Sample records for hexagonal crystal form

  1. Experimental evidence for a chiral symmetry-breaking mechanism in aspartic acid: Lattice and sub-lattice matching

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez

    2017-10-01

    A mother crystal formed from a transient molecular structure of (D+L) aspartic acid in solution is reported. Hexagonal structures with a lattice constant of 1.04 nm were crystallized from a solution in which three aspartic acid species coexist: right- and left-handed enantiomorphs, denoted D-aspartic and L-aspartic, respectively, and transitory (D+L) aspartic acid specie. Atomic force microscopy images of the crystalline deposits reveal domains of the transitory (D+L) aspartic acid crystal forming the substrate deposit on silicon wafers, and on top of this hexagonal lattice only L-aspartic acid is observed to conform and crystallize. A preferential crystallization mechanism is then observed for (D+L) aspartic acid crystals that seed only L-aspartic deposits by the geometrical matching of their multiple hexagonal lattice structures with periodicities of 1.04 nm and 0.52 nm, respectively.

  2. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli.

    PubMed

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-02-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 A resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 A , and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 A , and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement.

  3. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli

    PubMed Central

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-01-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 Å resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 Å, and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 Å, and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement. PMID:18271114

  4. Biogenic twinned crystals exhibiting unique morphological symmetry

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Palmer, Ben; Addadi, Lia; Leiserowitz, Leslie; Kronik, Leeor

    Guanine crystals are widely used in nature as components of multilayer reflectors. Organisms control the size, morphology, and arrangement of these crystals, to obtain a variety of optical ''devices''. The reflection systems found in the lens of the scallop eye and in the copepod cuticle are unique in that the multilayered reflectors are tiled together to form a contiguous packed array. In the former, square crystals are tiled to form a reflecting mirror. In the latter, hexagonal crystals are closely packed to produce brilliant colors. Based on electron diffraction, morphology considerations, and density functional theory, these crystals were shown to possess similar monoclinic crystal symmetry, which we have previously identified as different from that of synthetic anhydrous guanine. However, the crystals are different in that multiple twinning about the {012} and the {011} crystallographic planes results in square and hexagonal morphology, respectively. This is a unique example where controlled twinning is used as a strategy to form a morphology with higher symmetry than that of the underlying crystal, allowing for tilling that facilitates optical functionality.

  5. Crystallization of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus and preliminary characterization of two crystal forms.

    PubMed

    Rümbeli, R; Schirmer, T; Bode, W; Sidler, W; Zuber, H

    1985-11-05

    The light-harvesting protein phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus Cohn has been crystallized in two different crystal forms by vapour diffusion. In 5% (w/v) polyethylene glycol at pH 8.5, hexagonal crystals of space group P63 with cell constants a = b = 158 A, c = 40.6 A were obtained, which turned out to be almost isomorphous with the hexagonal crystals of C-phycocyanin from the same organism. Consequently, the conformation of both phycobiliproteins must be very similar. From 1.5 M-ammonium sulfate (pH 8.5), orthorhombic crystals of space group P2221 with cell constants a = 60.5 A, b = 105 A, c = 188 A could be grown. Density measurements of these crystals indicate that the unit cell contains 18 (alpha beta)-units. A detailed packing scheme is proposed that is consistent with the observed pseudo-hexagonal X-ray intensity pattern and with the known size and shape of (alpha beta)3-trimers of C-phycocyanin. Accordingly, disc-like (alpha beta)3-trimers are associated face-to-face and stacked one upon another in rods with a period of 60.5 A, corresponding to the cell dimension a.

  6. Technique for the control of the crystal habit of ultrafine particles in the gas-evaporation technique

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.; Mihama, K.

    1986-12-01

    Magnesium ultrafine particles have clear-cut habits such as hexagonal plates and polyhedra. When magnesium is evaporated downwards using a tube with holes at the bottom, hexagonal plates are formed exclusively throughout the smoke. Their size is controlled by selecting an inert gas. The growth process of an hexagonal plate can be considered to be a coalescent growth of other hexagonal plates.

  7. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less

  8. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  9. Spontaneously Flowing Crystal of Self-Propelled Particles

    NASA Astrophysics Data System (ADS)

    Briand, Guillaume; Schindler, Michael; Dauchot, Olivier

    2018-05-01

    We experimentally and numerically study the structure and dynamics of a monodisperse packing of spontaneously aligning self-propelled hard disks. The packings are such that their equilibrium counterparts form perfectly ordered hexagonal structures. Experimentally, we first form a perfect crystal in a hexagonal arena which respects the same crystalline symmetry. Frustration of the hexagonal order, obtained by removing a few particles, leads to the formation of a rapidly diffusing "droplet." Removing more particles, the whole system spontaneously forms a macroscopic sheared flow, while conserving an overall crystalline structure. This flowing crystalline structure, which we call a "rheocrystal," is made possible by the condensation of shear along localized stacking faults. Numerical simulations very well reproduce the experimental observations and allow us to explore the parameter space. They demonstrate that the rheocrystal is induced neither by frustration nor by noise. They further show that larger systems flow faster while still remaining ordered.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; Renaut, R.W.

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In somemore » cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.« less

  11. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  12. Crystal structure of hexagonal MnAl(4).

    PubMed

    Pauling, L

    1987-06-01

    A structure is proposed for the hexagonal form of MnAl(4), with a(H) = 28.4 A and c(H) = 12.43 A, on the basis of a high-resolution electron micrograph and comparison with crystals of known structures. The proposed structure involves seven 104-atom complexes of 20 Friauf polyhedra, sharing some atoms with one another. It is closely related to the 23.36-A cubic structure of MnAl(4) and to the 14.19-A cubic structure of Mg(32)(Al,Zn)(49).

  13. X-ray crystallographic studies on C-phycocyanins from cyanobacteria from different habitats: marine and freshwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, L.; Suresh, C. G., E-mail: cgsuresh@ncl.res.in; Patel, Anamika

    2005-09-01

    The protein C-phycocyanin, involved in photosynthesis, has been purified from three cyanobacterial species: Spirulina, Phormidium and Lyngbya. These three proteins have been crystallized and characterized using X-ray crystallography. C-phycocyanins from three cyanobacterial cultures of freshwater and marine habitat, Spirulina, Phormidium and Lyngbya spp., were purified to homogeneity and crystallized using the hanging-drop vapour-diffusion method. Blue-coloured crystals in different crystal forms, monoclinic and hexagonal, were obtained for the three species. The crystals took 1–12 weeks to grow to full size using polyethylene glycols of different molecular weights as precipitants. The amino-acid sequences of these proteins show high similarity to other knownmore » C-phycocyanins from related organisms; however, the C-phycocyanins reported here showed different biochemical and biophysical properties, i.e. molecular weight, stability etc. The X-ray diffraction data were collected at resolutions of 3.0 Å for the monoclinic and 3.2 and 3.6 Å for the hexagonal forms. The unit-cell parameters corresponding to the monoclinic space group P2{sub 1} are a = 107.33, b = 115.64, c = 183.26 Å, β = 90.03° for Spirulina sp. C-phycocyanin and are similar for crystals of Phormidium and Lyngbya spp. C-phycocyanins. Crystals belonging to the hexagonal space group P6{sub 3}, with unit-cell parameters a = b = 154.97, c = 40.35 Å and a = b = 151.96, c = 39.06 Å, were also obtained for the C-phycocyanins from Spirulina and Lyngbya spp., respectively. The estimated solvent content is around 50% for the monoclinic crystals of all three species assuming the presence of two hexamers per asymmetric unit. The solvent content is 66.5 and 64.1% for the hexagonal crystals of C-phycocyanin from Spirulina and Lyngbya spp. assuming the presence of one αβ monomer per asymmetric unit.« less

  14. Crystal structure of hexagonal MnAl4

    PubMed Central

    Pauling, Linus

    1987-01-01

    A structure is proposed for the hexagonal form of MnAl4, with aH = 28.4 Å and cH = 12.43 Å, on the basis of a high-resolution electron micrograph and comparison with crystals of known structures. The proposed structure involves seven 104-atom complexes of 20 Friauf polyhedra, sharing some atoms with one another. It is closely related to the 23.36-Å cubic structure of MnAl4 and to the 14.19-Å cubic structure of Mg32(Al,Zn)49. Images PMID:16593837

  15. Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)

    NASA Astrophysics Data System (ADS)

    Jacobberger, Robert; Arnold, Michael

    2013-03-01

    Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio <0.1. The understanding gained here provides a framework to rationally tailor the graphene crystal morphology and orientation.

  16. Sand-calcite crystals from Garfield County, Utah

    USGS Publications Warehouse

    Sargent, Kenneth A.; Zeller, H.D.

    1984-01-01

    Sand-calcite crystals are found in the Morrison Formation of Jurassic age in south-central Garfield County, Utah. The outcrop area is less than 1 acre, yet the locality contains many fine specimens of single, double, and complex crystals in good hexagonal form. This is the first known occurrence of sand-calcite crystals in rocks of Jurassic age and is the first reported occurrence in Utah.

  17. Epitaxial hexagonal materials on IBAD-textured substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substratesmore » to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.« less

  18. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  19. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    NASA Astrophysics Data System (ADS)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  20. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.

    PubMed

    Johnston, Jessica C; Molinero, Valeria

    2012-04-18

    Water nanoparticles play an important role in atmospheric processes, yet their equilibrium and nonequilibrium liquid-ice phase transitions and the structures they form on freezing are not yet fully elucidated. Here we use molecular dynamics simulations with the mW water model to investigate the nonequilibrium freezing and equilibrium melting of water nanoparticles with radii R between 1 and 4.7 nm and the structure of the ice formed by crystallization at temperatures between 150 and 200 K. The ice crystallized in the particles is a hybrid form of ice I with stacked layers of the cubic and hexagonal ice polymorphs in a ratio approximately 2:1. The ratio of cubic ice to hexagonal ice is insensitive to the radius of the water particle and is comparable to that found in simulations of bulk water around the same temperature. Heating frozen particles that contain multiple crystallites leads to Ostwald ripening and annealing of the ice structures, accompanied by an increase in the amount of ice at the expense of the liquid water, before the particles finally melt from the hybrid ice I to liquid, without a transition to hexagonal ice. The melting temperatures T(m) of the nanoparticles are not affected by the ratio of cubic to hexagonal layers in the crystal. T(m) of the ice particles decreases from 255 to 170 K with the particle size and is well described by the Gibbs-Thomson equation, T(m)(R) = T(m)(bulk) - K(GT)/(R - d), with constant K(GT) = 82 ± 5 K·nm and a premelted liquid of width d = 0.26 ± 0.05 nm, about one monolayer. The freezing temperatures also decrease with the particles' radii. These results are important for understanding the composition, freezing, and melting properties of ice and liquid water particles under atmospheric conditions. © 2012 American Chemical Society

  1. Crystallization of FcpA from Leptospira, a novel flagellar protein that is essential for pathogenesis.

    PubMed

    San Martin, Fabiana; Mechaly, Ariel E; Larrieux, Nicole; Wunder, Elsio A; Ko, Albert I; Picardeau, Mathieu; Trajtenberg, Felipe; Buschiazzo, Alejandro

    2017-03-01

    The protein FcpA is a unique component of the flagellar filament of spirochete bacteria belonging to the genus Leptospira. Although it plays an essential role in translational motility and pathogenicity, no structures of FcpA homologues are currently available in the PDB. Its three-dimensional structure will unveil the novel motility mechanisms that render pathogenic Leptospira particularly efficient at invading and disseminating within their hosts, causing leptospirosis in humans and animals. FcpA from L. interrogans was purified and crystallized, but despite laborious attempts no useful X ray diffraction data could be obtained. This challenge was solved by expressing a close orthologue from the related saprophytic species L. biflexa. Three different crystal forms were obtained: a primitive and a centred monoclinic form, as well as a hexagonal variant. All forms diffracted X-rays to suitable resolutions for crystallographic analyses, with the hexagonal type typically reaching the highest limits of 2.0 Å and better. A variation of the quick-soaking procedure resulted in an iodide derivative that was instrumental for single-wavelength anomalous diffraction methods.

  2. Variability of Young’s modulus and Poisson’s ratio of hexagonal crystals

    NASA Astrophysics Data System (ADS)

    Komarova, M. A.; Gorodtsov, V. A.; Lisovenko, D. S.

    2018-04-01

    In this paper, the variability of elastic characteristics (Young’s modulus and Poisson’s ratio) of hexagonal crystals has been studied. Analytic expressions for Young’s modulus and Poisson’s ratio are obtained. Stationary values for these elastic characteristics are found. Young’s modulus has three stationary values, and Poisson’s ratio has eight stationary values. Numerical analysis of these elastic characteristics for hexagonal crystals is given based on the experimental data from the Landolt-Börnstein handbook. Global extrema of Young’s modulus and Poisson’s ratio for hexagonal crystals are found. Crystals are found in which the maximum values exceeds the upper limit for isotropic materials.

  3. The Prevalence of the 22 deg Halo in Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Diedenhoven, vanBastiaan

    2014-01-01

    Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.

  4. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  5. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  6. Crystallographic characterizations of eutectic and secondary carbides in a Fe-12Cr-2.5Mo-1.5W-3V-1.25C alloy

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Ligang; Feng, Yunli; Liu, Sha; Ren, Xuejun; Yang, Qingxiang

    2017-03-01

    In this work, the morphology and structures of the eutectic and secondary carbides in a new high chromium Fe-12Cr-2.5Mo-1.5W-3V-1.25C designed for cold-rolling work roll were systematically studied. The precipitated carbides inside the grains and along the grain boundaries were investigated with optical microscope, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy and X-Ray diffraction. Selected area diffraction patterns have been successfully used to identify the crystal formation and lattice constants of the carbides with different alloying elements. The results show that the eutectic carbides precipitated contain MC and M2C distributed along the grain boundaries with dendrite feature. The composition and crystal structure analysis shows that the eutectic MC carbides contain VC and WC with a cubic and hexagonal crystal lattice structures respectively, while the eutectic M2C carbides predominantly contain V2C and Mo2C with orthorhombic and hexagonal crystal lattices respectively. The secondary carbides contain MC, M2C, M7C3 formed along the grain boundaries and their sizes are much larger than the eutectic carbides ones. The secondary M23C6 is much small (0.3-0.5μm) and is distributed dispersively inside the grain. Similar to the eutectic carbides, the secondary carbides also contain VC, WC, V2C, and Mo2C. M7C3 is hexagonal (Fe,Cr)7C3, while M23C6 is indexed to be in a cubic crystal form.

  7. The application of eigensymmetries of face forms to X-ray diffraction intensities of crystals twinned by `reticular merohedry'

    NASA Astrophysics Data System (ADS)

    Klapper, H.; Hahn, Th

    2012-01-01

    Crystallographic face forms {hkl} are interpreted as sets of symmetry-equivalent X-ray reflections. Extending an earlier paper on twinning by merohedry [ [Sigma] = 1, Klapper & Hahn (2010). Acta Cryst. A66, 327-346], the eigensymmetry of these forms is used to derive general relations between the diffraction intensities of overlapping twin-related reflections. The following twins by reticular merohedry are treated: [Sigma] 3 twins of rhombohedral and cubic, [Sigma] 5 twins of tetragonal and [Sigma] 7 twins of hexagonal crystals.

  8. Assembly of the most topologically regular two-dimensional micro and nanocrystals with spherical, conical, and tubular shapes

    NASA Astrophysics Data System (ADS)

    Roshal, D. S.; Konevtsova, O. V.; Myasnikova, A. E.; Rochal, S. B.

    2016-11-01

    We consider how to control the extension of curvature-induced defects in the hexagonal order covering different curved surfaces. In these frames we propose a physical mechanism for improving structures of two-dimensional spherical colloidal crystals (SCCs). For any SCC comprising of about 300 or less particles the mechanism transforms all extended topological defects (ETDs) in the hexagonal order into the point disclinations. Perfecting the structure is carried out by successive cycles of the particle implantation and subsequent relaxation of the crystal. The mechanism is potentially suitable for obtaining colloidosomes with better selective permeability. Our approach enables modeling the most topologically regular tubular and conical two-dimensional nanocrystals including various possible polymorphic forms of the HIV viral capsid. Different HIV-like shells with an arbitrary number of structural units (SUs) and desired geometrical parameters are easily formed. Faceting of the obtained structures is performed by minimizing the suggested elastic energy.

  9. Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III

    1991-01-01

    Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.

  10. Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III

    1991-01-01

    Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glasss transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder x ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structure transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.

  11. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  12. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  13. A photonic crystal ring resonator formed by SOI nano-rods.

    PubMed

    Chiu, Wei-Yu; Huang, Tai-Wei; Wu, Yen-Hsiang; Chan, Yi-Jen; Hou, Chia-Hunag; Chien, Huang Ta; Chen, Chii-Chang

    2007-11-12

    The design, fabrication and measurement of a silicon-on-insulator (SOI) two-dimensional photonic crystal ring resonator are demonstrated in this study. The structure of the photonic crystal is comprised of silicon nano-rods arranged in a hexagonal lattice on an SOI wafer. The photonic crystal ring resonator allows for the simultaneous separation of light at wavelengths of 1.31 and 1.55mum. The device is fabricated by e-beam lithography. The measurement results confirm that a 1.31mum/1.55mum wavelength ring resonator filter with a nano-rod photonic crystal structure can be realized.

  14. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  15. Defect sensitive etching of hexagonal boron nitride single crystals

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  16. From faceted vesicles to liquid icoshedra: Where topology and crystallography meet

    DOE PAGES

    Guttman, Shani; Ocko, Benjamin M.; Deutsch, Moshe; ...

    2016-02-17

    We study many common amphiphiles that spontaneously self-assemble in aqueous solutions, forming membranes and unilamellar vesicles. While the vesicular membranes are bilayers, with the hydrophilic moieties exposed to the solution, the structure formed by amphiphiles at the oil–water (i.e., alkane–water) interfaces, such as the surface of an oil droplet in water, is typically a monolayer. It has recently been demonstrated that these monolayers and bilayers may crystallize on cooling, with the thermodynamic conditions for this transition set by the geometry of the constituent molecules. While a planar hexagonal packing motif is particularly abundant in these crystals, a hexagonal lattice ismore » incompatible with a closed-surface topology, such as a closed vesicle or the surface of a droplet. Thus, (at least) 12 five-fold defects form, giving rise to a complex interplay between the stretching and the bending energies of these two-dimensional crystals; in addition, a central role is also played by the interfacial tension. This interplay, part of which has been theoretically studied in the past, gives rise to a range of unexpected and counterintuitive phenomena, such as the recently-observed temperature-tunable formation of stable liquid polyhedra, and a tail growing and droplet-splitting akin to the spontaneous emulsification effect.« less

  17. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    NASA Astrophysics Data System (ADS)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  18. Synthesis of GaN by high-pressure ammonolysis of gallium triiodide

    NASA Astrophysics Data System (ADS)

    Purdy, Andrew P.; Case, Sean; Muratore, Nicole

    2003-05-01

    The ammonothermal conversion of GaI 3 to both cubic (zinc-blende) and hexagonal GaN was explored in detail. Gallium triiodide, anhydrous NH 3, and in some cases CuI or LiI co-mineralizers, were sealed in quartz tubes and heated in a pressurized autoclave from 300°C to 515°C. At hot-zone temperatures above 430°C, a deposit of mostly c-GaN collects in the upper portion of the tube, and deposits of phase-pure c-GaN were reliably produced on a 50-60 mg scale when CuI co-mineralizer was added. Crystal morphologies of these microcrystalline c-GaN products are highly dependent on growth conditions and range from triangular prisms to triangular plates, dendritic crystals, and irregular particles. Hexagonal GaN products were either in the form of microrods or micron sized prisms. Nanorods, of presumably h-GaN, also formed in some reactions in low yields, intermixed with microcrystalline c-GaN products.

  19. In situ observation of shear-driven amorphization in silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Zhong, Li; Fan, Feifei

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less

  20. FAST TRACK COMMUNICATION: Growth melt asymmetry in ice crystals under the influence of spruce budworm antifreeze protein

    NASA Astrophysics Data System (ADS)

    Pertaya, Natalya; Celik, Yeliz; Di Prinzio, Carlos L.; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2007-10-01

    Here we describe studies of the crystallization behavior of ice in an aqueous solution of spruce budworm antifreeze protein (sbwAFP) at atmospheric pressure. SbwAFP is an ice binding protein with high thermal hysteresis activity, which helps protect Choristoneura fumiferana (spruce budworm) larvae from freezing as they overwinter in the spruce and fir forests of the north eastern United States and Canada. Different types of ice binding proteins have been found in many other species. They have a wide range of applications in cryomedicine and cryopreservation, as well as the potential to protect plants and vegetables from frost damage through genetic engineering. However, there is much to learn regarding the mechanism of action of ice binding proteins. In our experiments, a solution containing sbwAFP was rapidly frozen and then melted back, thereby allowing us to produce small single crystals. These maintained their hexagonal shapes during cooling within the thermal hysteresis gap. Melt-growth-melt sequences in low concentrations of sbwAFP reveal the same shape transitions as are found in pure ice crystals at low temperature (-22 °C) and high pressure (2000 bar) (Cahoon et al 2006 Phys. Rev. Lett. 96 255502) while both growth and melt shapes display faceted hexagonal morphology, they are rotated 30° relative to one another. Moreover, the initial melt shape and orientation is recovered in the sequence. To visualize the binding of sbwAFP to ice, we labeled the antifreeze protein with enhanced green fluorescent protein (eGFP) and observed the sbwAFP-GFP molecules directly on ice crystals using confocal microscopy. When cooling the ice crystals, facets form on the six primary prism planes (slowest growing planes) that are evenly decorated with sbwAFP-GFP. During melting, apparent facets form on secondary prism planes (fastest melting planes), leaving residual sbwAFP at the six corners of the hexagon. Thus, the same general growth-melt behavior of an apparently rotated crystal that is observed in pure ice under high pressure and low temperature is reproduced in ice under the influence of sbwAFP at ambient pressure and temperatures near 0 °C.

  1. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  2. Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations.

    PubMed

    Stehle, Yijing Y; Sang, Xiahan; Unocic, Raymond R; Voylov, Dmitry; Jackson, Roderick K; Smirnov, Sergei; Vlassiouk, Ivan

    2017-12-13

    Chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes in hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.

  3. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  4. Preliminary morphological and X-ray diffraction studies of the crystals of the DNA cetyltrimethylammonium salt.

    PubMed

    Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y

    1977-04-01

    Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained.

  5. Preliminary morphological and X-ray diffraction studies of the crystals of the DNA cetyltrimethylammonium salt.

    PubMed Central

    Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y

    1977-01-01

    Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained. Images PMID:866188

  6. The effect of ice crystal shape on aircraft contrails

    NASA Astrophysics Data System (ADS)

    Meza Castillo, Omar E.

    Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in ice crystal number, N(t), is not significant compared with the level of uncertainty. In young contrails, the difference between spherical and non-spherical shapes in N(t) is less than 7% for relatively large ice particles and 23% for relatively small ice particles. The ice mass, M(t), is not significantly affected by the crystal shapes, with less than 8% difference. However, the ice surface area, S(t), is the ice metric more sensitive to crystal shape, with a maximum difference of 68%. It increases at late time, though it is mainly governed by geometrical rather than dynamical effects. The small sensitivity to shape effects in the ice contrail metrics when radiation is not included suggests that the spherical shape will provide a reasonable representation for all shapes found in the in-situ studies. The radiation is included at late time, when the lasting effects of contrails are more critical. The inclusion of coupled radiation increases the level of dispersion in the results and hence increases slightly the differences due to shape effects. The small difference is also observed in the infrared heating rates of contrails.

  7. Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology

    DOE PAGES

    Stehle, Yijing Y.; Meyer, III, Harry M.; Unocic, Raymond R.; ...

    2015-11-10

    Mono layer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies formore » the hBN nucleation process of similar to 5 eV and crystal growth of similar to 3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor.« less

  8. Specific features of the structural and magnetic states of a Zn1 - x Ni x Se crystal ( x = 0.0025) at low temperatures

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.

    2008-12-01

    The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.

  9. Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene.

    PubMed

    Rigosi, Albert F; Hill, Heather M; Glavin, Nicholas R; Pookpanratana, Sujitra J; Yang, Yanfei; Boosalis, Alexander G; Hu, Jiuning; Rice, Anthony; Allerman, Andrew A; Nguyen, Nhan V; Hacker, Christina A; Elmquist, Randolph E; Hight Walker, Angela R; Newell, David B

    2018-01-01

    Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride ( a -BN and h -BN) films. The a -BN is formed with pulsed laser deposition and the h -BN is grown with triethylboron (TEB) and NH 3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a -BN, and h -BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h -BN heterostructure.

  10. Experimental vizualization of 2D photonic crystal equi-frequency contours

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Pisarcik, Matej

    2017-12-01

    Photonic crystals have been extensively studied for their unique optical properties that promise interesting novel devices. Our contribution is focused on a 2D photonic crystal structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Azimuthal angle dependences of the specular light reflection were recorded photo-electrically at various angles of icidence and wavelengths. Data obtained were processed via mapping in reciprocal k-space. The method promises a possibility to visualize the equi-frequency contours and get more detailed information about the properties of the sample used.

  11. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na3.13Mg1.43U6F30 and Na2.50Mn1.75U6F30: Structures, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad

    2016-04-01

    Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.

  12. Synthesis and properties of Rb2GeF6:Mn4+ red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Sakurai, Shono; Nakamura, Toshihiro; Adachi, Sadao

    2018-02-01

    Rb2GeF6:Mn4+ red-emitting phosphors were synthesized by coprecipitation and their structural and optical properties were investigated by laser microscopy observation, X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurement. Single-crystalline ingots in the form of a hexagonal pyramid were prepared with a basal plane diameter of ˜2 mm. The XRD analysis suggested that Rb2GeF6 crystallizes in the hexagonal structure (C6v4 = P63mc) with a = 0.5955 nm and c = 0.9672 nm. The phosphor exhibited the strong Mn4+-related zero-phonon line (ZPL) emission peak typically observed in host crystals with piezoelectrically active lattices such as a hexagonal lattice. The quantum efficiencies of the bulk ingot and powdered samples were 87 and 74%, respectively, with nearly the same luminescence decay time of ˜6 ms. The exact ZPL energies and related crystal-field and Racah parameters were obtained from the PL and PLE spectra by Franck-Condon analysis. Temperature-dependent PL intensities were analyzed from T = 20 to 500 K using a thermal quenching model by considering Bose-Einstein phonon statistics. A comparative discussion on the phosphor properties of Rb2GeF6:Mn4+ and Rb2MF6:Mn4+ with M = Si and Ti was also given.

  13. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  14. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1998-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.

  15. Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stehle, Yijing Y.; Sang, Xiahan; Unocic, Raymond R.

    Here, chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes inmore » hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.« less

  16. Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations

    DOE PAGES

    Stehle, Yijing Y.; Sang, Xiahan; Unocic, Raymond R.; ...

    2017-11-14

    Here, chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes inmore » hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.« less

  17. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  18. Epitaxial Growth of Cubic Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2011-01-01

    Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.

  19. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  20. Neutron diffraction study of water freezing on aircraft engine combustor soot.

    PubMed

    Tishkova, V; Demirdjian, B; Ferry, D; Johnson, M

    2011-12-14

    The study of the formation of condensation trails and cirrus clouds on aircraft emitted soot particles is important because of its possible effects on climate. In the present work we studied the freezing of water on aircraft engine combustor (AEC) soot particles under conditions of pressure and temperature similar to the upper troposphere. The microstructure of the AEC soot was found to be heterogeneous containing both primary particles of soot and metallic impurities (Fe, Cu, and Al). We also observed various surface functional groups such as oxygen-containing groups, including sulfate ions, that can act as active sites for water adsorption. Here we studied the formation of ice on the AEC soot particles by using neutron diffraction. We found that for low amount of adsorbed water, cooling even up to 215 K did not lead to the formation of hexagonal ice. Whereas, larger amount of adsorbed water led to the coexistence of liquid water (or amorphous ice) and hexagonal ice (I(h)); 60% of the adsorbed water was in the form of ice I(h) at 255 K. Annealing of the system led to the improvement of the crystal quality of hexagonal ice crystals as demonstrated from neutron diffraction.

  1. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  2. Light scattering by nonspherical particles: Remote sensing and climatic implications

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.

    Calculations of the scattering and adsorption properties of ice crystals and aerosols, which are usually nonspherical, require specific methodologies. There is no unique theoretical solution for the scattering by nonspherical particles. Practically, all the numerical solutions for the scattering of nonspherical particles, including the exact wave equation approach, integral equation method, and discrete-dipole approximation, are applicable only to size parameters less than about 20. Thus, these methods are useful for the study of radiation problems involving nonspherical aerosols and small ice crystals in the thermal infrared wavelengths. The geometric optics approximation has been used to evaluate the scattering, absorption and polarization properties of hexagonal ice crystals whose sizes are much larger than the incident wavelength. This approximation is generally valid for hexagonal ice crystals with size parameters larger than about 30. From existing laboratory data and theoretical results, we illustrate that nonspherical particles absorb less and have a smaller asymmetry factor than the equal-projected area/volume spherical counterparts. In particular, we show that hexagonal ice crystals exhibit numerous halo and arc features that cannot be obtained from spherical particles; and that ice crystals scatter more light in the 60° to 140° scattering angle regions than the spherical counterparts. Satellite remote sensing of the optical depth and height of cirrus clouds using visible and IR channels must use appropriate phase functions for ice crystals. Use of an equivalent sphere model would lead to a significant overestimation and underestimation of the cirrus optical depth and height, respectively. Interpretation of the measurements for polarization reflected from sunlight involving cirrus clouds cannot be made without an appropriate ice crystal model. Large deviations exist for the polarization patterns between spheres and hexagonal ice crystals. Interpretation of lidar backscattering and depolarization signals must also utilize the scattering characteristics of hexagonal ice crystals. Equivalent spherical models substantially underestimate the broadband solar albedos of ice crystal clouds because of stronger forward scattering and larger absorption by spherical particles than hexagonal ice crystals. We illustrate that the net cloud radiative forcing at the top of the atmosphere involving most cirrus clouds is positive, implying that the IR greenhouse effect outweighs the solar albedo effect. If the radiative properties of equivalent spheres are used, a significant increase in cloud radiative forcing occurs. Using a one-dimensional cloud and climate model, we further demonstrate that there is sufficient model sensitivity, in terms of temperature increase, to the use of ice crystal models in radiation calculations.

  3. The Formation and Characterization of GaN Hexagonal Pyramids

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  4. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; Renault, R.W.

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The wallsmore » of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.« less

  6. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  7. Crystallization and preliminary X-ray analysis of the HA3 component of Clostridium botulinum type C progenitor toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Toshio; Tonozuka, Takashi; Kotani, Mao

    2007-12-01

    HA3, a 70 kDa haemagglutinating protein, is a precursor form of HA3a and HA3b, the subcomponents of Clostridium botulinum type C 16S progenitor toxin. In this report, recombinant HA3 protein was overexpressed in Escherichia coli, purified and crystallized. HA3, a 70 kDa haemagglutinating protein, is a precursor form of HA3a and HA3b, the subcomponents of Clostridium botulinum type C 16S progenitor toxin. In this report, recombinant HA3 protein was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.6 Å resolution and the crystal belonged to the hexagonal space group P6{sub 3}. Matthews coefficient and self-rotation functionmore » calculations indicate that there is probably one molecule of HA3 in the asymmetric unit. A search for heavy-atom derivatives has been undertaken.« less

  8. Site specific physics in RT5 (R = rare earths and T = transition metals) materials

    NASA Astrophysics Data System (ADS)

    Paudyal, Durga

    Most of RT5 compounds form in hexagonal CaCu5-type structure with three non-equivalent sites: R (1a), T (2c), and T (3g). R atoms sit in the middle of the T (2c) hexagonal layers. Advanced density functional theory calculations including on-site electron correlation and spin orbit coupling show crystal field split localized R 4f states, which are responsible for the large part of the magnetic anisotropy exhibited by these systems. In addition, the hexagonal T (2c) layers help enhancing the magnetic anisotropy. Partially quenched R 4f orbital moment is the origin of magnetic anisotropy which also helps enhancing magnetic moment. The interchange of T sites by other transition metals and the partial substitution of R atoms by transition metals could optimize needed magnetic moment and magnetic anisotropy by forming a complex geometry structure favoring permanent magnetic properties. This research is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing office.

  9. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface

    PubMed Central

    Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.

    2017-01-01

    Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium. PMID:28195226

  10. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface

    NASA Astrophysics Data System (ADS)

    Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; van Aert, S.; van Tendeloo, G.; Krok, F.

    2017-02-01

    Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.

  11. Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications.

    PubMed

    Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-04-15

    Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical composition and physical properties. Furthermore, we showed a promising opportunity for crystallization of CSA and LSZ in single crystal form as model biomacromolecules for crystallographic structure determination. The main outcomes of our research demonstrated that control of the physical properties of hexagonal LLC on different length scales is key for rational design of these systems as delivery vehicles and crystallization medium for biomacromolecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Crystal structure of human tooth enamel studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre

    2015-02-01

    Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.

  13. Interlaced crystals having a perfect Bravais lattice and complex chemical order revealed by real-space crystallography

    DOE PAGES

    Shen, Xiao; Hernandez-Pagan, Emil; Zhou, Wu; ...

    2014-11-14

    The search for optimal thermoelectric materials aims for structures in which the crystalline order is disrupted to lower the thermal conductivity without degradation of the electron conductivity. Here we report the synthesis and characterization of ternary nanoparticles (two cations and one anion) that exhibit a new form of crystal-line order: an uninterrupted, perfect, global Bravais lattice, in which the two cations exhibit a wide array of distinct ordering patterns within the cation sublattice, form-ing interlaced domains and phases. Partitioning into domains and phases is not unique; the corresponding boundaries have no structural defects or strain and entail no energy cost.more » We call this form of crystalline order “interlaced crystals” and present the example of hexagonal-CuInS 2. Interlacing is possible in multi-cation tetrahedral-ly-bonded compound with an average of two electrons per bond. Interlacing has min-imal effect on electronic properties, but should strongly reduce phonon transport, making interlaced crystals attractive for thermoelectric applications.« less

  14. Negative Refraction with Superior Transmission in Graphene-Hexagonal Boron Nitride (hBN) Multilayer Hyper Crystal

    PubMed Central

    Sayem, Ayed Al; Rahman, Md. Masudur; Mahdy, M. R. C.; Jahangir, Ifat; Rahman, Md. Saifur

    2016-01-01

    In this article, we have theoretically investigated the performance of graphene-hexagonal Boron Nitride (hBN) multilayer structure (hyper crystal) to demonstrate all angle negative refraction along with superior transmission. hBN, one of the latest natural hyperbolic materials, can be a very strong contender to form a hyper crystal with graphene due to its excellence as a graphene-compatible substrate. Although bare hBN can exhibit negative refraction, the transmission is generally low due to its high reflectivity. Whereas due to graphene’s 2D nature and metallic characteristics in the frequency range where hBN behaves as a type-I hyperbolic material, we have found graphene-hBN hyper-crystals to exhibit all angle negative refraction with superior transmission. Interestingly, superior transmission from the whole structure can be fully controlled by the tunability of graphene without hampering the negative refraction originated mainly from hBN. We have also presented an effective medium description of the hyper crystal in the low-k limit and validated the proposed theory analytically and with full wave simulations. Along with the current extensive research on hybridization of graphene plasmon polaritons with (hyperbolic) hBN phonon polaritons, this work might have some substantial impact on this field of research and can be very useful in applications such as hyper-lensing. PMID:27146561

  15. Fast-Moving Bacteria Self-Organize into Active Two-Dimensional Crystals of Rotating Cells

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander P.; Wu, Xiao-Lun; Libchaber, Albert

    2015-04-01

    We investigate a new form of collective dynamics displayed by Thiovulum majus, one of the fastest-swimming bacteria known. Cells spontaneously organize on a surface into a visually striking two-dimensional hexagonal lattice of rotating cells. As each constituent cell rotates its flagella, it creates a tornadolike flow that pulls neighboring cells towards and around it. As cells rotate against their neighbors, they exert forces on one another, causing the crystal to rotate and cells to reorganize. We show how these dynamics arise from hydrodynamic and steric interactions between cells. We derive the equations of motion for a crystal, show that this model explains several aspects of the observed dynamics, and discuss the stability of these active crystals.

