enoyl- and 3-hydroxyacyl-CoA esters were generated, suggesting that re-oxidation of NADH is essential for optimal rates of peroxisomal beta-oxidation in vitro. 4. At high concentrations of [U-14C]hexadecanoate (greater than 100 microM), 3-oxohexadecanoyl-CoA was produced, suggesting that thiolase (acetyl-CoA acetyltransferase; EC 2.3.1.9) can become rate-limiting for peroxisomal beta-oxidation. Images Fig. 2. Fig. 3. Fig. 4. PMID:2396977

  3. [Study on the chemical constituents of Rhizoma Cyperi].

    PubMed

    Wu, Xi; Xia, Hou-Lin; Huang, Li-Hua; Chen, Dan-Dan; Chen, Jin-Yu; Weng, Hai-Ting

    2008-07-01

    To study the chemical constituents of Rhizoma Cyperi. The constituents were separated and purified by silica gel column chromatography, their structures were identified on the basis of physico-chemical properties and spectral data. Six compounds were isolated and identified as physicion (1), hexadecanoic acid (2), beta-sitosterol (3), stigmasterol (4), catenarin (5), daucosterol (6). Compounds 1, 4, 5 were isolated from this plant for the first fime.

  4. [Studies on the chemical constituents from the bark of Choerospondias axillaries].

    PubMed

    Li, Sheng-Hua; Wu, Xian-Jin; Zheng, Yao; Jiang, Chong-Liang

    2009-10-01

    To study the chemical constituents of Choerospondias axillaries. All compounds were isolated and purified by normal column chromatograph, paper thin layer chromatograph and sephadex chromatograph, the chemical strucures were mainly elucidated by ESI-MS and NMR spectra. seven compouds were isolated from the Choerospondias axillaries and as following: beta-sitostero (I), hexadecanoic acid (II), correctitude fourty-two alkyl acid (III), daucosterol (IV), quercetin (V), rutinum (VI), lueolin-3'-O-beta-D-glucopyranoside (VII). Compounds II, III, V, VII are isolated from this plant for the first time.

  5. Fatty acids bound to recombinant tear lipocalin and their role in structural stabilization.

    PubMed

    Tsukamoto, Seiichi; Fujiwara, Kazuo; Ikeguchi, Masamichi

    2009-09-01

    A variant of human tear lipocalin was expressed in Escherichia coli, and the bound fatty acids were analysed by gas chromatography, mass spectroscopy and nuclear magnetic resonance spectroscopy. Five major fatty acids were identified as hexadecanoic acid (palmitic acid, PA), cis-9-hexadecenoic acid (palmitoleic acid), 9,10-methylenehexadecanoic acid, cis-11-octadecenoic acid (vaccenic acid) and 11,12-methyleneoctadecanoic acid (lactobacillic acid). The composition of the bound fatty acids was similar to the fatty acid composition of E. coli extract, suggesting that the binding affinities are similar for these fatty acids. The urea-induced and thermal-unfolding transitions of the holoprotein (nondelipidated), apoprotein (delipidated) and PA-bound protein were observed by circular dichroism. Holoproteins and PA-bound proteins showed the same stability against urea and heat, and were more stable than apoprotein. These results show that each bound fatty acid stabilizes recombinant tear lipocalin to a similar extent.

  6. Volatile components of ethanolic extract from broccolini leaves.

    PubMed

    Wang, Xiaoqin; Zhang, Bochao; Wang, Bingfang; Zhang, Xuewu

    2012-01-01

    Broccolini (Brassica oleracea Italica × Alboglabra) is a hybrid of broccoli and kai-lan, Chinese broccoli. To date, no study has been reported on the chemical composition of the volatile fractions of this raw material. In this study, the volatile constituents from the ethanolic extract of broccolini leaves were analysed by gas chromatography-mass spectrometry (GC-MS). Sixteen compounds were identified. The major components include 5-phenyl-undecane (11%), n-hexadecanoic acid (9.34%), octadecanoic acid (6.39%), 1,1,3-trimethyl-3-phenyl-indan (4.0%), 3-(2-phenylethyl)benzonitrile (3.48%) and phytol (3.37%).

  7. Chemical constituents and potential cytotoxic activity of n-hexane fraction from Myristica fatua Houtt leaves

    NASA Astrophysics Data System (ADS)

    Fajriah, S.; Megawati, Hudiyono, S.; Kosela, S.; Hanafi, M.

    2017-07-01

    The aims of this research were to determine the chemical constituents of n- hexane fraction from Myristica fatua Houtt leaves by Gas Chromatograpy/Mass Spectrometry (GC/MS) and their cytotoxic activities against MCF-7 cell lines. The results indicated that sesquiterpenes and fatty acids were major compounds of this fraction, there were trans-calamenene (17.75 %), hexadecanoic acid (11.14 %), caryophyllene (7.49 %), α-muurolene (6.99 %), and γ-muurolene (6.60 %). In vitro anticancer activity test against breast cancer MCF-7 cell lines showed potential cytotoxic at IC50 2.19 μg/mL.

  8. Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia (Mimosoideae).

    PubMed

    Tamokou, Jean de Dieu; Simo Mpetga, Deke James; Keilah Lunga, Paul; Tene, Mathieu; Tane, Pierre; Kuiate, Jules Roger

    2012-07-18

    Albizia adianthifolia is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds isolated from the stem bark of this plant. The plant extract was prepared by maceration in ethyl acetate. Its fractionation was done by column chromatography and the structures of isolated compounds were elucidated using spectroscopic data in conjunction with literature data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays were used to detect the antioxidant activity. Broth micro-dilution method was used for antimicrobial test. Total phenol content was determined spectrophotometrically in the extracts by using Folin-Ciocalteu method. The fractionation of the extract afforded two known compounds: lupeol (1) and aurantiamide acetate (2) together with two mixtures of fatty acids: oleic acid and n-hexadecanoic acid (B₁); n-hexadecanoic acid, octadecanoic acid and docosanoic acid (B₂). Aurantiamide acetate was the most active compound. The total phenol concentration expressed as gallic acid equivalents (GAE) was found to vary from 1.50 to 13.49 μg/ml in the extracts. The antioxidant activities were well correlated with the total phenol content (R² = 0.946 for the TEAC method and R² = 0.980 for the DPPH free-radical scavenging assay). Our results clearly reveal that the ethyl acetate extract from the stem bark of A. adianthifolia possesses antioxidant and antimicrobial principles. The antioxidant activity of this extract as well as that of compound 2 are being reported herein for the first time. These results provide promising baseline information for the potential use of this plant as well as compound 2 in the treatment of oxidative damage and infections associated with the studied microorganisms.

  9. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root.

    PubMed

    Othman, Ahmad Razi; Abdullah, Norhani; Ahmad, Syahida; Ismail, Intan Safinar; Zakaria, Mohamad Pauzi

    2015-02-05

    The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved. In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites. The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid. This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

  10. Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.

    PubMed

    Cho, Jae-Young

    2010-04-01

    This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.

  11. [Chemical constituents from stems of Ilex pubescens].

    PubMed

    Xing, Xian-dong; Zhang, Qian; Feng, Feng; Liu, Wen-yuan

    2012-09-01

    To study the chemical constituents from the stems of Ilex pubescens Hook. et Am. The chemical constituents were isolated and purified by various column chromatographic methods with diatomite, silica gel, ODS and Sephadex LH-20. Their structures were identified on physical properties and spectroscopic methods. Nine compounds were isolated and determined as luteolin(1), quercetin(2), hyperoside(3), rutin(4), 1, 5-dihydroxy-3-methyl-anthraquinone(5),3,5-dimethoxy-4-hydroxy-benzoic acid-1-O-beta-D-glucoside(6), hexadecanoic acid(7), stearic acid(8), n-tetratriacontanol(9), respectively. All the compounds are isolated from this plant for the first time, and compounds 5 and 6 are isolated from this genus for the first time.

  12. Simple and sensitive analysis of long-chain free fatty acids in milk by fluorogenic derivatization and high-performance liquid chromatography.

    PubMed

    Lu, Chi-Yu; Wu, Hsin-Lung; Chen, Su-Hwei; Kou, Hwang-Shang; Wu, Shou-Mei

    2002-01-02

    A highly sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of some important saturated and unsaturated fatty acids in milk, including lauric (dodecanoic), myristic (tetradecanoic), palmitic (hexadecanoic), stearic (octadecanoic), palmitoleic (hexadecenoic), oleic (octadecenoic), and linoleic acids (octadecadienoic acids). The fatty acids were fluorogenically derivatized with 2-(2-naphthoxy)ethyl 2-(piperidino)ethanesulfonate (NOEPES) as their naphthoxyethyl derivatives. The resulting derivatives were separated by isocratic HPLC and monitored with a fluorometric detector (lambdaex = 235 nm, lambdaem = 350 nm). The fatty acids in milk were extracted with toluene, and the extract with the fatty acids was directly derivatized with NOEPES without solvent replacement. Determination of long-chain free fatty acids in milk is feasible by a standard addition method. A small amount of milk product, 10 microL, is sufficient for the analysis.

  13. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae).

    PubMed

    El-Seedi, Hesham R; Azeem, Muhammad; Khalil, Nasr S; Sakr, Hanem H; Khalifa, Shaden A M; Awang, Khalijah; Saeed, Aamer; Farag, Mohamed A; AlAjmi, Mohamed F; Pålsson, Katinka; Borg-Karlson, Anna-Karin

    2017-09-01

    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 µg/cm 2 and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. α-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, α-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.

  14. Characterization of Armillaria spp. from peach orchards in the southeastern United States using fatty acid methyl ester profiling.

    PubMed

    Cox, K D; Scherm, H; Riley, M B

    2006-04-01

    Limited information is available regarding the composition of cellular fatty acids in Armillaria and the extent to which fatty acid profiles can be used to characterize species in this genus. Fatty acid methyl ester (FAME) profiles generated from cultures of A. tabescens, A. mellea, and A. gallica consisted of 16-18 fatty acids ranging from 12-24 carbons in length, although some of these were present only in trace amounts. Across the three species, 9-cis,12-cis-octadecadienoic acid (9,12-C18:2), hexadecanoic acid (16:0), heneicosanoic acid (21:0), 9-cis-octadecenoic acid (9-C18:1), and 2-hydroxy-docosanoic acid (OH-22:0) were the most abundant fatty acids. FAME profiles from different thallus morphologies (mycelium, sclerotial crust, or rhizomorphs) displayed by cultures of A. gallica showed that thallus type had no significant effect on cellular fatty acid composition (P > 0.05), suggesting that FAME profiling is sufficiently robust for species differentiation despite potential differences in thallus morphology within and among species. The three Armillaria species included in this study could be distinguished from other lignicolous basidiomycete species commonly occurring on peach (Schizophyllum commune, Ganoderma lucidum, Stereum hirsutum, and Trametes versicolor) on the basis of FAME profiles using stepwise discriminant analysis (average squared canonical correlation = 0.953), whereby 9-C18:1, 9,12-C18:2, and 10-cis-hexadecenoic acid (10-C16:1) were the three strongest contributors. In a separate stepwise discriminant analysis, A. tabescens, A. mellea, and A. gallica were separated from one another based on their fatty acid profiles (average squared canonical correlation = 0.924), with 11-cis-octadecenoic acid (11-C18:1), 9-C18:1, and 2-hydroxy-hexadecanoic acid (OH-16:0) being most important for species separation. When fatty acids were extracted directly from mycelium dissected from naturally infected host tissue, the FAME-based discriminant functions developed in the preceding experiments classified all samples (n = 16) as A. tabescens; when applied to cultures derived from the same naturally infected samples, all unknowns were similarly classified as A. tabescens. Thus, FAME species classification of Armillaria unknowns directly from infected tissues may be feasible. Species designation of unknown Armillaria cultures by FAME analysis was identical to that indicated by IGS-RFLP classification with AluI.

  15. Variability of lipid constituents of the coil cyanobacterium Microcoleus vaginatus from the Dead Sea basin and Negev desert.

    PubMed

    Dembitsky, V M; Dor, I; Shkrob, I

    2000-12-01

    A study of lipids of the soil cyanobacterium Microcoleus vaginatus, which was isolated from microbial crusts collected in the Dead Sea basin and in the Negev desert, was performed. Twenty-six hydrocarbons and fatty acids were separated and identified by GC/MS using serially coupled capillary columns of different polarity. Changes in the lipid composition were evaluated by comparison of samples collected from different locations. Heptadecane, 1-heptadecene, 6- and 7-methylheptadecane, hexadecanoic and 9(Z)-octadecenoic acids were identified as the major constituents. Biochemical mechanisms of production of the different lipid compounds under UV irradiation are proposed.

  16. Antioxidant and repellent activities of the essential oil from Colombian Triphasia trifolia (Burm. f.) P. Wilson.

    PubMed

    Jaramillo Colorado, Beatriz E; Martelo, Irina P; Duarte, Edisson

    2012-06-27

    The chemical composition of essential oils isolated from aerial parts of Triphasia trifolia (Burm. f.) P. Wilson was analyzed using hydrodistillation by GC-MS. The main constituents found were β-pinene (64.36%), (+)-sabinene (8.75%), hexadecanoic acid (6.03%), α-limonene (4.24%) and p-cymene (2.73%). The essential oil from T. trifolia shows high antioxidant potential (94.53%), an effect that is comparable with ascorbic acid (96.40%), used as standard. In addition, these oils had high repellent effects on the insect Tribolium castaneum Herbst (99% ± 1) at 0.2 μL/cm(2) after 2 h of exposure.

  17. Gas Chromatography-Mass Spectrometry Analysis of Constituent Oil from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), from Nigeria.

    PubMed

    Ohiri, Reginald Chibueze; Bassey, Essien Eka

    2016-01-01

    Gas chromatography-mass spectrometry analysis of constituent oil from dried Ganoderma lucidum was carried out. Fresh G. lucidum obtained from its natural environment was thoroughly washed with distilled water and air-dried for 2 weeks and the component oils were extracted and analyzed. Four predominant components identified were pentadecanoic acid, 14-methyl-ester (retention time [RT] = 19.752 minutes; percentage total = 25.489), 9,12-octadecadienoic acid (Z,Z)- (RT = 21.629 minutes and 21.663 minutes; percentage total = 25.054), n-hexadecanoic acid (RT = 20.153 minutes; percentage total = 24.275), and 9-octadecenoic acid (Z)-, methyl ester (RT = 21.297 minutes; percentage total = 13.027). The two minor oils identified were 9,12-octadecadienoic acid, methyl ester, (E,E)- and octadecanoic acid, methyl ester (RT = 21.246 minutes and 21.503 minutes; percentage total = 7.057 and 5.097, respectively).

  18. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii).

    PubMed

    Panda, Pritipadma; Dash, Priyanka; Ghosh, Goutam

    2018-03-01

    The present study is the first effort to a comprehensive evaluation of antityrosinase activity and chemometric analysis of Bauhinia vahlii. The experimental results revealed that the methanol extract of Bauhinia vahlii (BVM) possesses higher polyphenolic compounds and total antioxidant activity than those reported elsewhere for other more conventionally and geographically different varieties. The BVM contain saturated fatty acids such as hexadecanoic acid (10.15%), octadecanoic acid (1.97%), oleic acid (0.61%) and cis-vaccenic acid (2.43%) along with vitamin E (12.71%), α-amyrin (9.84%), methyl salicylate (2.39%) and β-sitosterol (17.35%), which were mainly responsible for antioxidant as well as tyrosinase inhibitory activity. Tyrosinase inhibitory activity of this extract was comparable to that of Kojic acid. These findings suggested that the B. vahlii leaves could be exploited as potential source of natural antioxidant and tyrosinase inhibitory agent, as well.

  19. [Fatty acids composition of cellular lipids of the collected and newly isolated Pseudomonas lupini strains].

    PubMed

    Hvozdiak, R I; Dankevych, L A; Votselko, S K; Holubets', O V

    2005-01-01

    Fatty acid composition of cellular lipids of 23 Pseudomonas lupini strains (Beltjukova et Koroljova 1968) has been investigated. Cellular fatty acids which contained from C10 to C19 carbon atoms have been identified. Basic fatty acid of those Pseudomonas cells are hexadecanoic, hexadecenoic and octadecanoic acids. The 3-hydroxydecanoic (C10:0 3OH), 3-hydroxydodecanoic (C12:0 3OH), 2-hydroxydodecanoic (C12:0 2OH) and cyclopropane fatty acids which contain 17 and 19 carbon atoms have been detected in cellular lipids. The cellular fatty acids spectra of 22 P. lupini strains are similar to cellular fatty acids spectrum of the type strain Pseudomonas syringae pv. syringae 8511. Pathogenic isolate 2, which fatty acid content of cell lipids significantly differ from lipids of cell fatty acids from P. lupini strains and cell lipids of fatty acids of typical strains Pseudomonas syringae pv. syringae 8511 and Pseudomonas savastanoi pv. phaseolicola 9066 is the exception.

  20. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006)

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Ho, Steven Sai Hang; Kawamura, Kimitaka; Tachibana, Eri; Cheng, Y.; Zhu, Tong

    2010-10-01

    Ground-based studies of PM2.5 were conducted for determination of 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid, during the Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006; 21 August to 4 September 2006) at urban (Peking University, PKU) and suburban (Yufa) sites of Beijing. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species, followed by phthalic acid (Ph) and succinic acid (C4) at both sites. The sum of three dicarboxylic acids accounted for 71% and 74% of total quantified water-soluble organics (327-1552 and 329-1124 ng m-3) in PKU and Yufa, respectively. Positive correlation was found between total quantified water-soluble species and water-soluble organic compounds (WSOC). On a carbon basis, total quantified dicarboxylic acids and ketocarboxylic acids and dicarbonyls account for up to 14.2% and 30.4% of the WSOC in PKU and Yufa, respectively, suggesting that they are the major WSOC fractions in Beijing. The distributions of fatty acids are characterized by a strong even carbon number predominance with maximum at hexadecanoic acid (C16:0). The ratio of octadecanoic acid (C18:0) to hexadecanoic acid (C16:0) (0.39-0.85, with an average of 0.36) suggests that in addition to vehicular emissions, an input from cooking emissions is important, as is biogenic emission. Benzoic acid that has been proposed as a primary pollutant from vehicular exhaust and a secondary product from photochemical reactions was found to be abundant: 72.2 ± 58.1 ng m-3 in PKU and 78.0 ± 47.3 ng m-3 in Yufa. According to the 72 hour back trajectory analysis, when the air mass passed over the southern or southeastern part of Beijing (24-25 August and 1-2 September), the highest concentrations of organic compounds were observed. On the contrary, when the clean air masses came straight from the north during 3-4 September, the lowest levels of organic compounds were recorded. This study demonstrates that pollution episodes in Beijing were strongly controlled by wind direction; that is, air quality in Beijing is good when air masses originate from the north and northwest, whereas it deteriorates when the air mass originates from the south and southeast.

  1. Cellular and lipopolysaccharide fatty acid composition of the type strains of Klebsiella pneumoniae, Klebsiella oxytoca, and Klebsiella nonpathogenic species.

    PubMed

    Vasyurenko, Z P; Opanasenko, L S; Koval', G M; Turyanitsa, A I; Ruban, N M

    2001-01-01

    The cellular and lipopolysaccharide (LPS) fatty acid compositions of the type strains of Klebsiella pneumoniae, K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" were studied. The cellular fatty acids of klebsiellae were presented by straight-chain saturated and monounsaturated, cyclopropane, and hydroxy fatty acids. Hexadecanoic, methylenehexadecanoic, octadecenoic and hexadecenoic acids prevailed. The K. pneumoniae strain mainly differed from the strains of other species by two and more times lower level of dodecanoic acid in cells. Variations of cyclopropane and unsaturated fatty acid contents in cells were observed. LPS fatty acids profiles of klebsiellae mainly consisted of straight-chain saturated and hydroxy fatty acids with predominance of tetradecanoic and 3-hydroxytetradecanoic acids. LPS fatty acids profiles of K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" strains were very similar and differed from that of the K. pneumoniae strain by higher levels of dodecanoic acid (approximately 5-6 times) and absence of 2-hydroxytetradecanoic acid. The obtained data indicated more close relatedness of K. oxytoca, K. terrigena, and K. planticola and some their remoteness from K. pneumoniae.

  2. Cutin-derived CuO reaction products from purified cuticles and tree leaves

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Long chain (C 16-C 18) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple ( Malus pumila) cuticle include 16-hydroxy-hexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly ( Ilex aquifolium) leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.

  3. Conversion of hexadecanoic acid to hexadecenoic acid by rat Delta 6-desaturase.

    PubMed

    Guillou, Hervé; Rioux, Vincent; Catheline, Daniel; Thibault, Jean-Nöel; Bouriel, Monique; Jan, Sophie; D'Andrea, Sabine; Legrand, Philippe

    2003-03-01

    A higher content of C16:1 n-10 has recently been reported in the preputial gland of mice with a targeted disruption of the gene encoding stearoyl-CoA desaturase 1 (SCD1-/- mice) when compared with wild-type mice. This result has provided the first physiological evidence for the presence and regulation of a palmitoyl-CoA Delta 6-desaturase in mammals. To investigate the putative involvement of the known Delta 6-desaturase (FADS2) in this process, COS-7 cells expressing rat Delta 6-desaturase were incubated with C16:0. Transfected cells were able to synthesize C16:1 n-10, while nontransfected cells did not produce any C16:1 n-10. Evidence is therefore presented that the rat Delta 6-desaturase, which acts on the 18- and 24-carbon fatty acids of the n-6 and n-3 series, is also able to catalyze palmitic acid Delta 6 -desaturation.

  4. Exogenous Indole Regulates Lipopeptide Biosynthesis in Antarctic Bacillus amyloliquefaciens Pc3.

    PubMed

    Ding, Lianshuai; Zhang, Song; Guo, Wenbin; Chen, Xinhua

    2018-05-28

    Bacillus amyloliquefaciens Pc3 was isolated from Antarctic seawater with antifungal activity. In order to investigate the metabolic regulation mechanism in the biosynthesis of lipopeptides in B. amyloliquefaciens Pc3, GC/MS-based metabolomics was used when exogenous indole was added. The intracellular metabolite profiles showed decreased asparagine, aspartic acid, glutamine, glutamic acid, threonine, valine, isoleucine, hexadecanoic acid, and octadecanoic acid in the indole-treated groups, which were involved in the biosynthesis of lipopeptides. B. amyloliquefaciens Pc3 exhibited a growth promotion, bacterial total protein increase, and lipopeptide biosynthesis inhibition upon the addition of indole. Besides this, real-time PCR analysis further revealed that the transcription of lipopeptide biosynthesis genes ituD, fenA , and srfA-A were downregulated by indole with 22.4-, 21.98-, and 26.0-fold, respectively. It therefore was speculated that as the metabolic flux of most of the amino acids and fatty acids were transferred to the synthesis of proteins and biomass, lipopeptide biosynthesis was weakened owing to the lack of precursor amino acids and fatty acids.

  5. Chemical composition of Tipuana tipu, a source for tropical honey bee products.

    PubMed

    dos Santos Pereira, Alberto; de Aquino Neto, Francisco Radler

    2003-01-01

    Tipuana tipu (Benth.) Kuntze is a tree from the leguminosae family (Papilionoideae) indigenous in Argentina and extensively used in urbanism, mainly in Southern Brazil. The epicuticular waxes of leaves and branch, and flower surface were studied by high temperature high resolution gas chromatography. Several compounds were characterized, among which the aliphatic alcohols were predominant in branch, leaves and receptacle. Alkanes were predominant only in the petals and the aliphatic acids were predominant in stamen. In branches and leaf epicuticular surfaces, six long chain wax esters series were characterized, as well as lupeol and b-amyrin hexadecanoates.

  6. Phospholipid and fatty acid compositions of Rhizobium leguminosarum biovar trifolii ANU843 in relation to flavone-activated pSym nod gene expression.

    PubMed

    Orgambide, G G; Huang, Z H; Gage, D A; Dazzo, F B

    1993-11-01

    The phospholipid and associated fatty acid compositions of the bacterial symbiont of clover, Rhizobium leguminosarum biovar trifolii wild-type ANU843, was analyzed by two-dimensional silica thin-layer chromatography, fast atom bombardment-mass spectrometry, flame-ionization detection gas-liquid chromatography and combined gas-liquid chromatography/mass spectrometry. The phospholipid composition included phosphatidylethanolamine (15%), N-methylphosphatidylethanolamine (47%), N,N-dimethylphosphatidylethanolamine (9%), phosphatidylglycerol (19%), cardiolipin (5%) and phosphatidylcholine (2%). Fatty acid composition included predominantly cis-11-octadecenoic acid, lower levels of cis-9-hexadecenoic acid, hexadecanoic acid, 11-methyl-11-octadecenoic acid, octadecanoic acid, 11,12-methyleneoctadecanoic acid, eicosanoic acid and traces of branched, and di- and triunsaturated fatty acids. The influence of expression of the "nodulation" genes encoding symbiotic functions on the composition of these membrane lipids was examined in wild-type cells grown with or without the flavone inducer, 4',7-dihydroxyflavone and in mutated cells lacking the entire symbiotic plasmid where these genes reside, or containing single transposon insertions in selected nodulation genes. No significant changes in phospholipid or associated fatty acid compositions were detected by the above methods of analysis.

  7. Lipids of parasitic and saprophytic leptospires.

    PubMed

    Johnson, R C; Livermore, B P; Walby, J K; Jenkin, H M

    1970-09-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of beta-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola.

  8. Lipids of Parasitic and Saprophytic Leptospires

    PubMed Central

    Johnson, R. C.; Livermore, B. P.; Walby, Judith K.; Jenkin, H. M.

    1970-01-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of β-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola. PMID:16557833

  9. Effect of growth temperature on outer membrane components and virulence of Aeromonas hydrophila strains of serotype O:34.

    PubMed Central

    Merino, S; Camprubí, S; Tomás, J M

    1992-01-01

    Growth of Aeromonas hydrophila strains from serotype O:34 at 20 and 37 degrees C in tryptic soy broth resulted in changes in the lipids, lipopolysaccharide (LPS), and virulence of the strains tested. Cells grown at 20 degrees C contained, relative to those cultured at 37 degrees C, increased levels of the phospholipid fatty acids hexadecanoate and octadecanoate and reduced levels of the corresponding saturated fatty acids. Furthermore, the lipid A fatty acids also showed thermoadaptation. In addition, LPS extracted from cells cultivated at 20 degrees C was smooth, while the LPS extracted from the same cells cultivated at 37 degrees C was rough. Finally, the strains were more virulent for fish and mice when they were grown at 20 degrees C than when they were grown at 37 degrees C and also showed increased different extracellular activities when they were grown at 20 degrees C. Images PMID:1398945

  10. Essential oil composition of aerial parts of Micromeria persica Boiss. from Western of Shiraz, Iran.

    PubMed

    Jafari, Efat; Ghanbarian, Gholamabbas; Bahmanzadegan, Atefeh

    2018-04-01

    Micromeria persica Boiss. is medicinal and aromatic plant, belonging to the Lamiaceae family. The chemical composition of the essential oils (EOs) from aerial parts of M. persica were extracted using hydro-distillation method and analysed using GC and GC-MS. Fifty-two compounds were identified in the EOs of aerial parts of M. persica. The main chemical compositions were n-hexadecanoic acid (14.9%), thymol (9.5%), linoleic acid (8.0%), carvacrol (5.6%), (E)-nerolidol (5.5%), linolenic acid (5.5%), α-cadinol (2.7%), linalool (2.7%), borneol (2.6%), caryophyllene oxide (2.3%) and pulegone (2.0%). Presence of borneol, thymol, carvacrol and pulegone suggests the potential of this plant as a flavouring source in the food industry, being used in perfumery and cosmetics industry, vitamin E synthesis and exhibit strong fungicidal, antibacterial and antimicrobial activities.

  11. Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Raish, Mohammad; Yaqoob, Syed Hilal; Khan, Altaf; Shakeel, Faiyaz

    2017-06-01

    Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.

  12. Chemical Constituents of Luffa acutangula (L.) Roxb Fruit

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Marliyana, S. D.; Astuti, I. Y.

    2017-04-01

    The phytochemical screening conducted on ethanol extract of Luffa acutangula (L.) Roxb’s fruit revealed the presence of alkaloids, saponins, carotenoids and terpenoids and the absence of flavonoids, tannins and anthraquinones. The GC-MS of the analysis L. acutangula (L.) Roxb’s fraction resulted in the identification of six compounds. The compounds that could be identified were 2,3-dihydro,3,5-dihydroxy-6-methyl-(4H)-pyran-4-one; 3,7,11,15-tetramethyl-2-hexadecen-1-ol; (3β, 20R)-cholest-5-en-3-ol; n-hexadecanoic acid; 9, 12, 15-octadecatrienoic acid methyl ester and citronellyl tiglate. The present study provides evidence that L. acutangula’s fruit contains medicinally important bioactive compounds and this justifies the possibly use of these fruits as traditional medicine for treatment of various diseases.

  13. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  14. Isolation and antiproliferative activity of chemical constituents from Asystasia buettneri Lindau.

    PubMed

    Hamid, Abdulmumeen A; Aiyelaagbe, Olapeju O; Negi, Arvind S; Luqman, Suaib; Kaneez, Fatima

    2017-08-03

    N-hexane and methanol extracts of Asystasia buettneri Lindau aerial parts exhibited antiproliferative activity on leukaemia blood carcinoma, K-562. Hexadecane (1), 1,3-propan-2-ol (9Z,12'Z,15″Z)-bis(doeicos-9,12,15-trienoate) (2), hydrocarbon, 2,3,3,10,23-pentamethyl tetraeicos-10,13,16-trien-1-ol (3), hexadecanoic acid (4) and taraxerol (5) were isolated from n-hexane extract; stigmasterol (6) and (Z)-9-octadecenoic acid (7) were isolated from ethyl acetate extract; while unsaturated hydrocarbons, octadecene (8), 8-methyl tetradec-6-ene (9) and 19-methyl eicos-1-ene (10), fatty acids, (Z)-5-hexadecenoic acid (11), 11,22-dimethyl ethyltrieicos-11-enoate (12) and taraxasterol (13) were isolated from methanol extract of the plant. Compounds 4, 5, 7, 11, 12 and 13 exhibited antiproliferative activity against K-562, while compounds 5, 6, 7 and 9 revealed antiproliferative activity by inhibiting hepatic liver (WRL68) cell lines.

  15. Structure Dependence of Long-Chain [18F]Fluorothia Fatty Acids as Myocardial Fatty Acid Oxidation Probes

    PubMed Central

    Pandey, Mukesh K.; Belanger, Anthony P.; Wang, Shuyan; DeGrado, Timothy R.

    2012-01-01

    In-vivo imaging of regional fatty acid oxidation (FAO) rates would have considerable potential for evaluation of mammalian diseases. We have synthe sized and evaluated 18F-labeled thia fatty acid analogues as metabolically trapped FAO probes to understand the effect of chain length, degree of unsaturation and placement of the thia-substituent on myocardial uptake and retention. 18-[18F]fluoro-4-thia-(9Z)-octadec-9-enoic acid (3) showed excellent heart:background radioactivity concentration ratios along with highest retention in heart and liver. Pretreatment of rats with the CPT-1 inhibitor, POCA, caused >80% reduction in myocardial uptake of 16-[18F]fluoro-4-thia-hexadecanoic acid (2), and 3 indicating high specificity for FAO. In contrast, 18-[18F]fluoro-4-thia-octadecanoic acid (4), showed dramatically reduced myocardial uptake and blunted response to POCA. 18-[18F]fluoro-6-thia-octadecanoic acid (5), showed moderate myocardial uptake and no sensitivity of myocardial uptake to POCA. The results demonstrate relationships between structures of 18F-labelled thia fatty acid and uptake, and their utility as FAO probes in various tissues. PMID:23153307

  16. Pseudomonas japonica sp. nov., a novel species that assimilates straight chain alkylphenols.

    PubMed

    Pungrasmi, Wiboonluk; Lee, Haeng-Seog; Yokota, Akira; Ohta, Akinori

    2008-02-01

    A bacterial strain, WL(T), which was isolated from an activated sludge, was able to degrade alkylphenols. 16S rDNA sequence analysis indicated that strain WL(T) belonged to the genus Pseudomonas (sensu stricto) and formed a monophyletic clade with the type strain of Pseudomonas graminis and other members in the Pseudomonas putida subcluster with sequence similarity values higher than 97%. Genomic relatedness based on DNA-DNA hybridization of strain WL(T) to these strains is 2-41%. Strain WL(T) contained ubiquinone-9 as the main respiratory quinone, and the G+C content of DNA was 66 mol%. The organism contained hexadecanoic acid (16:0), hexadecenoic acid (16:1) and octadecenoic acid (18:1) as major cellular fatty acids. The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10:0), 3-hydroxydodecanoic acid (3-OH 12:0) and 2-hydroxydodecanoic acid (2-OH 12:0). These results, as well as physiological and biochemical characteristics clearly indicate that the strain WL(T) represents a new Pseudomonas species, for which the name Pseudomonas japonica is proposed. The type strain is strain WL(T) (=IAM 15071T=TISTR 1526T).

  17. Description of strain 3CB-1, a genomovar of Thauera aromatica, capable of degrading 3-chlorobenzoate coupled to nitrate reduction.

    PubMed

    Song, B; Palleroni, N J; Häggblom, M M

    2000-03-01

    A Gram-negative bacterium, strain 3CB-1, isolated from a 3-chlorobenzoate enrichment culture inoculated with a sediment sample is capable of degrading various aromatic compounds and halogenated derivatives with nitrate as electron acceptor. Compounds capable of serving as carbon and energy sources include 3-chlorobenzoate, 3-bromobenzoate, 2-fluorobenzoate, 4-fluorobenzoate, benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 3-aminobenzoate, protocatechuate, m-cresol and p-cresol. Oxygen, nitrate and nitrite were used as electron acceptors for growth. Cells are Gram-negative short rods with peritrichous flagellation. The predominant fatty acids are cis-9-hexadecenoic acid (16:1 omega 7c), hexadecanoic acid (16:0), octadecanoic acid (18:0), octadecenoic acid (18:1), 3-hydroxydecanoic acid (10:0 3OH) and dodecanoic acid (12:0). The sequence of the 16S rRNA gene, as well as the fatty acid composition, indicate that the strain is a member of the genus Thauera in the beta-subclass of the Proteobacteria and very close to Thauera aromatica. DNA-DNA hybridization and nutrient screening indicate that strain 3CB-1 is a genomovar of Thauera aromatica with the proposed name Thauera aromatica genomovar chlorobenzoica.

  18. A new perylenequinone from a halotolerant fungus, Alternaria sp. M6.

    PubMed

    Zhang, Song-Ya; Li, Zhan-Lin; Bai, Jiao; Wang, Yu; Zhang, Li-Min; Wu, Xin; Hua, Hui-Ming

    2012-01-01

    To study the metabolites of a halotolerant fungus Alternaria sp. M6. The metabolites were isolated and purified by various chromatographic techniques. Their structures were determined on the basis of physical properties and spectroscopic data. Nine compounds were isolated and identified as 8β-chloro-3, 6aα, 7β, 9β, 10-pentahydroxy-9, 8, 7, 6a-tetrahydroperylen-4(6aH)-one (1), alterperylenol (2), dihydroalterperylenol (3), adenine (4), adenosine (5), deoxyadenosine (6), guanosine (7), tryptophan (8), and hexadecanoic acid (9). Compound 1 is a new perylenequinone. Copyright © 2012 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. [Metabolic Characteristics of Lethal Bradycardia Induced by Myocardial Ischemia].

    PubMed

    Wu, J Y; Wang, D; Kong, J; Wang, X X; Yu, X J

    2017-02-01

    To explore the metabolic characteristics of lethal bradycardia induced by myocardial ischemia in rat's serum. A rat myocardial ischemia-bradycardia-sudden cardiac death (MI-B-SCD) model was established, which was compared with the sham-operation group. The metabolic profile of postmortem serum was analyzed by gas chromatography-mass spectrometry (GC-MS), coupled with the analysis of serum metabolic characteristics using metabolomics strategies. The serum metabolic profiles were significantly different between the MI-B-SCD rats and the control rats. Compared to the control rats, the MI-B-SCD rats had significantly higher levels of lysine, ornithine, purine, serine, alanine, urea and lactic acid; and significantly lower levels of succinate, hexadecanoic acid, 2-ketoadipic acid, glyceraldehyde, hexendioic acid and octanedioic acid in the serum. There were some correlations among different metabolites. There is obvious metabolic alterations in the serum of MI-B-SCD rat. Both lysine and purine have a high value in diagnosing MI-B-SCD. The results are expected to provide references for forensic and clinical applications of prevention and control of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine

  20. Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater.

    PubMed

    Li, Xiang; Yang, William L; He, Huijun; Wu, Shaohua; Zhou, Qi; Yang, Chunping; Zeng, Guangming; Luo, Le; Lou, Wei

    2018-03-01

    Microalgae Coelastrella sp. could remove nutrients from anaerobically digested swine wastewater (ADSW) effectively, while its responses to the stress of Cu(II) were not well understood. In this paper, nutrients removal and growth of Coelastrella sp. were investigated at the presence of Cu(II) in ADSW. Results showed ammonium nitrogen concentration in ADSW decreased with culturing duration, while increased with an increased Cu(II) concentration. Total phosphorous concentration decreased with time, while did not drop in 4 days at Cu(II) concentration ≥1.0 mg/L. Microalgal growth was inhibited at all the Cu(II) concentrations, and ceased in about 6-8 days at Cu(II) concentration ≥1.0 mg/L. With an increased Cu(II) concentration, the contents of chlorophyll a and proteins decreased, those of malondialdehyde and superoxide dismutase, and ratios of octadecanoic acid (C18:0), hexadecanoic acid (C16:0) and octadecenoic acid (C18:1) to fatty acids in Coelastrella sp. increased, while octadecatrienoic acid (C18:3) gradually disappeared. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils.

    PubMed

    Hou, Yunyun; Liu, Xiaoyan; Zhang, Xinying; Chen, Xiao; Tao, Kaiyun; Chen, Xueping; Liang, Xia; He, Chiquan

    2015-11-01

    Root exudates (REs) of Scirpus triqueter were extracted from the rhizosphere soil in this study. The components in the REs were identified by GC-MS. Many organic acids, such as hexadecanoic acid, pentadecanoic acid, vanillic acid, octadecanoic acid, citric acid, succinic acid, glutaric acid, and so on, were found. Batch simulated experiments were conducted to evaluate the impacts of different organic acids, such as citric acid, artificial root exudates (ARE), succinic acid, and glutaric acid in REs of S. triqueter on desorption of pyrene (PYR) and lead (Pb) in co-contaminated wetland soils. The desorption amount of PYR and Pb increased with the rise in concentrations of organic acids in the range of 0-50 g·L(-1), within shaking time of 2-24 h. The desorption effects of PYR and Pb in soils with various organic acids treatments decreased in the following order: citric acid > ARE > succinic acid > glutaric acid. The desorption rate of PYR and Pb was higher in co-contaminated soil than in single pollution soil. The impacts of organic acids in REs of S. triqueter on bioavailability of PYR and Pb suggested that organic acids enhanced the bioavailability of PYR and Pb in wetland soil, and the bioavailability effects of organic acids generally followed the same order as that of desorption effects.

  2. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae.

    PubMed

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-06-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization.

  3. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae

    PubMed Central

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-01-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization. PMID:24471125

  4. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis.

    PubMed

    de Almeida, I Tavares; Cortez-Pinto, H; Fidalgo, G; Rodrigues, D; Camilo, M E

    2002-06-01

    Non-alcoholic steatohepatitis (NASH), the association of steatosis with an inflammatory response, is a novel liver disease of unknown pathogenesis and prognosis. Triacylglycerols and their precursors, the fatty acids, are the likely candidates to accumulate in the hepatocyte. Disturbed fatty acid metabolism can be involved in the pathogenesis of NASH but there is no information concerning its plasma fatty acid profile. The aim of this study was to evaluate plasma total (esterified plus free) and free fatty acids concentrations to assess the association of NASH with plasma fatty acid accumulation. Overnight fasting blood samples from 22 biopsy-proven NASH patients and of 6 matched age healthy controls were studied. NASH patients had significantly higher concentration of total and free fatty acids than controls (P<0.05), higher total saturated and monounsaturated levels in both studied lipid fractions (P<0.05), mainly due to the increase of hexadecanoic, hexadecenoic and octadecenoic acids. Absolute polyunsaturated fatty acids (PUFA) concentrations were similar in both groups. The C20:4/C18:2 and the C18:1/C18:0 ratios as well as the peroxidability index were not significantly different. In overweight/obese patients NASH is associated with deranged fatty acid metabolism which may be involved in its pathogenesis and/or progression.

  5. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation

    NASA Astrophysics Data System (ADS)

    Hu, Xiangang; Zhou, Qixing

    2014-01-01

    It is well known that graphene (G) induces nanotoxicity towards living organisms. Here, a novel and biocompatible hydrated graphene ribbon (HGR) unexpectedly promoted aged (two years) seed germination. HGR formed at the normal temperature and pressure (120 days hydration), presented 17.1% oxygen, 0.9% nitrogen groups, disorder-layer structure, with 0.38 nm thickness ribbon morphology. Interestingly, there were bulges around the edges of HGR. Compared to G and graphene oxide (GO), HGR increased seed germination by 15% root differentiation between 52 and 59% and enhanced resistance to oxidative stress. The metabonomics analysis discovered that HGR upregulated carbohydrate, amino acid, and fatty acids metabolism that determined secondary metabolism, nitrogen sequestration, cell membrane integrity, permeability, and oxidation resistance. Hexadecanoic acid as a biomarker promoted root differentiation and increased the germination rate. Our discovery is a novel HGR that promotes aged seed germination, illustrates metabolic specificity among graphene-based materials, and inspires innovative concepts in the regulation of seed development.

