Science.gov

Sample records for hexagonal gan thin

  1. GaN hexagonal pyramids formed by a photo-assisted chemical etching method

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Hua, Xue-Mei; Xie, Zi-Li; Liu, Bin; Chen, Peng; Han, Ping; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a convenient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed analysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.

  2. Step-Free GaN Hexagons Grown by Selective-Area Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Kobayashi, Yasuyuki; Kasu, Makoto

    2009-09-01

    Selective-area metalorganic vapor phase epitaxy of GaN has been investigated using the optimized growth conditions for the layer (Frank-van der Merwe) growth and GaN-template substrates with low dislocation density. The surface of a GaN hexagon with 16-µm diameter has a single wide terrace over almost the whole area (step-free surface), when there are no screw-type dislocations in the finite area. Step-free GaN hexagons grew in the two-dimensional nucleus growth mode and had approximately an eight times lower growth rate than that of a GaN film grown in the step-flow mode under the growth conditions used in this study.

  3. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition.

    PubMed

    Shih, Huan-Yu; Lin, Ming-Chih; Chen, Liang-Yih; Chen, Miin-Jang

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH3. The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate.

  4. Cubic and hexagonal GaN nanoparticles synthesized at low temperature

    NASA Astrophysics Data System (ADS)

    Qaeed, M. A.; Ibrahim, K.; Saron, K. M. A.; Salhin, A.

    2013-12-01

    This study involves a simple and low cost chemical method for the synthesis of Gallium Nitride (GaN) nanoparticles at low temperature. Structural and optical characterizations were carried out using various techniques in order to investigate the properties of the nanoparticles. The Field-Emission Scanning Electron Microscope (FESEM) images showed that the nanoparticles consist of cubic and hexagonal shapes, indicating crystallized structural quality of the GaN nanoparticles. The average size of the nanoparticles was found to be 51 nm. The X-ray Diffraction (XRD) and Raman analysis further confirmed the hexagonal and cubic phases of GaN nanoparticles. The room temperature photoluminescence deduced h-GaN energy gaps of 2.95, 3.12 and 3.13 eV.

  5. Facets formation mechanism of GaN hexagonal pyramids on dot-patterns via selective MOVPE

    SciTech Connect

    Hiramatsu, Kazumasa; Kitamura, Shota; Sawaki, Nobuhiko

    1996-11-01

    Three-dimensional GaN pyramids have been successfully obtained on dot-patterned GaN(0001)/sapphire substrates by using the selective MOVPE technique. The dot-pattern is a hexagon arranged with a 5{micro}m width and a 10{micro}m spacing. The GaN structure comprises a hexagonal pyramid covered with six {l_brace}1{bar 1}01{r_brace} pyramidal facets on the side or a frustum of a hexagonal pyramid having a (0001) facet on the top. The facet formation mechanism has been investigated by observing the facet structure with the growth time. The {l_brace}1{bar 1}01{r_brace} facets are very stable during the growth. The (0001) facet growth is dominant at the initial growth but almost stops at a certain growth time and then the facet structure is maintained. The appearance of the self-limited (0001) facet is attributed to the balance of flux between incoming Ga atoms from the vapor phase to the (0001) surface and outgoing Ga atoms from the (0001) surface to the {l_brace}1{bar 1}01{r_brace} surface via migration. The longer the diffusion length of the Ga atoms on the (0001) surface is, the more the surface migration is enhanced, resulting in the appearance of the wider (0001) facet on the top.

  6. An aberration-corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE.

    PubMed

    Poppitz, David; Lotnyk, Andriy; Gerlach, Jürgen W; Lenzner, Jörg; Grundmann, Marius; Rauschenbach, Bernd

    2015-06-01

    Ion-beam assisted molecular-beam epitaxy was used for direct growth of epitaxial GaN thin films on super-polished 6H-SiC(0001) substrates. The GaN films with different film thicknesses were studied using reflection high energy electron diffraction, X-ray diffraction, cathodoluminescence and primarily aberration-corrected scanning transmission electron microscopy techniques. Special attention was devoted to the microstructural characterization of GaN thin films and the GaN-SiC interface on the atomic scale. The results show a variety of defect types in the GaN thin films and at the GaN-SiC interface. A high crystalline quality of the produced hexagonal GaN thin films was demonstrated. The gained results are discussed.

  7. Photoluminescence of gallium ion irradiated hexagonal and cubic GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Rothfuchs, Charlotte; Kukharchyk, Nadezhda; Koppe, Tristan; Semond, Fabrice; Blumenthal, Sarah; Becker, Hans-Werner; As, Donat J.; Hofsäss, Hans C.; Wieck, Andreas D.; Ludwig, Arne

    2016-09-01

    We report on ion implantation into GaN QDs and investigate their radiation hardness. The experimental study is carried out by photoluminescence (PL) measurements on molecular beam epitaxy-grown GaN quantum dots after ion implantation. Both quantum dots grown in the hexagonal (H) and the cubic (C) crystal structure were subjected to gallium ions with an energy of 400 kV (H) and 75 kV (C) with fluences ranging from 5 ×1010 cm-2 to 1 ×1014 cm-2 (H) and to 1 ×1015 cm-2 (C), respectively. Low-temperature PL measurements reveal a PL quenching for which a quantitative model as a function of the ion fluence is developed. A high degradation resistance is concluded. A non-radiative trap with one main activation energy is found for all QD structures by temperature-dependent PL measurements. Further analysis of fluence-dependent PL energy shifts shows ion-induced intermixing and strain effects. Particular for the hexagonal quantum dots, a strong influence of the quantum confined Stark effect is present.

  8. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films.

    PubMed

    Huang, Shanjin; Zhang, Yu; Leung, Benjamin; Yuan, Ge; Wang, Gang; Jiang, Hao; Fan, Yingmin; Sun, Qian; Wang, Jianfeng; Xu, Ke; Han, Jung

    2013-11-13

    Nanoporous (NP) gallium nitride (GaN) as a new class of GaN material has many interesting properties that the conventional GaN material does not have. In this paper, we focus on the mechanical properties of NP GaN, and the detailed physical mechanism of porous GaN in the application of liftoff. A decrease in elastic modulus and hardness was identified in NP GaN compared to the conventional GaN film. The promising application of NP GaN as release layers in the mechanical liftoff of GaN thin films and devices was systematically studied. A phase diagram was generated to correlate the initial NP GaN profiles with the as-overgrown morphologies of the NP structures. The fracture toughness of the NP GaN release layer was studied in terms of the voided-space-ratio. It is shown that the transformed morphologies and fracture toughness of the NP GaN layer after overgrowth strongly depends on the initial porosity of NP GaN templates. The mechanical separation and transfer of a GaN film over a 2 in. wafer was demonstrated, which proves that this technique is useful in practical applications.

  9. Cathodoluminescence study of luminescence centers in hexagonal and cubic phase GaN hetero-integrated on Si(100)

    NASA Astrophysics Data System (ADS)

    Liu, R.; Bayram, C.

    2016-07-01

    Hexagonal and cubic GaN—integrated on on-axis Si(100) substrate by metalorganic chemical vapor deposition via selective epitaxy and hexagonal-to-cubic-phase transition, respectively—are studied by temperature- and injection-intensity-dependent cathodoluminescence to explore the origins of their respective luminescence centers. In hexagonal (cubic) GaN integrated on Si, we identify at room temperature the near band edge luminescence at 3.43 eV (3.22 eV), and a defect peak at 2.21 eV (2.72 eV). At low temperature, we report additional hexagonal (cubic) GaN bound exciton transition at 3.49 eV (3.28 eV), and a donor-to-acceptor transition at 3.31 eV (3.18 eV and 2.95 eV). In cubic GaN, two defect-related acceptor energies are identified as 110 and 360 meV. For hexagonal (cubic) GaN (using Debye Temperature ( β ) of 600 K), Varshni coefficients of α = 7.37 ± 0.13 × 10 - 4 ( 6.83 ± 0.22 × 10 - 4 ) eV / K and E 0 = 3.51 ± 0.01 ( 3.31 ± 0.01 ) eV are extracted. Hexagonal and cubic GaN integrated on CMOS compatible on-axis Si(100) are shown to be promising materials for next generation devices.

  10. Synthesis and characterization of GaN thin films deposited on different substrates using a low-cost electrochemical deposition technique

    SciTech Connect

    Al-Heuseen, K.; Hashim, M. R.

    2012-09-06

    Gallium nitride GaN thin films were deposited on three different substrates; Si (111), Si (100) and ITO coated glass using electrochemical deposition technique at 20 Degree-Sign C. A mixture of gallium nitrate, ammonium nitrate was used as electrolyte. The deposited films were investigated at room temperature by a series of material characterization techniques, namely; scanning electron microscopy (SEM), EDX and X-ray diffraction (XRD). SEM images and EDX results indicated that the growth of GaN films varies according to the substrates. XRD analyses showed the presence of hexagonal wurtzite and cubic zinc blende GaN phases with the crystallite size around 18-29 nm.

  11. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    SciTech Connect

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki; Mizuhata, Minoru

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted

  12. Selective area growth of high-density GaN nanowire arrays on Si(111) using thin AlN seeding layers

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Lee, P. Y.; Chen, K. Y.; Tseng, Y. T.; Wang, Y. L.; Cheng, K. Y.

    2016-11-01

    Selective area growth (SAG) of high-density (2.5×109 cm-2) GaN nanowires (NWs) on Si(111) substrate by plasma-assisted molecular beam epitaxy is presented. The effects of morphology and thickness of the AlN seeding layer on the quality of SAG GaN NWs are investigated. A thin AlN seeding layer of 30 nm thick with a surface roughness of less than 0.5 nm is suitable for high quality SAG GaN NWs growth. High-density AlN nanopedestal arrays used as seeds for SAG GaN NWs are fabricated from thin AlN seeding layers using soft nanoimprint lithography. By adjusting the growth temperature and Ga/N flux ratio, hexagonal shaped SAG GaN NWs are realized. The quality of SAG GaN NWs is evaluated by low temperature photoluminescence (PL) measurements. Three major groups of PL peaks at 3.47, 3.45, and 3.41 eV are identified. The peak at 3.471 eV is related to the neutral donor-bound exciton emission, and the 3.41 eV broadband emission is attributed to stacking faults or structural defects. The 3.45 eV peak is identified as the emission due to exciton recombination at polar inversion domain boundaries of NWs.

  13. Polar properties of a hexagonally bonded GaN sheet under biaxial compression

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Yayama, Tomoe; Okada, Susumu

    2016-09-01

    Using the density functional theory, we study the geometric and electronic structures of a GaN sheet possessing a honeycomb network. The sheet preserves the planar conformation under an equilibrium lattice constant of 3.2 Å, and has a semiconducting electronic structure with an indirect band gap of 2.28 eV. The biaxial compressive strain causes structural buckling, leading to polarization normal to the atomic layer. An external electric field normal to the layer also induces structural buckling with a height proportional to the field strength. The polarity of the buckled GaN sheet is tunable by attaching H atoms on Ga and N atoms.

  14. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-01

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  15. Growth behavior of hexagonal GaN on Si(100) and Si(111) substrates prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Kai; Jiang, Ming-Chien

    2016-09-01

    In this study, we investigated the microstructure and optical properties of hexagonal GaN (h-GaN) films grown by high-temperature pulsed laser deposition (PLD) on Si(100) and Si(111) substrates. The growth mechanism, crystallization, and surface morphology of h-GaN deposition on both Si(100) and Si(111) substrates were monitored by transmission electron microscopy (TEM) and scanning electron microscopy at various times in the growth process. Our results indicated that the h-GaN grown on Si(111) has better crystalline structure and optical properties than that on Si(100) owing to the smaller mismatch of the orientations of the Si(111) substrate and h-GaN film. On the Si(100) substrate, the growth principles of PLD and N2 plasma nitridation are the main contributions to the conversion of the cubic GaN into h-GaN. Moreover, no significant Ga–Si meltback etching was observed on the GaN/Si surface with the PLD operation temperature of 1000 °C. The TEM images also revealed that an abrupt GaN/Si interface can be obtained because of the suppression of substrate–film interfacial reactions in PLD.

  16. Growth behavior of hexagonal GaN on Si(100) and Si(111) substrates prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Kai; Jiang, Ming-Chien

    2016-09-01

    In this study, we investigated the microstructure and optical properties of hexagonal GaN (h-GaN) films grown by high-temperature pulsed laser deposition (PLD) on Si(100) and Si(111) substrates. The growth mechanism, crystallization, and surface morphology of h-GaN deposition on both Si(100) and Si(111) substrates were monitored by transmission electron microscopy (TEM) and scanning electron microscopy at various times in the growth process. Our results indicated that the h-GaN grown on Si(111) has better crystalline structure and optical properties than that on Si(100) owing to the smaller mismatch of the orientations of the Si(111) substrate and h-GaN film. On the Si(100) substrate, the growth principles of PLD and N2 plasma nitridation are the main contributions to the conversion of the cubic GaN into h-GaN. Moreover, no significant Ga-Si meltback etching was observed on the GaN/Si surface with the PLD operation temperature of 1000 °C. The TEM images also revealed that an abrupt GaN/Si interface can be obtained because of the suppression of substrate-film interfacial reactions in PLD.

  17. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001).

    PubMed

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots. PMID:26285135

  18. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001)

    PubMed Central

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots. PMID:26285135

  19. Refractive index of erbium doped GaN thin films

    SciTech Connect

    Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X.; Zavada, J. M.

    2014-08-25

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

  20. Improved crystalline properties of laser molecular beam epitaxy grown SrTiO{sub 3} by rutile TiO{sub 2} layer on hexagonal GaN

    SciTech Connect

    Luo, W. B.; Zhu, J.; Chen, H.; Wang, X. P.; Zhang, Y.; Li, Y. R.

    2009-11-15

    Epitaxial SrTiO{sub 3} films were fabricated by laser molecular beam epitaxy on bare and TiO{sub 2} buffered GaN(0002), respectively. The whole deposition processes were in situ monitored by reflection high energy electron diffraction (RHEED). X-ray diffraction (XRD) was carried out to study the growth orientation and crystalline quality of STO films. The interfacial characters and epitaxial relationships were also investigated by high revolution transition electron microscope and selected area electron diffraction (SAED). According to the RHEED observation, the lowest epitaxy temperature of STO on TiO{sub 2} buffered GaN was decreased compared with the direct deposited one. The epitaxial relationship was (111)[110]STO//(0002)[1120]GaN in both cases as confirmed by RHEED, XRD, and SAED. The full width at half maximum of omega-scan and PHI-scan of STO on TiO{sub 2} buffered GaN was reduced compared with that deposited on bare GaN, indicating that epitaxial quality of STO film is improved by inserting TiO{sub 2} layer. In summary, the lattice mismatch was reduced by inserting rutile TiO{sub 2}. As a result, the crystalline temperature was reduced and enhanced epitaxial quality of STO thin film was obtained.

  1. Hexagonal photonic crystal waveguide based on barium titanate thin films

    NASA Astrophysics Data System (ADS)

    Li, Jianheng; Liu, Zhifu; Wessels, Bruce W.; Tu, Yongming; Ho, Seng-Tiong; Joshi-Imre, Alexandra; Ocola, Leonidas E.

    2011-03-01

    The simulation, fabrication and measurement of nonlinear photonic crystals (PhCs) with hexagonal symmetry in epitaxial BaTiO3 were investigated. The optical transmission properties of a PhC were simulated by a 2-D finite-difference time domain (FDTD) method. A complete bandgap exists for both the TE and TM optical modes. The fabricated PhC has a well-defined stop band over the spectral region of 1525 to 1575 nm. A microcavity structure was also fabricated by incorporation of a line defect in the PhC. Transmission of the microcavity structure over the spectral region from 1456 to 1584nm shows a well-defined 5 nm wide window at 1495nm. Simulations indicate that the phase velocity matched PhC microcavity device of 0.5 mm long can potentially serve as modulator with a 3 dB bandwidth of 4 THz.