  16. Effect of doping with nickel ions on the structural state of a zinc oxide crystal

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Maksimov, V. I.; Gruzdev, N. B.

    2009-10-01

    The fine structure of a hexagonal zinc oxide crystal doped with nickel ions of the composition Zn1 - x Ni x O has been studied using neutron diffraction and magnetic measurements. It is established that even at very low doping levels ( x = 0.0004), the crystal undergoes local distortions in basal planes of the initial hexagonal lattice. The local distortions are assumed to be sources of the formation of ferromagnetism in compounds of this class.

  17. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less

  18. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  19. The Hardest Superconducting Metal Nitride

    DOE PAGES

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; ...

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  20. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  1. Noncollinear antiferromagnetic Mn3Sn films

    NASA Astrophysics Data System (ADS)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  2. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.

    PubMed

    Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang

    2018-04-03

    The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, J. R.

    We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existencemore » of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.« less

  4. Phase relations in the pseudobinary systems RAO3-R2Ti2O7 (R: rare earth element and Y, A: Fe, Ga, Al, Cr and Mn) and syntheses of new compounds R(A1-xTix)O3+x/2 (2/3≤x≤3/4) at elevated temperatures in air

    NASA Astrophysics Data System (ADS)

    Brown, Francisco; Jacobo-Herrera, Ivan; Alvarez-Montaño, Victor; Kimizuka, Noboru; Kurashina, Keiji; Michiue, Yuichi; Matsuo, Yoji; Mori, Shigeo; Ikeda, Naoshi; Medrano, Felipe

    2017-07-01

    Phase relations in the pseudo-binary systems RFeO3-R2Ti2O7 (R: Lu, Ho and Dy), RGaO3-R2Ti2O7 (R: Lu and Er), LuAlO3-Lu2Ti2O7 and RAO3-R2Ti2O7 (R: Lu and Yb. A: Cr and Mn) at elevated temperatures in air were determined by means of a classic quenching method. There exist Lu(Fe1-xTix)O3+x/2, R(Ga1-xTix)O3+x/2 (R: Lu and Er) and Lu(Al1-xTix)O3+x/2 (2/3≤ x≤3/4) having the Yb(Fe1-xTix)O3+x/2-type of crystal structure (x=0.72, space group: R3m, a(Å)=17.9773 and c(Å)=16.978 as a hexagonal setting) in these pseudo binary systems. Eighteen compounds R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) were newly synthesized and their lattice constants as a hexagonal setting were measured by means of the X-ray powder diffraction method. The R occupies the octahedral site and both A and Ti does the trigonalbipyramidal one in these compounds. Relation between lattice constants for the rhombic R(A1-xTix)O3+x/2 and the monoclinic In(A1-xTix)O3+x/2 are as follows, ah≈5 x bm, ch≈3 x cm x sin β and am=31/2 x bm, where ah and ch are the lattice constants as a hexagonal setting for R(A1-xTix)O3+x/2 and am, bm, cm and β are those of the monoclinic In(A1-xTix)O3+x/2. Crystal structural relationships among α-InGaO3 (hexagonal, high pressure form, space group: P63/mmc), InGaO3 (rhombic, hypothetical), (RAO3)n(BO)m and RAO3(ZnO)m (R: Lu-Ho, Y and In, A: Fe, Ga, and Al, B: divalent cation element, m, n: natural number), the orthorhombic-and monoclinic In(A1-xTix)O3+x/2 (A: Fe, Ga, Al, Cr and Mn) and the hexagonal-and rhombic R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) are schematically presented. We concluded that the crystal structures of both the α-InGaO3 (high pressure form, hexagonal, space group: P63/mmc) and the hypothetical InGaO3 (rhombic) are the key structures for constructing the crystal structures of these compounds having the cations with CN=5.

  5. Realization of atomistic transitions with colloidal nanoparticles using an ultrafast laser

    NASA Astrophysics Data System (ADS)

    Akguc, Gursoy; Ilday, Serim; Ilday, Omer; Gulseren, Oguz; Makey, Ghaith; Yavuz, Koray

    We report on realization of rapid atomistic transitions with colloidal nanoparticles in a setting that constitutes a dissipative far-from-equilibrium system subject to stochastic forces. Large colloidal crystals (comprising hundreds of particles) can be formed and transitions between solid-liquid-gas phases can be observed effortlessly and within seconds. Furthermore, this system allows us to form and dynamically arrest metastable phases such as glassy structures and to controllably transform a crystal pattern from square to hexagonal lattices and vice versa as well as to observe formation and propagation of crystal defects (i.e. line defects, point defects, planar defects). The mechanism largely relies on an interplay between convective forces induced by femtosecond pulses and strong Brownian motion; the former drags the colloids to form and reinforce the crystal and the latter is analogous to lattice vibrations, which makes it possible to observe phase transitions, defect formation and propagation and lattice transformation. This unique system can help us get insight into the mechanisms underlying various solid state phenomena that were previously studied under slowly evolving (within hours/days), near-equilibrium colloidal systems.

  6. Orthorhombic YBaCo{sub 4}O{sub 8.4} crystals as a result of saturation of hexagonal YBaCo{sub 4}O{sub 7} crystals with oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podberezskaya, N. V., E-mail: podberez@niic.nsc.ru; Bolotina, N. B., E-mail: nb-bolotina@mail.ru; Komarov, V. Yu., E-mail: komarov-v-y@niic.nsc.ru

    Hexagonal YBaCo{sub 4}O{sub 7} crystals (sp. gr. P6{sub 3}mc, a{sub h} = 6.3058(4) Å, c{sub h} = 10.2442(7) Å, Z = 2) are saturated with oxygen to the YBaCo{sub 4}O{sub 8.4} composition and studied by X-ray diffraction (XRD) analysis. The saturation is completed by a structural first-order phase transition to orthorhombic crystals (sp. gr. Pbc2{sub 1}, a{sub o} = 31.8419(2) Å, b{sub o} = 10.9239(5) Å, c{sub o} = 10.0960(5) Å, Z = 20). The connection of two lattices is expressed in terms of the action of matrix (500/120/001) on the hexagonal basis. Five structural fragments of the same typemore » but with different degrees of order alternate along the long axis of the oxygen-saturated orthorhombic structure. The XRD data on single crystals differ from the results obtained by other researchers on ceramic samples; possible causes of these differences are discussed.« less

  7. Ultrastructural studies of synthetic apatite crystals.

    PubMed

    Arends, J; Jongebloed, W L

    1979-03-01

    In this paper a survey is given of some ultrastructural properties of synthetic hydroxyapatite. The preparation method by which single crystals with a length in the range of 0.1-3.0mm and a defined purity and stoïchiometry can be produced is given. Two groups of materials are considered in detail: carbonate-rich (greater than 0.1% CO3) and low-carbonate hydroxyapatites. The experiments on carbonate-rich material, being the most interesting from a biological point of view, show that acids attack at an active site in the hexagonal basal-plane of the crystals. Later on the crystals dissolve in the center of the crystal parallel to the c-axis forming tube-like structures. The active site can be protected from dissolution if the crystals are pretreated by EHDP or MFP. A comparison with lattice defect theory shows that most likely dislocations of the "hollow-core" type are responsible for the preferential dissolution.

  8. Synthesis and Properties of Iron Oxide Particles Prepared by Hidrothermal Method

    NASA Astrophysics Data System (ADS)

    Saragi, T.; Santika, A. S.; Permana, B.; Syakir, N.; Kartawidjaja, M.; Risdiana

    2017-05-01

    Iron oxide of hematite (α-Fe2O3) has been successfully synthesized by hydrothermal method. The starting materials were Fe(NO3)3.9H2O, 2-methoxyethanol, diethanolamine and n-hexane. The optical, morphology and crystal structure were measured by UV-VIS, TEM and XRD, respectively. From UV-VIS measurement, it was found that the band-gap of sample was 4.17 eV. The morphology of particle was plate-like form. The sample which sintered at 1100°C has high quality crystal with hexagonal structure of α-Fe2O3 phase.

  9. Effect of surface tension anisotropy on cellular morphologies

    NASA Technical Reports Server (NTRS)

    Mcfadden, G. B.; Coriell, S. R.; Sekerka, R. F.

    1988-01-01

    A three-dimensional weakly nonlinear analysis for conditions near the onset of instability at the crystal-melt interface was carried out to second order, taking into account the effects of latent heat generation and surface-tension anisotropy of the crystal-melt interface; particular consideration was given to the growth of a cubic crystal in the 001-, 011-, and 111-line directions. Numerical calculations by McFadden et al. (1987), performed for an aluminum-chromium alloy with the assumption of a linear temperature field and an isotropic surface tension, showed that only hexagonal nodes (and not hexagonal cells) occurred near the onset of instability. The results of the present analysis indicate that the nonlinear temperature field (which occurs when thermal conductivities of the crystal and the melt are different and/or the latent heat effects are not negligible) can modify this result and, for certain alloys and processing conditions, can cause the occurrence of hexagonal cells near the onset of instability.

  10. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  11. Hexagonal and prismatic nanowalled ZnO microboxes.

    PubMed

    Zhao, Fenghua; Lin, Wenjiao; Wu, Mingmei; Xu, Ningsheng; Yang, Xianfeng; Tian, Z Ryan; Su, Qiang

    2006-04-17

    We hereby report hydrothermal syntheses of new microstructures of semiconducting ZnO. Single-crystalline prismatic ZnO microboxes formed by nanowalls and hexagonal hollow microdisks closed by plates with micron-sized inorganic fullerene-like structures have been made in a base-free medium through a one-step hydrothermal synthesis with the help of n-butanol (NB). Structures and morphologies of the products were confirmed by results from powder X-ray diffraction and scanning electron microscopy. NB has been found to play a crucial role in the growth of these hollow structures. It is indicated that these hollow ZnO crystals were grown from redissolution of interiors. These ZnO microboxes exhibit a band emission in the visible range, implying the possession of a high content of defects.

  12. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae).

    PubMed

    Uhlig, Christiane; Kabisch, Johannes; Palm, Gottfried J; Valentin, Klaus; Schweder, Thomas; Krell, Andreas

    2011-12-01

    Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53°C±0.53°C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34°C±0.25°C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Expression, purification and preliminary X-ray characterization of dl-2-haloacid dehalogenase from Methylobacterium sp. CPA1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omi, Rie; Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585; Jitsumori, Keiji

    A recombinant form of dl-2-haloacid dehalogenase from Methylobacterium sp. CPA1 has been expressed in E. coli, purified and crystallized. The crystal belongs to space group P6{sub 3}. Diffraction data have been collected to 1.75 Å resolution. dl-2-Haloacid dehalogenase from Methylobacterium sp. CPA1 (dl-DEX Mb) is a unique enzyme that catalyzes the dehalogenation reaction without the formation of an ester intermediate. A recombinant form of dl-DEX Mb has been expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the hexagonal space group P6{sub 3}, with unit-cell parameters a = b = 186.2, c =more » 114.4 Å. The crystals are likely to contain between four and eight monomers in the asymmetric unit, with a V{sub M} value of 4.20–2.10 Å{sup 3} Da{sup −1}. A self-rotation function revealed peaks on the χ = 180° section. X-ray data have been collected to 1.75 Å resolution.« less

  14. Synthesis, analysis and processing of novel materials in the yttrium oxide-aluminum oxide system

    NASA Astrophysics Data System (ADS)

    Marchal, Julien Claudius

    In the current work, liquid feed flame spray pyrolysis (LF-FSP) was used to create three novel nanopowders in the Y2O3-Al 2O3 system: alpha-Al2O3, YAG (garnet Y3Al5O12) and hexagonal Y3Al 5O12. For example, LF-FSP combustion of metalloorganic yttrium and aluminum precursors in a 3/5 ratio forms hexagonal Y3Al5O 12, a newly discovered crystalline phase detailed in this work. The resulting 15-35 nm average particle size, single crystal nanopowders were characterized by TGA-DTA, XRD, HR-TEM, electron diffraction and FTIR. The data was used to establish a model for the crystal structure of this new phase (hexagonal, with crystal parameter of a = 0.736 nm, c = 1.052) consisting of a superlattice of substituted hexagonal YAlO3. YAG has been extensively investigated for its applications as scintillators, phosphors and as a laser host. Fully dispersible, unaggregated single crystal YAG nanopowders with average particle sizes of 35-50 nm were obtained from hexagonal Y3Al5O12 after annealing at 850°C-1200°C (for 2h-8d). The resulting YAG nanopowder was processed into green bodies using cold isostatic pressing after adding binders. 99%+ dense monoliths were obtained after sintering at 1400°C in vacuum (6-8 h), while maintaining grain sizes < 500 nm. The ability to sinter while keeping sub-micron grains differs from present techniques (where translucency is obtained through exaggerated grain growth to 5-10 microns) reported in the literature for sintering polycrystalline YAG, and is the first step for improving polycrystalline YAG laser host optical properties. LF-FSP processing of transition Al2O3 nanopowders converts them to single crystal alpha-Al2O3 nanopowders, previously thought impossible to obtain. The alpha-Al2O 3 nanopowders thus obtained, consist of unaggregated 30-40 nm single particles. These nanopowders were characterized by XRD, HR-TEM, SEM, DLS, FTIR. Green bodies of alpha-Al2O3 nanopowders were sintered to 99% density without sintering aids at 1400°C (6-8 h). After HIPing at 1400°C and 138 MPa, the pellets exhibited some transparency. LF-FSP thus allows synthesis of large quantities of previously unavailable alpha-Al 2O3 nanopowders necessary for developing nanograined alpha-Al 2O3 ceramic monoliths for transparent armors, polycrystalline laser hosts and prosthetic implants. Most importantly, it demonstrates the use of LF-FSP to modify the crystalline phase of nanopowders, without causing aggregation.

  15. Facile synthesis of Co3O4 hexagonal plates by flux method

    NASA Astrophysics Data System (ADS)

    Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li

    2018-01-01

    Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.

  16. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    NASA Astrophysics Data System (ADS)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  17. The single crystal elastic constants of hexagonal SiC to 1000 C

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1988-01-01

    The relationships between the sound velocities in the cubic and hexagonal crystal structures and the tensor transformations for the two structures are applied to determine the elastic stiffnesses for the hexagonal structures of SiC to 1000 C. These results are then applied to calculate the polycrystalline elastic moduli, E and G, and their temperature variations. The calculated values for E and G at 20 C are 420 and 180 GPa; for (dE/dT) and (dG/dT), the values are -0.020 and -0.007 GPa/C, respectively.These agree well with published experimental values for E and G of dense polycrystalline alpha silicon carbides.

  18. Microtube-Czochralski technique (μT-CZ):. a novel way of seeding the melt to grow bulk single crystal

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, K.; Ramasamy, P.

    1998-09-01

    A novel microtube seeding has been proposed in the conventional Czochralski pulling technique to grow a bulk single crystal. The versatility of the technique has been shown by adopting this method for the growth of benzil. Benzil single crystals having hexagonal facets are grown by this technique called the microtube-Czochralski technique (μT-CZ). Due to capillary rise, a fine column of melt was crystallized inside the microtube, which leads to the formation of the single crystal nucleation and ends up with hexagonal morphology. The reproducibility for getting single crystal is about 80%. It is evident that this technique is more viable to grow a bulk single crystal from the melt without a pregrown-seed. Further, the proposed μT-CZ technique can also be extended to other newer materials with the proper choice of the microtube.

  19. Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nithianantham, Stanley; Xu, Minghua; Wu, Nan

    2006-12-01

    The FadA adhesin from F. nucleatum, which is involved in bacterial attachment and invasion of human oral epithelial cells, has been crystallized in space group P6{sub 1} or P6{sub 5}, and X-ray data have been collected to 1.9 Å resolution. Fusobacterium nucleatum is a Gram-negative anaerobe prevalent in the oral cavity that is associated with periodontal disease, preterm birth and infections in other parts of the human body. The bacteria attach to and invade epithelial and endothelial cells in the gum tissue and elsewhere via a 13.7 kDa adhesin protein FadA (Fusobacterium adhesin A). FadA exists in two forms: themore » intact form (pre-FadA), consisting of 129 amino acids, and the mature form (mFadA), which lacks an 18-residue signal sequence. Both forms have been expressed in Escherichia coli and purified. mFadA has been crystallized. The crystals belong to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 59.3, c = 125.7 Å and one molecule per asymmetric unit. The crystals exhibit an unusually high solvent content of 74%. Synchrotron X-ray data have been collected to 1.9 Å. The crystals are suitable for X-ray structure determination. The crystal structure of FadA may provide a basis for the development of therapeutic agents to combat periodontal disease and other infections associated with F. nucleatum.« less

  20. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    NASA Astrophysics Data System (ADS)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  1. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  2. High pressure phase transitions in the rare earth metal erbium to 151 GPa

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2011-08-01

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  3. Grain size constraints on twin expansion in hexagonal close packed crystals

    DOE PAGES

    Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.

    2016-10-20

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause thesemore » stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.« less

  4. Role of stacking disorder in ice nucleation

    NASA Astrophysics Data System (ADS)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria

    2017-11-01

    The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  5. Role of stacking disorder in ice nucleation.

    PubMed

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  6. Artificial Hip Simulator with Crystal Models

    NASA Image and Video Library

    1966-06-21

    Robert Johnson, top, sets the lubricant flow while Donald Buckley adjusts the bearing specimen on an artificial hip simulator at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The simulator was supplemented by large crystal lattice models to demonstrate the composition of different bearing alloys. This this image by NASA photographer Paul Riedel was used for the cover of the August 15, 1966 edition of McGraw-Hill Product Engineering. Johnson was chief of Lubrication Branch and Buckley head of the Space Environment Lubrication Section in the Fluid System Components Division. In 1962 they began studying the molecular structure of metals. Their friction and wear testing revealed that the optimal structure for metal bearings was a hexagonal crystal structure with proper molecular space. Bearing manufacturers traditionally preferred cubic structures over hexagonal arrangements. Buckley and Johnson found that even though the hexagonal structural was not as inherently strong as its cubic counterpart, it was less likely to cause a catastrophic failure. The Lewis researchers concentrated their efforts on cobalt-molybdenum and titanium alloys for high temperatures applications. The alloys had a number of possible uses, included prosthetics. The alloys were similar in composition to the commercial alloys used for prosthetics, but employed the longer lasting hexagonal structure.

  7. Local crystal/chemical structures at iron sites in amorphous, magnetic, and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Clark, Ted Michael

    Order-disorder phenomena have been examined by means of Mossbauer spectroscopy in a variety of materials, including (a) tektites and other silicate glasses, (b) magnetic materials such as natural and synthetic magnetoplumbite, M-type hexagonal ferrites and magnetite, and (c) nanocrystalline zinc ferrite. A methodology has been established for the analysis of the local crystal/chemical structures of iron in tektites and its application has reconfirmed a low ferric/ferrous ratio of approximately 0.10 for tektites. Additionally, a greater degree of submirocscopic heterogeneity has been established for Muong Nong tektites in comparison with splash form tektites. The dynamics of the 2b site in hexagonal ferrites has been studied above and below the Curie temperature for magnetoplumbite and its synthetic analogs, and also for polycrystalline and oriented single-crystals of MeFesb{12}Osb{19} (Me=Ba, Sr, Pb). Cation ordering on this site is shown to be dependent on the thermal history of the material, while the dynamic disorder of the 2b site for the end-member hexagonal ferrites is shown to be influenced by the divalent heavy metal species, Me. The influence of chemical composition on the morphology of magnetite has been shown to depend on the site preference of impurity cations: Substitutional impurities with tetrahedral site preferences are postulated to result in the seldom-observed cubic habit. Based on the cation distributions of bulk and nanocrystalline material it is held that the enhanced magnetic moments and susceptibilities of nanocrystalline zinc ferrite are shown to be consistent with surface phenomena, independent of synthesis methodology, and contrary to claims of special effects resulting from a particular synthesis methodology.

  8. STIR: Novel Electronic States by Gating Strongly Correlated Materials

    DTIC Science & Technology

    2016-03-01

    plan built on my group’s recent demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to...demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to prevent disorder and chemical...techniques and learned to apply thin hexagonal Boron Nitride to single crystals of materials expected to show some of the most exciting correlated

  9. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  10. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei; Kitamura, Kenji; Ro, Jung Hoon

    2015-03-01

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic "asymmetric in-out domain wall motion" observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (Ec) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1Ec is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15Ec is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  11. Optical characteristics of novel bulk and nanoengineered laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (<100 0C), several techniques for crystal growth have been developed. The hexagonal apatite structure (space group P63/m) is characteristic of several compounds, some of which have extremely interesting and useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  12. High-resolution transmission electron microscopy of hexagonal and rhombohedral molybdenum disulfide crystals.

    PubMed

    Isshiki, T; Nishio, K; Saijo, H; Shiojiri, M; Yabuuchi, Y; Takahashi, N

    1993-07-01

    Natural (molybdenite) and synthesized molybdenum disulfide crystals have been studied by high-resolution transmission electron microscopy. The image simulation demonstrates that the [0001] and [0110] HRTEM images of hexagonal and rhombohedral MoS2 crystals hardly disclose their stacking sequences, and that the [2110] images can distinguish the Mo and S columns along the incident electron beam and enable one to determine not only the crystal structure but also the fault structure. Observed [0001] images of cleaved molybdenite and synthesized MoS2 crystals, however, reveal the strain field around partial dislocations limiting an extended dislocation. A cross-sectional image of a single molecular (S-Mo-S) layer cleaved from molybdenite has been observed. Synthesized MoS2 flakes which were prepared by grinding have been found to be rhombohedral crystals containing many stacking faults caused by glides between S/S layers.

  13. Modeling of monolayer charge-stabilized colloidal crystals with static hexagonal crystal lattice

    NASA Astrophysics Data System (ADS)

    Nagatkin, A. N.; Dyshlovenko, P. E.

    2018-01-01

    The mathematical model of monolayer colloidal crystals of charged hard spheres in liquid electrolyte is proposed. The particles in the monolayer are arranged into the two-dimensional hexagonal crystal lattice. The model enables finding elastic constants of the crystals from the stress-strain dependencies. The model is based on the nonlinear Poisson-Boltzmann differential equation. The Poisson-Boltzmann equation is solved numerically by the finite element method for any spatial configuration. The model has five geometrical and electrical parameters. The model is used to study the crystal with particles comparable in size with the Debye length of the electrolyte. The first- and second-order elastic constants are found for a broad range of densities. The model crystal turns out to be stable relative to small uniform stretching and shearing. It is also demonstrated that the Cauchy relation is not fulfilled in the crystal. This means that the pair effective interaction of any kind is not sufficient to proper model the elasticity of colloids within the one-component approach.

  14. Crystallization of beef heart cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shinya; Shinzawa, Kyoko; Tsukihara, Tomitake; Abe, Toshio; Caughey, Winslow S.

    1991-03-01

    The three-dimensional structure of cytochrome c oxidase, a complex (multimetal, multisubunit) membrane protein is critical to elucidation of the mechanism of the enzymic reactions and their control. Our recent developments in the crystallization of the enzyme isolated from beef hearts are presented. The crystals appeared more readily at higher protein concentration, lower ionic strength, higher detergent concentration (Brij-35) and lower temperature. Large crystals were obtained by changing one of these parameters to the crystallization point as slowly as possible, keeping the other parameters constant. Increasing the detergent concentration was the most successful method, producing green crystals of the resting oxidized form as hexagonal bipyramids with typical dimensions of 0.6 mm. The usual procedures for crystallization of water soluble proteins, such as increasing ionic strength by vapor diffusion, were not applicable for this enzyme. Crystals of the resting oxidized enzyme belong to a space group of P6 2 or P6 4 with cell dimensions, a = b = 208.7 Å and c = 282.3 Å. The Patterson function shows that the crystal exhibited a non-crystallographic two-fold axis parallel to the c-axis in the asymmetric unit.

  15. The structure of small, vapor-deposited particles. II - Experimental study of particles with hexagonal profile

    NASA Technical Reports Server (NTRS)

    Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.

    1979-01-01

    'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.

  16. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot solubility determinations have suggested that in some cases the solubility increases with increasing salt concentrations.

  17. Phase equilibria and crystal chemistry of rubidium niobates and rubidium tantalates

    NASA Technical Reports Server (NTRS)

    Minor, D. B.; Roth, R. S.; Parker, H. S.; Brower, W. S.

    1977-01-01

    The phase equilibria relations and crystal chemistry of portions of the Rb2O-Nb2O5 and Rb2O-Ta2O5 systems were investigated for structures potentially useful as ionic conductors. A hexagonal tungsten bronze-type (HTB) structure was found in both systems as well as three hexagonal phases with mixed HTB-pyrochlore type structures. Ion exchange experiments between various alkali ions are described for several phases. Unit cell dimensions and X-ray diffraction powder patterns are reported.

  18. Insights into the mechanism of the capture of CO2 by K2CO3 sorbent: a DFT study.

    PubMed

    Liu, Hongyan; Qin, Qiaoyun; Zhang, Riguang; Ling, Lixia; Wang, Baojun

    2017-09-13

    The adsorption and reactions of CO 2 and H 2 O on both monoclinic and hexagonal crystal K 2 CO 3 were investigated using the density functional theory (DFT) approach. The calculated adsorption energies showed that adsorption of H 2 O molecules was clearly substantially stronger on the K 2 CO 3 surface than the adsorption of CO 2 , except on the (001)-1 surface of hexagonal K 2 CO 3 , where CO 2 is competitively adsorbed with H 2 O. Carbonation reactions easily occur on pure K 2 CO 3 and involve two parallel paths: one is where adsorbed H 2 O reacts with molecular CO 2 in gas to form the bicarbonate, while the other is where H 2 O dissociates into OH and H before bicarbonate formation, and then OH reacts with gaseous CO 2 to form a bicarbonate. Our results indicate that adding a support or promoter or using a special technique to expose more (001)-1 surfaces in hexagonal K 2 CO 3 may improve the conversion of CO 2 to the bicarbonate, which provides a theoretical direction for the experimental preparation of the K 2 CO 3 sorbent to capture CO 2 .

  19. Dislocation dynamics in hexagonal close-packed crystals

    DOE PAGES

    Aubry, S.; Rhee, M.; Hommes, G.; ...

    2016-04-14

    Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less

  20. Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties.

    PubMed

    Zhang, Lei; Maity, Sourav; Liu, Kai; Liu, Qing; Göstl, Robert; Portale, Giuseppe; Roos, Wouter H; Herrmann, Andreas

    2017-09-01

    Over the last decades, water-based lyotropic liquid crystals of nucleic acids have been extensively investigated because of their important role in biology. Alongside, solvent-free thermotropic liquid crystals (TLCs) from DNA are gaining great interest, owing to their relevance to DNA-inspired optoelectronic applications. Up to now, however, only the smectic phase of DNA TLCs has been reported. The development of new mesophases including nematic, hexagonal, and cubic structures for DNA TLCs remains a significant challenge, which thus limits their technological applications considerably. In this work, a new type of DNA TLC that is formed by electrostatic complexation of anionic oligonucleotides and cationic surfactants containing an azobenzene (AZO) moiety is demonstrated. DNA-AZO complexes form a stable nematic mesophase over a temperature range from -7 to 110 °C and retain double-stranded DNA structure at ambient temperature. Photoisomerization of the AZO moieties from the E- to the Z-form alters the stiffness of the DNA-AZO hybrid materials opening a pathway toward the development of DNA TLCs as stimuli-responsive biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Micellar-shape anisometry near isotropic-liquid-crystal phase transitions

    NASA Astrophysics Data System (ADS)

    Itri, R.; Amaral, L. Q.

    1993-04-01

    Micellar phases of the sodium dodecyl (lauryl) sulfate (SLS)-water-decanol system have been studied by x-ray scattering in the isotropic (I) phase, with emphasis on the I-->hexagonal (Hα) and I-->nematic-cylindrical (Nc) lyotropic liquid-crystal phase transitions. Analysis of the scattering curves is made through modeling of the product P(q)S(q), where P(q) is the micellar form factor and S(q) is the intermicellar interference function, calculated from screened Coulombic repulsion in a mean spherical approximation. Results show that micelles grow more by decanol addition near the I-->Nc transition (anisometry ν~=3) than by increased amphiphile concentration in the binary system near the I-->Hα phase transition (ν~=2.4). These results compare well with recent theories for isotropic-liquid-crystal phase transitions.

  2. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO{sub 4}.0.667H{sub 2}O to the hexagonal LnPO{sub 4} (Ln = Nd, Sm, Gd, Eu and Dy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesbah, Adel, E-mail: adel.mesbah@cea.fr; Clavier, Nicolas; Elkaim, Erik

    The dehydration process of the hydrated rhabdophane LnPO{sub 4}.0.667H{sub 2}O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO{sub 4}.0.667H{sub 2}O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å{sup 3}. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrousmore » form, which crystallizes in the hexagonal P3{sub 1}21 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å{sup 3}. This study was extended to selected LnPO{sub 4}.0.667H{sub 2}O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO{sub 4}.0.5H{sub 2}O. - Graphical abstract: The dehydration process of the rhabdophane SmPO{sub 4}.0.667H{sub 2}O was studied over combination of in situ high resolution synchrotron powder diffraction and TGA techniques, a first dehydration was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2). Then above 220 °C, the anhydrous form of the rhabdophane SmPO{sub 4} was stabilized and crystallizes in the hexagonal P3{sub 1}21 space group. - Highlights: • In situ synchrotron powder diffraction was carried out during the dehydration of the rhabdopahe LnPO{sub 4}.0.667H{sub 2}O. • The heat of the rhabdophane LnPO{sub 4}.0.667H{sub 2}O leads to LnPO{sub 4}.0.5H{sub 2}O then to anhydrous rhabdophane LnPO{sub 4}. • LnPO{sub 4}.0.5H{sub 2}O (monoclinic, C2) and LnPO{sub 4} (Hexagonal, P3{sub 1}21) were solved over the use of direct methods.« less

  3. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2015-07-23

    Clathrate hydrates and ice I are the most abundant crystals of water. The study of their nucleation, growth, and decomposition using molecular simulations requires an accurate and efficient algorithm that distinguishes water molecules that belong to each of these crystals and the liquid phase. Existing algorithms identify ice or clathrates, but not both. This poses a challenge for cases in which ice and hydrate coexist, such as in the synthesis of clathrates from ice and the formation of ice from clathrates during self-preservation of methane hydrates. Here we present an efficient algorithm for the identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in molecular simulations. CHILL+ uses the number of staggered and eclipsed water-water bonds to identify water molecules in cubic ice, hexagonal ice, and clathrate hydrate. CHILL+ is an extension of CHILL (Moore et al. Phys. Chem. Chem. Phys. 2010, 12, 4124-4134), which identifies hexagonal and cubic ice but not clathrates. In addition to the identification of hydrates, CHILL+ significantly improves the detection of hexagonal ice up to its melting point. We validate the use of CHILL+ for the identification of stacking faults in ice and the nucleation and growth of clathrate hydrates. To our knowledge, this is the first algorithm that allows for the simultaneous identification of ice and clathrate hydrates, and it does so in a way that is competitive with respect to existing methods used to identify any of these crystals.

  4. Crystallization and preliminary X-ray diffraction analysis of P30, the transmembrane domain of pertactin, an autotransporter from Bordetella pertussis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yanshi; Black, Isobel; Roszak, Aleksander W.

    2007-07-01

    P30, the transmembrane C-terminal domain of pertactin from B. pertussis has been crystallized after refolding in vitro. Preliminary X-ray crystallographic data are reported. P30, the 32 kDa transmembrane C-terminal domain of pertactin from Bordetella pertussis, is supposed to form a β-barrel inserted into the outer membrane for the translocation of the passenger domain. P30 was cloned and expressed in inclusion bodies in Escherichia coli. After refolding and purification, the protein was crystallized using the sitting-drop vapour-diffusion method at 292 K. The crystals diffract to a resolution limit of 3.5 Å using synchrotron radiation and belong to the hexagonal space groupmore » P6{sub 1}22, with unit-cell parameters a = b = 123.27, c = 134.43 Å.« less

  5. Structural, magnetic, magneto-caloric and Mössbauer spectral study of Tb{sub 2}Fe{sub 17} compound synthesized by arc melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charfeddine, S.; LVMU, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cédria, BP 73 Soliman 8027; Zehani, K.

    We have synthesized the intermetallic Tb{sub 2}Fe{sub 17} compound in hexagonal crystal structure by arc-melting without annealing. X-ray diffraction pattern has been refined by Rietveld method. The crystal structure is hexagonal with P6{sub 3}/mmc space group (Th{sub 2}Ni{sub 17}-type). The Mössbauer spectrum of Tb{sub 2}Fe{sub 17} compound has been analyzed with seven magnetic sextets assigned to the inequivalent crystallographic sites. The temperature dependence of magnetization data revealed that Tb{sub 2}Fe{sub 17} exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of Curie temperature (T{sub C}=412 K). The relative cooling power around the magnetic transition and the Arrott plotsmore » are also reported. - Graphical abstract: A 3D surface showing the temperature and applied magnetic field dependencies of the magnetization for Tb{sub 2}Fe{sub 17} compound (left). Rietveld analysis of the XRD pattern (right). Crystal structure for the hexagonal P6{sub 3}/mmc Tb{sub 2}Fe{sub 17} (bottom). Display Omitted - Highlights: • Tb{sub 2}Fe{sub 17} single-phase synthesized by simple arc-melting without any heat treatment. • The crystal structure is hexagonal with P6{sub 3}/mmc space group. • The magnetic entropy change of the sample was determined by Maxwell relation. • Hyperfine parameters, magnetic and magnetocaloric properties were studied.« less

  6. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang; Jiang, Shuai

    2013-11-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co-Ti-B4C-Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti-Al, Co-Ti, Co-Sb intermetallics, TiC, TiB2, TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB2 (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB2/TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB2/TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles.

  7. Uranyl-Peroxide Clusters Incorporating Iron Trimers and Bridging by Bisphosphonate- and Carboxylate-Containing Ligands.

    PubMed

    Qiu, Jie; Dong, Sining; Szymanowski, Jennifer E S; Dobrowolska, Malgorzata; Burns, Peter C

    2017-04-03

    A hybrid uranium-iron cage nanocluster, [(UO 2 ) 24 (FeOH) 24 (O 2 ) 24 (PO 4 ) 8 (CH(COO)(PO 3 ) 2 ) 24 ] 96- (U 24 Fe 24 ), was synthesized using bridging ligands containing bisphosphonate and carboxylate groups. U 24 Fe 24 contains six tetramers of uranyl hexagonal bipyramids and eight iron trimers, each of which consists of three corner-sharing Fe 3+ octahedra and is stabilized by in situ formed phosphate and 2,2-bis(phosphonato)acetate (C 2 P 2 ) groups. Tetramers and trimers are bridged by 24 C 2 P 2 groups into a cage cluster. Crystals of U 24 Fe 24 present a paramagnetic-like behavior. X-ray scattering showed that U 24 Fe 24 forms in the reactant solution prior to crystallization and is stable upon dissolution in water.

  8. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  9. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO4.0.667H2O to the hexagonal LnPO4 (Ln = Nd, Sm, Gd, Eu and Dy)

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Clavier, Nicolas; Elkaim, Erik; Szenknect, Stéphanie; Dacheux, Nicolas

    2017-05-01

    The dehydration process of the hydrated rhabdophane LnPO4.0.667H2O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO4.0.667H2O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO4.0.5H2O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å3. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrous form, which crystallizes in the hexagonal P3121 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å3. This study was extended to selected LnPO4.0.667H2O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO4.0.5H2O.

  10. Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dem'yanets, L. N., E-mail: demianets@ns.crys.ras.ru; Artemov, V. V.; Li, L. E.

    Zinc oxide low-dimensional hollow structures in the form of hexagonal plates with holes at the center of the {l_brace}0001{r_brace} facets are synthesized in the course of the low-temperature interaction of ZnO precursors with aqueous solutions of potassium fluoride under hydrothermal conditions. Crystals have the shape of single-walled or multiwalled 'nuts.' The high optical quality of the structures is confirmed by cathodoluminescence data at room temperature. The mechanism of the formation of ZnO 'nanonuts' and products of the interaction of the ZnO precursors with KF is proposed.