  6. Fatty Acid and Proximate Composition of Bee Bread.

    PubMed

    Kaplan, Muammer; Karaoglu, Öznur; Eroglu, Nazife; Silici, Sibel

    2016-12-01

    Palynological spectrum, proximate and fatty acid (FA) composition of eight bee bread samples of different botanical origins were examined and significant variations were observed. The samples were all identified as monofloral, namely Castanea sativa (94.4%), Trifolium spp. (85.6%), Gossypium hirsutum (66.2%), Citrus spp. (61.4%) and Helianthus annuus (45.4%). Each had moisture content between 11.4 and 15.9%, ash between 1.9 and 2.54%, fat between 5.9 and 11.5%, and protein between 14.8 and 24.3%. A total of 37 FAs were determined with most abundant being (9Z,12Z,15Z)-octadeca-9,12,15-trienoic, (9Z,12Z)- -octadeca-9,12-dienoic, hexadecanoic, (Z)-octadec-9-enoic, (Z)-icos-11-enoic and octadecanoic acids. Among all, cotton bee bread contained the highest level of ω-3 FAs, i.e. 41.3%. Unsaturated to saturated FA ratio ranged between 1.38 and 2.39, indicating that the bee bread can be a good source of unsaturated FAs.

  7. Comparative studies of cutins from lime (Citrus aurantifolia) and grapefruit (Citrus paradisi) after TFA hydrolysis.

    PubMed

    Hernández Velasco, Brenda Liliana; Arrieta-Baez, Daniel; Cortez Sotelo, Pedro Iván; Méndez-Méndez, Juan Vicente; Berdeja Martínez, Blanca Margarita; Gómez-Patiño, Mayra Beatriz

    2017-12-01

    Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS 13 C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fatty Acid and Proximate Composition of Bee Bread

    PubMed Central

    Kaplan, Muammer; Karaoglu, Öznur; Eroglu, Nazife

    2016-01-01

    Summary Palynological spectrum, proximate and fatty acid (FA) composition of eight bee bread samples of different botanical origins were examined and significant variations were observed. The samples were all identified as monofloral, namely Castanea sativa (94.4%), Trifolium spp. (85.6%), Gossypium hirsutum (66.2%), Citrus spp. (61.4%) and Helianthus annuus (45.4%). Each had moisture content between 11.4 and 15.9%, ash between 1.9 and 2.54%, fat between 5.9 and 11.5%, and protein between 14.8 and 24.3%. A total of 37 FAs were determined with most abundant being (9Z,12Z,15Z)-octadeca-9,12,15-trienoic, (9Z,12Z)- -octadeca-9,12-dienoic, hexadecanoic, (Z)-octadec-9-enoic, (Z)-icos-11-enoic and octadecanoic acids. Among all, cotton bee bread contained the highest level of ω-3 FAs, i.e. 41.3%. Unsaturated to saturated FA ratio ranged between 1.38 and 2.39, indicating that the bee bread can be a good source of unsaturated FAs. PMID:28115909

  9. Phytochemistry and biological activities of Phlomis species.

    PubMed

    Limem-Ben Amor, Ilef; Boubaker, Jihed; Ben Sgaier, Mohamed; Skandrani, Ines; Bhouri, Wissem; Neffati, Aicha; Kilani, Soumaya; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2009-09-07

    The genus Phlomis L. belongs to the Lamiaceae family and encompasses 100 species native to Turkey, North Africa, Europe and Asia. It is a popular herbal tea enjoyed for its taste and aroma. Phlomis species are used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation, and wounds. This review aims to summarize recent research on the phytochemistry and pharmacological properties of the genus Phlomis, with particular emphasis on its ethnobotanical uses. The essential oil of Phomis is composed of four chemotypes dominated by monoterpenes (alpha-pinene, limonene and linalool), sesquiterpenes (germacrene D and beta-caryophyllene), aliphalic compounds (9,12,15-octadecatrienoic acid methyl ester), fatty acids (hexadecanoic acid) and other components (trans-phytol, 9,12,15-octadecatrien-1-ol). Flavonoids, iridoids and phenylethyl alcohol constitute the main compounds isolated from Phlomis extracts. The pharmacological activities of some Phlomis species have been investigated. They are described according to antidiabetic, antinociceptive, antiulcerogenic, protection of the vascular system, anti-inflammatory, antiallergic, anticancer, antimicrobial and antioxidant properties.

  10. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55, isolated from the roots of Triticum durum.

    PubMed

    Boyko, Alevtina S; Konnova, Svetlana A; Fedonenko, Yulia P; Zdorovenko, Evelina L; Smol'kina, Olga N; Kachala, Vadim V; Ignatov, Vladimir V

    2011-10-20

    Azospirillum brasilense SR55, isolated from the rhizosphere of Triticum durum, was classified as serogroup II on the basis of serological tests. Such serogroup affiliation is uncharacteristic of wheat-associated Azospirillum species. The lipid A of A. brasilense SR55 lipopolysaccharide contained 3-hydroxytetradecanoic, 3-hydroxyhexadecanoic, hexadecanoic and octadecenoic fatty acids. The structure of the lipopolysaccharide's O polysaccharide was established, with the branched octasaccharide repeating unit being represented by l-rhamnose, l-3-O-Me-rhamnose, d-galactose and d-glucuronic acid. The SR55 lipopolysaccharide induced deformations of wheat root hairs. The lipopolysaccharide was not involved in bacterial cell aggregation, but its use to pretreat wheat roots was conducive to cell adsorption. This study shows that Azospirillum bacteria can utilise their own lipopolysaccharide as a carbon source, which may give them an advantage in competitive natural environments. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    PubMed

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  12. Volatile components of horsetail (Hippuris vulgaris L.) growing in central Italy.

    PubMed

    Cianfaglione, Kevin; Papa, Fabrizio; Maggi, Filippo

    2017-10-01

    Hippuris vulgaris, also known as horsetail or marestail, is a freshwater macrophyte occurring in lakes, rivers, ponds and marshes. According to 'The IUCN Red List of Threatened Species', H. vulgaris is at a high risk of extinction in Italy in the medium-term future. In the present study, we analysed for the first time the volatile composition of H. vulgaris growing in central Italy. For the purpose, the essential oil was obtained by hydrodistillation and analysed by GC-MS. The chemical composition was dominated by aliphatic compounds such as fatty acids (26.0%), ketones (18.7%) and alkanes (11.4%), whereas terpenoids were poorer and mostly represented by diterpenes (7.4%). n-Hexadecanoic acid (25.5%), hexahydrofarnesyl acetone (17.5%) and trans-phytol (7.4%) were the major volatile constituents. These compounds are here proposed as chemotaxonomic markers of the species.

  13. Biochemistry of Suberization

    PubMed Central

    Agrawal, Vishwanath P.; Kolattukudy, P. E.

    1977-01-01

    A cell-free extract obtained from suberizing potato (Solanum tuberosum L.) tuber disks catalyzed the conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with NADP or NAD as the cofactor, with a slight preference for the former. This ω-hydroxyacid dehydrogenase activity, located largely in the 100,000g supernatant fraction, has a pH optimum of 9.5. It showed an apparent Km of 50 μM for 16-hydroxyhexadecanoic acid. The dehydrogenase activity was inhibited by thiol reagents, such as p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide, and this dehydrogenase is shown to be different from alcohol dehydrogenase. That 16-oxohexadecanoic acid was an intermediate in the conversion of 16-hydroxyhexadecanoic acid to the corresponding dicarboxylic acid was suggested by the observation that the cell-free extract also catalyzed the conversion of 16-oxohexadecanoic acid to the dicarboxylic acid, with NADP as the preferred cofactor. The time course of development of the ω-hydroxyacid dehydrogenase activity in the suberizing potato disks correlated with the rate of deposition of suberin. Experiments with actinomycin D and cycloheximide suggested that the transcriptional processes, which are directly related to suberin biosynthesis and ω-hydroxyacid dehydrogenase biosynthesis, occurred between 72 and 96 hours after wounding. These results strongly suggest that a wound-induced ω-hydroxyacid dehydrogenase is involved in suberin biosynthesis in potato disks. PMID:16659915

  14. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2003-11-01

    A bacterial strain (designated IH5(T)), isolated from rhizospheric soil of grasses growing spontaneously in Spanish soil, actively solubilized phosphates in vitro when bicalcium phosphate was used as a phosphorus source. This strain was Gram-negative, strictly aerobic, rod-shaped and motile. The strain produced catalase, but not oxidase. Cellulose, casein, starch, gelatin, aesculin and urea were not hydrolysed. Growth was observed with many carbohydrates as the carbon source. The main non-polar fatty acids detected were hexadecenoic acid (C(16 : 1)), hexadecanoic acid (C(16 : 0)) and octadecenoic acid (C(18 : 1)). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (C(10 : 0) 3-OH), 3-hydroxydodecanoic acid (C(12 : 0) 3-OH) and 2-hydroxydodecanoic acid (C(12 : 0) 2-OH). Phylogenetic analysis of 16S rRNA indicated that this bacterium belongs to the genus Pseudomonas in the gamma-subclass of the Proteobacteria and that the closest related species is Pseudomonas graminis. The DNA G+C content was 61 mol%. DNA-DNA hybridization showed 23 % relatedness between strain IH5(T) and P. graminis DSM 11363(T). Therefore, strain IH5(T) belongs to a novel species from the genus Pseudomonas, for which the name Pseudomonas rhizosphaerae sp. nov. is proposed (type strain, IH5(T)=LMG 21640(T)=CECT 5726(T)).

  15. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy.

    PubMed

    Albishri, Hassan M; Almaghrabi, Omar A; Moussa, Tarek A A

    2013-01-01

    The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.

  16. Studies on antioxidant activity, volatile compound and fatty acid composition of different parts of Glycyrrhiza echinata L.

    PubMed Central

    Çakmak, Yavuz Selim; Aktumsek, Abdurrahman; Duran, Ahmet

    2012-01-01

    The essential oil compound, fatty acid composition and the in vitro antioxidant activity of the root and aerial of Glycyrrhiza echinata L., a medicinal plant growing in Turkey, have been studied. The antioxidant capacity tests were designed to evaluate the antioxidant activities of methanol extracts. Total phenolic and flavonoid concentrations of each extract were also determined by using both Folin-Ciocalteu reagent and aluminum chloride. The aerial part was found to possess the highest total phenolic content (146.30 ± 4.58 mg GAE/g) and total antioxidant capacity (175.33 ± 3.98 mg AE/g). The essential oil from root and aerial parts was analyzed by gas chromatography mass spectroscopy (GC-MS) systems. The major components identified were n-hexadecanoic acid, hexahydro farnesyl acetone, α-caryophyllen, hexanal and phytol. In fatty acid profiles of plant, palmitic, stearic, oleic and linoleic acid were detected as the main components. The results of this study have shown that the extracts G. echinata are suitable as a natural antioxidant and food supplement source for pharmacological and food industries due to their beneficial chemical composition and antioxidant capacity. PMID:27418901

  17. Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library.

    PubMed

    Yan, Wei; Li, Furong; Wang, Li; Zhu, Yaxin; Dong, Zhiyang; Bai, Linhan

    2017-03-01

    A new gene encoding a lipase (designated as Lip-1 ) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.

  18. Fatty acid synthesis in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1967-01-01

    1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mμmoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C17-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO42− or Mg2+, was growth-limiting there was a small accumulation of C17-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH4+ or PO43− was growth-limiting and there were adequate supplies of glycerol, Mg2+ and SO42−, there was a marked accumulation of C17-cyclopropane acid and C19-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C17-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg2+ and SO42− stimulated cyclopropane acid formation in resting cells. PMID:5340364

  19. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.

    PubMed

    Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J

    2014-07-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. Copyright © 2014 Cartron et al.

  20. Plasmodium falciparum: differing effects of non-esterified fatty acids and phospholipids on intraerythrocytic growth in serum-free medium.

    PubMed

    Asahi, Hiroko; Izumiyama, Shinji; Tolba, Mohammed Essa Marghany; Kwansa-Bentum, Bethel

    2011-03-01

    Different combinations of non-esterified fatty acids (NEFA) had variable effects on intraerythrocytic growth of Plasmodium falciparum. All stages of the parasite cultured in medium supplemented with cis-9-octadecenoic acid (C18:1-cis-9), hexadecanoic acid (C16:0), phospholipids (Pld) and bovine albumin free of NEFA were similar to those grown in complete growth medium. Three typical growth patterns indicating suppressed schizogony (SS), suppressed formation of merozoites (SMF), and inhibited invasion of merozoites (IMI) resulted from culture in other combinations of lipids. Unsaturated or saturated NEFA with longer or shorter carbon chains than C18:1-cis-9 or C16:0, higher degree of unsaturation, and trans-forms mainly resulted in SS and SMF effects. However, IMI or partial IMI was observed with tetradecanoic acid or octadecanoic acid enriched with C18:1-cis-9, and cis-9-hexadecenoic acid plus C16:0. Isoforms of C18:1-cis-9 also mainly resulted in partial IMI. SMF also occurred with C18:1-cis-9 plus C16:0 in the absence of Pld. Thus different NEFA exerted distinct roles in erythrocytic growth of the parasite by sustaining development at different stages. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Amphiphilic lipid derivatives of 3'-hydroxyurea-deoxythymidine: preparation, properties, molecular self-assembly, simulation and in vitro anticancer activity.

    PubMed

    Li, Miao; Qi, Shuo; Jin, Yiguang; Yao, Weishang; Zhang, Sa; Zhao, Jingyu

    2014-11-01

    Lipid derivatives of nucleoside analogs and their nanoassemblies have become the research hotspot due to their unique function in cancer therapy. Six lipid derivatives of 3'-hydroxyurea-deoxythymidine were prepared with zidovudine as the raw material. The 5'-substituted lipid chains in the derivatives were from the various fatty acids including octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecanoic acid corresponding to the derivatives OHT, DHT, DDHT, TDHT, HDHT and ODHT. The amphiphilic derivatives formed Langmuir monolayers at the air/water interface with different surface pressure-molecular area isotherms depending on the length of lipid chains. The nanoassemblies of OHT, DHT, DDHT, TDHT and HDHT and the nanoscale precipitates of ODHT were obtained after we injected their tetrahydrofuran solutions doped with hydrophilic long chained polymers into water. Electron microscopy showed that the morphology of nanoassemblies may be vesicles or nanotubes depending on the length of lipid chains. The shorter the lipid chains were, the softer the nanoassemblies. Computer simulation supported the experimental results. The nanoassemblies and the nanoscale precipitates showed much higher anticancer effects on SW620 cells than the parent drug hydroxyurea. The nanostructures of the derivatives are promising anticancer nanomedicines. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids.

    PubMed

    Knief, Claudia; Altendorf, Karlheinz; Lipski, André

    2003-11-01

    A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.

  3. In vitro synthesis of 9,10-dihydroxyhexadecanoic acid using recombinant Escherichia coli.

    PubMed

    Kaprakkaden, Anees; Srivastava, Preeti; Bisaria, Virendra Swarup

    2017-05-18

    Hydroxy fatty acids are widely used in food, chemical and cosmetic industries. A variety of dihydroxy fatty acids have been synthesized so far; however, no studies have been done on the synthesis of 9,10-dihydroxyhexadecanoic acid. In the present study recombinant E. coli has been used for the heterologous expression of fatty acid hydroxylating enzymes and the whole cell lysate of the induced culture was used for in vitro production of 9,10-dihydroxyhexadecanoic acid. A first of its kind proof of principle has been successfully demonstrated for the production of 9,10-dihydroxyhexadecanoic acid using three different enzymes viz. fatty acid desaturase (FAD) from Saccharomyces cerevisiae, epoxide hydrolase (EH) from Caenorhabditis elegance and epoxygenase (EPOX) from Stokasia laevis. The genes for these proteins were codon-optimised, synthesised and cloned in pET 28a (+) vector. The culture conditions for induction of these three proteins in E. coli were optimised in shake flask. The induced cell lysates were used both singly and in combination along with the trans-supply of hexadecanoic acid and 9-hexadecenoic acid, followed by product profiling by GC-MS. Formation of 9,10-dihydroxyhexadecanoic acid was successfully achieved when combination of induced cell lysates of recombinant E. coli containing FAD, EH, and EPOX were incubated with 9-hexadecenoic acid. The in vitro production of 9,10-dihydroxyhexadecanoic acid synthesis using three fatty acid modification genes from different sources has been successfully demonstrated. The strategy adopted can be used for the production of similar compounds.

  4. The constituents of essential oil in leaves of Karaj accession of Trigonella foenum graecum.

    PubMed

    Riasat, Mehrnaz; Jafari, Ali Ashraf; Bahmanzadegan, Atefeh; Hatami, Ahmad; Zareiyan, Faraneh

    2017-07-01

    The chemical composition of the essential oils of Karaj accession of Trigonella foenum graecum leaves was detected by hydro-distillation and analysed by gas chromatography (GC-FID) and gas chromatography-mass spectroscopy (GC-MS) apparatuses for first time. Thirty-six compounds representing 95.3% of the total components were identified. The patterns of the main compounds were (2E)-Hexenal (26.61%), n-Hexadecanoic acid (10.14%) and (E)-b-Ionone (7.99%). Other notable constituents were Thymol (4.79%), 6,10,14-trimethyl-2-Pentadecanone (4.59%), Carvacrol (3.40%), (E)-Nerolidol (3.32%) and (2E,6Z)-Nonadienal (3.30%). (2E)-Hexenal was found as the most dominant component in this study.

  5. Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC-MS with one-step esterification of free fatty acids and transesterification of glycerolipids.

    PubMed

    Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan

    2017-05-01

    Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d 2 acid and glyceryl tri(hexadecanoate-2,2-d 2 ) as surrogate analytes and tridecanoic-2,2-d 2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d 2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Variation in amino acid and lipid composition of latent fingerprints.

    PubMed

    Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G

    2010-06-15

    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy

    PubMed Central

    Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.

    2013-01-01

    Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995

  8. Effects of Aerobic Growth on the Fatty Acid and Hydrocarbon Compositions of Geobacter bemidjiensis BemT.

    PubMed

    Ueno, Akio; Shimizu, Satoru; Hashimoto, Mikako; Adachi, Takumi; Matsushita, Takako; Okuyama, Hidetoshi; Yoshida, Kiyohito

    2017-01-01

    Geobacter spp., regarded as strict anaerobes, have been reported to grow under aerobic conditions. To elucidate the role of fatty acids in aerobiosis of Geobacter spp., we studied the effect of aerobiosis on fatty acid composition and turnover in G. bemidjiensis Bem T . G. bemidjiensis Bem T was grown under the following different culture conditions: anaerobic culture for 4 days (type 1) and type 1 culture followed by 2-day anaerobic (type 2) or aerobic culture (anaerobic-to-aerobic shift; type 3). The mean cell weight of the type 3 culture was approximately 2.5-fold greater than that of type 1 and 2 cultures. The fatty acid methyl ester and hydrocarbon fraction contained hexadecanoic (16:0), 9-cis-hexadecenoic [16:1(9c)], tetradecanoic (14:0), tetradecenoic [14:1(7c)] acids, hentriacontanonaene, and hopanoids, but not long-chain polyunsaturated fatty acids. The type 3 culture contained higher levels of 14:0 and 14:1(7c) and lower levels of 16:0 and 16:1(9c) compared with type 1 and 2 cultures. The weight ratio of extracted lipid per dry cell was lower in the type 3 culture than in the type 1 and 2 cultures. We concluded that anaerobically-grown G. bemidjiensis Bem T followed by aerobiosis were enhanced in growth, fatty acid turnover, and de novo fatty acid synthesis.

  9. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Santa-Regina, Ignacio; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2004-05-01

    A phosphate-solubilizing bacterial strain designated OK2(T) was isolated from rhizospheric soil of grasses growing spontaneously in a soil from Spain. Cells of the strain were Gram-negative, strictly aerobic, rod-shaped and motile. Phylogenetic analysis of the 16S rRNA gene indicated that this bacterium belongs to the gamma-subclass of Proteobacteria within the genus Pseudomonas and that the closest related species is Pseudomonas graminis. The strain produced catalase but not oxidase. Cellulose, casein, starch, gelatin and urea were not hydrolysed. Aesculin was hydrolysed. Growth was observed with many carbohydrates as carbon sources. The main non-polar fatty acids detected were hexadecenoic acid (16 : 1), hexadecanoic acid (16 : 0) and octadecenoic acid (18 : 1). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10 : 0), 3-hydroxydodecanoic acid (3-OH 12 : 0) and 2-hydroxydodecanoic acid (2-OH 12 : 0). The G+C DNA content determined was 59.3 mol%. DNA-DNA hybridization showed 48.7 % relatedness between strain OK2(T) and P. graminis DSM 11363(T) and 26.2 % with respect to Pseudomonas rhizosphaerae LMG 21640(T). Therefore, these results indicate that strain OK2(T) (=LMG 21974(T)=CECT 5822(T)) belongs to a novel species of the genus Pseudomonas, and the name Pseudomonas lutea sp. nov. is proposed.

  10. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  11. Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol.

    PubMed

    Anisha, C; Radhakrishnan, E K

    2017-06-01

    Endophytic fungi associated with rhizomes of four cultivars of Zingiber officinale were identified by molecular and morphological methods and evaluated for their activity against soft rot pathogen Pythium myriotylum and clinical pathogens. The volatile bioactive metabolites produced by these isolates were identified by GC-MS analysis of the fungal crude extracts. Understanding of the metabolites produced by endophytes is also important in the context of raw consumption of ginger as medicine and spice. A total of fifteen isolates were identified from the four varieties studied. The various genera identified were Acremonium sp., Gliocladiopsis sp., Fusarium sp., Colletotrichum sp., Aspergillus sp., Phlebia sp., Earliella sp., and Pseudolagarobasidium sp. The endophytic community was unique to each variety, which could be due to the varying host genotype. Fungi from phylum Basidiomycota were identified for the first time from ginger. Seven isolates showed activity against Pythium, while only two showed antibacterial activity. The bioactive metabolites identified in the fungal crude extracts include tyrosol, benzene acetic acid, ergone, dehydromevalonic lactone, N-aminopyrrolidine, and many bioactive fatty acids and their derivatives which included linoleic acid, oleic acid, myristic acid, n-hexadecanoic acid, palmitic acid methyl ester, and methyl linoleate. The presence of these varying bioactive endophytic fungi may be one of the reasons for the differences in the performance of the different ginger varieties.

  12. Novel Genes Encoding Hexadecanoic Acid Δ6-Desaturase Activity in a Rhodococcus sp.

    PubMed

    Araki, Hiroyuki; Hagihara, Hiroshi; Takigawa, Hirofumi; Tsujino, Yukiharu; Ozaki, Katsuya

    2016-11-01

    cis-6-Hexadecenoic acid, a major component of human sebaceous lipids, is involved in the defense mechanism against Staphylococcus aureus infection in healthy skin and closely related to atopic dermatitis. Previously, Koike et al. (Biosci Biotechnol Biochem 64:1064-1066, 2000) reported that a mutant strain of Rhodococcus sp. produced cis-6-hexadecenoate derivatives from palmitate alkyl esters. From the mutant Rhodococcus strain, we identified and sequenced two open reading frames present in an amplified 5.7-kb region; these open reading frames encoded tandemly repeated Δ6-desaturase-like genes, Rdes1 and Rdes2. A phylogenetic tree indicated that Rdes1 and Rdes2 were different from previously known Δ6-desaturase genes, and that they formed a new cluster. Rdes1 and Rdes2 were each introduced into vectors and then expressed separately in Escherichia coli, and the fatty acid composition of the transformed cells was analyzed by gas chromatography and mass spectrometry. The amount of cis-6-hexadecenoic acid was significantly higher in Rdes1- or Rdes2-transformed E. coli cells (twofold and threefold, respectively) than in vector-only control cells. These results showed that cis-6-hexadecenoic acid was produced in E. coli cells by the rhodococcal Δ6-desaturase-like proteins.

  13. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna; Kot, Anna M

    2018-04-19

    This article discusses the effect of selenium in aqueous solutions on aspects of lipid and amino acid metabolism in the cell biomass of Saccharomyces cerevisiae MYA-2200 and Candida utilis ATCC 9950 yeasts. The yeast biomass was obtained by using waste products (potato wastewater and glycerol). Selenium, at a dose of 20 mg/L of aqueous solution, affected the differentiation of cellular morphology. Yeast enriched with selenium was characterized by a large functional diversity in terms of protein and amino acid content. The protein content in the biomass of S. cerevisiae enriched with selenium (42.6%) decreased slightly as compared to that in the control sample without additional selenium supplementation (48.4%). Moreover, yeasts of both strains enriched with selenium contained a large amount of glutamic acid, aspartic acid, lysine, and leucine. Analysis of fatty acid profiles in S. cerevisiae yeast supplemented with selenium showed an increase in the unsaturated fatty acid content (e.g., C18:1). The presence of margaric acid (C17:0) and hexadecanoic acid (C17:1) was found in the C. utilis biomass enriched with selenium, in contrast to that of S. cerevisiae. These results indicate that selenium may induce lipid peroxidation, which consequently affects the loss of integrity of the cytoplasmic membrane. Yeast enriched with selenium with optimal amino acid and lipid composition can be used to prepare a novel formula of dietary supplements, which can be applied directly to various diets for both humans and animals.

  14. Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution.

    PubMed Central

    Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M

    1997-01-01

    The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species. PMID:9171426

  15. Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution.

    PubMed

    Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M

    1997-06-01

    The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species.

  16. A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging.

    PubMed

    Magata, Yasuhiro; Kawaguchi, Takayoshi; Ukon, Misa; Yamamura, Norio; Uehara, Tomoya; Ogawa, Kazuma; Arano, Yasushi; Temma, Takashi; Mukai, Takahiro; Tadamura, Eiji; Saji, Hideo

    2004-01-01

    C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.

  17. Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.

    2013-10-01

    Fatty acids are known to affect the friction and wear of steel contacts via adsorption onto the surface, which is one of the fundamental boundary-lubrication mechanisms. The understanding of the lubrication mechanisms of polar molecules on diamond-like carbon (DLC) is, however, still insufficient. In this work we aimed to find out whether such molecules have a similar effect on DLC coatings as they do on steel. The adsorption of hexadecanoic acid in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage of the adsorbed fatty-acid molecules was analysed. In addition, tribological tests were performed to correlate the wear and friction behaviours in tribological contacts with the adsorption of molecules on the surface under static conditions. A good correlation between the AFM results and the tribological behaviour was observed. We confirmed that fatty acids can adsorb onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for DLC coatings. The adsorption of the fatty acid onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction. Tentative adsorption mechanisms that include an environmental species effect, a temperature effect and a tribochemical effect are proposed for DLC and steel surfaces based on our results and few potential mechanisms found in literature.

  18. Post-modification of preformed liposomes with novel non-phospholipid poly(ethylene glycol)-conjugated hexadecylcarbamoylmethyl hexadecanoic acid for enhanced circulation persistence in vivo

    PubMed Central

    Nag, Okhil K; Yadav, Vivek R; Hedrick, Andria; Awasthi, Vibhudutta

    2013-01-01

    We report synthesis and characterization of a novel PEG2000-conjugated hexadecylcarbamoylmethyl hexadecanoate (HDAS-PEG) as a PEG-phospholipid substitute for enhancing circulation persistence of liposomes. HDAS-PEG showed critical micelle concentration of 4.25 μM. We used post-insertion technique to introduce HDAS-PEG in outer lipid layer of the preformed liposomes. The presence of surface HDAS-PEG was confirmed by altered electrophoretic mobility, confocal microscopy and PEG estimation by ELISA. The post-inserted HDAS-PEG desorbed at approximately half the rate at which post-inserted DSPE-PEG desorbed from the liposome surface. HDAS-PEG significantly reduced liposome-induced complement activation (C4d, Bb and SC5b); HDAS-PEG was more effective than more commonly used DSPE-PEG in this capacity. For studying circulation persistence, the liposomes were labeled with 99mTc radionuclide and administered in rats. 99mTc-HDAS-PEG-liposomes showed prolonged persistence in blood as compared to that shown by 99mTc-plain liposomes. After 24 h of administration, < 1% of 99mTc-plain liposomes remained in blood, whereas approximately 28% of injected 99mTc-HDAS-PEG-liposomes were present in blood. In comparison, only 4.8% of 99mTc-DSPE-PEG-liposomes was measured in blood after 24 h. As expected, the clearance route of the liposomes was through liver and spleen. These results demonstrate the potential of a novel non-phosphoryl HDAS-PEG for surface modification of preformed liposomes with a goal of prolonging their circulation persistence and more effective inhibition of complement activation. PMID:23419666

  19. Comparative chemical characterization of pigmented and less pigmented cell walls of Alternaria tenuissima.

    PubMed

    Kishore, Kankipati Hara; Kanjilal, Sanjit; Misra, Sunil; Reddy, Chinnathimma Rajagopal; Murty, Upadyayula Suryanarayana

    2005-12-01

    Alternaria tenuissima, the parasitic fungus, was obtained from the pruned upper-cut surfaces of mulberry stems. This fungus contains dark pigment because of the presence of melanin in the cell wall. To obtain less-pigmented cell walls, this fungus was grown under dark condition. When the pigmented and less-pigmented cell walls were chemically analyzed, no differences were observed in amino-acid composition, hexoses, or pentoses. However, in pigmented cell walls, higher contents of melanin (2.6%) were found than in less-pigmented cell walls (0.3%). Interestingly, a significant difference was observed in the relative fatty-acid compositions between these two types of cell walls. Among the major fatty acids, there were increased concentrations of tetradecanoic acid (C14:0), hexadecanoic acid (C16:0), 9-hexadecenoic acid (C16: 1,Delta 9), and 9-octadecanoic acid (C18:1,Delta 9) and a concomitant decrease in 9,12-octadecadienoic acid (C18:2,Delta 9,12) in less-pigmented compared with pigmented cell walls. This difference in fatty-acid composition may be related to the higher percentage of melanin in the pigmented than the less-pigmented cell walls. Lesser amounts of 9,12-octadecadienoic acid in less-pigmented cell walls may have been caused by the growth of the fungus under environmental stress conditions. An interesting observation was the presence in pigmented cell walls only of methyl-substituted fatty acids with carbon numbers C14 to C17, but their occurrence could not be ascertained in the present study.

  20. Chemical Composition and Antibacterial and Cytotoxic Activities of Allium hirtifolium Boiss

    PubMed Central

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  1. Chemical Composition, In Vitro Antimicrobial, Free-Radical-Scavenging and Antioxidant Activities of the Essential Oil of Leucas inflata Benth.

    PubMed

    Mothana, Ramzi A; Noman, Omar M; Al-Sheddi, Ebtesam S; Khaled, Jamal M; Al-Said, Mansour S; Al-Rehaily, Adnan J

    2017-02-27

    The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a high percentage of aliphatic acids (51.1%). Hexadecanoic acid (32.8%) and n-dodecanoic acid (7.8%) were identified as the major compounds. Oxygenated monoterpenes were distinguished as the second significant group of constituents (16.0%). Camphor (6.1%) and linalool (3.2%) were found to be the main components among the oxygenated monoterpenes. In addition, the volatile oil was assessed for its antimicrobial activity against four bacterial strains and one yeast species using broth micro-dilution assay for minimum inhibitory concentrations (MIC). In addition, antioxidant activity was measured utilizing the anti-radical activity of the sable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. The oil of L. inflata showed an excellent antibacterial activity against only the tested Gram-positive bacteria with a MIC-value of 0.81 mg/mL. Furthermore, the oil demonstrated, at a concentration of 1 mg/mL, a weak to moderate antiradical and antioxidant activity of 38% and 32%, respectively.

  2. Detection of Androgenic-Mutagenic Compounds and Potential Autochthonous Bacterial Communities during In Situ Bioremediation of Post-methanated Distillery Sludge

    PubMed Central

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    Sugarcane-molasses-based post-methanated distillery waste is well known for its toxicity, causing adverse effects on aquatic flora and fauna. Here, it has been demonstrated that there is an abundant mixture of androgenic and mutagenic compounds both in distillery sludge and leachate. Gas chromatography-mass spectrometry (GC-MS) analysis showed dodecanoic acid, octadecanoic acid, n-pentadecanoic acid, hexadecanoic acid, β-sitosterol, stigmasterol, β-sitosterol trimethyl ether, heptacosane, dotriacontane, lanosta-8, 24-dien-3-one, 1-methylene-3-methyl butanol, 1-phenyl-1-propanol, 5-methyl-2-(1-methylethyl) cyclohexanol, and 2-ethylthio-10-hydroxy-9-methoxy-1,4 anthraquinone as major organic pollutants along with heavy metals (all mg kg-1): Fe (2403), Zn (210.15), Mn (126.30, Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425). In a simultaneous analysis of bacterial communities using the restriction fragment length polymorphism (RFLP) method the dominance of Bacillus sp. followed by Enterococcus sp. as autochthonous bacterial communities growing in this extremely toxic environment was shown, indicating a primary community for bioremediation. A toxicity evaluation showed a reduction of toxicity in degraded samples of sludge and leachate, confirming the role of autochthonous bacterial communities in the bioremediation of distillery waste in situ. PMID:28567033

  3. Possible involvement of long chain fatty acids in the spores of Ganoderma lucidum (Reishi Houshi) to its anti-tumor activity.

    PubMed

    Fukuzawa, Masataka; Yamaguchi, Rie; Hide, Izumi; Chen, Zhiqing; Hirai, Yuko; Sugimoto, Akiko; Yasuhara, Tadashi; Nakata, Yoshihiro

    2008-10-01

    During our isolation of biologically active substances from the spores of Ganoderma lucidum (Reishi Houshi, G. lucidum) guided by the inhibitory activity on HL-60 cell proliferation, NMR spectroscopic and mass spectrometric data indicate the substance contains a mixture of several long chain fatty acids. Hence, in this study, we have examined the inhibitory effects of an ethanolic extract of the spores of G. lucidum as the spore extract, on the proliferation of various human cancer cell lines by comparison with several authentic long chain fatty acids. Of the fatty acids we examined nonadecanoic acid (C19:0) showed the highest inhibitory activity for HL-60 cell proliferation with IC(50) values of 68+/-7 microM followed by heptadecanoic acid (C17:0, 120+/-23 microM), octa- (C18:0, 127+/-4 microM) and hexadecanoic acids (C16:0, 132+/-25 microM), respectively. The corresponding unsaturated fatty acids containing one double bond such as cis-10-nonadecenoic acid (C19:1), cis-9-octadecenoic acid (C18:1), cis-10-heptadecenoic acid (C17:1) and cis-9-hexadecenoic acid (C16:1) were less effective. The ethanolic extract of spores of G. lucidum were shown by annexin-V FITC/PI double staining to induce apoptosis of HL-60 cells in a similar way to cis-10-nonadecenoic acid (C19:1). These unsaturated fatty acids probably inhibit tumor necrosis factor production induced by lipopolysaccharide in a mouse macrophage preparation. Our results suggest the spores of G. lucidum contain 19-carbon fatty acids as one of the components for characteristics of its physiological effects.

  4. Fatty Acid Composition of Dried Fruits of Sclerocarya birrea, Diospyros blancoi and Landolphia kirkii

    PubMed Central

    Matemu, Athanasia O.; Adeyemi, Durotoye; Nyoni, Hlengilizwe; Mdee, Ladislaus; Tshabalala, Papiso; Mamba, Bhekie

    2017-01-01

    Wild fruits are commonly consumed in the rural communities of South Africa. The information on their nutritionally important fatty acids is, however, limited. Three wild fruit species, Diospyros blancoi, Landolphia kirkii and Sclerocarya birrea from Limpopo Province were selected for evaluation of fatty acid content. Fatty acids composition of dried fruits of Diospyros blancoi (Db), Landolphia kirkii (Lk) and ripe and/or overripe Sclerocarya birrea (Sb) were evaluated by a gas chromatography-time of flight-mass spectrometer (GC-TOF-MS). Hexadecanoic acid (C16:0) was found in highest abundance in L. kirkii (57.73–73.55%), followed by S. birrea (55.92–71.31%) and D. blancoi (46.31–62.05%), respectively. Octadecanoic acid (C18:0) was of second highest abundance, with 24.71–100% in D. blancoi, L. kirkii (31.03–41.60%) and S. birrea (9.11–17.0%). The 9-octadecenoic acid (C18:1n-9) was the major unsaturated fatty acid in both S. birrea (5.33–18.82%), D. blancoi (8.22–8.92%), and L. kirkii (3.84–8.63%). The 9,-12-octadecadienoic acid (C18:2n-6) was the major unsaturated fatty acid in D. blancoi (22.34%). The 9,-12,-15-octadecatrienoic acid (C18:3n-3) was found in L. kirkii (3.51%) and S. birrea (2.79%). From the results, saturated fatty acids were the most dominant, whereas mono- and poly-unsaturated fatty acids were the minor constituents. Therefore, presence of nutritionally important essential fatty acids from S. birrea, D. blancoi and L. kirkii has been shown. PMID:29149025

  5. Characterization of an antibiotic produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum.

    PubMed

    Kwon, Jae Won; Kim, Shin Duk

    2014-01-01

    Bacillus subtilis JW-1 was isolated from rhizosphere soil as a potential biocontrol agent of bacterial wilt caused by Ralstonia solanacearum. Seed treatment followed by a soil drench application with this strain resulted in >80% reduction in bacterial wilt disease compared with that in the untreated control under greenhouse conditions. The antibacterial compound produced by strain JW-1 was purified by bioactivity-guided fractionation. Based on mass spectroscopy and nuclear magnetic resonance spectral data ((1)H, (13)C, (1)H-(1)H correlation spectroscopies, rotating frame nuclear Overhauser effect spectroscopy, and heteronuclear multiple-bond correlation spectroscopy), the structure of this compound was elucidated as a cyclic lipopeptide composed of a heptapeptide (Gln-Leu-Leu-Val-Asp-Leu-Leu) bonded to a β-hydroxy-iso-hexadecanoic acid arranged in a lactone ring system.

  6. Composition and antioxidant activities of leaf and root volatile oils of Morinda lucida.

    PubMed

    Okoh, Sunday O; Asekun, Olayinka T; Familoni, Oluwole B; Afolayan, Anthony J

    2011-10-01

    Morinda lucida (L.) Benth. (Rubiacae) is used in traditional medicine in many West African countries for the treatment of various human diseases. The leaves and roots of this plant were subjected to hydro-distillation to obtain volatile oils which were analyzed by high resolution GC/MS. Fifty compounds were identified in the leaf volatile oil and the major compounds were alpha-terpinene (17.8%) and beta-bisabolene (16.3%). In the root oil, 18 compounds were identified, the major constituents being 3-fluoro-p-anidine (51.8%) and hexadecanoic acid (12.0%). Antioxidant activities of the oils were examined using the DPPH, ABTS, reducing power and lipid peroxidation assays. All assays were concentration dependent with varying antioxidant potentials. The antioxidant activity of the root volatile oil of M. lucida was similar to that of the standard drugs used.

  7. Production of isopropyl cis-6-hexadecenoate by regiospecific desaturation of isopropyl palmitate by a double mutant of a Rhodococcus strain.

    PubMed

    Koike, K; Takaiwa, M; Ara, K; Inoue, S; Kimura, Y; Ito, S

    2000-02-01

    Resting cells of a double mutant noted as KSM-MT66, derived from Rhodococcus sp. strain KSM-B-3 by UV irradiation, were found to cis-desaturate isopropyl hexadecanoate, yielding isopropyl cis-6-hexadecenoate. Addition of sodium glutamate (1.0%), Mg SO4 (2 mM), and thiamine (2 mM) increased the productivity of the unsaturated product in phosphate buffer. Optimal temperature and pH for the reaction were around 26 degrees C and 7, respectively. Under the optimized conditions, more than 50 g/l of isopropyl cis-6-hexadecenoate was produced after a 3-day incubation by resting cells of the mutant. Thus, cis-6-hexadecenoic acid, the main component of human sebaceous lipids, can be manufactured economically by the rhodococcal bioconversion.

  8. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System

    PubMed Central

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T.

    2016-01-01

    ABSTRACT Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa. X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. PMID:27435463

  9. Chemical constituents and antioxidant and biological activities of the essential oil from leaves of Solanum spirale.

    PubMed

    Keawsa-ard, Sukanya; Liawruangrath, Boonsom; Liawruangrath, Saisunee; Teerawutgulrag, Aphiwat; Pyne, Stephen G

    2012-07-01

    The essential oil of the leaves Solanium spirale Roxb. was isolated by hydrodistillation and analyzed for the first time using GC and GC-MS. Thirty-nine constituents were identified, constituting 73.36% of the total chromatographical oil components. (E)-Phytol (48.10%), n-hexadecanoic acid (7.34%), beta-selinene (3.67%), alpha-selinene (2.74%), octadecanoic acid (2.12%) and hexahydrofarnesyl acetone (2.00%) were the major components of this oil. The antioxidant activity of the essential oil was evaluated by using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay. The oil exhibited week antioxidant activity with an IC50 of 41.89 mg/mL. The essential oil showed significant antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus with MIC values of 43.0 microg/mL and 21.5 microg/mL, respectively. It also showed significant cytotoxicity against KB (oral cancer), MCF-7 (breast cancer) and NCI-H187 (small cell lung cancer) with the IC50 values of 26.42, 19.69, and 24.02 microg/mL, respectively.

  10. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    NASA Astrophysics Data System (ADS)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  11. Tomitella biformata gen. nov., sp. nov., a new member of the suborder Corynebacterineae isolated from a permafrost ice wedge.