  2. Room-temperature ferroelectricity in hexagonal TbMnO3 thin films.

    PubMed

    Kim, Dong Jik; Paudel, Tula R; Lu, Haidong; Burton, John D; Connell, John G; Tsymbal, Evgeny Y; Ambrose Seo, S S; Gruverman, Alexei

    2014-12-01

    Piezoresponse force microscopy imaging in conjunction with first-principles calculations provide strong evidence for room-temperature ferroelectricity in epitaxially stabilized hexagonal TbMnO3 thin films, which in the bulk form are with orthorhombic structure. The obtained results demonstrate that new phases and functional properties of complex oxide materials can be strain-engineered using epitaxial growth. PMID:25327617

  3. Photoluminescence Observation of GaN Thin Films Treated by Inductively-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiji; Itoh, Noriyoshi; Nakano, Yoshitaka; Sugai, Hideo

    2011-10-01

    This paper reports observations of photoluminescence from plasma-treated GaN thin films. A 10 mTorr Ar ICP was used, and irradiation of 313 nm ultraviolet (UV) light from Hg-Xe light source induced the photoluminescence of the GaN film. In both in-situ and ex-situ observations, significant yellow luminescence was observed visually, and the ex-situ observed luminescence ranges in a wavelength of 500-800 nm corresponding to defect-states-related transition. The measurements also revealed that the luminescence also contains UV emission at a wavelength of ~365 nm attributed to transition related to near band edges. In order to examine effects of the plasma on the luminescence, the ex-situ observation was made as a function of the plasma treatment time. As the treatment time increased, both the UV and the luminescence intensity decreased, and the decrease in the emission became significant when the 313 nm UV light was irradiated onto the plasma-exposed GaN surface. These results suggested that plasma-induced defect formation leads to the luminescence degradation, and that the photoluminescence observation will be useful for damage monitoring of the GaN surface. This work is partly supported by the 2nd stage Knowledge Cluster Initiative and Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  4. Effective Hamiltonian for surface states of topological insulator thin films with hexagonal warping

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Tan, Seng Ghee; Jalil, Mansoor B. A.

    2016-05-01

    The effective Hamiltonian of the surface states on semi-infinite slabs of the topological insulators (TI) Bi2Te3 and Bi2Se3 require the addition of a cubic momentum hexagonal warping term on top of the usual Dirac fermion Hamiltonian in order to reproduce the experimentally measured constant energy contours at intermediate values of Fermi energy. In this work, we derive the effective Hamiltonian for the surface states of a Bi2Se3 thin film incorporating the corresponding hexagonal warping terms. We then calculate the dispersion relation of the effective Hamiltonian and show that the hexagonal warping leads distorts the equal energy contours from the circular cross sections of the Dirac cones.

  5. Morphological and optical comparison of the Si doped GaN thin film deposited onto the transparent substrates

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2016-04-01

    The aim of this paper is to expand the body of knowledge about the silicon doped gallium nitride thin films deposited on different substrates. The physical properties of the Si doped GaN thin films deposited on the glass and polyethylene terephthalate substrates by thermionic vacuum arc which is plasma production technique were investigated. Thermionic vacuum arc method is a method of producing pure material plasma. The Si doped GaN thin films were analyzed using the following methods and the devices: atomic force microscopy, x-ray diffraction device, spectroscopic ellipsometer and energy dispersive x-ray spectroscopy detector. The produced Si doped GaN thin films are in the (113) orientation. The thicknesses and refractive index were determined by using Cauchy dispersion model. Surface morphologies of produced thin films are homogenous and low roughness. Our analysis showed that the thermionic vacuum arc method present important advantages for optical and industrial applications.

  6. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.; Cusco, R.; Artus, L.; Novikov, S. V.; Foxon, C. T.; Calleja, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared results with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.

  7. Electron Spin Resonance in GaN Thin Film Doped with Fe

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Takanari; Sonoda, Saki; Yashiro, Haruhiko; Ishihara, Yujiro; Usui, Akira; Akasaka, Youichi; Hagiwara, Masayuki

    2007-02-01

    High-quality and high-resistivity semiconducting substrates are needed to fabricate high-frequency devices such as high-mobility transistors based on gallium nitride (GaN). A GaN thin film doped with Fe ions becomes one of such high-resistivity substrates. To obtain microscopic information on the Fe ions in the GaN:Fe film, we have performed electron spin resonance (ESR) measurements using a conventional X-band apparatus and home made Q-band equipment. The observed ESR signals were analyzed with a spin Hamiltonian given by considering the local symmetry of the Ga site (C3v) and assuming that the Fe3+ ions (S=5/2) are substituted for Ga3+ ions. As a result, the angular dependence of the resonance fields and the temperature dependence of the signal intensities are reproduced very well by the calculations. Consequently, we confirmed that the Fe3+ ions occupy some of the Ga sites in the GaN thin film.

  8. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    PubMed Central

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-01-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate. PMID:27756906

  9. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  10. Synthesis and ionic liquid gating of hexagonal WO{sub 3} thin films

    SciTech Connect

    Wu, Phillip M. E-mail: beasley@stanford.edu; Munakata, Ko; Hammond, R. H.; Geballe, T. H.; Beasley, M. R. E-mail: beasley@stanford.edu; Ishii, Satoshi; Tanabe, Kenji; Tokiwa, Kazuyasu

    2015-01-26

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO{sub 3}) is stabilized as a thin film. The hex-WO{sub 3} structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO{sub 3}. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO{sub 3}.

  11. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films.

    PubMed

    Kim, D J; Connell, J G; Seo, S S A; Gruverman, A

    2016-04-15

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. PMID:26933770

  12. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Buršík, J.; Kužel, R.; Knížek, K.; Drbohlav, I.

    2013-07-01

    Thin films of Ba2Zn2Fe12O22 (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO3(1 1 1) (ST) single crystal substrates using epitaxial SrFe12O19 (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature ramp were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO3 substrate and both hexaferrite phases.

  13. Visualization of weak ferromagnetic domains in multiferroic hexagonal ferrite thin film

    NASA Astrophysics Data System (ADS)

    Wu, Weida; Wang, Wenbo; Moyer, Jarrett A.; Schiffer, Peter; Mundy, Julia A.; Muller, David A.; Schlom, Darrell G.

    Hexagonal h-LuFeO3 thin film has been reported to be a room-temperature multiferroic. Extensive studies on high quality MBE thin films revealed a magnetoelectric phase with weak ferromagnetism emerges below TN ~ 147 K. However, the direct observation of weak ferromagnetic domain structures is still lacking. Here we report cryogenic magnetic force microscopy (MFM) results on 200 nm thick h-LuFeO3 film grown by molecular-beam epitaxy (MBE) on (111)-oriented yttria-stablized cubic zirconia (YSZ) substrates. Labyrinth-like weak ferromagnetic domain structures were observed with a domain size ~ 1 μm and domain wall width ~ 0 . 4 μm . Field-dependent MFM data indicates the coercive field is ~ 2 . 66 T at 50 K and ~ 3 . 15 T at 6 K. This work is supported by DOE BES under Award # DE-SC0008147.

  14. Synthesis and Luminescent Properties of GaN and GaN-Mn Blue Nanocrystalline Thin-film Phosphor for FED

    SciTech Connect

    Bondar, V D; Felter, T E; Hunt, C E; Kucharsky, I Y; Chakhovskoi, A G

    2003-04-09

    The technologies of fabrication of thin film phosphors based on gallium nitride using rf-magnetron sputtering are developed and structural properties of films are studied. Luminescence and electron spin resonance (ESR) spectra of GaN and GaN-Mn thin films have been studied. The correlation between cathodoluminescence intensity and conductivity of GaN films has been found. The nature of emission centers in GaN and GaN-Mn thin films is discussed as well as mechanism of luminescence in these films is proposed.

  15. Heteroepitaxial VO{sub 2} thin films on GaN: Structure and metal-insulator transition characteristics

    SciTech Connect

    Zhou You; Ramanathan, Shriram

    2012-10-01

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO{sub 2}) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010){sub vo{sub 2}} parallel (0001){sub GaN} parallel (0001){sub A1{sub 2O{sub 3}}} and [100]{sub vo{sub 2}} parallel [1210]{sub GaN} parallel [0110]{sub A1{sub 2O{sub 3}}} from x-ray diffraction. VO{sub 2} heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO{sub 2}. Electrical characterization of VO{sub 2} films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO{sub 2} films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  16. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    PubMed

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  17. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  18. Hexagonal nanosized molybdenum diselenide thin film deposited at 333 K by chemical method

    NASA Astrophysics Data System (ADS)

    Sathe, D. J.; Chate, P. A.

    2015-10-01

    Molybdenum diselenide thin films have been deposited on to stainless steel and glass substrates by the chemical process, using ammonium molybdate, sodium selenosulphite as a precursor sources and citric acid was used as a complexing agent. The structural and optical properties of the deposited films have been studied using X-ray diffraction and optical absorption techniques, respectively. XRD studies reveal that the films are polycrystalline with hexagonal crystal structure. Optical absorption study shows the presence of direct transition with band gap energy 1.51 eV. EDAX analysis shows that the films are nearly stoichiometry of Mo: Se: 1:2. The configuration of fabricated cell is n-MoSe2 | NaI (2 M) + I2 (1 M) | C (graphite) yielded a conversion efficiency of 1.08%.

  19. Suppression of Cross Contamination in Multi-Layer Thin Film Prepared by Using Rotating Hexagonal Sputtering Cathode.

    PubMed

    Park, Se Yeon; Choi, Bum Ho; Lee, Jong Ho

    2015-01-01

    In this study, single- and multi-layered thin films were prepared on a glass substrate using a newly developed rotating hexagonal sputtering cathode in a single chamber. The rotatinghexagonal sputtering cathode can install up to six different sputtering targets or six single targets in a cathode. Using the rotating hexagonal cathode, we prepared a single-layered AZO film and a multi-layer film to evaluate the performance of hexagonal gun. Cross-contamination, which is often observed in multi-layer thin film preparation, was suppressed to nearly zero by controlling process parameters and revising hardware. Energy-saving effects of five-layered glass were also verified by measuring the temperature.

  20. Photoluminescence study of wurtzite Si-doped GaN thin films

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammed; Carlone, Cosmo; Charbonneau, N. Sylvain; Khanna, Shyam M.

    1998-10-01

    The photoluminescence (PL) temperature dependence of wurtzite n-type GaN thin films grown on (0001) sapphire substrates by Magnetron sputter epitaxy is reported. Samples were non-intentionally doped, lightly and highly Si-doped. The PL of non-intentionally doped samples consist of the near band edge emission and a broad yellow band (YB) near 2.2 eV. This yellow emission is equally present in spectra of all Si-doped samples. The bound exciton (D0-X) at 3.488 eV and (A0-X) at 3.456 eV are present only in the lightly Si-doped samples. The evolution of the energy position of the (D0-X) is the same as the band gap temperature variation, but the (A0-X) transition is anormally independent of the temperature in the range studied here. In both Si-doped GaN samples a peak at 3.318 eV and transitions between 3.36 and 3.39 eV are observed. The temperature dependence of the latter shows a fine structure composed of four peaks at 3.364 eV, 3.368 eV, 3.375 eV and 3.383 eV. They are tentatively attributed to the superposition of two donor-acceptor and band-acceptor transitions. This interpretation implies the presence of two donors (D1,D2) and two acceptors (A1,A2). From the energy position of the band-acceptor and the energy gap of GaN at 20 K, an acceptor ionization energy of 120 and 135 meV respectively is obtained. Assuming 10 meV for a Coulomb interaction energy of the ionized donor-acceptor pairs, a donor ionization energy of 14 and 18 meV respectively is obtained from the energy difference between the donor-acceptor and the band-acceptor positions. An activation energy of 10.8 meV is deduced from the temperature dependence of the YB. The shallow donor (about 10 meV) contributes to the mechanism of the YB.

  1. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  2. Biosensing operations based on whispering-gallery-mode optical cavities in single 1.0-µm diameter hexagonal GaN microdisks grown by radio-frequency plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Sakai, Masaru; Kishino, Katsumi; Hara, Kazuhiko

    2016-05-01

    Biosensing operations based on a whispering-gallery-mode optical cavity in a single hexagonal GaN microdisk of approximately 1.0 µm diameter were demonstrated here. The sharp resonant peak in the photoluminescence spectrum obtained from the microdisk in aqueous sucrose solution redshifts with a change in sucrose concentration. The results indicate that an extremely small microdisk could be used as an optical transducer for sensing sugar, namely, as a biosensor. Furthermore, we investigate the relationship between the diameter of the microdisk and the sensitivity of the biosensor.

  3. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-01

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

  4. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-01

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts. PMID:27124605

  5. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  6. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  7. Numerical analysis on the origin of thickness unevenness and formation of pits at GaN thin film grown by HVPE

    NASA Astrophysics Data System (ADS)

    Han, Xue-Feng; Lee, Jae-Hak; Lee, Yoo-Jin; Song, Jae-Ho; Yi, Kyung-Woo

    2016-09-01

    In this study, we propose a 3D model for analyzing the fluid flow, mass fractions of reacting gases, GaN deposition thickness distribution and V/III ratio distribution at the GaN deposition surface in the multi-susceptor HVPE equipment. The GaN thin film is grown in the multi-susceptor HVPE equipment at 1213 K and 1 bar. The deposition thickness distribution from the calculation has been compared with the experimental results. Moreover, the standard deviations of deposition thickness of the films achieved from calculations and experiments have been compared. Besides, in the calculation results, we found that the V/III ratio at the GaN deposition surface increased from the center to the periphery and from low susceptor to high susceptor. Our calculation results have also been verified by 3D measuring laser microscope observation of the surface morphology of the GaN thin film. In according with the calculation results, the density of the pits also decreases from the center to the periphery as well as from low susceptor to high susceptor, demonstrating that the pit density at the surface of the GaN thin films could be reduced when the V/III ratio is increased.

  8. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  9. Optical properties of ultra-thin (< 30 nm) GaN layers on c-sapphire substrates with different initial growth conditions measured by surface-plasmon enhanced Raman scattering.

    PubMed

    Kim, Ho-Jong; Kim, Tae-Soo; Lee, Jin-Gyu; Song, Jung Hoon

    2014-11-01

    We have carried out surface-plasmon enhanced Raman spectroscopy (SERS) on 30 nm-thick GaN samples grown at various temperatures, in order to investigate the properties of ultra thin GaN films on sapphire. We found that the properties, such as the strain and the free-carrier density of the thin layers, were sensitively affected by the growth temperatures. Our results show that SERS, by selectively enhancing the Raman signal near the surface, can be a very useful technique to investigate the optical properties of ultra-thin GaN films and their initial growth mode.

  10. Characterization of M-plane GaN thin films grown on misoriented γ-LiAlO2 (100) substrates

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chiao; Lo, Ikai; Wang, Ying-Chieh; Yang, Chen-Chi; Hu, Chia-Hsuan; Chou, Mitch M. C.; Schaadt, D. M.

    2016-09-01

    M-plane GaN thin films were grown on 11° misoriented γ-LiAlO2 substrates without peeling off or cracking by plasma-assisted molecular beam epitaxy. Because of anisotropic growth kinetics, which leads to an anisotropic compressive in-plane strain in the M-plane GaN films, the surface presents a rough morphology with worse crystal quality. The crystal quality of sample was optimally improved, XRD rocking curve FWHM of which is about 900 arcsec, by raising growth temperature to 800 °C with proper Ga/N flux ratio. As the crystal quality was improved, the polarization ratio decreased from the unity (less than 0.8) which could be attributed to the effect of exciton localization due to the partial increased in-plane strain.