  11. Maxwell-Wagner effect in hexagonal BaTiO3 single crystals grown by containerless processing

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    2004-10-01

    Oxygen-deficient hexagonal BaTiO3 single crystals, with dielectric constant ε '˜105 and loss component tan δ ˜0.13 at room temperature and a linear temperature dependence of ε' in the range 70-100K, was analyzed by impedance spectroscopy analysis. Two capacitors, bulk and interfacial boundary layer, were observed, and the colossal dielectric constant was mainly dominated by the interfacial boundary layers due to Maxwell-Wagner effect. After annealing the oxygen-deficient hexagonal BaTiO3 at 663K, the ε ' and tanδ became, respectively, 2×104 and 0.07 at room temperature. This work showed an important technological implication as annealing at lower temperatures would help to obtain materials with tailored dielectric properties.

  12. STM/STS Study of LixCoO2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Minato, Taketoshi; Miyoshi, Kiyotaka; Takeuchi, Jun; Kim, Yousoo; Hitosugi, Taro

    2012-02-01

    We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on LixCoO2 (x=0.66) single crystal surfaces. A (1x1) hexagonal lattice was clearly observed and found to be moved by changing bias-voltage polarity, indicating that this could be associated with Li ions on the surface. Under the (1x1) hexagonal lattice, we imaged almost randomly distributed bright dots that were strongly dependent on bias-voltage, with insulating spectroscopic features. Different area on the surface showed a (2x2) hexagonal lattice that could be related to an ordering of Co^3+ and Co^4+ ions. These results suggest the electronic structure of LixCoO2 surface is inhomogeneous possibly due to segregation of Li ions.

  13. Structures, phase transitions, and magnetic properties of C o3Si from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Yu, Shu; Wu, Shunqing; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-07-01

    C o3Si was recently reported to exhibit remarkable magnetic properties in the nanoparticle form [B. Balasubramanian et al., Appl. Phys. Lett. 108, 152406 (2016)], 10.1063/1.4945987, yet better understanding of this material should be promoted. Here we report a study on the crystal structures of C o3Si using an adaptive genetic algorithm and discuss its electronic and magnetic properties from first-principles calculations. Several competing phases of C o3Si have been revealed from our calculations. We show that the hexagonal C o3Si structure reported in experiments has lower energy in the nonmagnetic state than in the ferromagnetic state at zero temperature. The ferromagnetic state of the hexagonal structure is dynamically unstable with imaginary phonon modes and transforms into a new orthorhombic structure, which is confirmed by our structure searches to have the lowest energy for both C o3Si and C o3Ge . Magnetic properties of the experimental hexagonal structure and the lowest-energy structures obtained from our structure searches are investigated in detail.

  14. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    NASA Astrophysics Data System (ADS)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  15. Synthesis, crystal structure, and properties of new lead barium borate with B3O6 plane hexagonal rings

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwu

    2017-08-01

    A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.

  16. Crystal Structure, Electric Polarization and Heat Capacity Measurements on Small R-Ion Multiferroic Hexagonal RMnO3

    NASA Astrophysics Data System (ADS)

    Yu, Tian; Gao, Peng; Wu, Tao; Tyson, Trevor; Lalancette, Roger

    2013-03-01

    Crystal structure, electric polarization and heat capacity measurements on the hexagonal multiferroic RMnO3 reveal that small R ion (Lu and lower cation size) systems are ferroelectric and possess the same space-group as YMnO3. Combined local and long range structural measurements were conducted by XAFS, PDF and single crystal and powder XRD methods. The influence of the Mn-O and R-O distribution on the electric polarization is discussed. Point charge estimates of the electrical polarization are given for comparison with the YMnO3 system. This work is supported by DOE Grant DE-FG02-07ER46402.

  17. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study

    PubMed Central

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-01-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689

  18. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BNmore » until it may cover entire h-BN flakes.« less

  19. Charge transport through one-dimensional Moiré crystals

    PubMed Central

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067

  20. New crystal structures in hexagonal CuInS2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Hernández-Pagan, Emil A.; Zhou, Wu; Puzyrev, Yevgeniy S.; Idrobo, Juan C.; MacDonald, Janet E.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2013-03-01

    CuInS2 is one of the best candidate materials for solar energy harvesting. Its nanocrystals with a hexagonal lattice structure that is different from the bulk chalcopyrite phase have been synthesized by many groups. The structure of these CuInS2 nanocrystals has been previously identified as the wurtzite structure in which the copper and indium atoms randomly occupy the cation sites. Using first-principles total energy and electronic structure calculations based on density functional theory, UV-vis absorption spectroscopy, X-ray diffraction, and atomic resolution Z-contrast images obtained in an aberration-corrected scanning transmission electron microscope, we show that CuInS2 nanocrystals do not form random wurtzite structure. Instead, the CuInS2 nanocrystals consist of several wurtzite- related crystal structures with ordered cation sublattices, some of which are reported for the first time here. This work is supported by the NSF TN-SCORE (JEM), by NSF (WZ), by ORNL's Shared Research Equipment User Program (JCI) sponsored by DOE BES, by DOE BES Materials Sciences and Engineering Division (SJP, STP), and used resources of the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.

  1. Large-area photonic crystals

    NASA Astrophysics Data System (ADS)

    Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger

    2004-09-01

    Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.

  2. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  3. Mach Cones in a Coulomb Lattice and a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Samsonov, D.; Goree, J.; Ma, Z. W.; Bhattacharjee, A.; Thomas, H. M.; Morfill, G. E.

    1999-11-01

    Mach cones, or V-shaped disturbances created by supersonic objects, have been detected in a two-dimensional Coulomb crystal. Electrically charged microspheres levitated in a glow-discharge plasma formed a dusty plasma, with particles arranged in a hexagonal lattice in a horizontal plane. Beneath this lattice plane, a sphere moved faster than the lattice sound speed. Mach cones were double, first compressive then rarefactive, due to the strongly coupled crystalline state. Molecular dynamics simulations using a Yukawa potential also show multiple Mach cones.

  4. Crystal growth of incommensurate members of 2H-hexagonal perovskite related oxides: Ba{sub 4}M{sub z}Pt{sub 3−z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Timothy; Morrison, Gregory; Yeon, Jeongho

    2016-04-15

    Millimeter sized crystals of six oxides of approximate composition Ba{sub 4}M{sub z}Pt{sub 3-z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt) were grown from molten K{sub 2}CO{sub 3} fluxes and found to crystallize in a 2H hexagonal perovskite-related structure type. The compositions of these incommensurate structures, which belong to the A{sub 3n+3m}A′{sub n}B{sub 3m+n}O{sub 9m+6n} family of 2H hexagonal perovskite related oxides, were characterized by X-ray diffraction, energy dispersive spectroscopy, and magnetic susceptibility measurements. The specific synthetic considerations, crystal growth conditions, and magnetic susceptibility measurements are discussed. - Graphical abstract: SEM image and average commensurate unit cell of Ba{sub 4}Pt{sub 3}O{submore » 9.} - Highlights: • Single crystals of the series Ba{sub 4}A′{sub z}Pt{sub 3-z}O{sub 9} were grown via a molten carbonate flux. • Ba{sub 4}Pt{sub 3}O{sub 9} and all substitutional variants are incommensurate, composite structures. • All compounds have an approximate stoichiometry of Ba{sub 4}A′Pt{sub 2}O{sub 9.}.« less

  5. Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets.

    PubMed

    Wakahara, Takatsugu; Sathish, Marappan; Miyazawa, Kun'ichi; Hu, Chunping; Tateyama, Yoshitaka; Nemoto, Yoshihiro; Sasaki, Toshio; Ito, Osamu

    2009-07-29

    The supramolecular nanoarchitectures, C(60)/ferrocene nanosheets, were prepared by a simple liquid-liquid interfacial precipitation method and fully characterized by means of SEM, STEM, HRTEM, XRD, Raman and UV-vis-NIR spectra. The highly crystallized C(60)/ferrocene hexagonal nanosheets had a size of ca. 9 microm and the formulation C(60)(ferrocene)(2). A strong charge-transfer (CT) band between ferrocene and C(60) was observed at 782 nm, indicating the presence of donor-acceptor interaction in the nanosheets. Upon heating the nanosheets to 150 degrees C, the CT band disappeared due to the sublimation of ferrocene from the C(60)/ferrocene hybrid, and C(60) nanosheets with an fcc crystal structure and the same shape and size as the C(60)/ferrocene nanosheets were obtained.

  6. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  7. Magnetic ground state of the multiferroic hexagonal LuFe O3

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  8. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  9. Calculation of photonic bandgap for 2D hexagonal and square structure base on hybrid polymer material

    NASA Astrophysics Data System (ADS)

    Hidayat, S.; Riveli, N.

    2018-05-01

    We have calculated 2D photonic crystal band gap using plane-wave expansion method. The studied model of structures is hexagonal lattice and square lattice of rod cylinder in air. We have simulated the dispersion relation of it structure using hybrid polymer as rod material. The parameter structures are nrod = 1.5, nhole = 1, and rrod = 0.25a, where a is lattice constant. We found the distributed feedback occurs at the edge of upper band or frequency at 0.66 (a/λ). In our experimental work, we have successfully fabricated the 2D photonic crystal from hybrid polymer incorporated with organic dye laser. The lasing characteristics ware investigated using strip-line excitation light of SHG Nd-YAG laser (λ=532 nm). The lasing wavelengths for hexagonal structure are observed at 606 nm and 621 nm for photonic crystal period of 400 nm and 410 nm, respectively. λ=532 nm). Whereas the square structure, the lasing wavelengths are observed at (588 nm ± 2) and (606 nm ± 2 nm) for grating period of 391 nm and 405 nm.

  10. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    PubMed Central

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  11. On the use of bismuth as a neutron filter

    NASA Astrophysics Data System (ADS)

    Adib, M.; Kilany, M.

    2003-02-01

    A formula is given which, for neutron energies in the range 10 -4< E<10 eV, permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of bismuth temperature and crystalline form. Computer programs have been developed which allow calculations for the Bi rhombohedral structure in its poly-crystalline form and its equivalent hexagonal close-packed structure. The calculated total neutron cross-sections for poly-crystalline Bi at different temperatures were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data. Agreement was also obtained for values of Bi-single crystals, at room and liquid nitrogen temperatures. A feasibility study for use of Bi in powdered form, as a cold neutron filter, is detailed in terms of the optimum Bi-single crystal thickness, mosaic spread, temperature and cutting plane for efficient transmission of thermal-reactor neutrons, and also for rejection of the accompanying fast neutrons and gamma rays.

  12. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    PubMed

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  13. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  14. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  15. Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun

    2016-05-28

    We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and themore » thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.« less

  16. ZnO nanodisk based UV detectors with printed electrodes.

    PubMed

    Alenezi, Mohammad R; Alshammari, Abdullah S; Alzanki, Talal H; Jarowski, Peter; Henley, Simon John; Silva, S Ravi P

    2014-04-08

    The fabrication of highly functional materials for practical devices requires a deep understanding of the association between morphological and structural properties and applications. A controlled hydrothermal method to produce single crystal ZnO hexagonal nanodisks, nanorings, and nanoroses using a mixed solution of zinc sulfate (ZnSO4) and hexamethylenetetramine (HMTA) without the need of catalysts, substrates, or templates at low temperature (75 °C) is introduced. Metal-semiconductor-metal (MSM) ultraviolet (UV) detectors were fabricated based on individual and multiple single-crystal zinc oxide (ZnO) hexagonal nanodisks. High quality single crystal individual nanodisk devices were fabricated with inkjet-printed silver electrodes. The detectors fabricated show record photoresponsivity (3300 A/W) and external quantum efficiency (1.2 × 10(4)), which we attribute to the absence of grain boundaries in the single crystal ZnO nanodisk and the polarity of its exposed surface.

  17. Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Bansal, Narottam P.

    1994-01-01

    Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.

  18. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, David S.

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although amore » large T c value is unlikely.« less

  19. Growth of nano hexagon-like flake arrays cerium carbonate created with PAH as the substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M., E-mail: limei@imust.cn; School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Department of Inorganic and Metalloid Materials, Key Laboratory of New Technologies of Modern Metallurgy and Application of Rare Materials, Baotou 014010; Hu, Y.H., E-mail: bthyh@163.com

    Petals-like Ce{sub 2}(CO{sub 3}){sub 3} on Ce{sub 2}(CO{sub 3}){sub 3} nano hexagon-like flake arrays have been precipitatingly fabricated using PAH substrates. By changing the way of feeding, PAH concentration and aging time, petals-like Ce{sub 2}(CO{sub 3}){sub 3} was created best when adding PAH into the Ce(NO{sub 3}){sub 3} solution, joined (NH{sub 4}){sub 2}CO{sub 3} solution along with mixing, PAH concentration is 0.9 g/L, aging time is 4 h. A growth mechanism was proposed to account for the growth of the petals-like Ce{sub 2}(CO{sub 3}){sub 3} with PAH as the substrate. Poly allylamine hydrochloride (PAH) is as template agent which formsmore » π-allyl complex with Ce{sup 3+} and controls the morphology of Ce{sub 2}(CO{sub 3}){sub 3} particle. PAH and Ce{sup 3+} form π-allyl complex, and then induce the formation of Ce{sub 2}(CO{sub 3}){sub 3} crystal nucleus. And infrared spectrum analysis verified. XRD show that after adding PAH which is adsorbed on the crystal plane, the growth of Ce{sub 2}(CO{sub 3}){sub 3} crystal is inhibited on (2 4 2), the growth is promoted on (2 0 2) which is differentiated into the new (1 5 1), (2 2 2) is unchanged, Ce{sub 2}(CO{sub 3}){sub 3} crystal is accumulated petals shape by hexagon-like flake. UV absorption spectra show that CeO{sub 2} as prepared precursor Ce{sub 2}(CO{sub 3}){sub 3} after calcinations in air at high temperatures, the petal-like CeO{sub 2} has strong UV absorption and reflection effects, and absorption interval changed significantly by the move to UVA from UVB. - Graphical abstract: Each Ce-atom connects three Cl-atoms and three allyls in three dimensional spaces. To take the plane as a reference plane which is arrayed with three Ce-atom as equilateral triangle. The triangular each vertex is Ce-atom, the triangular center place is Cl-atom, the equilateral triangle which is mutually perpendicular with Ce-triangle surface and the inclined angle is 60° is made up with three Cl-atoms. - Highlights: • Petals-like Ce{sub 2}(CO{sub 3}){sub 3} were synthesized with PAH. • PAH and Ce{sup 3+} form π-allyl complex. • The growth crystal is inhibited on (2 4 2) and promoted on (2 0 2). • CeO{sub 2} absorption interval changed by the move to UVA from UVB.« less

  20. A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations

    NASA Astrophysics Data System (ADS)

    Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.

    2017-06-01

    This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.

  1. Morphological Evolution of Nanocluster Aggregates and Single Crystals in Alkaline Zinc Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, D; Turney, DE; Anantharaman, B

    2014-04-24

    The morphology of Zn electrodeposits is studied on carbon-coated transmission electron microscopy grids. At low over-potentials (eta = -50 mV), the morphology develops by aggregation at two distinct length scales: similar to 5 nm diameter monocrystalline nanoclusters form similar to 50 nm diameter polycrystalline aggregates, and the aggregates form a branched network. Epitaxial (00 (0) over bar2) growth above an overpotential of vertical bar eta(c)vertical bar > 125 mV leads to the formation of hexagonal single crystals up to 2 mu m in diameter. Potentiostatic current transients were used to calculate the nucleation rate from Scharifker et al.'s model. Themore » exp(eta) dependence of the nucleation rates indicates that atomistic nucleation theory explains the nucleation process better than Volmer-Weber theory. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment.« less

  2. Investigation and characterization of ZnO single crystal microtubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less

  3. Crystallization and preliminary X-ray crystallographic analysis of the heterodimeric crotoxin complex and the isolated subunits crotapotin and phospholipase A{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, K. F.; Murakami, M. T.; Cintra, A. C. O.

    2007-04-01

    Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained. Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained.more » The crotoxin complex crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 38.2, b = 68.7, c = 84.2 Å, and diffracted to 1.75 Å resolution. The crystal of the phospholipase A{sub 2} domain belongs to the hexagonal space group P6{sub 1}22 (or its enantiomorph P6{sub 5}22), with unit-cell parameters a = b = 38.7, c = 286.7 Å, and diffracted to 2.6 Å resolution. The crotapotin crystal diffracted to 2.3 Å resolution; however, the highly diffuse diffraction pattern did not permit unambiguous assignment of the unit-cell parameters.« less

  4. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    NASA Astrophysics Data System (ADS)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  5. Pure rhombohedral Bi1-x EuxPO4 nano-/micro-structures: fast synthesis, shape evolution and luminescence properties.

    PubMed

    Yu, Dongyan; Liang, Yujun; Zhang, Mengfei; Li, Guogang; Yan, Chunjie

    2016-02-01

    BiPO4 and Eu-doped BiPO4 crystals were synthesized via a simple precipitation route at room temperature, employing Bi(NO3)3 and (NH4)2HPO4 as the reactants, Eu2O3 as the dopant and citric acid as a template. X-ray powder diffraction analyses showed that pure rhombohedral BiPO4 form was obtained, and was the preferential orientation growth of the crystal. Field emission scanning electron microscope observations showed that the concentration of Bi(3+) obviously changed the products' morphologies from nanosphere, hollow sphere to hexagonal prism. The acidity of the solution and the contents of citric acid and Eu(3+) ion tailored the size of the final crystals. Effects of concentration of Eu(3+) ion on the luminescence emission intensity were also investigated. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE PAGES

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...

    2017-10-04

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  7. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  8. The role of the cubic structure in freezing of a supercooled water droplet on an ice substrate

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kobayashi, T.

    1983-12-01

    The possibility of the formation of a metastable cubic (diamond) structure and its role in freezing of a supercooled water droplet on an ice substrate are discussed in terms of two-dimensional nucleation. The mode of stacking sequence of new layers formed by two-dimensional nucleation is divided into single and multi-nucleation according to the degree of supercooling and to the size of the supercooled droplet. In the case of single nucleation a frozen droplet develops into a complete hexagonal single crystal or an optically single crystal (containing discontinuous stacking faults). In the case of multi-nucleation attention is paid to the size effect and the stacking direction of the nucleus to calculate the waiting time in the nucleation. Then the frozen droplets are crystallographically divided into three categories: completely single crystals, optically single crystals (containing a small cubic structure, i.e. stacking faults) and polycrystals with a misorientation of 70.53° between the c-axes.

  9. Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.

    PubMed

    Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong

    2016-08-23

    The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.

  10. Crystallography of ordered colloids using optical microscopy. 2. Divergent-beam technique.

    PubMed

    Rogers, Richard B; Lagerlöf, K Peter D

    2008-04-10

    A technique has been developed to extract quantitative crystallographic data from randomly oriented colloidal crystals using a divergent-beam approach. This technique was tested on a series of diverse experimental images of colloidal crystals formed from monodisperse suspensions of sterically stabilized poly-(methyl methacrylate) spheres suspended in organic index-matching solvents. Complete sets of reciprocal lattice basis vectors were extracted in all but one case. When data extraction was successful, results appeared to be accurate to about 1% for lattice parameters and to within approximately 2 degrees for orientation. This approach is easier to implement than a previously developed parallel-beam approach with the drawback that the divergent-beam approach is not as robust in certain situations with random hexagonal close-packed crystals. The two techniques are therefore complimentary to each other, and between them it should be possible to extract quantitative crystallographic data with a conventional optical microscope from any closely index-matched colloidal crystal whose lattice parameters are compatible with visible wavelengths.

  11. Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax from Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Shin; Yasutake, Yoshiaki; Tajima, Kenji

    2005-02-01

    The cellulose biosynthesis-related protein CMCax from A. xylinum has been purified and crystallized. The crystals of CMCax belong to the primitive hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 89.1, c = 94.2 Å.

  12. Lunar troilite: Crystallography

    USGS Publications Warehouse

    Evans, H.T.

    1970-01-01

    Fine, euhedral crystals of troilite from lunar sample 10050 show a hexagonal habit consistent with the high-temperature NiAs-type structure. Complete three-dimensional counter intensity data have been measured and used to confirm and refine Bertaut's proposed low-temperature crystal structure.

  13. Formation of different micro-morphologies from VO2 and ZnO crystallization using macro-porous silicon substrates

    NASA Astrophysics Data System (ADS)

    Salazar-Kuri, U.; Antúnez, E. E.; Estevez, J. O.; Olive-Méndez, Sion F.; Silva-González, N. R.; Agarwal, V.

    2017-05-01

    Square-shaped macropores produced by electrochemical anodization of n- and p-type Si wafers have been used as centers of nucleation to crystallize VO2 and ZnO. Substrate roughness dependent formation of different morphologies is revealed in the form of squared particles, spheres, bars and ribbons in the case of VO2 and hexagonal piles and spheres in the case of ZnO, have been observed.The presence of nano-/micro-metric crystals was studied through field emission scanning electron microscopy and energy dispersive X-ray spectroscopy mapping. Crystal structure of metal oxides was confirmed by micro-Raman spectroscopy. The growth of the different morphologies has been explained in terms of the surface free energy of a bare Si/SiO2 substrate and its modification originated from the roughness of the surface and of the walls of the porous substrates. This energy plays a crucial role on the minimization of the required energy to induce heterogeneous nucleation and crystal growth. Present work strengthens and provides an experimental evidence of roughness dependent metal oxide crystal growth with well-defined habits from pore corners and rough sides of the pore walls, similar to already reported protein crystals.

  14. Continuous-wave mid-infrared photonic crystal light emitters at room temperature

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Shi, Zhisheng

    2017-01-01

    Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.

  15. Epitaxial growth and photoluminescence of hexagonal CdS 1- xSe x alloy films

    NASA Astrophysics Data System (ADS)

    Grün, M.; Gerlach, H.; Breitkopf, Th.; Hetterich, M.; Reznitsky, A.; Kalt, H.; Klingshirn, C.

    1995-01-01

    CdSSe ternary alloy films were grown on GaAs(111) by hot-wall beam epitaxy. The hexagonal crystal phase is obtained. The composition varies from 0 to 40% selenium. Luminescence spectroscopy at low temperatures shows a dominant effect by alloy disorder. Localization of carriers, for example, is still observed at a pulsed optical excitation density of 6 mJ/cm 2. The overall quality of the CdSSe films is sufficient to use them as buffer layers for the growth of hexagonal superlattices.

  16. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}: Structures, optical and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua

    Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site.more » Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The optical properties were investigated. • Magnetic susceptibility data were collected.« less

  17. Automatic procedure for stable tetragonal or hexagonal structures: application to tetragonal Y and Cd

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.; Jona, F.

    2005-05-01

    A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

  18. Magnetic excitations in praseodymium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houmann, J.G.; Rainford, B.D.; Jensen, J.

    1979-08-01

    The magnetic excitations in a single crystal of dhcp Pr have been studied by inelastic neutron scattering. The excitations on the hexagonal sites, and their dependence on magnetic fields up to 43 kOe applied in the basal plane, have been analyzed in terms of a Hamiltonian in which exchange, crystal-field, and magnetoelastic interactions are included. The exchange is found to be strongly anisotropic, and this anisotropy is manifested directly in a splitting of most branches of the dispersion relations. By considering a variety of magnetic properties, we have been able to determine the crystal-field level scheme for the hexagonal sitesmore » fairly unambiguously. The first excited level is 3.5 meV above the ground state. The value of the magnetoelastic coupling deduced from the excitations is in good agreement with values obtained from other measurements. A field-dependent interaction with the phonons has been observed, and a pronounced broadening of the acoustic excitations of long wavelength is ascribed to the influence of the conduction electrons. The first excited state on the cubic ions is about 8.3 meV above the ground state. The corresponding excitations show a pronounced dispersion, but the exchange anisotropy is of less importance than for the hexagonal sites.« less

  19. Impact of structural symmetry on magnetization properties in SrCo0.95Mn0.05O3 prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Meenakshi, Mahto, Rabindra Nath

    2018-04-01

    We have investigated magnetization properties of the sol-gel prepared SrCo0.95Mn0.05O3 (SCMO) sample with respect to change in structural symmetry. The X-ray diffraction patterns show the crystal structure changes from nH-hexagonal, showing trigonal symmetry (SCMO1), to 2H-hexagonal phase (SCMO2). The trigonal crystal symmetry was obtained at lower annealing temperature (less than 1100 °C), however, the 2H-hexagonal symmetry was obtained at higher annealing temperature. The crystallite size calculated using Debye Scherer formula is found to be ˜ 46 nm and ˜ 33 nm for SCMO1 and SCMO2 samples respectively. The temperature dependence zero field cooled (MZFC) and field cooled (MFC) magnetization curves measured under the applied magnetic field of 500 Oe show magnetic reversibility for the SCMO1 sample. However, MZFC and MFC curves in hexagonal phase show magnetic irreversibility with onset temperature, Tirr ˜ 150 K, exhibits weak ferromagnetic ordering. The temperature variation of magnetization in paramagnetic region was analyzed by following Curie-Weiss law fitting. The χ-1(T) curve shows complete linear behavior with single slope for SCMO1 sample, whereas, the SCMO2 curve exhibit the linear behavior with two distinct slopes. Interestingly the sample in hexagonal phase shows small hysteresis loop at 2 K and 100 K respectively.

  20. Ion-Specific Interfacial Crystallization of Polymer-Grafted Nanoparticles

    DOE PAGES

    Zhang, Honghu; Wang, Wenjie; Mallapragada, Surya; ...

    2017-06-27

    In this study, ion-specific effects on the assembly and crystallization of polyethylene-glycol-grafted Au nanoparticles (PEG-AuNPs) at the vapor–liquid interface are examined by surface sensitive synchrotron X-ray scattering methods. We show that monovalent salts, such as KCl and NaCl, that do not advance phase separation of pure PEG at room temperature induce two-dimensional (2D) self-assembly and crystallization of PEG-AuNPs with some distinctions. Whereas for KCl the 2D hexagonal coherence length of the PEG-AuNP superlattices is remarkably large compared to other salts (over micron-sized crystalline grains), NaCl induces coexistence of two hexagonal structures. Using various salts, we find that the value ofmore » the lattice constant is correlated to the ionic hydration entropy consistent with the Hofmeister series.« less

  1. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less

  2. Colloidal attraction induced by a temperature gradient.

    PubMed

    Di Leonardo, R; Ianni, F; Ruocco, G

    2009-04-21

    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  3. Simulation of uniaxial deformation of hexagonal crystals (Mg, Be)

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Kesarev, A. G.

    2017-12-01

    Molecular dynamics (MD) simulations were performed for the nanocompression loading of nanocrystalline magnesium and beryllium modeled by an interatomic potential of the embedded atom method (EAM). It is shown that the main deformation modes are prismatic slip and twinning for magnesium, and only prismatic slip for beryllium. The formation of stable configurations of dislocation grids in magnesium and beryllium was observed. Dislocation networks are formed in the habit plane of the twin in a magnesium nanocrystall. Some dislocation reactions are suggested to explain the appearance of such networks. Shockley partial dislocations in a beryllium nanocrystall form grids in the slip plane. A strong anisotropy between slip systems was observed, which is in agreement with experimental data.

  4. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  5. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations

    DOE PAGES

    Chien, Szu-Chia; Pérez-Sánchez, Germán; Gomes, José R. B.; ...

    2017-02-17

    Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant–water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems—in the concentration range where pure surfactant solutions yieldmore » a liquid crystal phase—the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.« less

  6. The formation of organic (propolis films)/inorganic (layered crystals) interfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Kovalyuk, Z. D.; Lytvyn, O. S.

    2008-10-01

    Propolis (honeybee glue) organic films were prepared from an alcoholic solution on the surfaces of inorganic layered semiconductors (indium, gallium and bismuth selenides). Atomic force microscopy (AFM) and X-ray diffraction (XRD) are used to characterize structural properties of an organic/inorganic interfaces. It is shown that nanodimensional linear defects and nanodimensional cavities of various shapes are formed on the van der Waals (VDW) surfaces of layered crystals as a result of chemical interaction between the components of propolis (flavonoids, aminoacids and phenolic acids) and the VDW surfaces as well as deformation interaction between the VDW surfaces and propolis films during their polymerization. The nanocavities are formed as a result of the rupture of strong covalent bonds in the upper layers of layered crystals and have the shape of hexagons or triangles in the (0001) plane. The shape, lateral size and distribution of nanodimensional defects on the VDW surfaces depends on the type of crystals, the magnitude and distribution of surface stresses. We have obtained self-organized nanofold structures of propolis/InSe interface. It is established that such heterostructures have photosensitivity in the infrared range hν<1.2 eV (the values of energy gap are 1.2 eV for InSe and 3.07 eV for propolis films at room temperature).

  7. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  8. Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires

    PubMed Central

    Kim, Seokho; Kim, Do Hyoung; Choi, Jinho; Lee, Hojin; Kim, Sun-Young; Park, Jung Woon; Park, Dong Hyuk

    2018-01-01

    We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3) with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs) were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were analyzed with scanning electron microscopy and X-ray diffraction. The nanoscale photoluminescence (PL) characteristics and the luminescence color of the Alq3 single NPs and their crystal microwires (MWs) were evaluated from color charge-coupled device images acquired using a high-resolution laser confocal microscope. In comparison with the Alq3 NPs, the crystalline MWs exhibited a very bright and sharp emission. This enhanced and sharp emission from the crystalline Alq3 single MWs originated from effective π-π stacking of the Alq3 molecules due to strong interactions in the crystalline structure. PMID:29565306

  9. Structural, electronic and vibrational properties of LaF3 according to density functional theory and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oreshonkov, A. S.; Roginskii, E. M.; Krylov, A. S.; Ershov, A. A.; Voronov, V. N.

    2018-06-01

    Crystal structure of LaF3 single crystal is refined in tysonite-type trigonal unit cell P c1 using density functional theory calculations and Raman spectroscopy. It is shown that trigonal structure with P c1 space group is more energy-efficient than hexagonal structure with space group P63 cm. Simulated Raman spectra obtained using LDA approximation is in much better agreement with experimental data than that obtained with PBE and PBEsol functionals of GGA. The calculated frequency value of silent mode B 2 in case of hexagonal structure P63 cm was found to be imaginary (unstable mode), thus the energy surface obtains negative curvature with respect to the corresponding normal coordinates of the mode which leads to instability of the hexagonal structure in harmonic approximation. The A 1g line at 214 cm‑1 in Raman spectra of LaF3 related to the translation of F2 ions along c axis can be connected with F2 ionic conductivity.

  10. Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method

    NASA Astrophysics Data System (ADS)

    Azis, Y.; Adrian, M.; Alfarisi, C. D.; Khairat; Sri, R. M.

    2018-04-01

    Hydroxyapatite, [Ca10(PO4)6(OH)2, (HAp)] is widely used in medical fields especially as a bone and teeth substitute. Hydroxyapatite nanoparticles have been succesfully synthesized from egg shells as a source of calcium by using sol-gel method. The egg shells were calcined, hydrated (slaking) and undergone carbonation to form Precipitated Calcium Carbonate (PCC).Then the PCC was added (NH4)2HPO4 to form HAp with variation the mole ratio Ca and P (1.57; 1.67 and 1.77), aging time (24, 48, and 72 hr) and under basic condition pH (9, 10 and 11). The formation of hydroxyapatite biomaterial was characterized using XRD, FTIR, SEM-EDX. The XRD patterns showed that the products were hydroxyapatite crystals. The best result was obtained at 24 hr aging time, pH 9 with hexagonal structure of hydroxyapatite. Particle size of HAp was 35-54 nm and the morphology of hydroxyapatite observed using SEM, it showed that the uniformity crystal of hydroxyapatite.

  11. Large-scale purification and biochemical characterization of crystallization-grade porin protein P from Pseudomonas aeruginosa.

    PubMed

    Worobec, E A; Martin, N L; McCubbin, W D; Kay, C M; Brayer, G D; Hancock, R E

    1988-04-07

    A large-scale purification scheme was developed for lipopolysaccharide-free protein P, the phosphate-starvation-inducible outer-membrane porin from Pseudomonas aeruginosa. This highly purified protein P was used to successfully form hexagonal crystals in the presence of n-octyl-beta-glucopyranoside. Amino-acid analysis indicated that protein P had a similar composition to other bacterial outer membrane proteins, containing a high percentage (50%) of hydrophilic residues. The amino-terminal sequence of this protein, although not homologous to either outer membrane protein, PhoE or OmpF, of Escherichia coli, was found to have an analogous protein-folding pattern. Protein P in the native trimer form was capable of maintaining a stable functional trimer after proteinase cleavage. This suggested the existence of a strongly associated tertiary and quaternary structure. Circular dichroism studies confirmed these results in that a large proportion of the protein structure was determined to be beta-sheet and resistant to acid pH and heating in 0.1% sodium dodecyl sulphate.

  12. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru; Pogosova, Mariam A.; Trusov, Lev A.

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra ofmore » the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.« less

  13. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  14. Calcium carbonate crystals promote calcium oxalate crystallization by heterogeneous or epitaxial nucleation: possible involvement in the control of urinary lithogenesis.

    PubMed

    Geider, S; Dussol, B; Nitsche, S; Veesler, S; Berthézène, P; Dupuy, P; Astier, J P; Boistelle, R; Berland, Y; Dagorn, J C; Verdier, J M

    1996-07-01

    A large proportion of urinary stones have calcium oxalate (CaOx) as the major mineral phase. In these stones, CaOx is generally associated with minor amounts of other calcium salts. Several reports showing the presence of calcium carbonate (CaCO3) and calcium phosphate in renal stones suggested that crystals of those salts might be present in the early steps of stone formation. Such crystals might therefore promote CaOx crystallization from supersaturated urine by providing an appropriate substrate for heterogeneous nucleation. That possibility was investigated by seeding a metastable solution of 45Ca oxalate with vaterite or calcite crystallites. Accretion of CaOx was monitored by 45Ca incorporation. We showed that (1) seeds of vaterite (the hexagonal polymorph of CaCO3) and calcite (the rhomboedric form) could initiate calcium oxalate crystal growth; (2) in the presence of lithostathine, an inhibitor of CaCO3 crystal growth, such accretion was not observed. In addition, scanning electron microscopy demonstrated that growth occurred by epitaxy onto calcite seeds whereas no special orientation was observed onto vaterite. It was concluded that calcium carbonate crystals promote crystallization of calcium oxalate and that inhibitors controlling calcium carbonate crystal formation in Henle's loop might play an important role in the prevention of calcium oxalate stone formation.

  15. 76 FR 65751 - Notice of intent to grant exclusive license

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal,'' U.S. Patent Application No. 12/254,134 entitled ``Hybrid Bandgap Engineering for Super-Hetero- Epitaxial Semiconductor Materials... Semiconductor Materials on Trigonal Substrate with Single Crystal Properties and Devices Based on Such Materials...

  16. Zn(II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method.

    PubMed

    Shi, Xixi; Pan, Lingling; Chen, Shuoping; Xiao, Yong; Liu, Qiaoyun; Yuan, Liangjie; Sun, Jutang; Cai, Lintao

    2009-05-19

    Hexagonal ZnO micronuts (HZMNs) have been successfully synthesized with the assistance of poly(ethylene glycol) (PEG) 300 via a hydrothermal method. The structure and morphology of the HZMNs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). An individual ZnO micronut is revealed as twinned crystals. Time-dependent investigation shows that the growth of HZMNs involves a dissolution-recrystallization process followed by Ostwald ripening, in which is the first formed solid ZnO particles dissolve and transform to HZMNs with hollow structure. PEG 300 has been found to play a crucial role in the growth of this unique hollow structure. TEM observations show that the PEG chains aggregate to globules in water, which then have interaction with the dissolved zinc species to form the globules in a coiled state under hydrothermal conditions. These Zn(II)-PEG 300 globules act as soft template for the growth of HZMNs, and the possible growth mechanism is proposed. The room-temperature photoluminescence (PL) spectrum shows red emission around 612 nm with a full width at half-maximum (fwhm) only about 13 nm.

  17. Structure of the starch granule--a curved crystal.

    PubMed

    Larsson, K

    1991-09-01

    A structure model of the molecular arrangement in native starch proposed earlier is further considered, with special regard to the lateral packing of cluster units. The amylopectin molecules are radially distributed, with branches concentrated in clusters. Within each cluster the polyglucan chains form double helices which are hexagonally packed. The clusters form spherically concentric crystalline layers with amylose in an amorphous form acting as a space-filler. A translational mechanism for the change of helical direction at boundaries between clusters is proposed which can account for variations in the curvature of the concentric layers. The model is related to X-ray diffraction data and optical birefringence, considering dissembly at gelatinization. The structure is also discussed in relation to biosynthesis. Some aspects of gelatinization, such as the recent glass-transition approach, are then considered.