    PubMed

    Katayama, Taiki; Kato, Tomoko; Tanaka, Michiko; Douglas, Thomas A; Brouchkov, Anatoli; Abe, Ayumi; Sone, Teruo; Fukuda, Masami; Asano, Kozo

    2010-12-01

    Gram-reaction-positive, aerobic, non-spore-forming, irregular rod-shaped bacteria, designated AHU1821(T) and AHU1820, were isolated from an ice wedge in the Fox permafrost tunnel, Alaska. The strains were psychrophilic, growing at -5 to 27°C. Phylogenetic analysis of the 16S rRNA and gyrB gene sequences indicated that the ice-wedge isolates formed a clade distinct from other mycolic-acid-containing bacteria within the suborder Corynebacterineae. The cell wall of strains AHU1821(T) and AHU1820 contained meso-diaminopimelic acid, arabinose and galactose, indicating chemotype IV. The muramic acids in the peptidoglycan were glycolated. The predominant menaquinone was MK-9(H(2)). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified glycolipid. The major fatty acids were hexadecenoic acid (C(16 : 1)), hexadecanoic acid (C(16 : 0)), octadecenoic acid (C(18 : 1)) and tetradecanoic acid (C(14 : 0)). Tuberculostearic acid was present in relatively small amounts (1 %). Strains AHU1821(T) and AHU1820 contained mycolic acids with 42-52 carbons. The DNA G+C content of the two strains was 69.3-71.6 mol% (T(m)). 16S rRNA, rpoB and recA gene sequences were identical between strains AHU1821(T) and AHU1820 and those of the gyrB gene showed 99.9 % similarity. Based on phylogenetic and phenotypic evidence, strains AHU1821(T) and AHU1820 represent a single novel species of a novel genus, for which the name Tomitella biformata gen. nov., sp. nov. is proposed. The type strain of Tomitella biformata is AHU1821(T) (=DSM 45403(T) =NBRC 106253(T)).

  12. [Changes in Cell Surface Properties and Biofilm Formation Efficiency in Azospirillum brasilense Sp245 Mutants in the Putative Genes of Lipid Metabolism mmsB1 and fabG1].

    PubMed

    Shumilova, E; Shelud'ko, A V; Filip'echeva, Yu A; Evstigneeva, S S; Ponomareva, E G; Petrova, L P; Katsy, E I

    2016-01-01

    The previously obtained insertion mutants ofAzospirillum brasilense Sp245 in the genes mmsBl and fabG1 (strains SK039 and Sp245.1610, respectively) were characterized by impaired flagellation and motility. The putative products of expression of these genes are 3-hydroxyisobutyrate dehydrogenase and 3-oxoacyl-[acyl-carrier protein] reductase, respectively. In the present work, A. brasilense- Sp245 strains SK039 and Sp245.1610 were found to have differences in the content of 3-hydroxyhexadecanoic, hexadecanoic, 3-hydroxytetradecanoic, hexadecenoic, octadecenoic, and nonadecanoic acids in their lipopolysaccharide prepa- rations, as well as in cell hydrophobicity and hemagglutination activity and dynamics of cell aggregation, in biomass amount, and in the relative content of lipopolysaccharide antigens in mature biofilms formed on hydrophilic or hydrophobic surfaces.

  13. Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities.

    PubMed

    Mamadalieva, Nilufar Zokirjonovna; Sharopov, Farukh; Satyal, Prabodh; Azimova, Shahnoz Sadykovna; Wink, Michael

    2017-05-01

    The chemical composition of the essential oils obtained from aerial parts of Scutellaria immaculata Nevski ex Juz., Scutellaria ramosissima M. Pop. and Scutellaria schachristanica Juz. (Lamiaceae) growing wild in Uzbekistan was analysed by GC and GC-MS. The main constituents of the essential oils from S. immaculata were acetophenone (30.39%), eugenol (20.61%), thymol (10.04%) and linalool (6.92%), whereas constituents of the essential oils fromS. schachristanica were acetophenone (34.74%), linalool (26.98%) and eugenol (20.67%). The S. ramosissima oil is dominated by germacrene D (23.96%), β-caryophyllene (11.09%), linalool (9.63%) and hexadecanoic acid (8.34%). The essential oils of Scutellaria species exhibited weaker antioxidant effects in DPPH, ABTS and FRAP assays. In FRAP assay, only eugenol exhibited a substantial reducing power IC 50  = 2476.92 ± 15.8 (mM Fe(II)/g).

  14. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp.

    PubMed

    Koma, D; Hasumi, F; Yamamoto, E; Ohta, T; Chung, S Y; Kubo, M

    2001-01-01

    Microorganisms that degrade long-chain n-paraffins from used car engine oil were isolated from soil. For the screening, a fraction of n-paraffin prepared from car engine oil was applied as the sole carbon source. The strain was identified as Acinetobacter sp. The ability of the strain to assimilate long-chain n-paraffins was assessed and characterized. The strain mineralized long-chain n-paraffins (0.1% w/v) in the minimal medium after cultivation for 96 h and also reduced the weight of the waste oil added (1% w/v) by 20% after 72 h without an extracellular biosurfactant. When n-hexadecane was fed as substrate, 1-hexadecanol and 1-hexadecanoic acid were detected as the intermediates by gas chromatography/mass spectrometry. This indicates that the long-chain n-paraffins were metabolized via the terminal oxidation pathway of n-alkane.

  15. Chemical Constituents of Murraya tetramera Huang and Their Repellent Activity against Tribolium castaneum.

    PubMed

    You, Chun-Xue; Guo, Shan-Shan; Zhang, Wen-Juan; Geng, Zhu-Feng; Liang, Jun-Yu; Lei, Ning; Du, Shu-Shan; Deng, Zhi-Wei

    2017-08-20

    Sixteen compounds were isolated from the leaves and stems of Murraya tetramera Huang. Based on the NMR and MS spectral results, the structures were determined. It was confirmed that the isolated compounds included three new compounds ( 9 , 10 and 13 ) and one new natural product ( 8 ), which were identified asmurratetra A ( 9 ), murratetra B ( 10 ), murratetra C ( 13 ) and [2-(7-methoxy-2-oxochromen-8-yl)-3-methylbut-2-enyl]3-methylbut-2-enoate ( 8 ), respectively. Meanwhile, the repellent activity against Tribolium castaneum was investigated for 13 of these isolated compounds. The results showed that the tested compounds had various levels of repellent activity against T. castaneum . Among them, compounds 1 (4(15)-eudesmene-1β,6α-diol), 11 (isoferulic acid) and 16 (2,3-dihydroxypropyl hexadecanoate) showed fair repellent activity against T. castaneum . They might be considered as potential leading compounds for the development of natural repellents.

  16. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Comparison of essential oil components and in vitro anticancer activity in wild and cultivated Salvia verbenaca.

    PubMed

    Russo, Alessandra; Cardile, Venera; Graziano, Adriana C E; Formisano, Carmen; Rigano, Daniela; Canzoneri, Marisa; Bruno, Maurizio; Senatore, Felice

    2015-01-01

    The objectives of our research were to study the chemical composition and the in vitro anticancer effect of the essential oil of Salvia verbenaca growing in natural sites in comparison with those of cultivated (Sc) plants. The oil from wild (Sw) S. verbenaca presented hexadecanoic acid (23.1%) as the main constituent, while the oil from Sc plants contained high quantities of hexahydrofarnesyl acetone (9.7%), scarce in the natural oil (0.7%). The growth-inhibitory and proapoptotic effects of the essential oils from Sw and Sc S. verbenaca were evaluated in the human melanoma cell line M14, testing cell vitality, cell membrane integrity, genomic DNA fragmentation and caspase-3 activity. Both the essential oils were able to inhibit the growth of the cancer cells examined inducing also apoptotic cell death, but the essential oil from cultivated samples exhibited the major effects.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uranga, Carla C., E-mail: curanga@cicese.edu.mx; Beld, Joris, E-mail: joris.beld@drexelmed.edu; Mrse, Anthony, E-mail: amrse@ucsd.edu

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungusmore » Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.« less

  19. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    PubMed

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Inactivation of the inhA-Encoded Fatty Acid Synthase II (FASII) Enoyl-Acyl Carrier Protein Reductase Induces Accumulation of the FASI End Products and Cell Lysis of Mycobacterium smegmatis

    PubMed Central

    Vilchèze, Catherine; Morbidoni, Hector R.; Weisbrod, Torin R.; Iwamoto, Hiroyuki; Kuo, Mack; Sacchettini, James C.; Jacobs, William R.

    2000-01-01

    The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C26:0), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42°C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C16:0) and a concomitant increase of tetracosanoic acid (C24:0) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C16:0, and a concomitant accumulation of C26:0. Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH. PMID:10869086

  1. Integrative Metabolic Signatures for Hepatic Radiation Injury

    PubMed Central

    Su, Gang; Meng, Fan; Liu, Laibin; Mohney, Robert; Kulkarni, Shilpa; Guha, Chandan

    2015-01-01

    Background Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice. Methods Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. Results Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine). Conclusions We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney. PMID:26046990

  2. Gas chromatographic/mass spectrometric analysis of the essential oil of Houttuynia cordata Thunb by using on-column methylation with tetramethylammonium acetate.

    PubMed

    Ch, Muhammad Ishtiaq; Wen, Yang F; Cheng, YiYu

    2007-01-01

    This paper describes a simple and novel on-column derivatization procedure used with gas chromatography/mass spectrometry (GC/MS) for the analysis of essential oil of Houttuynia cordata Thunb (HCT), a traditional Chinese medicine. In the procedure, the essential oil was obtained by hydrodistillation, and the fatty acid components were derivatized with tetramethylammonium acetate (TMAA) at 250 degrees C and identified by GC/MS. Methylation improved the determination of both the fatty acids and the other components in the essential oil of HCT. To obtain optimum methylation conditions, several important factors were investigated with pentadecane as the internal standard and a GC inlet temperature of 250 degres C. Tetramethylammonium hydroxide (TMAH) and TMAA were compared as the derivatization agent, and a 2:1 ratio of TMAA to capric acid was evaluated. Fatty acid methyl esters produced good chromatographic peak shapes and did not interfere with the determination of dodecanal and caryophyllene. TMAA is a neutral methylation reagent, and it yielded no side reactions during derivatization. It was found that the fatty acid content of the essential oil was about 81%; among the methylated fatty acids found were capric acid, methyl (43.66%), methyl laurate (16.15%), methyl hexadecanoate (9.27%), undecanoic acid, methyl (5.62%), methyl oleate (1.98%), and methyl linoleate (1.40%). Other major constituents were (-)-beta-pinene (1.02%), beta-myrcene (1.62%), 1-terpinen-4-ol (1.59%), decanal (1.49%), and 2-undecanone (1.47%). The results obtained demonstrated good efficiency for the procedure. Pure chromatograms allowed quantitation, which was obtained by total volume integration. The on-column derivatization procedure was simple to perform, and it improved the sensitivity, the peak resolution, and the selectivity of the GC/MS determination.

  3. Bioactive compounds of fourth generation gamma-irradiated Typhoniumflagelliforme Lodd. mutants based on gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sianipar, N. F.; Purnamaningsih, R.; Rosaria

    2016-08-01

    Rodent tuber (Typhonium flagelliforme Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant's genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. In vitro calli were irradiated with 6 Gy of gamma ray to produce in vitro mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers ofthe fourth generation of rodent tuber's vegetative mutant clones (MV4) and control plantsby using GC- MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.

  4. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    PubMed Central

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  5. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.

    PubMed

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.

  6. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    NASA Astrophysics Data System (ADS)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  7. Metabonomic profiling in studying anti-osteoporosis effects of strontium fructose 1,6-diphosphate on estrogen deficiency-induced osteoporosis in rats by GC/TOF-MS.

    PubMed

    Ma, Bo; Li, Xiaotian; Zhang, Qi; Wu, Di; Wang, Guangji; A, Jiye; Sun, Jianguo; Li, Jing; Liu, Yinhui; Wang, Yonglu; Ying, Hanjie

    2013-10-15

    A novel strontium salt compound strontium fructose 1, 6-diphosphate (FDP-Sr) has been proved to have highly effective for bone loss via dual effects of stimulating bone formation and suppressing bone absorption. In the present study, metabolomic approach was used to identify and study potential biomarkers associated with the effect and safety of FDP-Sr. The metabolomic profiles of bone loss induced by estrogen deficiency in a rat model was described to attain a system-level map of the shift on the metabolic response in plasma using GC/TOF-MS, after FDP-Sr was orally administered at the dose of 110 mg/kg/day for the prevention and 220 mg/kg/day for the treatment. Meanwhile, bone turnover biomarkers and bone mineral density were investigated to identify the specific changes of potential anti-osteoporosis effects of FDP-Sr. The differences in metabolic profiles between osteoporosis rats and FDP-Sr treated rats were well observed by the partial least squares-discriminant analysis (PLS-DA) to the MS spectra. Some metabolites including homocysteine, arachidonic acid, alanine, and hydroxyproline, which significantly changed during osteoporosis progression could be effectively reversed after FDP-Sr therapy. Of course some metabolites such as uric acid, glyceric acid, octadecadienoic acid, docosahexaenoic acid, oleic acid, and hexadecanoic acid were not found to reverse significantly after FDP-Sr administration. These results delineated the FDP-Sr effects-related metabolic alterations in the bone loss rats, suggesting that metabonomic analysis could provide helpful information on the new potential biomarkers relating to the mechanism of anti-osteoporosis action and side effects of FDP-Sr against estrogen deficiency induced bone loss. © 2013 Elsevier B.V. All rights reserved.

  8. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose) Extracts

    PubMed Central

    Abarca-Vargas, Rodolfo; Peña Malacara, Carlos F.; Petricevich, Vera L.

    2016-01-01

    Bougainvillea is widely used in traditional Mexican medicine to treat several diseases. This study was designed to characterize the chemical constituents of B. x buttiana extracts with antioxidant and cytotoxic activities using different solvents. The extraction solvents used were as follows: distilled water (dH2O), methanol (MeOH), acetone (DMK), ethanol (EtOH), ethyl acetate (EtOAc), dichloromethane (DCM), and hexane (Hex) (100%) at an extraction temperature of 26 °C. Analysis of bioactive compounds present in the B. x buttiana extracts included the application of common phytochemical screening assays, GC-MS analysis, and cytotoxicity and antioxidant assays. The results show that the highest extraction yield was observed with water and methanol. The maximum total phenolic content amount and highest antioxidant potential were obtained when extraction with methanol was used. With the exceptions of water and ethanol extractions, all other extracts showed cytotoxicity ranging between 31% and 50%. The prevailing compounds in water, methanol, ethanol, and acetone solvents were as follows: 4H-pyran-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methyl (2), 2-propenoic acid, 3-(2-hydrophenyl)-(E)- (3), and 3-O-methyl-d-glucose (6). By contrast, the major components in the experiments using solvents such as EtOH, DMK, EtOAc, DCM, and Hex were n-hexadecanoic acid (8), 9,12-octadecadienoic acid (Z,Z) (12); 9-octadecenoic acid (E)- (13), and stigmasta-5,22-dien-3-ol (28). PMID:27918436

  9. [Analysis of supercritical fluid extracts of Radix caulophylli with gas chromatography-mass spectrometry].

    PubMed

    Wang, Si-Cen; Chen, Qin-Hua; Wei, Yao-Yuan; Li, Han-Wen; He, Lang-Chong

    2007-05-01

    To analyze the constituents in supercritical fluid CO2 extraction (SFE-CO2) of Radix caulophylli, the Radix caulophylli was extracted with SFE-CO2, and analyzed by gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis with a DB-5MS capillary column (30 mm x 0.32 mm ID, 0.25 microm film thickness) was used. The inlet temperature was maintained at 280 degrees C. The column oven was held at 80 degrees C for 2 min, then programmed from 80 to 280 degrees C at 5 degrees C x min(-1) and, finally, held for 4 min. Helium at a constant flow rate of 2.0 mL x min(-1) was used as the carrier gas. The mass spectrometry conditions were as follows: ionization energy, 70 eV; ion source temperature, 200 degrees C. The mass selective detector was operated in the TIC mode (m/z was from 40 - 500). For the first time 49 peaks were separated and identified, the compounds were quantitatively determined by normalization method, and the identified compounds represent 97.44% of total GC peak areas. Viz, n-hexadecanoic acid (31.4%), (E, E) -9, 12-octadecadienoic acid (26.54%), (Z)-7-tetradecenal (9.4%), hexadecenoic acid (3.23%), 10-undecenal (3.22%), octadecanoic acid (2.25%), and caulophylline (1.76%) etc. The results will provide important foundation for understanding the constituents and further exploitation of Radix caulophylli.

  10. Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L.

    PubMed

    Patra, Jayanta Kumar; Das, Gitishree; Baek, Kwang-Hyun

    2015-07-02

    Laminaria japonica L. is among the most commonly consumed seaweeds in northeast Asia. In the present study, L. japonica essential oil (LJEO) was extracted by microwave-hydrodistillation and analyzed by gas chromatography and mass spectroscopy. LJEO contained 21 volatile compounds, comprising 99.76% of the total volume of the essential oil, primarily tetradeconoic acid (51.75%), hexadecanoic acid (16.57%), (9Z,12Z)-9,12-Octadecadienoic acid (12.09%), and (9Z)-hexadec-9-enoic acid (9.25%). Evaluation of the antibacterial potential against three foodborne pathogens, Bacillus cereus ATCC 10876, Escherichia coli O157:H7 ATCC 43890, and Staphylococcus aureus ATCC 49444, revealed that LJEO at a concentration of 25 mg/paper disc exerted high antibacterial activity against S. aureus (11.5 ± 0.58 mm inhibition zone) and B. cereus (10.5 ± 0.57 mm inhibition zone), but no inhibition of E. coli O157:H7. LJEO also displayed DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity (80.45%), superoxide anion scavenging activity (54.03%), and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical and hydroxyl radical scavenging at 500 µg/mL. Finally, LJEO showed high inhibition of lipid peroxidation with strong reducing power. In conclusion, LJEO from edible seaweed is an inexpensive but favorable resource with strong antibacterial capacity as well as free radical scavenging and antioxidant activity; therefore, it has the potential for use in the food, cosmetics, and pharmaceutical industries.

  11. Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom

    PubMed Central

    Sivaraman, Thulasi; Sreedevi, N. S.; Meenatchisundaram, S.; Vadivelan, R.

    2017-01-01

    OBJECTIVES: Snakebites are a significant and severe global health problem. Till date, anti-snake venom serum is the only beneficial remedy existing on treating the snakebite victims. As antivenom was reported to induce early or late adverse reactions to human beings, snake venom neutralizing potential for Cyclea peltata root extract was tested for the present research by ex vivo and in vivo approaches on Naja naja toxin. MATERIALS AND METHODS: Ex vivo evaluation of venom toxicity and neutralization assays was carried out. The root extracts from C. peltata were used to evaluate the Ex vivo neutralization tests such as acetylcholinesterase, protease, direct hemolysis assay, phospholipase activity, and procoagulant activity. Gas chromatography-mass spectrometry (GC-MS) analysis from root extracts of C. peltata was done to investigate the bioactive compounds. RESULTS: The in vivo calculation of venom toxicity (LD50) of N. naja venom remained to be 0.301 μg. C. peltata root extracts were efficiently deactivated the venom lethality, and effective dose (ED50) remained to be 7.24 mg/3LD50 of N. naja venom. C. peltata root extract was found effective in counteracting all the lethal effects of venom. GC-MS analysis of the plant extract revealed the presence of antivenom compounds such as tetradecanoic and octadecadienoic acid which have neutralizing properties on N. naja venom. CONCLUSION: The result from the ex vivo and in vivo analysis indicates that C. peltata plant root extract possesses significant compounds such as tetradecanoic acid hexadecanoic acid, heptadecanoic acid, and octadecadienoic acid which can counteract the toxins present in N. naja. PMID:29326487

  12. Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom.

    PubMed

    Sivaraman, Thulasi; Sreedevi, N S; Meenatchisundaram, S; Vadivelan, R

    2017-01-01

    Snakebites are a significant and severe global health problem. Till date, anti-snake venom serum is the only beneficial remedy existing on treating the snakebite victims. As antivenom was reported to induce early or late adverse reactions to human beings, snake venom neutralizing potential for Cyclea peltata root extract was tested for the present research by ex vivo and in vivo approaches on Naja naja toxin. Ex vivo evaluation of venom toxicity and neutralization assays was carried out. The root extracts from C. peltata were used to evaluate the Ex vivo neutralization tests such as acetylcholinesterase, protease, direct hemolysis assay, phospholipase activity, and procoagulant activity. Gas chromatography-mass spectrometry (GC-MS) analysis from root extracts of C. peltata was done to investigate the bioactive compounds. The in vivo calculation of venom toxicity (LD 50 ) of N. naja venom remained to be 0.301 μg. C. peltata root extracts were efficiently deactivated the venom lethality, and effective dose (ED 50 ) remained to be 7.24 mg/3LD 50 of N. naja venom. C. peltata root extract was found effective in counteracting all the lethal effects of venom. GC-MS analysis of the plant extract revealed the presence of antivenom compounds such as tetradecanoic and octadecadienoic acid which have neutralizing properties on N. naja venom. The result from the ex vivo and in vivo analysis indicates that C. peltata plant root extract possesses significant compounds such as tetradecanoic acid hexadecanoic acid, heptadecanoic acid, and octadecadienoic acid which can counteract the toxins present in N. naja .

  13. Profiling of Fatty Acids Composition in Suet Oil Based on GC–EI-qMS and Chemometrics Analysis

    PubMed Central

    Jiang, Jun; Jia, Xiaobin

    2015-01-01

    Fatty acid (FA) composition of suet oil (SO) was measured by precolumn methylesterification (PME) optimized using a Box–Behnken design (BBD) and gas chromatography/electron ionization-quadrupole mass spectrometry (GC–EI-qMS). A spectral library (NIST 08) and standard compounds were used to identify FAs in SO representing 90.89% of the total peak area. The ten most abundant FAs were derivatized into FA methyl esters (FAMEs) and quantified by GC–EI-qMS; the correlation coefficient of each FAME was 0.999 and the lowest concentration quantified was 0.01 μg/mL. The range of recovery of the FAMEs was 82.1%–98.7% (relative standard deviation 2.2%–6.8%). The limits of quantification (LOQ) were 1.25–5.95 μg/L. The number of carbon atoms in the FAs identified ranged from 12 to 20; hexadecanoic and octadecanoic acids were the most abundant. Eighteen samples of SO purchased from Qinghai, Anhui and Jiangsu provinces of China were categorized into three groups by principal component analysis (PCA) according to the contents of the most abundant FAs. The results showed SOs samples were rich in FAs with significantly different profiles from different origins. The method described here can be used for quality control and SO differentiation on the basis of the FA profile. PMID:25636032

  14. Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils.

    PubMed

    Tabanca, Nurhayat; Demirci, Betul; Crockett, Sara L; Başer, Kemal Hüsnü Can; Wedge, David E

    2007-10-17

    Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.

  15. C15078. Essential oil composition of Phagnalon sordidum (L.) from Corsica, chemical variability and antimicrobial activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-02-10

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography-mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and exhibited a notable activity on a large panel of clinically significant microorganisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid Telenomus podisi.

    PubMed

    Michereff, M F F; Borges, M; Aquino, M F S; Laumann, R A; Mendes Gomes, A C M; Blassioli-Moraes, M C

    2016-10-01

    During host selection, physical and chemical stimuli provide important cues that modify search behaviours of natural enemies. We evaluated the influence of volatiles released by eggs and egg extracts of the stink bug Euschistus heros and by soybean plants treated with the eggs and egg extracts on Telenomus podisi foraging behaviour. Responses to volatiles were evaluated in Y-tube olfactometers after exposure to (1) one egg cluster for 24 h; (2) plants with eggs laid by the stink bug, tested at 24, 48, and 72 h after treatment; (3) plants with eggs laid artificially, tested at 24, 48, and 72 h after treatment; and (4) plants treated with acetone or hexane extracts of eggs. Telenomus podisi was attracted to volatiles emitted by one egg cluster and to acetone extracts of one egg cluster, but not to air or acetone controls. There were no responses to odours of plants treated with eggs or egg extracts. Analysis of acetone extracts of egg clusters by gas chromatography revealed the major components were saturated and unsaturated fatty acids, including hexadecanoic acid, linoleic acid, and (Z)-9-octadecenoic acid. Our results suggest that one egg cluster and the acetone extract of one egg cluster contain volatile compounds that can modify T. podisi foraging behaviour, and that the amounts of these compounds, probably together with some minor compounds, are important for host recognition by T. podisi. Also, the oviposition damage or egg extracts on the plant did not elicit indirect defences that attracted Telenomus podisi.

  17. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).

    PubMed

    Parsons, Eugene P; Popopvsky, Sigal; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Bosland, Paul; Bebeli, Penelope J; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A

    2013-10-01

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical-compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14-fold range for total wax amounts and a more than 16-fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n-alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper. © 2013 Scandinavian Plant Physiology Society.

  18. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line

    PubMed Central

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-01-01

    Background: Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. Materials and Methods: The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. Results: The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. Conclusion: This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer. PMID:25298673

  19. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line.

    PubMed

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-08-01

    Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.

  20. δ 13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan)

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Naraoka, Hiroshi

    2005-07-01

    Organic materials in lacustrine sediments are from multiple terrestrial and aquatic sources. In this study, carbon (δ 13C) and hydrogen isotopic compositions (δD) of phytol, various sterols, and major n-fatty acids in sediments at Lake Haruna, Japan, were determined in their solvent-extractable (free) and saponification-released forms (bound). The δ 13C-δD distributions of these lipid molecules in sediments are compared with those of terrestrial C3 and C4 plants, aquatic C3 plants, and plankton to evaluate their relative contributions. δ 13C-δD of free phytol in sediments is very close to that of phytol in plankton samples, whereas δ 13C-δD of bound phytol in sediments is on a mixing line between terrestrial C3 plant and plankton material. Unlike phytol, no significant δ 13C-δD difference between free and bound forms was found in sterols and n-fatty acids. δ 13C-δD values of algal sterols such as 24-methylcholesta-5,22-dien-3β-ol in sediments are close to those of plankton, whereas δ 13C-δD of multiple-source sterols such as 24-ethylcholest-5-en-3β-ol and of major n-fatty acids such as n-hexadecanoic acid in sediments are between those of terrestrial C3 plants and plankton samples. Thus, δ 13C-δD distributions clearly indicate the specific source contributions of biomarkers preserved in a lacustrine environment. Free phytol and algal sterols can be attributed to phytoplankton, and bound phytol, multiple source sterols, and major n-fatty acids are contributed by both terrestrial C3 plants and phytoplankton.

  1. Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov.

    PubMed

    Nohynek, L J; Nurmiaho-Lassila, E L; Suhonen, E L; Busse, H J; Mohammadi, M; Hantula, J; Rainey, F; Salkinoja-Salonen, M S

    1996-10-01

    Gram-negative polychlorophenol-degrading bacterial strains KF1T (T = type strain), KF3, and NKF1, which were described previously as Pseudomonas saccharophila strains, were studied by chemotaxonomic, genetic, and physiological methods and by electron microscopy and compared with selected xenobiotic compound-degrading bacteria. These strains contained sphingolipids with d-18:0, d-20:1, and d-21:1 as the main dihydrosphingosines, ubiquinone 10 as the main respiratory quinone, and spermidine as the major polyamine, and the DNA G + C content was 66 mol%. The cellular fatty acids included about 60% octadecenoic acid, 9% 2-hydroxymyristic acid, 14% cis-9-hexadecenoic acid, and 10% hexadecanoic acid. These strains exhibited less than 97% 16S ribosomal DNA sequence similarity to all of the other taxa studied. In the DNA-DNA reassociation studies the highest levels of reassociation between these strains and previously described species were less than 40%. Thin sections of cells of strains KF1T, KF3, and NKF1 were examined by electron microscopy, and the results showed that the cells had peculiar concentrically arranged layered membranous blebs that extruded from the outer membrane, especially at the cell division points. On the basis of the results of this study, polychlorophenol-degrading strains KF1T, KF3, and NKF1 are considered members of a new species of the genus Sphingomonas, Sphingomonas subarctica. The polycyclic aromatic hydrocarbon-degrading organism Sphingomonas paucimobilis EPA 505 was closely related to Sphingomonas chlorophenolica as determined by chemotaxonomic, phylogenetic, and physiological criteria. The xenobiotic compound degraders Alcaligenes sp. strain A175 and Pseudomonas sp. strain BN6 were identified as members of species of the genus Sphingomonas.

  2. Epicuticular lipids induce aggregation in Chagas disease vectors

    PubMed Central

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-01

    Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (≤ 1 equivalent), although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical application in Chagas disease vector control. These data may be used to help design new tools against triatomine bugs. PMID:19173716

  3. Epicuticular lipids induce aggregation in Chagas disease vectors.

    PubMed

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-27

    The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (

  4. Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry.

    PubMed

    Neuber, Corinna; Schumacher, Fabian; Gulbins, Erich; Kleuser, Burkhard

    2014-09-16

    Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjögren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatography-electrospray ionization-quadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjögren-Larsson syndrome, in more detail.

  5. Characterization of Extractable Organic Fine Particulate Matter in the Atmosphere of Houston and Source Apportionment Calculations Using Organic Molecular Markers

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Yue, Z. W.; Buzco, B.

    2002-12-01

    Samples of atmospheric PM2.5 were collected in Houston, TX every second day during the summer of 2000 as part of the EPA sponsored Houston Fine Particle Matter Supersite program. Sampling occurred at three sites, including one industrial location (HRM-3), one suburban location (Aldine) and one coastal location (La Porte). Twenty samples collected over a 24 hour period have been analyzed to quantify the concentration of 95 individual organic compounds, including: n-alkanes (C20 to C36), aromatic hydrocarbons (PAHs), n-alkanoic acids (C5 to C34), n-alkenoic acids (C18:1 and C18:2), carboxylic diacids (C3 to C10), petroleum biomarkers and others. As a whole, the extractable compounds were dominated by acids, especially by octadecanoic acid and hexadecanoic acid. The measured concentration of n-alkanes exhibited a peak at C29, with carbon preference index (CPI) values in the range of 0.97 to 2.0. Using organic molecular markers, including seven alkanes, four petroleum biomarkers, seven PAH, one alkanoic acid, one alkenoic acid, levoglucosan, and three chemical components (Al, Si and Elemental Carbon), Chemical Mass Balancing (CMB) calculations have been performed on the ambient speciation data. These calculations are used to determine the contribution of seven different primary emission sources including: diesel powered vehicles, gasoline vehicles, wood combustion, fuel oil combustion, road dusts, meat cooking and vegetation waxes. The contribution of diesel powered vehicles and gasoline powered vehicles are the most important primary sources at all three sampling locations, with road dusts important at the industrial location. Meat cooking emissions were significant at all three locations. Wood combustion is an important contribution during a four-day period when uncontrolled wildfires in eastern Texas and Louisiana brought biomass combustion aerosols into the sampling region.

  6. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Okuyama, H; Okajima, N; Sasaki, S; Higashi, S; Murata, N

    1991-06-19

    The major phospholipid, phosphatidylethanolamine (PE), of Vibrio sp. strain ABE-1 contains a unique trans-unsaturated fatty acid, 9-trans-hexadecenoic acid (16:1(9t], at the sn-2 position of the glycerol moiety. The major molecular species of PE that contain 16:1(9t) at the sn-2 position have either 9-cis-hexadecenoic acid (16:1(9c] or hexadecanoic acid (16:0) at the sn-1 position. The transition temperatures of the liquid-crystal to the gel phase of 16:1(9c)/16:1(9t)-PE and 16:0/16:1(9t)-PE were -3 degrees C and 38 degrees C, respectively, temperatures that were 31 degrees C and 18 degrees C higher than the corresponding temperatures for 16:1(9c)/16:1(9c)-PE and 16:0/16:1(9c)-PE. The proportion of 16:1(9c)/16:1(9t)-PE and 16:0/16:1(9t)-PE increased significantly in cells grown at 20 degrees C over that in cells grown at 5 degrees C. When cells grown at 5 degrees C were incubated at 20 degrees C in the presence of cerulenin, an inhibitor of the synthesis de novo of fatty acids, the level of 16:1(9t) increased almost in parallel with a concomitant decrease in the level of 16:1(9c) at the sn-2 position. These results suggest that 16:1(9c) is converted to 16:1(9t) by the cis/trans isomerization of the double bond in the fatty acid. This conversion is discussed as a possible strategy for adaptation by bacteria to changes in temperature.

  7. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.

  8. DPPH scavenging, PRAP activities and essential oil composition of edible Lathyrus ochrus L. (Cyprus Vetch, Luvana) from Cyprus.

    PubMed

    Polatoğlu, Kaan; Arsal, Seniha; Demirci, Betül; Başer, Kemal Hüsnü Can

    2015-01-01

    The essential oil of the aerial parts of edible Lathyrus ochrus L. was investigated by simultaneous GC, GC/MS analyses under the same conditions. Trace amount of oil (0.01> mL) obtained by hydro distillation of 200 g fresh plants was trapped in 1 mL n-hexane. Twenty components were detected representing 91.55 ± 0.56 % of the oil. The main components were phytol 49.39 ± 0.44 %, hexadecanoic acid 20.64 ± 0.89 % and pentacosane 4.20 ± 0.09 %. Essential oil solution (1% oil: n-hexane) afforded similar DPPH scavenging activity (9.28 ± 1.30 %) when compared with positive controls α-tocopherol (9.74 ± 0.21 %) and BHT (7.79 ± 0.26 %) at the same concentrations. Antioxidant activity of the oil was determined using a new HPTLC-PRAP assay. The oil afforded two fold higher reducing activity of phosphomolybdenum complex (594.85 ± 5.14 AU) when compared with positive controls α- tocopherol (271.10 ± 2.86 AU) and BHT (210.53 ± 1.81 AU) at the same concentration.

  9. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  10. A mouse model of pre-pregnancy maternal obesity combined with offspring exposure to a high-fat diet resulted in cognitive impairment in male offspring.

    PubMed

    Zhu, Chen; Han, Ting-Li; Zhao, Yalan; Zhou, Xiaobo; Mao, Xun; Qi, Hongbo; Baker, Philip N; Zhang, Hua

    2018-04-23

    Cognitive impairment is a brain dysfunction characterized by neuropsychological deficits in attention, working memory, and executive function. Maternal obesity and consumption of a high-fat diet (HFD) in the offspring has been suggested to have detrimental consequences for offspring cognitive function through its effect on the hippocampus and prefrontal cortex. Therefore, our study aimed to investigate the effects of maternal obesity and offspring HFD exposure on the brain metabolome of the offspring. In our pilot study, a LepRdb/+ mouse model was used to model pre-pregnancy maternal obesity and the c57bl/6 wildtype was used as a control group. Offspring were fed either a HFD or a low-fat control diet (LFD) after weaning (between 8 and 10 weeks). The Mirrors water maze was performed between 28 and 30 weeks to measure cognitive function. Fatty acid metabolomic profiles of the prefrontal cortex and hippocampus from the offspring at 30-32 weeks were analyzed using gas chromatography-mass spectrometry. The memory of male offspring from obese maternal mice, consuming a HFD post-weaning, was significantly impaired when compared to the control offspring mice. No significant differences were observed in female offspring. In male mice, the fatty acid metabolites in the prefrontal cortex were most affected by maternal obesity, whereas, the fatty acid metabolites in the hippocampus were most affected by the offspring's diet. Hexadecanoic acid and octadecanoic acid were significantly affected in both the hippocampus and pre-frontal cortex, as a result of maternal obesity and a HFD in the offspring. Our findings suggest that the combination of maternal obesity and HFD in the offspring can result in spatial cognitive deficiency in the male offspring, by influencing the fatty acid metabolite profiles in the prefrontal cortex and hippocampus. Further research is needed to validate the results of our pilot study. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Preliminary study of the antioxidant properties of flowers and roots of Pyrostegia venusta (Ker Gawl) Miers.

    PubMed

    Roy, Purabi; Amdekar, Sarika; Kumar, Avnish; Singh, Vinod

    2011-08-23

    Free radical stress leads to tissue injury and can eventually to arthritis, atherosclerosis, diabetes mellitus, neurodegenerative diseases and carcinogenesis. Several studies are ongoing worldwide to find natural antioxidants of plant origin. We assessed the in-vitro antioxidant activities and screened the phytochemical constituents of methanolic extracts of Pyrostegia venusta (Ker Gawl) Miers. We evaluated the antioxidant potential and phytochemical constituents of P. venusta using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2, 2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) assays. Gas chromatography-mass spectroscopy (GC-MS) studies were also undertaken to assess the phytochemical composition of the flower extracts. Phytochemical analyses revealed the presence of terpenoids, alkaloids, tannins, steroids, and saponins. The reducing ability of both extracts was in the range (in μm Fe(II)/g) of 112.49-3046.98 compared with butylated hydroxytoluene (BHT; 63.56 ± 2.62), catechin (972.02 ± 0.72 μm) and quercetin 3208.27 ± 31.29. A significant inhibitory effect of extracts of flowers (IC50 = 0.018 ± 0.69 mg/ml) and roots (IC50 = 0.026 ± 0.94 mg/ml) on ABTS free radicals was detected. The antioxidant activity of the extracts of flowers (95%) and roots (94%) on DPPH radicals was comparable with that of ascorbic acid (98.9%) and BHT (97.6%). GC-MS study revealed the presence of myoinositol, hexadecanoic acid, linoleic acid, palmitic acid and oleic acid in the flower extracts. These data suggest that P. venusta is a natural source of antioxidants. The extracts of flowers and roots of P. venusta contain significant amounts of phytochemicals with antioxidative properties and could serve as inhibitors or scavengers of free radicals. P. venusta could be exploited as a potential source for plant-based pharmaceutical products. These results could form a sound basis for further investigation in the potential discovery of new natural bioactive compounds.

  12. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Phyllanthus wightianus Müll. Arg.: A Potential Source for Natural Antimicrobial Agents

    PubMed Central

    Natarajan, D.; Srinivasan, R.; Shivakumar, M. S.

    2014-01-01

    Phyllanthus wightianus belongs to Euphorbiaceae family having ethnobotanical importance. The present study deals with validating the antimicrobial potential of solvent leaf extracts of P. wightianus. 11 human bacterial pathogens (Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, Shigella flexneri, Proteus vulgaris, and Serratia marcescens) and 4 fungal pathogens (Candida albicans, Cryptococcus neoformans, Mucor racemosus, and Aspergillus niger) were also challenged with solvent leaf extracts usingagar well and disc diffusion methods. Further, identification of the active component present in the bioactive extract was done using GC-MS analysis. Results show that all extracts exhibited broad spectrum (6–29 mm) of antibacterial activity on most of the tested organisms. The results highlight the fact that the well in agar method was more effective than disc diffusion method. Significant antimicrobial activity was detected in methanol extract against S. pneumoniae (29 mm) with MIC and MBC values of 15.62 μg/mL. GC-MS analysis revealed that 29 bioactive constituents were present in methanolic extract of P. wightianus, of which 9,12-octadecaenioic acid (peak area 22.82%; RT-23.97) and N-hexadecanoic acid (peak area 21.55% RT-21.796) are the major compounds. The findings of this study show that P. wightianus extracts may be used as an anti-infective agent in folklore medicine. PMID:24883301

  14. Humidity dependence of molecular tunnel junctions with an AlOx/COOH- interface

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohang; McGill, Stephen; Xiong, Peng

    2006-03-01

    We have studied the electron transport in planar tunneling junctions with aluminum oxide and an organic self-assembled monolayer (SAM) as the tunnel barrier. The structure of the junctions is Al/AlOx/SAM/(Au, Pb) with a junction area of ˜ 0.4mm^2. The organic molecules investigated include mercaptohexadecanoic acid (MHA), hexadecanoic acid (HDA), and octadecyltrichlorosilane (OTS); all of which form ordered SAMs on top of aluminum oxide. The use of a superconducting electrode (Al) enables us to determine unambiguously that these are high-quality tunnel junctions. For junctions incorporating MHA, the transport behavior is found to be strongly humidity dependent. The resistance of these junctions drops more than 50% when placed in dry nitrogen and recovers when returned into the ambient. The same drop also occurs when the sample is placed into a vacuum, and backfilling the vacuum with either dry N2 or O2 has negligible effect on the resistance. For comparison, junctions with HDA show the same humidity dependence, while OTS samples do not. Since both MHA and HDA have carboxylic groups and OTS does not, the results suggest that water molecules at the AlOx/COOH- interface play the central role in the observed behavior. Inelastic tunneling spectroscopy (IETS) has also been performed to understand the role of water. This work was supported by a FSU Research Foundation PEG grant.

  15. Bioprospecting microbes for single-cell oil production from starchy wastes.

    PubMed

    Chaturvedi, Shivani; Kumari, Arti; Nain, Lata; Khare, Sunil K

    2018-03-16

    Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025 g g -1 of biomass) followed by R. mucilaginosa (0.022 g g -1 of biomass) and G. wiiroense (0.020 g g -1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048 g g -1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.

  16. Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years

    PubMed Central

    Jin, Qing; Jiao, Chunyan; Sun, Shiwei; Song, Cheng; Cai, Yongping; Lin, Yi; Fan, Honghong; Zhu, Yanfang

    2016-01-01

    Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways. PMID:26752292

  17. Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years.

    PubMed

    Jin, Qing; Jiao, Chunyan; Sun, Shiwei; Song, Cheng; Cai, Yongping; Lin, Yi; Fan, Honghong; Zhu, Yanfang

    2016-01-01

    Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways.

  18. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  19. Psychotria viridis: Chemical constituents from leaves and biological properties.