  11. Raman spectroscopy of epitaxial topological insulator Bi2Te3 thin films on GaN substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Song, Yuxin; Gong, Qian; Pan, Wenwu; Wu, Xiaoyan; Wang, Shumin

    2015-05-01

    Bi2Te3 has drawn great attention in recent years as both a topological insulator and the best thermoelectric material at room temperature. We report on Raman spectroscopic study on Bi2Te3 thin films with thicknesses of 20-50 nm grown on GaN by molecular beam epitaxy. All the four classical optical phonon modes are clearly revealed for the first time in ex situ Raman for epitaxial Bi2Te3. Unusual and infrared-active vibration modes are also observed and analyzed. In the resonant Raman measurements, abnormal enhancement and suppression of different modes are studied. The interface modes caused by a large density of domain boundaries formed during coalescence of crystal islands with different lattice orientations and the Fröhlich electron-phonon interaction are found to play significant roles during the Raman scattering processes.

  12. Magnetoelectric coupling in hexagonal LuFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Liu, Hao

    The magnetic and polar properties of single-crystalline hexagonal LuFeO3 films have been studied. Both theoretical and experimental approaches indicated the coexisting of multiple ferroic orders. The spontaneous electric polarization is associated with a structural change, which also influences the magnetic properties, predicting a strong magnetoelectric coupling in these films. To investigate the magnetoelectric coupling, the micro capacitance structures were fabricated by photolithography combined with Ar ion beam etching method. The capacitance vs voltage curves show significant magnetic field effect, indicating strong magnetoelectric coupling in this system.

  13. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films

    NASA Astrophysics Data System (ADS)

    Bruch, Alexander W.; Xiong, Chi; Leung, Benjamin; Poot, Menno; Han, Jung; Tang, Hong X.

    2015-10-01

    We demonstrate broadband, low loss optical waveguiding in single crystalline GaN grown epitaxially on c-plane sapphire wafers through a buffered metal-organic chemical vapor phase deposition process. High Q optical microring resonators are realized in near infrared, infrared, and near visible regimes with intrinsic quality factors exceeding 50 000 at all the wavelengths we studied. TEM analysis of etched waveguide reveals growth and etch-induced defects. Reduction of these defects through improved material and device processing could lead to even lower optical losses and enable a wideband photonic platform based on GaN-on-sapphire material system.

  14. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films

    SciTech Connect

    Bruch, Alexander W.; Xiong, Chi; Leung, Benjamin; Poot, Menno; Han, Jung; Tang, Hong X.

    2015-10-05

    We demonstrate broadband, low loss optical waveguiding in single crystalline GaN grown epitaxially on c-plane sapphire wafers through a buffered metal-organic chemical vapor phase deposition process. High Q optical microring resonators are realized in near infrared, infrared, and near visible regimes with intrinsic quality factors exceeding 50 000 at all the wavelengths we studied. TEM analysis of etched waveguide reveals growth and etch-induced defects. Reduction of these defects through improved material and device processing could lead to even lower optical losses and enable a wideband photonic platform based on GaN-on-sapphire material system.

  15. Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films

    SciTech Connect

    Li, Yueqing; Liu, E. K.; Wu, G. H.; Wang, Wenhong; Liu, Zhongyuan

    2014-12-14

    We report on a systematical study of the structure, magnetism, and magnetotransport behavior of the hexagonal MnNiGa films deposited on thermally oxidized Si (001) substrates by magnetron sputtering. X-ray diffractions reveal that all the films deposited at different temperatures crystallized in hexagonal Ni{sub 2}In-type structure (space group P6{sub 3}/mmc). Scanning electron microscopy observations show that the surface morphology of the films varies with deposition temperature, and energy dispersive spectroscopy analysis shows compositions of the films remain nearly unchanged, independent of the deposition temperature. Magnetic measurements indicate that all films are ferromagnetic and exhibit a magnetic anisotropy behavior. The magnetoresistance (MR) exhibits a negative temperature- and field-dependent behavior. The possible origin of the negative MR is discussed. Furthermore, we found that the Hall effect is dominated by an anomalous Hall effect (AHE) only due to skew scattering independent of the deposition temperature of films. Moreover, the anomalous Hall resistivity presents a non-monotonously temperature-dependent behavior.

  16. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    SciTech Connect

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J. Riechert, H.

    2015-05-25

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  17. Isotropic thin PTCDA films on GaN(0 0 0 1)

    NASA Astrophysics Data System (ADS)

    Ahrens, Ch; Flege, J. I.; Jaye, C.; Fischer, D. A.; Schmidt, Th; Falta, J.

    2016-11-01

    The growth of 3, 4, 9, 10-perylene tetracarboxylic dianhydride (PTCDA) on the Ga-polar GaN(0 0 0 1) surface has been studied by x-ray photoelectron spectroscopy (XPS), spot profile analysis low-energy electron diffraction (SPA-LEED), near edge x-ray absorption fine structure (NEXAFS), and scanning tunneling microscopy (STM). The stoichiometric ratios derived from XPS indicate that the molecules remain intact upon adsorption on the surface. Furthermore, no chemical shifts can be observed in the C 1s and O 1s core levels with progressing deposition of PTCDA, suggesting none or only weak interactions between the molecules and the substrate. NEXAFS data indicate the PTCDA molecules being oriented with their molecular plane parallel to the surface. High-resolution STM shows PTCDA islands of irregular shape on the sub-micron scale, and together with corresponding SPA-LEED data reveals a lateral ordering of the molecules that is compatible with the presence of (1 0 2) oriented PTCDA nano-crystals. SPA-LEED moreover clearly shows the presence of homogeneously distributed rotational domains of two-dimensionally isotropic PTCDA.

  18. Evaluation of the interface of thin GaN layers on c- and m-plane ZnO substrates by Rutherford backscattering

    SciTech Connect

    Izawa, Y.; Oga, T.; Ida, T.; Kuriyama, K.; Hashimoto, A.; Kotake, H.; Kamijoh, T.

    2011-07-11

    Lattice distortion at the interfaces between thin GaN layers with {approx}400 nm in thickness and ZnO substrates with non-polar m-plane (10-10) and polar c-plane (0001) is studied using Rutherford backscattering/ion channeling techniques. The interface between GaN/m-plane ZnO is aligned clearly to m-axis, indicating no lattice distortion, while between GaN/c-plane ZnO causes the lattice distortion in the GaN layer due to the piezoelectric field. The range of distortion exceeds {approx}90 nm from the interface of GaN/c-plane ZnO. These results are confirmed by x-ray diffraction and reflection high energy electron diffraction studies.

  19. Structural development of gold and silver nanoparticles within hexagonally ordered spherical micellar diblock copolymer thin films

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Min; Huang, Yi-Jiun; Wei, Kung-Hwa

    2014-05-01

    The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of polystyrene-block-poly(4-vinylpyridine) (PS56k-b-P4VP8k)--a highly asymmetric diblock copolymer having a spherical micelle morphology--to incorporate various amounts of one-phase-synthesized dodecanethiol-passivated silver (DT-Ag) NPs and a fixed amount of ligand-exchanged pyridine-coated gold (Py-Au) NPs into the polystyrene (PS) and poly(4-vinylpyridine) (P4VP) blocks, respectively. We characterized the packing of these metal NPs in the two blocks of the nanostructured diblock copolymer using reciprocal-space synchrotron grazing incidence small-angle X-ray scattering (GISAXS) as well as atomic force microscopy (AFM) and transmission electron microscopy (TEM) in the real space. The packing of the Ag NPs in the PS block was dependent on their content, which we tuned by varying the concentrations in the composite solution at a constant rate of spin-coating. The two-dimensional hierarchical arrangement of Ag and Au NPs within the BCP thin films was enhanced after addition of the Py-Au NPs into the P4VP block and after spin-coating a thinner film from a low concentration solution (0.1 wt%), due to the DT-Ag NPs accumulating around the Py-Au/P4VP cores; this two-dimensional hierarchical arrangement decreased at a critical DT-Ag NP weight ratio (c) of 0.8 when incorporating the Py-Au NPs into the P4VP domains through spin-coating at higher solution concentration (0.5 wt%), where the DT-Ag NPs realigned by rotating 20° along the z axis in the real space, due to oversaturation of the DT-Ag NPs within the PS domains.The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of

  20. Structural development of gold and silver nanoparticles within hexagonally ordered spherical micellar diblock copolymer thin films.

    PubMed

    Chen, Chia-Min; Huang, Yi-Jiun; Wei, Kung-Hwa

    2014-06-01

    The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of polystyrene-block-poly(4-vinylpyridine) (PS56k-b-P4VP8k)-a highly asymmetric diblock copolymer having a spherical micelle morphology-to incorporate various amounts of one-phase-synthesized dodecanethiol-passivated silver (DT-Ag) NPs and a fixed amount of ligand-exchanged pyridine-coated gold (Py-Au) NPs into the polystyrene (PS) and poly(4-vinylpyridine) (P4VP) blocks, respectively. We characterized the packing of these metal NPs in the two blocks of the nanostructured diblock copolymer using reciprocal-space synchrotron grazing incidence small-angle X-ray scattering (GISAXS) as well as atomic force microscopy (AFM) and transmission electron microscopy (TEM) in the real space. The packing of the Ag NPs in the PS block was dependent on their content, which we tuned by varying the concentrations in the composite solution at a constant rate of spin-coating. The two-dimensional hierarchical arrangement of Ag and Au NPs within the BCP thin films was enhanced after addition of the Py-Au NPs into the P4VP block and after spin-coating a thinner film from a low concentration solution (0.1 wt%), due to the DT-Ag NPs accumulating around the Py-Au/P4VP cores; this two-dimensional hierarchical arrangement decreased at a critical DT-Ag NP weight ratio (c) of 0.8 when incorporating the Py-Au NPs into the P4VP domains through spin-coating at higher solution concentration (0.5 wt%), where the DT-Ag NPs realigned by rotating 20° along the z axis in the real space, due to oversaturation of the DT-Ag NPs within the PS domains.

  1. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  2. Electrical, structural and microstructural characteristics of as-deposited and annealed Pt and Au contacts on chemical-vapor-cleaned GaN thin films

    NASA Astrophysics Data System (ADS)

    Preble, E. A.; Tracy, K. M.; Kiesel, S.; McLean, H.; Miraglia, P. Q.; Nemanich, R. J.; Davis, R. F.; Albrecht, M.; Smith, David J.

    2002-02-01

    Schottky contacts of Pt(111) and Au(111) were deposited on chemical-vapor-cleaned, n-type GaN(0001) thin films. The growth mode of the deposition, as determined by x-ray photoelectron spectroscopy analysis, followed the two-dimensional Frank-van der Merwe growth model. The resulting as-deposited metal films were monocrystalline and epitaxial with a (111)//(0002) relationship with the GaN. Selected samples were annealed for three minutes at 400 °C, 600 °C or 800 °C. The rectifying behavior of both contacts degraded at 400 °C; they became ohmic after annealing at 600 °C (Au) or 800 °C (Pt). High-resolution transmission electron micrographs revealed reactions at the metal/GaN interfaces for the higher temperature samples. X-ray diffraction results revealed an unidentified phase in the Pt sample annealed at 800 °C. A decrease in the room temperature in-plane (111) lattice constant for both metals, ranging from -0.1% to -0.5%, was observed as the annealing temperature was increased from 400 to 800 °C. This plastic deformation was caused by tensile stresses along the [111] direction that exceeded the yield strength as a result of the large differences in the coefficients of thermal expansion between the metal contacts and the GaN film.

  3. Growth and Characterization of Gallium Nitride (GaN) Thin Films by Pecvd

    NASA Astrophysics Data System (ADS)

    Mahmood, Hasan; Moore, S.; Zhang, D.; McIlroy, David N.

    2004-05-01

    Gallium nitride is a good candidate of nano-optical materials. Gallium nitride thin film was grown on Si (100) substrate by using plasma enhanced chemical vapor deposition (PECVD) technique in a UHV chamber with a base pressure of 9x10-10 torr. The temperature of precursor, Ga, was maintained at 800oC. The working pressure of nitrogen plasma was around 5x10-5 torr. The substrate temperature was in the range of 750-900oC. The chemical, morphological and crystal structural properties studied with XRD, XPS, SEM and ellipsometer will be presented.

  4. High-voltage thin-film GaN LEDs fabricated on ceramic substrates: the alleviated droop effect at 670 W/cm(2).

    PubMed

    Tsai, M L; Liao, J H; Yeh, J H; Hsu, T C; Hon, S J; Chung, T Y; Lai, K Y

    2013-11-01

    High-voltage thin-film GaN LEDs with the emission wavelength of 455 nm were fabricated on ceramic substrates (230 W/m · K). The high-voltage operation was achieved by three cascaded sub-LEDs with dielectric passivation and metal bridges conformally deposited on the side walls. Under the driving power of 670 W/cm(2), the high-voltage LEDs exhibit much alleviated efficiency droop and the operative temperature below 80 °C. The excellent performances were attributed to the improved current spreading within each sub-LED and the superior heat sinking of the ceramic substrate.

  5. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.; Ide, T.; Shimizu, M.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.

    2013-12-02

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  6. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-01

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  7. Molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Park, Joon Young; Lee, Gil-Ho; Jo, Janghyun; Cheng, Austin K.; Yoon, Hosang; Watanabe, Kenji; Taniguchi, Takashi; Kim, Miyoung; Kim, Philip; Yi, Gyu-Chul

    2016-09-01

    We report the molecular beam epitaxial growth and characterization of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride (h-BN). A two-step growth was developed, enhancing both the surface coverage and crystallinity of the films on h-BN. High-resolution transmission electron microscopy study showed an atomically abrupt and epitaxial interface formation between the h-BN substrate and Bi2Se3. We performed gate tuned magnetotransport characterizations of the device fabricated on the thin film and confirmed a high mobility surface state at the Bi2Se3/h-BN interface. The Berry phase obtained from Shubnikov-de Haas oscillations suggested this interfacial electronic state is a topologically protected Dirac state.

  8. Ultrafast carrier dynamics in GaN nanorods

    SciTech Connect

    Yang, Chi-Yuan; Chia, Chih-Ta; Chen, Hung-Ying; Gwo, Shangjr; Lin, Kung-Hsuan

    2014-11-24

    We present ultrafast time-resolved optical spectroscopy on GaN nanorods at room temperature. The studied GaN nanorods, with diameters of ∼50 nm and lengths of ∼400 nm, were grown on the silicon substrate. After femtosecond optical pulses excited carriers in the GaN nanorods, the carriers thermalized within a few picoseconds. Subsequently, the electrons are trapped by the surface states on the order of 20 ps. After the surface electric field was reformed in the GaN nanorods, we found the lifetime of the residue carriers in GaN nanorods is longer than 1.7 ns at room temperature, while the lifetime of carriers in GaN thin film is typically a few hundred picoseconds. Our findings indicate that GaN nanorods have higher electrical quality compared with GaN thin film.

  9. Heteroepitaxial growth and surface structure of L1{sub 0}-MnGa(111) ultra-thin films on GaN(0001)

    SciTech Connect

    Mandru, Andrada-Oana; Wang, Kangkang; Cooper, Kevin; Ingram, David C.; Smith, Arthur R.; Garcia Diaz, Reyes; Takeuchi, Noboru; Haider, Muhammad

    2013-10-14

    L1{sub 0}-structured MnGa(111) ultra-thin films were heteroepitaxially grown on GaN(0001) under lightly Mn-rich conditions using molecular beam epitaxy. Room-temperature scanning tunneling microscopy (STM) investigations reveal smooth terraces and angular step edges, with the surface structure consisting primarily of a 2 × 2 reconstruction along with small patches of 1 × 2. Theoretical calculations were carried out using density functional theory, and the simulated STM images were calculated using the Tersoff-Hamman approximation, revealing that a stoichiometric 1 × 2 and a Mn-rich 2 × 2 surface structure give the best agreement with the observed experimental images.

  10. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  11. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  12. Pulsed laser deposition of hexagonal GaN-on-Si(100) template for MOCVD applications.