  18. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGES

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; ...

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  19. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  20. Pristine Samples of Silicon Carbide Separated From the Canyon Diablo Meteorite

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Winston, R.

    2008-12-01

    The Canyon Diablo is an iron meteorite whose collision with Earth created Meteor Crater in Arizona. In a study of a large block (53 kg) of this meteorite, Henri Moissan reported his findings of green, hexagonal crystals of silicon carbide (SiC) which was given the name moissanite the following year by George Kunz (1905). Moissan did not report finding the cubic form of SiC. Subsequently, many erroneous reports appeared when the polishing compound (synthetic SiC) was mistakenly considered by researchers as a natural mineral associated with, rather than a contaminant of many rock types. Hence, the occurrence of SiC in the Canyon Diablo remains in doubt, and any proposal to investigate this problem was discouraged and regarded as predictably unproductive. This notion hampered further work on abundant materials housed in museums. SiC grains have been found in primitive meteorites and interplanetary dust particles. Some have been identified as presolar grains. The significance of SiC in the Canyon Diablo cannot be revealed unless we have abundant data from pristine samples, enough for us to classify them into presolar or other types. We report here a simple method we used to separate SiC crystals from the meteorite. We chose samples containing a carbon nodule composed of graphite, diamond-lonsdaleite, and SiC grains in the iron matrix. We broke up the carbon nodule with a sharp tungsten carbide chisel and hammer. After removing the large metal fragments, we put a small amount of the fine black grains in a Petri dish with acetone, then swerved the dish to scatter the grains sparingly on the bottom of the dish. Under a binocular microscope, SiC crystals can be spotted easily by their adamantine luster, color (blue, green, beige, etc.), and high birefringence when placed between crossed polarizers of a petrographic microscope. We also X-rayed individual grains, and have identified several hexagonal polytype structures as well as the cubic form (3C polytype).

  1. Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein.

    PubMed

    Royer, William E; Omartian, Michael N; Knapp, James E

    2007-01-05

    Annelid erythrocruorins are extracellular respiratory complexes assembled from 180 subunits into hexagonal bilayers. Cryo-electron microscopic experiments have identified two different architectural classes. In one, designated type I, the vertices of the two hexagonal layers are partially staggered, with one hexagonal layer rotated by about 16 degrees relative to the other layer, whereas in the other class, termed type II, the vertices are essentially eclipsed. We report here the first crystal structure of a type II erythrocruorin, that from Arenicola marina, at 6.2 A resolution. The structure reveals the presence of long continuous triple-stranded coiled-coil "spokes" projecting towards the molecular center from each one-twelfth unit; interdigitation of these spokes provides the only contacts between the two hexagonal layers of the complex. This arrangement contrasts with that of a type I erythrocruorin from Lumbricus terrestris in which the spokes are broken into two triple-stranded coiled coils with a disjointed connection. The disjointed connection allows formation of a more compact structure in the type I architecture, with the two hexagonal layers closer together and additional extensive contacts between the layers. Comparison of sequences of the coiled-coil regions of various linker subunits shows that the linker subunits from type II erythrocruorins possess continuous heptad repeats, whereas a sequence gap places these repeats out of register in the type I linker subunits, consistent with a disjointed coiled-coil arrangement.

  2. A new constitutive analysis of hexagonal close-packed metal in equal channel angular pressing by crystal plasticity finite element method

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Öchsner, Andreas; Yarlagadda, Prasad K. D. V.; Xiao, Yin; Furushima, Tsuyoshi; Wei, Dongbin; Jiang, Zhengyi; Manabe, Ken-ichi

    2018-01-01

    Most of hexagonal close-packed (HCP) metals are lightweight metals. With the increasing application of light metal products, the production of light metal is increasingly attracting the attentions of researchers worldwide. To obtain a better understanding of the deformation mechanism of HCP metals (especially for Mg and its alloys), a new constitutive analysis was carried out based on previous research. In this study, combining the theories of strain gradient and continuum mechanics, the equal channel angular pressing process is analyzed and a HCP crystal plasticity constitutive model is developed especially for Mg and its alloys. The influence of elevated temperature on the deformation mechanism of the Mg alloy (slip and twin) is novelly introduced into a crystal plasticity constitutive model. The solution for the new developed constitutive model is established on the basis of the Lagrangian iterations and Newton Raphson simplification.

  3. A global view of atmospheric ice particle complexity

    NASA Astrophysics Data System (ADS)

    Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin

    2016-11-01

    Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.

  4. Distinct ice patterns on solid surfaces with various wettabilities

    PubMed Central

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045

  5. Distinct ice patterns on solid surfaces with various wettabilities.

    PubMed

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-10-24

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.

  6. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.

    2013-02-01

    Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

  7. A Lamellar Complex of Lecithin and Poly-l-Tyrosine

    PubMed Central

    Giannoni, G.; Padden, F. J.; Roe, R. J.

    1971-01-01

    Complexes of poly-L-tyrosine (PT) with dipalmitoyllecithin, synthetic, (DPL) and with egg lecithin (EL) have been obtained by precipitation from methanol-water solutions. Chemical analysis indicates that both lecithins bind PT up to a limiting ratio of about 4 tyrosine residues/lecithin molecule. DPL-PT complexes have a lamellar structure closely resembling lecithin itself. In fact, DPL and DPL-PT lamellae have very nearly the same thickness as precipitated from methanol-water, although their swelling behavior on resuspension in pure water is different. The complexes crystallize in the form of hexagonal platelets, some monolayers and some with terraced spiral growths, with a thickness of 50-55 A. In X-ray and electron diffraction they yield sharp reflections at 4.14 A which are characteristic of hexagonal packing of phospholipid paraffinic chains. The order-disorder transition temperature of this crystalline lattice, determined by differential scanning calorimetry, is somewhat higher in the complex than in pure DPL. Physical models consistent with these observations are discussed. ImagesFIGURE 1 aFIGURE 1 b PMID:5134208

  8. The Effect of Adjacent Materials on the Propagation of Phonon Polaritons in Hexagonal Boron Nitride.

    PubMed

    Kim, Kris S; Trajanoski, Daniel; Ho, Kevin; Gilburd, Leonid; Maiti, Aniket; van der Velden, Luuk; de Beer, Sissi; Walker, Gilbert C

    2017-07-06

    In order to apply the ability of hexagonal boron nitride (hBN) to confine energy in the form of hyperbolic phonon polariton (HPhP) modes in photonic-electronic devices, approaches to finely control and leverage the sensitivity of these propagating waves must be investigated. Here, we show that by surrounding hBN with materials of lower/higher dielectric responses, such as air and silicon, lower/higher surface momenta of HPhPs can be achieved. Furthermore, an alternative method for preparing thin hBN crystals with minimum contamination is presented, which provides opportunities to study the sensitivity of the damping mechanism of HPhPs on adsorbed materials. Infrared scanning near-field optical microscopy (IR-SNOM) results suggest that the reflections at the upper and lower hBN interfaces are primary causes of the damping of HPhPs, and that the damping coefficients of propagating waves are highly sensitive to adjacent layers, suggesting opportunities for sensor applications.

  9. Phase selective synthesis of quantum cutting nanophosphors and the observation of a spontaneous room temperature phase transition.

    PubMed

    Ghosh, Pushpal; Mudring, Anja-Verena

    2016-04-21

    Oxygen-free Eu(3+)-doped NaGdF4 nanocrystals with high quantum cutting efficiency are accessible at low temperatures (room temperature to 80 °C) using task-specific ionic liquids (ILs) as structure directing agents and only water as solvent. Selective tuning of the shape, morphology and, most importantly, the crystal phase of the host lattice is achieved by changing the alkyl side length, the H-bonding capabilities and the concentration of 1-alkyl-3-methylimidazolium bromide ILs, [C(n)mim]Br. When using [C2mim]Br, hexagonal NaGdF4 nanoparticles are obtained. In the case of methylimidazolium bromides with longer pendant alkyl chains such as butyl (C4), octyl (C8) or decyl (C10), extremely small nanoparticles of the cubic polymorph form, which then convert even at room temperature (RT) to the thermodynamically favored hexagonal modification. To the best of our knowledge, this kind of spontaneous phase transition is not yet reported. The hexagonal nanomaterial shows a substantial quantum cutting efficiency (154%) whilst in the cubic material, the effect is negligible (107%). The easy yet highly phase selective green synthesis of the materials promises large scale industrial application in environmentally benign energy efficient lighting.

  10. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    NASA Astrophysics Data System (ADS)

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.

  11. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  12. Crystal Model Kits for Use in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Kildahl, Nicholas J.; And Others

    1986-01-01

    Dynamic crystal model kits are described. Laboratory experiments in which students use these kits to build models have been extremely successful in providing them with an understanding of the three-dimensional structures of the common cubic unit cells as well as hexagonal and cubic closest-packing of spheres. (JN)

  13. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  14. Design, synthesis and photoelectrochemical properties of hexagonal metallomacrocycles based on triphenylamine: [M6(4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine)6(X)12]; [M = Fe(II), PF6- and Zn(II), BF4-].

    PubMed

    Hwang, Seok-Ho; Moorefield, Charles N; Wang, Pingshan; Fronczek, Frank R; Courtney, Brandy H; Newkome, George R

    2006-08-07

    Synthesis of a novel bis(terpyridine) ligand, 4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine, utilizing triphenylamine, as a specific angle controller, has led to the self-assembly of a unique hexagonal metallomacrocycle family, [Fe6(2)6(PF6)12] and [Zn6(2)6(BF4)12], utilizing terpyridine-metal(II)-terpyridine connectivity. The crystal structure of the novel ligand shows that the angle between the two terpyridinyl moieties is 119.69 degrees , which enabled the formation of the hexagonal-shaped macrocycles. The crystal packing architectures of this starting ligand revealed channels induced by solvent encapsulation. Following complexation of this ligand with transition metals [Fe(II) or Zn(II)] in a one-pot reaction, the resultant structures were characterized by (1)H and (13)C NMR, UV/Vis and mass spectroscopies. The expected metal-to-ligand charge transfer (MLCT; lambda(max) = 582 nm) and emission (lambda(em) = 575 nm) characteristics were exhibited by both [Fe6(2)6(PF6)12] and[Zn6(2)6(BF4)12]. The photoelectrochemical characteristics of these hexagonal metallomacrocycles demonstrate that they can be used as sensitizers in dye-sensitized solar cells.

  15. A phase width for CaGaSn. Crystal structure of mixed intermetallic Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x} and SmGa{sub x}Sn{sub 3−x}, stability, geometry and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillard, Monique, E-mail: mtillard@univ-montp2.fr

    X-ray single-crystal structure has been established for new compositions in intermetallic systems of tin and gallium. Crystals were successfully obtained in alloys prepared from elements. The structure of SmGaSn{sub 2} (cubic Pm3̄m, a=4.5778(8) Å, Z=1, R1=0.012) is described with atomic disorder at all Sn/Ga positions and the structure of Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} (hexagonal, P6{sub 3}/mmc, a=4.2233(9), c=17.601(7) Å, Z=1, R1=0.062) raises an interesting question about existence of a composition domain for CaGaSn. Finally, Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} should be considered as a particular composition of Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}, a compound assumed to exist in the range x ~more » 0−1. Partial atomic ordering characterizes the Sn/Ga puckered layers of hexagons whose geometries are analyzed and discussed comparatively with analogous arrangements in AlB{sub 2} related hexagonal compounds. The study is supported by rigid band model and DFT calculations performed for different experimental and hypothetic arrangements. - Graphical abstract: A phase width for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x} belonging to the hexagonal YPtAs structure-type. - Highlights: • Single crystals of mixed tin gallium ternary intermetallics were obtained. • Partial ordering at metal sites and phase width are evidenced for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}. • Layer deviation to flatness is studied comparatively with related structures. • Geometry and stability analyses based on DFT calculations are provided.« less

  16. BiSr3(YO)3(BO3)4: a new gaudefroyite-type rare-earth borate with moderate SHG response.

    PubMed

    Gao, Jianhua; Li, Shuai

    2012-01-02

    The synthesis, crystal structure, crystal growth, and characterization of a new noncentrosymmetric rare-earth borate BiSr(3)(YO)(3)(BO(3))(4) are reported. BiSr(3)(YO)(3)(BO(3))(4) belongs to gaudefroyite type of structure and crystallizes in the polar hexagonal space group P6(3) (no. 173) with a = 10.6975(16) Å and c = 6.7222(12) Å. In the structure, the YO(7) polyhedra share edges to form an one-dimensional chain along the [001] direction. These chains are interconnected by the BO(3) group to construct a three-dimensional framework, leaving two kinds of channels for Bi atoms and Sr atoms together with BO(3) groups, respectively. On the basis of the powder second-harmonic generation (SHG) measurement, BiSr(3)(YO)(3)(BO(3))(4) belongs to the phase-matchable class with a SHG response of about 3 × KDP.

  17. Characterization of the NTPR and BD1 interacting domains of the human PICH-BEND3 complex.

    PubMed

    Pitchai, Ganesha P; Hickson, Ian D; Streicher, Werner; Montoya, Guillermo; Mesa, Pablo

    2016-08-01

    Chromosome integrity depends on DNA structure-specific processing complexes that resolve DNA entanglement between sister chromatids. If left unresolved, these entanglements can generate either chromatin bridging or ultrafine DNA bridging in the anaphase of mitosis. These bridge structures are defined by the presence of the PICH protein, which interacts with the BEND3 protein in mitosis. To obtain structural insights into PICH-BEND3 complex formation at the atomic level, their respective NTPR and BD1 domains were cloned, overexpressed and crystallized using 1.56 M ammonium sulfate as a precipitant at pH 7.0. The protein complex readily formed large hexagonal crystals belonging to space group P6122, with unit-cell parameters a = b = 47.28, c = 431.58 Å and with one heterodimer in the asymmetric unit. A complete multiwavelength anomalous dispersion (MAD) data set extending to 2.2 Å resolution was collected from a selenomethionine-labelled crystal at the Swiss Light Source.

  18. Hydration-induced crystalline transformation of starch polymer under ambient conditions.

    PubMed

    Qiao, Dongling; Zhang, Binjia; Huang, Jing; Xie, Fengwei; Wang, David K; Jiang, Fatang; Zhao, Siming; Zhu, Jie

    2017-10-01

    With synchrotron small/wide-angle X-ray scattering (SAXS/WAXS), we revealed that post-harvest hydration at ambient conditions can further alter the starch crystalline structure. The hydration process induced the alignment of starch helices into crystalline lamellae, irrespective of the starch type (A- or B-). In this process, non-crystalline helices were probably packed with water molecules to form new crystal units, thereby enhancing the overall concentration of starch crystallinity. In particular, a fraction of the monoclinic crystal units of the A-type starches encapsulated water molecules during hydration, leading to the outward movement of starch helices. Such movement resulted in the transformation of monoclinic units into hexagonal units, which was associated with the B-type crystallites. Hence, the hydration under ambient conditions could enhance the B-polymorphic features for both A-type and B-type starches. The new knowledge obtained here may guide the design of biopolymer-based liquid crystal materials with controlled lattice regularity and demanded features. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of Te doping on FeSe superconductor synthesized by powder-in-tube

    NASA Astrophysics Data System (ADS)

    Imaduddin, A.; Nisa, K.; Yudanto, S. D.; Nugraha, H.; Siswayanti, B.

    2017-04-01

    FeSe is a superconducting material, which has the simplest crystal structure among the Fe-based superconductors. It has no arsenic element, which is very harmful to the human body. In this study, we analyzed the effects of milling time and Te doping on FeSe superconductors. The synthesis of the samples were carried out using powder-in-tube method in a SS304 stainless steel tube. After the pressing process, followed by the sintering process at 500° C for 20 hours, the samples were removed from the tubes. Later, we analyzed its crystal structures, surfaces morphology and the superconductivity properties. Δ-FeSe phase (hexagonal, non-superconductor) and β-FeSe (tetragonal, superconductor) were formed in the samples, including minor phases of Fe and Fe3Se4. Te doping changed the crystal structure from β-FeSe and Δ-FeSe into FeSe0.5Te0.5. In addition, the onset critical temperature (TC, onset) shifted to higher temperature.

  20. Electronic and crystal structure changes induced by in-plane oxygen vacancies in multiferroic YMnO 3

    DOE PAGES

    Cheng, Shaobo; Meng, Qingping; Li, Mengli; ...

    2016-02-08

    Here, the widely spread oxygen vacancies (V O) in multiferroic materials can strongly affect their physical properties. However, their exact influence has rarely been identified in hexagonal manganites. Here, with the combined use of transmission electron microscopy (TEM) and first-principles calculations, we have systematically studied the electronic and crystal structure modifications induced by V O located at the same Mn atomic plane (in-plane V O). Our TEM experiments reveal that the easily formed in-plane V O not only influence the electronic structure of YMnO 3 but alter the in-plane Wyckoff positions of Mn ions, which may subsequently affect the intraplanemore » and interplane exchange interaction of Mn ions. The ferroelectricity is also impaired due to the introduction of V O. Further calculations confirm these electronic and structural changes and modifications. Our results indicate that the electronic and crystal structure of YMnO 3 can be manipulated by the creation of V O.« less

  1. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  2. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  3. Novel high pressure hexagonal OsB2 by mechanochemistry

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  4. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  5. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  6. Static high pressure studies on Nd and Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Xu, J.; Smith, G.S.

    1985-06-24

    We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.

  7. Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles

    NASA Technical Reports Server (NTRS)

    Saether, E.; Pipes, R. B.; Frankland, S. J. V.

    2002-01-01

    Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.

  8. Characteristics of HgS nanoparticles formed in hair by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Walter, P.; Van Elslande, E.; Ayache, J.; Castaing, J.

    2013-01-01

    A chemical reaction, derived from an ancient recipe for hair dyeing, is used to precipitate nanoparticles of mercury sulphide in hair by the simple process of immersion in a water solution of Ca(OH)2 and HgO. After several days, HgS nanoparticles appear throughout the hair and are particularly numerous in the various interfaces. The formation of these nanoparticles has been studied by analytical and atomic resolution electron microscopy. High resolution quantitative analysis allowed the determination of two varieties of HgS precipitate crystal structures formed: a hexagonal cinnabar and a cubic metacinnabar structure. This very simple process of a chemical reaction in hair is a particularly inexpensive way to fabricate semiconductor sulphide nanoparticles with specific properties.

  9. Variability of the contrail radiative forcing due to crystal shape

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.

  10. Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization.

    PubMed

    Jurašin, D; Pustak, A; Habuš, I; Šmit, I; Filipović-Vinceković, N

    2011-12-06

    A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase. © 2011 American Chemical Society

  11. Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions.

    PubMed

    Reichardt, J; Hess, M; Macke, A

    2000-04-20

    Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Deepti; Rayaprol, S.; Siruguri, V.

    We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less

  13. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates.

    PubMed

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, J Kevin; Jain, Manish; Zheng, Shijian; Mara, Nathan A; Beyerlein, Irene J

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

  14. Geometric Triangular Chiral Hexagon Crystal-Like Complexes Organization in Pathological Tissues Biological Collision Order

    PubMed Central

    Díaz, Jairo A.; Jaramillo, Natalia A.; Murillo, Mauricio F.

    2007-01-01

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues.The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must be carried out to reproduce, manipulate and amplify their activity and probably use them as a base to develop new therapeutic strategies in cancer. PMID:18074008

  15. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  16. Bi2Te3 thin hexagonal nanoplatelets: Synthesis and its characterization studies

    NASA Astrophysics Data System (ADS)

    Vinoth, S.; Balaganapathi, T.; KaniAmuthan, B.; Arun, T.; Muthuselvam, I. Panneer; Chou, Fang-Cheng; Thilakan, P.

    2017-08-01

    Solvothermal synthesis and optimization of pure Bismuth telluride (Bi2Te3) hexagonal nanoplatelets was carried out from Bismuth Oxide (Bi2O3) and Tellurium dioxide (TeO2). XRD measurements revealed a sensitive change in crystallization behaviour in correlation with variation in Te/Bi stoichiometry identified through the exchange in intensities between (10 10 ̅) and (110) peaks. Further, Energy Dispersive X-ray (EDAX) analysis revealed the variation in Te/Bi ratio with respect to autoclave temperature. Field emission scanning electron Microscope (FESEM) and the high resolution transmission electron Microscope (HRTEM) studies show the complete growth of hexagonal nanoplatelets at 200 °C. Confocal Micro-Raman measurements revealed the occurrence of symmetry breaking in the synthesized hexagonal nanoplatelets. The electrical conductivity and the activation energy were recorded as 6.01×10-3 S/m and 0.042 eV respectively. Highest maximum absolute value of Seebeck coefficient of -355 μV/K was obtained for the hexagonal nanoplatelets.

  17. Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures

    NASA Astrophysics Data System (ADS)

    Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.

    2018-01-01

    ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.

  18. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  19. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  20. Uranyl ion coordination

    USGS Publications Warehouse

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  1. Synthesis and X-ray crystal structure determination of N- p-methylphenyl-4-benzoyl-3,4-diphenyl-2-azetidinone

    NASA Astrophysics Data System (ADS)

    Kabak, Mehmet; Şenöz, Hülya; Elmali, Ayhan; Adar, Vildan; Svoboda, Ingrid; Dušek, Michal; Fejfarová, Karla

    2010-12-01

    The title compound, C29H23NO2, has been characterized by single-crystal X-ray diffraction at two different temperatures (303 K and 120 K) and wavelengths (Mo K α and Cu K α). The non-centrosymmetric hexagonal crystal structure contains four-membered planar β-lactam ring with an unusually long C-C bond. The β-lactam ring is almost planar.

  2. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2012-04-01

    In the Rehai geothermal area, located near Tengchong, there is an old succession of crystalline calcite that formed from a spring that is no longer active. The thin-bedded succession, exposed on the south bank of Zaotang River, is formed of three-dimensional dendrite bushes that are up to 6 cm high and 3 cm in diameter with multiple levels of branching. Bedding is defined by color, which ranges from white to gray to almost black and locally accentuated by differential weathering that highlights the branching motif of the dendrites. The succession developed through repeated tripartite growth cycles that involved: Phase I that was characterized by rapid vertical growth of the dendrite bushes with ever-increasing branching; Phase II that developed once growth of the dendrites had almost or totally ceased, and involved an initial phase of etching that was followed by the precipitation of various secondary minerals (sheet calcite, trigonal calcite crystals, hexagonal calcite crystals, hexagonal plates formed of Ca and P, Mn precipitates, Si-Mg reticulate coatings, opal-CT lepispheres) on the branches of the calcite dendrites, and Phase III that involved deposition of detrital quartz, feldspar, clay, and calcite on top of the dendrite bushes. The tripartite growth cycle is attributed primarily to aperiodic cycles in the CO2 content of the spring water that was controlled by subsurface igneous activity rather than climatic controls. High CO2 coupled with rapid CO2 degassing triggered growth of the dendrite bushes. As CO2 levels waned, saturation levels in the spring water decreased and calcite dendrite growth ceased and precipitation of the secondary minerals took place, possibly in the microcosms of microbial mats. Deposition of the detrital sediment was probably related to surface runoff that was triggered by periods of high rainfall. Critically, this study shows that intrinsic factors rather than extrinsic factors (e.g., climate) were the prime control on the development of the tripartite growth cycle.

  3. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy

    NASA Astrophysics Data System (ADS)

    Lu, Guangyuan; Wu, Tianru; Yuan, Qinghong; Wang, Huishan; Wang, Haomin; Ding, Feng; Xie, Xiaoming; Jiang, Mianheng

    2015-01-01

    Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm2, approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.

  4. Structural and dielectric behaviors of Bi4Ti3O12 - lyotropic liquid crystalline nanocolloids

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi K.; Raina, K. K.

    2018-03-01

    We investigated the structural and dielectric dynamics of nanocolloids comprising lyotropic liquid crystals and bismuth titanate (Bi4Ti3O12) spherical nanoparticles (≈16-18 nm) of varying concentration 0.05 and 0.1 wt%. The lyotropic liquid crystalline mixture was prepared by a binary mixture of cetylpyridinuium chloride and ethylene glycol mixed in 5:95 wt% ratio. Binary lyotropic mixture exhibited hexagonal lyotropic phase. Structural and textural characterizations of nanocolloids infer that the nanoparticles were homogeneously dispersed in the liquid crystalline matrix and did not perturb the hexagonal ordering of the lyotropic phase. The dielectric constant and dielectric strength were found to be increased with the rise in the Bi4Ti3O12 nanoparticles concertation in the lyotropic matrix. A significant increase of one order was observed in the ac conductivity of colloidal systems as compared to the non-doped lyotropic liquid crystal. Relaxation parameters of the non-doped lyotropic liquid crystal and colloidal systems were computed and correlated with other parameters.

  5. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  6. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  7. Dissolution and mechanical behaviors of recrystallized carbamazepine from alcohol solution in the presence of additives

    NASA Astrophysics Data System (ADS)

    Nokhodchi, A.; Bolourtchian, N.; Dinarvand, R.

    2005-02-01

    Carbamazepine (CBZ) crystals were grown from pure ethanol solutions containing various additives (PEG 4000, PVP K30 or Tween 80). Physical characteristics of the crystals were studied for the morphology of crystals using scanning electron microscope, for the identification of polymorphism by X-ray powder diffraction (XRPD) and FT-IR, and for thermodynamic properties using differential scanning calorimetery (DSC). The dissolution behaviour of various carbamazepine crystals was also studied by dissolution apparatus II at pH 7.4 containing 1% sodium lauryl sulphate (SLS). The scanning electron micrograph (SEM) studies showed that the presence of the additives in the solutions growth medium affected the morphology and size of carbamazepine crystals. SEMs of untreated and treated carbamazepine crystals obtained from alcohol containing PEG 4000, PVP K30 or Tween 80 showed that the crystal shape of untreated carbamazepine is flaky or thin plate-like, whereas the crystals obtained from alcohol containing no additive, PEG 4000, PVP K30 or Tween 80 are polyhedral prismatic, block-shaped, polyhedral or hexagonal, respectively. XRPD, FT-IR and DSC results showed that the untreated CBZ was form III and recrystallization of CBZ in the absence or presence of the additives did not cause any polymorphic changes. The results showed that the higher dissolution rate and compact strength were observed for the crystals obtained in the presence of PVP K30. The presence of the additives in crystallization medium alters crystal morphology of carbamazepine, but only the samples crystallized in the presence of PVP K30 showed an improvement in dissolution rate and tensile strength.

  8. Large-scale ordering of nanoparticles using viscoelastic shear processing.

    PubMed

    Zhao, Qibin; Finlayson, Chris E; Snoswell, David R E; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P; Petukhov, Andrei V; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J

    2016-06-03

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.

  9. Predicting the solid state phase diagram for glass-forming alloys of copper and zirconium

    NASA Astrophysics Data System (ADS)

    Tang, C.; Harrowell, Peter

    2012-06-01

    The free energies of six crystal structures associated with Cu-Zr alloys—Cu (face centred cubic), Cu2Zr, Cu10Zr7, CuZr, CuZr2 and Zr (hexagonal close packed)—are calculated using the embedded atom potential of Mendelev et al (2009 Phil. Mag. 89 967). We find that the observed low temperature stability of the Cu10Zr7 and CuZr2 phases is not reproduced. Instead, the model predicts that the CuZr phase remains stable down to T = 0 K. This discrepancy is largely removed when the interaction potentials are cut off at a short distance, such as that used by Duan et al (2005 Phys. Rev. B 71 224208). We present evidence, however, that the cut-off distance necessary to achieve the change in phase stability results in pathological artefacts in the energetics of some crystal phases.

  10. Large-scale ordering of nanoparticles using viscoelastic shear processing

    PubMed Central

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-01-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808

  11. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates

    DOE PAGES

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, Jon Kevin Scott; ...

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. Here, we demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200°C, which is 0.5 times itsmore » homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.« less

  12. Grain neighbour effects on twin transmission in hexagonal close-packed materials

    NASA Astrophysics Data System (ADS)

    Arul Kumar, M.; Beyerlein, I. J.; McCabe, R. J.; Tomé, C. N.

    2016-12-01

    Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between grain boundaries and twins has an important influence on the deformation behaviour and fracture of hcp metals. Here, statistical analysis of large data sets reveals that whether twins transmit across grain boundaries depends not only on crystallography but also strongly on the anisotropy in crystallographic slip. We show that increases in crystal plastic anisotropy enhance the probability of twin transmission by comparing the relative ease of twin transmission in hcp materials such as Mg, Zr and Ti.

  13. Role of precursor crystal structure on electrochemical performance of carbide-derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey

    2015-03-01

    Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.

  14. Grain neighbour effects on twin transmission in hexagonal close-packed materials.

    PubMed

    Arul Kumar, M; Beyerlein, I J; McCabe, R J; Tomé, C N

    2016-12-19

    Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between grain boundaries and twins has an important influence on the deformation behaviour and fracture of hcp metals. Here, statistical analysis of large data sets reveals that whether twins transmit across grain boundaries depends not only on crystallography but also strongly on the anisotropy in crystallographic slip. We show that increases in crystal plastic anisotropy enhance the probability of twin transmission by comparing the relative ease of twin transmission in hcp materials such as Mg, Zr and Ti.

  15. Can crystal engineering be as beneficial as micronisation and overcome its pitfalls?: A case study with cilostazol.

    PubMed

    Sai Gouthami, Kodukula; Kumar, Dinesh; Thipparaboina, Rajesh; Chavan, Rahul B; Shastri, Nalini R

    2015-08-01

    Improvement in dissolution of the drugs having poor solubility is a challenge in pharmaceutical industry. Micronization is one technique, employed for dissolution enhancement of cilostazol, a BCS class II drug. However, the obtained micronized drug possesses poor flowability. The aim of this study was to improve the dissolution rate and flow properties of cilostazol by crystal engineering, using habit modification method and compare with micronized cilostazol bulk drug. Simulation studies were performed to predict the effect of solvents on cilostazol crystal habit. Cilostazol crystals with different habits were prepared by solvent:anti-solvent crystallization technique. SEM, FTIR, DSC, TGA and PXRD were used for solid state characterization. The results revealed that cilostazol re-crystallized from methanol-hexane system were hexagonal and ethanol-hexane system gave rods. Cilostazol engineered habits showed increased dissolution rate than unprocessed drug but similar dissolution rate when compared to micronized cilostazol. Micronized cilostazol showed a dissolution efficiency of 75.58% where as cilostazol recrystallized from methanol-hexane and ethanol-hexane systems resulted in a dissolution efficiency of 72.63% and 68.63%, respectively. In addition, crystal engineering resulted in improved flow properties of re-crystallized habits when compared to micronized form of the drug. In conclusion, crystal engineering by habit modification show potential for dissolution enhancement with an added advantage of improved flow properties over micronization technique, for poorly soluble drugs like cilostazol. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The preparation and application of white graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Chenghong

    2014-12-01

    In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.

  17. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C.; Van Stiphout, K.

    2016-04-07

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide withmore » a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.« less

  18. Lyotropic chromonic liquid crystals as materials for optical and biosensing applications

    NASA Astrophysics Data System (ADS)

    Tortora, L.; Park, H.-S.; Antion, K.; Finotello, D.; Lavrentovich, O. D.

    2007-02-01

    Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with rigid polyaromatic cores and ionic groups at the periphery that form aggregates while in water. Most of the LCLCs are not toxic to the biological cells and can be used as an amplifying medium in real-time biosensors. The detector is based on the principle that the immune aggregates growing in the LCLC bulk trigger the director distortions. Self-assembly of LCLC molecules into oriented structures allows one to use them in various structured films. For example, layer-by-layer electrostatic deposition produces monomolecular layers and stacks of layers of LCLC with long-range in-plane orientational order which sets them apart from the standard Langmuir-Blodgett films. We demonstrate that divalent and multivalent salts as well as acidic and basic materials that alter pH of the LCLC water solutions, are drastically modifying the phase diagrams of LCLC, from shifting the phase transition temperatures by tens of degrees, to causing condensation of the LCLC aggregates into more compact structures, such as birefringent bundles or formation of a columnar hexagonal phase from the nematic phase.

  19. Green rusts synthesis by coprecipitation of Fe II-Fe III ions and mass-balance diagram

    NASA Astrophysics Data System (ADS)

    Ruby, Christian; Aïssa, Rabha; Géhin, Antoine; Cortot, Jérôme; Abdelmoula, Mustapha; Génin, Jean-Marie

    2006-06-01

    A basic solution is progressively added to various mixed Fe II-Fe III solutions. The nature and the relative quantities of the compounds that form can be visualised in a mass-balance diagram. The formation of hydroxysulphate green rust {GR( SO42-)} is preceded by the precipitation of a sulphated ferric basic salt that transforms in a badly ordered ferric oxyhydroxide. Then octahedrally coordinated Fe II species and SO42- anions are adsorbed on the FeOOH surface and GR( SO42-) is formed at the solid/solution interface. By using the same method of preparation, other types of green rust were synthesised, e.g. hydroxycarbonate green rust {GR( CO32-)}. Like other layered double hydroxides, green rusts obey the general chemical formula [ṡ[ṡmHO]x+ with x⩽1/3. Al-substituted hydroxysulphate green rust consists of small hexagonal crystals with a lateral size ˜50 nm, which is significantly smaller than the size of the GR( SO42-) crystals (˜500 nm). To cite this article: C. Ruby et al., C. R. Geoscience 338 (2006).

  20. Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.

    PubMed

    Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila

    2016-11-01

    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.

  1. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  2. Reversible pressure-induced crystal-amorphous structural transformation in ice Ih

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2014-08-01

    Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.

  3. Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes.

    PubMed

    Le, Minh-Quy

    2018-05-11

    Although various phosphorene allotropes have been theoretically predicted to be stable at 0 K, the mechanical properties and fracture mechanism at room temperature remain unclear for many of them. We investigate through reactive molecular dynamics simulations at room temperature the mechanical properties of phosphorene allotropes including: five sheets with hexagonal structures (β-, γ-, δ-, θ-, and α-phosphorene), one sheet with 4-8 membered rings (4-8-P), and two sheets with 5-7 membered rings. High, moderate and slight anisotropies in their mechanical properties are observed, depending on their crystal structures. Their Young's moduli and tensile strength are approximately in the range from 7.3% through 25%, and from 8.6% through 22% of those of graphene, respectively. At the early stage of fracture, eye-shaped cracks are formed by local bond breaking and perpendicular to the tensile direction in hexagonal and 4-8-P sheets. Complete fractures take place with straight cracks in these hexagonal sheets under tension along the zigzag direction and under tension along the square edge direction in the 4-8-P sheet. Crack meandering and branching are observed during the tension of α-, β-, and γ-phosphorene along the armchair direction; and along the square diagonal direction in the 4-8-P sheet. Under uniaxial tension of two phosphorene sheets with 5-7 atom rings, 12 and 10 membered rings are formed by merging two neighbor heptagons, and a heptagon and its neighbor pentagon, respectively. These 12 and 10 membered rings coalesce subsequently, causing the failure of these two sheets. The results are of great importance in the design of these novel phosphorene allotropes.

  4. Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes

    NASA Astrophysics Data System (ADS)

    Le, Minh-Quy

    2018-05-01

    Although various phosphorene allotropes have been theoretically predicted to be stable at 0 K, the mechanical properties and fracture mechanism at room temperature remain unclear for many of them. We investigate through reactive molecular dynamics simulations at room temperature the mechanical properties of phosphorene allotropes including: five sheets with hexagonal structures (β-, γ-, δ-, θ-, and α-phosphorene), one sheet with 4-8 membered rings (4-8-P), and two sheets with 5-7 membered rings. High, moderate and slight anisotropies in their mechanical properties are observed, depending on their crystal structures. Their Young’s moduli and tensile strength are approximately in the range from 7.3% through 25%, and from 8.6% through 22% of those of graphene, respectively. At the early stage of fracture, eye-shaped cracks are formed by local bond breaking and perpendicular to the tensile direction in hexagonal and 4-8-P sheets. Complete fractures take place with straight cracks in these hexagonal sheets under tension along the zigzag direction and under tension along the square edge direction in the 4-8-P sheet. Crack meandering and branching are observed during the tension of α-, β-, and γ-phosphorene along the armchair direction; and along the square diagonal direction in the 4-8-P sheet. Under uniaxial tension of two phosphorene sheets with 5-7 atom rings, 12 and 10 membered rings are formed by merging two neighbor heptagons, and a heptagon and its neighbor pentagon, respectively. These 12 and 10 membered rings coalesce subsequently, causing the failure of these two sheets. The results are of great importance in the design of these novel phosphorene allotropes.