    PubMed

    Soares, Débora B S; Duarte, Lucienir P; Cavalcanti, André D; Silva, Fernando C; Braga, Ariadne D; Lopes, Miriam T P; Takahashi, Jacqueline A; Vieira-Filho, Sidney A

    2017-01-01

    The phytochemical study of hexane, chloroform and methanol extracts from leaves of Psychotria viridis resulted in the identification of: the pentacyclic triterpenes, ursolic and oleanolic acid; the steroids, 24-methylene-cycloartanol, stigmasterol and β-sitosterol; the glycosylated steroids 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol; a polyunsaturated triterpene, squalene; the esters of glycerol, 1-palmitoylglycerol and triacylglycerol; a mixture of long chain hydrocarbons; the aldehyde nonacosanal; the long chain fat acids hentriacontanoic, hexadecanoic and heptadenoic acid; the ester methyl heptadecanoate; the 4-methyl-epi-quinate and two indole alkaloids, N,N-dimethyltryptamine (DMT) and N-methyltryptamine. The chemical structures were determined by means of spectroscopic (IR, 1H and 13C NMR, HSQC, HMBC and NOESY) and spectrometric (CG-MS and LCMS-ESI-ITTOF) methods. The study of biologic properties of P. viridis consisted in the evaluation of the acetylcholinesterase inhibition and cytotoxic activities. The hexane, chloroform, ethyl acetate and methanol extracts, the substances 24-methylene-cycloartanol, DMT and a mixture of 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol showed cholinesterase inhibiting activity. This activity induced by chloroform and ethyl acetate extracts was higher than 90%. The methanol and ethyl acetate extracts inhibit the growth and/or induce the death of the tumor cells strains B16F10 and 4T1, without damaging the integrity of the normal cells BHK and CHO. DMT also demonstrated a marked activity against tumor cell strains B16F10 and 4T1.

  20. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2-bromooctanoic acid was determined to be 60 μM, assuming a single-site binding of the inhibitor at a specific inhibition site. Thus, it seems likely that a coenzyme A thioester derivative of 2-bromooctanoic acid specifically inhibits an enzyme linking the two pathways, fatty acid de novo synthesis and PHA synthesis. We suggest that 2-bromooctanoic acid can substitute for the far more expensive (2,000 times) and cell-growth-inhibiting PHA synthesis inhibitor, cerulenin. PMID:11679314

  1. Controlling the release of wood extractives into water bodies by selecting suitable eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kilulya, K. F.; Msagati, T. A. M.; Mamba, B. B.; Ngila, J. C.; Bush, T.

    Pulping industries are increasing worldwide as a result of the increase in the demand for pulp for cellulose derivatives and paper manufacturing. Due to the activities involved in pulping processes, different chemicals from raw materials (wood) and bleaching agents are released in pulp-mill effluent streams discharged into the environment and find their way into water bodies. Large quantities of water and chemicals used in pulping result in large amounts of wastewater with high concentrations of extractives such as unsaturated fatty acids, which are known to be toxic, and plant sterols which affect the development, growth and reproduction of aquatic organisms. This study was aimed at assessing the composition of extractives in two eucalyptus species used for pulp production in South Africa, in order to identify the suitable species with regard to extractive content. Samples from two eucalyptus plant species (Eucalyptus grandis and Eucalyptus dunnii) were collected from three sites and analysed for extractives by first extracting with water, followed by Soxhlet extraction using acetone. Compounds were identified and quantified using gas chromatography-mass spectrometry (GC-MS). Major classes of extractives identified were fatty acids (mainly hexadecanoic acid, 9,12-octadecadienoic, 9-octadecenoic and octadecanoic acids) and sterols (mainly β-sitosterol and stigmastanol). E. dunnii was found to contain higher amounts of the compounds compared to those found in E. grandis in all sampled sites. Principal component analysis (PCA) was performed and explained 92.9% of the total variation using three principal components. It was revealed that the percentage of fatty acids, which has a negative influence on both principal components 2 and 3, was responsible for the difference between the species. E. grandis, which was found to contain low amounts of extractives, was therefore found suitable for pulping with regard to minimal water usage and environment pollution.

  2. Enhanced Cellular Uptake of Short Polyarginine Peptides through Fatty Acylation and Cyclization

    PubMed Central

    2015-01-01

    Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i.e., octanoic acid, dodecanoic acid, and hexadecanoic acid) and cyclization on the cell penetrating properties of the peptides. The fluorescence-labeled acylated cyclic peptide dodecanoyl-[R5] and linear peptide dodecanoyl-(R5) showed approximately 13.7- and 10.2-fold higher cellular uptake than that of control 5,6-carboxyfluorescein, respectively. The mechanism of the peptide internalization into cells was found to be energy-dependent endocytosis. Dodecanoyl-[R5] and dodecanoyl-[R6] enhanced the intracellular uptake of a fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F′-GpYEEI) in human ovarian cancer cells (SK-OV-3) by 3.4-fold and 5.5-fold, respectively, as shown by flow cytometry. The cellular uptake of F′-GpYEEI in the presence of hexadecanoyl-[R5] was 9.3- and 6.0-fold higher than that in the presence of octanoyl-[R5] and dodecanoyl-[R5], respectively. Dodecanoyl-[R5] enhanced the cellular uptake of the phosphopeptide by 1.4–2.5-fold higher than the corresponding linear peptide dodecanoyl-(R5) and those of representative CPPs, such as hepta-arginine (CR7) and TAT peptide. These results showed that a combination of acylation by long chain fatty acids and cyclization on short arginine-containing peptides can improve their cell-penetrating property, possibly through efficient interaction of rigid positively charged R and hydrophobic dodecanoyl moiety with the corresponding residues in the cell membrane phospholipids. PMID:24978295

  3. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of the C-H group. The band at 1023.59 cm(-1) developed for C-O and C=N, respectively, and was commonly found in carboxylic acid and amine groups. GC-MS analysis of ethyl acetate extracts showed the presence of six compounds, of which the major compounds were identified as n-hexadecanoic acid (15.31%) and methyl 12,15-octadecadienoate (31.989%), based on their peak molecular weight. The HPLC analysis result highlights that the A. terreus ethyl acetate extract was compared with pure n-hexadecanoic acid which resulted in similar retention time of 19.52 and 19.38, respectively. Thus, the active compound produced by this species would be more useful against vectors responsible for diseases of public health importance. This is the first report on mosquito larvicidal and pupicidal activity of ethyl acetate extract produced by A. terreus species.

  4. Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of Pantoea ananatis.

    PubMed

    Nischwitz, C; Gitaitis, R; Sanders, H; Langston, D; Mullinix, B; Torrance, R; Boyhan, G; Zolobowska, L

    2007-10-01

    ABSTRACT A survey was conducted to evaluate differences in fatty acid methyl ester (FAME) profiles among strains of Pantoea ananatis, causal agent of center rot of onion (Allium cepa), isolated from 15 different onion cultivars in three different sites in Georgia. Differences in FAME composition were determined by plotting principal components (PCs) in two-dimensional plots. Euclidean distance squared (ED(2)) values indicated a high degree of similarity among strains. Plotting of PCs calculated from P. ananatis strains capable of growing on media amended with copper sulfate pentahydrate (200 mug/ml) indicated that copper-tolerant strains grouped into tight clusters separate from clusters formed by wild-type strains. However, unlike copper-sensitive strains, the copper-tolerant strains tended to cluster by location. A total of 80, 60, and 73% of the strains from Tift1, Tift2, and Tattnall, respectively, exhibited either confluent growth or partial growth on copper-amended medium. However, all strains were sensitive to a mixture of copper sulfate pentahydrate (200 mug/ml) and maneb (40 mug/ml). When copper-tolerant clones were analyzed and compared with their wild-type parents, in all cases the plotting of PCs developed from copper-tolerant clones formed tight clusters separate from clusters formed by the parents. Eigenvalues generated from these tests indicated that two components provided a good summary of the data, accounting for 98, 98, and 96% of the standardized variance for strains Pna 1-15B, Pna 1-12B, and Pna 2-5A, respectively. Furthermore, feature 4 (cis-9-hexadecenoic acid/2-hydroxy-13-methyltetradecanoic acid) and feature 7 (cis-9/trans-12/cis-7-octadecenoic acid) were the highest or second highest absolute values for PC1 in all three strains of the parents versus copper-tolerant clones, and hexadecanoic acid was the highest absolute value for PC2 in all three strains. Along with those fatty acids, dodecanoic acid and feature 3 (3-hydroxytetradecanoic acid/14-methylpentadecenoic acid) also had an impact on the differences observed between copper-sensitive parents and copper-resistant mutants. Finding these changes in bacterial fatty acid composition could lead to the development of a laboratory assay to identify copper-tolerant strains using gas chromatography as well as providing clues to further elucidate the mode of action of copper tolerance.

  5. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth.

    PubMed

    Han, Dandan; Wang, Lanying; Luo, Yanping

    2018-03-01

    Actinomycetes are an important group of gram-positive bacteria that play an essential role in the rhizosphere ecosystem. The confrontation culture and Oxford cup method were used to evaluate the antagonistic activities of strains, which were isolated from the rhizosphere soil of Mikania micrantha. The two isolates were identified using morphological and physiological tests combined with 16S rRNA-based molecular analysis, respectively. The type I polyketone synthase (PKS-I) was amplified. The constituents of fermentation metabolites were analyzed by gas chromatography mass spectrometry. The plant growth promoting effect was determined. Finally, the growth of wheat seedlings was assessed using the Petri dish method. Overall, of the isolated twelve strains, WZS1-1 and WZS2-1 could significantly inhibit target fungi. Isolate WZS1-1 was identified as Streptomyces rochei, and WZS2-1 was identified as Streptomyces sundarbansensis. In particular, Fusarium graminearum (FG) from wheat was inhibited by more than 80%, and the inhibitory bandwidths against FG were 31 ± 0.3 mm and 19 ± 0.5 mm, respectively. The genes PKS-I were successfully amplified, confirming that these strains are capable of producing biosynthetic secondary metabolites. Major component analysis revealed aliphatic ketones, carboxylic acids, and esters, with n-hexadecanoic acid being the most abundant compound. Plant growth promoting test indicated that both strains produced IAA, presented with orange loops on CAS plates, dissolved phosphorus and potassium, fixed nitrogen, but did not generate organic acids; both strains colonized in soil, while only WZS1-1 colonized in wheat roots. Additionally, the fermentation broth significantly promoted the growth of wheat. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  7. Actinophytocola glycyrrhizae sp. nov. isolated from the rhizosphere of Glycyrrhiza inflata.

    PubMed

    Cao, Chengliang; Sun, Yong; Wu, Bo; Zhao, Shuai; Yuan, Bo; Qin, Sheng; Jiang, Jihong; Huang, Ying

    2018-06-25

    A Gram-stain-positive, aerobic actinomycete, designated strain BMP B8152 T , was isolated from the rhizosphere of Glycyrrhiza inflata collected ashore, in Kashi, Xinjiang province, northwest PR China. A polyphasic approach was used to establish the taxonomic position of this strain. BMP B8152 T was observed to form non-fragmented substrate mycelium, and relatively scanty aerial mycelium with rod-shaped spores. Cell-wall hydrolysates contained meso-diaminopimelic acid, galactose, arabinose, glucose and rhamnose (trace). Mycolic acids were not detected. The diagnostic phospholipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, ninhydrin-positive phosphoglycolipid and phosphatidylinositol. The predominant menaquinone and fatty acid were MK-9(H4) and iso-branched hexadecanoate (iso-C16 : 0), respectively. The phylogenetic analyses based on the 16S rRNA gene sequences indicated that BMP B8152 T formed a distinct monophyletic clade clustered with Actinophytocola timorensisID05-A0653 T (98.8 % 16S rRNA gene sequence similarity), Actinophytocola oryzaeGMKU 367 T (98.6 %), Actinophytocola corallinaID06-A0464 T (98.2 %) and Actinophytocola burenkhanensisMN08-A0203 T (97.5 %). In addition, DNA-DNA hybridization values between BMP B8152 T and A. timorensisID05-A0653 T (44.2±3.6 %) and A. oryzaeGMKU 367 T (36.7±2.3 %) were well below the 70 % limit for species identification. The combined phenotypic and genotypic data indicate that the isolate represents a novel species of the genus Actinophytocola, for which the name Actinophytocola glycyrrhizae sp. nov., is proposed, with the type strain BMP B8152 T (=KCTC 49002 T =CGMCC 4.7433 T ).

  8. Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil.

    PubMed

    Cuadrado, Virginia; Gomila, Margarita; Merini, Luciano; Giulietti, Ana M; Moore, Edward R B

    2010-11-01

    A bacterial consortium able to degrade the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) was obtained from an agricultural soil of the Argentinean Humid Pampa region which has a history of long-term herbicide use. Four bacterial strains were isolated from the consortium and identified as members of the genera Cupriavidus, Labrys and Pseudomonas. A polyphasic systematic analysis was carried out on strain CPDB6(T), the member of the 2,4-DB-degrading consortium able to degrade 2,4-DB as a sole carbon and energy source. The Gram-negative, rod-shaped, motile, non-sporulating, non-fermenting bacterium was shown to belong to the genus Cupriavidus on the basis of 16S rRNA gene sequence analyses. Strain CPDB6(T) did not reduce nitrate, which differentiated it from the type species of the genus, Cupriavidus necator; it did not grow in 0.5-4.5 % NaCl, although most species of Cupriavidus are able to grow at NaCl concentrations as high as 1.5 %; and it was able to deamidate acetamide, which differentiated it from all other species of Cupriavidus. DNA-DNA hybridization data revealed low levels of genomic DNA similarity (less than 30 %) between strain CPDB6(T) and the type strains of Cupriavidus species with validly published names. The major cellular fatty acids detected were cis-9-hexadecenoic (16 : 1ω7c) and hexadecanoic (16 : 0) acids. On the basis of phenotypic and genotypic characterizations, strain CPDB6(T) was recognized as a representative of a novel species within the genus Cupriavidus. The name Cupriavidus pampae sp. nov. is proposed, with strain CPDB6(T) (=CCUG 55948(T)=CCM-A-29:1289(T)) as the type strain.

  9. Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity.

    PubMed

    Sharma, Seema; Saxena, Dharmesh C; Riar, Charanjit S

    2018-04-15

    Germination along with ultrasonic assisted extraction induced a significant beneficial effect on the characteristics of polyphenolic components profile, GABA contents and in vitro antioxidant capacity of the foxtail millet flour extracts. The total antioxidant activity (29.0-45.23 mgAAE/g) and reducing power (0.53-0.76 µg/ml) increase during germination were due to quantitative increase in phthalicacid; hex-3yl-ester; hexadecanoicacid methylester etc. whereas, increase in DPPH (48.32-59.62%) and hydrogen peroxide scavenging activities (35.44-63.07 mM-Trolox/g) were attributed to increase in hexadecanoic acid methylester; 9,12-Octadecadienoicacid ethylester and synthesis of new compounds like pentadecanoicacid; 14-methyl-methylester etc. The metal chelating abilities (34.92-57.38 mgEDTA/g) and in vitro antioxidant activity increase due to overall increase in phenolics, flavonoids along with GABA contents. Synthesis of additional polyphenolic components viz. astaxanthin, propanoicacid, 1-monolinoleoylglycerol trimethylsilylether, 9,12,15-octadecatrienoicacid etc. as a result of germinated explored the possible potential utilization of germinated foxtail millet grains in various functional and convenience food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro.

    PubMed

    Srinivasan, Ramanathan; Devi, Kannan Rama; Kannappan, Arunachalam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2016-12-04

    Piper betle, a tropical creeper plant belongs to the family Piperaceae. The leaves of this plant have been well known for their therapeutic, religious and ceremonial value in South and Southeast Asia. It has also been reported to possess several biological activities including antimicrobial, antioxidant, antinociceptive, antidiabetic, insecticidal and gastroprotective activities and used as a common ingredient in indigenous medicines. In Indian system of ayurvedic medicine, P. betle has been well recognized for its antiseptic properties and is commonly applied on wounds and lesions for its healing effects. To evaluate the anti-quorum sensing (anti-QS) and antibiofilm efficacy of P. betle and its bioactive metabolite phytol against Serratia marcescens. The P. betle ethyl acetate extract (PBE) was evaluated for its anti-QS efficacy against S. marcescens by assessing the prodigiosin and lipase production at 400 and 500µgml -1 concentrations. In addition, the biofilm biomass quantification assay was performed to evaluate the antibiofilm activity of PBE against S. marcescens. Besides, the influence of PBE on bacterial biofilm formation was assessed through microscopic techniques. The biofilm related phenomenons like exopolysaccharides (EPS) production, hydrophobicity and swarming motility were also examined to support the antibiofilm activity of PBE. Transcriptional analysis of QS regulated genes in S. marcescens was also done. Characterization of PBE was done by separation through column chromatography and identification of active metabolites by gas chromatography -mass spectrometry. The major compounds of active fractions such as hexadecanoic acid, eugenol and phytol were assessed for their anti-QS activity against S. marcescens. Further, the in vitro bioassays such as protease, biofilm and HI quantification were also carried out to confirm the anti-QS and antibiofilm potential of phytol in PBE. PBE inhibits QS mediated prodigiosin pigment production in S. marcescens, which confirmed its anti-QS potential against S. marcescens. At 500µgml -1 concentration, PBE significantly inhibited the production of protease, lipase, biofilm and EPS to the level of 71%, 68%, 65% and 43% in S. marcescens, respectively. Further, their antibiofilm efficacy was confirmed through microscopic techniques. In addition, PBE effectively inhibited the hydrophobicity and swarming motility. Additionally, the results of qPCR analysis validated the downregulation of QS genes. Chromatographic techniques the presence of hexadecanoic acid, eugenol and phytol in PBE and the potential bioactive compound with anti-QS activity was identified as phytol. In vitro assays with phytol evidenced the potent inhibition of QS-controlled prodigiosin, protease, biofilm and hydrophobicity in S. marcescens, without exerting any deleterious effect on its growth. This study demonstrates the promising anti-QS and antibiofilm activities of PBE and its active metabolite phytol, and confirms the ethnopharmacological applications of these leaves against S. marcescens infections. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Rheinheimera salexigens sp. nov., isolated from a fishing hook, and emended description of the genus Rheinheimera.

    PubMed

    Hayashi, Kazukuni; Busse, Hans-Jürgen; Golke, Jan; Anderson, James; Wan, Xuehua; Hou, Shaobin; Chain, Patrick S G; Prescott, Rebecca D; Donachie, Stuart P

    2018-01-01

    A Gram-negative, rod-shaped bacterium, designated KH87 T , was isolated from a fishing hook that had been baited and suspended in seawater off O'ahu, Hawai'i. Based on a comparison of 1524 nt of the 16S rRNA gene sequence of strain KH87 T , its nearest neighbours were the GammaproteobacteriaRheinheimera nanhaiensis E407-8 T (96.2 % identity), Rheinheimera chironomi K19414 T (96.0 %), Rheinheimera pacifica KMM 1406 T (95.8 %), Rheinheimera muenzenbergensis E49 T (95.7 %), Alishewanella solinquinati KMK6 T (94.9 %) and Arsukibacterium ikkense GCM72 T (94.6 %). Cells of KH87 T were motile by a single polar flagellum, strictly aerobic, and catalase- and oxidase-positive. Growth occurred between 4 and 39 °C, and in a circumneutral pH range. Major fatty acids in whole cells of strain KH87 T were cis-9-hexadecenoic acid, hexadecanoic acid and cis-11-octadecenoic acid. The quinone system contained mostly menaquinone MK-7, and a minor amount of ubiquinone Q-8. The polar lipid profile contained the major lipids phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, an unidentified aminolipid, and a lipid not containing phosphate, an amino group or a sugar moiety. Putrescine was the major polyamine. Physiological, biochemical and genomic data, including obligate halophily, absence of amylolytic activity, a quinone system dominated by MK-7 and DNA G+C content (42.0 mol%) distinguished KH87 T from extant Rheinheimera species; strain KH87 T was also distinguished by a multi-locus sequence analysis of aligned and concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences. Based on phenotypic and genotypic differences, the species Rheinheimera salexigens sp. nov. is proposed to accommodate KH87 T as the type strain (=ATCC BAA-2715 T =CIP 111115 T ). An emended description of the genus Rheinheimera is also proposed.

  12. Chemometric Profile of Root Extracts of Rhodiola imbricata Edgew. with Hyphenated Gas Chromatography Mass Spectrometric Technique

    PubMed Central

    Tayade, Amol B.; Dhar, Priyanka; Kumar, Jatinder; Sharma, Manu; Chauhan, Rajinder S.; Chaurasia, Om P.; Srivastava, Ravi B.

    2013-01-01

    Rhodiola imbricata Edgew. (Rose root or Arctic root or Golden root or Shrolo), belonging to the family Crassulaceae, is an important food crop and medicinal plant in the Indian trans-Himalayan cold desert. Chemometric profile of the n-hexane, chloroform, dichloroethane, ethyl acetate, methanol, and 60% ethanol root extracts of R. imbricata were performed by hyphenated gas chromatography mass spectrometry (GC/MS) technique. GC/MS analysis was carried out using Thermo Finnigan PolarisQ Ion Trap GC/MS MS system comprising of an AS2000 liquid autosampler. Interpretation on mass spectrum of GC/MS was done using the NIST/EPA/NIH Mass Spectral Database, with NIST MS search program v.2.0g. Chemometric profile of root extracts revealed the presence of 63 phyto-chemotypes, among them, 1-pentacosanol; stigmast-5-en-3-ol, (3β,24S); 1-teracosanol; 1-henteracontanol; 17-pentatriacontene; 13-tetradecen-1-ol acetate; methyl tri-butyl ammonium chloride; bis(2-ethylhexyl) phthalate; 7,8-dimethylbenzocyclooctene; ethyl linoleate; 3-methoxy-5-methylphenol; hexadecanoic acid; camphor; 1,3-dimethoxybenzene; thujone; 1,3-benzenediol, 5-pentadecyl; benzenemethanol, 3-hydroxy, 5-methoxy; cholest-4-ene-3,6-dione; dodecanoic acid, 3-hydroxy; octadecane, 1-chloro; ethanone, 1-(4-hydroxyphenyl); α-tocopherol; ascaridole; campesterol; 1-dotriacontane; heptadecane, 9-hexyl were found to be present in major amount. Eventually, in the present study we have found phytosterols, terpenoids, fatty acids, fatty acid esters, alkyl halides, phenols, alcohols, ethers, alkanes, and alkenes as the major group of phyto-chemotypes in the different root extracts of R. imbricata. All these compounds identified by GC/MS analysis were further investigated for their biological activities and it was found that they possess a diverse range of positive pharmacological actions. In future, isolation of individual phyto-chemotypes and subjecting them to biological activity will definitely prove fruitful results in designing a novel drug. PMID:23326358

  13. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System.

    PubMed

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T; Lindow, Steven E

    2016-07-19

    Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. X. fastidiosa, having a complicated lifestyle in which it moves and multiplies within plants but also must be vectored by insects, utilizes DSF-based quorum sensing to partition the expression of traits needed for these two processes within different cells in this population based on local cellular density. The finding that it can produce a variety of DSF species in a strongly environmentally context-dependent manner provides insight into how it coordinates the many genes under the control of DSF signaling to successfully associate with its two hosts. Since the new DSF variant XfDSF2 described here is much more active than the previously recognized DSF species, it should contribute to plant disease control, given that the susceptibility of plants can be greatly reduced by artificially elevating the levels of DSF in plants, creating "pathogen confusion," resulting in lower virulence. Copyright © 2016 Ionescu et al.

  14. Antimicrobial activities of essential oil and hexane extract of Florence fennel [Foeniculum vulgare var. azoricum (Mill.) Thell.] against foodborne microorganisms.

    PubMed

    Cetin, Bülent; Ozer, Hakan; Cakir, Ahmet; Polat, Taşkin; Dursun, Atilla; Mete, Ebru; Oztürk, Erdoğan; Ekinci, Melek

    2010-02-01

    The objective of this study was to determine the chemical compositions of the essential oil and hexane extract isolated from the inflorescence, leaf stems, and aerial parts of Florence fennel and the antimicrobial activities of the essential oil, hexane extract, and their major component, anethole, against a large variety of foodborne microorganisms. Gas chromatography and gas chromatography-mass spectrometry analysis showed that the essential oils obtained from inflorescence, leaf stems, and whole aerial parts contained (E)-anethole (59.28-71.69%), limonene (8.30-10.73%), apiole (trace to 9.23%), beta-fenchyl acetate (3.02-4.80%), and perillene (2.16-3.29%) as the main components. Likewise, the hexane extract of the plant sample exhibited a similar chemical composition, and it contained (E)-anethole (53.00%), limonene (27.16%), gamma-terpinene (4.09%), and perillene (3.78%). However, the hexane extract also contained less volatile components such as n-hexadecanoic acid (1.62%), methyl palmitate (1.17%), and linoleic acid (1.15%). The in vitro antimicrobial assays showed that the essential oil, anethole, and hexane extract were effective against most of the foodborne pathogenic, saprophytic, probiotic, and mycotoxigenic microorganisms tested. The results of the present study revealed that (E)-anethole, the main component of Florence fennel essential oil, is responsible for the antimicrobial activity and that the essential oils as well as the hexane extract can be used as a food preservative. This study is the first report showing the antimicrobial activities of essential oil and hexane extract of Florence fennel against probiotic bacteria.

  15. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata.

    PubMed

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata , identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata , with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata , as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

  16. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata

    PubMed Central

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature. PMID:29719546

  17. Newly designed modifier prolongs the action of short-lived peptides and proteins by allowing their binding to serum albumin.

    PubMed

    Shechter, Yoram; Sasson, Keren; Lev-Goldman, Vered; Rubinraut, Sara; Rubinstein, Menachem; Fridkin, Mati

    2012-08-15

    We found that human serum albumin (HSA) contains a single binding domain for derivatives of long-chain fatty acid (LCFA)-like molecules in which the carboxylate is replaced by sulfonate. Accordingly, we have synthesized 16-sulfo-hexadecanoic acid-N-hydroxysuccinimide ester [HO(3)S-(CH(2))(15)-CONHS], an agent that reacts selectively with the amino side chains of peptides and proteins. A macromolecule containing a single 16-sulfohexadecanoate moiety associating with albumin with a K(a) value of 0.83 ± 0.08 × 10(6) M(-1), a sufficient affinity to extend the actions in vivo of such short-lived peptides and proteins. Subcutaneous administration of insulin-NHCO-(CH(2))(15)-SO(3)(-) into mice facilitated a glucose-lowering effect 4.3 times in duration and 6.6 times in area under the curve (AUC) as compared to an in vitro equipotent amount of Zn(2+)-free insulin. Similarly, subcutaneous and intravenous administration of exendin-4-NHCO-(CH(2))(15)-SO(3)(-) to mice yielded prolonged and stable reduction in glucose level, 5-9-fold longer than that of exendin-4. Also, a single subcutaneous administration of human interferon-α2-[NH-CO-(CH(2))(15)-SO(3)(-)](3) to mice yielded circulating antiviral activity over a period of 40 h. In conclusion, a simple, hydrophilic reagent has been engineered, synthesized, and studied. Its linkage to peptides and proteins in a monomodified fashion yielded hydrophilic, prolonged acting derivatives, due to their acquired ability to associate with serum albumin after administration.

  18. Evaluation of allium and its seasoning on toxigenic, nutritional, and sensorial profiles of groundnut oil.

    PubMed

    Murugan, Kasi; Anandaraj, K; Al-Sohaibani, Saleh A

    2014-04-01

    Mitigation of xerophilic storage fungi-associated aflatoxin threat in culinary oil will be a new technology advantage to food industries. Groundnut oil isolate Aspergillus flavus MTCC 10680 susceptibility to Allium species (A. sativum L., A. cepa L., and A. cepa var. aggregatum) extracts, composition, and in silico confirmation of extract's phytoconstituent aflatoxin synthesis inhibition were determined. The behavior of seasoning carrier medium groundnut oil in the presence of Allium was also determined. All the Allium species extracts exhibited concentration dependent in vitro inhibition on mycelial biomass, radial growth, and toxin elaboration. The gas chromatography-mass spectrometry revealed the presence of 28, 16, and 9 compounds in the extracts of A. sativum, A. cepa, A. cepa var. aggregatum, respectively. The Allium phytocostituents-like hexadecanoic acid, 5-Octanoyl-2,4,6(1H,3H,5H)-pyrimidinetrione, Guanosine, and so on, showed higher binding energy with aflatoxin synthesis key enzyme ver1. Allium seasoning increased the typical nutty odor of the groundnut oil with sweet aroma note as well as intensification of pale yellow color. Allium seasoning exhibited the highest aflatoxin detoxification and aroma development without any nutritional loss. Culinary oil Allium seasoning has anti-aflatoxin and food additive potential for use in food industries. © 2014 Institute of Food Technologists®

  19. Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products.

    PubMed

    Chandra, Ram; Bharagava, Ram Naresh

    2013-11-01

    Pulp paper mill effluent has high pollution load due to presence of lignin and its derivatives as major colouring and polluting constituents. In this study, two lignin degrading bacteria IITRL1 and IITRSU7 were isolated and identified as Citrobacter freundii (FJ581026) and Citrobacter sp. (FJ581023), respectively. In degradation study by axenic and mixed culture, mixed bacterial culture was found more effective compared to axenic culture as it decolourized 85 and 62% of synthetic and kraft lignin whereas in axenic conditions, bacterium IITRL1 and IITRSU7 decolourized 61 and 64% synthetic and 49 and 54% kraft lignin, respectively. Further, the mixed bacterial culture also showed the removal of 71, 58% TOC; 78, 53% AOX; 70, 58% COD and 74, 58% lignin from synthetic and kraft lignin, respectively. The ligninolytic enzyme was characterized as manganese peroxidase by SDS-PAGE yielding a single band of 43 KDa. The HPLC analysis of degraded samples showed reduction as well as shifting of peaks compared to control indicating the degradation as well as transformation of compounds. Further, in GC-MS analysis of synthetic and kraft lignin degraded samples, hexadecanoic acid was found as recalcitrant compounds while 2,4,6-trichloro-phenol, 2,3,4,5-tetrachloro-phenol and pentachloro-phenol were detected as new metabolites.

  20. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature.

    PubMed

    Cheney, Philip P; Weisgerber, Alan W; Feuerbach, Alec M; Knowles, Michelle K

    2017-03-15

    The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl- sn -glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  1. Metabolic Disturbances in Adult-Onset Still's Disease Evaluated Using Liquid Chromatography/Mass Spectrometry-Based Metabolomic Analysis.

    PubMed

    Chen, Der-Yuan; Chen, Yi-Ming; Chien, Han-Ju; Lin, Chi-Chen; Hsieh, Chia-Wei; Chen, Hsin-Hua; Hung, Wei-Ting; Lai, Chien-Chen

    2016-01-01

    Liquid chromatography/mass spectrometry (LC/MS)-based comprehensive analysis of metabolic profiles with metabolomics approach has potential diagnostic and predictive implications. However, no metabolomics data have been reported in adult-onset Still's disease (AOSD). This study investigated the metabolomic profiles in AOSD patients and examined their association with clinical characteristics and disease outcome. Serum metabolite profiles were determined on 32 AOSD patients and 30 healthy controls (HC) using ultra-performance liquid chromatography (UPLC)/MS analysis, and the differentially expressed metabolites were quantified using multiple reactions monitoring (MRM)/MS analysis in 44 patients and 42 HC. Pure standards were utilized to confirm the presence of the differentially expressed metabolites. Eighteen differentially expressed metabolites were identified in AOSD patents using LC/MS-based analysis, of which 13 metabolites were validated by MRM/MS analysis. Among them, serum levels of lysoPC(18:2), urocanic acid and indole were significantly lower, and L-phenylalanine levels were significantly higher in AOSD patients compared with HC. Moreover, serum levels of lysoPC(18:2), PhePhe, uridine, taurine, L-threonine, and (R)-3-Hydroxy-hexadecanoic acid were significantly correlated with disease activity scores (all p<0.05) in AOSD patients. A different clustering of metabolites was associated with a different disease outcome, with significantly lower levels of isovalerylsarcosine observed in patients with chronic articular pattern (median, 77.0AU/ml) compared with monocyclic (341.5AU/ml, p<0.01) or polycyclic systemic pattern (168.0AU/ml, p<0.05). Thirteen differentially expressed metabolites identified and validated in AOSD patients were shown to be involved in five metabolic pathways. Significant associations of metabolic profiles with disease activity and outcome of AOSD suggest their involvement in AOSD pathogenesis.

  2. Toxicity of Beauveria bassiana-28 Mycelial Extracts on Larvae of Culex quinquefasciatus Mosquito (Diptera: Culicidae).

    PubMed

    Vivekanandhan, Perumal; Kavitha, Thangaraj; Karthi, Sengodan; Senthil-Nathan, Sengottayan; Shivakumar, Muthugoundar Subramanian

    2018-03-03

    Microbial-based pest control is an attractive alternative to chemical insecticides. The present study sought to evaluate the toxicity of the entomopathogenic fungus Beauveria bassiana -28 ethyl acetate extracts on different larval stages and pupae of Culex quinquefasciatus mosquitoes. B. bassiana -28 ethyl acetate mycelial extracts produced mosquitocidal activity against larvae and pupae which was comparable to that of the commercial insecticide B. bassiana -22 extract. The LC 50 (lethal concentration that kills 50% of the exposed larvae) values of B. bassiana -28 extracts for 1st to 4th instar larvae and pupae were 11.538, 6.953, 5.841, 3.581 and 9.041 mg/L respectively. Our results show that B. bassiana -28 ethyl acetate mycelial extract has strong insecticidal activity against larval and pupal stages of Cx. quinquefasciatus . Fourier transform infrared spectrum study of B. bassiana -28 extract shows peaks at 3226.91; 2927.94; 1593.13; 1404.18; 1224.18; 1247.94; 1078.21; 1018.41; 229.69; and 871.82 cm -1 . Major spectral peaks were observed at 3226.91 cm -1, assigned to N-H stretching, 2927.94 cm -1 assigned to C-H bonding and 1595.13 cm -1 assigned to C-O stretching. Gas Chromatography-Mass Spectrometry studies of B. bassiana -28 ethyl acetate crude extract showed presence of six major compounds viz. N -hexadecanoic acids (13.6040%); Z,Z -9,12 octadecadienic acid (33.74%); 9-eicosyne (10.832%); heptacosane (5.148%); tetrateracontane (5.801%); and 7 hexyleicosane (5.723%). Histology of mosquito midgut tissue shows tissue lysis as a result of B.bassiana -28 extract exposure. The study shows that bioactive molecules obtained from B. bassiana -28 mycelial extract has insecticidal properties and can be used as alternative for mosquito control.

  3. Toxicity of Beauveria bassiana-28 Mycelial Extracts on Larvae of Culex quinquefasciatus Mosquito (Diptera: Culicidae)

    PubMed Central

    Kavitha, Thangaraj; Karthi, Sengodan; Shivakumar, Muthugoundar Subramanian

    2018-01-01

    Microbial-based pest control is an attractive alternative to chemical insecticides. The present study sought to evaluate the toxicity of the entomopathogenic fungus Beauveria bassiana-28 ethyl acetate extracts on different larval stages and pupae of Culex quinquefasciatus mosquitoes. B. bassiana-28 ethyl acetate mycelial extracts produced mosquitocidal activity against larvae and pupae which was comparable to that of the commercial insecticide B. bassiana-22 extract. The LC50 (lethal concentration that kills 50% of the exposed larvae) values of B. bassiana-28 extracts for 1st to 4th instar larvae and pupae were 11.538, 6.953, 5.841, 3.581 and 9.041 mg/L respectively. Our results show that B. bassiana-28 ethyl acetate mycelial extract has strong insecticidal activity against larval and pupal stages of Cx. quinquefasciatus. Fourier transform infrared spectrum study of B. bassiana-28 extract shows peaks at 3226.91; 2927.94; 1593.13; 1404.18; 1224.18; 1247.94; 1078.21; 1018.41; 229.69; and 871.82 cm−1. Major spectral peaks were observed at 3226.91 cm−1, assigned to N–H stretching, 2927.94 cm−1 assigned to C–H bonding and 1595.13 cm−1 assigned to C–O stretching. Gas Chromatography-Mass Spectrometry studies of B. bassiana-28 ethyl acetate crude extract showed presence of six major compounds viz. N-hexadecanoic acids (13.6040%); Z,Z-9,12 octadecadienic acid (33.74%); 9-eicosyne (10.832%); heptacosane (5.148%); tetrateracontane (5.801%); and 7 hexyleicosane (5.723%). Histology of mosquito midgut tissue shows tissue lysis as a result of B.bassiana-28 extract exposure. The study shows that bioactive molecules obtained from B. bassiana-28 mycelial extract has insecticidal properties and can be used as alternative for mosquito control. PMID:29510502

  4. The Arabidopsis DCR Encoding a Soluble BAHD Acyltransferase Is Required for Cutin Polyester Formation and Seed Hydration Properties1[C][W][OA

    PubMed Central

    Panikashvili, David; Shi, Jian Xin; Schreiber, Lukas; Aharoni, Asaph

    2009-01-01

    The cuticle covering every plant aerial organ is largely made of cutin that consists of fatty acids, glycerol, and aromatic monomers. Despite the huge importance of the cuticle to plant development and fitness, our knowledge regarding the assembly of the cutin polymer and its integration in the complete cuticle structure is limited. Cutin composition implies the action of acyltransferase-type enzymes that mediate polymer construction through ester bond formation. Here, we show that a member of the BAHD family of acyltransferases (DEFECTIVE IN CUTICULAR RIDGES [DCR]) is required for incorporation of the most abundant monomer into the polymeric structure of the Arabidopsis (Arabidopsis thaliana) flower cutin. DCR-deficient plants display phenotypes that are typically associated with a defective cuticle, including altered epidermal cell differentiation and postgenital organ fusion. Moreover, levels of the major cutin monomer in flowers, 9(10),16-dihydroxy-hexadecanoic acid, decreased to an almost undetectable amount in the mutants. Interestingly, dcr mutants exhibit changes in the decoration of petal conical cells and mucilage extrusion in the seed coat, both phenotypes formerly not associated with cutin polymer assembly. Excessive root branching displayed by dcr mutants and the DCR expression pattern in roots pointed to the function of DCR belowground, in shaping root architecture by influencing lateral root emergence and growth. In addition, the dcr mutants were more susceptible to salinity, osmotic, and water deprivation stress conditions. Finally, the analysis of DCR protein localization suggested that cutin polymerization, possibly the oligomerization step, is partially carried out in the cytoplasmic space. Therefore, this study extends our knowledge regarding the functionality of the cuticular layer and the formation of its major constituent the polymer cutin. PMID:19828672

  5. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties.

    PubMed

    Panikashvili, David; Shi, Jian Xin; Schreiber, Lukas; Aharoni, Asaph

    2009-12-01

    The cuticle covering every plant aerial organ is largely made of cutin that consists of fatty acids, glycerol, and aromatic monomers. Despite the huge importance of the cuticle to plant development and fitness, our knowledge regarding the assembly of the cutin polymer and its integration in the complete cuticle structure is limited. Cutin composition implies the action of acyltransferase-type enzymes that mediate polymer construction through ester bond formation. Here, we show that a member of the BAHD family of acyltransferases (DEFECTIVE IN CUTICULAR RIDGES [DCR]) is required for incorporation of the most abundant monomer into the polymeric structure of the Arabidopsis (Arabidopsis thaliana) flower cutin. DCR-deficient plants display phenotypes that are typically associated with a defective cuticle, including altered epidermal cell differentiation and postgenital organ fusion. Moreover, levels of the major cutin monomer in flowers, 9(10),16-dihydroxy-hexadecanoic acid, decreased to an almost undetectable amount in the mutants. Interestingly, dcr mutants exhibit changes in the decoration of petal conical cells and mucilage extrusion in the seed coat, both phenotypes formerly not associated with cutin polymer assembly. Excessive root branching displayed by dcr mutants and the DCR expression pattern in roots pointed to the function of DCR belowground, in shaping root architecture by influencing lateral root emergence and growth. In addition, the dcr mutants were more susceptible to salinity, osmotic, and water deprivation stress conditions. Finally, the analysis of DCR protein localization suggested that cutin polymerization, possibly the oligomerization step, is partially carried out in the cytoplasmic space. Therefore, this study extends our knowledge regarding the functionality of the cuticular layer and the formation of its major constituent the polymer cutin.

  6. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract.

    PubMed

    Wei, Lee Seong; Wee, Wendy; Siong, Julius Yong Fu; Syamsumir, Desy Fitrya

    2011-01-01

    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.

  7. [Rapid determination of volatile flavor compounds in soy sauce using head space solid-phase microextraction and gas chromatography-mass spectrometry].