    PubMed

    Shen, Kun-Ching; Jiang, Ming-Chien; Liu, Hong-Ru; Hsueh, Hsu-Hung; Kao, Yu-Cheng; Horng, Ray-Hua; Wuu, Dong-Sing

    2013-11-01

    Growth of hexagonal GaN on Si(100) templates via pulsed laser deposition (PLD) was investigated for the further development of GaN-on-Si technology. The evolution of the GaN growth mechanism at various growth times was monitored by SEM and TEM, which indicated that the GaN growth mode changes gradually from island growth to layer growth as the growth time increases up to 2 hours. Moreover, the high-temperature operation (1000 °C) of the PLD meant no significant GaN meltback occurred on the GaN template surface. The completed GaN templates were subjected to MOCVD treatment to regrow a GaN layer. The results of X-ray diffraction analysis and photoluminescence measurements show not only the reliability of the GaN template, but also the promise of the PLD technique for the development of GaN-on-Si technology.

  13. Self-assembly of octapod-shaped colloidal nanocrystals into a hexagonal ballerina network embedded in a thin polymer film.

    PubMed

    Arciniegas, Milena P; Kim, Mee R; De Graaf, Joost; Brescia, Rosaria; Marras, Sergio; Miszta, Karol; Dijkstra, Marjolein; van Roij, René; Manna, Liberato

    2014-02-12

    Nanoparticles with unconventional shapes may exhibit different types of assembly architectures that depend critically on the environmental conditions under which they are formed. Here, we demonstrate how the presence of polymer (polymethyl methacrylate, PMMA) molecules in a solution, in which CdSe(core)/CdS(pods) octapods are initially dispersed, affects the octapod-polymer organization upon solvent evaporation. We show that a fast drop-drying process can induce a remarkable two-dimensional (2D) self-assembly of octapods at the polymer/air interface. In the resulting structure, each octapod is oriented like a "ballerina", that is, only one pod sticks out of the polymer film and is perpendicular to the polymer-air interface, while the opposite pod (with respect to the octapod's center) is fully immersed in the film and points toward the substrate, like a ballerina performing a grand battement. In some areas, a hexagonal-like pattern is formed by the ballerinas in which the six nonvertical pods, which are all embedded in the film, maintain a pod-pod parallel configuration with respect to neighboring particles. We hypothesize that the mechanism responsible for such a self-assembly is based on a fast adsorption of the octapods from bulk solution to the droplet/air interface during the early stages of solvent evaporation. At this interface, the octapods maintain enough rotational freedom to organize mutually in a pod-pod parallel configuration between neighboring octapods. As the solvent evaporates, the octapods form a ballerina-rich octapod-polymer composite in which the octapods are in close contact with the substrate. Finally, we found that the resulting octapod-polymer composite is less hydrophilic than the polymer-only film.

  14. Optical and structural characterization of GaN thin films at different N to Ga flux ratios

    SciTech Connect

    El-Naggar, Ahmed M.

    2011-01-15

    GaN films were grown on Si(111) substrates under various beam equivalent pressure (BEP) ratios by plasma-assisted molecular beam epitaxy. The optical properties for the grown samples were studied over a wide spectral range from 200 to 3300 nm using the reflectance spectrum only. It was found that increasing the N/Ga BEP ratio from 17.9 to 46.1 increases the refractive index (n) from 2.05 to 2.38 at wavelength 630 nm (for example), while the optical energy gap (E{sub g}) were found to be in the range between 3.325 to 3.35 eV with no specific trend. The structural properties for the grown films were studied through two types of rocking curve measurements; normal rocking curve ({omega}-scan) and triple axis rocking curve ({omega}/2{theta}-scan). It was found that with decreasing the N/Ga ratio from 46.1 to 17.9 the full width at half maximum decreases from 0.62 deg. to 0.58 deg. for {omega}-scan and from 0.022 deg. to 0.021 deg. for {omega}/2{theta}-scan. Thus, our results showed a clear correlation between the optical-structural parameters and the BEP ratios of N and Ga.

  15. GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Yue, Yuan-Zheng; Hao, Yue; Feng, Qian; Zhang, Jin-Cheng; Ma, Xiao-Hua; Ni, Jin-Yu

    2007-08-01

    We report a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) with atomic layer deposited (ALD) Al2O3 gate dielectric. Based on the previous work [Appl. Phys. Lett. 86 (2005) 063501] of Ye et al. by decreasing the thickness of the gate oxide to 3.5 nm and optimizing the device fabrication process, the device with maximum transconductance of 150 mS/mm is produced and discussed in comparison with the result of 100 mS/mm of Ye et al. The corresponding drain current density in the 0.8-μm-gate-length MOS-HEMT is 800 mA/mm at the gate bias of 3.0 V. The gate leakage is two orders of magnitude lower than that of the conventional AlGaN/GaN HEMT. The excellent characteristics of this novel MOS-HEMT device structure with ALD Al2O3 gate dielectric are presented.

  16. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    PubMed

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications. PMID:27409977

  17. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    PubMed

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications.

  18. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  19. Hexagonal projected symmetries.

    PubMed

    Oliveira, Juliane F; Castro, Sofia B S D; Labouriau, Isabel S

    2015-09-01

    In the study of pattern formation in symmetric physical systems, a three-dimensional structure in thin domains is often modelled as a two-dimensional one. This paper is concerned with functions in {\\bb R}^{3} that are invariant under the action of a crystallographic group and the symmetries of their projections into a function defined on a plane. A list is obtained of the crystallographic groups for which the projected functions have a hexagonal lattice of periods. The proof is constructive and the result may be used in the study of observed patterns in thin domains, whose symmetries are not expected in two-dimensional models, like the black-eye pattern. PMID:26317198

  20. Growth, nitrogen vacancy reduction and solid solution formation in cubic GaN thin films and the subsequent fabrication of superlattice structures using AlN and inn. Final report, 1 June 1986-31 December 1992

    SciTech Connect

    Davis, R.F.

    1992-12-01

    An atomic layer epitaxy deposition system configured for the growth of thin films of the III-V nitrides of A1, Ga and In has been designed, constructed and commissioned. The system allows the introduction of up to 16 gases without mixing. Self-terminating growth of crystalline GaN films has been achieved on single crystal wafers of (0001) alpha(6H)-SiC. Results of analyses via Auger spectroscopy, electron microscopy and electron diffraction are described. Deposition of AIN and GaN via gas-source MBE was also continued during this period. The principal emphasis concerned the initial stages of growth of both compounds on the substrates of (00001) alpha(6H)-SiC and (0001) sapphire, as determined using X-ray photoelectron spectroscopy. An initial layer of silicon nitride formed on the surface of SiC prior to the deposition of either nitride. The deposition of GaN on sapphire followed the Stranski-Krastanov mode of nucleation and growth, while on SiC, characteristics of three-dimensional growth were evident. By contrast, AlN grew initially in a layer-by-layer mode. Deposition of GaN on vicinal (100) Beta-SiC during UV irradiation resulted in the formation of a new 4H polytype of this material. Deposition of BN via gas-source MBE on Cu(110) resulted in nanocrystalline cBN; films grown on (111) Cu resulted in h-BN (graphitic phase). Similar studies using Si(100) substrates also resulted in the occurrence of cBN. The occurrence of the cubic polytype was enhanced while that of h-BN was discouraged with the use of the UV light at 400-500 deg C.

  1. Magnetic resonance studies of the Mg acceptor in thick free-standing and thin-film GaN

    NASA Astrophysics Data System (ADS)

    Zvanut, Mary Ellen

    Mg, the only effective p-type dopant for the nitrides, substitutes for Ga and forms an acceptor with a defect level of about 0.16 eV. The magnetic resonance of such a center should be highly anisotropic, yet early work employing both optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopies revealed a defect with a nearly isotropic g-tensor. The results were attributed to crystal fields caused by compensation and/or strain typical of the heteroepitaxially grown films. The theory was supported by observation of the expected highly anisotropic ODMR signature in homoepitaxially grown films in which dislocation-induced non-uniform strain and compensation are reduced. The talk will review EPR measurements of thin films and describe new work which takes advantage of the recently available thick free-standing GaN:Mg substrates grown by hydride vapor phase epitaxy (HVPE) and high nitrogen pressure solution growth (HNPS). Interestingly, the films and HVPE substrates exhibit characteristically different types of EPR signals, and no EPR response could be induced in the HNPS substrates, with or without illumination. In the heteroepitaxial films, a curious angular dependent line-shape is observed in addition to the nearly isotropic g-tensor characteristic of the Mg-related acceptor. On the other hand, the free-standing HVPE crystals reveal a clear signature of a highly anisotropic shallow acceptor center. Comparison with SIMS measurements implies a direct relation to the Mg impurity, and frequency-dependent EPR studies demonstrate the influence of the anisotropic crystal fields. Overall, the measurements of the thick free-standing crystals show that the Mg acceptor is strongly affected by the local environment. The ODMR was performed by Evan Glaser, NRL and the free-standing Mg-doped HVPE crystals were grown by Jacob Leach, Kyma Tech. The work at UAB is supported by NSF Grant No. DMR-1308446.

  2. GaN based nanorods for solid state lighting

    SciTech Connect

    Li Shunfeng; Waag, Andreas

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  3. ZrB2 thin films deposited on GaN(0001) by magnetron sputtering from a ZrB2 target

    NASA Astrophysics Data System (ADS)

    Tengdelius, Lina; Lu, Jun; Forsberg, Urban; Li, Xun; Hultman, Lars; Janzén, Erik; Högberg, Hans

    2016-11-01

    ZrB2 films were deposited on 900 °C-preheated or non-preheated GaN(0001) surfaces by direct current magnetron sputtering from a compound target. Analytical transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray spectroscopy and electron energy loss spectroscopy revealed a 0001 fiber textured ZrB2 film growth following the formation of a 2 nm thick amorphous BN layer onto the GaN(0001) at a substrate temperature of 900 °C. The amorphous BN layer remains when the substrate temperature is lowered to 500 °C or when the preheating step is removed from the process and results in the growth of polycrystalline ZrB2 films. The ZrB2 growth phenomena on GaN(0001) is compared to on 4H-SiC(0001), Si(111), and Al2O3(0001) substrates, which yield epitaxial film growth. The decomposition of the GaN surface during vacuum processing during BN interfacial layer formation is found to impede epitaxial growth of ZrB2.

  4. Growth of GaN micro/nanolaser arrays by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry–Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry–Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm‑2. The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  5. Enhancing the field emission properties of Se-doped GaN nanowires.

    PubMed

    Li, Enling; Wu, Guishuang; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-07-01

    Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20-120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm(-1)) compared with the pure GaN NWs (7.0 V μm(-1)). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs.

  6. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    PubMed

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  7. Enhancing the field emission properties of Se-doped GaN nanowires

    NASA Astrophysics Data System (ADS)

    Li, Enling; Wu, Guishuang; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-07-01

    Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20–120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm‑1) compared with the pure GaN NWs (7.0 V μm‑1). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs.

  8. Growth of GaN micro/nanolaser arrays by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ˜1 μm and a length of ˜15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm-2. The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  9. Conductivity based on selective etch for GaN devices and applications thereof

    DOEpatents

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  10. Improvement in optical and structural properties of ZnO thin film through hexagonal nanopillar formation to improve the efficiency of a Si-ZnO heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Maity, S.; Bhunia, C. T.; Sahu, P. P.

    2016-05-01

    We propose to use ZnO thin film with hexagonal nanopillars deposited on Si substrate to enhance the efficiency of a solar cell. It has been treated chemically and thermally and various crystal orientations have been obtained. X-ray diffraction of ZnO thin film shows relatively high intensity peak at 34.3° angle (0 0 2) compared to other orientations. Photoluminescence measurements also confirm a narrow full width at half maximum peak at 3.3 eV, which is more than that obtained for as-grown (broad emission peak around 3.0 eV). The alignment of nanorod structure made by adding a dopant of 0.15 mole fraction of magnesium increases both photon collection and electron collection efficiency. As a result, the solar cell efficiency is enhanced from 10% to 20%.

  11. Hexagons of the Heart

    ERIC Educational Resources Information Center

    Burkhauser, Beth; Porter, Dave

    2010-01-01

    This article discusses the international interdependence Hexagon Project for Haiti which invites students, ages five through eighteen, to create an image within a hexagonal template and respond to big questions surrounding a global culture of interdependence. The hexagon is a visual metaphor for interdependence, with its potential to infinitely…

  12. Implementing Room-Temperature Multiferroism by Exploiting Hexagonal-Orthorhombic Morphotropic Phase Coexistence in LuFeO3 Thin Films.

    PubMed

    Song, Seungwoo; Han, Hyeon; Jang, Hyun Myung; Kim, Young Tae; Lee, Nam-Suk; Park, Chan Gyung; Kim, Jeong Rae; Noh, Tae Won; Scott, James F

    2016-09-01

    Room-temperature multiferroism in LuFeO3 (LFO) films is demonstrated by exploiting the orthorhombic-hexagonal (o-h) morphotrophic phase coexistence. The LFO film further reveals a magnetoelectric coupling effect that is not shown in single-phase (h- or o-) LFO. The observed multiferroism is attributed to the combination of sufficient polarization from h-LFO and net magnetization from o-LFO.

  13. GaN nanowire arrays by a patterned metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Yuan, G. D.; Wu, R. W.; Lu, H. X.; Liu, Z. Q.; Wei, T. B.; Wang, J. X.; Li, J. M.; Zhang, W. J.

    2016-04-01

    We developed an one-step and two-step metal-assisted chemical etching method to produce self-organized GaN nanowire arrays. In one-step approach, GaN nanowire arrays are synthesized uniformly on GaN thin film surface. However, in a two-step etching processes, GaN nanowires are formed only in metal uncovered regions, and GaN regions with metal-covering show nano-porous sidewalls. We propose that nanowires and porous nanostructures are tuned by sufficient and limited etch rate, respectively. PL spectra shows a red-shift of band edge emission in GaN nanostructures. The formation mechanism of nanowires was illustrated by two separated electrochemical reactions occur simultaneously. The function of metals and UV light was illustrated by the scheme of potential relationship between energy bands in Si, GaN and standard hydrogen electrode potential of solution and metals.

  14. Optical and field emission properties of layer-structure GaN nanowires

    SciTech Connect

    Cui, Zhen; Li, Enling; Shi, Wei; Ma, Deming

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  15. An investigation of thin Zr films on 6H-SiC(0001) and GaN(0001) surfaces by XPS, LEED, and STM

    NASA Astrophysics Data System (ADS)

    Idczak, K.; Mazur, P.; Zuber, S.; Markowski, L.

    2016-04-01

    In this work, the results of the growth of zirconium films deposited under the ultrahigh vacuum at room temperature on the 6H-SiC(0001) and GaN(0001) surfaces were studied. Observed changes in the chemical composition, bonding environment, and surface reconstruction, and the effects of high-temperature annealing of the film are presented and discussed as well. In the performed experiment, the X-ray photoelectron spectroscopy, low-energy electron diffraction, and scanning tunneling microscopy were used. The results show that for both investigated substrates, the grown films have eminently rich and varied compositions. Besides the metallic zirconium, there are also zirconium oxides, zirconium carbides, or zirconium nitrides. The growth process proceeds according to the Volmer-Weber mode. Moreover, the zirconium-semiconductor interface does not form typical Schottky contact, but some paths with a quasi-ohmic conduction character can be observed.

  16. Dislocation filtering in GaN nanostructures.

    PubMed

    Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A

    2010-05-12

    Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures. PMID:20397703

  17. Nanoheteroepitaxy of GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Shin, In-Su; Jin, Lu; Kim, Donghyun; Park, Yongjo; Yoon, Euijoon

    2016-06-01

    Nanoheteroepitaxy (NHE) of GaN on an AlN/Si(111) nanorod structure was investigated by metal-organic chemical vapor deposition. Silica nanosphere lithography was employed to fabricate a periodic hexagonal nanorod array with a narrow gap of 30 nm between the nanorods. We were successful in obtaining a fully coalesced GaN film on the AlN/Si(111) nanorod structure. Transmission electron microscopy revealed that threading dislocation (TD) bending and termination by stacking faults occurred near the interface between GaN and the AlN/Si(111) nanorods, resulting in the reduction of TD density for the NHE GaN layer. The full width at half-maximum of the X-ray rocking curve for (102) plane of the NHE GaN was found to decrease down to 728 arcsec from 1005 arcsec for the GaN layer on a planar AlN/Si(111) substrate, indicating that the crystalline quality of the NHE GaN was improved. Also, micro-Raman measurement showed that tensile stress in the NHE GaN layer was reduced significantly as much as 70% by introducing air voids between the nanorods.