  5. Morphological, spectroscopic and thermal studies of samarium chloride coordinated single crystal grown by slow evaporation method

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.

    2018-05-01

    The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.

  6. Method for exfoliation of hexagonal boron nitride

    NASA Technical Reports Server (NTRS)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  7. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries

    USGS Publications Warehouse

    Watt, J.P.; Peselnick, L.

    1980-01-01

    Bounds on the effective elastic moduli of randomly oriented aggregates of hexagonal, trigonal, and tetragonal crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt-Reuss-Hill average lies within the Hashin-Shtrikman bounds in nearly all cases. Previous bounds of Peselnick and Meister are shown to be special cases of the present results.

  8. Group-theoretical analysis of two-dimensional hexagonal materials

    NASA Astrophysics Data System (ADS)

    Minami, Susumu; Sugita, Itaru; Tomita, Ryosuke; Oshima, Hiroyuki; Saito, Mineo

    2017-10-01

    Two-dimensional hexagonal materials such as graphene and silicene have highly symmetric crystal structures and Dirac cones at the K point, which induce novel electronic properties. In this report, we calculate their electronic structures by using density functional theory and analyze their band structures on the basis of the group theory. Dirac cones frequently appear when the symmetry at the K point is high; thus, two-dimensional irreducible representations are included. We discuss the relationship between symmetry and the appearance of the Dirac cone.

  9. Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy.

    PubMed

    Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M

    2004-09-01

    We describe broadband coherent transmission studies of two-dimensional photonic crystals consisting of a hexagonal array of air holes in a dielectric slab in a planar waveguide. By filling several of the air holes in the photonic crystal slab, we observe the signature of a defect mode within the stop band, in both the amplitude and phase spectra. The experimental results are in reasonable agreement with theoretical calculations using the transfer matrix method.

  10. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    PubMed

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  11. Two-dimensional liquid crystalline growth within a phase-field-crystal model.

    PubMed

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  12. 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro

    1996-10-01

    The 2D-crystallization method using the liquid-liquid interface between a aqueous phase (protein solution) and a thin organic liquid (dehydroabietylamine) layer has been applied to the Rhodococcus 20S proteasome. The 20S proteasome is known to be the core complex of the 26S proteasome, which is the central protease of the ubiquitin-dependent pathway. Two types of ordered arrays were obtained, both large enough for high resolution analysis by electron crystallography. The first one had a four-fold symmetry, whereas the second one was found out to be a hexagonally close-packed array. By image analysis based on a real space correlation averaging (CAV) technique, the close-packed array was found to be hexagonally packed, but the molecules had presumably rotational freedom. The four-fold array was found to be a true crystal with p4 symmetry. Lattice constants were a = b = 20.0 nm and α = 90°. The unit cell of this crystal contained two molecules. The diffraction pattern computed from the original picture showed spots up to (4, 5) that corresponds to 3.1 nm resolution. After applying an unbending procedure, the diffraction pattern showed spots extending to 1.8 nm resolution.

  13. Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3

    NASA Astrophysics Data System (ADS)

    Tsirlin, Alexander

    Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.

  14. First-principles study of the structural properties of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, K.J.; Cohen, M.L.

    1986-12-15

    With the use of an ab initio pseudopotential method, the structural properties of Ge are investigated at normal and high pressures. The pressure-induced structural phase transitions from cubic diamond to ..beta..-Sn, to simple hexagonal (sh), and to double hexagonal close packed (dhcp) are examined. With the possible exception of the dhcp structure, the calculated transition pressures, transition volumes, and axial ratios are in good agreement with experimental results. We find that sh Ge has characteristics similar to those of sh Si; the bonds between hexagonal layers are stronger than intralayer bonds and the transverse phonon modes become soft near themore » transitions from the sh to ..beta..-Sn and the sh to hcp structures. At normal pressures, we compare the crystal energies for the cubic diamond, hexagonal 2H, and hexagonal 4H structures. Because of the similar sp/sup 3/ bonds in these structures, the structural energy differences are less than about 14 meV, and the 2H and 4H phases are metastable with respect to the cubic diamond structure. The equation of state is also presented and compared with experiment.« less

  15. Comprehensive studies of the Ag+ effect on borosilicate glass ceramics containing Ag nanoparticles and Er-doped hexagonal NaYF4 nanocrystals: morphology, structure, and 2.7 μm emission

    NASA Astrophysics Data System (ADS)

    Liu, Qunhuo; Tian, Ying; Tang, Wenhua; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing

    2018-05-01

    In this work, we have performed a comprehensive investigation of the Ag+ concentration effect on the morphological, thermal, structural, and mid-infrared emission properties of novel oxyfluoride borosilicate glasses and glass ceramics containing both Ag nanoparticles and erbium-doped hexagonal NaYF4 nanocrystals. The effect of Ag+ ions on the glass forming and crystallization processes was discussed in detail by glass structural analysis. It was found that the Ag+ concentration can affect the distribution of Na+ ion and bridge oxygen in boron-rich and silicon-rich phases, which induced the transformation between BO3 triangles and BO4 tetrahedra during crystallization process. In addition, there was a turning point when the doped Ag+ ion concentration reached its solubility in the borosilicate glass. Furthermore, the enhancement of the 2.7 μm emission and the reduction of the lifetime of the 4I13/2 level were observed both in glasses and in glass ceramics, and its origin was revealed by qualitative and quantitative analyses of the Er3+-Ag nanoparticles (localized electric field enhancement) and Er3+-Er3+ (nonradiative resonance energy transfer) interactions within glasses and glass ceramics. Moreover, the high lifetime of the 4I11/2 level (2.12 ms) and the peak emission cross section in 2.7 μm (6.8×10-21 cm2) suggested that the prepared glass ceramics have promising mid-infrared laser applications.

  16. Influence of the liquid crystal behaviour on the Langmuir and Langmuir-Blodgett film supramolecular architecture of an ionic liquid crystal.

    PubMed

    Pérez-Gregorio, Víctor; Giner, Ignacio; López, M Carmen; Gascón, Ignacio; Cavero, Emma; Giménez, Raquel

    2012-06-01

    A new luminescent ionic liquid crystal, called Ipz-2, has been synthesised and its mesophase behaviour and also at the air-liquid interface has been studied and compared with Ipz, another ionic pyrazole derivative, with a similar molecular structure, previously studied. The X-ray diffraction pattern shows that Ipz-2 exhibits hexagonal columnar mesomorphism, while Ipz adopts lamellar mesophases. Langmuir films of both compounds are flat and homogeneous at large areas per molecule, but create different supramolecular structures under further compression. Ipz-2 Langmuir films have been transferred onto solid substrates, and Atomic Force Microscopy (AFM) images of the Langmuir-Blodgett films have shown that large columnar structures hundreds of nm in diameter are formed on top of the initial monolayer, in contrast with well-defined trilayer LB films obtained for Ipz. Our results show that Ipz-2 has a tendency to stack in columnar arrangements both in liquid crystalline bulk and in Langmuir and Langmuir-Blodgett films. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Magnesium content within the skeletal architecture of the coral Montastraea faveolata: locations of brucite precipitation and implications to fine-scale data fluctuations

    USGS Publications Warehouse

    Buster, N.A.; Holmes, C.W.

    2006-01-01

    Small portions of coral cores were analyzed using a high-resolution laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) to determine the geochemical signatures within and among specific skeletal structures in the large framework coral, Montastraea faveolata. Vertical transects were sampled along three parallel skeletal structures: endothecal (septal flank), corallite wall, and exothecal (costal flank) areas. The results demonstrate that trace element levels varied among the three structures. Magnesium (Mg) varied among adjacent structures and was most abundant within the exothecal portion of the skeleton. Scanning electron microscopy (SEM) revealed the presence of hexagonal crystals forming thick discs, pairs or doublets of individual crystals, and rosettes in several samples. High Mg within these crystals was confirmed with energy dispersive spectroscopy (EDS), infrared spectrometry, and LA ICP-MS. The chemical composition is consistent with the mineral brucite [Mg(OH2)]. These crystals are located exclusively in the exothecal area of the skeleton, are often associated with green endolithic algae, and are commonly associated with increased Mg levels found in the adjacent corallite walls. Although scattered throughout the exothecal, the brucite crystals are concentrated within green bands where levels of Mg increase substantially relative to other portions of the skeleton. The presence and locations of high-Mg crystals may explain the fine-scale fluctuations in Mg data researchers have been questioning for years.

  18. Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, Barbara; Iachello, Francesco; Macek, Michal

    The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less

  19. Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices

    DOE PAGES

    Dietz, Barbara; Iachello, Francesco; Macek, Michal

    2017-08-07

    The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less

  20. Correlation among far-infrared reflection modes, crystal structures and dielectric properties of Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–CaTiO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Feng, E-mail: sf751106@sina.com.cn; Sun, Haiqing; Liu, Hongquan

    Highlights: • Crystal symmetry decreases with CT concentration from cubic to hexagonal structure. • Lattice constants as well as the ordered degree change with CT concentration. • Ordered structures turn from 1:1 to 1:2 ordering with change of crystal structures. • There is a correlation between FIR phonon modes and dielectric properties. • There is a correlation between FIR phonon modes and crystal structures. - Abstract: Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3} (BZN)–CaTiO{sub 3} (CT) microwave dielectric ceramics were synthesized at 1395 °C for 4 h using conventional solid-state sintering technique with different CT contents. The ceramics were characterized by X-ray diffractionmore » (XRD) and far-infrared reflection (FIR) spectroscopy to evaluate correlations among crystal structures, dielectric properties, and infrared modes. XRD results showed that crystal symmetry decreased with increased CT concentration from cubic to hexagonal structure, and lattice constants and ordered degree changed accordingly. Ordered phases transformed from 1:1 to 1:2 ordered structure with crystal-structure change. FIR results demonstrated that two new IR active modes appeared at 300 cm{sup −1}, and another new mode appeared at 600 cm{sup −1} for the x ≥ 0.60 sample, which agreed with the change in crystal structures as confirmed by XRD results. Correlations between FIR modes and dielectric properties were established.« less

  1. A structural analysis of small vapor-deposited 'multiply twinned' gold particles

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Heinemann, K.; Yacaman, M. J.; Poppa, H.

    1979-01-01

    High resolution selected zone dark field, Bragg reflection imaging and weak beam dark field techniques of transmission electron microscopy were used to determine the structure of small gold particles vapor deposited on NaCl substrates. Attention was focused on the analysis of those particles in the 50-150 A range that have pentagonal or hexagonal bright field profiles. These particles have been previously described as multiply twinned crystallites composed of face-centered cubic tetrahedra. The experimental evidence of the present studies can be interpreted on the assumption that the particle structure is a regular icosahedron or decahedron for the hexagonal or the pentagonal particles respectively. The icosahedron is a multiply twinned rhombohedral crystal and the decahedron is a multiply twinned body-centered orthorhombic crystal, each of which constitutes a slight distortion from the face-centered cubic structure.

  2. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    PubMed

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  3. A modified hexagonal photonic crystal fiber for terahertz applications

    NASA Astrophysics Data System (ADS)

    Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-05-01

    We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.

  4. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material

    PubMed Central

    Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A. S.; Fei, Z.; Liu, M. K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.

    2015-01-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials, light propagation is unusual leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride, a natural mid-infrared hyperbolic material, can act as a ‘hyper-focusing lens' and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon–polaritons launched by metallic disks underneath the hexagonal boron nitride crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization. PMID:25902364

  5. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    PubMed Central

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-01-01

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607

  6. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, Steven J.

    1987-01-01

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  7. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, S.J.

    1985-03-15

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  8. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  9. Freezing, melting and structure of ice in a hydrophilic nanopore.

    PubMed

    Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

    2010-04-28

    The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.

  10. Lonsdaleite has been used as an indicator of shock from cratering events, but does it exist?

    NASA Astrophysics Data System (ADS)

    Nemeth, P.; Garvie, L. A.; Buseck, P. R.

    2013-12-01

    In 1967 a new diamond polymorph was described from the Canyon Diablo iron meteorite [1] and called lonsdaleite (also referred to as hexagonal diamond. It was identified from reflections (e.g., at 0.218, 0.193, and 0.150 nm), additional to those in diamond, that were indexed in terms of a hexagonal cell [1]. Lonsdaleite was attributed to shock-induced transformation of graphite within the iron meteorite upon impact [1, 2] and has subsequently been used as an indicator of shock and meteorite impact [3, 4, 5]. Given the importance of lonsdaleite, we reinvestigated the structure of the shock-formed diamond and lonsdaleite from the Canyon Diablo meteorite with an aberration-corrected ultra-high-resolution scanning transmission electron microscope (STEM), with the view of providing further insights into the shock-forming mechanism. The STEM images allowed direct structural interpretation at 0.1-nm resolution and showed that the samples consist of single-crystal and twinned diamond, as well as graphite intimately associated at the nanoscale. A characteristic feature of the STEM images is stacking faults and twins (111, 200, 113) that interrupt the regularity of the crystal structure. Uncommon, subnanometer-sized regions occur with two- and four-layer hexagonal symmetry, though these regions merge into diamond with stacking faults. Although we did not find lonsdaleite, the defects can give rise to extra reflections like those attributed to lonsdaleite. For example, the (113) diamond twin results in a 0.216-nm spacing that matches that of the broad 0.218-nm lonsdaleite peak. Our observations from Canyon Diablo provide a new understanding of shocked diamond structures and question the existence of lonsdaleite and its inferred geologic implication, although the abundance of diamond twinning and stacking faults may be indicative of shock metamorphism. [1] Frondel, C. & Marvin, U.B. (1967) Lonsdaleite, a hexagonal polymorph of diamond. Nature 217, 587-589. [2] Lipschutz, M. & Anders, E. (1961) The record in the meteorites-IV: Origin of diamonds in iron meteorites. Geochimica et Cosmochimica Acta 24, 83-105. [3] Kennet, D. J., Kennet, J. P., West, A., Mercer, C., Que Hee, S. S., Bement, L., Bunch, T. E., Sellers, M., & Wolbach, W. S. (2009) Nanodiamonds in the Younger Dryas boundary sediment layers. Science 323, 94. [4] Le Guillou, C., Rouzaud, J.N., Remusat, L., Jambon, A., & Bourot-Denise, M. (2010) Structures, origin and evolution of various carbon phases in the ureilite Northwest Africa 4742 compared with laboratory-shocked graphite. Geochimica Et Cosmochimica Acta 74(14), 4167-4185. [5] Hough, R.M., Gilmour, I., Pillinger, C.T., Arden, J.W., Gilkes, K.W.R., Yuan, J. & Milledge, H.J. (1995) Diamond and silicon carbide in an impact melt rock from the Ries impact crater. Nature 378, 41-44.

  11. New Coarse-Grained Model and Its Implementation in Simulations of Graphene Assemblies.

    PubMed

    Shang, Jun-Jun; Yang, Qing-Sheng; Liu, Xia

    2017-08-08

    Graphene is a one-atom thick layer of carbon atoms arranged in a hexagonal pattern, which makes it the strongest material in the world. The Tersoff potential is a suitable potential for simulating the mechanical behavior of the complex covalently bonded system of graphene. In this paper, we describe a new coarse-grained (CG) potential, TersoffCG, which is based on the function form of the Tersoff potential. The TersoffCG applies to a CG model of graphene that uses the same hexagonal pattern as the atomistic model. The parameters of the TersoffCG potential are determined using structural feature and potential-energy fitting between the CG model and the atomic model. The modeling process of graphene is highly simplified using the present CG model as it avoids the necessity to define bonds/angles/dihedrals connectivity. What is more, the present CG model provides a new perspective of coarse-graining scheme for crystal structures of nanomaterials. The structural changes and mechanical properties of multilayer graphene were calculated using the new potential. Furthermore, a CG model of a graphene aerogel was built in a specific form of assembly. The chemical bonding in the joints of graphene-aerogel forms automatically during the energy relaxation process. The compressive and recover test of the graphene aerogel was reproduced to study its high elasticity. Our computational examples show that the TersoffCG potential can be used for simulations of graphene and its assemblies, which have many applications in areas of environmental protection, aerospace engineering, and others.

  12. Syntheses, Crystal Structures, and Properties of New Layered Tungsten(VI)-Containing Materials Based on the Hexagonal-WO 3 Structure: M2(WO 3) 3SeO 3 ( M = NH 4, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Harrison, William T. A.; Dussack, Laurie L.; Vogt, Thomas; Jacobson, Allan J.

    1995-11-01

    The hydrothermal syntheses and crystal structures of (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO6 octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH+4 or Cs+ cations provide charge balance. The full H-bonding scheme in (NH4)2(WO3)3SeO3 has been elucidated from Rietveld refinement against neutron powder diffraction data. The WO6 octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO6 unit in both these phases. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural with their molybdenum(VI)-containing analogues (NH4)2(MoO3)3SeO3 and Cs2 (MoO3)3SeO3. Crystal data: (NH4)2(WO3)3SeO3, Mr = 858.58, hexagonal, space group P63 (No. 173), a = 7.2291(2) Å, c = 12.1486(3) Å, V = 549.82(3) Å3, Z = 2, Rp = 1.81%, and Rwp = 2.29% (2938 neutron powder data). Cs2(WO3)3SeO3, Mr = 1088.31, hexagonal, space group P63 (no. 173), a = 7.2615(2) Å, c = 12.5426(3) Å, V = 572.75(3) Å3, Z = 2, Rp = 4.84%, and Rwp = 5.98% (2588 neutron powder data).

  13. Silicon Carbide From a Carbon Nodule in the Canyon Diablo Meteorite

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Winston, R.

    2011-12-01

    The Canyon Diablo Meteorite fell in the Arizona desert 50,000 years ago, giving rise to the well-preserved Meteor Crater. Irons of various sizes were scattered around the crater rim and on the surrounding plains. We studied a rusty specimen containing a carbon nodule. We dug out small blocks of sooty carbon by means of a sharp tungsten carbide tip. These carbon materials contain traces of silicon carbide (SiC) and diamond/lonsdaleite. We report here our findigs of two groups of SiC grains. (1) Relatively large crystals, about 80-90 microns in size. Their colors are in shades of blue, green and neutral. One of the grains are composed of a cluster of 3 crystals of the 3C polytype, whereas, 7 other individual crystals are of hexagonal structure. All crystals in this group have dark, rounded resorption rims. (2) Small crystals, about 30-50 microns in size. They are pale blue in color, and they lack dark-colored rims. These two distinct groups probably have different modes of origin. The large crystals seem to be early-formed, but had been reheated or partially melted, as indicated by the bead-like rims. The complexities displayed by these SiC crystals might have resulted from a long residence time in the meteorite while it was still in space. Their origin might be akin to that of SiC occurring in carbonaceous chondrites and interplanetary dust particles.

  14. Two-dimensional microsphere quasi-crystal: fabrication and properties

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.

    1996-11-01

    2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.

  15. Improved expression, purification and crystallization of a putative N-acetyl-γ-glutamyl-phosphate reductase from rice (Oryza sativa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura-Ohnuma, Jun; Nonaka, Tsuyoshi; Katoh, Shizue

    2005-12-01

    Crystals of OsAGPR were obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å. N-Acetyl-γ-glutamyl-phosphate reductase (AGPR) catalyzes the third step in an eight-step arginine-biosynthetic pathway that starts with glutamate. This enzyme converts N-acetyl-γ-glutamyl phosphate to N-acetylglutamate-γ-semialdehyde by an NADPH-dependent reductive dephosphorylation. AGPR from Oryza sativa (OsAGPR) was expressed in Escherichia coli at 291 K as a soluble fusion protein with an upstream thioredoxin-hexahistidine [Trx-(His){sub 6}] extension. OsAGPR(Ala50–Pro366) was purified and crystals weremore » obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å.« less

  16. Average and local crystal structures of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Neuefeind, Joerg C.; Tyson, Trevor A.; ...

    2015-11-06

    We report the comprehensive study of the crystal structure of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles by means of neutron and synchrotron x-ray scattering. In our study we used four different types of (Ga 1–xZn x)(N 1–xO x) nanoparticles, with diameters of 10–27 nm and x = 0.075–0.51, which show the narrow energy-band gaps from 2.21 to 2.61 eV. The Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is the hexagonal wurtzite (space group P6 3mc), in agreement with previous reports on similar bulk materials. The pair-distribution function (PDF) analysis of the samemore » data found that the local structure is more disordered than the average one. It is best described by the model with a lower symmetry space group P1, where atoms are quasirandomly distorted from their nominal positions in the hexagonal wurtzite lattice.« less

  17. Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon

    DOE PAGES

    Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.

    2016-07-20

    Experimental determination of atomistic mechanisms linking crystal structures during a compression driven solid-solid phase transformation is a long standing and challenging scientific objective. Also, when using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. Furthermore, this approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.

  18. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  19. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno

    2008-08-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 5}22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to bemore » involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6{sub 5}22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative.« less

  20. Langmuir-Gibbs Surface Phases and Transitions

    NASA Astrophysics Data System (ADS)

    Ocko, Benjamin; Sloutskin, Eli; Sapir, Zvi; Tamam, Lilach; Deutsch, Moshe; Bain, Colin

    2007-03-01

    Recent synchrotron x-ray measurements reveal surface ordering transitions in films of medium-length linear hydrocarbons (alkanes), spread on the water surface. Alkanes longer than hexane do not spread on the free surface of water. However, sub-mM concentrations of some anionic surfactants (e.g. CTAB) induce formation of thermodynamically stable alkane monolayers, through a ``pseudo-partial wetting'' phenomenon[1]. The monolayers, incorporating both water-insoluble alkanes (Langmuir) and water-soluble CTAB molecules (Gibbs) are called Langmuir-Gibbs (LG) films. The films formed by alkanes with n <=17 exhibit ordering transition upon cooling [2], below which the molecules are normal to the water surface and hexagonally packed, with CTAB molecules randomly mixed inside the quasi-2D crystal. Alkanes with n>17 can not form ordered LG monolayers, due to the repulsion from the n=16 tails of CTAB. This repulsion arises from the two chains' length mismatch. A demixing transition occurs upon ordering, with a pure alkane quasi-2D crystal forming on top of disordered alkyl tails of CTAB molecules. [1] K.M. Wilkinson et al., Chem. Phys. Phys. Chem. 6, 547 (2005). [2] E. Sloutskin, Z. Sapir, L. Tamam, B.M. Ocko, C.D. Bain, and M. Deutsch, Thin Solid Films, in press; K.M. Wilkinson, L. Qunfang, and C.D. Bain, Soft Matter 2, 66 (2006).

  1. Fullerene (C60) films for solid lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhushan, B.; Gupta, B.K.; Van Cleef, G.W.

    1993-10-01

    The advent of techniques for producing gram quantities of a new form of stable, pure, solid carbon, designated as fullerene, opens a profusion of possibilities to be explored in many disciplines including tribology. Fullerenes take the form of hollow geodesic domes, which are formed from a network of pentagons and hexagons with covalently bonded carbon atoms. The C60 molecule has the highest possible symmetry (icosahedral) and assumes the shape of a soccer ball. At room temperature, fullerene molecules pack in an fcc lattice bonded with weak van der Waals attractions. Fullerenes can be dissolved in solvents such as toluene andmore » benzene and are easily sublimed. The low surface energy, high chemical stability, spherical shape, weak intermolecular bonding, and high load bearing capacity of C60 molecules offer potential for various mechanical and tribological applications. This paper describes the crystal structure and properties of fullerenes and proposes a mechanism for self-lubricating action. Sublimed films of C60 have been produced and friction and wear performance of these films in various operating environments are the subject of this paper. The results of this study indicate that C60, owing to its unique crystal structure and bonding, may be a promising solid lubricant. 31 refs.« less

  2. Self-Organization of Light in Optical Media with Competing Nonlinearities.

    PubMed

    Maucher, F; Pohl, T; Skupin, S; Krolikowski, W

    2016-04-22

    We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brgoch, Jakoah; Klob, Simon D.; Denault, Kristin A.

    The preparation of Eu 2+-substituted barium aluminum silicates is achieved using a rapid microwave-assisted preparation. The phase evolution of two BaAl 2Si 2O 8:Eu 2+ polymorphs, the higher temperature hexagonal phase (hexacelsian), and the lower temperature monoclinic phase (celsian), is explored by varying the ramp time and soak time. This preparation method significantly reduces the reaction time needed to form these phases compared to conventional solid state routes. The luminescent properties of the two phases are identified under UV excitation with the hexagonal phase emitting in the UV region (λ em = 372 nm) and the monoclinic phase emitting inmore » the blue region (λ em = 438 nm). The differences in optical properties of the two polymorphs are correlated to the coordination number and arrangement of the alkali earth site. The optical properties of the monoclinic phase can be further tuned through the substitution of Sr 2+, forming the solid solution (Ba 1–xSr x)Al 2Si 2O 8:Eu 2+. Changes in the crystal structure due to Sr 2+ substitution produce a surprising blue-shift in the emission spectrum, which is explained by a greater dispersion of bond lengths in the (Ba/Sr)–O polyhedra. The entire monoclinic solid solution exhibits excellent quantum yields of nearly 90 %, owing to the structural rigidity provided by the highly connected tetrahedral network.« less

  4. Grain neighbour effects on twin transmission in hexagonal close-packed materials

    DOE PAGES

    Arul Kumar, Mariyappan; Beyerlein, Irene Jane; McCabe, Rodney James; ...

    2016-12-19

    Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between grain boundaries and twins has an important influence on the deformation behaviour and fracture of hcp metals. Here, statistical analysis of large data sets reveals that whether twins transmit across grain boundaries depends not only on crystallography but also strongly on the anisotropy in crystallographic slip.more » As a result, we show that increases in crystal plastic anisotropy enhance the probability of twin transmission by comparing the relative ease of twin transmission in hcp materials such as Mg, Zr and Ti.« less

  5. Crystal growth and upconversion luminescent properties of KLu2F7:Yb,Er nanocrystals

    NASA Astrophysics Data System (ADS)

    Xu, Dekang; Yao, Lu; Lin, Hao; Yang, Shenghong; Zhang, Yueli

    2018-05-01

    Crystal growth of KLu2F7 nanocrystals is investigated by dosage- and time-dependent analysis. XRD patterns reveal the phase transition along with the dosage of fluorine source and reaction times, where the cubic-phase KLu3F10 turns into orthorhombic KLu2F7. TEM images show that the dimensions of as-prepared samples are below a hundred nanometers, with different shapes from hexagonal plate to hexagonal rod. The upconversion properties of the as-prepared samples are investigated. It is found that the upconversion emission is lowered as the shape of the samples varies. Moreover, the orthorhombic KLu2F7:Yb,Er nanocrystals present more enormous upconversion luminescence than the cubic counterparts. In a word, the orthorhombic nanocrystals are found to be good candidate for upconversion luminescence and of great importance for potential applications in solar cells, multicolor display and bioimaging.

  6. Hexagonal photonic crystal waveguide based on barium titanate thin films

    NASA Astrophysics Data System (ADS)

    Li, Jianheng; Liu, Zhifu; Wessels, Bruce W.; Tu, Yongming; Ho, Seng-Tiong; Joshi-Imre, Alexandra; Ocola, Leonidas E.

    2011-03-01

    The simulation, fabrication and measurement of nonlinear photonic crystals (PhCs) with hexagonal symmetry in epitaxial BaTiO3 were investigated. The optical transmission properties of a PhC were simulated by a 2-D finite-difference time domain (FDTD) method. A complete bandgap exists for both the TE and TM optical modes. The fabricated PhC has a well-defined stop band over the spectral region of 1525 to 1575 nm. A microcavity structure was also fabricated by incorporation of a line defect in the PhC. Transmission of the microcavity structure over the spectral region from 1456 to 1584nm shows a well-defined 5 nm wide window at 1495nm. Simulations indicate that the phase velocity matched PhC microcavity device of 0.5 mm long can potentially serve as modulator with a 3 dB bandwidth of 4 THz.

  7. Effect of plasma absorption on dust lattice waves in hexagonal dust crystals

    NASA Astrophysics Data System (ADS)

    Kerong, HE; Hui, CHEN; Sanqiu, LIU

    2018-04-01

    In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived. It is found that the temperature effect (electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect (dimensionless Debye shielding parameter \\tilde{κ }) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of \\tilde{κ } when τ > 3.5. However, the system will be unstable when τ = 1 and \\tilde{κ }> 4.1.

  8. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  9. Polarization-free integrated gallium-nitride photonics

    PubMed Central

    Bayram, C.; Liu, R.

    2017-01-01

    Gallium Nitride (GaN) materials are the backbone of emerging solid state lighting. To date, GaN research has been primarily focused on hexagonal phase devices due to the natural crystallization. This approach limits the output power and efficiency of LEDs, particularly in the green spectrum. However, GaN can also be engineered to be in cubic phase. Cubic GaN has a lower bandgap (~200 meV) than hexagonal GaN that enables green LEDs much easily. Besides, cubic GaN has more isotropic properties (smaller effective masses, higher carrier mobility, higher doping efficiency, and higher optical gain than hexagonal GaN), and cleavage planes. Due to phase instability, however, cubic phase materials and devices have remained mostly unexplored. Here we review a new method of cubic phase GaN generation: Hexagonal-to-cubic phase transition, based on novel nano-patterning. We report a new crystallographic modelling of this hexagonal-to-cubic phase transition and systematically study the effects of nano-patterning on the GaN phase transition via transmission electron microscopy and electron backscatter diffraction experiments. In summary, silicon-integrated cubic phase GaN light emitters offer a unique opportunity for exploration in next generation photonics. PMID:29307953

  10. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.

    PubMed

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-12-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  11. High-temperature crystallization of nanocrystals into three-dimensional superlattices.

    PubMed

    Wu, Liheng; Willis, Joshua J; McKay, Ian Salmon; Diroll, Benjamin T; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J

    2017-08-10

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  12. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  13. Water polygons in high-resolution protein crystal structures.

    PubMed

    Lee, Jonas; Kim, Sung-Hou

    2009-07-01

    We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.

  14. Water polygons in high-resolution protein crystal structures

    PubMed Central

    Lee, Jonas; Kim, Sung-Hou

    2009-01-01

    We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 Å resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of “stable” water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state. PMID:19551896

  15. Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.

    PubMed

    Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore

    2018-05-01

    We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

  16. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.

  17. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    DOEpatents

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  18. Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongjie; Dong, Lifang, E-mail: donglfhbu@163.com; Liu, Weibo

    2014-07-15

    Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals aremore » actually temporal integrations of those of transient sublattices.« less

  19. The anomalously high melting temperature of bilayer ice.

    PubMed

    Kastelowitz, Noah; Johnston, Jessica C; Molinero, Valeria

    2010-03-28

    Confinement of water usually depresses its melting temperature. Here we use molecular dynamics simulations to determine the liquid-crystal equilibrium temperature for water confined between parallel hydrophobic or mildly hydrophilic plates as a function of the distance between the surfaces. We find that bilayer ice, an ice polymorph in which the local environment of each water molecule strongly departs from the most stable tetrahedral structure, has the highest melting temperature (T(m)) of the series of l-layer ices. The melting temperature of bilayer ice is not only unusually high compared to the other confined ices, but also above the melting point of bulk hexagonal ice. Recent force microscopy experiments of water confined between graphite and a tungsten tip reveal the formation of ice at room temperature [K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008)]. Our results suggest that bilayer ice, for which we compute a T(m) as high as 310 K in hydrophobic confinement, is the crystal formed in those experiments.

  20. Complex magnetic order in the kagome ferromagnet Pr3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Henriques, M. S.; Gorbunov, D. I.; Andreev, A. V.; Fabrèges, X.; Gukasov, A.; Uhlarz, M.; Petříček, V.; Ouladdiaf, B.; Wosnitza, J.

    2018-01-01

    In the hexagonal crystal structure of Pr3Ru4Al12 , the Pr atoms form a distorted kagome lattice, and their magnetic moments, are subject to competing exchange and anisotropy interactions. We performed magnetization, magnetic-susceptibility, specific-heat, electrical-resistivity, and neutron-scattering measurements. Pr3Ru4Al12 is a uniaxial ferromagnet with TC=39 K that displays a collinear magnetic structure (in the high-temperature range of the magnetically ordered state) for which the only crystallographic position of Pr is split into two sites carrying different magnetic moments. A spin-reorientation phase transition is found at 7 K. Below this temperature, part of the Pr moments rotate towards the basal plane, resulting in a noncollinear magnetic state with a lower magnetic symmetry. We argue that unequal RKKY exchange interactions competing with the crystal electric field lead to a moment instability and qualitatively explain the observed magnetic phases in Pr3Ru4Al12 .

  1. TIMo/sub 2/ /SUP IV/ P/sub 3/O/sub 12/: a molybdenophosphate with a tunnel structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclaire, A.; Monier, J.C.; Raveau, B.

    1985-10-01

    A molybdenophosphate, TIMo/sub 2/ /SUP IV/ P/sub 3/O/sub 12/, with an original tunnel structure, has been isolated. Its structure has been determined by X-ray diffraction on a single crystal. It crystallizes in the orthorhombic system with a = 8.836(1), b = 9.255(1), c = 12.288(1) A, possible space groups Pbcm and Pbc2/sub 1/ with /ZETA/ = 4. The structure was solved and refined in the centrosymmetric space group Pbcm. The host lattice ''Mo/sub 3/P/sub 3/O/sub 12/'' is built up from corner-sharing octahedra and tetrahedra and forms tunnels running along the b axis and cages where the TI+ ions are located.more » The relationships of this framework wit that of the phosphate tungsten bronze CsP/sub 8/W/sub 8/O/sub 40/ and that of the hexagonal tungsten bronze are discussed.« less

  2. Reverse lyotropic liquid crystals from europium nitrate and P123 with enhanced luminescence efficiency.

    PubMed

    Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao

    2014-10-02

    Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.

  3. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less

  4. All-wurtzite ZnO/ZnSe hetero-nanohelix: formation, mechanics and luminescence

    NASA Astrophysics Data System (ADS)

    Sun, Luwei; Ye, Zhizhen; He, Haiping

    2015-04-01

    A unique all-wurtzite ZnO/ZnSe hetero-nanohelix is formed via growing wurtzite ZnSe nanoteeth on ZnO nanobelts through a one step thermal evaporation method. The microstructure and growth mechanism of the hetero-nanohelix are investigated in detail. The formation of metastable wurtzite ZnSe is attributed to the wurtzite ZnO template. Mechanical forces, thermal expansion and polar plane in hexagonal crystals are suggested to contribute to the bending of the nanohelix. A boomerang-like structural block is proposed to assemble the zigzag ZnO nanobelts. The incorporation of Se into ZnO results in a strong orange emission. The heterostructure of the ZnO/ZnSe nanohelix is confirmed by elemental mapping and luminescence imaging. The fabrication of such a hetero-nanohelix may provide insights into the growth mechanism of the rich family of ZnO-based nanostructures.A unique all-wurtzite ZnO/ZnSe hetero-nanohelix is formed via growing wurtzite ZnSe nanoteeth on ZnO nanobelts through a one step thermal evaporation method. The microstructure and growth mechanism of the hetero-nanohelix are investigated in detail. The formation of metastable wurtzite ZnSe is attributed to the wurtzite ZnO template. Mechanical forces, thermal expansion and polar plane in hexagonal crystals are suggested to contribute to the bending of the nanohelix. A boomerang-like structural block is proposed to assemble the zigzag ZnO nanobelts. The incorporation of Se into ZnO results in a strong orange emission. The heterostructure of the ZnO/ZnSe nanohelix is confirmed by elemental mapping and luminescence imaging. The fabrication of such a hetero-nanohelix may provide insights into the growth mechanism of the rich family of ZnO-based nanostructures. Electronic supplementary information (ESI) available: HRTEM image, EDS elemental mapping, XRD data, and calculation of bending mechanics. See DOI: 10.1039/c5nr00567a

  5. Paraffin problems in crude oil production and transportation: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, S.; Baruah, S.; Singh, K.