    PubMed

    Yan, Liujun; Zhang, Yanfang; Tao, Wenyi; Wang, Liping; Wu, Shengfang

    2008-05-01

    A rapid and simple method was developed for the determination of volatile flavor compounds (VFCs) in soy sauce by head space solid-phase microextraction (HS-SPME) coupled to capillary gas chromatography-mass spectrometry (GC-MS). Five types of SPME fibers, including 85 microm PA, 100 microm PDMS, 75 microm CAR/PDMS, 65 microm PDMS/DVB, 50 microm DVB/CAR/PDMS were investigated. Three parameters for HS-SPME in terms of adsorption time, salt concentration, and extraction temperature were optimized. Adsorption time tested in this study were 20, 40 and 60 minutes; the salt concentrations were 180, 210, 250, 270 and 300 g/L; and extraction temperatures were 25, 35, 45, 55 and 65 degrees C. The concentrations of the compounds were calculated based on their relative peak areas to the internal standard of 2-octanol. An 85 microm PA fiber, adsorption time of 40 min, a temperature of 45 degrees C and NaCl concentration of 250 g/L were selected as th optimum conditions. This optimized method was applied to evaluate a real sample. As a result, 97 compounds in a soy sauce sample were isolated and identified successfully. The results showed that alcohols, carboxylic acids, esters and phenols were the major VFCs of soy sauce. The most important groups of volatile compounds in the soy sauce sample were ethanol, hexadecanoic acid, phenylethyl alcohol and 2,3-butanediol. In addition, some oxo-compounds and heterocyclic compounds were also found. The average relative standard deviation of the relative peak area was 12.1%, and the recoveries were 79.9% - 109.6%. The method is simple, fast and accurate with high reproducibility, high sensitivity and low cost.

  8. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies.

    PubMed

    Lv, Hai-Peng; Zhang, Yue; Shi, Jiang; Lin, Zhi

    2017-10-01

    Dark teas are rich in secondary metabolites, such as phenolics and flavonoids, which have been suggested to be associated with their health benefits. In this study, the concentrations of tea polyphenols, tea pigments, catechins, flavonoids, alkaloid, and volatile components in 44 dark tea samples, including Pu-erh, Fuzhuan and Liubao teas, were systematically examined. Among the samples tested, Pu-erh tea contained the highest total flavonoid content (5.24±0.05%), followed by Liubao (4.45±0.61%) and Fuzhuan teas (3.33±0.23%). The tea polyphenols levels in the dark teas were approximately 10%, and no statistically significant differences (p>0.05) were found among the different types. Hexadecanoic acid was the most abundant aroma component in the dark teas, accounting for 15-20% of the total volatile oils. Moreover, the antioxidant activities of these dark teas were analyzed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay, ferric reducing antioxidant power (FRAP) assay, and cellular antioxidant activity (CAA) assay (HepG2 cells). The fat metabolism modulation activities (FMMA) of the dark teas were tested using a high-throughput screening method (SMMC-7221 cells). The results indicated that the different dark teas had diverse antioxidant activities, and the variation in the activities was significant. Correlation analysis showed that there was a significant positive correlation between the levels of EGCG and antioxidant activities measured using the ABTS (r=0.916) and FRAP (r=0.853) assays, and the levels of total flavonoids and theabrownins correlated well with the values determined using the CAA (r=0.845 and 0.865, respectively) assay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    NASA Astrophysics Data System (ADS)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented. Finally, it was found that quantum dots attach in high amounts to linker-functionalized TiO2 when suspended in pyridine. This increased surface attachment was present even when the linker molecule used lacked a functional group which would bind to the CdSe surface.

  10. Solvent dependence of the activation energy of attachment determined by single molecule observations of surfactant adsorption.

    PubMed

    Honciuc, Andrei; Baptiste, Denver Jn; Campbell, Ian P; Schwartz, Daniel K

    2009-07-07

    Single-molecule total internal reflection fluorescence microscopy was used to obtain real-time images of fluorescently labeled hexadecanoic (palmitic) acid molecules as they adsorbed at the interface between fused silica and three different solvents: hexadecane (HD), tetrahydrofuran (THF), and water. These solvents were chosen to explore the effect of solvent polarity on the activation energy associated with the attachment rate, i.e., the rate at which molecules were transferred to the surface from the near-surface layer. Direct counting of single-molecule events, made under steady-state conditions at extremely low coverage, provided direct, model-independent measurements of this attachment rate, in contrast with conventional ensemble-averaged methods, which are influenced by bulk transport and competing detachment processes. We found that the attachment rate increased with increasing temperature for all solvents. Arrhenius analyses gave activation energies of 5+/-2 kJ/mol for adsorption from HD, 10+/-2 kJ/mol for adsorption from THF, and 19+/-2 kJ/mol for adsorption from water. These energies increased systematically with the solvent polarity and, therefore, with the expected strength of the solvent-substrate interaction. We hypothesize that the adsorption of amphiphilic solute molecules from solution can be regarded as a competitive exchange between solute molecules and surface-bound solvent. In this scenario, adsorption is an activated process, and the activation energy for attachment is associated with the solvent-substrate interaction energy.

  11. Biosynthesis of unusual moth pheromone components involves two different pathways in the navel orangeworm, Amyelois transitella.

    PubMed

    Wang, Hong-Lei; Zhao, Cheng-Hua; Millar, Jocelyn G; Cardé, Ring T; Löfstedt, Christer

    2010-05-01

    The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D(3))-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D(9)]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C(23) and C(25) pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D(5)]-9,12,15-octadecatrienoic acid into 1-2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16:Ald is probably produced in the pheromone gland by Delta11 desaturation of palmitic acid to 11Z-16:Acid followed by a second desaturation to form 11Z,13Z-16:Acid and subsequent reduction and oxidation. The production of 3Z,6Z,9Z,12Z,15Z-23:H and 3Z,6Z,9Z,12Z,15Z-25:H may take place outside the pheromone gland, and appears to start from linolenic acid, which is elongated and desaturated to form (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, followed by two or three further elongation steps and finally reductive decarboxylation.

  12. Biosynthesis of Unusual Moth Pheromone Components Involves Two Different Pathways in the Navel Orangeworm, Amyelois transitella

    PubMed Central

    Wang, Hong-Lei; Zhao, Cheng-Hua; Millar, Jocelyn G.; Cardé, Ring T.

    2010-01-01

    The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D3)-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D9]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C23 and C25 pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D5]-9,12,15-octadecatrienoic acid into 1–2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16:Ald is probably produced in the pheromone gland by Δ11 desaturation of palmitic acid to 11Z-16:Acid followed by a second desaturation to form 11Z,13Z-16:Acid and subsequent reduction and oxidation. The production of 3Z,6Z,9Z,12Z,15Z-23:H and 3Z,6Z,9Z,12Z,15Z-25:H may take place outside the pheromone gland, and appears to start from linolenic acid, which is elongated and desaturated to form (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, followed by two or three further elongation steps and finally reductive decarboxylation. PMID:20393784

  13. Organic compound composition in soil and sediments collected in Jackson, Mississippi.

    PubMed

    Gołębiowski, Marek; Stepnowski, Piotr; Hemmingway, Tometrick; Leszczyńska, Danuta

    2016-01-01

    The aim of our study was to identify organic pollutants found in soil and sediment samples collected within the Jackson, MS metropolitan area. The chemical characterization of the organic compound fractions in soil and sediment samples was carried out by separating the organic fraction using column chromatography (CC) and quantitatively analyzing the polycyclic aromatic hydrocarbons (PAHs), n-alkanes and other organic compounds using gas chromatography-electron impact mass spectrometry (GC-MS). Fifty-six compounds were identified and quantified in the soil samples and 33 compounds were identified and quantified in the sediment samples. The PAHs, n-alkanes and other organic compound profiles in the soil and sediment samples were compared. The percentage contents of the organic compounds in the soil samples were very diverse (from traces to 12.44 ± 1.47%). The compounds present in the highest concentrations were n-alkanes: n-C31 (12.44 ± 1.47%), n-C29 (11.64 ± 1.21%), and n-C33 (8.95 ± 1.08%). The components occurring in smaller quantities (from 1% to 5%) were 2 PAHs (fluoranthene 1.28 ± 0.25%, pyrene 1.16 ± 0.20%), 10 n-alkanes from n-C21 (1.25 ± 0.29%) to n-C32 (2.67 ± 0.52%) and 11 other compounds (e.g., 2-pentanol, 4-methyl (3.33 ± 0.44%), benzyl butyl phthalate (4.25 ± 0.59%), benzenedicarboxylic acid (1.14 ± 0.08%), ethane, 1,1-diethoxy (3.15 ± 0.41) and hexadecanoic acid (2.52 ± 0.34). The soil samples also contained 30 compounds present in concentrations <1% (e.g., anthracene (0.13 ± 0.04%), n-C20 (0.84 ± 0.21%) and acetic acid (0.12 ± 0.04%). The compounds present in the highest concentrations in the sediment samples were PAHs: pyrene (7.73 ± 1.15%) and fluoranthene (6.23 ± 1.07%) and n-alkanes: n-C31 (6.74 ± 1.21%), n-C29 (6.65 ± 0.98%) and n-C27 (6.13 ± 1.09%). The remaining organic compounds were present in smaller quantities (< 5%).

  14. Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens.

    PubMed

    Giannenas, Ilias; Bonos, Eleftherios; Skoufos, Ioannis; Tzora, Athina; Stylianaki, Ioanna; Lazari, Diamanto; Tsinas, Anastasios; Christaki, Efterpi; Florou-Paneri, Panagiota

    2018-06-06

    1. This feeding trial investigated the effects of herbal feed additives on performance of broiler chickens, jejunal and caecal microbiota, jejunal morphology, and meat chemical composition and oxidative stability during refrigerated storage. 2. In a 42 days trial, 320 one-day-old broiler chickens were randomly allocated to four groups with four replicate pens each containing 20 chicks. The control group was fed maize-soybean-based diets. The diets of the other three groups were supplemented with herbal feed additives: HRB1 with Stresomix TM (0.5 g/kg feed); HRB2 with Ayucee TM (1.0 g/kg feed); HRB3 with Salcochek Pro TM (1.0 g/kg feed). The GC/MS analysis of the feed additives showed that the major components of HRB1 were β-caryophyllene (14.4%) and menthol (9.8%); HRB2 were n-hexadecanoic acid (14.22%) and β-caryophyllene (14.4%) and HRB3 were menthol (69.6%) and clavicol methyl ether (13.9%). 3. Intestinal samples were taken at 42 d to determine bacterial populations (total aerobe counts, Lactobacilli, and Escherichia coli) and perform gut morphology analysis. Meat samples were analysed for chemical composition and oxidative stability under storage. 4. The HRB1 group had improved (P<0.05) body weight gain and tended to have improved (0.05≤P<0.10) feed conversion ratio, compared to the control group. Jejunum lactic acid bacteria counts were increased (P<0.001) in groups HRB1 and HRB3, compared to the control group, whereas caecal lactic acid bacteria counts tended to increase (0.05≤ P< 0.10) in group HRB1, compared to the control group. Breast meat fat content tended to be lower (0.05≤ P< 0.10) in group HRB1. Meat oxidative stability was improved (P<0.001) and jejunum villus height, crypt depth and goblet cells numbers were increased (P<0.001) in all three herbal supplemented groups, compared to the control. 5. In conclusion, herbal feed additives may be able to improve both growth performance and antioxidant activity of broiler chickens, based on their phenolic compound content.

  15. Insecticidal activity of bio-oil from the pyrolysis of straw from Brassica spp.

    PubMed

    Suqi, Liu; Cáceres, Luis A; Caceres, Luis; Schieck, Katie; McGarvey, Brian D; Booker, Christina J; McGarvey, Brian M; Yeung, Ken K-C; Pariente, Stephane; Briens, Cedric; Berruti, Franco; Scott, Ian M

    2014-04-23

    Agricultural crop residues can be converted through thermochemical pyrolysis to bio-oil, a sustainable source of biofuel and biochemicals. The pyrolysis bio-oil is known to contain many chemicals, some of which have insecticidal activity and can be a potential source of value-added pest control products. Brassicacae crops, cabbage, broccoli, and mustards, contain glucosinolates and isocyanates, compounds with recognized anti-herbivore activity. In Canada, canola Brassica napus straw is available from over 6 000 000 ha and mustard Brassica carinata and Brassica juncea straw is available from 200 000 ha. The straw can be converted by microbial lignocellulosic enzymes as a substrate for bioethanol production but can also be converted to bio-oil by thermochemical means. Straw from all three species was pyrolyzed, and the insecticidal components in the bio-oil were isolated by bioassay-guided solvent fractionation. Of particular interest were the mustard straw bio-oil aqueous fractions with insecticidal and feeding repellent activity to Colorado potato beetle larvae. Aqueous fractions further analyzed for active compounds were found not to contain many of the undesirable phenol compounds, which were previously found in other bio-oils seen in the dichloromethane (DCM) and ethyl acetate (EA) solvent phases of the present study. Identified within the most polar fractions were hexadecanoic and octadecanoic fatty acids, indicating that separation of these compounds during bio-oil production may provide a source of effective insecticidal compounds.

  16. Biosurfactant from a marine bacterium disrupts biofilms of pathogenic bacteria in a tropical aquaculture system.

    PubMed

    Hamza, Faseela; Satpute, Surekha; Banpurkar, Arun; Kumar, Ameeta Ravi; Zinjarde, Smita

    2017-11-01

    Bacterial infections are major constraints in aquaculture farming. These pathogens often adapt to the biofilm mode of growth and resist antibiotic treatments. We have used a non-toxic glycolipid biosurfactant (BS-SLSZ2) derived from a marine epizootic bacterium Staphylococcus lentus to treat aquaculture associated infections in an eco-friendly manner. We found that BS-SLSZ2 contained threose, a four-carbon sugar as the glycone component, and hexadecanoic and octadecanoic acids as the aglycone components. The critical micelle concentration of the purified glycolipid was 18 mg mL-1. This biosurfactant displayed anti-adhesive activity and inhibited biofilm formation by preventing initial attachment of cells onto surfaces. The biosurfactant (at a concentration of 20 μg) was able to inhibit Vibrio harveyi and Pseudomonas aeruginosa biofilms by 80.33 ± 2.16 and 82 ± 2.03%, respectively. At this concentration, it was also able to disrupt mature biofilms of V. harveyi (78.7 ± 1.93%) and P. aeruginosa (81.7 ± 0.59%). The biosurfactant was non-toxic towards Artemia salina. In vivo challenge experiments showed that the glycolipid was effective in protecting A. salina nauplii against V. harveyi and P. aeruginosa infections. This study highlights the significance of marine natural products in providing alternative biofilm controlling agents and decreasing the usage of antibiotics in aquaculture settings. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Composition and dynamics of cutin and suberin biomarkers in plants and soils under agricultural use

    NASA Astrophysics Data System (ADS)

    María Armas-Herrera, Cecilia; Dignac, Marie-France; Rumpel, Cornelia; Arvelo, Carmen Dolores; Chabbi, Abad

    2017-04-01

    Cutins of plant shoots, and suberins, mostly present in roots, may act as potential biomarkers for aboveground and belowground biomass of non-woody plants. The aim of this work was to evaluate the dynamics of specific root and shoot biomarkers after land-use changes from grass to an arable land. We (i) identified and quantified specific biomarkers of cutin and suberin of three grassland species (Dactylis glomerata L., Festuca arundinacea Schreb. and Lolium perenne L.), (ii) investigated the composition of cutin and suberin in soil under different land uses (continuous and temporary grassland, arable and bare soil) of the SOERE-ACBB experimental site in Lusignan (France) and (iii) used natural 13C isotope abundances to follow the fate of cutin and suberin specific markers in soil after conversion from grassland (C3 plants) to arable land (maize, C4 plants). Our results indicated that 9-hydroxy hexadecanedioic acid and 8(9)(10),16-dihydroxy hexadecanoic acid may be used as biomarkers for aboveground biomass, whereas 1,22-docosandioic acid, 22-hydroxy docosanoic acid and 24-hydroxy tetracosanoic acid may be the most adequate belowground biomarkers for the plants investigated under the experimental conditions studied. There were marked differences in monomer composition, abundance and patterns of shoot-root allocation of these biomarkers in the plant species analysed, which demonstrates the importance to identify specific cutin and suberin biomarkers for each plant species to study the incorporation of their biomass into SOM. Cutin and suberin marker contents followed the same trends as the biomass inputs to soil: they were the highest in soils cultivated with maize and the lowest in bare soils. We found no differences in the amounts of cutin and suberin markers in soil under continuous and temporary grassland, which might indicate that the disturbance caused by conversion from grassland to cropland was transitory only. In addition, suberin marker contents decreased by 40-64 % and cutin's by 24-40 % during a 6-year bare fallow, which indicates that root markers were more sensitive than shoot markers to degradation. Changes in the 13C isotopic signatures of specific biomarkers after 6 years of maize cropping showed a higher turnover of root markers as compared to shoot biomarkers, despite the much lower root inputs from maize than from grassland plants. These findings indicate that the stabilisation of suberin in soils was more rapid but less durable than that of cutin.

  18. Phytochemical Analysis and Free Radical Scavenging Activity of Medicinal Plants Gnidia glauca and Dioscorea bulbifera

    PubMed Central

    Ghosh, Sougata; Derle, Abhishek; Ahire, Mehul; More, Piyush; Jagtap, Soham; Phadatare, Suvarna D.; Patil, Ajay B.; Jabgunde, Amit M.; Sharma, Geeta K.; Shinde, Vaishali S.; Pardesi, Karishma; Dhavale, Dilip D.; Chopade, Balu A.

    2013-01-01

    Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS•+ and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS•+ radical with a second order rate constant of 2.33×106 and 1.72×106, respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48×106 and 4.46×106 were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C27H42O3) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important medicinal plants. PMID:24367520

  19. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera.

    PubMed

    Ghosh, Sougata; Derle, Abhishek; Ahire, Mehul; More, Piyush; Jagtap, Soham; Phadatare, Suvarna D; Patil, Ajay B; Jabgunde, Amit M; Sharma, Geeta K; Shinde, Vaishali S; Pardesi, Karishma; Dhavale, Dilip D; Chopade, Balu A

    2013-01-01

    Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS(•+) and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS(•+) radical with a second order rate constant of 2.33 × 10(6) and 1.72 × 10(6), respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48 × 10(6) and 4.46 × 10(6) were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C₂₇H₄₂O₃) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important medicinal plants.

  20. Essential oils and hydrophilic extracts from the leaves and flowers of Succisa pratensis Moench. and their biological activity.

    PubMed

    Witkowska-Banaszczak, Ewa; Długaszewska, Jolanta

    2017-11-01

    This study was undertaken to evaluate the antioxidant activity of methanol and water extracts from Succisa pratensis Moench (Dipsacaceae) leaves and flowers as well as the chemical composition of the essential oils found in them and the antimicrobial activity of the oils and extracts thereof. The essential oils from S. pratensis leaves and flowers were analysed by the GC-MS. The total phenolic content was determined with Folin-Ciocalteu, that of flavonoids with aluminium chloride and that of phenolic acids with Arnov's reagent. The antioxidant activity was investigated by the DPPH radical scavenging assay. Antimicrobial activity was studied in vitro against G-positive and G-negative bacteria, and fungi using disc diffusion and broth microdilution methods. Eighty-six components of the leaf essential oil and 50 of the flower essential oil were identified. The main components of the leaf essential oil were 2-hexyl-1-octanol (5.76%) and heptacosane (5.53%), whereas hexadecanoic acid (16.10%), 8-octadecen-1-ol acetate (9.86%), methyl linolenate (8.58%), pentacosane (6.63%) and heptacosane (5.50%) were found in the flower essential oil. The essential oils exerted high antimicrobial activity (range: 0.11 to >3.44mg/ml) against the following bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and fungi: Trichophyton mentagrophytes, Candida albicans, whereas the methanol and water extracts showed moderate or weak activity. The strongest antioxidant activity was shown by methanol extracts from S. pratensis leaves, IC 50 = 0.09 mg/ml. There was a positive correlation between the total phenolic content and the antimicrobial activity, while for the antioxidant effect, it was not observed. The results suggest great antibacterial activity of the oils and high antioxidant activity of the methanol extract and may justify the application in treating infections. © 2017 Royal Pharmaceutical Society.

  1. Changes in Volatile Compounds of Chinese Luzhou-Flavor Liquor during the Fermentation and Distillation Process.

    PubMed

    Ding, Xiaofei; Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2015-11-01

    The aim of this study was to investigate the dynamic of volatile compounds in the Zaopei during the fermentation and distillation process by headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Physicochemical properties analysis of Zaopei (fermented grains [FG], fermented grains mixed with sorghum [FGS], streamed grains [SG], and streamed grains mixed with Daqu [SGD]) showed distinct changes. A total number of 66 volatile compounds in the Zaopei were identified, in which butanoic acid, hexanoic acid, ethyl hexanoate, ethyl lactate, ethyl octanoate, hexyl hexanoate, ethyl hydrocinnamate, ethyl oleate, ethyl hexadecanoate, and ethyl linoleate were considered to be the dominant compounds due to their high concentrations. FG had the highest volatile compounds (112.43 mg/kg), which significantly decreased by 17.05% in the FGS, 67.12% in the SG, and 73.75% in the SGD. Furthermore, about 61.49% of volatile compounds of FGS were evaporated into raw liquor, whereas head, heart, and tail liquor accounted for 29.84%, 39.49%, and 30.67%, respectively. Each volatile class generally presented a decreasing trend, except for furans. Especially, the percentage of esters was 55.51% to 67.41% in the Zaopei, and reached 92.60% to 97.67% in the raw liquor. Principal component analysis based ordination of volatile compounds data segregated FGS and SGD samples. In addition, radar diagrams of the odor activity values suggested that intense flavor of fruit was weakened most from FG to SGD. The dynamic of volatile compounds in the Zaopei during the fermentation and distillation process was tested by SPME-GCMS. The result of this study demonstrated that both volatile compounds of Zaopei and thermal reaction during distillation simply determined the unique feature of raw liquor. This study was conducted based on the real products from liquor manufactory, so it is practicable that the method can be used in an industry setting. © 2015 Institute of Food Technologists®

  2. Extraction and identification of bioactive compounds from agarwood leaves

    NASA Astrophysics Data System (ADS)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.

  3. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells.

    PubMed

    Branco, Cátia dos Santos; de Lima, Émilin Dreher; Rodrigues, Tiago Selau; Scheffel, Thamiris Becker; Scola, Gustavo; Laurino, Claudia Cilene Fernandes Correia; Moura, Sidnei; Salvador, Mirian

    2015-04-25

    Natural products are among one of the most promising fields in finding new molecular targets in cancer therapy. Laryngeal carcinoma is one of the most common cancers affecting the head and neck regions, and is associated with high morbidity rate if left untreated. The aim of this study was to examine the antiproliferative effect of Araucaria angustifolia on laryngeal carcinoma HEp-2 cells. The results showed that A. angustifolia extract (AAE) induced a significant cytotoxicity in HEp-2 cells compared to the non-tumor human epithelial (HEK-293) cells, indicating a selective activity of AAE for the cancer cells. A. angustifolia extract was able to increase oxidative damage to lipids and proteins, and the production of nitric oxide, along with the depletion of enzymatic antioxidant defenses (superoxide dismutase and catalase) in the tumor cell line. Moreover, AAE was able to induce DNA damage, nuclear fragmentation and chromatin condensation. A significant increase in the Apoptosis Inducing Factor (AIF), Bax, poly-(ADP-ribose) polymerase (PARP) and caspase-3 cleavage expression were also found. These effects could be related to the ability of AAE to increase the production of reactive oxygen species through inhibition of the mitochondrial electron transport chain complex I activity and ATP production by the tumor cells. The phytochemical analysis of A. angustifolia, performed using High Resolution Mass Spectrometry (HRMS) in MS and MS/MS mode, showed the presence of dodecanoic and hexadecanoic acids, and phenolic compounds, which may be associated with the chemotherapeutic effect observed in this study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms.

    PubMed

    Aman, Urooj; Subhan, Fazal; Shahid, Muhammad; Akbar, Shehla; Ahmad, Nisar; Ali, Gowhar; Fawad, Khwaja; Sewell, Robert D E

    2016-02-24

    Passiflora incarnata is widely used as an anxiolytic and sedative due to its putative GABAergic properties. Passiflora incarnata L. methanolic extract (PI-ME) was evaluated in an animal model of streptozotocin-induced diabetic neuropathic allodynia and vulvodynia in rats along with antinociceptive, anxiolytic and sedative activities in mice in order to examine possible underlying mechanisms. PI-ME was tested preliminary for qualitative phytochemical analysis and then quantitatively by proximate and GC-MS analysis. The antinociceptive property was evaluated using the abdominal constriction assay and hot plate test. The anxiolytic activity was performed in a stair case model and sedative activity in an open field test. The antagonistic activities were evaluated using naloxone and/or pentylenetetrazole (PTZ). PI-ME was evaluated for prospective anti-allodynic and anti-vulvodynic properties in a rat model of streptozotocin induced neuropathic pain using the static and dynamic testing paradigms of mechanical allodynia and vulvodynia. GC-MS analysis revealed that PI-ME contained predominant quantities of oleamide (9-octadecenamide), palmitic acid (hexadecanoic acid) and 3-hydroxy-dodecanoic acid, among other active constituents. In the abdominal constriction assay and hot plate test, PI-ME produced dose dependant, naloxone and pentylenetetrazole reversible antinociception suggesting an involvement of opioidergic and GABAergic mechanisms. In the stair case test, PI-ME at 200 mg/kg increased the number of steps climbed while at 600 mg/kg a significant decrease was observed. The rearing incidence was diminished by PI-ME at all tested doses and in the open field test, PI-ME decreased locomotor activity to an extent that was analagous to diazepam. The effects of PI-ME were antagonized by PTZ in both the staircase and open field tests implicating GABAergic mechanisms in its anxiolytic and sedative activities. In the streptozotocin-induced neuropathic nociceptive model, PI-ME (200 and 300 mg/kg) exhibited static and dynamic anti-allodynic effects exemplified by an increase in paw withdrawal threshold and paw withdrawal latency. PI-ME relieved only the dynamic component of vulvodynia by increasing flinching response latency. These findings suggest that Passiflora incarnata might be useful for treating neuropathic pain. The antinociceptive and behavioural findings inferring that its activity may stem from underlying opioidergic and GABAergic mechanisms though a potential oleamide-sourced cannabimimetic involvement is also discussed.

  5. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species.

    PubMed

    M, Sarpras; Gaur, Rashmi; Sharma, Vineet; Chhapekar, Sushil Satish; Das, Jharna; Kumar, Ajay; Yadava, Satish Kumar; Nitin, Mukesh; Brahma, Vijaya; Abraham, Suresh K; Ramchiary, Nirala

    2016-01-01

    Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of majority of the genes in C. chinense compared to C. frutescens and C. annuum suggesting that the possible reason for extremely high pungency might be due to the higher level of candidate gene(s) expression although nucleotide variation in pungency related genes may also be involved in imparting variations in level of pungency.

  6. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species

    PubMed Central

    M, Sarpras; Gaur, Rashmi; Sharma, Vineet; Chhapekar, Sushil Satish; Das, Jharna; Kumar, Ajay; Yadava, Satish Kumar; Nitin, Mukesh; Brahma, Vijaya; Abraham, Suresh K.; Ramchiary, Nirala

    2016-01-01

    Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of majority of the genes in C. chinense compared to C. frutescens and C. annuum suggesting that the possible reason for extremely high pungency might be due to the higher level of candidate gene(s) expression although nucleotide variation in pungency related genes may also be involved in imparting variations in level of pungency. PMID:27936081

  7. Metabolism of hexadecyltrimethylammonium chloride in Pseudomonas strain B1.

    PubMed Central

    van Ginkel, C G; van Dijk, J B; Kroon, A G

    1992-01-01

    A bacterium (strain B1) utilizing hexadecyltrimethylammonium chloride as a carbon and energy source was isolated from activated sludge and tentatively identified as a Pseudomonas sp. This bacterium only grew on alkyltrimethylammonium salts (C12 to C22) and possible intermediates of hexadecyltrimethylammonium chloride breakdown such as hexadecanoate and acetate. Pseudomonas strain B1 did not grow on amines. Simultaneous adaptation studies suggested that the bacterium oxidized only the alkyl chain of hexadecyltrimethylammonium chloride. This was confirmed by the stoichiometric formation of trimethylamine from hexadecyltrimethylammonium chloride. The initial hexadecyltrimethylammonium chloride oxygenase activity, measured by its ability to form trimethylamine, was NAD(P)H and O2 dependent. Finally, assays of aldehyde dehydrogenase, hexadecanoyl-coenzyme A dehydrogenase, and isocitrate lyase in cell extracts revealed the potential of Pseudomonas strain B1 to metabolize the alkyl chain via beta-oxidation. PMID:1444422

  8. Anti-inflammatory activity and chemical composition of the essential oils from Senecio flammeus

    PubMed Central

    Xiao, Kai-Jun; Wang, Wen-Xia; Dai, Jia-Li; Zhu, Liang

    2014-01-01

    Many species from Senecio genus have been used in traditional medicine, and their pharmacological activities have been demonstrated. This study investigated the chemical composition and anti-inflammatory activities of essential oils from Senecio flammeus. A total of 48 components representing 98.41 % of the total oils were identified. The main compounds in the oils were α-farnesene (11.26 %), caryophyllene (8.69 %), n-hexadecanoic acid (7.23 %), and α-pinene (6.36 %). The anti-inflammatory activity of the essential oils was evaluated in rodents (10–90 mg/kg bw) in classical models of inflammation [carrageenan-induced paw edema, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced ear edema, and cotton pellet-induced granuloma]. The essential oils at doses of 10, 30, and 90 mg/kg bw significantly reduced carrageenan-induced paw edema by 17.42 % (P < 0.05), 52.90 % (P < 0.05), and 66.45 % (P < 0.05) 4 h after carrageenan injection, respectively, and significantly reduced myeloperoxidase activity (P < 0.05). The essential oils (10, 30, and 90 mg/kg) also produced a significant dose-dependent response to reduce TPA-induced ear edema by 20.27 % (P < 0.05), 33.06 % (P < 0.05), and 53.90 % (P < 0.05), respectively. The essential oils produced significant dose-response anti-inflammatory activity against cotton pellet-induced granuloma that peaked at the highest dose of 90 mg/kg (49.08 % wet weight and 47.29 % dry weight). Results demonstrate that the essential oils of S. flammeus were effective in the treatment of both acute and chronic inflammatory conditions, thereby supporting the traditional use of this herb. PMID:26417301

  9. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Wang, ZhenZhen; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2010-11-01

    Electronic waste from across the world is dismantled and disposed of in China. The low-tech recycling methods have caused severe air pollution. Air particle samples from a typical workshop of South China engaged in recycling waste printed circuit boards have been analyzed with respect to chemical constituents. This is the first report on the chemical composition of particulate matter (PM) emitted in an e-waste recycling workshop of South China. The results show that the composition of PM from this recycling process was totally different from other emission sources. Organic matter comprised 46.7-51.6% of the PM. The major organic constituents were organophosphates consisting mainly of triphenyl phosphate (TPP) and its methyl substituted compounds, methyl esters of hexadecanoic and octadecanoic acids, levoglucosan and bisphenol A. TPP and bisphenol A were present at 1-5 orders of magnitude higher than in other indoor and outdoor environments throughout the world, which implies that they might be used as potential markers for e-waste recycling. The elemental carbon, inorganic elements and ions had a minor contribution to the PM (<5% each). The inorganic elements were dominated by phosphorus and followed by crustal elements and metal elements Pb, Zn, Sn, and lesser Cu, Sb, Mn, Ni, Ba and Cd. The recycling of printed circuit boards was demonstrated as an important contributor of heavy metal contamination, particularly Cd, Pb and Ni, to the local environment. These findings suggest that this recycling method represents a strong source of PM associated with pollutants to the ambient atmosphere of an e-waste recycling locale.

  10. Hydroethanolic extract of Carthamus tinctorius induces antidepressant-like effects: modulation by dopaminergic and serotonergic systems in tail suspension test in mice.

    PubMed

    Abbasi-Maleki, Saeid; Mousavi, Zahra

    2017-09-01

    Studies indicate that major deficiency in the levels of monoaminergic transmitters is a reason for severe depression. On the other hand, it is shown that Carthamus tinctorius L. (CT) may improve neuropsychological injuries by regulation of the monoamine transporter action. Hence, the present study was undertaken to evaluate the involvement of monoaminergic systems in antidepressant-like effect of CT extract in the tail suspension test (TST) in mice. The mice were intraperitoneally (IP) treated with CT extract (100-400 mg/kg) 1 hr before the TST. To investigate the involvement of monoaminergic systems in antidepressant-like effect, the mice were treated with receptor antagonists 15 min before CT extract treatment (400 mg/kg, IP) and 1 hr before the TST. Findings showed that CT extract (100-400 mg/kg, IP), dose-dependently induced antidepressant-like effect ( P <0.001), but it was not accompanied by alterations in spontaneous locomotor activity in the open-field test. Pretreatment of mice with SCH23390, sulpiride, haloperidol, WAY100135, cyproheptadine, ketanserin and p-chlorophenylalanine (PCPA) inhibited the antidepressant-like effect of CT extract (400 mg/kg, IP), but not with prazosin and yohimbine. Co-administration of CT extract (100 mg/kg, IP) with sub-effective doses of fluoxetine (5 mg/kg, IP) or imipramine (5 mg/kg, IP) increased their antidepressant-like response. Our findings firstly showed that components (especially N-Hexadecanoic acid) of CT extract induce antidepressant-like effects by interaction with dopaminergic (D1 and D2) and serotonergic (5HT1A, 5-HT2A receptors) systems. These findings validate the folk use of CT extract for the management of depression.

  11. A century of Amazon burning driven by Atlantic climate

    NASA Astrophysics Data System (ADS)

    Makou, M.; Thompson, L. G.; Davis, M. E.; Eglinton, T. I.

    2011-12-01

    Very little is known about annual burning trends in the Amazon Basin prior to remote sensing of fires beginning in the late 1970's. Fires reduce Amazon forest biomass and species richness, release pollutant aerosols, and impact the carbon cycle, compelling further investigation of fire-climate dynamics. We measured organic compounds derived from vegetation burning in ice core samples from the Quelccaya Ice Cap in Peru at better than annual resolution to reconstruct wet and dry season burning throughout the Twentieth Century. Variations in the abundance of methyl hexadecanoate, which is produced by thermal alteration of vascular plant alkanoic acids, were used as a proxy for past fire activity. Concentrations of this compound in Quelccaya ice varied strongly on seasonal, interannual, and decadal time scales over the last 100 years, with high-amplitude dry season variability and muted, decadal-scale changes in wet season fire activity. Decade-long periods of repeatedly enhanced burning occurred during the 1930's and 1960's when dry season precipitation was perpetually reduced, as evidenced by low stages of the Rio Negro. These decadal trends suggest that changes in dry season precipitation drive fire activity in the western Amazon and highlight the potential of Amazon forests to undergo repeated strong burning. Fires occurred during years when sea surface temperatures (SSTs) in the north tropical Atlantic were elevated and the north-south tropical Atlantic SST gradient was enhanced; this SST pattern likely displaced the intertropical convergence zone northward, driving subsidence and drought in the western and southern Amazon basin. Thus, our novel ice core record suggests that Amazon forest fire activity during the Twentieth Century was driven primarily by Atlantic climate processes, and future forest health will depend heavily on the evolution of tropical climate.

  12. Desulfosoma caldarium gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a terrestrial hot spring.

    PubMed

    Baena, Sandra; Perdomo, Natalia; Carvajal, Catalina; Díaz, Carolina; Patel, Bharat K C

    2011-04-01

    A thermophilic, sulfate-reducing bacterium, designated strain USBA-053(T), was isolated from a terrestrial hot spring located at a height of 2500 m in the Colombian Andes (5° 45' 33.29″ N 73° 6' 49.89″ W), Colombia. Cells of strain USBA-053(T) were oval- to rod-shaped, Gram-negative and motile by means of a single polar flagellum. The strain grew autotrophically with H(2) as the electron donor and heterotrophically on formate, propionate, butyrate, valerate, isovalerate, lactate, pyruvate, ethanol, glycerol, serine and hexadecanoic acid in the presence of sulfate as the terminal electron acceptor. The main end products from lactate degradation, in the presence of sulfate, were acetate, CO(2) and H(2)S. Strain USBA-053(T) fermented pyruvate in the absence of sulfate and grew optimally at 57 °C (growth temperature ranged from 50 °C to 62 °C) and pH 6.8 (growth pH ranged from 5.7 to 7.7). The novel strain was slightly halophilic and grew in NaCl concentrations ranging from 5 to 30 g l(-1), with an optimum at 25 g l(-1) NaCl. Sulfate, thiosulfate and sulfite were used as electron acceptors, but not elemental sulfur, nitrate or nitrite. The G+C content of the genomic DNA was 56±1 mol%. 16S rRNA gene sequence analysis indicated that strain USBA-053(T) was a member of the class Deltaproteobacteria, with Desulfacinum hydrothermale MT-96(T) as the closest relative (93 % gene sequence similarity). On the basis of physiological characteristics and phylogenetic analysis, it is suggested that strain USBA-053(T) represents a new genus and novel species for which the name Desulfosoma caldarium gen. nov., sp. nov. is proposed. The type strain of the type species is USBA-053(T) ( = KCTC 5670(T) = DSM 22027(T)).

  13. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters.

    PubMed

    Ntougias, S; Russell, N J

    2001-05-01

    A novel Gram-positive, obligately alkaliphilic, non-sporulating, rod-shaped, flagellated bacterium is described. Three different strains of the bacterium were isolated from the wash-waters of edible-olive production. The strains are motile, psychrotolerant, halotolerant, facultatively anaerobic bacteria with a pH optimum of 9.0-9.4 for two strains and 9.8-10.2 for the third. They are catalase- and oxidase-negative. A range of hexoses and some disaccharides composed of hexoses, but not pentoses are metabolized by the bacterial strains: D(+)-glucose, D(+)-glucose 6-phosphate, D(+)-cellobiose, starch or sucrose are the carbohydrates best utilized. No common amino acids are utilized by the three alkaliphilic strains, but yeast extract can serve as sole carbon and energy source. The major membrane phospholipids are diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid, all containing saturated and unsaturated, even-carbon-numbered fatty acyl chains with hexadecanoic and hexadecen(7)oic as the predominant components. The G+C content of the DNA in all three strains is 39.7+/-1.0 mol% and the DNA relatedness by hybridization is >88% for all pairings of the three strains. The results of 16S rRNA sequence comparisons revealed that the strains represent a new alkaliphilic linkage in the order Bacillales, belonging to the Carnobacterium/Aerococcus-like spectrum. It is proposed that the strains should be assigned to a new genus and species, Alkalibacterium olivoapovliticus. The three strains, designated WW2-SN4aT, WW2-SN4c and WW2-SN5, have been deposited with Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as DSM 13175T, DSM 12937 and DSM 12938 respectively, and in the National Collection of Industrial and Marine Bacteria as NCIMB 13710T, NCIMB 13711 and NCIMB 13712, respectively. The type species of this genus is Alkalibacterium olivoapovliticus and the type strain is WW2-SN4aT.

  14. Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis.

    PubMed

    Mazurek, Sylwester; Garroum, Imène; Daraspe, Jean; De Bellis, Damien; Olsson, Vilde; Mucciolo, Antonio; Butenko, Melinka A; Humbel, Bruno M; Nawrath, Christiane

    2017-02-01

    The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis1[OPEN

    PubMed Central

    Mazurek, Sylwester; Garroum, Imène; Daraspe, Jean; De Bellis, Damien; Olsson, Vilde; Butenko, Melinka A.; Humbel, Bruno M.

    2017-01-01

    The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development. PMID:27994007

  16. Volatile constituents of roasted tigernut oil (Cyperus esculentus L.).

    PubMed

    Lasekan, Ola

    2013-03-30

    Volatile compounds play a key role in determining the sensory appreciation of vegetable oils. In this study a systematic evaluation of odorants responsible for the characteristic flavour of roasted tigernut oil was carried out. A total of 75 odour-active volatiles were identified. From these, 13 aroma compounds showing high flavour dilution factors in the range of 16 to 128 were quantified by their odour activity values (OAVs). On the basis of high OAVs in oil, the following aroma compounds [vanillin (chocolate, sweet vanilla), 5-ethylfurfural (caramel, spicy), 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (caramel), phenyl acetaldehyde (honey-like), ethanone, 1-(4-hydroxy-3-methoxyphenyl) (faint vanilla)] were elucidated as important contributors to the overall chocolate, sweet vanilla, butterscotch aroma of the oil. Odorants with high concentrations in the roasted tigernut oil such as 5-hydroxymethylfurfural, ethyl hexadecanoate, n-propyl-9,12-octadecadienoate gave relatively low OAVs, so their contributions to the overall orthonasal aroma impression of roasted tigernut oil can be assumed to be low. © 2012 Society of Chemical Industry.

  17. Desulfosoma profundi sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France.

    PubMed

    Grégoire, Patrick; Fardeau, Marie-Laure; Guasco, Sophie; Lagière, Joël; Cambar, Jean; Michotey, Valérie; Bonin, Patricia; Ollivier, Bernard

    2012-03-01

    A novel strictly anaerobic bacterium designated SPDX02-08(T) was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1-2 × 2-6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08(T) grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08(T) completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08(T) required yeast extract to oxidize formate and H(2) but did not grow autotrophically on H(2). Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08(T) were iso-C(15:0), C(15:0), and C(16:0). Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08(T) belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08(T) and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08(T) is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937(T) = JCM 16410(T)). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08(T) is HM056226.

  18. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    NASA Astrophysics Data System (ADS)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three ecologically prominent clades of eukaryotic phytoplankton. This continuity of εf across taxa may help to explain why there is no coherent signature of phytoplankton evolutionary succession in Phanerozoic carbon isotope records.