  18. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lin, Zhiyu; Zhang, Jincheng Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue; Su, Xujun; Shi, Xuefang

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  19. Surface-normal emission from subwavelength GaN membrane grating.

    PubMed

    Wang, Yongjin; Shi, Zheng; Li, Xin; He, Shumin; Zhang, Miao; Zhu, Hongbo

    2014-01-13

    We present here the fabrication of subwavelength GaN membrane grating with a double-side process. Controllable GaN membrane thickness is achieved by backside thinning technique, which is essential to realize guided-mode resonant GaN grating in the visible range. Subwavelength GaN grating can serve as an optical resonator and accommodate surface-normal emission coupling. The measured photoluminescence (PL) spectra are sensitive to the parameters and shapes of GaN gratings. Both numerical simulation and reflectivity measurement are in consistent with the PL experimental results. This work opens a promising way to embed GaN-based photon emitter inside subwavelength grating to further produce a surface emitting device with a single layer GaN grating.

  20. Measurement of the electrostatic edge effect in wurtzite GaN nanowires

    SciTech Connect

    Henning, Alex; Rosenwaks, Yossi; Klein, Benjamin; Bertness, Kris A.; Blanchard, Paul T.; Sanford, Norman A.

    2014-11-24

    The electrostatic effect of the hexagonal corner on the electronic structure in wurtzite GaN nanowires (NWs) was directly measured using Kelvin probe force microscopy (KPFM). By correlating electrostatic simulations with the measured potential difference between the nanowire face and the hexagonal vertices, the surface state concentration and band bending of GaN NWs were estimated. The surface band bending is important for an efficient design of high electron mobility transistors and for opto-electronic devices based on GaN NWs. This methodology provides a way to extract NW parameters without making assumptions concerning the electron affinity. We are taking advantage of electrostatic modeling and the high precision that KPFM offers to circumvent a major source of uncertainty in determining the surface band bending.

  1. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  2. Growth of high quality GaN layer on carbon nanotube-graphene network structure as intermediate layer

    NASA Astrophysics Data System (ADS)

    Seo, Taeo Hoon; Park, Ah Hyun; Park, Sungchan; Kim, Myung Jong; Suh, Eun-Kyung

    2015-03-01

    In general, high-quality GaN layers are synthesized on low-temperature (LT) GaN buffer layer on a single crystal sapphire substrate. However, large differences in fundamental properties such as lattice constants and thermal expansion coefficients between GaN layer and sapphire substrate generate high density of threading dislocation (TD) that leads to deterioration of optical and structural properties. Graphene has been attracting much attention due to its excellent physical properties However, direct epitaxial growth of GaN film onto graphene layer on substrates is not easily accessible due to the lack of chemical reactivity on graphene which consisted of C-C bond of sp2 hexagonally arranged carbon atoms with no dangling bonds. In this work, an intermediate layer for the GaN growth on sapphire substrate was constructed by inserting carbon nanotubes and graphene hybrid structure (CGH) Optical and structural properties of GaN layer grown on CGH were compared with those of GaN layer directly grown on sapphire CNTs act as nucleation sites and play a crucial role in the growth of single crystal high-quality GaN on graphene layer. Also, graphene film acts as a mask for epitaxial lateral overgrowth of GaN layer, which can effectively reduce TD density. A grant from the Korea Institute of Science and Technology (KIST) institutional program.

  3. Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-10-01

    Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.

  4. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  5. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  6. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724

  7. Synthesis and characterization of hexagonal ferrite Sr1.8Sm0.2Co2Ni1.50Fe10.50O22/PST thin films for high frequency application

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; Ashiq, Muhammad Naeem; Asif Iqbal, M.; Karamat, Nazia; Azhar Khan, M.; Sadiq, Imran; Ijaz, Sana; Shakir, Imran

    2015-11-01

    Y-type hexagonal ferrite (Sr1.8Sm0.2Co2Ni1.50 Fe10.50O22) was prepared by a normal microemulsion route. The ferrite/polymer composites thin films are formed at different ferrite ratios in pure polystyrene matrix. The X-ray diffraction analysis shows broad peak at low angles which is due to the PST and the peaks for Y-type ferrite are also observed in composite samples. The peaks become more intense and show less broadening with increasing concentration of ferrite which suggests that crystallinity is improved with the addition of ferrite. DC resistivity of the composites samples is lower than that of the pure PST and decreases by increasing ferrite filler into the polymer. This decrease of resistivity is mainly due to the addition of comparatively less resistive ferrite into the highly insulating polymer matrix of PST. The observed increase in the dielectric constant (permittivity) with increasing concentration ratio of ferrites is mainly due to the electron exchange between Fe2+↔Fe3++e- which consequently results in enhancement of electric polarization as well as dielectric constant. The existence of resonances peaks in the dielectric loss tangent spectra is due to the fact when the external applied frequency becomes equal to the jumping frequency of electrons between Fe2+ and Fe3+. The increasing behavior of the dielectric constant, dielectric loss and AC conductivity with increasing ferrite ratio in PST matrix proposes their versatile use in different technological applications especially for electromagnetic shielding.

  8. Strong atomic ordering in Gd-doped GaN

    SciTech Connect

    Ishimaru, Manabu; Higashi, Kotaro; Hasegawa, Shigehiko; Asahi, Hajime; Sato, Kazuhisa; Konno, Toyohiko J.

    2012-09-03

    Gd-doped GaN (Ga{sub 1-x}Gd{sub x}N) thin films were grown on a GaN(001) template by radio frequency plasma-assisted molecular beam epitaxy and characterized by means of x-ray diffraction (XRD) and transmission electron microscopy (TEM). Three samples with a different Gd composition were prepared in this study: x = 0.02, 0.05, and 0.08. XRD and TEM results revealed that the low Gd concentration GaN possesses the wurtzite structure. On the other hand, it was found that an ordered phase with a quadruple-periodicity along the [001] direction in the wurtzite structure is formed throughout the film with x = 0.08. We proposed the atomistic model for the superlattice structure observed here.

  9. Effects of Ga:N addition on the electrical performance of zinc tin oxide thin film transistor by solution-processing.

    PubMed

    Ahn, Byung Du; Jeon, Hye Ji; Park, Jin-Seong

    2014-06-25

    This paper addressed the effect of gallium nitrate hydrate addition on thin film transistor (TFT) performance and positive bias stability of amorphous zinc tin oxide (ZTO) TFTs by solution processing, Further, the mechanisms responsible for chemical properties and electronic band structure are explored. A broad exothermic peak accompanied by weight loss appeared in the range from about 350 to 570 °C for the ZTO solution; the thermal reaction of the Ga-ZTO:N solution was completed at 520 °C. This is because the gallium nitrate hydrate precursor promoted the decomposition and dehydroxylation reaction for Zn(CH3COO)2·2H2O and/or SnCl2·2H2O precursors. The concentrations of carbon and chloride in gallium nitrate hydrate added ZTO films annealed at 400 °C have a lower value (C 0.65, Cl 0.65 at. %) compared with those of ZTO films (C 3.15, Cl 0.82 at. %). Absorption bands at 416, 1550, and 1350 cm(-1) for GaZTO:N films indicated the presence of ZnGa2O4, N-H, and N═O groups by Fourier transform infrared spectroscopy measurement, respectively. As a result, an inverted staggered Ga-ZTO:N TFT exhibited a mobility of 4.84 cm(2) V(-1) s(-1) in the saturation region, a subthreshold swing of 0.35 V/decade, and a threshold gate voltage (Vth) of 0.04 V. In addition, the instability of Vth values of the ZTO TFTs under positive bias stress conditions was suppressed by adding Ga and N from 13.6 to 3.17 V, which caused a reduction in the oxygen-related defects located near the conduction band. PMID:24892383

  10. Pulsed laser annealing of Be-implanted GaN

    SciTech Connect

    Wang, H.T.; Tan, L.S.; Chor, E.F.

    2005-11-01

    Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

  11. Behavior of aluminum adsorption and incorporation at GaN(0001) surface: First-principles study

    SciTech Connect

    Qin, Zhenzhen; Xiong, Zhihua Wan, Qixin; Qin, Guangzhao

    2013-11-21

    First-principles calculations are performed to study the energetics and atomic structures of aluminum adsorption and incorporation at clean and Ga-bilayer GaN(0001) surfaces. We find the favorable adsorption site changes from T4 to T1 as Al coverage increased to 1 monolayer on the clean GaN(0001) surface, and a two-dimensional hexagonal structure of Al overlayer appears. It is interesting the Al atoms both prefer to concentrate in one deeper Ga layer of clean and Ga-bilayer GaN(0001) surface, respectively, while different structures could be achieved in above surfaces. For the case of clean GaN(0001) surface, corresponding to N-rich and moderately Ga-rich conditions, a highly regular superlattice structure composed of wurtzite GaN and AlN becomes favorable. For the case of Ga-bilayer GaN(0001) surface, corresponding to extremely Ga-rich conditions, the Ga bilayer is found to be sustained stable in Al incorporating process, leading to an incommensurate structure directly. Furthermore, our calculations provide an explanation for the spontaneous formation of ordered structure and incommensurate structure observed in growing AlGaN films. The calculated results are attractive for further development of growth techniques and excellent AlGaN/GaN heterostructure electronic devices.

  12. Enhancing the field emission properties of Se-doped GaN nanowires.

    PubMed

    Li, Enling; Wu, Guishuang; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-07-01

    Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20-120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm(-1)) compared with the pure GaN NWs (7.0 V μm(-1)). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs. PMID:27197556

  13. Femtosecond dynamics of exciton bleaching in bulk GaN at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Chieh; Chern, Gia-Wei; Lin, Kung-Hsuan; Liang, Jian-Chin; Sun, Chi-Kuang; Hsu, Chia-Chen; Keller, Stacia; DenBaars, Steven P.

    2002-07-01

    Femtosecond transient transmission pump-probe technique was used to investigate exciton dynamics in a nominally undoped GaN thin film at room temperature. An exciton ionization time of 100-250 femtoseconds was observed by the time-resolved pump-probe measurement. A comparison experiment with pre-excited free carriers also confirmed the observation of the exciton ionization process in bulk GaN.

  14. Evidence of deep traps in overgrown v-shaped defects in epitaxial GaN layers

    NASA Astrophysics Data System (ADS)

    Weidlich, P. H.; Schnedler, M.; Eisele, H.; Strauß, U.; Dunin-Borkowski, R. E.; Ebert, Ph.

    2013-08-01

    The geometric and electronic structure of overgrown v-shaped defects in GaN epitaxial layers are investigated by cross-sectional scanning tunneling microscopy and spectroscopy. The v-defects are found to be hexagonal pit structures delimited by six {112¯2} planes. The electronic properties are inhomogeneous. In some areas the center of the v-defects exhibits a strongly inhibited tunneling current, indicating the presence of deep traps.

  15. Synthesis of p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-08-01

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo

  16. Growth of InN hexagonal microdisks

    NASA Astrophysics Data System (ADS)

    Yang, Chen-Chi; Lo, Ikai; Hu, Chia-Hsuan; Huang, Hui-Chun; Chou, Mitch M. C.

    2016-08-01

    InN hexagonal thin wurtzite disks were grown on γ-LiAlO2 by plasma-assisted molecular-beam epitaxy at low temperature (470oC). The ( 000 1 ¯ ) InN thin disk was established with the capture of N atoms by the β ¯ -dangling bonds of most-outside In atoms, and then the lateral over-growth of the In atoms were caught by the β ¯ -dangling bonds of the N atoms. From the analyses of high-resolution transmission electron microscopy, the lateral over-grown width was extended to three unit cells at [ 1 1 ¯ 00 ]InN direction for a unit step-layer, resulting in an oblique surface with 73o off c-axis.

  17. Nanoscale lateral epitaxial overgrowth of GaN on Si (111)

    SciTech Connect

    Zang, K.Y.; Wang, Y.D.; Chua, S.J.; Wang, L.S.

    2005-11-07

    We demonstrate that GaN can selectively grow by metalorganic chemical vapor deposition into the pores and laterally over the nanoscale patterned SiO{sub 2} mask on a template of GaN/AlN/Si. The nanoporous SiO{sub 2} on GaN surface with pore diameter of approximately 65 nm and pore spacing of 110 nm was created by inductively coupled plasma etching using anodic aluminum oxide template as a mask. Cross-section transmission electron microscopy shows that the threading-dislocation density was largely reduced in this nanoepitaxial lateral overgrowth region. Dislocations parallel to the interface are the dominant type of dislocations in the overgrown layer of GaN. A large number of the threading dislocations were filtered by the nanoscale mask, which leads to the dramatic reduction of the threading dislocations during the growth within the nano-openings. More importantly, due to the nanoscale size of the mask area, the very fast coalescence and subsequent lateral overgrowth of GaN force the threading dislocations to bend to the basal plane within the first 50 nm of the film thickness. The structure of overgrown GaN is a truncated hexagonal pyramid which is covered with six {l_brace}1101{r_brace} side facets and (0001) top surface depending on the growth conditions.

  18. Synthesis, microstructure, and cathodoluminescence of [0001]-oriented GaN nanorods grown on conductive graphite substrate.

    PubMed

    Yuan, Fang; Liu, Baodan; Wang, Zaien; Yang, Bing; Yin, Yao; Dierre, Benjamin; Sekiguchi, Takashi; Zhang, Guifeng; Jiang, Xin

    2013-11-27

    One-dimensional GaN nanorods with corrugated morphology have been synthesized on graphite substrate without the assistance of any metal catalyst through a feasible thermal evaporation process. The morphologies and microstructures of GaN nanorods were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results from HRTEM analysis indicate that the GaN nanorods are well-crystallized and exhibit a preferential orientation along the [0001] direction with Ga(3+)-terminated (101̅1) and N(3-)-terminated (101̅1̅) as side facets, finally leading to the corrugated morphology surface. The stabilization of the electrostatic surface energy of {101̅1} polar surface in a wurtzite-type hexagonal structure plays a key role in the formation of GaN nanorods with corrugated morphology. Room-temperature cathodoluminescence (CL) measurements show a near-band-edge emission (NBE) in the ultraviolet range and a broad deep level emission (DLE) in the visible range. The crystallography and the optical emissions of GaN nanorods are discussed. PMID:24164686

  19. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  20. Depth dependence of defect density and stress in GaN grown on SiC

    SciTech Connect

    Faleev, N.; Temkin, H.; Ahmad, I.; Holtz, M.; Melnik, Yu.

    2005-12-15

    We report high resolution x-ray diffraction studies of the relaxation of elastic strain in GaN grown on SiC(0001). The GaN layers were grown with thickness ranging from 0.29 to 30 {mu}m. High level of residual elastic strain was found in thin (0.29 to 0.73 {mu}m thick) GaN layers. This correlates with low density of threading screw dislocations of 1-2x10{sup 7} cm{sup -2}, observed in a surface layer formed over a defective nucleation layer. Stress was found to be very close to what is expected from thermal expansion mismatch between the GaN and SiC. A model based on generation and diffusion of point defects accounts for these observations.

  1. Zn-dopant dependent defect evolution in GaN nanowires.

    PubMed

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-21

    Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101¯3), (101¯1) and (202¯1), as well as Type I stacking faults (…ABABCBCB…), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (…ABABACBA…) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.

  2. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Schaefer, A.; Schupp, T.; As, D. J.; Hägele, D.; Rudolph, J.