    1995-02-01

    Problems related to crystallization and deposition of paraffin waxes during production and transportation of crude oil cause losses of billions of dollars yearly to petroleum industry. The goal of this paper is to present the knowledge on such problems in a systematic and comprehensive form. The fundamental aspects of these problems are defined, and characterization of paraffins and their solubility tendencies have been discussed. It has been established conclusively that n-paraffins are predominantly responsible for this problem. Comprehensive discussion on the mechanism of crystallization of paraffins has been included. Compounds other than n-paraffins, especially asphaltenes and resins, have profound effectsmore » on solubility of n-paraffins. In evaluations of the wax potential of a crude, the climate of the area concerned should be considered. Under the most favorable conditions, n-paraffins form clearly defined orthorhombic crystals, but unfavorable conditions and the presence of impurities lead to hexagonal and/or amorphous crystallization.The gelation characteristics are also affected the same way. An attempt was made to classify the paraffin problems into those resulting from high pipeline pressure, high restarting pressure, and deposition on pipe surfaces. Fundamental aspects and mechanism of these dimensions are described. Wax deposition depends on flow rate, the temperature differential between crude and pipe surface, the cooling rate, and surface properties. Finally, methods available in the literature for predicting these problems and evaluating their mitigatory techniques are reviewed. The available methods present a very diversified picture; hence, using them to evaluate these problems becomes taxing. A top priority is standardizing these methods for the benefit of the industry. 56 refs.« less

  6. Screening Libraries of Semifluorinated Arylene Bisimides to Discover and Predict Thermodynamically Controlled Helical Crystallization.

    PubMed

    Ho, Ming-Shou; Partridge, Benjamin E; Sun, Hao-Jan; Sahoo, Dipankar; Leowanawat, Pawaret; Peterca, Mihai; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Heiney, Paul A; Hsu, Chain-Shu; Percec, Virgil

    2016-12-12

    Synthesis, structural, and retrostructural analysis of a library containing 16 self-assembling perylene (PBI), 1,6,7,12-tetrachloroperylene (Cl 4 PBI), naphthalene (NBI), and pyromellitic (PMBI) bisimides functionalized with environmentally friendly AB 3 chiral racemic semifluorinated minidendrons at their imide groups via m = 0, 1, 2, and 3 methylene units is reported. These semifluorinated compounds melt at lower temperatures than homologous hydrogenated compounds, permitting screening of all their thermotropic phases via structural analysis to discover thermodynamically controlled helical crystallization from propeller-like, cogwheel, and tilted molecules as well as lamellar-like structures. Thermodynamically controlled helical crystallization was discovered for propeller-like PBI, Cl 4 PBI and NBI with m = 0. Unexpectedly, assemblies of twisted Cl 4 PBIs exhibit higher order than those of planar PBIs. PBI with m = 1, 2, and 3 form a thermodynamically controlled columnar hexagonal 2D lattice of tilted helical columns with intracolumnar order. PBI and Cl 4 PBI with m = 1 crystallize via a recently discovered helical cogwheel mechanism, while NBI and PMBI with m = 1 form tilted helical columns. PBI, NBI and PMBI with m = 2 generate lamellar-like structures. 3D and 2D assemblies of PBI with m = 1, 2, and 3, NBI with m = 1 and PMBI with m = 2 exhibit 3.4 Å π-π stacking. The library approach applied here and in previous work enabled the discovery of six assemblies which self-organize via thermodynamic control into 3D and 2D periodic arrays, and provides molecular principles to predict the supramolecular structure of electronically active components.

  7. Nucleation and growth mechanism of 2D SnS2 by chemical vapor deposition: initial 3D growth followed by 2D lateral growth

    NASA Astrophysics Data System (ADS)

    Zhang, Haodong; van Pelt, Thomas; Nalin Mehta, Ankit; Bender, Hugo; Radu, Iuliana; Caymax, Matty; Vandervorst, Wilfried; Delabie, Annelies

    2018-07-01

    Tin disulfide (SnS2) is a n-type semiconductor with a hexagonally layered crystal structure and has promising applications in nanoelectronics, optoelectronics and sensors. Such applications require the deposition of SnS2 with controlled crystallinity and thickness control at monolayer level on large area substrate. Here, we investigate the nucleation and growth mechanism of two-dimensional (2D) SnS2 by chemical vapor deposition (CVD) using SnCl4 and H2S as precursors. We find that the growth mechanism of 2D SnS2 is different from the classical layer-by-layer growth mode, by which monolayer-thin 2D transition metal dichalcogenides can be formed. In the initial nucleation stage, isolated 2D SnS2 domains of several monolayers high are formed. Next, 2D SnS2 crystals grow laterally while keeping a nearly constant height until layer closure is achieved, due to the higher reactivity of SnS2 crystal edges than basal planes. We infer that the thickness of the 2D SnS2 crystals is determined by the height of initial SnS2 islands. After layer closure, SnS2 grows on grain boundaries and results in 3D growth mode, accompanied by spiral growth. Our findings suggest an approach to prepare 2D SnS2 with a controlled thickness of several monolayers and add more knowledge on the nucleation and growth mechanism of 2D materials.

  8. Ferromagnetism of Fe 3Sn and alloys

    DOE PAGES

    Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; ...

    2014-11-12

    Hexagonal Fe 3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K 1 of 1.8 MJ/m 3. However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site hasmore » the potential to switch the easy axis direction. Transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe 3Sn is reported, as are some are magnetic and structural properties for the Fe 3Sn 2, and Fe 5Sn 3 compounds, which could be prepared as mm-sized single crystals.« less

  9. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less

  10. Magnetism in californium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.R.

    1988-03-01

    A SQUID-based magnetic susceptometer has been constructed for studying small radioactive samples at temperatures below 350 K and in magnetic fields up to 50 kilogauss. The device has been used to study californium (element 98) in a number of solid-state forms: the dhcp metal, several oxides (Cf/sub 2/O/sub 3/ in both the bcc and monoclinic structures, Cf/sub 7/O/sub 12/, CfO/sub 2/ and BaCfO/sub 3/), several monopnictides (CfN, CfAs and CfSb) and the trichloride (in both the hexagonal and orthorhombic structures). All of these materials were studied in polycrystalline form, and hexagonal CfCl/sub 3/ was studied in single-crystal form as well.more » The susceptometer has the sensitivity to measure samples containing less than 10 micrograms of californium. The magnetic susceptibilities of all of the californium materials at temperatures above about 100 K are described well by the Curie-Weiss relationship. This behavior is consistent with the assumption that the magnetic 5f electrons are localized and that the paramagnetic behavior can be interpreted in terms of the properties of the free ion. The measured values of the effective paramagnetic moment, ..mu../sub eff/, for all the californium materials that were studied are reasonably consistent with theoretical values based on intermediate coupling models. All of the californium materials showed some indications of cooperative magnetic effects. The dhcp metal was observed to order ferromagnetically at 52 K, and all of the californium compounds studied showed signs of antiferromagnetic ordering, mostly at temperatures below 25 K. 91 refs., 50 figs., 19 tabs.« less

  11. The Strength of Binary Junctions in Hexagonal Close-Packed Crystals

    DTIC Science & Technology

    2014-03-01

    equilib- rium, on either slip plane, the dislocation on that plane intersects both triple points at the same angle with the junc- tion line, regardless...electronic properties of threading dislocations in wide band-gap gallium nitride (a wurtzite crystal structure consisting of two interpenetrating hcp...yield surface was composed of individual points , it pro- vided insight on the resistance of the lock to breaking as a result of the applied stresses. Via

  12. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  13. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  14. Field dependence of the electron drift velocity along the hexagonal axis of 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Samsonova, T. P.

    The forward current–voltage characteristics of mesa-epitaxial 4H-SiC Schottky diodes are measured in high electric fields (up to 4 × 10{sup 5} V/cm) in the n-type base region. A semi-empirical formula for the field dependence of the electron drift velocity in 4H-SiC along the hexagonal axis of the crystal is derived. It is shown that the saturated drift velocity is (1.55 ± 0.05) × 10{sup 7} cm/s in electric fields higher than 2 × 10{sup 5} V/cm.

  15. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  16. Crystal structure, chemical expansion and phase stability of HoMnO{sub 3} at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selbach, Sverre M., E-mail: selbach@material.ntnu.no; Nordli Lovik, Amund; Bergum, Kristin

    Anisotropic thermal and chemical expansion of hexagonal HoMnO{sub 3} was investigated by high temperature X-ray diffraction in inert (N{sub 2}) and oxidizing (air) atmospheres up to 1623 K. A second order structural phase transition directly from P6{sub 3}cm to P6{sub 3}/mmc was found at 1298{+-}4 K in N{sub 2} atmosphere, and 1318{+-}4 K in air. For the low temperature polymorph P6{sub 3}cm the contraction of the c-axis was more rapid in inert than in oxidizing atmosphere. The c-axis of the P6{sub 3}/mmc polymorph of HoMnO{sub 3} displayed anomalously high expansion above 1400 K, which is discussed in relation to chemicalmore » expansion caused by point defects. The a-axis expanded stronger in inert than oxidizing atmosphere. Anisotropic chemical and thermal expansion of the P6{sub 3}cm phase of YMnO{sub 3} in N{sub 2}, air and O{sub 2} atmospheres was found to be qualitatively similar to that of HoMnO{sub 3}. Decomposition of hexagonal HoMnO{sub 3} by two different processes occurs in oxidizing atmosphere above {approx}1200 K followed by nucleation and growth of the perovskite polymorph of HoMnO{sub 3}. A rapid, reconstructive transition from the perovskite back to the hexagonal polymorph was observed in situ at 1623 K upon reduction of the partial pressure of oxygen. A phase stability diagram of the hexagonal and orthorhombic polymorphs is proposed. Finally, distinctly non-linear electrical conductivity was observed for both HoMnO{sub 3} and YMnO{sub 3} in oxidizing atmosphere between 555 and 630 K, and shown to be associated with excess oxygen. - Graphical abstract: Chemical expansion of hexagonal HoMnO{sub 3} is observed during HTXRD in different pO{sub 2}. Oxidizing atmosphere favors the competing perovskite polymorph. Electrical conductivity anomalies related to excess oxygen are found at 550-630 K. Highlights: Black-Right-Pointing-Pointer Thermal evolution of crystal structure of HoMnO{sub 3} studied up to 1623 K in air and N{sub 2}. Black-Right-Pointing-Pointer Anisotropic chemical expansion of HoMnO{sub 3} and YMnO{sub 3} in N{sub 2}, air and O{sub 2}. Black-Right-Pointing-Pointer Hexagonal phase destabilized with respect to perovskite in oxidizing atmosphere. Black-Right-Pointing-Pointer Crystal structure and phase stability discussed in terms of point defect chemistry. Black-Right-Pointing-Pointer Electrical conductivity anomalies associated with excess oxygen at 550-630 K.« less

  17. A nitride-based epitaxial surface layer formed by ammonia treatment of silicene-terminated ZrB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggers, F. B., E-mail: F.B.Wiggers@utwente.nl; Van Bui, H.; Schmitz, J.

    We present a method for the formation of an epitaxial  surface layer involving B, N, and Si atoms on a ZrB{sub 2}(0001) thin film on Si(111). It has the potential to be an insulating growth template for 2D semiconductors. The chemical reaction of NH{sub 3} molecules with the silicene-terminated ZrB{sub 2}  surface was characterized by synchrotron-based, high-resolution core-level photoelectron spectroscopy and low-energy electron diffraction. In particular, the dissociative chemisorption of NH{sub 3} at 400 °C leads to surface  nitridation, and subsequent annealing up to 830 °C results in a solid phase reaction with the ZrB{sub 2} subsurface layers. In this way, amore » new nitride-based epitaxial  surface layer is formed with hexagonal symmetry and a single in-plane crystal orientation.« less

  18. Polar order in nanostructured organic materials

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.

    2003-02-01

    Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.

  19. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    NASA Technical Reports Server (NTRS)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  20. Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers

    DOE PAGES

    Li, Xufan; Dong, Jichen; Idrobo, Juan C.; ...

    2016-12-07

    Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this paper, we explore a growth–etching–regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60°more » with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δμ between Ga and Se. Finally, our growth–etching–regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.« less

  1. Cubic ice and large humidity with respect to ice in cold cirrus clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Loerting, T.

    2009-04-01

    Recently several studies have reported about the possible formation of cubic ice in upper-tropospheric cirrus ice clouds and its role in the observed elevated relative humidity with respect to hexagonal ice, RHi, within the clouds. Since cubic ice is metastable with respect to stable hexagonal ice, its vapour pressure is higher. A key issue in determining the ratio of vapour pressures of cubic ice Pc and hexagonal ice Ph is the enthalpy of transformation from cubic to hexagonal ice Hc→h. By dividing the two integrated forms of the Clausius-Clapeyron equation for cubic ice and hexagonal ice, one obtains the relationship (1): ln Pc-- ln P*c-=--(Hc→h--) Ph P*h R 1T-- 1T* (1) from which the importance of Hc→h is evident. In many literature studies the approximation (2) is used: ln Pc-= Hc-→h. Ph RT (2) Using this approximated form one can predict the ratio of vapour pressures by measuring Hc→h. Unfortunately, the measurement of Hc→h is difficult. First, the enthalpy difference is very small, and the transition takes place over a broad temperature range, e.g., between 230 K and 260 K in some of our calorimetry experiments. Second, cubic ice (by contrast to hexagonal ice) can not be produced as a pure crystal. It always contains hexagonal stacking faults, which are evidenced by the (111)-hexagonal Bragg peak in the powder diffractogram. If the number of hexagonal stacking faults in cubic ice is high, then one could even consider this material as hexagonal ice with cubic stacking faults. Using the largest literature value of the change of enthalpy of transformation from cubic to hexagonal ice, Hc→h ? 160 J/mol, Murphy and Koop (2005) calculated that Pc would be ~10% higher than that of hexagonal ice Phat 180 K - 190 K, which agrees with the measurements obtained later by Shilling et al. (2006). Based on this result Shilling et al. concluded that "the formation of cubic ice at T < 202 K may significantly contribute to the persistent in-cloud water supersaturations" in the upper-tropospheric cold cirrus clouds. Using instead the value of Hc→h ? 50 J/mol (Handa et al., 1986; Mayer and Hallbrucker, 1987) the calculation gives that Pc is only ~3% larger than that of Ph. Recently it has been reported that emulsified water droplets freeze to cubic ice when being cooled at a rate of 10 K/min (Murray and Bertram, 2006,). We prepared emulsified droplets using the same emulsification technique and studied them with a differential scanning calorimeter (DSC) between 278 and 180 K using a scanning rate of 10 K/min. During the warming of the samples we observed a very broad, tiny exothermal peak approximately between 230 and 260 K. Kohl et al. (2000) observed exothermal peak at ~230 K during the warming at 30 K/min of several samples of hyperquenched glassy water (HGW) prepared at temperature between 130 and 190 K. They attributed this peak to the cubic-to-hexagonal ice transition and estimated Hc→h to be between ~33 and 75 J/mol. Johari (2005) used the value of Hc→h ? 37 J/mol. Assuming that in our case the broad peak between 230 and 260 K is also due to the cubic-to-hexagonal ice transition we obtained approximately between 10 and 25 J/mol for Hc→h. This low enthalpy of transformation suggests that cubic ice in the atmosphere contains many hexagonal stacking faults. Using these values of Hc→h for cubic ice as produced at atmospheric cooling rates, the above mentioned formula gives that Pc is larger than that of Ph only by ~1%. We, therefore, suggest that the difference in the water vapor pressures between ice Ic and ice Ih is small and does not play a significant role in the elevation of RHi in cold cirrus clouds. Murphy, D. M., and T. Koop (2005), Q. J. R. Meteorol. Soc. 131, 1539-1565. Shilling, J. E. et al. (2006). Geophys. Res. Lett. 33, L17801, doi:1029/2006GL026671. Handa, P. Y., D. D. Klug, and E. Whalley (1986). J. Chem. Phys. 84, 7009-7010. Mayer, E., and A. Hallbrucker (1987), Nature, 325, 601-602. Murray, B. J. and A. K. Bertram (2006), Phys. Chem. Chem. Phys. 8, 186-192. Kohl, I., E. Mayer, and A. Hallbrucker (2000), Phys. Chem. Chem. Phys. 2, 1579-1586. G. P. Johari, (2005), J. Chem. Phys. 122, 194504.

  2. Synthesis, structure, and polymorphism of A{sub 3}LnSi{sub 2}O{sub 7} (A=Na, K; Ln=Sm, Ho, Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latshaw, Allison M.; Yeon, Jeongho; Smith, Mark D.

    2016-03-15

    Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family, K{sub 3}SmSi{sub 2}O{sub 7}, Na{sub 3}HoSi{sub 2}O{sub 7}, and two polymorphs of Na{sub 3}YbSi{sub 2}O{sub 7}, are reported. K{sub 3}SmSi{sub 2}O{sub 7} crystallizes in the hexagonal space group P6{sub 3}/mcm, Na{sub 3}HoSi{sub 2}O{sub 7} and Na{sub 3}YbSi{sub 2}O{sub 7} crystallize in the hexagonal space group P6{sub 3}/m, and Na{sub 3}YbSi{sub 2}O{sub 7} crystallizes in the trigonal space group P31c. The Na{sub 3}YbSi{sub 2}O{sub 7} composition that crystallizes in P31c is a new structure type. The magnetic properties for the Ho and Yb analogs are reported. - Graphical abstract: The differentmore » structure types and polymorphs of the A{sub 3}LnSi{sub 2}O{sub 7} family reported. - Highlights: • Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family are presented. • Na{sub 3}YbSi{sub 2}O{sub 7} is reported as two polymorphs, one is a new structure type. • Crystals synthesized out of molten fluoride fluxes.« less

  3. Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals

    NASA Astrophysics Data System (ADS)

    Lee, Jiann-Shing; Liu, Hao-Chuan; Peng, Gao-De; Tseng, Yawteng

    2017-05-01

    A facile molten-salt route was used to synthesize hexagonal Cs0.33WO3, Rb0.33WO3 and K0.30WO3 crystals. The three isostructural compounds were successfully prepared from the reaction of MxWO3 powders (M = Cs, Rb, K) in the CsCl/NaCl, RbCl/NaCl and KCl/NaCl fluxes, respectively. The structure determination and refinement, based on single-crystal X-ray diffraction data, are in agreement with previous works, possessing space group P63/mcm. The a and c parameters vary non-linearly with increasing radii of the M+ cations (rM) that is coordinated to twelve oxygen atoms. Both the volumes of unit-cell and WO6 octahedra vary linearly with rM, which become smaller from Cs0.33WO3 to K0.30WO3. The distortion of WO6 octahedra as well as isotropic displacement parameters increases from Cs0.33WO3 to K0.30WO3. The geometry of the WO6 octahedron becomes more regular with increasing rM. These structural trends arise from the effective size of the M+ cation.

  4. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  5. One-step synthesis and structural features of CdS/montmorillonite nanocomposites.

    PubMed

    Han, Zhaohui; Zhu, Huaiyong; Bulcock, Shaun R; Ringer, Simon P

    2005-02-24

    A novel synthesis method was introduced for the nanocomposites of cadmium sulfide and montmorillonite. This method features the combination of an ion exchange process and an in situ hydrothermal decomposition process of a complex precursor, which is simple in contrast to the conventional synthesis methods that comprise two separate steps for similar nanocomposite materials. Cadmium sulfide species in the composites exist in the forms of pillars and nanoparticles, the crystallized sulfide particles are in the hexagonal phase, and the sizes change when the amount of the complex for the synthesis is varied. Structural features of the nanocomposites are similar to those of the clay host but changed because of the introduction of the sulfide into the clay.

  6. Self-Assembly in Systems Containing Silicone Compounds

    NASA Astrophysics Data System (ADS)

    Ferreira, Maira Silva; Loh, Watson

    2009-01-01

    Chemical systems formed by silicone solvents and surfactants have potential applications in a variety of industrial products. In spite of their technological relevance, there are few reports on the scientific literature that focus on characterizing such ternary systems. In this work, we have aimed to develop a general, structural investigation on the phase diagram of one system that typically comprises silicone-based chemicals, by means of the SAXS (small-angle X-ray scattering) technique. Important features such as the presence of diverse aggregation states in the overall system, either on their own or in equilibrium with other structures, have been detected. As a result, optically isotropic chemical systems (direct and/or reversed microemulsions) and liquid crystals with lamellar or hexagonal packing have been identified and characterized.

  7. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  8. Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.

    2000-04-03

    We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less

  9. On diamond, graphitic and amorphous carbons in primitive extraterrestrial solar system materials

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1990-01-01

    Carbon is among the most abundant elements in the universe and carbon chemistry in meteorites and comets is an important key to understanding many Solar System and interstellar processes. Yet, the mineralogical properties and interrelations between various structural forms of elemental carbon remain ambiguous. Crystalline elemental carbons include rhombohedral graphite, hexagonal graphite, cubic diamond, hexagonal diamond (i.e., lonsdaleite or carbon-2H) and chaoite. Elemental carbon also occurs as amorphous carbon and poorly graphitized (or turbostratic) carbon but of all the forms of elemental carbon only graphite is stable under physical conditions that prevail in small Solar System bodies and in the interstellar medium. The recent discovery of cubic diamond in carbonaceous chondrites and hexagonal diamond in chondritic interplanetary dust particles (IDPs) have created a renewed interest in the crystalline elemental carbons that were not formed by shock processes on a parent body. Another technique, Raman spectroscopy, confirms a widespread occurrence of disordered graphite in the Allende carbonaceous chondrite and in chondritic IDPs. Elemental carbons have also been identified by their characteristic K-edge features in electron energy loss spectra (EELS). However, the spectroscopic data do not necessarily coincide with those obtained by selected area electron diffraction (SAED). In order to interpret these data in terms of rational crystalline structures, it may be useful to consider the principles underlying electron diffraction and spectroscopic analyses. Electron diffraction depends on electron scattering, on the type of atom and the distance between atoms in a crystal lattice. Spectroscopic data are a function of the type of atom and the energy of bonds between atoms. Also, SAED is a bulk sampling technique when compared to techniques such as Raman spectroscopy or EELS. Thus, it appears that combined analyses provide contradictory results and that amorphous, or short-range ordered, carbon identified by conventional TEM imaging and SAED may show evidence for sp(3) bonds in EELS spectra. It is suggested that complex, nanometer-scale, mineralogical interrelations are common to all elemental carbons irrespective of their origin. The subsequent thermal history, or energy balance, will determine the ultimate microstructure.

  10. Formation of hexagonal and cubic ice during low-temperature growth

    PubMed Central

    Thürmer, Konrad; Nie, Shu

    2013-01-01

    From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592

  11. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    PubMed

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  12. Magneto- to electroactive transmutation of spin waves in ErMnO3.

    PubMed

    Chaix, L; de Brion, S; Petit, S; Ballou, R; Regnault, L-P; Ollivier, J; Brubach, J-B; Roy, P; Debray, J; Lejay, P; Cano, A; Ressouche, E; Simonet, V

    2014-04-04

    The low-energy dynamical properties of the multiferroic hexagonal perovskite ErMnO3 have been studied by inelastic neutron scattering as well as terahertz and far infrared spectroscopies on a synchrotron source. From these complementary techniques, we have determined the magnon and crystal field spectra and identified a zone center magnon excitable only by the electric field of an electromagnetic wave. Using a comparison with the isostructural YMnO3 compound and crystal field calculations, we propose that this dynamical magnetoelectric process is due to the hybridization of a magnon with an electroactive crystal field transition.

  13. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    NASA Astrophysics Data System (ADS)

    Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran

    2017-03-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.

  14. Synthesis and characterization of the pseudo-hexagonal hollandites ALi{sub 2}Ru{sub 6}O{sub 12} (A=Na, K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foo, M.L.; He, T.; Huang, Q.

    The crystal structures, synthesis and physical properties of ruthenium hollandites ALi{sub 2}Ru{sub 6}O{sub 12} (A=Na, K) with a new pseudo-hexagonal structure type are described. Analogous to tetragonal hollandites, the framework is made of MO{sub 6} octahedra in double chains that share corner oxygens with each other to create interstitial tunnels. The tunnels are either hexagonal or triangular in cross-section. Magnetic susceptibilities, low temperature specific heat, and electrical resistivities are reported. The data indicate that these materials are normal, low density of states metals. This new structure type can be extended from A=Group I to A=Group II ions with the synthesismore » of CaLi{sub 2}Ru{sub 6}O{sub 12} and SrLi{sub 2}Ru{sub 6}O{sub 12}.« less

  15. Crystallization and preliminary X-ray diffraction analysis of West Nile virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, Barbel; Plevka, Pavel; Kuhn, Richard J.

    2010-05-25

    West Nile virus, a human pathogen, is closely related to other medically important flaviviruses of global impact such as dengue virus. The infectious virus was purified from cell culture using polyethylene glycol (PEG) precipitation and density-gradient centrifugation. Thin amorphously shaped crystals of the lipid-enveloped virus were grown in quartz capillaries equilibrated by vapor diffusion. Crystal diffraction extended at best to a resolution of about 25 {angstrom} using synchrotron radiation. A preliminary analysis of the diffraction images indicated that the crystals had unit-cell parameters a {approx_equal} b {approx_equal} 480 {angstrom}, {gamma} = 120{sup o}, suggesting a tight hexagonal packing of onemore » virus particle per unit cell.« less

  16. Synthesis and characterization of two novel chiral-type formate frameworks templated by protonated diethylamine and ammonium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl; Gągor, Anna; Hanuza, Jerzy

    2017-01-15

    Two novel formate frameworks templated by ammonium and diethylammonium (DEtA{sup +}) cations have been synthesized. Chemical analysis as well as optical, Raman and IR studies showed partial substitution of nickel ions by Cr(III) or Fe(III). X-ray diffraction revealed that these compounds crystallize in the chiral-type structure of P6{sub 3}22 symmetry. The oxygen atoms from formate ligands form octahedral coordination around the metal centers and the octahedra are bridged by the formate groups in the anti-anti mode configuration forming the hexagonal structure with large channels expanding along the c direction. The channels are filled with disordered DEtA{sup +} and NH{sub 4}{supmore » +} ions and they show unusual compression with the c/a ratio of only 0.862 and 0.852 for the iron- and chromium-containing compound, respectively. Magnetic studies revealed that the both compounds order magnetically at low temperatures but the ordering temperature is significantly higher for the iron compound (37 K) compared to the chromium analogue (26 K). - Graphical abstract: Temperature dependence of magnetization M of DEtAFeNi showing magnetic order at 37 K. - Highlights: • Two novel chiral formates of P6{sub 3}22 symmetry were synthesized. • The structures contain strongly compressed hexagonal channels filled with disordered cations. • The obtained compounds exhibit magnetic order at low temperatures. • Raman, IR and absorption spectra prove incorporation of Cr(III) and Fe(III) in the frameworks.« less

  17. Structure and properties of vanadium(V)-doped hexagonal turbostratic birnessite and its enhanced scavenging of Pb²⁺ from solutions.

    PubMed

    Yin, Hui; Feng, Xionghan; Tan, Wenfeng; Koopal, Luuk K; Hu, Tiandou; Zhu, Mengqiang; Liu, Fan

    2015-05-15

    Vanadium(V)-doped hexagonal turbostratic birnessites were synthesized and characterized by multiple techniques and were used to remove Pb(2+) from aqueous solutions. With increasing V content, the V(V)-doped birnessites have significantly decreased crystallinity, i.e., the thickness of crystals in the c axis decreases from 9.8 nm to ∼0.7 nm, and the amount of vacancies slightly increases from 0.063 to 0.089. The specific surface areas of these samples increase after doping while the Mn average oxidation sates are almost constant. V has a valence of +5 and tetrahedral symmetry, and exists as oxyanions, including V₆O₁₆(2-), and VO4(3-) on birnessite edge sites by forming monodentate corning-sharing complexes. Pb LIII-edge extended X-ray absorption fine structure (EXAFS) spectra analysis shows that, at low V contents (V/Mn≤0.07) Pb(2+) mainly binds with birnessite on octahedral vacancy and especially edge sites whereas at higher V contents (V/Mn>0.07) more Pb(2+) associates with V oxyanions and form vanadinite [Pb₅(VO₄)₃Cl]-like precipitates. With increasing V(V) content, the Pb(2+) binding affinity on the V-doped birnessites significantly increases, ascribing to both the formation of the vanadinite precipitates and decreased particle sizes of birnessite. These results are useful to design environmentally benign materials for treatment of metal-polluted water. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  19. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE PAGES

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg; ...

    2017-05-10

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  20. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    PubMed Central

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; Evans, Gwyndaf; Sauter, Nicholas K.; Ernst, Oliver; Meents, Alke; Mueller-Werkmeister, Henrike; Miller, R. J. Dwayne; Stuart, David Ian

    2016-01-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallo­graphy experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image. PMID:27487826

  1. Ultrathin Uniform Platinum Nanowires via a Facile Route Using an Inverse Hexagonal Surfactant Phase Template.

    PubMed

    Akbar, Samina; Boswell, Jacob; Worsley, Carys; Elliott, Joanne M; Squires, Adam M

    2018-06-19

    We present an attractive method for the fabrication of long, straight, highly crystalline, ultrathin platinum nanowires. The fabrication is simply achieved using an inverse hexagonal (H II ) lyotropic liquid crystal phase of the commercial surfactant phytantriol as a template. A platinum precursor dissolved within the cylindrical aqueous channels of the liquid crystal phase is chemically reduced by galvanic displacement using stainless steel. We demonstrate the production of nanowires using the H II phase in the phytantriol/water system which we obtain either by heating to 55 °C or at room temperature by the addition of a hydrophobic liquid, 9- cis-tricosene, to relieve packing frustration. The two sets of conditions produced high aspect nanowires with diameters of 2.5 and 1.7 nm, respectively, at least hundreds of nanometers in length, matching the size of the aqueous channels in which they grow. This versatile approach can be extended to produce highly uniform nanowires from a range of metals.

  2. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE PAGES

    Pham, Joyce; Miller, Gordon J.

    2018-04-02

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  3. First-principles study of crystallographic slip modes in ω-Zr.

    PubMed

    Kumar, Anil; Kumar, M Arul; Beyerlein, Irene J

    2017-08-21

    We use first-principles density functional theory to study the preferred modes of slip in the high-pressure ω phase of Zr. The generalized stacking fault energy surfaces associated with shearing on nine distinct crystallographic slip modes in the hexagonal ω-Zr crystal are calculated, from which characteristics such as ideal shear stress, the dislocation Burgers vector, and possible accompanying atomic shuffles, are extracted. Comparison of energy barriers and ideal shear stresses suggests that the favorable modes are prismatic 〈c〉, prismatic-II [Formula: see text] and pyramidal-II 〈c + a〉, which are distinct from the ground state hexagonal close packed α phase of Zr. Operation of these three modes can accommodate any deformation state. The relative preferences among the identified slip modes are examined using a mean-field crystal plasticity model and comparing the calculated deformation texture with the measurement. Knowledge of the basic crystallographic modes of slip is critical to understanding and analyzing the plastic deformation behavior of ω-Zr or mixed α-ω phase-Zr.

  4. A revisit to the temperature dependence of electrical resistivity of α - Titanium at low temperatures

    NASA Astrophysics Data System (ADS)

    Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.

    2017-09-01

    The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.

  5. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    DOE PAGES

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; ...

    2016-08-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and spacemore » group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image.« less

  6. Optical determination of crystal phase in semiconductor nanocrystals

    PubMed Central

    Lim, Sung Jun; Schleife, André; Smith, Andrew M.

    2017-01-01

    Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II–VI, III–V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic. Moreover, diffraction methods are low-throughput, incompatible with solution samples and require large sample quantities. Here we report the identification of unambiguous optical signatures of cubic and hexagonal phases in II–VI nanocrystals using absorption spectroscopy and first-principles electronic-structure theory. High-energy spectral features allow rapid identification of phase, even in small nanocrystals (∼2 nm), and may help predict polytypic nanocrystals from differential phase contributions. These theoretical and experimental insights provide simple and accurate optical crystallographic analysis for liquid-dispersed nanomaterials, to improve the precision of nanocrystal engineering and improve our understanding of nanocrystal reactions. PMID:28513577

  7. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Miller, Gordon J.

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  8. Flattened-Top Domical Water Drops Formed through Self-Organization of Hydrophobin Membranes: A Structural and Mechanistic Study Using Atomic Force Microscopy.

    PubMed

    Yamasaki, Ryota; Takatsuji, Yoshiyuki; Asakawa, Hitoshi; Fukuma, Takeshi; Haruyama, Tetsuya

    2016-01-26

    The Trichoderma reesei hydrophobin, HFBI, is a unique structural protein. This protein forms membranes by self-organization at air/water or water/solid interfaces. When HFBI forms a membrane at an air/water interface, the top of the water droplet is flattened. The mechanism underlying this phenomenon has not been explored. In this study, this unique phenomenon has been investigated. Self-organized HFBI membranes form a hexagonal structured membrane on the surface of water droplets; the structure was confirmed by atomic force microscopy (AFM) measurement. Assembled hexagons can form a planar sheet or a tube. Self-organized HFBI membranes on water droplets form a sheet with an array of hexagonal structures or a honeycomb structure. This membrane, with its arrayed hexagonal structures, has very high buckling strength. We hypothesized that the high buckling strength is the reason that water droplets containing HFBI form flattened domes. To test this hypothesis, the strength of the self-organized HFBI membranes was analyzed using AFM. The buckling strength of HFBI membranes was measured to be 66.9 mN/m. In contrast, the surface tension of water droplets containing dissolved HFBI is 42 mN/m. Thus, the buckling strength of a self-organized HFBI membrane is higher than the surface tension of water containing dissolved HFBI. This mechanistic study clarifies why the water droplets formed by self-organized HFBI membranes have a flattened top.

  9. What Determines the Ice Polymorph in Clouds?

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2016-07-20

    Ice crystals in the atmosphere nucleate from supercooled liquid water and grow by vapor uptake. The structure of the ice polymorph grown has strong impact on the morphology and light scattering of the ice crystals, modulates the amount of water vapor in ice clouds, and can impact the molecular uptake and reactivity of atmospheric aerosols. Experiments and molecular simulations indicate that ice nucleated and grown from deeply supercooled liquid water is metastable stacking disordered ice. The ice polymorph grown from vapor has not yet been determined. Here we use large-scale molecular simulations to determine the structure of ice that grows as a result of uptake of water vapor in the temperature range relevant to cirrus and mixed-phase clouds, elucidate the molecular mechanism of the formation of ice at the vapor interface, and compute the free energy difference between cubic and hexagonal ice interfaces with vapor. We find that vapor deposition results in growth of stacking disordered ice only under conditions of extreme supersaturation, for which a nonequilibrium liquid layer completely wets the surface of ice. Such extreme conditions have been used to produce stacking disordered frost ice in experiments and may be plausible in the summer polar mesosphere. Growth of ice from vapor at moderate supersaturations in the temperature range relevant to cirrus and mixed-phase clouds, from 200 to 260 K, produces exclusively the stable hexagonal ice polymorph. Cubic ice is disfavored with respect to hexagonal ice not only by a small penalty in the bulk free energy (3.6 ± 1.5 J mol(-1) at 260 K) but also by a large free energy penalty at the ice-vapor interface (89.7 ± 12.8 J mol(-1) at 260 K). The latter originates in higher vibrational entropy of the hexagonal-terminated ice-vapor interface. We predict that the free energy penalty against the cubic ice interface should decrease strongly with temperature, resulting in some degree of stacking disorder in ice grown from vapor in the tropical tropopause layer, and in polar stratospheric and noctilucent clouds. Our findings support and explain the evolution of the morphology of ice crystals from hexagonal to trigonal symmetry with decreasing temperature, as reported by experiments and in situ measurements in clouds. We conclude that selective growth of the elusive cubic ice polymorph by manipulation of the interfacial properties can likely be achieved at the ice-liquid interface but not at the ice-vapor interface.

  10. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    DOE PAGES

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; ...

    2017-07-31

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single-and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) ofmore » micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. In conclusion, the rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.« less

  11. Insight into the defects of cage-type silica mesoporous crystals with Fd3m symmetry: TEM observations and a new proposal of "polyhedron packing" for the crystals.