  19. New chemical constituents from Oryza sativa straw and their algicidal activities against blue-green algae.

    PubMed

    Ahmad, Ateeque; Kim, Seung-Hyun; Ali, Mohd; Park, Inmyoung; Kim, Jin-Seog; Kim, Eun-Hye; Lim, Ju-Jin; Kim, Seul-Ki; Chung, Ill-Min

    2013-08-28

    Five new constituents, 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-β-D-xylopyranosyl-(2a→1b)-2a-O-β-D-xylopyranosyl-(2b→1c)-2b-O-β-D-xylopyranosyl-2c-octadecanoate (1), 5,4'-dihydroxy-7,3'-dimethoxyflavone-4'-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-2d-octadecanoate (2), kaempferol-3-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-2d-hexadecanoate (3), methyl salicylate-2-O-α-D-xylopyranosyl-(2a→1b)-2a-O-α-D-xylopyranosyl-(2b→1c)-2b-O-α-D-xylopyranosyl-(2c→1d)-2c-O-α-D-xylopyranosyl-(2d→1e)-2d-O-α-D-xylopyranosyl-(2e→1f)-2e-O-α-D-xylopyranosyl-(2f→1g)-2f-O-α-D-xylopyranosyl-(2g→1h)-2g-O-α-D-xylopyranosyl-2h-geranilan-8',10'-dioic acid-1'-oate (4), and oleioyl-β-D-arabinoside (5), along with eight known compounds, were isolated from a methanol extract of Oryza sativa straw. The structures of the new compounds were elucidated using one- and two-dimensional NMR spectroscopies in combination with IR, ESI/MS, and HR-ESI/FTMS. In bioassays with blue-green algae, the efficacies of the algicidal activities of the five new compounds (1-5) were evaluated at concentrations of 1, 10, and 100 mg/L. Compound 5 had the highest growth inhibition (92.6 ± 0.3%) for Microcystis aeruginosa UTEX 2388 at a concentration of 100 ppm (mg/L). Compound 5 has high potential for the ecofriendly control of weeds and algae harmful to water-logged rice.

  20. XAS and XMCD investigation of Mn12 monolayers on gold.

    PubMed

    Mannini, Matteo; Sainctavit, Philippe; Sessoli, Roberta; Cartier dit Moulin, Christophe; Pineider, Francesco; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante

    2008-01-01

    The deposition of Mn(12) single molecule magnets on gold surfaces was studied for the first time using combined X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) methods at low temperature. The ability of the proposed approach to probe the electronic structure and magnetism of Mn(12) complexes without significant sample damage was successfully checked on bulk samples. Detailed information on the oxidation state and magnetic polarization of manganese ions in the adsorbates was obtained from XAS and XMCD spectra, respectively. Partial reduction of metal ions to Mn(II) was clearly observed upon deposition on Au(111) of two different Mn(12) derivatives bearing 16-acetylthio-hexadecanoate and 4-(methylthio)benzoate ligands. The average oxidation state, as well as the relative proportions of Mn(II), Mn(III) and Mn(IV) species, are strongly influenced by the deposition protocol. Furthermore, the local magnetic polarizations are significantly decreased as compared with bulk Mn(12) samples. The results highlight an utmost redox instability of Mn(12) complexes at gold surfaces, presumably accompanied by structural rearrangements, which cannot be easily revealed by standard surface analysis based on X-ray photoelectron spectroscopy and scanning tunnelling microscopy.

  1. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer onto Au. Advantages of degenerate Si include a simpler equivalent circuit, simple and reproducible surface preparation, easy incorporation into ULSI devices, and the greater strength of Si-C bonds (~520 kJ/mole) relative to Au-S bonds (125-150 kJ/mole). New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a thirty-day trial. An impedance biosensor is reported that employs the bidentate thiol 16-[3,5-bis(mercaptomethyl)phenoxy]-hexadecanoic acid (BMPHA) to immobilize the mouse monoclonal antibody to peanut protein Ara h 1. The detection limit for Ara h 1 is approximately 0.71 ng/mL (0.01 nM), which is about one order of magnitude lower than that obtained for antibody immobilization atop the monodendate thiol, 16-mercaptohexadecanoic acid (16 MHA). Antibody regeneration was studied daily using a gentle denaturing agent, 0.2 M KSCN at pH 7.3. The antibody-coated on Au electrodes retained activity towards Ara h1 for 10 and 20 days of regeneration of the monodendate- and BMPHA-coated Au electrodes, respectively. This prolonged activity illustrates the superior stability of protein films atop the BMPHA bidentate thiol- coated Au electrode relative to the 16-MHA monodendate thiol-coated Au electrode.

  2. Coordination geometry of lead carboxylates - spectroscopic and crystallographic evidence.

    PubMed

    Catalano, Jaclyn; Murphy, Anna; Yao, Yao; Yap, Glenn P A; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil

    2015-02-07

    Despite their versatility, only a few single-crystal X-ray structures of lead carboxylates exist, due to difficulties with solubility. In particular, the structures of long-chain metal carboxylates have not been reported. The lone electron pair in Pb(ii) can be stereochemically active or inactive, leading to two types of coordination geometries commonly referred to as hemidirected and holodirected structures, respectively. We report (13)C and (207)Pb solid-state NMR and infrared spectra for a series of lead carboxylates, ranging from lead hexanoate (C6) to lead hexadecanoate (C18). The lead carboxylates based on consistent NMR parameters can be divided in two groups, shorter-chain (C6, C7, and C8) and longer-chain (C9, C10, C11, C12, C14, C16, and C18) carboxylates. This dichotomy suggests two modes of packing in these solids, one for the short-chain lead carboxylates and one for long-chain lead carboxylates. The consistency of the (13)C and (207)Pb NMR parameters, as well as the IR data, in each group suggests that each motif represents a structure characteristic of each subgroup. We also report the single-crystal X-ray diffraction structure of lead nonanoate (C9), the first single-crystal structure to have been reported for the longer-chain subgroup. Taken together the evidence suggests that the coordination geometry of C6-C8 lead carboxylates is hemidirected, and that of C9-C14, C16 and C18 lead carboxylates is holodirected.

  3. [Chemical composition of essential oils from leaves of Helicteres guazumifolia (Sterculiaceae), Piper tuberculatum (Piperaceae), Scoparia dulcis (Arecaceae) and Solanum subinerme (Solanaceae) from Sucre, Venezuela].

    PubMed

    Ordaz, Gabriel; D'Armas, Haydelba; Yáñez, Dayanis; Moreno, Shailili

    2011-06-01

    Essential oils, biosynthesized and accumulated in aromatic plants, have a wide range of applications in the pharmaceutical health, cosmetics, food and agricultural industry. This study aimed to analyze the secondary metabolites in some plant species in order to contribute to their chemotaxonomy. Leaves from Helicteres guazumifolia, Piper tuberculatum, Scoparia dulcis and Solanum subinerme were collected and their essential oils were obtained by means of hydro-distillation. The oil fraction was analyzed and identified by GC/MS. The extraction yields were of 0.004, 0.032, 0.016 and 0.005%, and the oil constituents of 88.00, 89.80, 87.50 and 89.47%, respectively. The principal oils found were: non-terpenoids volatile secondary metabolites (30.28%) in H. guazumifolia; sesquiterpenoids (20.82 and 26.09%) and oxigen derivated (52.19 and 25.18%) in P. tuberculatum and S. dulcis; and oxigen diterpenoids (39.67%) in S. subinerme. The diisobuthylphtalate (13.11%) in H. guazumifolia, (-)-spathulenol (11.37%) in P. tuberculatum and trans-phytol (8.29 and 36.00%) in S. dulcis and S. subinerme, were the principal constituents in their respective essential oils. The diisooctylphtalate were the essential oil common to all species, but the volatile compounds such as trans-pinane, L-linalool, beta-ionone, isophytol, neophytadiene, trans-phytol, dibutylphtalate and methyl hexadecanoate, were only detected in three of these essences. This suggests that these plants may require similar secondary metabolites for their ecological interactions, possibly due to common environmental factors.

  4. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves.

    PubMed

    Ashidi, J S; Houghton, P J; Hylands, P J; Efferth, T

    2010-03-24

    There is only scant literature on the anticancer components of medicinal plants from Nigeria, yet traditional healers in the area under study claim to have been managing the disease in their patients with some success using the species studied. To document plants commonly used to treat cancer in South-western Nigeria and to test the scientific basis of the claims using in vitro cytotoxicity tests. Structured questionnaires were used to explore the ethnobotanical practices amongst the traditional healers. Methanol extracts of the most common species cited were screened for cytotoxicity using the sulforhodamine B (SRB) assay in both exposure and recovery experiments. Three cancer cell lines (human breast adenocarcinoma cell line MCF-7, human large cell lung carcinoma cell line COR-L23 and human amelanotic melanoma C32) and one normal cell line (normal human keratinocytes SVK-14) were used for the screening of the extracts and the fractions obtained. The extract of Cajanus cajan showed considerable activity and was further partitioned and the dichloromethane fraction was subjected to preparative chomatography to yield six compounds: hexadecanoic acid methyl ester, alpha-amyrin, beta-sitosterol, pinostrobin, longistylin A and longistylin C. Pinostrobin and longistylins A and C were tested for cytotoxicity on the cancer cell lines. In addition, an adriamycin-sensitive acute T-lymphoblastic leukaemia cell line (CCRF-CEM) and its multidrug-resistant sub-line (CEM/ADR5000) were used in an XTT assay to evaluate the activity of the pure compounds obtained. A total of 30 healers from S W Nigeria were involved in the study. 45 species were recorded with their local names with parts used in the traditional therapeutic preparations. Cytotoxicity (IC(50) values less than 50 microg/mL) was observed in 5 species (Acanthospermum hispidum, Cajanus cajan, Morinda lucida, Nymphaea lotus and Pycnanthus angolensis). Acanthospermum hispidum and Cajanus cajan were the most active. The dichloromethane fraction of Cajanus cajan had IC(50) value 5-10 microg/mL, with the two constituent stilbenes, longistylins A and C, being primarily responsible, with IC(50) values of 0.7-14.7 microM against the range of cancer cell lines. Most of the species tested had some cytotoxic effect on the cancer cell lines, which to some extent supports their traditional inclusion in herbal preparations for treatment of cancer. However, little selectivity for cancer cells was observed, which raises concerns over their safety and efficacy in traditional treatment. The longistylins A and C appear to be responsible for much of the activity of Cajanus cajan extract. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Chemical Composition and Allelopathic Potential of Essential Oils from Tipuana tipu (Benth.) Kuntze Cultivated in Tunisia.

    PubMed

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2016-03-01

    In Tunisia, Tipuana tipu (Benth.) Kuntze is an exotic tree, which was introduced many years ago and planted as ornamental street, garden, and park tree. The present work reported, for the first time, the chemical composition and evaluates the allelopathic effect of the hydrodistilled essential oils of the different parts of this tree, viz., roots, stems, leaves, flowers, and pods gathered in the area of Sousse, a coastal region, in the East of Tunisia. In total, 86 compounds representing 89.9 - 94.9% of the whole oil composition, were identified in these oils by GC-FID and GC/MS analyses. The root essential oil was clearly distinguished for its high content in sesquiterpene hydrocarbons (β-caryophyllene, 1 (44); 24.1% and germacrene D, 2 (53); 20.0%), while those obtained from pods, leaves, stems, and flowers were dominated by non-terpene hydrocarbons. The most important ones were n-tetradecane (41, 16.3%, pod oil), 1,7-dimethylnaphthalene (43, 15.6%, leaf oil), and n-octadecane (77, 13.1%, stem oil). The leaf oil was rich in the apocarotene (E)-β-ionone (4 (54); 33.8%), and the oil obtained from flowers was characterized by hexahydrofarnesylacetone (5 (81); 19.9%) and methyl hexadecanoate (83, 10.2%). Principal component and hierarchical cluster analyses separated the five essential oils into three groups and two subgroups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by the root essential oil tested at 1 mg/ml. The inhibitory effect on the shoot and root elongation varied from -1.6% to -32.4%, and from -2.5% to -64.4%, respectively. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Insecticidal and genotoxic activity of Psoralea corylifolia Linn. (Fabaceae) against Culex quinquefasciatus Say, 1823

    PubMed Central

    2013-01-01

    Background Indiscriminate use of synthetic insecticides to eradicate mosquitoes has caused physiological resistance. Plants provide a reservoir of biochemical compounds; among these compounds some have inhibitory effect on mosquitoes. In the present study the larvicidal, adulticidal and genotoxic activity of essential oil of Psoralea corylifolia Linn. against Culex quinquefasciatus Say was explored. Methods Essential oil was isolated from the seeds of P. corylifolia Linn. Larvicidal and adulticidal bioassay of Cx. quinquefasciatus was carried out by WHO method. Genotoxic activity of samples was determined by comet assay. Identification of different compounds was carried out by gas chromatography- mass spectrometry analysis. Results LC50 and LC90 values of essential oil were 63.38±6.30 and 99.02±16.63 ppm, respectively against Cx. quinquefasciatus larvae. The LD50 and LD90 values were 0.057±0.007 and 0.109±0.014 mg/cm2 respectively against adult Cx. quinquefasciatus,. Genotoxicity of adults was determined at 0.034 and 0.069 mg/cm2. The mean comet tail length was 6.2548±0.754 μm and 8.47±0.931 μm and the respective DNA damage was significant i.e. 6.713% and 8.864% in comparison to controls. GCMS analysis of essential oil revealed 20 compounds. The major eight compounds were caryophyllene oxide (40.79%), phenol,4-(3,7-dimethyl-3-ethenylocta-1,6-dienyl) (20.78%), caryophyllene (17.84%), α-humulene (2.15%), (+)- aromadendrene (1.57%), naphthalene, 1,2,3,4-tetra hydro-1,6-dimethyle-4-(1-methyl)-, (1S-cis) (1.53%), trans- caryophyllene (0.75%), and methyl hexadecanoate (0.67%). Conclusion Essential oil obtained from the seeds of P. corylifolia showed potent toxicity against larvae and adult Cx. quinquefasciatus. The present work revealed that the essential oil of P. corylifolia could be used as environmentally sound larvicidal and adulticidal agent for mosquito control. PMID:23379981

  7. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    It has been demonstrated previously that hydrocarbon addition to soil provokes soil organic matter priming (Zyakun et al., 2011). It has further been shown that petroleum hydrocarbons deposit to roadside soils bound to fine mineral particles and together with vehicle spray (Mykhailova et al., 2014), and that hydrocarbon concentrations decrease to safe levels within the first 15 m from the road, reaching background concentrations at 60-100 m distance (Mykhailova et al., 2013). It was the aim of this study to (I) identify the bioavailability of different petroleum hydrocarbon fractions to degradation and to (II) identify the native (i.e. pedogenic) C fraction affected by hydrocarbon-mediated soil organic matter priming during decay. To address this aim, we collected soil samples at distances from 1 to 100 m (sampling depth 15 cm) near the Traktorostroiteley avenue and the Pushkinskaya street in Kharkov, as well as near the country road M18 near Kharkov, Ukraine. The roads have been under exploitation for several decades, so microbial adaptation to enhanced hydrocarbon levels and full expression of effects could be assumed. The following C fractions were quantified using 13C-CP/MAS-NMR: Carbohydrates, Proteins, Lignin, Aliphates, Carbonyl/Carboxyl as well as black carbon according to Nelson and Baldock (2005). Petroleum hydrocarbons were determind after hexane extraction using GC-MS and divided into a light fraction (chain-length C27, Mykhailova et al., 2013). Potential soil respiration was determined every 48 h by trapping of CO2 evolving from 20 g soil in NaOH at 20 ° C and at 60% of the maximum water holding capacity and titration after a total incubation period of 4 weeks in the lab. It was found that soil respiration positively correlated with the ratio of the light fraction to the sum of medium and heavy fractions of petroleum hydrocarbons, which indicates higher biodegradation primarily of the light petroleum hydrocarbon fraction. Further, soil respiration was positively correlated with the carbohydrate fraction and negatively correlated with the aliphatic fraction of the soil C, while carbohydrate-C and alkyl-C increased and decreased with distance from the road, respectively. It is proposed that petroleum hydrocarbons supress soil biological activity at concentrations above 1500 mg kg-1, and that soil organic matter priming primarily affects the carbohydrate fraction of soil organic matter. It can be concluded that the abundance of solid carbohydrates (O-alkyl C) is of paramount importance for the hydrocarbon mineralization under natural conditions, compared to more recalcitrant SOM fractions (mainly aromatic and alkyl C). References Mykhailova, L., Fischer, T., Iurchenko, V. (2013) Distribution and fractional composition of petroleum hydrocarbons in roadside soils. Applied and Environmental Soil Science, vol. 2013, Article ID 938703, 6 pages, DOI 10.1155/2013/938703 Mykhailova, L., Fischer, T., Iurchenko, V. (2014) Deposition of petroleum hydrocarbons with sediment trapped in snow in roadside areas. Journal of Environmental Engineering and Landscape Management 22(3):237-244, DOI 10.3846/16486897.2014.889698 Nelson P.N. and Baldock J.A. (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses, 2005, Biogeochemistry (2005) 72: 1-34, DOI 10.1007/s10533-004-0076-3 Zyakun, A., Nii-Annang, S., Franke, G., Fischer, T., Buegger, F., Dilly, O. (2011) Microbial Actvity and 13C/12C Ratio as Evidence of N-Hexadecane and N-Hexadecanoic Acid Biodegradation in Agricultural and Forest Soils. Geomicrobiology Journal 28:632-647, DOI 10.1080/01490451.2010.489922

  8. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  9. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD.

    PubMed

    Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C

    2008-05-12

    A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.

  10. Synthesis of fatty acids from [1-14C]acetylcoenzyme A in subcellular particles of rat epididymal adipose tissue

    PubMed Central

    Kanoh, H.; Lindsay, D. B.

    1972-01-01

    1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-14C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C18 and C20 fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Δ11:12 isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Δ11:12 isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C16 and C18 monoenoic acids; synthesis of C20 acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction. PMID:4638795

  11. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  12. Effect of baseline plasma fatty acids on eicosapentaenoic acid levels in individuals supplemented with alpha-linolenic acid.

    PubMed

    DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A

    2009-01-01

    We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.

  13. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    PubMed

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

  14. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals. PMID:23185248

  15. Solid-phase extraction of acidic herbicides.

    PubMed

    Wells, M J; Yu, L Z

    2000-07-14

    A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).

  16. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  17. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...

  18. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...

  19. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid.

    PubMed

    Clifford, Michael N; Stoupi, Stavroula; Kuhnert, Nikolai

    2007-04-18

    Green tea, tara tannin, and tannic acid have been profiled for their contents of galloylquinic acids using LC-MS8. These procedures have provided evidence for the first observation of (i) 1-galloylquinic acid (11), 1,3,5-trigalloylquinic acid (22), 4-(digalloyl)quinic acid (28), 5-(digalloyl)quinic acid (29), and either 3-galloyl-5-(digalloyl)quinic acid (32) or 3-(digalloyl)-5-galloylquinic acid (33) from any source; (ii) 4-galloyl-5-(digalloyl)quinic acid (34), 5-galloyl-4-(digalloyl)quinic acid (35), 3-(digalloyl)-4,5-digalloylquinic acid (41), 4-(digalloyl)-3,5-digalloylquinic acid (40), 5-(digalloyl)-3,4-digalloylquinic acid (39), and 1,3,4-trigalloylquinic acid (21) from tara tannin; and (iii) 3-galloylquinic acid (12) and 4-galloylquinic acid (14) from green tea. The first mass spectrometric fragmentation data are reported for galloylquinic acids containing between five and eight gallic acid residues. For each of these mass ranges at least two isomers based on the 1,3,4,5-tetragalloylquinic acid core (25) and at least three based on the 3,4,5-trigalloylquinic acid core (24) were observed. Methanolysis of tara tannin yielded methyl gallate, methyl digallate, and methyl trigallate, demonstrating that some of these galloylquinic acids contained at least one side chain of up to four galloyl residues.

  1. Induction of nodD Gene in a Betarhizobium Isolate, Cupriavidus sp. of Mimosa pudica, by Root Nodule Phenolic Acids.

    PubMed

    Mandal, Santi M; Chakraborty, Dipjyoti; Dutta, Suhrid R; Ghosh, Ananta K; Pati, Bikas R; Korpole, Suresh; Paul, Debarati

    2016-06-01

    A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis.

  2. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  3. The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid.

    PubMed

    Carballeira, N M; Sostre, A; Stefanov, K; Popov, S; Kujumgiev, A; Dimitrova-Konaklieva, S; Tosteson, C G; Tosteson, T R

    1997-12-01

    The fatty acid composition of a new strain of Vibrio alginolyticus, found in the alga Cladophora coelothrix, was studied. Among 38 different fatty acids, a new fatty acid, 9-methyl-10-hexadecenoic acid and the unusual 11-methyl-12-octadecenoic acid, were identified. Linear alkylbenzene fatty acids, such as 10-phenyldecanoic acid, 12-phenyldodecanoic acid and 14-phenyltetradecanoic acid, were also found in V. alginolyticus. The alga contained 43% saturated fatty acids, and 28% C16-C20 polyunsaturated fatty acids of the n-3 and n-6 families.

  4. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics

    PubMed Central

    Hu, Peng-Li; Yuan, Ya-Hong; Yue, Tian-Li

    2018-01-01

    This study aimed to analyze the bile acid patterns in commercially available oxgall powders used for evaluation of the bile tolerance ability of probiotic bacteria. Qxgall powders purchased from Sigma-Aldrich, Oxoid and BD Difco were dissolved in distilled water, and analyzed. Conjugated bile acids were profiled by ion-pair high-performance liquid chromatography (HPLC), free bile acids were detected as their p-bromophenacyl ester derivatives using reversed-phase HPLC after extraction with acetic ether, and total bile acids were analyzed by enzymatic-colorimetric assay. The results showed that 9 individual bile acids (i.e., taurocholic acid, glycocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid) were present in each of the oxgall powders tested. The content of total bile acid among the three oxgall powders was similar; however, the relative contents of the individual bile acids among these oxgall powders were significantly different (P < 0.001). The oxgall powder from Sigma-Aldrich was closer to human bile in the ratios of glycine-conjugated bile acids to taurine-conjugated bile acids, dihydroxy bile acids to trihydroxy bile acids, and free bile acids to conjugated bile acids than the other powders were. It was concluded that the oxgall powder from Sigma-Aldrich should be used instead of those from Oxoid and BD Difco to evaluate the bile tolerance ability of probiotic bacteria as human bile model. PMID:29494656

  5. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  6. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    USDA-ARS?s Scientific Manuscript database

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  7. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    NASA Astrophysics Data System (ADS)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  8. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. HPLC method for the simultaneous quantification of the major organic acids in Angeleno plum fruit

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Wang, Jing; Cheng, Wei; Zhao, Zhilei; Cao, Jiankang

    2014-08-01

    A method was developed to profile major organic acids in Angeleno fruit by high performance liquid chromatography. Organic acids in plum were extracted by water with ultra- sonication at 50°C for 30 min. The extracts were chromatographed on Waters Atlantis T3 C18 column (4.6 mm×250 mm, 5 μm) with 0.01mol/L sulfuric acid and water as mobile phase, and flow rate was 0.5 ml/min. The column temperature was 40C, and chromatography was monitored by a diode array detector at 210 nm. The result showed that malic acid, citric acid, tartaric acid, oxalic acid, pyruvic acid, acetic acid, succinic acid in Angeleno plum, and the malic acid was the major organic acids. The coefficient of determination of the standard calibration curve is R2 > 0.999. The organic acids recovery ranged from 99.11% for Malic acid to 106.70% for Oxalic acid, and CV (n=6) ranged from 0.95% for Malic acid to 6.23% for Oxalic acid, respectively. The method was accurate, sensitive and feasible in analyzing the organic acids in Angeleno plum.

  10. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  11. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  12. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Use of acid to correct...

  13. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of acid to correct...

  14. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Use of acid to correct...

  15. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of acid to correct...

  16. Acid Rain: What It Is -- How You Can Help!

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This publication discusses the nature and consequences of acid precipitation (commonly called acid rain). Topic areas include: (1) the chemical nature of acid rain; (2) sources of acid rain; (3) geographic areas where acid rain is a problem; (4) effects of acid rain on lakes; (5) effect of acid rain on vegetation; (6) possible effects of acid rain…

  17. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  18. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  19. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted inmore » liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.« less

  1. Stereospecific distribution of plamitic acid in the triacylglycerols of rat adipocytes. Effects of varying the composition of the substrate fatty acid in vitro

    PubMed Central

    Christie, William W.; Hunter, Margaret L.

    1980-01-01

    The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower. PMID:7236215

  2. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. 1

    PubMed Central

    Funk, Christoph; Brodelius, Peter E.

    1990-01-01

    Feeding of 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid and 3,4,5-trimethoxycinnamic acid to cell suspension cultures of Vanilla planifolia resulted in the formation of 4-hydroxybenzoic acid, vanillic acid, and syringic acid, respectively. The homologous 4-methoxybenzoic acids were demethylated to the same products. It is concluded that the side chain degrading enzyme system accepts the 4-methoxylated substrates while the demethylation occurs at the benzoic acid level. The demethylating enzyme is specific for the 4-position. Feeding of [O-14C-methyl]-3,4-dimethoxycinnamic acid revealed that the first step in the conversion is the glycosylation of the cinnamic acid to its glucose ester. A partial purification of a UDP-glucose: trans-cinnamic acid glucosyltransferase is reported. 4-Methoxy substituted cinnamic acids are better substrates for this enzyme than 4-hydroxy substituted cinnamic acid. It is suggested that 4-methoxy substituted cinnamic acids are intermediates in the biosynthetic conversion of cinnamic acids to benzoic acids in cells of V. planifolia. PMID:16667674

  3. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).

    PubMed

    Ushigome, F; Takanaga, H; Matsuo, H; Tsukimori, K; Nakano, H; Ohtani, H; Sawada, Y

    2001-04-13

    Valproic acid is an anticonvulsant widely used for the treatment of epilepsy. However, valproic acid is known to show fetal toxicity, including teratogenicity. In the present study, to elucidate the mechanisms of valproic acid transport across the blood-placental barrier, we carried out transcellular transport and uptake experiments with human placental choriocarcinoma epithelial cells (BeWo cells) in culture. The permeability coefficient of [3H]valproic acid in BeWo cells for the apical-to-basolateral flux was greater than that for the opposite flux, suggesting a higher unidirectional transport in the fetal direction. The uptake of [3H]valproic acid from the apical side was temperature-dependent and enhanced under acidic pH. In the presence of 50 microM carbonyl cyanide p-trifluoromethoxylhydrazone, the uptake of [3H]valproic acid was significantly reduced. A metabolic inhibitor, 10 mM sodium azide, also significantly reduced the uptake of [3H]valproic acid. Therefore, valproic acid is actively transported in a pH-dependent manner on the brush-border membrane of BeWo cells. Kinetic analysis of valproic acid uptake revealed the involvement of a non-saturable component and a saturable component. The Michaelis constant for the saturable transport (K(t)) was smaller under acidic pH, suggesting a proton-linked active transport mechanism for valproic acid in BeWo cells. In the inhibitory experiments, some short-chain fatty acids, such as acetic acid, lactic acid, propanoic acid and butyric acid, and medium-chain fatty acids, such as hexanoic acid and octanoic acid, inhibited the uptake of [3H]valproic acid. The uptake of [3H]valproic acid was also significantly decreased in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, salicylic acid and furosemide, which are well-known inhibitors of the anion exchange system. Moreover, p-aminohippuric acid significantly reduced the uptake of [3H]valproic acid. These results suggest that an active transport mechanism for valproic acid exists on the brush-border membrane of placental trophoblast cells and operates in a proton-linked manner.

  4. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    PubMed

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (p<0.05) were observed in both peel and pulp. The levels of total phenolic acids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  6. Isolation of aquatic yeasts with the ability to neutralize acidic media, from an extremely acidic river near Japan's Kusatsu-Shirane Volcano.

    PubMed

    Mitsuya, Daisuke; Hayashi, Takuya; Wang, Yu; Tanaka, Mami; Okai, Masahiko; Ishida, Masami; Urano, Naoto

    2017-07-01

    The Yukawa River is an extremely acidic river whose waters on the east foot of the Kusatu-Shirane Volcano (in Gunma Prefecture, Japan) contain sulfate ions. Here we isolated many acid-tolerant yeasts from the Yukawa River, and some of them neutralized an acidic R2A medium containing casamino acid. Candida fluviatilis strain CeA16 had the strongest acid tolerance and neutralizing activity against the acidic medium. To clarify these phenomena, we performed neutralization tests with strain CeA16 using casamino acid, a mixture of amino acids, and 17 single amino acid solutions adjusted to pH 3.0, respectively. Strain CeA16 neutralized not only acidic casamino acid and the mixture of amino acids but also some of the acidic single amino acid solutions. Seven amino acids were strongly decomposed by strain CeA16 and simultaneously released ammonium ions. These results suggest strain CeA16 is a potential yeast as a new tool to neutralize acidic environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOEpatents

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  8. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength. © 2010 Blackwell Publishing Ltd.

  9. Acid Response of Bifidobacterium longum subsp. longum BBMN68 Is Accompanied by Modification of the Cell Membrane Fatty Acid Composition.

    PubMed

    Liu, Songling; Ren, Fazheng; Jiang, Jingli; Zhao, Liang

    2016-07-28

    The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.

  10. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  11. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Kim, Deuk-Soo; Suh, Min-Jung; Oh, Sei-Ryang; Lee, In-Jung; Kang, Sun-Chul; Hou, Ching T; Kim, Hak-Ryul

    2007-05-01

    Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.

  12. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  13. AGARD Corrosion Handbook. Volume 1. Aircraft Corrosion: Causes and Case Histories

    DTIC Science & Technology

    1985-07-01

    Anodic coatings can be formed in chromic acid, sulphuric acid, phosphoric acid or oxalic acid solutions. Chromic acid anodizing is widely used with...and consists of a thin non-porous barrier layer next to the metal with a porous outer layer that can be sealed by hydrothermal treatment in steam...anaerobic) or an oxidative (aerobic) mechanism. Various organic acids such as citric acid, oxalic acid, gluconic acid, dodecanoic acid, etc., which may be

  14. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study

    PubMed Central

    Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika

    2017-01-01

    Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858

  15. Electrophilic properties of common MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Lippa, T. P.; Eustis, S. N.; Wang, D.; Bowen, K. H.

    2007-11-01

    The negative ion photoelectron spectra of the following MALDI matrix molecules have been measured: 3-carboxypyridine (nicotinic acid), 2,5-dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), 2,6-dihydroxyacetophenone (DHAP), 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid), 3-hydroxy-2-pyridinecarboxylic acid (3HPA), and 2,6-pyridinedicarboxylic acid (dipicolinic acid). Adiabatic electron affinities and vertical detachment energies were extracted from these spectra and reported. In addition, electron affinities were calculated for DHAP, ferulic acid, dipicolinic acid and sinapinic acid. Photoelectron spectra were also measured for the dimer anions of DHB and nicotinic acid and for the fragment anion in which alpha-cyano-cinnamic acid had lost a CO2 unit. Together, these results augment the database of presently available electrophilic data on common matrix molecules along with some of their dimers and fragments.

  16. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  18. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  19. Comparison of clinical characteristics of chronic cough due to non-acid and acid gastroesophageal reflux.

    PubMed

    Xu, Xianghuai; Yang, Zhongmin; Chen, Qiang; Yu, Li; Liang, Siwei; Lü, Hanjing; Qiu, Zhongmin

    2015-04-01

    Little is known about non-acid gastroesophageal reflux-induced chronic cough (GERC). The purpose of the study is to explore the clinical characteristics of non-acid GERC. Clinical symptoms, cough symptom score, capsaicin cough sensitivity, gastroesophageal reflux diagnostic questionnaire (GerdQ) score, findings of multichannel intraluminal impedance-pH monitoring (MII-pH) and response to pharmacological anti-reflux therapy were retrospectively reviewed in 38 patients with non-acid GERC and compared with those of 49 patients with acid GERC. Non-acid GERC had the similar cough character, cough symptom score, and capsaicin cough sensitivity to acid GERC. However, non-acid GERC had less frequent regurgitation (15.8% vs 57.1%, χ(2)  = 13.346, P = 0.000) and heartburn (7.9% vs 32.7%, χ(2)  = 7.686, P  = 0.006), and lower GerdQ score (7.4 ± 1.4 vs 10.6 ± 2.1, t = -6.700, P = 0.003) than acid GERC. Moreover, MII-pH revealed more weakly acidic reflux episodes, gas reflux episodes and a higher symptom association probability (SAP) for non-acid reflux but lower DeMeester score, acidic reflux episodes and SAP for acid reflux in non-acid GERC than in acid GERC. Non-acid GERC usually responded to the standard anti-reflux therapy but with delayed cough resolution or attenuation when compared with acid GERC. Fewer patients with non-acid GERC needed an augmented acid suppressive therapy or treatment with baclofen. There are some differences in the clinical manifestations between non-acid and acid GERC, but MII-pH is essential to diagnose non-acid GERC. © 2014 John Wiley & Sons Ltd.

  20. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  1. Chicoric Acid Found in Basil (Ocimum basilicum L.) Leaves

    USDA-ARS?s Scientific Manuscript database

    This is the first report to identify the presence of chicoric acid (cichoric acid; also known as dicaffeoyltartaric acid) in basil leaves. Rosmarinic acid, chicoric acid, and caftaric acid (in the order of most abundant to least; all derivatives of caffeic acid) were identified in fresh basil leaves...

  2. Acute Toxicity of a Number of Chemicals of Interest to the Air Force

    DTIC Science & Technology

    1979-03-01

    Acid Azelaic Acid Dimer Acid N-Benzyl-3, 7-Dioctyl Phenothiazine Phenothiazine Dioctyl Phenothiazine Sebacic Acid ...liquid) 1,4-dihydroxyanthraquinone (solid) Sulfurized 9-octadecenoic acid (liquid) Azelaic acid (solid) Dimer acid (liquid) N-benzyl-3,7-dicotyl...dihydroxyanthra- Rat >5000 5000(0) Below Toxic quinone Sulfurized 9-octa- Rat >5000 5000(0) Below Toxic decenoic acid Azelaic acid Rat >5000

  3. Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.

    1995-12-01

    Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.

  4. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  5. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    PubMed

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  6. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Influence of chain length and unsaturation on the effects of fatty acids on phosphoglyceride biosynthesis in isolated rat and pig hepatocytes.

    PubMed

    Akesson, B; Sundler, R; Nilsson, A

    1976-03-16

    Hepatocytes isolated from rat or pig by collagenase perfusion were incubated with [3H]glcyerol and different albumin-bount fatty acids. Among C22 fatty acids docosahexaenoic acid stimulated phosphatidylethanolamine synthesis in rat hepatocytes most effectively. Addition of docosahexaenoic acid plus either palmitic or stearic acid resulted almost in the same stimulation whereas combinations of this acid with lauric or myristic acid had no effect. Lauric acid and myristic acid alone inhibited phosphatidylethanolamine synthesis. The chain length specificity for monoenoic fatty acids was similar, the hexadecenoic and octadecenoic acids (both cis and trans) being most stimulatory. The addition of 0.2 mM ethanolamine markedly stimulated phosphatidylethanolamine synthesis, but most effects of fatty acids were similar in its presence or absence.

  8. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  9. Identification of COX inhibitors in the hexane extract of Japanese horse chestnut (Aesculus turbinata) seeds.

    PubMed

    Sato, Itaru; Kofujita, Hisayoshi; Tsuda, Shuji

    2007-07-01

    Japanese horse chestnut (Aesculus turbinata) seed extract inhibits the activity of cyclooxygenase (COX), but its active constituents have not been identified. In the present study, COX inhibitors were isolated from the hexane extract of this seed by means of 4 steps of liquid chromatography and were identified by gas chromatography/mass spectrometry and nuclear magnetic resonance. The COX inhibitors in the extract of Japanese horse chestnut seeds were identified as linoleic acid, linolenic acid, and oleic acid. Their efficacies were in the following order: linolenic acid = linoleic acid > oleic acid. These active constituents are C18 unsaturated fatty acids; stearic acid, a C18 saturated fatty acid, had no activity. Linolenic acid and linoleic acid had high selectivity toward COX-2 (selectivity index = 10), whereas oleic acid had no selectivity. Considering the efficacy and yield of each fatty acid, linoleic acid may be the principal COX inhibitor in this seed.

  10. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  11. Fatty Acids of Myxococcus xanthus

    PubMed Central

    Ware, Judith C.; Dworkin, Martin

    1973-01-01

    Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria. PMID:4197903

  12. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.

    1993-10-01

    The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds, as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen.

  13. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice.

    PubMed

    Pang, Yuehan; Ahmed, Sulaiman; Xu, Yanjie; Beta, Trust; Zhu, Zhiwei; Shao, Yafang; Bao, Jinsong

    2018-02-01

    Total phenolic content (TPC), individual phenolic acid and antioxidant capacity of whole grain and bran fraction 18 rices with different bran color were investigated. The levels of TPC in bound fractions were significantly higher than those in the free fractions either in the whole grains or brans. The main bound phenolic acids in white rice samples were ferulic acid, p-coumaric acid, and isoferulic acid, and in pigmented rice samples were ferulic acid, p-coumaric acid, and vanillic acid. The protocatechuic acid and 2,5-dihydroxybenzoic acid were not detected in white samples. The content of gallic acid, protocatechuic acid, 2,5-dihydroxybenzoic acid, ferulic acid, sinapic acid had significantly positive correlations with TPC and antioxidant capacity. This study found much wider diversity in the phenolics and antioxidant capacity in the whole grain and brans of rice, and will provide new opportunities to further improvement of rice with enhanced levels of the phytochemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    PubMed

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  15. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  16. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  17. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  18. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  19. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  20. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  1. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    PubMed

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Behaviors of D- and L-lactic acids during the brewing process of sake (Japanese rice wine).

    PubMed

    Kodama, Shuji; Yamamoto, Atsushi; Matsunaga, Akinobu; Matsui, Keizou; Nakagomi, Kazuya; Hayakawa, Kazuichi

    2002-02-13

    The amounts of D- and L-lactic acids during the brewing process of sake were determined by capillary electrophoresis using 2-hydroxypropyl-beta-cyclodextrin as a chiral selector. Because L-lactic acid, which prevents the growth of nonuseful microorganisms, is a raw material of sake, the ratio of L-lactic acid to total lactic acid is almost 1.0 at the initial stage of sake brewing. During brewing, the ratio decreased gradually and finally reached 0.39. Yeast (Saccharomyces cerevisiae) for sake brewing produced D-lactic acid, but not L-lactic acid in a culture medium. These results suggest that the decrease in the ratio of L-lactic acid to total lactic acid during sake brewing resulted in D-lactic acid production by yeast. The ratios in 18 brands of sake obtained commercially ranged from 0.23 to 0.78. The levels of D-lactic acid in sake (140-274 mg/L) were in a narrower range than those of L-lactic acid (61-461 mg/L). Although the D-lactic acid level in sake did not correspond to total lactic acid level, the L-lactic acid level correlated well with total lactic acid level (R(2) = 0.867). These results suggest that the ratio of L-lactic acid to total lactic acid in sake reflected the amount of L-lactic acid added at the initial stage of sake brewing.

  3. Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry.

    PubMed

    Jaiswal, Rakesh; Kuhnert, Nikolai

    2011-01-01

    Burdock (Arcticum lappa L.) roots are used in folk medicine and also as a vegetable in Asian countries especially Japan, Korea, and Thailand. We have used LC-MS(n) (n = 2-4) to detect and characterize in burdock roots 15 quantitatively minor fumaric, succinic, and malic acid-containing chlorogenic acids, 11 of them not previously reported in nature. These comprise 3-succinoyl-4,5-dicaffeoyl or 1-succinoyl-3,4-dicaffeoylquinic acid, 1,5-dicaffeoyl-3-succinoylquinic acid, 1,5-dicaffeoyl-4-succinoylquinic acid, and 3,4-dicaffeoyl-5-succinoylquinic acid (M(r) 616); 1,3-dicaffeoyl-5-fumaroylquinic acid and 1,5-dicaffeoyl-4-fumaroylquinic acid (M(r) 614); 1,5-dicaffeoyl-3-maloylquinic acid, 1,4-dicaffeoyl-3-maloylquinic acid, and 1,5-dicaffeoyl-4-maloylquinic acid (M(r) 632); 1,3,5-tricaffeoyl-4-succinoylquinic acid (M(r) 778); 1,5-dicaffeoyl-3,4-disuccinoylquinic acid (M(r) 716); 1,5-dicaffeoyl-3-fumaroyl-4-succinoylquinic acid and 1-fumaroyl-3,5-dicaffeoyl-4-succinoylquinic acid (M(r) 714); dicaffeoyl-dimaloylquinic acid (M(r) 748); and 1,5-dicaffeoyl-3-succinoyl-4-dimaloylquinic acid (M(r) 732). All the structures have been assigned on the basis of LC-MS(n) patterns of fragmentation, relative hydrophobicity, and analogy of fragmentation patterns if compared to caffeoylquinic acids.

  4. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids.

    PubMed

    Xie, Shuyu; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Wang, Yan; Li, Xihe; Zhou, WenZhong

    2011-04-01

    Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    PubMed

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p < 0.05). In conclusion, SCFA promoted lipid accumulation by modulating the expression of enzymes of fatty acid metabolism. © 2018 AOCS.

  6. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman.