    2014-11-01

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293 K up to 500 K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1 ns at 500 K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  3. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    SciTech Connect

    Chen, Jr-Tai Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  4. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    NASA Astrophysics Data System (ADS)

    Chen-Tai, Jr.; Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik

    2015-02-01

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H2 atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ˜2000 cm2/V.s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ˜1 × 1020 cm-3 at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm2 SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  5. Room-Temperature Multiferroic Hexagonal LuFeO3

    SciTech Connect

    Cheng, Xuemei; Balke, Nina; Chi, Miaofang; Gai, Zheng; Keavney, David; Lee, Ho Nyung; Shen, Jian; Snijders, Paul C; Wang, Wenbin; Ward, Thomas Z; Xu, Xiaoshan; Yi, Jieyu; Zhu, Leyi; Christen, Hans M; Zhao, Jun

    2013-01-01

    We observed the coexistence of ferroelectricity and weak ferromagnetism at room temperature in the hexagonal phase of LuFeO3 stabilized by epitaxial thin film growth. While the ferroelectricity in hexagonal LuFeO3 can be understood as arising from its polar structure, the observation of weak ferromagnetism at room temperature is remarkable considering the frustrated triangular spin structure. An explanation of the room temperature weak ferromagnetism is proposed in terms of a subtle lattice distortion revealed by the structural characterization. The combination of ferroelectricity and weak ferromagnetism in epitaxial films at room temperature offers great potential for the application of this novel multiferroic material in next generation devices.

  6. Microstructural evolution in H ion induced splitting of freestanding GaN

    SciTech Connect

    Moutanabbir, O.; Scholz, R.; Senz, S.; Goesele, U.; Chicoine, M.; Schiettekatte, F.; Suesskraut, F.; Krause-Rehberg, R.

    2008-07-21

    We investigated the microstructural transformations during hydrogen ion-induced splitting of GaN thin layers. Cross-sectional transmission electron microscopy and positron annihilation spectroscopy data show that the implanted region is decorated with a high density of 1-2 nm bubbles resulting from vacancy clustering during implantation. These nanobubbles persist up to 450 deg. C. Ion channeling data show a strong dechanneling enhancement in this temperature range tentatively attributed to strain-induced lattice distortion. The dechanneling level decreases following the formation of plateletlike structures at 475 deg. C. Extended internal surfaces develop around 550 deg. C leading to the exfoliation of GaN thin layer.

  7. Roma Gans: Still Writing at 95.

    ERIC Educational Resources Information Center

    Sullivan, Joanna

    1991-01-01

    Recounts discussions with reading educator Roma Gans over a 25-year period. Presents Gans' views about reading, teachers, her family, and her years at Teachers College, Columbia. Notes that Gans has seen the teaching of reading come full circle since her first teaching assignment in 1919. (RS)

  8. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kushvaha, S. S. Pal, P.; Shukla, A. K.; Joshi, Amish G.; Gupta, Govind; Kumar, M.; Singh, S.; Gupta, Bipin K.; Haranath, D.

    2014-02-15

    We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 10{sup 8} cm{sup −2} at 750 °C) than that of the low temperature grown sample (1.1 × 10{sup 9} cm{sup −2} at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  9. Effect of GaAs substrate orientation on the growth kinetic of GaN layer grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Laifi, J.; Chaaben, N.; Bouazizi, H.; Fourati, N.; Zerrouki, C.; El Gmili, Y.; Bchetnia, A.; Salvestrini, J. P.; El Jani, B.

    2016-06-01

    We have investigated the kinetic growth of low temperature GaN nucleation layers (LT-GaN) grown on GaAs substrates with different crystalline orientations. GaN nucleation layers were grown by metal organic vapor phase epitaxy (MOVPE) in a temperature range of 500-600 °C on oriented (001), (113), (112) and (111) GaAs substrates. The growth was in-situ monitored by laser reflectometry (LR). Using an optical model, including time-dependent surface roughness and growth rate profiles, simulations were performed to best approach the experimental reflectivity curves. Results are discussed and correlated with ex-situ analyses, such as atomic force microscopy (AFM) and UV-visible reflectance (SR). We show that the GaN nucleation layers growth results the formation of GaN islands whose density and size vary greatly with both growth temperature and substrate orientation. Arrhenius plots of the growth rate for each substrate give values of activation energy varying from 0.20 eV for the (001) orientation to 0.35 eV for the (113) orientation. Using cathodoluminescence (CL), we also show that high temperature (800-900 °C) GaN layers grown on top of the low temperature (550 °C) GaN nucleation layers, grown themselves on the GaAs substrates with different orientations, exhibit cubic or hexagonal phase depending on both growth temperature and substrate orientation.

  10. An Explanation for Saturn's Hexagon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a

  11. On the perfect hexagonal packing of rods

    NASA Astrophysics Data System (ADS)

    Starostin, E. L.

    2006-04-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids. International Workshop on Biopolymers: Thermodynamics, Kinetics and Mechanics of DNA, RNA and Proteins, 30.05.2005-3.06.2005, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy.

  12. Vapor-liquid-solid growth of GaN nanowires by reactive sputtering of GaAs

    NASA Astrophysics Data System (ADS)

    Mohanta, P.; Chaturvedi, P.; Major, S. S.; Srinivasa, R. S.

    2013-02-01

    Uniformly distributed nanosized Au-Ga alloy particles were formed on ultrathin Au coated quartz substrate by sputtering of GaAs with argon at 700 °C. Subsequent deposition of GaN by reactive sputtering of GaAs in 100 % nitrogen results in the growth of GaN nanowires. X-ray diffraction analysis confirmed the formation of hexagonal GaN. Field emission gun scanning electron microscopy studies show that the nanowires are of average length 400±50 nm and average diameter 40±5 nm. The presence of spherical Au-Ga nanoparticles of diameter ˜ 50 nm at the top of the nanowires suggests that the growth takes place by vapor-liquid-solid mechanism.

  13. Finite-difference time-domain analysis on light extraction in a GaN light-emitting diode by empirically capable dielectric nano-features

    NASA Astrophysics Data System (ADS)

    Park, ByeongChan; Noh, Heeso; Yu, Young Moon; Jang, Jae-Won

    2014-11-01

    Enhancement of light extraction in GaN light-emitting diode (LED) by addressing an array of nanomaterials is investigated by means of three dimensional (3D) finite-difference time-domain (FDTD) simulation experiments. The array of nanomaterials is placed on top of the GaN LED and is used as a light extraction layer. Depending on its empirically capable features, the refractive index of nanomaterials with perfectly spherical (particle) and hemispherical (plano-convex lens) shapes were decided as 1.47 [Polyethylene glycol (PEG)] and 2.13 [Zirconia (ZrO2)]. As a control experiment, a 3D FDTD simulation experiment of GaN LED with PEG film deposited on top is also carried out. Different light extraction profiles between subwavelength- and over-wavelength-scaled nanomaterials addressed GaN LEDs are observed in distributions of Poynting vector intensity of the light extraction layer-applied GaN LEDs. In addition, our results show that the dielectric effect on light extraction is more efficient in the light extraction layer with over-wavelength scaled features. In the case of a Zirconia particle array (ϕ = 500 nm) with hexagonal closed packed (hcp) structure on top of a GaN LED, light extraction along the normal axis of the LED surface is about six times larger than a GaN LED without the extraction layer.

  14. Oxygen in GaN.

    NASA Astrophysics Data System (ADS)

    van de Walle, Chris G.; Neugebauer, Jörg

    1997-03-01

    Oxygen is commonly present during epitaxial growth of GaN. We have proposed that unintentional incorporation of O, as well as Si, is responsible for the frequently observed n-type conductivity in as-grown GaN. Here we present results from comprehensive density-functional-pseudopotential studies of GaN:O under pressure, and of O interactions with native defects and dopant impurities. We find that the O donor undergoes a DX-like transition under pressure: a large outward relaxation introduces a deep level in the band gap. This behavior explains the carrier freezeout in GaN under pressure.^1 Si donors do not exhibit the transition, consistent with experiment. Results for these impurities in AlGaN will also be discussed. We have also investigated the interaction between O and native defects. Most notably we find a large binding energy between O and the gallium vacancy (V_Ga), which we have proposed to be the source of the yellow luminescence. Finally, we have studied the interaction between O and Mg acceptors. The incorporation of the O donor is significantly enhanced in Mg-doped material. In addition, we calculate a binding energy of 0.6 eV for Mg-O complexes. The presence of O during growth can thus be detrimental to p-type GaN. ^1 C. Wetzel et al., Proc. ICPS-23 (World Scientific, Singapore, 1996), p. 2929.

  15. Effect of double superlattice interlayers on growth of thick GaN epilayers on Si(110) substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shen, Xu-Qiang; Takahashi, Tokio; Ide, Toshihide; Shimizu, Mitsuaki

    2016-05-01

    The effect of double thin AlN/GaN superlattice interlayers (SL ILs) on the growth of thick GaN epilayers by metalorganic chemical vapor deposition (MOCVD) on Si(110) substrates is investigated. It is found that the GaN middle layer (GaN layer between the two SL ILs) can affect the strain state of the GaN epilayer. By comparison with the case of a single SL IL, it is shown that the double SL ILs can have a stronger compressive effect on the GaN epilayer grown on it, which results in lower residual tensile strain in the GaN film after the growth. By optimizing the GaN middle layer thickness, a 4-µm-thick crack-free GaN epilayer is successfully achieved. By this simple technique, it is expected that high-quality crack-free thick GaN can be grown on Si substrates for optical and electronic device applications.

  16. Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes

    SciTech Connect

    Guo, Wei Kirste, Ronny; Bryan, Zachary; Bryan, Isaac; Collazo, Ramón; Sitar, Zlatko; Gerhold, Michael

    2015-03-21

    Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher light extraction efficiency in deep-ultra-violet light-emitting diodes.

  17. Instability and Spontaneous Reconstruction of Few-Monolayer Thick GaN Graphitic Structures.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J; Hyot, B; André, B

    2016-08-10

    Two-dimensional (2D) semiconductors are a very hot topic in solid state science and technology. In addition to van der Waals solids that can be easily formed into 2D layers, it was argued that single layers of nominally 3D tetrahedrally bonded semiconductors, such as GaN or ZnO, also become flat in the monolayer limit; the planar structure was also proposed for few-layers of such materials. In this work, using first-principles calculations, we demonstrate that contrary to the existing consensus the graphitic structure of few-layer GaN is unstable and spontaneously reconstructs into a structure that remains hexagonal in plane but with covalent interlayer bonds that form alternating octagonal and square (8|4 Haeckelite) rings with pronounced in-plane anisotropy. Of special interest is the transformation of the band gap from indirect in planar GaN toward direct in the Haeckelite phase, making Haeckelite few-layer GaN an appealing material for flexible nano-optoelectronics.

  18. GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes

    PubMed Central

    Camacho-Mojica, Dulce C.; López-Urías, Florentino

    2015-01-01

    Nowadays, III-V semiconductors are interesting candidate materials for the tailoring of two dimensional (2D) graphene-like structures. These new 2D materials have attracted profound interest opening the possibility to find semiconductor materials with unexplored properties. First-principles density functional theory calculations are performed in order to investigate the electronic properties of GaN planar and nanotube morphologies based on Haeckelite structures (containing octagonal and square membered rings). Optimized geometries, band-structures, phonon dispersion, binding energies, transmission electron microscopy images simulations, x-ray diffraction patterns, charge densities, and electronic band gaps are calculated. We demonstrated that GaN Haeckelite structures are stable exhibiting a semiconducting behavior with an indirect band gap. Furthermore, it was found that GaN Haeckelite nanotubes are semiconductor with a band gap nature (direct or indirect) that depends of the nanotube´s chirality and diameter. In addition, it was demonstrated that surface passivation and the interaction with hydrazine, water, ammonia, and carbon monoxide molecules can change the band-gap nature. Our results are compared with the corresponding GaN hexagonal honeycomb structures. PMID:26658148

  19. Effect of defects in oxide templates on Non-catalytic growth of GaN nanowires for high-efficiency light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Choi, Suk-Ho

    2016-04-01

    Two kinds of oxide templates, one with and one without undercuts, are employed to study the effect of defects in oxide templates on non-catalytic growth of GaN nanowires (NWs). GaN NWs abnormally grown from the templates containing undercuts exhibit two types of patterns: earlystage growth of premature NWs and abnormally-overgrown (~2 μm) NWs. GaN NWs grown on perfectly-symmetric template patterns are highly crystalline and have high aspect ratios (2 ~ 5), and their tops are shaped as pyramids with semipolar facets, clearly indicating hexagonal symmetry. The internal quantum efficiency of the well-grown NWs is 10% larger than that of the deformed NWs, as estimated by using photoluminescence. These results suggest that our technique is an effective approach for growing large-area-patterned, vertically-aligned, hexagonal GaN NWs without catalysts, in strong contrast to catalytic vapor-liquid-solid growth, and that good formation of the oxide templates is crucial for the growth of high-quality GaN NWs.

  20. Structural performance of two aerobrake hexagonal heat shield panel concepts

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Dyess, James W.

    1992-01-01

    Structural sizing and performance are presented for two structural concepts for an aerobrake hexagonal heat shield panel. One concept features a sandwich construction with an aluminum honeycomb core and thin quasi-isotropic graphite-epoxy face sheets. The other concept features a skin-rib isogrid construction with thin quasi-isotropic graphite-epoxy skins and graphite-epoxy ribs oriented at 0, +60, and -60 degs along the panel. Linear static, linear bifurcation buckling, and nonlinear static analyses were performed to compare the structural performance of the two panel concepts and assess their feasibility for a lunar transfer vehicle aerobrake application.

  1. Germanium-catalyzed growth of single-crystal GaN nanowires

    NASA Astrophysics Data System (ADS)

    Saleem, Umar; Wang, Hong; Peyrot, David; Olivier, Aurélien; Zhang, Jun; Coquet, Philippe; Ng, Serene Lay Geok

    2016-04-01

    We report the use of Germanium (Ge) as catalyst for Gallium Nitride (GaN) nanowires growth. High-yield growth has been achieved with Ge nanoparticles obtained by dewetting a thin layer of Ge on a Si (100) substrate. The nanowires are long and grow straight with very little curvature. The GaN nanowires are single-crystalline and show a Wurtzite structure growing along the [0001] axis. The growth follows a metal-free Vapor-Liquid-Solid (VLS) mechanism, further allowing a CMOS technology compatibility. The synthesis of nanowires has been done using an industrial Low Pressure Chemical Vapor Deposition (LPCVD) system.

  2. Nucleation and Growth of GaN on GaAs (001) Substrates

    SciTech Connect

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-05-03

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

  3. Growth and analysis of GaN nanowire on PZnO by different-gas flow

    NASA Astrophysics Data System (ADS)

    Shekari, L.; Hassan, H. Abu; Thahab, S. M.; Ghazai, A. J.; Hassan, Z.

    2012-06-01

    In this research we have used an inexpensive method to fabricate highly crystalline GaN nanowires (NWs) on porous zinc oxide (PZnO) on Si (1 1 1) wafer by thermal evaporation using commercial GaN powder, either in argon (Ar) gas atmosphere or a combination of Ar and nitrogen (N2) gas atmosphere without any catalyst. Micro structural studies by scanning electron microscopy (SEM) and transmission electron microscope (TEM) measurements reveal the role of different gas flowing, in the nucleation and alignment of the GaN NWs. The GaN NWs different diameters ranging between 50 and 200 nm for the NWs grown under flow of mix gases, but the NWs which were grown under Ar gas only, have uniform diameter of around 50-60 nm, also their lengths are almost the same (around 10 μm). Further structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. Results indicated that the NWs are of single-crystal hexagonal GaN with [0 0 0 1] and [1 0 1¯ 1] growth directions for NWs grown under Ar and mixed gas flow.

  4. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  5. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    SciTech Connect

    Hodges, C. Anaya Calvo, J.; Kuball, M.; Stoffels, S.; Marcon, D.

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reduced channel thermal conductivity must be considered.

  6. Hexagonal boron-nitride nanomesh magnets

    NASA Astrophysics Data System (ADS)

    Ohata, C.; Tagami, R.; Nakanishi, Y.; Iwaki, R.; Nomura, K.; Haruyama, J.