    PubMed

    Han, Lu; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu

    2009-01-01

    Silica mesoporous crystals were synthesized by using a gemini cationic surfactant (C(18-3-1)) as the directing agent, carboxyethylsilanetriol sodium salt as the co-structure directing agent (CSDA), and varying amounts of HCl. By using transmission electron microscopy (TEM) we observed 1) a structural change from the close-packed structures of spherical micelles--face-centered cubic (Fm3m) and hexagonal close-packed (P6(3)/mmc)--to Fd3m structures with an increase of HCl and 2) a few structural defects in the crystals with Fd3m symmetry. The structure of a crystal with Fd3m symmetry is described as one of the tetrahedrally close-packed (tcp) structures consisting of 5(12) and 5(12)6(4) polyhedra. The observed TEM images of the structural defects were explained well through use of simulated TEM images by introducing new 13-15 polyhedra comprising 5(12)6(2), 5(12)6(3), 4(1)5(10)6(2), 4(2)5(8)6(5), and 4(1)5(10)6(4), which have been observed in bubbles by Matzke. The mesostructural changes and defect formation are discussed in terms of the hardness of micelles composed of surfactant/CSDA/silica species that have formed through a change of the interaction between the surfactant and CSDA, which causes the micelles to change from a regime of close-packing to one of minimum-area packing.

  12. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions

    NASA Astrophysics Data System (ADS)

    Shakirov, T.; Paul, W.

    2018-04-01

    What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.

  13. Group III nitride semiconductors for short wavelength light-emitting devices

    NASA Astrophysics Data System (ADS)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so far been based on this material so the majority of our paper is concerned with it, however, the cubic, zinc blende form is known for all three compounds, and cubic GaN has been the subject of sufficient work to merit a brief account in its own right. There is significant interest based on possible technological advantages, such as easier doping, easier cleaving (for laser facets) and easier contacting. It also appears, at present, that the cubic form gives higher electron and hole mobilities than the hexagonal form. The dominant hexagonal structure is similar to that found in a number of II-VI compounds such as CdS and they can therefore be taken as role models. In particular, the lower symmetry gives rise to three separate valence bands at the zone centre and exciton spectra associated with each of these have been reported by many workers for GaN. Interpretation is complicated by the presence of strain in many samples due to the fact that most material consists of epitaxial thin films grown on non-lattice-matched substrates (bulk GaN crystals not being widely available). However, much progress has been made in understanding the physics of these films and we discuss the current position with regard to band gaps, effective masses, exciton binding energies, phonon energies, dielectric constants, etc. Apart from a lack of knowledge of the anticipated valence band anisotropy, it can be said that GaN is now rather well documented. Less detail is available for AlN or InN and we make no attempt to provide similar data for them. The structure of the paper is based on a historical introduction, followed by a brief account of the various crystal growth methods used to produce bulk GaN and epitaxial films of GaN and the ternary alloys. This is then followed by an account of the structural properties of hexagonal GaN as measured by x-ray diffraction and electron microscopy, phonon properties from infrared and Raman spectroscopy, electrical properties, with emphasis on n- and p-type doping, and optical properties, measured mainly by photoluminescence. A brief comparative account of cubic GaN properties follows. Discussion of alloy properties in the context of their use in quantum well and superlattice structures forms an introduction to the device sections which close the paper. These include details of the technology necessary for etching, contacting and forming laser facets, as an introduction to recent results on LEDs and laser diodes. Having described the current position, we speculate briefly on likely future developments.

  14. Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays

    NASA Astrophysics Data System (ADS)

    Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard

    2017-07-01

    Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.

  15. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  16. Germanium layers grown by zone thermal crystallization from a discrete liquid source

    NASA Astrophysics Data System (ADS)

    Yatsenko, A. N.; Chebotarev, S. N.; Lozovskii, V. N.; Mohamed, A. A. A.; Erimeev, G. A.; Goncharova, L. M.; Varnavskaya, A. A.

    2017-11-01

    It is proposed and investigated a method for growing thin uniform germanium layers onto large silicon substrates. The technique uses the hexagonally arranged local sources filled with liquid germanium. Germanium evaporates on very close substrate and in these conditions the residual gases vapor pressure highly reduces. It is shown that to achieve uniformity of the deposited layer better than 97% the critical thickness of the vacuum zone must be equal to l cr = 1.2 mm for a hexagonal arranged system of round local sources with the radius of r = 0.75 mm and the distance between the sources of h = 0.5 mm.

  17. Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.

  18. Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.

    1999-01-01

    For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.

  19. Construction of the Seven Basic Crystallographic Units.

    ERIC Educational Resources Information Center

    Li, Thomas; Worrell, Jay H.

    1989-01-01

    Presents an exercise to get students more intimately involved in the three dimensional nature of basic units by constructing models. Uses balsa wood, glue, sandpaper, and a square. Studies seven crystals: cubic, hexagonal, monoclinic, orthorhombic, rhombohedral, tetragonal, and triclinic. Plans are available for a Macintosh computer. (MVL)

  20. Temperature Dependence of Morphology and Growth Mechanism of Vapor-Grown Cd crystals as Affected by Bi Impurities

    NASA Astrophysics Data System (ADS)

    Yumoto, Hisami; Hasiguti, Ryukiti R.

    1984-07-01

    Hexagonal prismatic Cd crystals having {10\\bar{1}0} prismatic planes, or occasionally having {11\\bar{2}0} prismatic planes, were grown as high-temperature-type Cd crystals by the thin layer VLS mechanism at Ts (growth temperature) ≥ Tt (transition temperature range: 250-260°C). Pencil-shaped Cd crystals (low-temperature-type Cd crystals) were grown, having {10\\bar{1}0} and {11\\bar{2}0} prismatic planes and {10\\bar{1}1} pyramidal planes by the mixed-type VLS mechanism at Ts≤Tt. When the growth temperature was decreased below Tt, the shape of the solid-liquid interface changed from rounded to faceted. Three processes for the termination of the mixed-type VLS growth are proposed.

  1. Efficient broad color luminescence from InGaN/GaN single quantum-well nanocolumn crystals on Si (111) substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Xuehua; Wang, Yongjin; Hu, Fangren

    2017-10-01

    Nanocolumn InGaN/GaN single quantum well crystals were deposited on Si (111) substrate with nitrified Ga dots as buffer layer. Transmission electron microscopy image shows the crystals' diameter of 100-130 nm and length of about 900 nm. Nanoscale spatial phase separation of cubic and hexagonal GaN was observed by selective area electron diffraction on the quantum well layer. Raman spectrum of the quantum well crystals proved that the crystals were fully relaxed. Room temperature photoluminescence from 450 to 750 nm and full width at half maximum of about 420 meV indicate broad color luminescence covering blue, green, yellow and red emission, which is helpful for the fabrication of tunable optoelectronic devices and colorful light emitting diodes.

  2. Trapping virtual pores by crystal retro-engineering

    NASA Astrophysics Data System (ADS)

    Little, Marc A.; Briggs, Michael E.; Jones, James T. A.; Schmidtmann, Marc; Hasell, Tom; Chong, Samantha Y.; Jelfs, Kim E.; Chen, Linjiang; Cooper, Andrew I.

    2015-02-01

    Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating.

  3. Crystallization and X-ray diffraction analysis of a novel immune-type receptor from Ictalurus punctatus and phasing by selenium anomalous dispersion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrov, David A., E-mail: ostroda@pathology.ufl.edu; Hernández Prada, José A.; Haire, Robert N.

    2007-12-01

    A highly diversified novel immune-type receptor from catfish, NITR10, was crystallized to reveal novel mechanisms of immune recognition. X-ray diffraction data from crystals of a novel immune-type receptor (NITR10 from the catfish Ictalurus punctatus) were collected to 1.65 Å resolution and reduced to the primitive hexagonal lattice. Native and selenomethionine derivatives of NITR10 crystallized under different conditions yielded P3{sub 1}21 crystals. SeMet NITR10 was phased to a correlation coefficient of 0.77 by SAD methods and experimental electron-density maps were calculated to 1.65 Å. Five NITR10 molecules are predicted to be present in the asymmetric unit based on the Matthews coefficient.

  4. Viral assembly of oriented quantum dot nanowires

    NASA Astrophysics Data System (ADS)

    Mao, Chuanbin; Flynn, Christine E.; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M.

    2003-06-01

    The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

  5. Viral assembly of oriented quantum dot nanowires.

    PubMed

    Mao, Chuanbin; Flynn, Christine E; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M

    2003-06-10

    The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

  6. Influence of molecular weight on the phase behavior and structure formation of branched side-chain hairy-rod polyfluorene in bulk phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knaapila, M.; Lyons, B.P.; Foreman, J.P.

    We report on an experimental study of the self-organization and phase behavior of hairy-rod {pi}-conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] - i.e., poly[2,7-(9,9-bis(2-ethylhexyl)fluorene] (PF2/6) - as a function of molecular weight (M{sub n}). The results have been compared to those of phenomenological theory. Samples for which M{sub n}=3-147 kg/mol were used. First, the stiffness of PF2/6, the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2/6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and highermore » M{sub n} (LMW, M{sub n}M{sub n}{sup *}) regimes, respectively, based on free-energy argument of nematic and hexagonal hairy rods and found to correspond to the experimental x-ray diffraction (XRD) results for PF2/6. By using the lattice parameters of PF2/6 as an experimental input, the nematic-hexagonal transition has been predicted in the vicinity of glassification temperature (T{sub g}) of PF2/6. Then, by taking the orientation parts of the free energies into account the nematic-hexagonal transition has been calculated as a function of temperature and M{sub n} and a phase diagram has been formed. Below T{sub g} of 80 deg. C only (frozen) nematic phase is observed for M{sub n}M{sub n}*. The nematic-hexagonal transition upon heating is observed for the HMW regime depending weakly on M{sub n}, being at 140-165 deg. C for M{sub n}>M{sub n}*. Third, the phase behavior and structure formation as a function of M{sub n} have been probed using powder and fiber XRD and differential scanning calorimetry and reasonable semiquantitative agreement with theory has been found for M{sub n}{>=}3 kg/mol. Fourth, structural characteristics are widely discussed. The nematic phase of LMW materials has been observed to be denser than high-temperature nematic phase of HMW compounds. The hexagonal phase has been found to be paracrystalline in the (ab0) plane but a genuine crystal meridionally. We also find that all these materials including the shortest 10-mer possess the formerly observed rigid five-helix hairy-rod molecular structure.« less

  7. A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow

    NASA Technical Reports Server (NTRS)

    Jones, Arthur L; Alksne, Alberta

    1951-01-01

    A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed.

  8. Synthesis of rhenium nitride crystals with MoS2 structure

    NASA Astrophysics Data System (ADS)

    Kawamura, Fumio; Yusa, Hitoshi; Taniguchi, Takashi

    2012-06-01

    Rhenium nitride (ReN2) crystals were synthesized from a metathesis reaction between ReCl5 and Li3N under high pressure. The reaction was well controlled by the addition of a large amount of NaCl as reaction inhibitor to prevent a violent exothermic reaction. The largest rhenium nitride crystals obtained had a millimeter-order size with a platelet shape. X-ray diffraction analysis revealed that rhenium nitride has MoS2 structure similar to hexagonal rhenium diboride (ReB2) which has recently been investigated as an ultra-hard material. The structure was different from any structures previously predicted for ReN2 by theoretical calculations.

  9. The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy.

    PubMed

    Prasad, Tushar; Colvin, Vicki L; Mittleman, Daniel M

    2007-12-10

    We measure the normal-incidence transmission coefficient of photonic crystal slabs with hexagonal arrays of air holes in silicon. The transmission spectra exhibit sharp resonant features with Fano line shapes. They are produced due to the coupling of the leaky photonic crystal modes, called guided resonances, to the continuum of free-space modes. We investigate the effects of several types of structural disorder on the spectra of these resonances. Our results indicate that guided resonances are very tolerant to disorder in the hole diameter and to interface roughness, but very sensitive to disorder in the lattice periodicity.

  10. Coalescence growth mechanism of ultrafine metal particles

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.

    1990-01-01

    Ultrafine particles produced by a gas-evaporation technique show clear-cut crystal habits. The convection of an inert gas makes distinct growth zones in a metal smoke. The coalescence stages of hexagonal plates and multiply twinned particles are observed in the outer zone of a smoke. A model of the coalescence growth of particles with different crystal habits is proposed. Size distributions can be calculated by counting the ratio of the number of collisions by using the effective cross section of collisions and the existence probability of the volume of a particle. This simulation model makes clear the effect on the growth rate of coalescence growth derived from crystal habit.

  11. Retrieval of Ice Cloud Properties Using Variable Phase Functions

    NASA Astrophysics Data System (ADS)

    Heck, Patrick W.; Minnis, Patrick; Yang, Ping; Chang, Fu-Lung; Palikonda, Rabindra; Arduini, Robert F.; Sun-Mack, Sunny

    2009-03-01

    An enhancement to NASA Langley's Visible Infrared Solar-infrared Split-window Technique (VISST) is developed to identify and account for situations when errors are induced by using smooth ice crystals. The retrieval scheme incorporates new ice cloud phase functions that utilize hexagonal crystals with roughened surfaces. In some situations, cloud optical depths are reduced, hence, cloud height is increased. Cloud effective particle size also changes with the roughened ice crystal models which results in varied effects on the calculation of ice water path. Once validated and expanded, the new approach will be integrated in the CERES MODIS algorithm and real-time retrievals at Langley.

  12. Novel activation process for Mg-implanted GaN

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shin; Nakamura, Takao; Honda, Yoshio; Amano, Hiroshi

    2014-02-01

    A novel activation process for Mg-implanted GaN was demonstrated. As opposed to the conventional thermal annealing process, an H2/NH3 alternating supply annealing process achieved better optical activation, stronger near-ultraviolet luminescence and weaker yellow luminescence in the photoluminescence spectroscopy. After this process, small hexagonal hillocks were observed on the surface, which indicated that crystal regrowth was induced by this process, consisting of decomposition of GaN by H2 supplies and re-crystallization by NH3 supplies. It was revealed that the implanted Mg could easily be located at the activation site by means of crystal regrowth by this process.

  13. Investigation on the formation of lonsdaleite from graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greshnyakov, V. A.; Belenkov, E. A., E-mail: belenkov@csu.ru

    2017-02-15

    Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility ofmore » stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.« less

  14. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less

  15. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE PAGES

    Zou, Y.; Wang, X.; Chen, T.; ...

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  16. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Y.; Wang, X.; Chen, T.

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  17. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    PubMed

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  18. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.

    PubMed

    Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing

    2014-09-24

    In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

  19. Crystallization and preliminary X-ray diffraction analysis of a novel Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Mário T.; Center for Applied Toxinology, CAT-CEPID, São Paulo, SP; Advanced Center for Genomics and Proteomics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000

    2007-07-01

    A single crystal of zhaoermiatoxin with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å. Zhaoermiatoxin, an Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis (formerly Trimeresurus mangshanensis, Ermia mangshanensis) venom is a novel member of the PLA{sub 2}-homologue family that possesses an arginine residue at position 49, probably arising from a secondary Lys49→Arg substitution that does notmore » alter the catalytic inactivity towards phospholipids. Like other Lys49 PLA{sub 2} homologues, zhaoermiatoxin induces oedema and strong myonecrosis without detectable PLA{sub 2} catalytic activity. A single crystal with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å.« less

  20. Hexagonal convection patterns and their evolutionary scenarios in electroconvection induced by a strong unipolar injection

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Liu, Lin-Hua; Tan, He-Ping

    2018-05-01

    A regular hexagonal pattern of three-dimensional electroconvective flow induced by unipolar injection in dielectric liquids is numerically observed by solving the fully coupled governing equations using the lattice Boltzmann method. A small-amplitude perturbation in the form of a spatially periodic pattern of hexagonal cells is introduced initially. The transient development of convective cells that undergo a sequence of transitions agrees with the idea of flow seeking an optimal scale. Stable hexagonal convective cells and their subcritical bifurcation together with a hysteresis loop are clearly observed. In addition, the stability of the hexagonal flow pattern is analyzed in a wide range of relevant parameters, including the electric Rayleigh number T , nondimensional mobility M , and wave number k . It is found that centrally downflowing hexagonal cells, which are characterized by the central region being empty of charge, are preferred in the system.

  1. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  2. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    NASA Astrophysics Data System (ADS)

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong; Chen, Wei-Fu

    2017-03-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  3. Selenium quantum dots: Preparation, structure, and properties

    NASA Astrophysics Data System (ADS)

    Qian, Fuli; Li, Xueming; Tang, Libin; Lai, Sin Ki; Lu, Chaoyu; Lau, Shu Ping

    2017-01-01

    An interesting class of low-dimensional nanomaterials, namely, selenium quantum dots (SeQDs), which are composed of nano-sized selenium particles, is reported in this study. The SeQDs possess a hexagonal crystal structure. They can be synthesized in large quantity by ultrasound liquid-phase exfoliation using NbSe2 powders as the source material and N-Methyl-2-pyrrolidone (NMP) as the dispersant. During sonication, the Nb-Se bonds dissociate; the SeQDs are formed, while niobium is separated by centrifugation. The SeQDs have a narrow diameter distribution from 1.9 to 4.6 nm and can be dispersed with high stability in NMP without the need for passivating agents. They exhibit photoluminescence properties that are expected to find useful applications in bioimaging, optoelectronics, as well as nanocomposites.

  4. Ice Surfaces.

    PubMed

    Shultz, Mary Jane

    2017-05-05

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, I h . Despite its prevalence, I h remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  5. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    PubMed

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  6. Adsorption and Transport of Methane Molecules through One-Dimensional Channels in Dipeptide-Based Materials

    NASA Astrophysics Data System (ADS)

    Paradiso, Daniele; Perelli Cippo, Enrico; Gorini, Giuseppe; Rossi, Giorgio; Larese, John Z.

    The development of new materials for use in energy and environmental applications is of great interest, in particular in the areas of gas separation and carbon capture, where molecular transport plays a significant role. The dipeptides are organic molecules that offer an attractive possibility in such areas, because they form open hexagonal crystalline structures (space group P61) with quasi one-dimensional channels of tunable pore diameters in the range 3-6 Å. These molecular crystals exhibit selective adsorption, as well as, water and gas transport properties: these are believed to result from collective vibrations of the crystal structure that are coupled to the motions of the guest molecules within the channels. Current studies focus on characterizing the system methane and L-Isoleucyl-L-Valine (IV): this was initially done with high-resolution adsorption isotherms; then, high-resolution Inelastic Neutron Scattering measurements at the Spallation Neutron Source (BASIS spectrometer) revealed clear rotational tunneling peaks, offering details to unravel the potential energy surface of the system, as well as, evidences that channels flexibility and dynamical motion of the molecules have influence on the dipeptides adsorption properties.

  7. Structure and stability of solid Xe(H 2) n

    DOE PAGES

    Somayazulu, Maddury; Dera, Przemyslaw; Smith, Jesse; ...

    2015-03-10

    Mixtures of xenon and molecular hydrogen form a series of hexagonal, van der Waals compounds at high pressures and at 300 K. Synchrotron, x-ray, single crystal diffraction studies reveal that below 7.5 GPa, Xe(H 2) 8 crystallizes in a P3¯m1 structure that displays pressure-induced occupancy changes of two pairs of xenon atoms located on the 2c and 2d sites (while the third pair on yet another 2c site remains fully occupied). The occupancy becomes 1 at the P3¯m1 to R3 transition and all the xenon atoms occupy the 3d sites in the high-pressure structure. These pressure-induced changes in occupancy coincidemore » with volume changes that maintain the average Xe:H 2 stoichiometry fixed at 1:8. Furthermore, the synchrotron x-ray diffraction and Raman measurements show that this unique hydrogen-bearing compound that can be synthesized at 4.2 GPa and 300 K, quenched at low temperatures to atmospheric pressure, and retained up to 90 K on subsequent warming.« less

  8. Phase transformations in SrAl2Si2O8 glass

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1992-01-01

    Bulk glass of SrAl2Si2O8 composition crystallized at temperatures below 1000 C into hexacelsian, a hexagonal phase which undergoes a reversible, rapid transformation to an orthorhombic phase at 758 C, and at higher temperatures crystallized as celsian, a monoclinic phase. The glass transition temperature and crystallization onset temperature were determined to be 883 C and 1086 C, respectively, from DSC at a heating rate of 20 C/min. Thermal expansion of the various phases and density and bend strengths of cold isostatically pressed glass powder bars, sintered at various temperatures, were measured. The kinetics of the hexacelsian-to-celsian transformation for SrAl2Si2O8 were studied. Hexacelsian flakes were isothermally heat treated at temperatures from 1025-1200 C for various times. Avrami plots were determined by quantitatively measuring the amount of monoclinic celsian formed at various times using x ray diffraction. The Avrami constant was determined to be 1.1, suggesting a diffusionless, one dimensional transformation mechanism. The activation energy was determined from an Arrhenius plot of 1n k vs. 1/T to be 125 kilocal/mole. This value is consistent with a mechanism which transforms the layered hexacelsian structure to a three dimensional framework celsian structure and involves the breaking of Si-O bonds.

  9. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies.

    PubMed

    Qin, Chao; Wang, Xin-Long; Wang, En-Bo; Su, Zhong-Min

    2005-10-03

    The complexes of formulas Ln(pydc)(Hpydc) (Ln = Sm (1), Eu (2), Gd (3); H2pydc = pyridine-2,5-dicarboxylic acid) and Ln(pydc)(bc)(H2O) (Ln = Sm (4), Gd (5); Hbc = benzenecarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, TG analysis, and single-crystal X-ray diffraction. Compounds 1-3 are isomorphous and crystallize in the orthorhombic system, space group Pbcn. Their final three-dimensional racemic frameworks can be considered as being constructed by helix-linked scalelike sheets. Compounds 4 and 5 are isostructural and crystallize in the monoclinic system, space group P2(1)/c. pydc ligands bridge dinuclear lanthanide centers to form the three-dimensional frameworks featuring hexagonal channels along the a-axis that are occupied by one-end-coordinated bc ligands. From the topological point of view, the five three-dimensional nets are binodal with six- and three-connected nodes, the former of which exhibit a rutile-related (4.6(2))(2)(4(2).6(9).8(4)) topology that is unprecedented within coordination frames, and the latter two species display a distorted rutile (4.6(2))(2)(4(2).6(10).8(3)) topology. Furthermore, the luminescent properties of 2 were studied.

  10. Solvent induced modifications to fiber nanostructure and morphology for 12HSA molecular gels

    NASA Astrophysics Data System (ADS)

    Gao, Jie

    Molecular organogels are thermo reversible quasi-solid materials, which are formed by low molecular weight organogelators (LMOGs) undergoing supramolecular aggregation via non-covalent interactions, forming a three-dimensional fibrillar network. Numerous applications of molecular organogels are been investigated as edible oils, drug release matrices and personal care products. The chemistry of the organic phase (i.e., solvent) influences every level of structure in organogels. Different solvents induce LMOG to assemble into "crystal like" fibers, which have more than one crystal form, lamellar arrangement and domain size. Differences in these solid states are known to affect the macroscopic properties of the gel, including critical gelator concentration (CGC), melting point, melting enthalpy and opacity.12-hydroxystearic acid (12HSA) was examined in several classes of organic solvents with different function groups. These gels, sols or precipitates were analyzed using a series of techniques including: powder x-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier-transform infrared spectroscopy (FT-IR), pulsed nuclear magnetic resonance spectroscopy (pNMR) and microscopy. Specifically, certain solvents caused 12HSA to self-assemble into a triclinic parallel polymorphic form with subcell spacing of ~4.6, 3.9, and 3.8 A and an interdigitated unit cell with a lamellar arrangement (38~44 A). This polymorphic form corresponded to a less effective sphereultic supramolecular crystalline network, which immobilizes solvents at CGC greater than 1.5 wt %. The other group of solvents induce a hexagonal subcell spacing (i.e., unit sub cell spacing ~4.1 A) and are arranged in a multi lamellar fashion with a unit cell greater than the bimolecular length of 12HSA (~54 A).This polymorphic form corresponds to fibrillar aggregates with a CGC less than 1 wt %.

  11. Observation of extraordinary transmission in deep UV region from aluminum film coated two dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Venkatesh, A.; Piragash Kumar, R. M.; Moorthy, V. H. S.

    2018-05-01

    We report the first observation of extraordinary transmission of deep-UV light (λ = 289nm) through 20nm aluminum film coated two-dimensional photonic crystals. The two-dimensional photonic crystals are made of self-assembled hexagonally arranged monolayer of 200 nm polystyrene spheres fabricated using drop casting method. The high quality photonic crystal exhibits a well-defined photonic band gap of 4.59 eV (λ = 270nm) and the aluminum coated two-dimensional photonic crystal displays extraordinary transmission in the deep-UV region at λ = 289 nm. The fabricated aluminum nanostructure produces a sensitivity of 42nm/RIU and 57nm/RIU when the refractive index of the surrounding medium is changed from 1 (= air) to 1.36 (= ethanol) and 1.49 (=toluene), respectively. Therefore, the aluminum film coated two-dimensional photonic crystals could be utilized to fabricate cost-effective and ultrasensitive chemical sensors.

  12. Detector shape in hexagonal sampling grids

    NASA Astrophysics Data System (ADS)

    Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele

    2001-12-01

    Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Sixuan; Latturner, Susan E., E-mail: latturner@chem.fsu.edu

    The intermetallic compounds RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were synthesized from the reaction of germanium and aluminum in RE/Co eutectic flux. These phases crystallize with the Nd{sub 6}Co{sub 5}Ge{sub 2.2} structure type in hexagonal space group P-6m2 (a=9.203(2)Å, c=4.202(1) Å, R{sub 1}=0.0109 for Pr{sub 6}Co{sub 5}Ge{sub 1.80}Al{sub 2.20}; and a=9.170(3) Å, c=4.195(1) Å, R{sub 1}=0.0129 for Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26}). The structure features chains of face-sharing Ge@RE{sub 9} clusters intersecting hexagonal cobalt nets linked by aluminum atoms. Magnetic susceptibility measurements indicate that both phases exhibit ferromagnetic ordering of the cobalt layers with T{sub C} in themore » range of 130–140 K. The magnetic moments of the rare earth ions order at lower temperature (30–40 K). Magnetic measurements on oriented crystals of Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26} show a strong preference of the moments to order along the c-axis. - Graphical abstract: RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were grown as large crystals from reactions of Ge and Al in RE/Co eutectic melts. Magnetic measurements indicate ordering of the 2-D cobalt nets at 130–140 K, and ordering of the rare earth moments at 30–40 K. Display Omitted - Highlights: • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) grown as large crystals from RE/Co eutectic flux. • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} structure features hexagonal cobalt nets stacked along c-axis. • Cobalt layers order ferromagnetically with T{sub c}=130–140 K. • Rare earth magnetic moments order at low temperature (30–40 K).« less

  14. Effect of molecular weight of polystyrensulfonic acid sodium salt polymers on the precipitation kinetics of sodium bicarbonate

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, Nancy; Carrillo-Romo, Felipe; Jaramillo-Vigueras, David

    2004-10-01

    This paper analyzes the effect of polystyrensulfonic acid sodium salt (NaPSS), obtained by kinetic precipitation from solutions of polymers of molecular weight 245 000 and 38 000 g mol-1 in sodium bicarbonate (NaHCO3) itself precipitated from synthetic brine. Crystal size, shape and the additive adsorbed are reported. X shaped and hexagonal prisms crystals with different aspect ratios were obtained. The results show that with increasing polymer concentration the crystal size decreases, from 0.27 to 0.48 mm. Additionally, the higher molecular weight polymer shows both higher adsorption capacity and higher crystal habit modification. Crystal shape patterns were similar for both polymers; however, the higher molecular weight material induced changes at lower concentration. It was observed that the precipitation rate reached a minimum with increasing additive concentration.

  15. Phase behavior of binary and polydisperse suspensions of compressible microgels controlled by selective particle deswelling

    NASA Astrophysics Data System (ADS)

    Scotti, A.; Gasser, U.; Herman, E. S.; Han, Jun; Menzel, A.; Lyon, L. A.; Fernandez-Nieves, A.

    2017-09-01

    We investigate the phase behavior of suspensions of poly(N -isopropylacrylamide) (pNIPAM) microgels with either bimodal or polydisperse size distribution. We observe a shift of the fluid-crystal transition to higher concentrations depending on the polydispersity or the fraction of large particles in suspension. Crystallization is observed up to polydispersities as high as 18.5%, and up to a number fraction of large particles of 29% in bidisperse suspensions. The crystal structure is random hexagonal close-packed as in monodisperse pNIPAM microgel suspensions. We explain our experimental results by considering the effect of bound counterions. Above a critical particle concentration, these cause deswelling of the largest microgels, which are the softest, changing the size distribution of the suspension and enabling crystal formation in conditions where incompressible particles would not crystallize.

  16. Producing desired ice faces

    PubMed Central

    Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan

    2015-01-01

    The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102

  17. Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa

    2017-08-01

    In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.

  18. Effect of thermal treatment on Zn nanodisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acuña-Avila, Pedro E., E-mail: pacunaa004@alumno.uaemex.mx; López, Roberto; Vigueras-Santiago, Enrique

    2015-06-15

    Metallic Zn nanodisks with hexagonal morphology were obtained onto glass substrate under vacuum thermal evaporation. A thermal characterization of Zn nanodiks showed a lower oxidation temperature than source powder Zn. Different thermal treatment on Zn nanodisks played an important role on the morphology, crystal size and surface vibrational modes of ZnO. The growth of ZnO nanoneedles started at the edge of metallic zinc hexagonal structures according with SEM images, the higher temperature the longer needles were grown. XRD diffractogram confirmed the wurtzite structure of ZnO with metallic nuclei. A wide band between 530 and 580 cm{sup −1} of Raman scatteringmore » corresponded at surface vibrational modes not observed at higher temperature.« less

  19. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    NASA Astrophysics Data System (ADS)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-03-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.

  20. In situ observation of shear-driven amorphization in silicon crystals.

    PubMed

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X

    2016-10-01

    Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

  1. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    NASA Astrophysics Data System (ADS)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  2. Mechanosynthesis of Precursors for TiC-Cu Cermets

    NASA Astrophysics Data System (ADS)

    Eremina, M. A.; Lomaeva, S. F.; Burnyshev, I. N.; Kalyuzhnyi, D. G.

    2018-04-01

    The structural and phase state of the samples obtained by co-grinding of Ti and Cu powders under different conditions (with graphite, in petroleum ether, and in xylene) is investigated. It is demonstrated that after thermal treatment of powders obtained by milling of titanium, copper, and graphite in petroleum ether, both cubic titanium carbide and hexagonal titanium carbohydride are formed, whereas by milling without graphite, only hexagonal carbohydride possessing high thermal stability is formed. CuTi and CuTi2 intermetallic phases are formed under all examined conditions of mechanosynthesis.

  3. Square ice in graphene nanocapillaries.

    PubMed

    Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V

    2015-03-26

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  4. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  5. Square ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.

    2015-03-01

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  6. Syntheses, crystal structures, and properties of new layered tungsten(VI)-containing materials based on the hexagonal-WO{sub 3} structure: M{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} (M = NH{sub 4}, Rb, Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, W.T.A.; Dussack, L.L.; Jacobson, A.J.

    The hydrothermal syntheses and crystal structures of (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO{sub 6} octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH{sub 4}{sup +} or Cs{sup +} cations provide charge balance. The full H-bonding scheme in (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} has been elucidated from Rietveld refinement againstmore » neutron powder diffraction data. The WO{sub 6} octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO{sub 6} unit in both these phases. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural with their molybdenum(VI)-containing analogues (NH{sub 4}){sub 2}(MoO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2} (MoO{sub 3}){sub 3}SeO{sub 3}. Crystal data: (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 858.58, hexagonal, space group P6{sub 3} (No. 173), a = 7.2291(2) {angstrom}, c = 12.1486(3) {angstrom}, V = 549.82(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 1.81%, and R{sub wp} = 2.29% (2938 neutron powder data). Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 1088.31, hexagonal, space group P6{sub 3} (no. 173), a = 7.2615(2) {angstrom}, c = 12.5426(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 4.84%, and R{sub wp} = 5.98% (2588 neutron powder data).« less

  7. Synthesis and structural characterization of ZnO-and CuO-NPs supported mesoporous silica materials (hexagonal SBA-15 and lamellar-SiO2)

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.

    2018-01-01

    Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.

  8. Facile synthesis of gold nanomaterials with unusual crystal structures.

    PubMed

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  9. Crystallization of micrometer-sized particles with molecular contours.

    PubMed

    Song, Pengcheng; Olmsted, Brian K; Chaikin, Paul; Ward, Michael D

    2013-11-12

    The crystallization of micrometer-sized particles with shapes mimicking those of tetrabenzoheptacene (TBH) and 1,2:5,6-dibenzanthracene (DBT), both flat polyacenes, in an electric field results in the formation of ordered 2D packings that mimic the plane group symmetries in their respective molecular crystal equivalents. Whereas the particles packed in low-density disordered arrangements under a gravitational gradient, dielectrophoresis (under an ac electric field) produced ordered high-density packings with readily identifiable plane group symmetry. The ordered colloidal assemblies were stable for hours, with the packing density decreasing slowly but with recognizable symmetry for up to 12 h for the TBH-shaped particles and up to 4 h for the DBT-shaped particles. This unexpected stability is attributed to jamming behavior associated with interlocking of the dogbone-shaped (TBH) and Z-block (DBT) particles, contrasting with the more rapid reduction of packing density and loss of hexagonal symmetry for disk-shaped particles upon removal of the electric field. The TBH-shaped and DBT-shaped particles assemble into the p2 plane group, which corresponds to the densest particle packing among the possible close-packed plane groups for these particle symmetries. The p2 symmetry observed for the TBH-shaped and DBT-shaped colloid crystal emulates the p2 symmetry of the (010) layers in their respective molecular crystals, which crystallize in monoclinic lattices. Notably, DBT-shaped particles also form ordered domains with pgg symmetry, replicating the plane group symmetry of the (100) layer in the orthorhombic polymorph of DBT. These observations illustrate that the 2D ordering of colloid particles can mimic the packing of molecules with similar shapes, demonstrating that packing can transcend length scales from the molecular to the colloidal.

  10. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.

    PubMed

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-14

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.

  11. A Case for Hydrothermal Gray Hematite in Aram Chaos

    NASA Technical Reports Server (NTRS)

    Catling, D. C.; Moore, J. M.

    2003-01-01

    The Thermal Emission Spectrometer (TES) on Mars Global Surveyor has detected deposits of coarsegrained, gray crystalline hematite in Sinus Meridiani, Aram Chaos, and Vallis Marineris [1]. Detailed features in the hematite spectral signature of the Sinus Meridiani region show that the spectrum is consistent with emission dominated by crystal c-faces of hematite, implying that the hematite is specular [2]. Gray specular hematite (also known as specularite ) is a particular gray crystalline form that has intergrown, hexagonal plates with a silvery metallic luster. We believe that the key to the origin of specularite is that it requires crystallization at temperatures in excess of about 100 C. In reviewing the occurrence of gray hematite on Earth, we find no exceptions to this warm temperature requirement [3]. Thermal crystallization on Mars could occur (1) as diagenesis at a depth of a few kilometers of sediments originally formed in lowtemperature waters, or (2) as direct precipitation from hydrothermal solution. Aram Chaos has unique chaotic terrain that offers more clues to the formation of the hematite than the relatively featureless flat terrain (as seen from orbit) of Sinus Meridiani. Aram Chaos provides the opportunity to look at a combination of TES data, Mars Orbiter Camera images, and Mars Orbiter Laser Altimeter (MOLA) topography. This combination of data suggests that high concentrations of hematite were formed in planar strata and have since been exposed by erosion of an overlying light-toned, caprock. Lesser concentrations of hematite are found adjacent to these strata at lower elevations, which we interpret as perhaps a lag deposit. The topography and the collapsed nature of the chaotic terrain favor a hydrothermally charged aquifer as the original setting where the hematite formed. An alternative sedimentary origin requires post-depositional burial to a depth of 3-5 km to induce thermally driven recrystallization of fine-grained iron oxides to coarse-grained hematite.