    PubMed

    Al-Farsi, Mohamed; Alasalvar, Cesarettin; Morris, Anne; Baron, Mark; Shahidi, Fereidoon

    2005-09-21

    Fresh and sun-dried dates of three native varieties from Oman, namely, Fard, Khasab, and Khalas, were examined for their antioxidant activity and total contents of anthocyanins, carotenoids, and phenolics, as well as free and bound phenolic acids. All results are expressed as mean value +/- standard deviation (n = 3) on a fresh weight basis. Fresh date varieties were found to be a good source of antioxidants (11687-20604 micromol of Trolox equiv/g), total contents of anthocyanins (0.24-1.52 mg of cyanidin 3-glucoside equiv/100 g), carotenoids (1.31-3.03 mg/100 g), phenolics (134-280 mg of ferulic acid equiv/100 g), free phenolic acids (2.61-12.27 mg/100 g), and bound phenolic acids (6.84-30.25 mg/100 g). A significant (p < 0.05) amount of antioxidants and carotenoids was lost after sun-drying of dates, whereas the total content of phenolics and free and bound phenolic acids increased significantly (p < 0.05). Anthocyanins were detected only in fresh dates. Date varieties had different levels and patterns of phenolic acids. Four free phenolic acids (protocatechuic acid, vanillic acid, syringic acid, and ferulic acid) and nine bound phenolic acids (gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, and o-coumaric acid) were tentatively identified. Of the date varieties studied, Khalas, which is considered to be premium quality, had higher antioxidant activity, total carotenoids, and bound phenolic acids than other varieties. These results suggest that all date varieties serve as a good source of natural antioxidants and could potentially be considered as a functional food or functional food ingredient, although some of their antioxidant constituents are lost during sun-drying.

  7. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  8. Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions.

    PubMed

    Gramlich, Leah; Meddings, Liisa; Alberda, Cathy; Wichansawakun, Sanit; Robbins, Sarah; Driscoll, David; Bistrian, Bruce

    2015-09-01

    The fatty acids, linoleic acid (18:2ω-6) and α-linolenic acid (18:3ω-3), are essential to the human diet. When these essential fatty acids are not provided in sufficient quantities, essential fatty acid deficiency (EFAD) develops. This can be suggested clinically by abnormal liver function tests or biochemically by an elevated Mead acid and reduced linoleic acid and arachidonic acid level, which is manifested as an elevated triene/tetraene ratio of Mead acid/arachidonic acid. Clinical features of EFAD may present later. With the introduction of novel intravenous (IV) lipid emulsions in North America, the proportion of fatty acids provided, particularly the essential fatty acids, varies substantially. We describe a case series of 3 complicated obese patients who were administered parenteral nutrition (PN), primarily using ClinOleic 20%, an olive oil-based lipid emulsion with reduced amounts of the essential fatty acids, linoleic and α-linolenic, compared with more conventional soybean oil emulsions throughout their hospital admission. Essential fatty acid profiles were obtained for each of these patients to investigate EFAD as a potential cause of abnormal liver enzymes. Although the profiles revealed reduced linoleic acid and elevated Mead acid levels, this was not indicative of the development of essential fatty acid deficiency, as reflected in the more definitive measure of triene/tetraene ratio. Instead, although the serum fatty acid panel reflected the markedly lower but still adequate dietary linoleic acid content and greatly increased oleic acid content in the parenteral lipid emulsion, the triene/tetraene ratio remained well below the level, indicating EFAD in each of these patients. The availability and use of new IV lipid emulsions in PN should encourage the clinician to review lipid metabolism based on the quantity of fatty acids provided in specific parenteral lipid emulsions and the expected impact of these lipid emulsions (with quite different fatty acid composition) on measured fatty acid profiles. © 2015 American Society for Parenteral and Enteral Nutrition.

  9. Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry.

    PubMed

    Qiao, Xue; Ye, Min; Pan, De-lin; Miao, Wen-juan; Xiang, Cheng; Han, Jian; Guo, De-an

    2011-01-07

    Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC₁₈ column and were eluted with methanol-acetonitrile-water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r² > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow-bezoar, and artificial cow-bezoar could be differentiated by the existence of hyodeoxycholic acid and the ratio of cholic acid to deoxycholic acid. This study provided bile acid profiles of bile-based Chinese medicines for the first time, which could be used for their quality control. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    PubMed

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract. Copyright © 2018 American Society for Microbiology.

  11. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.

  12. A bioactive triterpene from Lantana camara.

    PubMed

    Barre, J T; Bowden, B F; Coll, J C; DeJesus, J; De La Fuente, V E; Janairo, G C; Ragasa, C Y

    1997-05-01

    Lantana camara afforded a novel triterpene 22 beta-acetoxylantic acid and the known triterpenes, lantic acid, 22 beta-dimethylacryloyloxylantonolic acid, a mixture of 22 beta-dimethylacryloyloxy lantanolic acid and 22 beta-angeloyloxylantanolic acid and lantanolic acid. 22 beta-Acetoxylantic acid showed antimicrobial activity against Staphylococcus aureus and Salmonella typhi. This compound and 22 beta-dimethylacryloyloxy lantanolic acid also showed antimutagenic activity.

  13. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  14. Metabolic engineering of the shikimate pathway

    DOEpatents

    Juminaga, Darmawi; Keasling, Jay D.

    2017-01-10

    The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.

  15. Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii

    PubMed Central

    Russa, R.; Lorkiewicz, Z.

    1974-01-01

    Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028

  16. Straight and branched-chain fatty acids in preorbital glands of sika deer, Cervus nippon.

    PubMed

    Wood, William F

    2004-02-01

    Using GC-MS analysis, 11 major volatile compounds were found in the preorbital gland secretion from a female sika deer, Cervus nippon. These compounds are the C14 through C18 straight-chain fatty acids, (ZZ)-9,12-octadecadienoic acid, 12-methyltridecanoic acid, 13-methyltetradecanoic acid, 14-methylpentadecanoic acid, 14-methylhexadecanoic acid, and 15-methylhexadecanoic acid. The five branched-chain acids make up over 29% of the volatiles in the gland. This is the first time branched-chain carboxylic acids have been reported from ungulate preorbital glands.

  17. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  18. Thin-layer chromatographic separation of conjugates of ursodeoxycholic acid from those of litho-, chenodeoxy-, deoxy-, and cholic acids.

    PubMed

    Batta, A K; Shefer, S; Salen, G

    1981-05-01

    Separation of the glycine and taurine conjugates of ursodeoxycholic acid from those of lithocholic acid, chenodeoxycholic acid, deoxycholic acid, and cholic acid by thin-layer chromatography is described. Thus, on running a silica gel G plate first in a solvent system of n-butanol-water 20:3 and then in a second solvent system of chloroform-isopropanol-acetic acid-water 30:20:4:1, all the above-mentioned conjugated bile acids are separated from one another. The application of this method to study the change in the biliary bile acid conjugation pattern in ursodeoxycholic acid-fed gallstone patients is described.

  19. Characterization of polar organics in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ambe, Y.

    The methanol-extractable highly polar organics in atmospheric aerosol were characterized using GC-MS. Dicarboxylic acids having 2-16 carbon numbers were detected with a total concentration of 172 ng m -3. Azelaic acid ( C9) was the most abundant diacid and it possibly originated from the ozonolysis of unsaturated carboxylic acids such as oleic acid and linoleic acid, which mainly originate from terrestrial plants. A compound, which was tentatively identified as tetrahydrofuroic acid, contributed to about 10% of the highly polar organics. Other polyfunctional compounds found in the samples included some ketocarboxylic acids and aromatic acids such as phthalic acids, anisic acid and vanillic acid.

  20. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons.

    PubMed

    Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi

    2006-11-01

    The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.

  1. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  2. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  3. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    PubMed Central

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway. PMID:28966611

  4. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    PubMed

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway.

  5. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables.

    PubMed

    Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady

    2017-10-01

    Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    PubMed

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap <60 μmol/g was an independent risk factor for postoperative infectious complications with an odds ratio of 15.6; 95% confidence interval 1.8-384.1. The preoperative fecal organic acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  7. [Percentage of uric acid calculus and its metabolic character in Dongjiang River valley].

    PubMed

    Chong, Hong-Heng; An, Geng

    2009-02-15

    To study the percentage of uric acid calculus in uroliths and its metabolic character in Dongjiang River valley. To analyze the chemical composition of 290 urinary stones by infrared (IR) spectroscopy and study the ratio changes of uric acid calculus. Uric acid calculus patients and healthy people were studied. Personal characteristics, dietary habits were collected. Conditional logistic regression was used for data analysis and studied the dietary risk factors of uric acid calculus. Patients with uric acid calculus, calcium oxalate and those without urinary calculus were undergone metabolic evaluation analysis. The results of uric acid calculus patients compared to another two groups to analysis the relations between the formation of uric acid calculus and metabolism factors. Uric acid calculi were found in 53 cases (18.3%). The multiple logistic regression analysis suggested that low daily water intake, eating more salted and animal food, less vegetable were very closely associated with uric acid calculus. Comparing to calcium oxalate patients, the urine volume, the value of pH, urine calcium, urine oxalic acid were lower, but uric acid was higher than it. The value of pH, urine oxalic acid and citric acid were lower than them, but uric acid and urine calcium were higher than none urinary calculus peoples. Blood potassium and magnesium were lower than them. The percentage of uric acid stones had obvious advanced. Less daily water intake, eating salted food, eating more animal food, less vegetables and daily orange juice intake, eating sea food are the mainly dietary risk factors to the formation of uric acid calculus. Urine volume, the value of pH, citric acid, urine calcium, urine uric acid and the blood natrium, potassium, magnesium, calcium, uric acid have significant influence to the information of uric acid stones.

  8. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    NASA Astrophysics Data System (ADS)

    Müller-Tautges, C.; Eichler, A.; Schwikowski, M.; Pezzatti, G. B.; Conedera, M.; Hoffmann, T.

    2016-01-01

    Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6-C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6-C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  9. Nocturnal weakly acidic reflux promotes aspiration of bile acids in lung transplant recipients.

    PubMed

    Blondeau, Kathleen; Mertens, Veerle; Vanaudenaerde, Bart A; Verleden, Geert M; Van Raemdonck, Dirk E; Sifrim, Daniel; Dupont, Lieven J

    2009-02-01

    Gastroesophageal reflux (GER) and aspiration of bile acids have been implicated as non-alloimmune risk factors for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. The aim of our study was to investigate the association between GER and gastric aspiration of bile acids and to establish which reflux characteristics may promote aspiration of bile acids into the lungs and may feature as a potential diagnostic tool in identifying lung transplantation (LTx) patients at risk for aspiration. Twenty-four stable LTx recipients were studied 1 year after transplantation. All patients underwent 24-hour ambulatory impedance-pH recording for the detection of acid (pH <4) and weakly acidic (pH 4 to 7) reflux. On the same day, bronchoalveolar lavage fluid (BALF) was collected and then analyzed for the presence of bile acids (Bioquant enzymatic assay). Increased GER was detected in 13 patients, of whom 9 had increased acid reflux and 4 had exclusively increased weakly acidic reflux. Sixteen patients had detectable bile acids in the BALF (0.6 [0.4 to 1.5] micromol/liter). The 24-hour esophageal volume exposure was significantly increased in patients with bile acids compared to patients without bile acids in the BALF. Acid exposure and the number of reflux events (total, acid and weakly acidic) were unrelated to the presence of bile acids in the BALF. However, both nocturnal volume exposure and the number of nocturnal weakly acidic reflux events were significantly higher in patients with bile acids in the BALF. Weakly acidic reflux events, especially during the night, are associated with the aspiration of bile acids in LTx recipients and may therefore feature as a potential risk factor for the development of BOS.

  10. Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.

    PubMed

    Siegfried, C M; Doisy, E A; Elliott, W H

    1975-01-24

    The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.

  11. Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays.

    PubMed

    Singh, Namrata; Bhattacharyya, Debasish

    2016-04-15

    An ether extract of nine different bacterial metabolites in combination with two solvent extract (ether followed by ethanol) of bile lipids from ox gall bladder is used as an immune stimulator drug. Over the years bile acids are discussed regarding their anti-oxidant and lipid peroxidation properties. Since some of the bile acids are known to be potent antioxidants, presence of similar activity in the solvent extract of ox bile lipid was investigated using TLC and reverse phase HPLC systems. Fractions from HPLC were analyzed with mass spectrometry using electrospray ionization. The presence of twelve different bile acids along with other substances in small proportions including fatty acids, sulfate conjugates and bile pigments were confirmed. The twelve separated peaks had similar retention times as those of tauroursodeoxycholic acid, glycoursodeoxycholic acid, taurocholic acid, glycocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid. Subsequently, all fractions were tested for their anti-oxidative property on HepG2 cells exposed to H2O2 that served as an oxidative injury model. Four fluorescent dyes H2DCF DA, MitoSOX red, Amplex red and DAF-2 DA were used for estimation of reactive radicals in the HepG2 cells. Among the separated bile acids, tauroursodeoxycholic acid, glycoursodeoxycholic acid and ursodeoxycholic acid prevented the HepG2 cells from H2O2-induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  13. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  14. Amino acid homeostasis and signalling in mammalian cells and organisms

    PubMed Central

    Bröer, Angelika

    2017-01-01

    Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake. PMID:28546457

  15. Differential Effects of Methoxylated p-Coumaric Acids on Melanoma in B16/F10 Cells

    PubMed Central

    Yoon, Hoon Seok; Lee, Nam-Ho; Hyun, Chang-Gu; Shin, Dong-Bum

    2015-01-01

    As an approach to search for chemopreventive agents, we tested p-coumaric acid, 3-methoxy-p-coumaric acid (ferulic acid), and 3,5-dimethoxy-p-coumaric acid (sinapic acid) in B16/F10 melanoma cells. Intracellular melanin contents were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and cytotoxicity of the compounds were examined by lactate dehydrogenase (LDH) release. p-Coumaric acid showed inhibitory effect on melanogenesis, but ferulic acid increased melanin content, and sinapic acid had almost no effect on melanogenesis. Treatment with ferulic acid resulted in a 2 to 3 fold elevation in the production of melanin. Correlatively, cell viability decreased in a dose-dependent manner when treated with ferulic acid. However, ferulic acid did not affect the LDH release from the cells. Treatment with sinapic acid resulted in a 50~60% elevation in the release of LDH when treated with a 200 μg/mL concentration and showed neither cytostasis nor increase of melanin synthesis in a dose-dependent manner. Taken together, p-coumaric acid inhibits melanogenesis, ferulic acid induces melanogenesis, and sinapic acid exerts cytotoxic effects in B16/F10 murine melanoma cells. The results indicate that the addition of methoxy groups to p-coumaric acid shows the melanogenic or cytotoxic effects in melanoma cells compared to the original compound. Therefore, this study suggests the possibility that methoxylated p-coumaric acid, ferulic acid can be used as a chemopreventive agent. PMID:25866753

  16. Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.

    PubMed

    Sauvat, Allan; Chen, Guo; Müller, Kevin; Tong, Mingming; Aprahamian, Fanny; Durand, Sylvère; Cerrato, Giulia; Bezu, Lucillia; Leduc, Marion; Franz, Joakim; Rockenfeller, Patrick; Sadoshima, Junichi; Madeo, Frank; Kepp, Oliver; Kroemer, Guido

    2018-04-01

    Depending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  17. Nutritional and technological characteristics of olive (Olea europea L.) fruit and oil: two varieties growing in two different locations of Turkey.

    PubMed

    Aydin, Cevat; Ozcan, Mehmet Musa; Gümüş, Tuncay

    2009-08-01

    Olea europea L. fruits were evaluated for weight, moisture, ash, crude protein, crude oil, energy, crude fibre, roundness, resistance against extra force and product density. The relative density, refractive index, free fatty acids, peroxide value, iodine value and unsaponifiables were determined in the olive oils. The main fatty acids identified by gas chromatography were palmitic acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1) and linoleic acid (18:2). Of the identified fatty acids, lauric acid (12:0), linolenic acid (18:3), arachidic acid (20:0), eicosenoic acid (20:1), behenic acid (22:0) and lignoseric acid (24:0) were found in trace amounts. As expected, the oleic acid content was the major fatty acid of olive oil. Oleic acid was represented in much higher concentrations than the other acids. The product roundness, resistance against extra force, product density and weight of 100 fruit were established as technological characteristics in olive fruit. The damage energy and the unit of volume deformation energy of the Memecik and Tavşanyüreği varieties were 1.36×10(-3) J and 3.59×10(-4) J/mm(3) and 1.89×10(-3) J and 5.10×10(-4) J/mm(3), respectively. The fruits showed a similar composition, and both fruit and oil contained unsaturated fatty acids.

  18. [Ganoderma triterpenoids from aqueous extract of Ganoderma lucidum].

    PubMed

    Che, Xian-Qiang; Li, Shao-Ping; Zhao, Jing

    2017-05-01

    A new triterpenoid and 18 analogues were isolated from the water extract of Ganoderma lucidum by column chromatographic techniques, including silica gel, ODS, Sephadex LH-20, and HPLC. The new compound was elucidated as 2β-acetoxy-3β,25-dihydroxy-7,11,15-trioxo-lanost-8-en-26-oic acid on the basis of analyses of extensive spectroscopic data and its physicochemical properties. Comparison of NMR data with those reported in literature, the known analogues were determined as ganoderic acid H (2), 12β-acetoxy-3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid (3), ganoderenic acid D (4),ganoderic acid C1 (5),ganoderic acid G (6),3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid (7),ganoderic acid B (8),ganoderic acid C6 (9),3β,15α-dihydroxy-7,11,23-trioxo-lanost-8,16-dien-26-oic acid (10),ganoderic acid A (11),ganolucidic acid A (12),lucidenic acid E2 (13),lucidenic acid N (14),lucidenic acid P (15), lucidenic acid B (16),lucidenic acid A (17),lucidenic acid C (18),and lucidenic acid L (19), respectively. Compound 1 is new compound and compounds 2-19 have been reported from G. lucidum. The present study enriches the knowledge of the chemical constituent of G. lucidum and completes chemical investigation of water decoction that is traditional use of G. lucidum. Copyright© by the Chinese Pharmaceutical Association.

  19. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    PubMed Central

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  20. Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water.

    PubMed

    Young, R F; Orr, E A; Goss, G G; Fedorak, P M

    2007-06-01

    Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.

  1. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    PubMed

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  2. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  3. Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1

    PubMed Central

    Terzaghi, William B.

    1989-01-01

    This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997

  4. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Abbatt, J. P. D.; Broekhuizen, K.; Pradeep Kumar, P.

    The ability of mixed ammonium sulfate/organic acid particles to act as cloud condensation nuclei (CCN) has been studied in the laboratory using a continuous flow, thermal-gradient diffusion chamber operated at supersaturations between 0.3% and 0.6%. The organic acids studied were malonic acid, azelaic acid, hexanoic acid, cis-pinonic acid, oleic acid and stearic acid, and the particles were largely prepared by condensation of the organic vapor onto a dry ammonium sulfate core. For malonic acid and hexanoic acid, the mixed particles activated as predicted by a simple Köhler theory model where both species are assumed to be fully soluble and the droplet has the surface tension of water. Three low-solubility species, cis-pinonic acid, azelaic acid and oleic acid, are well modeled where the acid was assumed to be either partially or fully insoluble. Interestingly, although thin coats of stearic acid behaved in a manner similar to that displayed by oleic and cis-pinonic acid, we observed that thick coats led to a complete deactivation of the ammonium sulfate, presumably because the water vapor could not diffuse through the solid stearic acid. We observed no CCN behavior that could be clearly attributed to a lowering of the surface tension of the growing droplet by the presence of the organic constituents, some of which are highly surface active.

  5. 13-cis retinoic acid and isomerisation in paediatric oncology--is changing shape the key to success?

    PubMed

    Armstrong, Jane L; Redfern, Christopher P F; Veal, Gareth J

    2005-05-01

    Retinoic acid isomers have been used with some success as chemotherapeutic agents, most recently with 13-cis retinoic acid showing impressive clinical efficacy in the paediatric malignancy neuroblastoma. The aim of this commentary is to review the evidence that 13-cis retinoic acid is a pro-drug, and consider the implications of retinoid metabolism and isomerisation for the further development of retinoic acid for cancer therapy. The low binding affinity of 13-cis retinoic acid for retinoic acid receptors, low activity in gene expression assays and the accumulation of the all-trans isomer in cells treated with 13-cis retinoic acid, coupled with the more-favourable pharmacokinetic profile of 13-cis retinoic acid compared to other isomers, suggest that intracellular isomerisation to all-trans retinoic acid is the key process underlying the biological activity of 13-cis retinoic acid. Intracellular metabolism of all-trans retinoic acid by a positive auto-regulatory loop may result in clinical resistance to retinoic acid. Agents that block or reduce the metabolism of all-trans retinoic acid are therefore attractive targets for drug development. Devising strategies to deliver 13-cis retinoic acid to tumour cells and facilitate the intracellular isomerisation of 13-cis retinoic acid, while limiting metabolism of all-trans retinoic acid, may have a major impact on the efficacy of 13-cis retinoic acid in paediatric oncology.

  6. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  7. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Zheng, Le; Fan, Shu-Xiu; Verhozina, V A

    2009-02-15

    A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.

  9. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  10. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  11. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  12. Installation Assessment of Frankford Arsenal.

    DTIC Science & Technology

    1977-10-01

    sulfate , sulfuric acid , ac ’solution 40 Hot water bath 41 Nickel plate Nickel sulfate and chloride sulfuric acid , acid ...solution 42 Chromium Copper plate Copper sulfate and sulfuric acid , acid solution 11-14 TABLE 11-2 (continued) Tank No. Plating Process Use Contents...46 Water rinse Water 47 Water rinse Water 48 Water rinse Water 49 Acid Chromic acid , acetic acid , nickel sulfate and sulfuric

  13. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells

    USDA-ARS?s Scientific Manuscript database

    Walnuts contain polyunsaturated fatty acids (PUFAs), specifically the omega-6 fatty acid linoleic acid (LA) as well as the omega-3 fatty acid, alpha-linolenic acid (ALA), which can be metabolized to generate eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Previous research from our lab h...

  14. Transformation of bile acids into iso-bile acids by Clostridium perfringens: possible transport of 3 beta-hydrogen via the coenzyme.

    PubMed

    Batta, A K; Salen, G; Shefer, S

    1985-01-01

    We have examined the mechanism for the bacterial transformation of chenodeoxycholic acid and lithocholic acid into the corresponding 3 beta-hydroxy epimers with the use of 3 alpha- and 3 beta-tritiated bile acids. The 3-oxo bile acids were transformed into the 3 alpha- (85%) and 3 beta- (15%) hydroxy bile acids after 20-hr incubation with Clostridium perfringens. Approximately 75% radioactivity was recovered in the aqueous medium when [3 beta-3H]chenodeoxycholic acid or [3 beta-3H]lithocholic acid was incubated with the bacteria, and approximately 15% of radioactivity in the bile acid fraction was associated with the 3 alpha-position of the iso-bile acids. When [3 beta-3H]chenodeoxycholic acid was incubated with unlabeled 3-oxo-5 beta-cholanoic acid, tritiated litho- and iso-lithocholic acids were recovered. These results can be explained only when a 3-oxo intermediate is postulated, and the 3 beta-hydrogen in the bile acids is transferred by the bacterial coenzyme (NAD+ or NADP+) to the 3 alpha-position in the iso-bile acids during the reduction of the 3-oxo compounds.

  15. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid.

    PubMed

    Rui, Liyun; Xie, Minhao; Hu, Bing; Zhou, Li; Saeeduddin, Muhammad; Zeng, Xiaoxiong

    2017-08-15

    Chlorogenic acid-chitosan conjugate was synthesized by introducing of chlorogenic acid onto chitosan with the aid of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxybenzotriazole. The data of UV-vis, FT-IR and NMR for chlorogenic acid-chitosan conjugates demonstrated the successful conjugation of chlorogenic acid with chitosan. Compared to chitosan, chlorogenic acid-chitosan conjugates exhibited increased solubility in distilled water, 1% acetic acid solution (v/v) or 50% ethanol solution (v/v) containing 0.5% acetic acid. Moreover, chlorogenic acid-chitosan conjugates showed dramatic enhancements in metal ion chelating activity, total antioxidant capacity, scavenging activities on 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) and superoxide radicals, inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching, and protective effect on H 2 O 2 -induced oxidative injury of PC12 cells. Particularly, chlorogenic acid-chitosan conjugate exhibited higher inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching than chlorogenic acid. The results suggested that chlorogenic acid-chitosan conjugates could serve as food supplements to enhance the function of foods in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  17. Pyrite oxidation under simulated acid rain weathering conditions.

    PubMed

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  18. Ion-exclusion chromatography determination of organic acid in uridine 5'-monophosphate fermentation broth.

    PubMed

    Niu, Huanqing; Chen, Yong; Xie, Jingjing; Chen, Xiaochun; Bai, Jianxin; Wu, Jinglan; Liu, Dong; Ying, Hanjie

    2012-09-01

    Simultaneous determination of organic acids using ion-exclusion liquid chromatography and ultraviolet detection is described. The chromatographic conditions are optimized when an Aminex HPX-87H column (300 × 7.8 mm) is employed, with a solution of 3 mmol/L sulfuric acid as eluent, a flow rate of 0.4 mL/min and a column temperature of 60°C. Eight organic acids (including orotic acid, α-ketoglutaric acid, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid and acetic acid) and one nucleotide are successfully quantified. The calibration curves for these analytes are linear, with correlation coefficients exceeding 0.999. The average recovery of organic acids is in the range of 97.6% ∼ 103.1%, and the relative standard deviation is in the range of 0.037% ∼ 0.38%. The method is subsequently applied to obtain organic acid profiles of uridine 5'-monophosphate culture broth fermented from orotic acid by Saccharomyces cerevisiae. These data demonstrate the quantitative accuracy for nucleotide fermentation mixtures, and suggest that the method may also be applicable to other biological samples.

  19. The suppression of the N-nitrosating reaction by chlorogenic acid.

    PubMed Central

    Kono, Y; Shibata, H; Kodama, Y; Sawa, Y

    1995-01-01

    N-Nitrosation of a model aromatic amine (2,3-diamino-naphthalene) by the N-nitrosating agent produced by nitrite in acidic solution was inhibited by a polyphenol, chlorogenic acid, which is an ester of caffeic acid quinic acid. Caffeic acid also inhibited the N-nitrosation, but quinic acid did not. 1,2-Benzenediols and 3,4-dihydroxybenzoic acid had inhibitory activities. Chlorogenic acid, caffeic acid, 1,2-benzenediols and 3,4-dihydroxybenzoic acid were able to scavenge the stable free radical, 1,1-diphenyl-2-picrylhydrazyl. Chlorogenic acid was found to be nitrated by acidic nitrite. The kinetic studies and the nitration observed only by bubbling of nitric oxide plus nitrogen dioxide gases indicated that the nitrating agent was nitrogen sesquioxide. The observations showed that the mechanism by which chlorogenic acid inhibited N-nitrosation of 2,3-diamino-naphthalene is due to its ability to scavenge the nitrosating agent, nitrogen sesquioxide. Chlorogenic acid may be effective not only in protecting against oxidative damage but also in inhibiting potentially mutagenic and carcinogenic reactions in vivo. PMID:8554543

  20. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  1. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  2. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    USGS Publications Warehouse

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  3. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    PubMed

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p < .01) and saturated fatty acids arachidic, behenic, and lignoceric acid (p < .05) also increased. These brain fatty acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  4. The effects of season on fatty acid composition and ω3/ω6 ratios of northern pike ( Esox lucius L., 1758) muscle lipids

    NASA Astrophysics Data System (ADS)

    Mert, Ramazan; Bulut, Sait; Konuk, Muhsin

    2015-01-01

    In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.

  5. Mechanism of Specific Inhibition of Phototropism by Phenylacetic Acid in Corn Seedling 1

    PubMed Central

    Vierstra, Richard D.; Poff, Kenneth L.

    1981-01-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that photoreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and β-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. For example, strong auxins, indole-3-acetic acid and naphthalene-1-acetic acid, affected both tropic responses at all concentrations tested whereas weak auxins, phenylacetic acid and naphthalene-2-acetic acid, exhibited specific inhibition. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism. PMID:16661774

  6. Amino acids in the Yamato carbonaceous chrondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Shimoyama, A.; Ponnamperuma, C.; Yanai, K.

    1979-01-01

    Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.

  7. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide

    2017-01-01

    To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.

  9. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  10. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  11. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  12. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    PubMed

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  13. 21 CFR 178.3690 - Pentaerythritol adipate-stearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...

  14. 21 CFR 178.3690 - Pentaerythritol adipate-stearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...

  15. Effect of short-term enteral feeding with eicosapentaenoic and gamma-linolenic acids on alveolar macrophage eicosanoid synthesis and bactericidal function in rats.

    PubMed

    Palombo, J D; DeMichele, S J; Boyce, P J; Lydon, E E; Liu, J W; Huang, Y S; Forse, R A; Mizgerd, J P; Bistrian, B R

    1999-09-01

    Because vasoactive eicosanoids derived from arachidonic acid present in immune cell phospholipids promote lung inflammation in critically ill patients, novel experimental diets containing eicosapentaenoic acid from fish oil and gamma-linolenic acid from borage oil have been designed to limit arachidonic acid metabolism. However, excess dietary eicosapentaenoic acid impairs superoxide formation and bacterial killing by immune cells. The present study determined whether short-term enteral feeding with diets enriched with either eicosapentaenoic acid alone or in combination with gamma-linolenic acid would modulate alveolar macrophage eicosanoid synthesis without compromising bactericidal function. Prospective, randomized, controlled, blinded study. University medical center. Adult male Sprague-Dawley rats. Rats underwent surgical placement of a gastroduodenal feeding catheter and were randomly assigned to receive one of three high-fat (55.2% of total calories), low-carbohydrate diets containing isocaloric amounts of lipids for 4 days. The control diet was enriched with linoleic acid, whereas the two test diets were low in linoleic acid and enriched with either 5 mole % eicosapentaenoic acid alone or in combination with 5 mole % gamma-linolenic acid. Alveolar macrophages were then procured to assess phospholipid fatty acid composition, eicosanoid synthesis after stimulation with endotoxin, superoxide formation and phagocytosis by flow cytometry, and killing of Staphylococcus aureus Alveolar macrophage levels of arachidonic acid were significantly (p < .01) lower and levels of eicosapentaenoic and dihomo-gamma-linolenic acids were higher after feeding the eicosapentaenoic and gamma-linolenic acid diet vs. the linoleic acid diet. Ratios of thromboxane B2,/B3, leukotriene B4/B5, and prostaglandin E2/E1 were reduced in the macrophages from rats given either the eicosapentaenoic acid or eicosapentaenoic acid with gamma-linolenic acid diet compared with ratios from rats given the linoleic acid diet. Macrophages from rats given the eicosapentaenoic with gamma-linolenic acid diet released 35% or 24% more prostaglandin E1 than macrophages from rats given either the linoleic acid or the eicosapentaenoic acid diet, respectively. Macrophage superoxide generation, phagocytosis of opsonized zymosan, and killing of S. aureus were similar irrespective of dietary treatment. Short-term enteral feeding with an eicosapentaenoic acid-enriched or eicosapentaenoic with gamma-linolenic acid-enriched diet rapidly modulated the fatty acid composition of alveolar macrophage phospholipids, promoted a shift toward formation of less inflammatory eicosanoids by stimulated macrophages, but did not impair alveolar macrophage bactericidal function relative to responses observed after feeding a linoleic acid diet.

  16. Microenvironment of Breast Tissue: Lithocholic Acid and Other Intestinal Steroids.

    DTIC Science & Technology

    1997-09-01

    6. chenodeoxycholic acid -7-sulfate 7. ursodeoxycholic acid 8. glycodeoxycholic acid 9. 3ß-hydroxy-5-cholenoic acid sulfate 10. cholicacid 11. 3a... acids 7 Ursodeoxycholic acid 29.1 10 Cholic acid 32.5 11 3ß,7a-Dihydroxy-chol-5-enoicacidJ 33.3 12 7a-Hydroxy-3-oxo-chol-4-enoic acidc 34.1 16...AD GRANT NUMBER DAMD17-94-J-4311 TITLE: Microenvironment of: Breast Tissue: Lithocholic Acid and Other Intestinal Steroids PRINCIPAL

  17. Metabolism of exogenous fatty acids, fatty acid-mediated cholesterol efflux, PKA and PKC pathways in boar sperm acrosome reaction.

    PubMed

    Hossain, Md Sharoare; Afrose, Sadia; Sawada, Tomio; Hamano, Koh-Ichi; Tsujii, Hirotada

    2010-03-01

    For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14 C-oleic acid and 3 H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty acid-induced acrosome reaction were examined. Semen was collected from a Duroc boar, and the metabolic activities of fatty acids in the spermatozoa were measured using radioactive compounds and thin layer chromatography. Cholesterol efflux was measured with a cholesterol determination assay kit. Participation of fatty acids on the AR through PKA and PKC pathways was evaluated using a specific inhibitor of these enzymes. Incorporation rate of 14 C-oleic acid into the sperm lipids was significantly higher than that of 3 H-linoleic acid ( P < 0.05). The oxidation of 14 C-oleic acid was higher in combined radiolabeling rather than in one. The highest amounts of 3 H-linoleic acid and 14 C-oleic acid were recovered mainly in the triglycerides and phospholipids fraction, and 14 C-oleic acid distribution was higher than the 3 H-linoleic acid in both labeled ( P < 0.05) sperm lipids. In the 3 H-linoleic and 14 C-oleic acid combined radiolabeling, the incorporation rate of the radioactive fatty acids in all the lipid fractions increased 15 times more than the alone radiolabeling. Boar sperm utilize oleic acid to generate energy for hyperactivation ( P < 0.05). Supplementation of arachidonic acid significantly increased ( P < 0.05) cholesterol efflux in sperm. When spermatozoa were incubated with PKA or PKC inhibitors, there was a significant reduction of arachidonic acid-induced acrosome reaction (AR) ( P < 0.05), and inhibition by PKA inhibitor is stronger than that by PKC inhibitor. Incorporation of unsaturated fatty acids, especially oleic acid, into triglycerides and phospholipids provides prerequisite energy for AR. Cholesterol efflux by arachidonic acid triggers AR. Arachidonic acid activated PKA and PKC pathway participate in induction of the AR.

  18. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE PAGES

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira; ...

    2017-03-28

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value cannot be simply converted to the molar concentration of total acids because these acids have a stronger contribution to the TAN values than the contribution of monoprotic acids.« less

  19. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value cannot be simply converted to the molar concentration of total acids because these acids have a stronger contribution to the TAN values than the contribution of monoprotic acids.« less

  20. [Molecular docking of chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid with human serum albumin].

    PubMed

    Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie

    2012-10-01

    To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.

  1. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes.

  2. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes. PMID:27337100

  3. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  4. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  5. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  6. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    PubMed

    Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  7. Acid retention with reduced glomerular filtration rate increases urine biomarkers of kidney and bone injury.

    PubMed

    Wesson, Donald E; Pruszynski, Jessica; Cai, Wendy; Simoni, Jan

    2017-04-01

    Diets high in acid of developed societies that do not cause metabolic acidosis in patients with chronic kidney disease nevertheless appear to cause acid retention with associated morbidity, particularly in those with reduced glomerular filtration rate. Here we used a rat 2/3 nephrectomy model of chronic kidney disease to study induction and maintenance of acid retention and its consequences on indicators of kidney and bone injury. Dietary acid was increased in animals eating base-producing soy protein with acid-producing casein and in casein-eating animals with added ammonium chloride. Using microdialysis to measure the kidney cortical acid content, we found that nephrectomized animals had greater acid retention than sham-operated animals when both ate the soy diet. Each increment in dietary acid further increased acid retention more in nephrectomized than in sham rats. Nephrectomized and sham animals achieved similar steady-state daily urine net acid excretion in response to increments in dietary acid but nephrectomized animals took longer to do so, contributing to greater acid retention that was maintained until the increased dietary acid was stopped. Acid retention was associated with increased urine excretion of both N-acetyl-β-D-glucosaminidase and deoxypyridinoline, greater in nephrectomized than control rats, consistent with kidney tubulointerstitial and bone matrix injury, respectively. Greater acid retention in nephrectomized than control animals was induced by a slower increase in urinary net acid excretion rate in response to the increment in dietary acid and also maintained until the dietary acid increment was stopped. Thus, acid retention increased biomarkers of kidney and bone injury in the urine, supporting untoward consequences to these two tissues. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A

    Gas-phase acidities (GA or ΔG acid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBSmore » and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH 2 groups and the CO 2 - group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pK a. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.« less

  9. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  10. [Analysis of acid rain characteristics of Lin'an Regional Background Station using long-term observation data].

    PubMed

    Li, Zheng-Quan; Ma, Hao; Mao, Yu-Ding; Feng, Tao

    2014-02-01

    Using long-term observation data of acid rain at Lin'an Regional Background Station (Lin'an RBS), this paper studied the interannual and monthly variations of acid rain, the reasons for the variations, and the relationships between acid rain and meteorological factors. The results showed that interannual variation of acid rain at Lin'an RBS had a general increasing trend in which there were two obvious intensifying processes and two distinct weakening processes, during the period ranging from 1985 to 2012. In last two decades, the monthly variation of acid rain at Lin'an RBS indicated that rain acidity and frequency of severe acid rain were increasing but the frequency of weak acid rain was decreasing when moving towards bilateral side months of July. Acid rain occurrence was affected by rainfall intensity, wind speed and wind direction. High frequency of severe acid rain and low frequency of weak acid rain were on days with drizzle, but high frequency of weak acid rain and low frequency of severe acid rain occurred on rainstorm days. With wind speed upgrading, the frequency of acid rain and the proportion of severe acid rain were declining, the pH value of precipitation was reducing too. Another character is that daily dominant wind direction of weak acid rain majorly converged in S-W section ,however that of severe acid rain was more likely distributed in N-E section. The monthly variation of acid rain at Lin'an RBS was mainly attributed to precipitation variation, the increasing and decreasing of monthly incoming wind from SSE-WSW and NWN-ENE sections of wind direction. The interannual variation of acid rain could be due to the effects of energy consumption raising and significant green policies conducted in Zhejiang, Jiangsu and Shanghai.

  11. Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea.

    PubMed

    Kocatepe, Demet; Turan, Hülya

    2012-06-01

    The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series.

  12. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.

    PubMed

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.

  13. Effect of 2 ppm ozone exposure on rat lung lipid fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, J.L.; Bassett, D.J.

    Based on in vitro studies, the initial damage to lung cells by ozone exposure is believed to result in part from the breakdown of lipid polyunsaturated fatty acids to aldehydes, ozonides, and peroxides. The present study measured lipid breakdown products in lungs isolated from rats pretreated with (1-/sup 14/C)acetate 12 h before exposure for 4 h to either air or 2 ppm ozone. Lipid fatty acid breakdown was indicated by a 112% increase in thiobarbituric acid-reactive substances on ozone exposure and by changes in chemical and radioactive measurements of mono- and dicarboxylic acids formed by treatment of lipid fractions withmore » hydrogen peroxide. Ozone exposure resulted in a 63% increase in recovery of short-chain fatty acids accounted for by increased recoveries of malonic acid by 37%, hexanoic acid by 47%, nonanoic acid by 118%, and azelaic acid by 107%. Recovery of glutaric acid was enhanced 15-fold by ozone exposure. Although decreases in tissue arachidonic acid could not be detected, oleic acid was significantly decreased by 36%. Recovery of radiolabel as short-chain fatty acids was increased by 65% on ozone exposure and was mainly accounted for by enhanced labeling of nonanoic and glutaric acid fractions. The failure to observe significant increases in /sup 14/C recovery in the other fractions suggested ozone-induced breakdown of unlabeled fatty acids. These results demonstrate the cleavage of unsaturated fatty acid double bonds following in vivo exposure of lungs to ozone. Breakdown of arachidonic and oleic acids was specifically identified by increased recoveries of glutaric and nonanoic acids, respectively.« less

  14. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo

    PubMed Central

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210

  15. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  16. Topical Acne Treatments and Pregnancy

    MedlinePlus

    ... are benzoyl peroxide, azelaic acid, glycolic acid, and salicylic acid. Prescription acne medications include tretinoin, adapalene, dapsone, and ... ACOG) recommends topical benzoyl peroxide, azelaic acid, topical salicylic acid and glycolic acid for treatment of acne in ...

  17. Application of a Sex Pheromone, Pheromone Analogs, and Verticillium lecanii for Management of Heterodera glycines

    PubMed Central

    Meyer, S. L. F.; Huettel, R. N.

    1996-01-01

    A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests. PMID:19277343

  18. Removal of lead by apatite and its stability in the presence of organic acids.

    PubMed

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi

    2016-12-01

    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  19. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto

    PubMed Central

    Kulik, Tomasz; Stuper-Szablewska, Kinga; Bilska, Katarzyna; Buśko, Maciej; Ostrowska-Kołodziejczak, Anna; Załuski, Dariusz; Perkowski, Juliusz

    2017-01-01

    Plant-derived compounds limiting mycotoxin contamination are currently of major interest in food and feed production. However, their potential application requires an evaluation of their effects on fungal secondary metabolism and membrane effects. In this study, different strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to trans-cinnamic and chlorogenic acids on solid YES media. Fusaria produced phenolic acids, whose accumulation was lowered by exogenous phenolic compounds. In addition, fungi reduced exogenous phenolic acids, leading either to their conversion or degradation. trans-Cinnamic acid was converted to caffeic and ferulic acids, while chlorogenic acid was degraded to caffeic acid. The latter underwent further degradation to protocatechuic acid. Fungal-derived trans-cinnamic acid, as the first intermediate of the shikimate pathway, increased after chlorogenic acid treatment, presumably due to the further inhibition of the conversion of trans-cinnamic acid. Exogenous trans-cinnamic and chlorogenic acid displayed the inhibition of mycotoxin production by Fusaria, which appeared to be largely dependent on the phenolic compound and its concentration and the assayed strain. Exogenous phenolic acids showed different effects on ergosterol biosynthesis by fungi. It was found that the production of this membrane sterol was stimulated by trans-cinnamic acid, while chlorogenic acid negatively impacted ergosterol biosynthesis, suggesting that phenolic acids with stronger antifungal activities may upregulate ergosterol biosynthesis by Fusaria. This paper reports on the production of phenolic acids by Fusaria for the first time. PMID:28640190

  20. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto.