    2016-09-01

    The formation of magnetic and spintronic devices using two-dimensional (2D) atom-thin layers has attracted attention. Ferromagnetisms (FMs) arising from zigzag-type atomic structure of edges of 2D atom-thin materials have been experimentally observed in graphene nanoribbons, hydrogen (H)-terminated graphene nanomeshes (NMs), and few-layer oxygen (O)-terminated black phosphorus NMs. Herein, we report room-temperature edge FM in few-layer hexagonal boron-nitride (hBN) NMs. O-terminated hBNNMs annealed at 500 °C show the largest FM, while it completely disappears in H-terminated hBNNMs. When hBNNMs are annealed at other temperatures, amplitude of the FM significantly decreases. These are highly in contrast to the case of graphene NMs but similar to the cases of black phosphorus NM and suggest that the hybridization of the O atoms with B(N) dangling bonds of zigzag pore edges, formed at the 500 °C annealing, strongly contribute to this edge FM. Room-temperature FM realizable only by exposing hBNNMs into air opens the way for high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.

  7. Effect of Capping on Electrical and Optical Properties of GaN Layers Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.; Puzyk, M. V.; Papchenko, B. P.

    2016-04-01

    Gallium nitride, grown by hydride vapor phase epitaxy and capped with a thin AlGaN layer, was studied by photoluminescence (PL) methods. The concentration of free electrons in GaN was found from the time-resolved PL data, and the concentrations of point defects were estimated from the steady-state PL measurements. The intensity of PL from GaN decreases moderately after capping it with Si-doped AlGaN, and it decreases dramatically after capping with Mg-doped AlGaN. At the same time, the concentration of free electrons and the concentrations of main radiative defects in GaN are not affected by the AlGaN capping. We demonstrate that PL is a powerful tool for nondestructive characterization of semiconductor layers buried under overlying device structures.

  8. Atomic layer deposition of epitaxial ZnO on GaN and YSZ

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Wei; Ke, Dong-Jie; Chao, Yen-Cheng; Chang, Li; Liang, Mei-Hui; Ho, Yen-Teng

    2007-01-01

    ZnO thin films were epitaxially grown by atomic layer deposition on both of GaN/c-sapphire and yttria-stabilized zirconia (YSZ) substrates for comparison. X-ray diffraction, cross-sectional transmission electron microscopy (TEM) and photoluminescence (PL) measurements show that epitaxial ZnO films have better structural qualities and optical properties on GaN than on YSZ, whereas atomic force microscopy (AFM) shows that the surface of ZnO films on YSZ is smoother than on GaN. From the ZnO thickness measured by TEM, the growth rate of ZnO on GaN is about one (0 0 0 2) monolayer per cycle, which is roughly four times of that on YSZ.

  9. Hexagonal diamonds in meteorites: implications.

    PubMed

    Hanneman, R E; Strong, H M; Bundy, F P

    1967-02-24

    A new polymorph of carbon, hexagonal diamond, has been discovered in the Canyon Diablo and Goalpara meteorites. This phase had been synthesized recently under specific high-pressure conditions in the laboratory. Our results: provide strong evidence that diamonds found in these meteorites were produced by intense shock pressures acting on crystalline graphite inclusions present within the meteorite before impact, rather than by disintegration of larger, statically grown diamonds, as some theories propose. PMID:17830485

  10. Anelasticity of GaN Epitaxial Layer in GaN LED

    NASA Astrophysics Data System (ADS)

    Chung, C. C.; Yang, C. T.; Liu, C. Y.

    2016-10-01

    In this work, the anelasticity of the GaN layer in the GaN light-emitting-diode device was studied. The present results show that the forward-voltage of GaN LED increases with time, as the GaN light-emitting-diode was maintained at a constant temperature of 100 °C. We found that the increase of the forward-voltage with time attributes to the delay-response of the piezoelectric fields (internal electrical fields in GaN LED device). And, the delay-response of the internal electrical fields with time is caused by the anelasticity (time-dependent strain) of the GaN layer. Therefore, using the correlation of strain-piezoelectric-forward voltage, a plot of thermal strain of the GaN layer against time can be obtained by measuring the forward-voltage of the studied GaN LED against time. With the curves of the thermal strain of GaN epi-layers versus time, the anelasticity of the GaN compound can be studied. The key anelasticity parameter, characteristic relaxation time, of the GaN is defined to be 2623.76 min in this work.

  11. Transformation of c-oriented nanowall network to a flat morphology in GaN films on c-plane sapphire

    SciTech Connect

    Kesaria, Manoj; Shetty, Satish; Cohen, P.I.; Shivaprasad, S.M.

    2011-11-15

    Highlights: {yields} High quality wurtzite structures GaN nanowall network formed on c-plane sapphire. {yields} Tapering of nanowalls at the apex cause electron confinement effects. {yields} Temperature dependent transformation of the six fold nanowall network to a flat morphology. {yields} Growth kinetics is influenced by adatom diffusion, interactions and bonding for GaN layer. -- Abstract: The work significantly optimizes growth parameters for nanostructured and flat GaN film in the 480-830 {sup o}C temperature range. The growth of ordered, high quality GaN nanowall hexagonal honeycomb like network on c-plane sapphire under nitrogen rich (N/Ga ratio of 100) conditions at temperatures below 700 {sup o}C is demonstrated. The walls are c-oriented wurtzite structures 200 nm wide at base and taper to 10 nm at apex, manifesting electron confinement effects to tune optoelectronic properties. For substrate temperatures above 700 {sup o}C the nanowalls thicken to a flat morphology with a dislocation density of 10{sup 10}/cm{sup 2}. The role of misfit dislocations in the GaN overlayer evolution is discussed in terms of growth kinetics being influenced by adatom diffusion, interactions and bonding at different temperatures. The GaN films are characterized by reflection high energy electron diffraction (RHEED), field emission scanning electron (FESEM), high resolution X-ray diffraction (HRXRD) and cathodoluminescence (CL).

  12. The growth of heteroepitaxial CuInSe{sub 2} on free-standing N-polar GaN

    SciTech Connect

    Shih, Cheng-Hung; Lo, Ikai You, Shuo-Ting; Tsai, Cheng-Da; Tseng, Bae-Heng; Chen, Yun-Feng; Chen, Chiao-Hsin; Lee, Chuo-Han; Lee, Wei-I; Hsu, Gary Z. L.

    2014-12-15

    We report that chalcopyrite CuInSe{sub 2} thin films were grown on free-standing N-polar GaN (0001{sup -}) by molecular beam epitaxy. X-ray diffraction showed that the CuInSe{sub 2} thin film was grown in (112) orientation, and its peak of rocking curve with full width at half maximum of about 897.8 arc-sec indicated the epitaxial growth of CuInSe{sub 2} (112) film on N-polar GaN. Microstructure analysis of the CuInSe{sub 2 } showed that the large lattice mismatch (28.5%) between CuInSe{sub 2 } and GaN is accommodated by domain matching, and no interface reaction occurs between CuInSe{sub 2} and GaN. Our experimental results show that GaN is stable for the epitaxial growth of CuInSe{sub 2} thin film, which exhibits a promising potential for optoelectronic applications.

  13. GaN High Power Devices

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

    2000-07-17

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  14. Distinguishing cubic and hexagonal phases within InGaN/GaN microstructures using electron energy loss spectroscopy.

    PubMed

    Griffiths, I J; Cherns, D; Albert, S; Bengoechea-Encabo, A; Angel Sanchez, M; Calleja, E; Schimpke, T; Strassburg, M

    2016-05-01

    3D InGaN/GaN microstructures grown by metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) have been extensively studied using a range of electron microscopy techniques. The growth of material by MBE has led to the growth of cubic GaN material. The changes in these crystal phases has been investigated by Electron Energy Loss Spectroscopy, where the variations in the fine structure of the N K-edge shows a clear difference allowing the mapping of the phases to take place. GaN layers grown for light emitting devices sometimes have cubic inclusions in the normally hexagonal wurtzite structures, which can influence the device electronic properties. Differences in the fine structure of the N K-edge between cubic and hexagonal material in electron energy loss spectra are used to map cubic and hexagonal regions in a GaN/InGaN microcolumnar device. The method of mapping is explained, and the factors limiting spatial resolution are discussed.

  15. Distinguishing cubic and hexagonal phases within InGaN/GaN microstructures using electron energy loss spectroscopy

    PubMed Central

    CHERNS, D; ALBERT, S.; BENGOECHEA‐ENCABO, A.; ANGEL SANCHEZ, M.; CALLEJA, E.; SCHIMPKE, T.; STRASSBURG, M.

    2015-01-01

    Summary 3D InGaN/GaN microstructures grown by metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) have been extensively studied using a range of electron microscopy techniques. The growth of material by MBE has led to the growth of cubic GaN material. The changes in these crystal phases has been investigated by Electron Energy Loss Spectroscopy, where the variations in the fine structure of the N K‐edge shows a clear difference allowing the mapping of the phases to take place. GaN layers grown for light emitting devices sometimes have cubic inclusions in the normally hexagonal wurtzite structures, which can influence the device electronic properties. Differences in the fine structure of the N K‐edge between cubic and hexagonal material in electron energy loss spectra are used to map cubic and hexagonal regions in a GaN/InGaN microcolumnar device. The method of mapping is explained, and the factors limiting spatial resolution are discussed. PMID:26366483

  16. Vertical current-flow enhancement via fabrication of GaN nanorod p-n junction diode on graphene

    NASA Astrophysics Data System (ADS)

    Ryu, Sung Ryong; Ram, S. D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon; Kang, Tae Won; Kwon, Sangwoo; Yang, Woochul; Shin, Sunhye; Woo, Yongdeuk

    2015-08-01

    Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p-n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p-n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis by X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) as well.

  17. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    SciTech Connect

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.; Tadjer, Marko J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  18. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    SciTech Connect

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.

  19. Photovoltaic property of a vertically aligned carbon nanotube hexagonal network assembled with CdS quantum dots.

    PubMed

    Li, Chen; Xia, Jun; Wang, Qilong; Chen, Jing; Li, Chi; Lei, Wei; Zhang, Xiaobing

    2013-08-14

    A vertically aligned carbon nanotube (VACNT) hexagonal network was fabricated by plasma enhanced chemical vapor deposition as an electrode scaffold to assemble CdS quantum dots (QDs). The quantum dot sensitized solar cell (QDSSC) based on a VACNT/CdS hexagonal network shows a short circuit current density of 4.7 mA/cm(2), which is almost twice of that based on screen-printed CNT/CdS thin film with the same thickness. The enhancement of the short circuit current could be attributed to the unique morphology of the VACNT hexagonal network, which provides direct and percolating pathways for the electrons to transfer, enhances the spectral transmission through the hexagonal microchannels to the photoactive QD sites, and also presents more surface area to assembled CdS QDs without consuming extra substrate space. The photovoltaic property of the VACNT/CdS hexagonal network indicates its potential application in the energy conversion devices.

  20. Patterned growth of InGaN/GaN quantum wells on freestanding GaN grating by molecular beam epitaxy

    PubMed Central

    2011-01-01

    We report here the epitaxial growth of InGaN/GaN quantum wells on freestanding GaN gratings by molecular beam epitaxy (MBE). Various GaN gratings are defined by electron beam lithography and realized on GaN-on-silicon substrate by fast atom beam etching. Silicon substrate beneath GaN grating region is removed from the backside to form freestanding GaN gratings, and the patterned growth is subsequently performed on the prepared GaN template by MBE. The selective growth takes place with the assistance of nanoscale GaN gratings and depends on the grating period P and the grating width W. Importantly, coalescences between two side facets are realized to generate epitaxial gratings with triangular section. Thin epitaxial gratings produce the promising photoluminescence performance. This work provides a feasible way for further GaN-based integrated optics devices by a combination of GaN micromachining and epitaxial growth on a GaN-on-silicon substrate. PACS 81.05.Ea; 81.65.Cf; 81.15.Hi. PMID:21711618

  1. Two-dimensional Mn structure on the GaN growth surface and evidence for room-temperature spin ordering

    NASA Astrophysics Data System (ADS)

    Wang, Kangkang; Takeuchi, Noboru; Chinchore, Abhijit V.; Lin, Wenzhi; Liu, Yinghao; Smith, Arthur R.

    2011-04-01

    A class of striped superstructures with local hexagonal ordering has been obtained by depositing submonolayer Mn on the GaN(0001) surface. Combining scanning tunneling microscopy and first-principles theory, we find that Mn atoms incorporate into the surface and form a high-density two-dimensional MnxGa1-x structure. The highly spin-polarized Mn d electrons are found to dominate the surface electronic states. For the narrowest stripes, we calculate a row-wise antiferromagnetic ground state, which is observed in real space at room temperature as a spin-induced asymmetry in the density of states. These two-dimensional magnetic structures on GaN can also be considered model systems for wide-band-gap magnet/semiconductor spin injectors.

  2. Correlation between structural and optical properties of GaN epi-layers by the cathodoluminescence technique

    NASA Astrophysics Data System (ADS)

    Ben Nasr, F.; Guermazi, H.; Guermazi, S.

    2016-06-01

    Structural and optical properties of GaN epi-layers were investigated. The X-ray diffraction and the SEM observations show a predominant hexagonal structure with minor cubic GaN microcristallites. Experimental results of cathodoluminescence (CL) were reported at room temperature (RT) and low nitrogen temperature (LNT). CL signals show ultraviolet (UV) light emission arising from a large band gap (3 to 3.5eV), a yellow band (YB) around 2.2eV and a peak at 1.73eV due to porous silicon. Simulation CL profiles show good agreement with experimental results when we take into account the minor cubic phase contribution. Our attention was also focused on the study of the effects of temperature, electron beam energy, and residual strain on the individual CL signal from both h-GaN and c-GaN phases.

  3. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah

    2012-06-01

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  4. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    SciTech Connect

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  5. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    SciTech Connect

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B.

    2012-06-01

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  6. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates.

    PubMed

    Morin, Stephen A; Jin, Song

    2010-09-01

    In the current examples of dislocation-driven nanowire growth, the screw dislocations that propagate one-dimensional growth originate from spontaneously formed highly defective "seed" crystals. Here we intentionally utilize screw dislocations from defect-rich gallium nitride (GaN) thin films to propagate dislocation-driven growth, demonstrating epitaxial growth of zinc oxide (ZnO) nanowires directly from aqueous solution. Atomic force microscopy confirms screw dislocations are present on the native GaN surface and ZnO nanowires grow directly from dislocation etch pits of heavily etched GaN surfaces. Furthermore, transmission electron microscopy confirms the existence of axial dislocations. Eshelby twist in the resulting ZnO nanowires was confirmed using bright-/dark-field imaging and twist contour analysis. These results further confirm the connection between dislocation source and nanowire growth. This may eventually lead to defect engineering strategies for rationally designed catalyst-free dislocation-driven nanowire growth for specific applications.

  7. Confocal microscopic analysis of optical crosstalk in GaN micro-pixel light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, K. H.; Cheung, Y. F.; Cheung, W. S.; Choi, H. W.

    2015-10-01

    The optical crosstalk phenomenon in GaN micro-pixel light-emitting diodes (LED) has been investigated by confocal microscopy. Depth-resolved confocal emission images indicate light channeling along the GaN and sapphire layers as the source of crosstalk. Thin-film micro-pixel devices are proposed, whereby the light-trapping sapphire layers are removed by laser lift-off. Optical crosstalk is significantly reduced but not eliminated due to the remaining GaN layer. Another design involving micro-pixels which are completely isolated is further proposed; such devices exhibited low-noise and enhanced optical performances, which are important attributes for high-density micro-pixel LED applications including micro-displays and multi-channel optical communications.

  8. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    SciTech Connect

    Ghosh, Krishnendu Singisetti, Uttam

    2015-02-14

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO{sub 2} and ZrO{sub 2} high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al{sub 2}O{sub 3}, the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density.

  9. Ultrathin GaN nanowires: Electronic, thermal, and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Davoody, A. H.; Ramayya, E. B.; Maurer, L. N.; Knezevic, I.