  12. First-principles study of crystallographic slip modes in ω-Zr

    DOE PAGES

    Kumar, Anil; Kumar, M. Arul; Beyerlein, Irene Jane

    2017-08-21

    We use first-principles density functional theory to study the preferred modes of slip in the high-pressure ω phase of Zr. The generalized stacking fault energy surfaces associated with shearing on nine distinct crystallographic slip modes in the hexagonal ω-Zr crystal are calculated, from which characteristics such as ideal shear stress, the dislocation Burgers vector, and possible accompanying atomic shuffles, are extracted. Comparison of energy barriers and ideal shear stresses suggests that the favorable modes are prismatic < c >, prismatic-II <101¯0> and pyramidal-II < c+a >, which are distinct from the ground state hexagonal close packed α phase of Zr.more » Operation of these three modes can accommodate any deformation state. The relative preferences among the identified slip modes are examined using a mean-field crystal plasticity model and comparing the calculated deformation texture with the measurement. In conclusion, knowledge of the basic crystallographic modes of slip is critical to understanding and analyzing the plastic deformation behavior of ω-Zr or mixed α-ω phase-Zr.« less

  13. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    NASA Astrophysics Data System (ADS)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham

    Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octylmore » alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.« less

  15. Perfect merohedral twinning combined with noncrystallographic symmetry potentially causes the failure of molecular replacement with low-homology search models for the flavin-dependent halogenase HalX from Xanthomonas campestris.

    PubMed

    Buss, Maren; Geerds, Christina; Patschkowski, Thomas; Niehaus, Karsten; Niemann, Hartmut H

    2018-06-01

    Flavin-dependent halogenases can be used as biocatalysts because they regioselectively halogenate their substrates under mild reaction conditions. New halogenases with novel substrate specificities will add to the toolbox of enzymes available to organic chemists. HalX, the product of the xcc-b100_4193 gene, is a putative flavin-dependent halogenase from Xanthomonas campestris. The enzyme was recombinantly expressed and crystallized in order to aid in identifying its hitherto unknown substrate. Native data collected to a resolution of 2.5 Å showed indications of merohedral twinning in a hexagonal lattice. Attempts to solve the phase problem by molecular replacement failed. Here, a detailed analysis of the suspected twinning is presented. It is most likely that the crystals are trigonal (point group 3) and exhibit perfect hemihedral twinning so that they appear to be hexagonal (point group 6). As there are several molecules in the asymmetric unit, noncrystallographic symmetry may complicate twinning analysis and structure determination.

  16. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Yu; Chau, Yuan-Fong; Huang, Yao-Wei; Yeh, Hsiao-Yu; Ping Tsai, Din

    2011-05-01

    We present a new cladding design for high birefringence and low confinement loss photonic crystal fibers (PCFs) using a full-vector finite element method with anisotropic perfectly matched boundary layer. Six cases of PCFs are proposed for comparison. The proposed cladding in PCFs is composed of five rings of air-holes. Air-holes on the inner two rings are arranged in a hexagonal symmetry whereas, air-holes on the outer three rings are arranged in an octagonal symmetry in fused silica. Results show that suitable design air-holes on the inner two rings will significantly increase the birefringence, whereas, elliptical holes with major axis along x-axis on the outer three rings will provide strong confinement ability. The highest modal birefringence and lowest confinement loss of our proposed case five structure at the excitation wavelength of λ = 1550 nm can be achieved at a magnitude of 0.87 × 10-2 and less than 0.01 dB/km with only five rings of air-holes in fiber cladding.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han,W.Q.

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN ismore » transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c-axis. The rhombohedral system consists of three-layered units: ABCABC..., whose honeycomb layers are arranged in a shifted phase, like as those of graphite. Reflecting its weak interlayer bond, the h-BN can be cleaved easily along its layers, and hence, is widely used as a lubricant material. The material is stable up to a high temperature of 2300 C before decomposition sets in [2] does not fuse a nitrogen atmosphere of 1 atm, and thus, is applicable as a refractory material. Besides having such properties, similar to those of graphite, the material is transparent, and acts as a good electric insulator, especially at high temperatures (10{sup 6} {Omega}m at 1000 C) [1]. c-BN and w-BN are tetrahedrally linked BN. The former has a cubic sphalerite-type structure, and the latter has a hexagonal wurtzite-type structure. c-BN is the second hardest known material (the hardest is diamond), the so-called white diamond. It is used mainly for grinding and cutting industrial ferrous materials because it does not react with molten iron, nickel, and related alloys at high temperatures whereas diamond does [1]. It displays the second highest thermal conductivity (6-9 W/cm.deg) after diamond. This chapter focuses principally upon information about h-BN nanomaterials, mainly BN nanotubes (BNNTs), porous BN, mono- and few-layer-BN sheets. There are good reviews book chapters about c-BN in [1, 4-6].« less

  18. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.

    PubMed

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-08-29

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.

  19. Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

    PubMed Central

    Odijk, T

    1998-01-01

    A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924

  20. Cylindrically symmetric Green's function approach for modeling the crystal growth morphology of ice.

    PubMed

    Libbrecht, K G

    1999-08-01

    We describe a front-tracking Green's function approach to modeling cylindrically symmetric crystal growth. This method is simple to implement, and with little computer power can adequately model a wide range of physical situations. We apply the method to modeling the hexagonal prism growth of ice crystals, which is governed primarily by diffusion along with anisotropic surface kinetic processes. From ice crystal growth observations in air, we derive measurements of the kinetic growth coefficients for the basal and prism faces as a function of temperature, for supersaturations near the water saturation level. These measurements are interpreted in the context of a model for the nucleation and growth of ice, in which the growth dynamics are dominated by the structure of a disordered layer on the ice surfaces.

  1. Observation of acoustic valley vortex states and valley-chirality locked beam splitting

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-05-01

    We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.

  2. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  3. The influence of additives on the crystal habit of gibbsite

    NASA Astrophysics Data System (ADS)

    Seyssiecq, Isabelle; Veesler, Stéphane; Pèpe, Gérard; Boistelle, Roland

    1999-01-01

    Crystallization of gibbsite (Al(OH) 3) is an important stage of the Bayer process, production of alumina from bauxite ores. In both pure or industrial supersaturated sodium aluminate solutions, gibbsite crystals are always agglomerated. In the present paper, we present results of a study concerning the influence of different polycarboxylic acids as crystal habit modifier for gibbsite. In pure solution, agglomerated hexagonal plates are observed. Whereas acicular and tabular morphologies are found in the presence of different additives. These results are discussed referring to the crystallographic structure of gibbsite. It is found that only oxygen atoms are present on gibbsite surface. This observation leads us to propose an additive way of acting by formation of a molecular complex between the growth unit and the carboxylic groups of the additive.

  4. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of macrophage growth locus A (MglA) protein from Francisella tularensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subburaman, P.; Austin, B.P.; Shaw, G.X.

    2010-11-03

    Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 {angstrom} resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 125, c = 54 {angstrom}.

  5. Probing the magnetic ground state of single crystalline Ce3TiSb5

    NASA Astrophysics Data System (ADS)

    Matin, M.; Kulkarni, R.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Manfrinetti, P.

    2017-04-01

    Motivated by the report of superconductivity in R3TiSb5 (R  =  La and Ce) and possibly Nd3TiSb5 at  ∼4 K, we grew single crystals of La3TiSb5 and Ce3TiSb5 by the high-temperature solution method using Sn as a flux. While in both compounds we observed a superconducting transition at 3.7 K for resistivity and low-field magnetization, our data conclusively show that it arose from residual Sn flux present in the single crystals. In particular, the heat capacity data do not present any of the anomalies expected from a bulk superconducting transition. The anisotropic magnetic properties of Ce3TiSb5, crystallizing in a hexagonal P63/mcm structure, were studied in detail. We find that the Ce ions in Ce3TiSb5 form a Kondo lattice and exhibited antiferromagnetic ordering at 5.5 K with a reduced moment and a moderately normalized Sommerfeld coefficient of 598 mJ/mol K2. The characteristic single-ion Kondo energy scale was found to be  ∼8 K. The magnetization data were subjected to a crystal electric field (CEF) analysis. The experimentally observed Schottky peak in the 4f-electron heat capacity of Ce3TiSb5 was reproduced fairly well by the energy levels derived from the CEF analysis.

  6. Crystals of Janus colloids at various interaction ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preisler, Z.; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht; Vissers, T.

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete withmore » the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.« less

  7. Preparation of Gd(OH){sub 3} large single crystals by solid KOH assisted hydrothermal method and their luminescent and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong

    Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less

  8. Synthesis and structural characterization of the Zintl phases Na{sub 3}Ca{sub 3}TrPn{sub 4}, Na{sub 3}Sr{sub 3}TrPn{sub 4}, and Na{sub 3}Eu{sub 3}TrPn{sub 4} (Tr=Al, Ga, In; Pn=P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Suen, Nian-Tzu; College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002

    15 new quaternary Zintl phases have been synthesized by solid-state reactions from the respective elements, and their structures have been determined by single-crystal X-ray diffraction. Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) crystallize in the hexagonal crystal system with the non-centrosymmetric space group P6{sub 3}mc (No. 186). The structure represents a variant of the K{sub 6}HgS{sub 4} structure type (Pearson index hP22) and features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. The nominal formula rationalization [Na{sup +}]{sub 3}[E{sup 2+}]{sub 3}[TrPn{sub 4}]{sup 9–} follows themore » octet rule, suggesting closed-shell configurations for all atoms and intrinsic semiconducting behavior. However, structure refinements for several members hint at disorder and mixing of cations that potentially counteract the optimal valence electron count. - Graphical abstract: The hexagonal, non-centrosymmetric structure of Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. - Highlights: • 15 quaternary phosphides, arsenides, and antimonides are synthesized and structurally characterized. • The structure is a variant of the hexagonal K{sub 6}HgS{sub 4}-type, with distinctive pattern for the cations. • Occupational and/or positional disorder of yet unknown origin exists for some members of the series.« less

  9. Methods of nanoassembly of a fractal polymer and materials formed thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newkome, George R; Moorefield, Charles N

    2012-07-24

    The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to 36 Ru and 6 Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.

  10. Methods of nanoassembly of a fractal polymer and materials formed thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newkome, George R; Moorefield, Charles N

    2014-09-23

    The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to (36) Ru and (6) Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.

  11. Purification, crystallization and preliminary X-ray diffraction study of human ribosomal protein L10 core domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Mitsuhiro; Protein Research Group, RIKEN Yokohama Institute, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045; Kaminishi, Tatsuya

    2007-11-01

    A truncated variant of human ribosomal protien L10 was prepared and crystallized. Diffraction data were collected to 2.5 Å resolution. Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34–Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 Å resolution and belongs to spacemore » group P3{sub 1}21 or P3{sub 2}21.« less

  12. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    PubMed

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  13. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum

    PubMed Central

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-01-01

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm2 V−1 s−1 under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications. PMID:22426220

  14. Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.

    PubMed

    Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik

    2015-09-01

    Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.

  15. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  16. Single crystal growth of the Er2PdSi3 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Mazilu, I.; Frontzek, M.; Löser, W.; Behr, G.; Teresiak, A.; Schultz, L.

    2005-02-01

    Single crystals of the Er2PdSi3 intermetallic compound melting congruently at 1648 ∘C, were grown by a floating zone method with radiation heating. The control of oxygen content was the key factor to avoid oxide precipitates, which can affect effective grain selection in the crystal growth process. Crystals grown at velocities of 5 mm/h with a preferred direction close to (1 0 0) with inclination angles of about 12 ∘ against the rod axis show very distinct facets at the rod surface. The crystals are Pd-depleted and Si-rich with respect to the nominal Er2PdSi3 stoichiometry, but exhibit inferior element segregation. Measurements on oriented single crystalline samples revealed antiferromagnetic ordering below 7 K, a magnetic easy axis parallel to the (0 0 1) axis of the AlB2-type hexagonal unit cell, and anisotropic electric properties.

  17. 3D coherent X-ray diffractive imaging of an Individual colloidal crystal grain

    NASA Astrophysics Data System (ADS)

    Shabalin, A.; Meijer, J.-M.; Sprung, M.; Petukhov, A. V.; Vartanyants, I. A.

    Self-assembled colloidal crystals represent an important model system to study nucleation phenomena and solid-solid phase transitions. They are attractive for applications in photonics and sensorics. We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. We identified an exact stacking sequence of hexagonal close-packed layers including planar and linear defects. Our results open up a breakthrough in applications of coherent x-ray diffraction for visualization of the inner 3D structure of different mesoscopic materials, such as photonic crystals. Present address: University of California - San Diego, USA.

  18. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26more » forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.« less

  19. Bottom-up construction of a superstructure in a porous uranium-organic crystal

    NASA Astrophysics Data System (ADS)

    Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.; Gómez-Gualdrón, Diego A.; Howarth, Ashlee J.; Mehdi, B. Layla; Dohnalkova, Alice; Browning, Nigel D.; O'Keeffe, Michael; Farha, Omar K.

    2017-05-01

    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.

  20. Triangle pore arrays fabricated on Si (111) substrate by sphere lithography combined with metal-assisted chemical etching and anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Asoh, Hidetaka; Fujihara, Kosuke; Ono, Sachiko

    2012-07-01

    The morphological change of silicon macropore arrays formed by metal-assisted chemical etching using shape-controlled Au thin film arrays was investigated during anisotropic chemical etching in tetramethylammonium hydroxide (TMAH) aqueous solution. After the deposition of Au as the etching catalyst on (111) silicon through a honeycomb mask prepared by sphere lithography, the specimens were etched in a mixed solution of HF and H2O2 at room temperature, resulting in the formation of ordered macropores in silicon along the [111] direction, which is not achievable by conventional chemical etching without a catalyst. In the anisotropic etching in TMAH, the macropores changed from being circular to being hexagonal and finally to being triangular, owing to the difference in etching rate between the crystal planes.

  1. Radiative Transfer and Satellite Remote Sensing of Cirrus Clouds Using FIRE-2-IFO Data

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under the support of the NASA grant, we have developed a new geometric-optics model (GOM2) for the calculation of the single-scattering and polarization properties for arbitrarily oriented hexagonal ice crystals. From comparisons with the results computed by the finite difference time domain (FDTD) method, we show that the novel geometric-optics can be applied to the computation of the extinction cross section and single-scattering albedo for ice crystals with size parameters along the minimum dimension as small as approximately 6. We demonstrate that the present model converges to the conventional ray tracing method for large size parameters and produces single-scattering results close to those computed by the FDTD method for size parameters along the minimum dimension smaller than approximately 20. We demonstrate that neither the conventional geometric optics method nor the Lorenz-Mie theory can be used to approximate the scattering, absorption, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20. On the satellite remote sensing algorithm development and validation, we have developed a numerical scheme to identify multilayer cirrus cloud systems using AVHRR data. We have applied this scheme to the satellite data collected over the FIRE-2-IFO area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data.

  2. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.

  3. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.

    PubMed

    Li, Yi-Liang

    2012-12-01

    Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.

  4. Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts

    PubMed Central

    2015-01-01

    The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483

  5. The shock and spall response of three industrially important hexagonal close-packed metals: magnesium, titanium and zirconium.

    PubMed

    Hazell, P J; Appleby-Thomas, G J; Wielewski, E; Escobedo, J P

    2014-08-28

    Magnesium, titanium and zirconium and their alloys are extensively used in industrial and military applications where they would be subjected to extreme environments of high stress and strain-rate loading. Their hexagonal close-packed (HCP) crystal lattice structures present interesting challenges for optimizing their mechanical response under such loading conditions. In this paper, we review how these materials respond to shock loading via plate-impact experiments. We also discuss the relationship between a heterogeneous and anisotropic microstructure, typical of HCP materials, and the directional dependency of the elastic limit and, in some cases, the strength prior to failure. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Dyakonov surface waves at the interface between hexagonal-boron-nitride and isotropic material

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Ren, G.; Gao, Y.; Wang, Q.; Wan, C.; Wang, J.; Jian, S.

    2016-12-01

    In this paper we analyze the propagation of Dyakonov surface waves (DSWs) at the interface between hexagonal-boron-nitride (h-BN) and isotropic dielectric material. Various properties of DSWs supported at the dielectric-elliptic and dielectric-hyperbolic types of interfaces have been theoretically investigated, including the real effective index, propagation length, the angular existence domain (AED) and the composition ratio of evanescent field components in an h-BN crystal and isotropic dielectric material, respectively. The analysis in this paper reveals that h-BN could be a promising anisotropic material to observe the propagation of DSWs and may have potential diverse applications, such as high sensitivity stress sensing or optical sensing of analytes infiltrating dielectric materials.

  7. Uniaxial ferromagnetism of local uranium moments in hexagonal UBeGe

    NASA Astrophysics Data System (ADS)

    Gumeniuk, Roman; Yaresko, Alexander N.; Schnelle, Walter; Nicklas, Michael; Kvashnina, Kristina O.; Hennig, Christoph; Grin, Yuri; Leithe-Jasper, Andreas

    2018-05-01

    The new intermetallic uranium beryllium germanide UBeGe and its thorium analogon ThBeGe crystallize with the hexagonal ZrBeSi type of structure. Studies of magnetic, thermal, and transport properties were performed on polycrystalline samples between 1.8 and 750K. UBeGe is a uniaxial ferromagnet and there are indications for two magnetic transitions at TC(1 )≈160 K and TC(2 )≈150 K . The high paramagnetic effective moment μeff≈3.1 μB , x-ray absorption near-edge spectroscopy (XANES, 17-300 K), as well as theoretical DFT calculations indicate localized U 5 f2 states in UBeGe. ThBeGe is a diamagnetic metallic material with low density of states at the Fermi level.

  8. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi

    2017-12-01

    PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.

  9. Remarkable features in lattice-parameter ratios of crystals. II. Monoclinic and triclinic crystals.

    PubMed

    de Gelder, R; Janner, A

    2005-06-01

    The frequency distributions of monoclinic crystals as a function of the lattice-parameter ratios resemble the corresponding ones of orthorhombic crystals: an exponential component, with more or less pronounced sharp peaks, with in general the most important peak at the ratio value 1. In addition, the distribution as a function of the monoclinic angle beta has a sharp peak at 90 degrees and decreases sensibly at larger angles. Similar behavior is observed for the three triclinic angular parameters alpha, beta and gamma, with characteristic differences between the organic and metal-organic, bio-macromolecular and inorganic crystals, respectively. The general behavior observed for the hexagonal, tetragonal, orthorhombic, monoclinic and triclinic crystals {in the first part of this series [de Gelder & Janner (2005). Acta Cryst. B61, 287-295] and in the present case} is summarized and commented. The data involved represent 366 800 crystals, with lattice parameters taken from the Cambridge Structural Database, CSD (294 400 entries), the Protein Data Bank, PDB (18 800 entries), and the Inorganic Crystal Structure Database, ICSD (53 600 entries). A new general structural principle is suggested.

  10. Crystallization of Hard Sphere Colloids in Microgravity: Results of the Colloidal Disorder-Order Transition, CDOT on USML-2. Experiment 33

    NASA Technical Reports Server (NTRS)

    Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.

    1998-01-01

    Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.

  11. Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets

    DOE PAGES

    Gungordu, Utkan; Nepal, Rabindra; Tretiakov, Oleg A.; ...

    2016-02-24

    Recently there has been substantial interest in realizations of skyrmions, in particular in quasi-two-dimensional (2D) systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultradense magnetic memories. Here we use the most general form of the quasi-2D free energy with Dzyaloshinskii-Moriya interactions constructed from general symmetry considerations reflecting the underlying system. We predict that the skyrmion phase is robust and it is present even when the system lacks the in-plane rotational symmetry. In fact, the lowered symmetry leads to increased stability of vortex-antivortex lattices withmore » fourfold symmetry and in-plane spirals, in some instances even in the absence of an external magnetic field. Our results relate different hexagonal and square cell phases to the symmetries of materials used for realizations of skyrmions. This will give clear directions for experimental realizations of hexagonal and square cell phases, and will allow engineering of skyrmions with unusual properties. We also predict striking differences in gyrodynamics induced by spin currents for isolated skyrmions and for crystals where spin currents can be induced by charge carriers or by thermal magnons. As a result, we find that under certain conditions, isolated skyrmions can move along the current without a side motion which can have implications for realizations of magnetic memories.« less

  12. Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries.

    PubMed

    Ma, Zhipeng; Shao, Guangjie; Fan, Yuqian; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2014-06-25

    Olivine LiFePO4 with nanoplate, rectangular prism nanorod and hexagonal prism nanorod morphologies with a short b-axis were successfully synthesized by a solvothermal in glycerol and water system. The influences of solvent composition on the morphological transformation and electrochemical performances of olivine LiFePO4 are systematically investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and galvanostatic charge-discharge tests. It is found that with increasing water content in solvent, the LiFePO4 nanoplates gradually transform into hexagonal prism nanorods that are similar to the thermodynamic equilibrium shape of the LiFePO4 crystal. This indicates that water plays an important role in the morphology transformation of the olivine LiFePO4. The electrochemical performances vary significantly with the particle morphology. The LiFePO4 rectangular prism nanorods (formed in a glycerol-to-water ratio of 1:1) exhibit superior electrochemical properties compared with the other morphological particles because of their moderate size and shorter Li(+) ion diffusion length along the [010] direction. The initial discharge capacity of the LiFePO4@C with a rectangular prism nanorod morphology reaches to 163.8 mAh g(-1) at 0.2 C and over 75 mAh g(-1) at the high discharging rate of 20 C, maintaining good stability at each discharging rate.

  13. Solvothermal synthesis of Fe{sub 7}C{sub 3} and Fe{sub 3}C nanostructures with phase and morphology control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brent; Clifford, Dustin; Carpenter, Everett E., E-mail: aelgendy@vcu.edu, E-mail: ecarpenter2@vcu.edu

    A phase transition, from orthorhombic Fe{sub 3}C to hexagonal Fe{sub 7}C{sub 3}, was observed using a wet synthesis mediated by hexadecyltrimethylammonium chloride (CTAC). In this study, CTAC has been shown to control carbide phase, morphology, and size of the iron carbide nanostructures. Fe{sub 7}C{sub 3} hexagonal prisms were formed with an average diameter of 960 nm, the thickness of 150 nm, and Fe{sub 3}C nanostructures with an approximate size of 50 nm. Magnetic studies show ferromagnetic behavior with M{sub s} of 126 emu/g, and H{sub c} of 170 Oe with respect to Fe{sub 7}C{sub 3} and 95 emu/g and 590 Oe with respect to Fe{sub 3}C. Themore » thermal studies using high temperature x-ray diffraction show stability of Fe{sub 7}C{sub 3} up to 500 °C. Upon slow cooling, the Fe{sub 7}C{sub 3} phase is recovered with an intermediate oxide phase occurring around 300 °C. This study has demonstrated a simple route in synthesizing iron carbides for an in depth magnetic study and crystal phase transition study of Fe{sub 7}C{sub 3} at elevated temperatures.« less

  14. Crystalline inclusions in the cytoplasm and nuclei of cells of acute myeloid leukaemia.

    PubMed

    Pearson, E C

    1989-01-01

    In a survey by electron microscopy of peripheral blood and/or bone marrow from 230 adult patients with acute myeloid leukaemia, five were observed to contain crystalline inclusions in the cytoplasm of the leukaemic cells and a sixth contained crystals in the nuclei. In four cases, two of FAB type M2 and two of M4, the cytoplasmic crystals were hexagonal in section and 1-2 micron long. Two examples showed internal periodicities in the range 3.3-4.0 nm when the electronmicrographs were analysed by optical diffractometry. A single case of M1 contained smaller trapezoidal crystals with a 4.9nm periodicity. The sixth patient, with unusual cytological abnormalities and a rare t(3; 6) chromosomal translocation, contained six-sided crystals in the nuclei of some relatively undifferentiated cells. To the best of our knowledge such intranuclear crystals have not previously been reported in leukaemia. The relevance of the crystals to the leukaemic process is discussed.

  15. Crystallization and preliminary X-ray analysis of the atrial natriuretic peptide (ANP) receptor extracellular domain complex with ANP: use of ammonium sulfate as the cryosalt.

    PubMed

    Ogawa, Haruo; Zhang, Xiaolun; Qiu, Yue; Ogata, Craig M; Misono, Kunio S

    2003-10-01

    Atrial natriuretic peptide (ANP) plays a major role in blood pressure and volume regulation owing to its natriuretic and vasodilatory activities. The ANP receptor is a single-span transmembrane receptor coupled to its intrinsic guanylyl cyclase activity. The extracellular hormone-binding domain of rat ANP receptor (ANPR) was overexpressed by permanent transfection in CHO cells and purified. ANPR complexed with ANP was crystallized at 301 K by the hanging-drop vapor-diffusion method. The crystals were frozen in 3.4 M ammonium sulfate used as a cryoprotectant. The crystals diffracted to 3.1 A resolution using synchrotron radiation and belonged to the hexagonal space group P6(1), with unit-cell parameters a = b = 100.3, c = 258.6 A.

  16. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    NASA Astrophysics Data System (ADS)

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  17. Large area stress distribution in crystalline materials calculated from lattice deformation identified by electron backscatter diffraction.

    PubMed

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-05

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  18. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    PubMed Central

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-01-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data. PMID:25091314

  19. Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities

    NASA Astrophysics Data System (ADS)

    Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.

    Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  20. Hexaferrite multiferroics: from bulk to thick films

    NASA Astrophysics Data System (ADS)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  1. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malolepsza, Edyta; Keyes, Tom

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  2. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  3. Engineering p-n junctions and bandgap tuning of InSe nanolayers by controlled oxidation

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Nilanthy; Kudrynskyi, Zakhar R.; Smith, Emily F.; Fay, Michael W.; Makarovsky, Oleg; Kovalyuk, Zakhar D.; Eaves, Laurence; Beton, Peter H.; Patanè, Amalia

    2017-06-01

    Exploitation of two-dimensional (2D) van der Waals (vdW) crystals can be hindered by the deterioration of the crystal surface over time due to oxidation. On the other hand, the existence of a stable oxide at room temperature can offer prospects for several applications. Here we report on the chemical reactivity of γ-InSe, a recent addition to the family of 2D vdW crystals. We demonstrate that, unlike other 2D materials, InSe nanolayers can be chemically stable under ambient conditions. However, both thermal- and photo-annealing in air induces the oxidation of the InSe surface, which converts a few surface layers of InSe into In2O3, thus forming an InSe/In2O3 heterostructure with distinct and interesting electronic properties. The oxidation can be activated in selected areas of the flake by laser writing or prevented by capping the InSe surface with an exfoliated flake of hexagonal boron nitride. We exploit the controlled oxidation of p-InSe to fabricate p-InSe/n-In2O3 junction diodes with room temperature electroluminescence and spectral response from the near-infrared to the visible and near-ultraviolet ranges. These findings reveal the limits and potential of thermal- and photo-oxidation of InSe in future technologies.

  4. Impact of Substrate Types on Structure and Emission of ZnO Nanocrystalline Films

    NASA Astrophysics Data System (ADS)

    Ballardo Rodriguez, I. Ch.; El Filali, B.; Díaz Cano, A. I.; Torchynska, T. V.

    2018-02-01

    Zinc oxide (ZnO) films were simultaneously synthesized by an ultrasonic spray pyrolysis (USP) method on p-type Si (100), silicon carbide polytype [6H-SiC (0001)], porous 6H-SiC and amorphous glass substrates with the aim of studying the impact of substrate types on the structure and emission of ZnO nanocrystalline films. Porous silicon carbide (P-SiC) was prepared by the electrochemical anodization method at a constant potential of 20 V and etching time of 12 min. ZnO films grown on the SiC and P-SiC substrates are characterized by a wurtzite crystal structure with preferential growth along the (002) direction and with grain sizes of 90-180 and 70-160 nm, respectively. ZnO films grown on the Si substrate have just some small irregular hexagonal islands. The amorphous glass substrate did not promote the formation of any regular crystal forms. The obtained x-ray diffraction and photoluminescence (PL) results have shown that the better ZnO film crystallinity and high PL intensity of near-band edge emissions were achieved in the films grown on the porous SiC and SiC substrates. The preferential growth and crystalline nature of ZnO films on the SiC substrate have been discussed from the point of view of the lattice parameter compatibility between ZnO and SiC crystals.

  5. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    PubMed

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  6. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  7. Fullerene-derivative PC61BM forms three types of phase-pure monolayer on the surface of Au(111)

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jie; Du, Ying-Ying; Zhang, Han-Jie; Chen, Guang-Hua; Sheng, Chun-Qi; Wu, Rui; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; He, Pi-Mo; Li, Hong-Nian

    2016-12-01

    We have studied the packing structures of C60-derivative PC61BM on the surface of Au(111) in ultrahigh vacuum using scanning tunneling microscopy. The Au(111) has a triangle-like reconstructed surface, which results in some packing structures different from those reported for low coverages. PC61BM can form three types of phase-pure monolayer, namely, the compact straight molecular double-row monolayer, the hexagonal-packing monolayer and the glassy monolayer. The different types of monolayer form for different molecular densities and different annealing temperatures. In addition to the already known inter-molecular interactions (Van de Waals interaction and hydrogen bond), the steric effect of the phenyl-butyric-acid-methyl-ester side tail plays conspicuous role in the molecular self-assembly at high coverages. The steric effect makes it difficult to prepare a hexagonal-packing monolayer at room temperature and decides the instability of the hexagonal-packing monolayer prepared by thermal annealing.

  8. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-­acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    PubMed Central

    Shi, Dashuang; Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-01-01

    A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6222, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method. PMID:17142901

  9. Crystal structure and physical properties of a novel Kondo antiferromagnet: U3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Pasturel, M; Tougait, O; Potel, M; Roisnel, T; Wochowski, K; Noël, H; Troć, R

    2009-03-01

    A novel ternary compound U3Ru4Al12 has been identified in the U-Ru-Al ternary diagram. Single-crystal x-ray diffraction indicates a hexagonal Gd3Ru4Al12-type structure for this uranium-based intermetallic. While this structure type usually induces geometrically a spin-glass behaviour, an antiferromagnetic ordering is observed at TN = 8.4 K in the present case. The reduced effective magnetic moment of U atoms (μeff = 2.6 µB) can be explained by Kondo-like interactions and crystal field effects that have been identified by a logarithmic temperature dependence of the electrical resistivity, negative values of the magnetoresistivity and particular shape of the Seebeck coefficient.

  10. Self-assembled biomimetic antireflection coatings

    NASA Astrophysics Data System (ADS)

    Linn, Nicholas C.; Sun, Chih-Hung; Jiang, Peng; Jiang, Bin

    2007-09-01

    The authors report a simple self-assembly technique for fabricating antireflection coatings that mimic antireflective moth eyes. Wafer-scale, nonclose-packed colloidal crystals with remarkable large hexagonal domains are created by a spin-coating technology. The resulting polymer-embedded colloidal crystals exhibit highly ordered surface modulation and can be used directly as templates to cast poly(dimethylsiloxane) (PDMS) molds. Moth-eye antireflection coatings with adjustable reflectivity can then be molded against the PDMS master. The specular reflection of replicated nipple arrays matches the theoretical prediction using a thin-film multilayer model. These biomimetic films may find important technological application in optical coatings and solar cells.

  11. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber.

    PubMed

    Fu, Cailing; Liu, Shen; Wang, Ying; Bai, Zhiyong; He, Jun; Liao, Changrui; Zhang, Yan; Zhang, Feng; Yu, Bin; Gao, Shecheng; Li, Zhaohui; Wang, Yiping

    2018-04-15

    High-order orbital angular momentum (OAM) modes, namely, OAM +5 and OAM +6 , were generated and demonstrated experimentally by twisting a solid-core hexagonal photonic crystal fiber (PCF) during hydrogen-oxygen flame heating. Leaky orbital resonances in the cladding depend strongly on the twist rate and length of the helical PCF. Moreover, the generated high-order OAM mode could be a polarized mode. The secret of the successful observation of high-order modes is that leaky orbital resonances in the twisted PCF cladding have a high coupling efficiency of more than -20  dB.

  12. Structure refinement of the δ1p phase in the Fe-Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy.

    PubMed

    Okamoto, Norihiko L; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki

    2014-04-01

    The structure of the δ1p phase in the iron-zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron-zinc system.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yingxiang, E-mail: yingxiangcai@ncu.edu.cn; Wang, Hao; Xu, Shengliang

    Carbon nanotubes (CNTs) with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0) CNT with point group C{sub 3v} and the (6,0) CNT with point group C{sub 6v} form an all sp{sup 3} hybridized hexagonal 3060-Carbon crystal, but the (4,0) CNT with point group D{sub 4h} and the (8,0) CNT with point group D{sub 8h} polymerize into a sp{supmore » 2}+sp{sup 3} hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon) imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.« less

  14. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  15. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis.

    PubMed

    Arun Kumar, R; Sivashanmugam, A; Deepthi, S; Bumgardner, Joel D; Nair, Shantikumar V; Jayakumar, R

    2016-04-20

    Calcium sulfate (CaSO4), an excellent biodegradable bone forming agent that is an ideal choice as additive in gels, however, its disadvantage being poor gel rheology and angiogenesis. Here, we have synthesized chitin-CaSO4-nano-fibrin based injectable gel system which shows improved rheology and angiogenic potential. Rheological studies showed that the composite gel was a shear thinning gel with elastic modulus of 15.4±0.275kPa; a 1.67 fold increase over chitin control. SEM and XRD analyses revealed the effect of nano-fibrin (nFibrin) in transforming CaSO4 crystal shape from needle to hexagonal. It also masked the retarding effect of CaSO4 towards in vitro early cell attachment and angiogenesis using rabbit adipose derived mesenchymal stem cells (rASCs) and HUVECs, respectively. rASCs osteogenesis was confirmed by spectrophotometric endpoint assay, which showed 6-fold early increase in alkaline phosphatase levels and immuno-cytochemistry analysis. These in vitro results highlight the potential of injectable chitin-CaSO4-nFibrin gel for osteo-regeneration via enhanced angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biomimetic Photonic Crystals based on Diatom Algae Frustules

    NASA Astrophysics Data System (ADS)

    Mishler, Jonathan; Alverson, Andrew; Herzog, Joseph

    2015-03-01

    Diatom algae are unicellular, photosynthetic microorganisms with a unique external shell known as a frustule. Frustules, which are composed of amorphous silica, exhibit a unique periodic nano-patterning, distinguishing diatoms from other types of phytoplankton. Diatoms have been studied for their distinctive optical properties due to their resemblance of photonic crystals. In this regard, diatoms are not only considered for their applications as photonic crystals, but also for their use as biomimetic templates for artificially fabricated photonic crystals. Through the examination and measurement of the physical characteristics of many scanning electron microscope (SEM) images of diatom frustules, a biomimetic photonic crystal derived from diatom frustules can be recreated and modeled with the finite element method. In this approach, the average geometries of the diatom frustules are used to recreate a 2-dimensional photonic crystal, after which the electric field distribution and optical transmission through the photonic crystal are both measured. The optical transmission is then compared to the transmission spectra of a regular hexagonal photonic crystal, revealing the effects of diatom geometry on their optical properties. Finally, the dimensions of the photonic crystal are parametrically swept, allowing for further control over the transmission of light through the photonic crystal.

  17. Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries

    PubMed Central

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-01-01

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}. PMID:25169737

  18. Magnetic field role on the structure and optical response of photonic crystals based on ferrofluids containing Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, J., E-mail: javier.lopez@correounivalle.edu.co; González, Luz E.; Quiñonez, M. F.

    2014-05-21

    Ferrofluids based on magnetic Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} ferrite nanoparticles were prepared by co-precipitation method from aqueous salt solutions of Co (II), ZnSO{sub 4}, and Fe (III) in an alkaline medium. Ferrofluids placed in an external magnetic field show properties that make them interesting as magneto-controllable soft photonic crystals. Morphological and structural characterizations of the samples were obtained from Scanning Electron Microscopy and Transmission Electron Microscopy studies. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature. Herein, the Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} samples showed superparamagnetic behavior, according to hysteresis loop results. Takingmore » in mind that the Co-Zn ferrite hysteresis loop is very small, our magnetic nanoparticles can be considered soft magnetic material with interesting technological applications. In addition, by using the plane-wave expansion method, we studied the photonic band structure of 2D photonic crystals made of ferrofluids with the same nanoparticles. Previous experimental results show that a magnetic field applied perpendicular to the ferrofluid plane agglomerates the magnetic nanoparticles in parallel rods to form a hexagonal 2D photonic crystal. We calculated the photonic band structure of photonic crystals by means of the effective refractive index of the magnetic fluid, basing the study on the Maxwell-Garnett theory, finding that the photonic band structure does not present any band gaps under the action of applied magnetic field strengths used in our experimental conditions.« less

  19. Multilayer hexagonal silicon forming in slit nanopore

    PubMed Central

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-01-01

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518

  20. Evolution of plastic anisotropy for high-strain-rate computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less

Top