    PubMed

    Kulik, Tomasz; Stuper-Szablewska, Kinga; Bilska, Katarzyna; Buśko, Maciej; Ostrowska-Kołodziejczak, Anna; Załuski, Dariusz; Perkowski, Juliusz

    2017-06-22

    Plant-derived compounds limiting mycotoxin contamination are currently of major interest in food and feed production. However, their potential application requires an evaluation of their effects on fungal secondary metabolism and membrane effects. In this study, different strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to trans -cinnamic and chlorogenic acids on solid YES media. Fusaria produced phenolic acids, whose accumulation was lowered by exogenous phenolic compounds. In addition, fungi reduced exogenous phenolic acids, leading either to their conversion or degradation. trans -Cinnamic acid was converted to caffeic and ferulic acids, while chlorogenic acid was degraded to caffeic acid. The latter underwent further degradation to protocatechuic acid. Fungal-derived trans -cinnamic acid, as the first intermediate of the shikimate pathway, increased after chlorogenic acid treatment, presumably due to the further inhibition of the conversion of trans -cinnamic acid. Exogenous trans -cinnamic and chlorogenic acid displayed the inhibition of mycotoxin production by Fusaria, which appeared to be largely dependent on the phenolic compound and its concentration and the assayed strain. Exogenous phenolic acids showed different effects on ergosterol biosynthesis by fungi. It was found that the production of this membrane sterol was stimulated by trans -cinnamic acid, while chlorogenic acid negatively impacted ergosterol biosynthesis, suggesting that phenolic acids with stronger antifungal activities may upregulate ergosterol biosynthesis by Fusaria. This paper reports on the production of phenolic acids by Fusaria for the first time.

  1. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  2. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  3. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion.

    PubMed

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-03-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.

  4. Selective activity of several cholic acid derivatives against human immunodeficiency virus replication in vitro.

    PubMed

    Baba, M; Schols, D; Nakashima, H; Pauwels, R; Parmentier, G; Meijer, D K; De Clercq, E

    1989-01-01

    Several cholic acid derivatives such as taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate were shown to inhibit selectively the replication of human immunodeficiency virus type 1 (HIV-1) in vitro. These compounds completely protected MT-4 cells against HIV-1-induced cytopathogenicity at a concentration of 100 micrograms/ml, whereas no toxicity for the host cells was observed at 200 micrograms/ml. They also inhibited HIV-1 antigen expression in HIV-1-infected CEM cells. The bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid) did not show any inhibitory effect on HIV-1 replication at concentrations that were not toxic to the host (MT-4) cells. From a structure-function analysis of a number of cholic acid derivatives, the presence of either a sulfonate (as in the tauro conjugates) or a sulfate group as well as the "litho" configuration appeared to be necessary for the expression of anti-HIV-1 activity. The active cholic acid derivatives did not directly inactivate the virus particles at the concentrations that were not toxic to the host cells. Lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate, but not taurolithocholic acid, partially inhibited virus adsorption to MT-4 cells. These three compounds were also inhibitory to the reverse transcriptase activity associated with HIV-1.

  5. Identification and Analysis of Novel Amino-Acid Sequence Repeats in Bacillus anthracis str. Ames Proteome Using Computational Tools

    PubMed Central

    Hemalatha, G. R.; Rao, D. Satyanarayana; Guruprasad, L.

    2007-01-01

    We have identified four repeats and ten domains that are novel in proteins encoded by the Bacillus anthracis str. Ames proteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure. PMID:17538688

  6. Growth and survival kinetics of Yersinia enterocolitica IP 383 0:9 as affected by equimolar concentrations of undissociated short-chain organic acids.

    PubMed

    el-Ziney, M G; De Meyer, H; Debevere, J M

    1997-03-03

    The influence of different organic acids (lactic, acetic, formic and propionic acids) at equimolar concentrations of undissociated acid with pH range of 3.9, 5.8, on the aerobic and anaerobic growth and survival kinetics of the virulent strain of Y. enterocolitica IP 383 0:9, was determined in tryptone soy broth at 4 degrees C. Growth and survival data were analyzed and fitted by a modification of the Whiting and Cygnarowicz-Provost model, using the Minpack software library. Initial generation times, initial specific growth rates, lag time and dead rate were subsequently calculated from the model parameters. The results demonstrate that the inhibitory effects of the acids were divided into two categories dependent upon pH. At high pH (5.8) the order of inhibition was formic acid > acetic acid > propionic acid > lactic acid, whereas at lower pH it became formic acid > lactic acid > acetic acid > propionic acid. The inhibitory effect of lactic acid is enhanced under anaerobic condition. Nevertheless, when the organism was cultured anaerobically, it was shown to be more tolerant to formic and acetic acids. Moreover, these variables (type of organic acid, pH and atmosphere) did not lead to the loss of the virulence plasmid in growing and surviving cells. The mechanism of inhibitory effect for each of the acids are also discussed.

  7. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  8. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography.

    PubMed

    Qin, Xiaopeng; Liu, Fei; Wang, Guangcai; Weng, Liping

    2012-12-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used in this study. Under the experimental conditions, the UV peaks of salicylic acid and 2,3-dihydroxybenzoic acid were well separated from the peaks of humic acid in the chromatogram. Concentrations of the two small organic acids could be accurately determined from their peak areas. The concentration of humic acid in the mixture could then be derived from mass balance calculations. The measured results agreed well with the nominal concentrations. The detection limits are 0.05 mg/L and 0.01 mg/L for salicylic acid and 2,3-dihydroxybenzoic acid, respectively. Applicability of the method to natural samples was tested using groundwater, glacier, and river water samples (both original and spiked with salicylic acid and 2,3-dihydroxybenzoic acid) with a total organic carbon concentration ranging from 2.1 to 179.5 mg C/L. The results obtained are promising, especially for groundwater samples and river water samples with a total organic carbon concentration below 9 mg C/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cocrystallization out of the blue: DL-mandelic acid/ethyl-DL-mandelate cocrystal

    NASA Astrophysics Data System (ADS)

    Tumanova, Natalia; Payen, Ricky; Springuel, Géraldine; Norberg, Bernadette; Robeyns, Koen; Le Duff, Cécile; Wouters, Johan; Leyssens, Tom

    2017-01-01

    This work focuses on a peculiar behavior of racemic mandelic acid in ethanol solution. Dissolution of racemic mandelic acid in ethanol followed by evaporation to dryness results in a DL-mandelic acid/ethyl-DL-mandelate cocrystal. This behavior indicates that racemic mandelic acid tends not only to transform into an ester in ethanol, but also to cocrystallize with untransformed acid molecules. Cocrystal formation for mandelic acid in ethanol was found to be reproducible under various conditions. DL-tropic acid and DL-phenyllactic acid that contain similar functional groups and that were tested as well, on the other hand, showed no cocrystal formation: DL-phenyllactic acid partly converted into an ester, whereas DL-tropic acid mostly recrystallized.

  10. [Study on anti-bacterium activity of ginkgolic acids and their momomers].

    PubMed

    Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin

    2004-09-01

    Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.

  11. In vitro enzymic hydrolysis of chlorogenic acids in coffee.

    PubMed

    da Encarnação, Joana Amarante; Farrell, Tracy L; Ryder, Alexandra; Kraut, Nicolai U; Williamson, Gary

    2015-02-01

    Coffee is rich in quinic acid esters of phenolic acids (chlorogenic acids) but also contains some free phenolic acids. A proportion of phenolic acids appear in the blood rapidly after coffee consumption due to absorption in the small intestine. We investigated in vitro whether this appearance could potentially be derived from free phenolic acids in instant coffee or from hydrolysis of chlorogenic acids by pancreatic or brush border enzymes. We quantified six free phenolic acids in instant coffees using HPLC-DAD-mass spectrometry. The highest was caffeic acid, but all were present at low levels compared to the chlorogenic acids. Roasting and decaffeination significantly reduced free phenolic acid content. We estimated, using pharmacokinetic modelling with previously published data, that the contribution of these compounds to small intestinal absorption is minimal. Hydrolysis of certain chlorogenic acids was observed with human-differentiated Caco-2 cell monolayers and with porcine pancreatin, which showed maximal rates on 3- and 5-O-caffeoylquinic acids, respectively. The amounts of certain free phenolic acids in coffee could only minimally account for small intestinal absorption based on modelling. The hydrolysis of caffeoylquinic, but not feruloylquinic acids, by enterocyte and pancreatic esterases is potentially a contributing mechanism to small intestinal absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification and characterization of two new derivatives of chlorogenic acids in Arnica (Arnica montana L.) flowers by high-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Jaiswal, Rakesh; Kuhnert, Nikolai

    2011-04-27

    Arnica montana is a medicinally important plant due to its broad health effects, and it is used in Ayurvedic, Homeopathic, Unani, and folk medicines. We have used LC-MS(n) (n = 2-5) to detect and characterize in Arnica flowers 11 quantitatively minor fumaric and methoxyoxalic acid-containing chlorogenic acids, nine of them not previously reported in nature. These comprise 1,5-dicaffeoyl-3-methoxyoxaloylquinic acid, 1,3-dicaffeoyl-4-methoxyoxaloylquinic acid, 3,5-dicaffeoyl-4-methoxyoxaloylquinic acid, and 1-methoxyoxaloyl-4,5-dicaffeoylquinic acid (M(r) 602); 3-caffeoyl-4-feruloyl-5-methoxyoxaloylquinic acid and 3-feruloyl-4-methoxyoxaloyl-5-caffeoylquinic acid (M(r) 616); 1,5-dicaffeoyl-4-fumaroyl and 1,5-dicaffeoyl-3-fumaroylquinic acid (M(r) 614); 3,5-dicaffeoyl-1,4-dimethoxyoxaloylquinic acid (M(r) 688); and 1-methoxyoxaloyl-3,4,5-tricaffeoylquinic acid and 1,3,4-tricaffeoyl-5-methoxyoxaloylquinic acid (M(r) 764). All of the structures have been assigned on the basis of LC-MS(n) patterns of fragmentation, relative hydrophobicity, and analogy of fragmentation patterns if compared to caffeoylquinic acids. This is the first time when fumaric acid-containing chlorogenic acids are reported in nature.

  13. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  14. Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions.

    PubMed

    Benyo, B; Biro, J C; Benyo, Z

    2004-01-01

    The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.

  15. [Study on the encapsulation technique of high purity gamma-linolenic acid, part 1--saponification reaction and saponification value].

    PubMed

    Liu, Feng-xia; Xue, Gang; Gao, Qiu-hua; Gao, Wei-xia; Zhang, Li-hua

    2005-03-01

    To measure the saponification value and fatty acid formation of evening primrose oil, to study the effects of pH value on production yield and fatty acid formation during the saponification reaction, and to provide rationales for the selection of raw material, the enhancement of production yield of saponification, and the encapsulation of gamma-linolenic acid with urea. To measure fatty acid's formation with gas chromatographic method and to measure the saponification value. The content of gamma-linolenic acid is 7%-10% in evening primrose oil. The content of gamma-linolenic acid is inversely correlated with that of unsaturated fatty acid. The saponification value, the amount of KOH for saponification of evening primrose oil, and the pH value for subsequent isolations of oils are determined. From the measurement of fatty acids of evening primrose oil in two different cultivation locations, the content of gamma-linolenic acid is determined to be 7%-10%, unsaturated oils account for 90%. The saponification value of evening primrose oil is between 180-200, pH value of isolated oil is 1.5-2.0 after saponification reaction. Fatty acids mainly include palmitic acid, stearic acid, oleic acid, linolic acid and gamma-linolenic acid.

  16. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  17. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  18. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    PubMed

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  19. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  20. Method for isolating chromosomal DNA in preparation for hybridization in suspension

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.

  1. trans Octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: results of a large birth cohort study.

    PubMed

    Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás

    2007-05-01

    Several observational studies indicate that trans isomeric fatty acids may interfere with the metabolism of essential fatty acids in the human organism. The objective was to investigate the relation between trans fatty acids and long-chain polyunsaturates in mature human milk. Human milk samples (n=769) were obtained at the 6th week of lactation from mothers participating in a birth cohort study in Germany. The fatty acid composition of the milk samples was measured by high-resolution capillary gas-liquid chromatography. trans Octadecenoic and trans octadecadienoic acids were inversely correlated with linoleic acid (r=-0.32 and -0.33, P<0.0001 for both), alpha-linolenic acid (r=-0.35 and -0.27, P<0.0001), arachidonic acid (r=-0.60 and -0.47, P<0.0001), and docosahexaenoic acid (r=-0.51 and -0.33, P<0.0001). In contrast, no inverse correlations were observed between trans hexadecenoic acid and polyunsaturated fatty acids. The data obtained in the present study suggest that the availability of 18-carbon trans isomeric fatty acids may be inversely related to the availability of long-chain polyunsaturated fatty acids in mature human milk.

  2. Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study.

    PubMed

    Ma, Wenjie; Wu, Jason H Y; Wang, Qianyi; Lemaitre, Rozenn N; Mukamal, Kenneth J; Djoussé, Luc; King, Irena B; Song, Xiaoling; Biggs, Mary L; Delaney, Joseph A; Kizer, Jorge R; Siscovick, David S; Mozaffarian, Dariush

    2015-01-01

    Experimental evidence suggests that hepatic de novo lipogenesis (DNL) affects insulin homeostasis via synthesis of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). Few prospective studies have used fatty acid biomarkers to assess associations with type 2 diabetes. We investigated associations of major circulating SFAs [palmitic acid (16:0) and stearic acid (18:0)] and MUFA [oleic acid (18:1n-9)] in the DNL pathway with metabolic risk factors and incident diabetes in community-based older U.S. adults in the Cardiovascular Health Study. We secondarily assessed other DNL fatty acid biomarkers [myristic acid (14:0), palmitoleic acid (16:1n-7), 7-hexadecenoic acid (16:1n-9), and vaccenic acid (18:1n-7)] and estimated dietary SFAs and MUFAs. In 3004 participants free of diabetes, plasma phospholipid fatty acids were measured in 1992, and incident diabetes was identified by medication use and blood glucose. Usual diets were assessed by using repeated food-frequency questionnaires. Multivariable linear and Cox regression were used to assess associations with metabolic risk factors and incident diabetes, respectively. At baseline, circulating palmitic acid and stearic acid were positively associated with adiposity, triglycerides, inflammation biomarkers, and insulin resistance (P-trend < 0.01 each), whereas oleic acid showed generally beneficial associations (P-trend < 0.001 each). During 30,763 person-years, 297 incident diabetes cases occurred. With adjustment for demographics and lifestyle, palmitic acid (extreme-quintile HR: 1.89; 95% CI: 1.27, 2.83; P-trend = 0.001) and stearic acid (HR: 1.62; 95% CI: 1.09, 2.41; P-trend = 0.006) were associated with higher diabetes risk, whereas oleic acid was not significantly associated. In secondary analyses, vaccenic acid was inversely associated with diabetes (HR: 0.56; 95% CI: 0.38, 0.83; P-trend = 0.005). Other fatty acid biomarkers and estimated dietary SFAs or MUFAs were not significantly associated with incident diabetes. In this large prospective cohort, circulating palmitic acid and stearic acid were associated with higher diabetes risk, and vaccenic acid was associated with lower diabetes risk. These results indicate a need for additional investigation of biological mechanisms linking specific fatty acids in the DNL pathway to the pathogenesis of diabetes. © 2015 American Society for Nutrition.

  3. Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study12345

    PubMed Central

    Wu, Jason HY; Wang, Qianyi; Lemaitre, Rozenn N; Mukamal, Kenneth J; Djoussé, Luc; King, Irena B; Song, Xiaoling; Biggs, Mary L; Delaney, Joseph A; Kizer, Jorge R; Siscovick, David S; Mozaffarian, Dariush

    2015-01-01

    Background: Experimental evidence suggests that hepatic de novo lipogenesis (DNL) affects insulin homeostasis via synthesis of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). Few prospective studies have used fatty acid biomarkers to assess associations with type 2 diabetes. Objectives: We investigated associations of major circulating SFAs [palmitic acid (16:0) and stearic acid (18:0)] and MUFA [oleic acid (18:1n–9)] in the DNL pathway with metabolic risk factors and incident diabetes in community-based older U.S. adults in the Cardiovascular Health Study. We secondarily assessed other DNL fatty acid biomarkers [myristic acid (14:0), palmitoleic acid (16:1n–7), 7-hexadecenoic acid (16:1n–9), and vaccenic acid (18:1n–7)] and estimated dietary SFAs and MUFAs. Design: In 3004 participants free of diabetes, plasma phospholipid fatty acids were measured in 1992, and incident diabetes was identified by medication use and blood glucose. Usual diets were assessed by using repeated food-frequency questionnaires. Multivariable linear and Cox regression were used to assess associations with metabolic risk factors and incident diabetes, respectively. Results: At baseline, circulating palmitic acid and stearic acid were positively associated with adiposity, triglycerides, inflammation biomarkers, and insulin resistance (P-trend < 0.01 each), whereas oleic acid showed generally beneficial associations (P-trend < 0.001 each). During 30,763 person-years, 297 incident diabetes cases occurred. With adjustment for demographics and lifestyle, palmitic acid (extreme-quintile HR: 1.89; 95% CI: 1.27, 2.83; P-trend = 0.001) and stearic acid (HR: 1.62; 95% CI: 1.09, 2.41; P-trend = 0.006) were associated with higher diabetes risk, whereas oleic acid was not significantly associated. In secondary analyses, vaccenic acid was inversely associated with diabetes (HR: 0.56; 95% CI: 0.38, 0.83; P-trend = 0.005). Other fatty acid biomarkers and estimated dietary SFAs or MUFAs were not significantly associated with incident diabetes. Conclusions: In this large prospective cohort, circulating palmitic acid and stearic acid were associated with higher diabetes risk, and vaccenic acid was associated with lower diabetes risk. These results indicate a need for additional investigation of biological mechanisms linking specific fatty acids in the DNL pathway to the pathogenesis of diabetes. This trial was registered at clinicaltrials.gov as NCT00005133. PMID:25527759

  4. 21 CFR 184.1328 - Glyceryl behenate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glyceryl esters of behenic acid made from glycerin and behenic acid (a saturated C22 fatty acid). The... not more than 2.5 percent free fatty acids. (2) Behenic acid. Between 80 and 90 percent of the total fatty acid content. (3) Acid value. Not more than 4. (4) Saponification value. Between 145 and 165. (5...

  5. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  6. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  7. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  8. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  9. 21 CFR 184.1328 - Glyceryl behenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glyceryl esters of behenic acid made from glycerin and behenic acid (a saturated C22 fatty acid). The... not more than 2.5 percent free fatty acids. (2) Behenic acid. Between 80 and 90 percent of the total fatty acid content. (3) Acid value. Not more than 4. (4) Saponification value. Between 145 and 165. (5...

  10. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    Iodo-acids were recently identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3...

  11. OCCURRENCE OF IODO-ACID AND IODO-THM DBPS IN U. S. CHLORAMINATED DRINKING WATERS

    EPA Science Inventory

    Iodo-acids were recently identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3...

  12. Biogeochemistry of aquatic humic substances in Thoreau's Bog, Concord, Massachusetts

    USGS Publications Warehouse

    McKnight, Diane M.; Thurman, E. Michael; Wershaw, Robert L.; Hemond, Herold

    1985-01-01

    Thoreau's Bog is an ombrotrophic floating—mat Sphagnum bog developed in a glacial kettlehole and surrounded by a red maple swamp. Concentrations of dissolved organic carbon in the porewater of the bog average 36 mg/L and are greatest near the surface, especially during late summer. This distribution suggest that the upper layer of living and dead Sphagnum and moderately humified peat is the major site of dissolved organic material production in the bog. The dissolved organic material consists mainly of aquatic fulvic acid (67%) and hydrophilic acids (20%); these organic acids control the pH (typically 4 or somewhat lower) of the bogwater. The elemental, amino acid, carbohydrate, and carboxylic acid contents of fulvic acid from the bog are similar to those of aquatic fulvic acid from the nearby Shawsheen River, although the phenolic hydroxyl content of fulvic acid from Thoreau's Bog is higher. The hydrophilic acids have greater amino acid, carbohydrate, and carboxylic acid contents than the fulvic acid, consistent with the hypothesis that hydrophilic acids are more labile intermediate compounds in the formation of fulvic acid.

  13. Analyses of bile from gallbladders of Arius platystomus, Arius tenuispinis, Pomadasys commersonni and Kishinoella tonggol.

    PubMed

    Hassan, Amir; Ahmed, Mansoor; Rasheed, Munawwer; Mansoor, Najia; Khan, Rafeeq Alam; Kamal, Mustafa; Rashid, Mohammad Abdur

    2015-07-01

    Bile from gallbladders of Arius platystomus (Singhara), Arius tenuispinis (Khagga), Pomadasys commersonni (Holoola) and Kishinoella tonggol (Dawan) were derivatised and analysed by GC-MS for identification of bile acids and bile alcohols. Cholic acid and Chenodeoxycholic acid were found as major bile acids in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Other bile acids identified in Arius platystomus were allochenodeoxycholic acid, allodeoxycholic acid, 3α,7α,12α-trihydroxy-24-methyl-5β-cholestane-26-oic acid, and 3α,7α,12α, 24-tetrahydroxy-5α-cholestane-26-oic acid. Cholesterol was found as major bile alcohol in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Cholic acid was the major bile acid identified in the bile of Kishinoella tonggol while other bile acids included 3α,7α,12α-tridydroxy-5α-cholestanoic acid and 3α,7α,12α-tridydroxy-5β-cholestanoic acid. Bile alcohol 5β-cyprinol was present in significant amounts with 5β-cholestane-3α,7α,12α,24-tetrol being the other contributors in the bile of Kishinoella tonggol.

  14. Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers.

    PubMed

    Suenaga, Shin; Totani, Kazuhide; Nomura, Yoshihiro; Yamashita, Kazuhiko; Shimada, Iori; Fukunaga, Hiroshi; Takahashi, Nobuhide; Osada, Mitsumasa

    2017-09-01

    We have investigated whether acidity can be used to control the physicochemical properties of chitin nanofibers (ChNFs). In this study, we define acidity as the molar ratio of dissociated protons from the acid to the amino groups in the raw chitin powder. The effect of acidity on the physicochemical properties of α- and β-ChNFs was compared. The transmittance and viscosity of the β-ChNFs drastically and continuously increased with increasing acidity, while those of the α-ChNFs were not affected by acidity. These differences are because of the higher ability for cationization based on the more flexible crystal structure of β-chitin than α-chitin. In addition, the effect of the acid species on the transmittance of β-ChNFs was investigated. The transmittance of β-ChNFs can be expressed by the acidity regardless of the acid species, such as hydrochloric acid, phosphoric acid, and acetic acid. These results indicate that the acidity defined in this work is an effective parameter to define and control the physicochemical properties of ChNFs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of Phenolic Compounds on Growth of Colletotrichum spp. In Vitro.

    PubMed

    Roy, Sutapa; Nuckles, Etta; Archbold, Douglas D

    2018-05-01

    Colletotrichum acutatum is responsible for anthracnose fruit rot, one of the most devastating diseases in strawberry. Phenolic compounds have been described as contributors to anthracnose resistance in strawberry (Fragaria x ananassa, Duch.). Six isolates of Colletotrichum acutatum and four isolates of three other Colletotrichum species, C. gloeosporioides, C. fragariae, and C. graminicola, associated with disease symptoms were investigated in this study. The potential inhibitory effect of phenolic acids (gallic acid, caffeic acid, chlorogenic acid, ferulic acid, trans-cinnamic acid, p-coumaric acid, salicylic acid), flavonoids (catechin, quercetin, naringenin), and ellagic acid, which are naturally found in strawberry, were screened against two different spore suspension concentrations of the Colletotrichum isolates at 5, 10, 50 mM in vitro. Among the phenolic acids and flavonoids tested in this study, only trans-cinnamic acid, ferulic acid, and p-coumaric acid inhibited fungal growth. The inhibitory effects were concentration-dependent but also varied with the spore suspension concentration of the isolates. The results demonstrated that trans-cinnamic acid had the greatest inhibitory effect on all Colletotrichum spp. isolates tested.

  16. Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1.

    PubMed

    Zhang, Ke; Li, Huidong; Chen, Wuxi; Zhao, Minli; Cui, Haiyang; Min, Qingsong; Wang, Haijun; Chen, Shulin; Li, Demao

    2017-05-01

    Docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium was relatively stable. But ideally the ratio of DPA/DHA will vary according to the desired end use. This study reports several ways of modulating the DPA/DHA ratio. Incubation times changed the DPA/DHA ratio, and changes in this ratio were associated with the variations in the saturated fatty acid (SFAs) content. Propionic acid sharply increased the SFAs content in lipids, dramatically decreased the even-chain SFAs content, and reduced the DPA/DHA ratio. Pentanoic acid (C5:0) and heptanoic acid (C7:0) had similar effects as propionic acid, whereas butyric acid (C4:0), hexanoic acid (C6:0), and octanoic acid (C8:0) did not change the fatty acid profile and the DPA/DHA ratio. Transcription analyses show that β-oxidation might be responsible for this phenomenon. Iodoacetamide upregulated polyunsaturated fatty acid (PUFA) synthase genes, reduced the DHA content, and improved the DPA content, causing the DPA/DHA ratio to increase. These results present new insights into the regulation of the DPA/DHA ratio.

  17. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    PubMed

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  18. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece

    PubMed Central

    Spilioti, Eliana; Jaakkola, Mari; Tolonen, Tiina; Lipponen, Maija; Virtanen, Vesa; Chinou, Ioanna; Kassi, Eva; Karabournioti, Sofia; Moutsatsou, Paraskevi

    2014-01-01

    The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and antiatherogenic activities which may be attributed, at least in part, to their phenolic acid content. PMID:24752205

  20. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  1. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics.

    PubMed

    Yang, Yang; Ferro, Miguel Duarte; Cavaco, Isabel; Liang, Yizeng

    2013-04-17

    In this study, an analytical method for the detection and identification of extra virgin olive oil adulteration with four types of oils (corn, peanut, rapeseed, and sunflower oils) was proposed. The variables under evaluation included 22 fatty acids and 6 other significant parameters (the ratio of linoleic/linolenic acid, oleic/linoleic acid, total saturated fatty acids (SFAs), polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), MUFAs/PUFAs). Univariate analyses followed by multivariate analyses were applied to the adulteration investigation. As a result, the univariate analyses demonstrated that higher contents of eicosanoic acid, docosanoic acid, tetracosanoic acid, and SFAs were the peculiarities of peanut adulteration and higher levels of linolenic acid, 11-eicosenoic acid, erucic acid, and nervonic acid the characteristics of rapeseed adulteration. Then, PLS-LDA made the detection of adulteration effective with a 1% detection limit and 90% prediction ability; a Monte Carlo tree identified the type of adulteration with 85% prediction ability.

  3. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R.

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({supmore » 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.« less

  4. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron.

    PubMed

    Grant-Preece, Paris; Barril, Celia; Schmidtke, Leigh M; Clark, Andrew C

    2018-03-15

    Model wine solutions containing organic acids, individually or combined, and iron(III), were exposed to light from fluorescent lamps or stored in darkness for four hours. (-)-Epicatechin was then added, and the solutions incubated in darkness for 10days. Browning was monitored by UV-visible absorption spectrophotometry and UHPLC-DAD. The pre-irradiated solutions containing tartaric acid exhibited increased yellow/brown coloration compared to the dark controls mainly due to reaction of the tartaric acid photodegradation product glyoxylic acid with (-)-epicatechin to form xanthylium cation pigments. In these solutions, browning decreased as the concentrations of organic acids other than tartaric acid increased. Xanthylium cations were also detected in the pre-irradiated malic acid solution. However, in the malic acid, succinic acid, citric acid and lactic acid solutions, any coloration was mainly due to the production of dehydrodiepicatechin A, which was largely independent of prior light exposure, but strongly affected by the organic acid present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  6. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short precursors now gives us easy access to these extended molecules.

  7. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen

    2017-03-14

    C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.

  8. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens.

    PubMed

    Hamano, Y

    2016-08-01

    The present study was conducted to determine the effects of α-lipoic acid supplementation on post-mortem changes in the fatty acid profile and concentrations of nucleotide-related substances, especially those of a taste-active compound, inosine 5'-monophosphate, in chicken meat. Mixed-sex broiler chicks aged 14 d were divided into three groups of 16 birds each and were fed on diets supplemented with α-lipoic acid at levels of 0, 100 or 200 mg/kg for 4 weeks. Blood and breast muscle samples were taken at 42 d of age under the fed condition and then after fasting for 18 h. The breast muscle obtained from fasted chickens was subsequently refrigerated at 2°C for one and 3 d. α-Lipoic acid supplementation did not affect any plasma metabolite concentration independently of feeding condition, while a slight increase in plasma glucose concentration was shown with both administration levels of α-lipoic acid. In early post-mortem breast muscle under the fed condition, α-lipoic acid had no effect on concentrations of fatty acids or nucleotides of ATP, ADP, and AMP. In post-mortem breast tissues obtained from fasted chickens, total fatty acid concentrations were markedly increased by α-lipoic acid feeding at 200 mg/kg irrespective of length of refrigeration. This effect was dependent on stearic acid, oleic acid, linoleic acid and linolenic acid. However, among fatty acids, the only predominantly increased unsaturated fatty acid was oleic acid. Dietary supplementation with α-lipoic acid at 200 mg/kg increased the inosine 5'-monophosphate concentration in breast meat and, in contrast, reduced the subsequent catabolites, inosine and xanthine, regardless of the length of refrigeration. Therefore, the present study suggests that α-lipoic acid administration altered the fatty acid profile and improved meat quality by increasing taste-active substances in the post-mortem meat obtained from fasted chickens.

  9. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  10. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids.

    PubMed

    Bai, Bing; Li, Lei; Hu, Xiaosong; Wang, Zhengfu; Zhao, Guanghua

    2006-10-18

    Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of tonoplast by treatment with monocarboxylates such as acetic acid may be the main reason for the greening of garlic.

  11. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid... conditions: (a) They are manufactured from glycerin, lactic acid, and fatty acids conforming with § 172.860...

  12. New insights into bile acid malabsorption.

    PubMed

    Johnston, Ian; Nolan, Jonathan; Pattni, Sanjeev S; Walters, Julian R F

    2011-10-01

    Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.

  13. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  14. Preparation of a Ammonia-Treated Lac Dye and Structure Elucidation of Its Main Component.

    PubMed

    Nishizaki, Yuzo; Ishizuki, Kyoko; Akiyama, Hiroshi; Tada, Atsuko; Sugimoto, Naoki; Sato, Kyoko

    2016-01-01

    Lac dye and cochineal extract contain laccaic acids and carminic acid as the main pigments, respectively. Both laccaic acids and carminic acid are anthraquinone derivatives. 4-Aminocarminic acid (acid-stable carmine), an illegal colorant, has been detected in several processed foods. 4-Aminocarminic acid is obtained by heating cochineal extract (carminic acid) in ammonia solution. We attempted to prepare ammonia-treated lac dye and to identify the structures of the main pigment components. Ammonia-treated lac dye showed acid stability similar to that of 4-aminocarminic acid. The structures of the main pigments in ammonia-treated lac dye were analyzed using LC/MS. One of the main pigments was isolated and identified as 4-aminolaccaic acid C using various NMR techniques, including 2D-INADEQUATE. These results indicated that ammonia-treatment of lac dye results in the generation of 4-aminolaccaic acids.

  15. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.

  16. Cox-2 inhibitory effects of naturally occurring and modified fatty acids.

    PubMed

    Ringbom, T; Huss, U; Stenholm , A; Flock, S; Skattebøl, L; Perera, P; Bohlin, L

    2001-06-01

    In the search for new cyclooxygenase-2 (COX-2) selective inhibitors, the inhibitory effects of naturally occurring fatty acids and some of their structural derivatives on COX-2-catalyzed prostaglandin biosynthesis were investigated. Among these fatty acids, linoleic acid (LA), alpha-linolenic acid (alpha-LNA), myristic acid, and palmitic acid were isolated from a CH(2)Cl(2) extract of the plant Plantago major by bioassay-guided fractionation. Inhibitory effects of other natural, structurally related fatty acids were also investigated: stearic acid, oleic acid, pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Further, the inhibitory effects of these compounds on COX-2- and COX-1-catalyzed prostaglandin biosynthesis was compared with the inhibition of some synthesized analogues of EPA and DHA with ether or thioether functions. The most potent COX-2-catalyzed prostaglandin biosynthesis inhibitor was all-(Z)-5-thia-8,11,14,17-eicosatetraenoic acid (2), followed by EPA, DHA, alpha-LNA, LA, (7E,11Z,14Z,17Z)-5-thiaeicosa-7,11,14,17-tetraenoic acid, all-(Z)-3-thia-6,9,12,15-octadecatetraenoic acid, and (5E,9Z,12Z,15Z,18Z)-3-oxaheneicosa-5,9,12,15,18-pentaenoic acid, with IC(50) values ranging from 3.9 to180 microM. The modified compound 2 and alpha-LNA were most selective toward COX-2, with COX-2/COX-1 ratios of 0.2 and 0.1, respectively. This study shows that several of the natural fatty acids as well as all of the semisynthetic thioether-containing fatty acids inhibited COX-2-catalyzed prostaglandin biosynthesis, where alpha-LNA and compound 2 showed selectivity toward COX-2.

  17. Tall oil precursors and turpentine in Jack and Eastern White Pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, A.H.; Diehl, M.A.; Rowe, J.W.

    1980-04-01

    The tall oil precursors and turpentine from jack pine (Pinus banksiana Lamb.) and eastern white pine (Pinus strobus L.) were investigated. The tall oil precursors (resin acids, fatty acids, and unsaponifiables were determined by chemical fractionation of the nonvolatile diethyl ether extractives (NVEE) of these speices: (approximate % resin acids, % fatty acids, % unsaponifiables, and % acids other that fatty and resin acids) - jack pine sapwood (10, 60, 10, 20%), heartwood (38, 12, 6, 44%); eastern white pine sapwood (11, 57, 9, 22%), and heartwood (11, 18, 10, 62%). The resin acids were a mixture of the pimaricmore » and abietic acids common to pines. In addition, eastern white pine contained major amounts of the resin acid, anticopalic acid. The fatty acids were predominately oleic, linoleic, and 5, 9, 12-octadecatrienoic acids. The unsaponsiables were a complex mixture of diterpenes and sterols (mainly campesterol and sitosterol). On treating these species with paraquat, lightwood occurred in the sapwood but not in the heartwood areas as we have oberved with other pines. The NVEE of the lightwood areas contained increased amounts of resin acids, unsaponifiables, and acids other than fatty and resin acids. The total fatty acid content was essentially unchanged. Since fatty acid components are preferentially lost by esterification with neutral alcoholic constituents in the unsaponifiables during the distillation refining of crude tall oil, the increased unsaponifiables relative to the constant fatty acid content might result in a net reduction in fatty acid recovery from lightered trees. The turpentine content of both jack and eastern white pine increased on lightering and was primarily a mixture of ..cap alpha..- and ..beta..-pinene.« less

  18. Catalytic conversion of lactic acid and its derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokitkar, P.B.; Langford, R.; Miller, D.J.

    1993-12-31

    The catalytic upgrading of lactic acid and methyl lactate is being investigated. With the commercialization of inexpensive starch fermentation technologies, US production of lactic acid is undergoing a surge. Dropping cost and increased availability offer a major opportunity to develop lactic acid as a renewable feedstock for chemicals production. IT can be catalytically converted into several important chemical intermediates currently derived from petroleum including acrylic acid, propanoic acid, and 2,3-pentanedione. The process can expand the potential of biomass as a substitute feedstock for petroleum and can benefit both the US chemical process industry and US agriculture via increased production ofmore » high-value, non-food products from crops and crop byproducts. Reaction studies of lactic acid and its ester are conducted in fixed bed reactors at 250-380{degrees}C and 0.1-0.5 MPa (1-5 atm) using salt catalysts on low surface area supports. Highest selectivities achieved are 42% to acrylic acid and 55% to 2,3-pentanedione from lactic acid over NaNO{sub 3} catalyst on low surface area silica support. High surface area (microporous) or highly acidic supports promote fragmentation to acetaldehyde and thus reduce yields of desirable products. The support acidity gives rice to lactic acid from neat methyl lactate feed but the lactic acid yield goes down after the nitrate salt is impregnated on the support. Both lactic acid and methyl lactate form 2,3-pentanedione. Methyl lactate reactions are more complex since it forms all the products obtained from lactic acid as well as many corresponding esters of the acids obtained from lactic acid (mainly methyl acrylate, methyl propionate, methyl acetate). At high temperatures, methyl acetate and acetic acid yields become significant from methyl lactate whereas lactic acid gives significant amount of acetol at high temperatures.« less

  19. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage

    PubMed Central

    Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286

  20. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity.

  1. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid.

    PubMed

    Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-05-01

    The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.

  2. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.

    PubMed

    Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.

  3. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  4. Identification of unknown impurity of azelaic acid in liposomal formulation assessed by HPLC-ELSD, GC-FID, and GC-MS.

    PubMed

    Han, Stanisław; Karłowicz-Bodalska, Katarzyna; Potaczek, Piotr; Wójcik, Adam; Ozimek, Lukasz; Szura, Dorota; Musiał, Witold

    2014-02-01

    The identification of new contaminants is critical in the development of new medicinal products. Many impurities, such as pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, decanedioic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedioic acid, have been identified in samples of azelaic acid. The aim of this study was to identify impurities observed during the stability tests of a new liposomal dosage form of azelaic acid that is composed of phosphatidylcholine and a mixture of ethyl alcohol and water, using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD), gas chromatography-flame ionisation detection (GC-FID), and gas chromatography-mass spectrometry (GC-MS) methods. During the research and development of a new liposomal formulation of azelaic acid, we developed a method for determining the contamination of azelaic acid using HPLC-ELSD. During our analytical tests, we identified a previously unknown impurity of a liposomal preparation of azelaic acid that appeared in the liposomal formulation of azelaic acid during preliminary stability studies. The procedure led to the conclusion that the impurity was caused by the reaction of azelaic acid with one of the excipients that was applied in the product. The impurity was finally identified as an ethyl monoester of azelaic acid. The identification procedure of this compound was carried out in a series of experiments comparing the chromatograms that were obtained via the following chromatographic methods: HPLC-ELSD, GC-FID, and GC-MS. The final identification of the compound was carried out by GC with MS.

  5. [Accumulation characteristics of applied cinnamic acid in cucumber seedling-soil system under NaCl stress].

    PubMed

    Wang, Ying; Wu, Feng-Zhi; Wang, Yu-Yan

    2011-11-01

    Taking cucumber cultivars' Jinlv No. 5' (salt-tolerant) and 'Jinyou No. 1' (salt-sensitive) as test materials, a pot experiment was conducted to study the effects of applying cinnamic acid on the accumulation of applied cinnamic acid in cucumber seedling-soil system under NaCl (585 mg x kg(-1) soil) stress. The concentration of applied cinnamic acid was the main factor affecting the accumulation of the exogenous cinnamic acid in the cucumber plant and soil. With the increasing concentration of applied cinnamic acid, except in the treatment of highest concentration (200 mg x kg(-1) soil) cinnamic acid, the total content of cinnamic acid in cucumber plant was increased. NaCl stress enhanced the toxicity of cinnamic acid. In the treatments of low and medium concentration cinnamic acid, the cinnamic acid content in cucumber plant increased; whereas in the treatments of high concentration cinnamic acid, the decline of the seedlings growth was observed, and led to the decrease of the cinnamic acid content in the plant. The content of cinnamic acid in 'Jinlv No. 5' plant decreased at the concentration of applied cinnamic acid being > 200 mg x kg(-1) soil, while that in 'Jinyou No. 1' started to decrease when the concentration of applied cinnamic acid was > 100 mg x kg(-1) soil, reflecting the discrepancy in salt tolerance of the two cultivars. For the cucumber plant, its leaf had the highest content of cinnamic acid. In the cucumber seedling-soil system, most of applied cinnamic acid was mainly accumulated in soil.

  6. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    PubMed

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  7. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  8. Chemical Characterization and Toxicologic Evaluation of Airborne Mixtures

    DTIC Science & Technology

    1981-04-01

    in the chamber air (",50% relative humidity) that phosphoric acid would be the principal component of the...triphosphoric, and tetrametaphosphoric acids were present; trimeta- phosphoric and tetrapolyphosporic acids may also have been present in trace amounts. The...triphosphoric acid , diphosphoric acid , and phosphoric acid are all strong acids that, with strong bases, can be titrated in water. Titration

  9. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  10. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely used...

  11. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  12. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  13. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  14. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    PubMed

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less influence on the fatty acid profile of buffalo milk than that of cow milk, probably due to a shorter and less severe period of negative energy balance. Parity affected the profiles of a few traits and had the most significant effects on branched-chain fatty acids. This work provided a detailed overview of the fatty acid profile in buffalo milk including also those fatty acids present in small concentrations, which may have beneficial effects for human health. Our results contributed also to increase the knowledge about the effects of some of the major factors affecting buffalo production traits and fatty acid concentrations in milk, and consequently its technological and nutritional properties. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. [Effect of Gram-negative bacteria on fatty acids].

    PubMed

    Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J

    1981-01-01

    The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.

  16. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana

    PubMed Central

    Qi, Baoxiu

    2014-01-01

    IgASE1, a C18 Δ9-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ8 desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA. PMID:24609499

  17. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    PubMed

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  18. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    PubMed

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.

    PubMed

    Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng

    2014-04-01

    P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

Top