    2014-03-01

    We present a comprehensive computational study of the electronic, thermal, and thermoelectric (TE) properties of gallium nitride nanowires (NWs) over a wide range of thicknesses (3-9 nm), doping densities (1018-1020 cm-3), and temperatures (300-1000 K). We calculate the low-field electron mobility based on ensemble Monte Carlo transport simulation coupled with a self-consistent solution of the Poisson and Schrödinger equations. We use the relaxation-time approximation and a Poisson-Schrödinger solver to calculate the electron Seebeck coefficient and thermal conductivity. Lattice thermal conductivity is calculated using a phonon ensemble Monte Carlo simulation, with a real-space rough surface described by a Gaussian autocorrelation function. Throughout the temperature range, the Seebeck coefficient increases while the lattice thermal conductivity decreases with decreasing wire cross section, both boding well for TE applications of thin GaN NWs. However, at room temperature these benefits are eventually overcome by the detrimental effect of surface roughness scattering on the electron mobility in very thin NWs. The highest room-temperature ZT of 0.2 is achieved for 4-nm-thick NWs, while further downscaling degrades it. In contrast, at 1000 K, the electron mobility varies weakly with the NW thickness owing to the dominance of polar optical phonon scattering and multiple subbands contributing to transport, so ZT increases with increasing confinement, and reaches 0.8 for optimally doped 3-nm-thick NWs. The ZT of GaN NWs increases with increasing temperature beyond 1000 K, which further emphasizes their suitability for high-temperature TE applications.

  10. New approaches for calculating absolute surface energies of wurtzite (0001)/(000 1 ¯ ): A study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    2016-05-01

    The accurate absolute surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating the dangling bond energy of asymmetrically bonded surface atoms. In this study, we used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches. The surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite ZnO and GaN that we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group-I and group-VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces, and these results were also compared with the above method. The calculated results generally show that the surface energies of GaN are higher than those of ZnO, suggesting that ZnO tends to wet the GaN substrate, while GaN is unlikely to wet ZnO. Therefore, it will be challenging to grow high quality GaN thin films on ZnO substrates; however, high quality ZnO thin film on GaN substrate would be possible. These calculations and comparisons may provide important insights into crystal growth of the above materials, thereby leading to significant performance enhancements in semiconductor devices.

  11. High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Long; Zhang, Jing; Wang, Hong; Zhang, Xi-Chun

    2016-11-01

    High-luminous efficacy white light-emitting diodes (LEDs) were realized by using GaN-based thin-film (TF) flip-chip (FC) LEDs with phosphor–silicone encapsulation. The TFFC-LEDs were fabricated by electrode isolation, FC configuration, copper electroplating, and laser lift-off (LLO) techniques. During the fabrication process, the high-defect undoped GaN layer was eliminated by inductively coupled plasma (ICP) etching to lower the absorption loss. Then, the exposed N-face n-GaN surface formed after the ICP etching was systematically studied through control of the temperature, time and concentration of the KOH solution to acquire hexagonal cones with high extraction efficiency. It is found that the external quantum efficiency was improved by a maximum value of 169% for the TFFC-LEDs with optimized surface hexagonal cones compared to TFFC-LEDs with flat surfaces. To further improve the output power, the chip size and n-contact via holes of the TFFC-LEDs were increased. A maximum luminous efficacy of 139 lm W‑1 was realized for white LEDs (5700 K, 350 mA, 2.98 V) using these TFFC-LEDs with phosphor–silicone encapsulation. In addition, these white LEDs also have a lower junction temperature of 87 °C even at 700 mA. These results indicate that the proposed TFFC-LEDs are promising for use in automotive and solid-state lighting applications.

  12. Surfactant assisted growth of MgO films on GaN

    SciTech Connect

    Paisley, E. A.; Shelton, T. C.; Collazo, R.; Sitar, Z.; Maria, J.-P.; Christen, H. M.; Biegalski, M. D.; Mita, S.

    2012-08-27

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy and pulsed laser deposition using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface by stabilizing the {l_brace}111{r_brace} rocksalt facet. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100 Multiplication-Sign reduction in leakage current density for the surfactant-assisted samples. These data verify numerous predictions regarding the role of H-termination in regulating the habit of rocksalt crystals.

  13. Response of GaN to energetic ion irradiation: conditions for ion track formation

    NASA Astrophysics Data System (ADS)

    Karlušić, M.; Kozubek, R.; Lebius, H.; Ban-d'Etat, B.; Wilhelm, R. A.; Buljan, M.; Siketić, Z.; Scholz, F.; Meisch, T.; Jakšić, M.; Bernstorff, S.; Schleberger, M.; Šantić, B.

    2015-08-01

    We investigated the response of wurzite GaN thin films to energetic ion irradiation. Both swift heavy ions (92 MeV Xe23+, 23 MeV I6+) and highly charged ions (100 keV Xe40+) were used. After irradiation, the samples were investigated using atomic force microscopy, grazing incidence small angle x-ray scattering, Rutherford backscattering spectroscopy in channelling orientation and time of flight elastic recoil detection analysis. Only grazing incidence swift heavy ion irradiation induced changes on the surface of the GaN, when the appearance of nanoholes is accompanied by a notable loss of nitrogen. The results are discussed in the framework of the thermal spike model.

  14. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  15. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  16. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Nam, Okhyun

    2016-04-01

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ˜57.5° to the [10-10]sapp direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]sapp. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

  17. Photonic band gaps of wurtzite GaN and AlN photonic crystals at short wavelengths

    NASA Astrophysics Data System (ADS)

    Melo, E. G.; Alayo, M. I.

    2015-04-01

    Group III-nitride materials such as GaN and AlN have attracted a great attention in researches on photonic devices that operate at short light wavelengths. The large band gaps of these materials turn them suitable for nanophotonic devices that operate in light ranges from visible to deep ultraviolet. The physical properties of wurtzite GaN and AlN such as their second and third order nonlinear susceptibilities, and their thermal and piezoelectric coefficients, also make them excellent candidates for integrate photonic devices with electronics, microelectromechanics, microfluidics and general sensing applications. Using a plane wave expansion method (PWE) the photonic band gap maps of 36 different two-dimensional photonic crystal lattices in wurtzite GaN and AlN were obtained and analyzed. The wavelength dependence and the effects of the material anisotropy on the position of the photonic band gaps are also discussed. The results show regions with slow group velocity at the edges of a complete photonic band gap in the M-K direction of the triangular lattices with circular, hexagonal, and rhombic air holes. Was also found a very interesting disposition of the photonic band gaps in the lattices composed of rhombic air holes.

  18. Single crystalline Sc2O3/Y2O3 heterostructures as novel engineered buffer approach for GaN integration on Si (111)

    NASA Astrophysics Data System (ADS)

    Tarnawska, L.; Giussani, A.; Zaumseil, P.; Schubert, M. A.; Paszkiewicz, R.; Brandt, O.; Storck, P.; Schroeder, T.

    2010-09-01

    The preparation of GaN virtual substrates on Si wafers via buffer layers is intensively pursued for high power/high frequency electronics as well as optoelectronics applications. Here, GaN is integrated on the Si platform by a novel engineered bilayer oxide buffer, namely, Sc2O3/Y2O3, which gradually reduces the lattice misfit of ˜-17% between GaN and Si. Single crystalline GaN(0001)/Sc2O3(111)/Y2O3(111)/Si(111) heterostructures were prepared by molecular beam epitaxy and characterized ex situ by various techniques. Laboratory-based x-ray diffraction shows that the epitaxial Sc2O3 grows fully relaxed on the Y2O3/Si(111) support, creating a high quality template for subsequent GaN overgrowth. The high structural quality of the Sc2O3 film is demonstrated by the fact that the concentration of extended planar defects in the preferred {111} slip planes is below the detection limit of synchrotron based diffuse x-ray scattering studies. Transmission electron microscopy (TEM) analysis reveal that the full relaxation of the -7% lattice misfit between the isomorphic oxides is achieved by a network of misfit dislocations at the Sc2O3/Y2O3 interface. X-ray reflectivity and TEM prove that closed epitaxial GaN layers as thin as 30 nm can be grown on these templates. Finally, the GaN thin film quality is studied using a detailed Williamson-Hall analysis.

  19. Surface morphology of homoepitaxial c-plane GaN: Hillocks and ridges

    NASA Astrophysics Data System (ADS)

    Oehler, F.; Zhu, T.; Rhode, S.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.

    2013-11-01

    We investigated the properties of a GaN epilayer grown by metalorganic vapour phase epitaxy on a c-plane bulk GaN substrate obtained by ammonothermal growth. X-ray diffraction measurements showed that the epilayer and substrate were fully relaxed, had a miscut angle of 0.3±0.05° towards m and had omega rocking curve width values of 20-30 arcsec, limited by the instrumental broadening. Scanning capacitance microscopy data of the sample in cross-section indicated that the substrate had n-type conductivity with a carrier concentration of at least 1019 cm-3. Combined optical Nomarski microscopy, atomic-force microscopy and scanning electron microscope-cathodoluminescence studies showed the presence of large hexagonal pyramids on the surface, each associated with one or two dislocations with a screw-component threading from the substrate. This observation leads us to calculate a lower limit of the threading dislocation density of 3×102 cm-2. We predict that the formation of such hexagonal hillocks during epitaxy can be avoided with a slightly larger miscut angle of 0.4° or 0.5°. Another type of defect observed were ridge-like surface structures with narrow arrays of edge-type threading defects with a local density of 109 cm-2. However, the absence of threading defects below the regrowth interface at a ridge suggested that this type of structure is linked to (polishing) damage to the substrate surface and is therefore rated as an avoidable problem.

  20. Fundamental Bulk/Surface Structure Photoactivity Relationships of Supported (Rh2-yCryO3)/GaN Photocatalysts

    SciTech Connect

    Phivilay, Somphonh; Roberts, Charles; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    ABSTRACT. The supported (Rh2-yCryO3)/GaN photocatalyst was examined as a model nitride photocatalyst system to assist in the development of fundamental structure photoactivity relationships for UV activated water splitting. Surface characterization of the outermost surface layers by High Sensitivity-LEIS and High Resolution-XPS revealed for the first time that the GaN support consists of a GaOx outermost surface layer and a thin film of GaOxNy in the surface region. HR-XPS also demonstrates that the supported (Rh2-yCryO3) mixed oxide nanoparticles (NPs) exclusively consist of Cr+3 and Rh+3 cations and are surface enriched for the supported (Rh2-yCryO3)/GaN photocatalyst. Bulk analysis by Raman and UV-vis spectroscopy show that the bulk molecular and electronic structures, respectively, of the GaN support are not perturbed by the deposition of the (Rh2-yCryO3) mixed oxide NPs. The function of the GaN bulk lattice is to generate photoexcited electrons/holes, with the electrons harnessed by the surface Rh+3 sites for evolution of H2 and the holes trapped at the Ga oxide/oxynitride surface sites for splitting of water and evolving O2. These new structure-photoactivity relationships for supported (Rh2-yCryO3)/GaN also extend to the best performing visible light activated supported (Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx) photocatalyst.

  1. Hexagonal phase ordering in strongly segregated copolymer films

    NASA Astrophysics Data System (ADS)

    Glasner, Karl

    2015-10-01

    Strongly segregated copolymer mixtures with uneven composition ratio can form hexagonally ordered thin films. A simplified model describing the size and position of micellelike clusters is derived, allowing for investigation of much larger domain sizes than in previous studies. Simulations of this model are performed to study the generation of large scale order and evolution of pattern defects. We find three temporal regimes exhibiting different scaling laws for orientational correlation length and defect number. In the early stage, topological defects are rapidly eliminated by pairwise annihilation. A slower intermediate stage is characterized by the migration of grain boundaries and the elimination of small grains. In the final stage, grain boundaries become pinned and the evolution halts. A scaling law for defect interaction is proposed which is consistent with the crossover between the first and second stages.

  2. Thermal-mechanical modeling of single crystal AlN and GaN

    NASA Astrophysics Data System (ADS)

    Karvanirabori, Payman

    In this work, thermal-mechanical models are being developed, based on underlying micromechanical behavior of III-nitride single crystals at growth temperatures, for use in process design. A crystal plasticity model that is capable of capturing the underlying mechanisms of dislocation motion, multiplication, and interactions in wurtzite structure (hexagonal) crystals is defined to accurately model the elastic-plastic behavior of GaN and AlN crystals at elevated temperatures. The model for AlN is extended from relations developed for GaN based on available experimental data. Algorithms for integrating the constitutive model and computing the consistent tangent modulus are formulated, and the material model is implemented into a crystal plasticity finite element framework. Finite element models of crystal growth for different processing conditions are simulated. The simulation predicts cracking and dislocation defect density in order to improve the yield and reduce the manufacturing cost of high quality III-nitride semiconductors. Furthermore, the resulting simulation capability can be used in conjunction with relevant experiments to backout key thermal-mechanical material properties at high temperatures.

  3. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  4. Thermally induced microstrain broadening in hexagonal zinc

    SciTech Connect

    Lawson, Andrew C; Valdez, James A; Roberts, Joyce A; Leineweber, Andreas; Mittemeijer, E J; Kreher, W

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  5. Optimization of GaN thin films via MOCVD

    NASA Technical Reports Server (NTRS)

    Dickens, Corey; Wilson, Sylvia L.

    1995-01-01

    A unique characteristic of every semiconductor is the amount of energy required to break an electron bond in the lowest band of allowed states, the valence band. The energy necessary to set an electron free and allow it to conduct in the material is termed the energy gap (Eg). Semiconductors with wide bandgap energies have been shown to possess properties for high power, high temperature, radiation resistance damage, and short wavelength optoelectronic applications. Gallium nitride, which has a wide gap of 3.39 eV, is a material that has demonstrated these characteristics. Various growth conditions are being investigated for quality gallium nitride heteroepitaxy growth via the technique of low pressure metal organic chemical vapor deposition (MOCVD) that can be used for device development.

  6. Nanoscale anisotropic plastic deformation in single crystal GaN.

    PubMed

    Huang, Jun; Xu, Ke; Fan, Ying Min; Niu, Mu Tong; Zeng, Xiong Hui; Wang, Jian Feng; Yang, Hui

    2012-01-01

    Elasto-plastic mechanical deformation behaviors of c-plane (0001) and nonpolar GaN single crystals are studied using nanoindentation, cathodoluminescence, and transmission electron microscopy. Nanoindentation tests show that c-plane GaN is less susceptible to plastic deformation and has higher hardness and Young's modulus than the nonpolar GaN. Cathodoluminescence and transmission electron microscopy characterizations of indent-induced plastic deformation reveal that there are two primary slip systems for the c-plane GaN, while there is only one most favorable slip system for the nonplane GaN. We suggest that the anisotropic elasto-plastic mechanical properties of GaN are relative to its anisotropic plastic deformation behavior.PACS: 62.20.fq; 81.05.Ea; 61.72.Lk.

  7. Anisotropy of effective electron masses in highly doped nonpolar GaN

    SciTech Connect

    Feneberg, Martin Lange, Karsten; Lidig, Christian; Wieneke, Matthias; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois; Goldhahn, Rüdiger

    2013-12-02

    The anisotropic effective electron masses in wurtzite GaN are determined by generalized infrared spectroscopic ellipsometry. Nonpolar (112{sup ¯}0) oriented thin films allow accessing both effective masses, m{sub ⊥}{sup *} and m{sub ∥}{sup *}, by determining the screened plasma frequencies. A n-type doping range up to 1.7 × 10{sup 20} cm{sup −3} is investigated. The effective mass ratio m{sub ⊥}{sup *}/m{sub ∥}{sup *} is obtained with highest accuracy and is found to be 1.11 independent on electron concentration up to 1.2 × 10{sup 20} cm{sup −3}. For higher electron concentrations, the conduction band non-parabolicity is mirrored in changes. Absolute values for effective electron masses depend on additional input of carrier concentrations determined by Hall effect measurements. We obtain m{sub ⊥}{sup *}=(0.239±0.004)m{sub 0} and m{sub ∥}{sup *}=(0.216±0.003)m{sub 0} for the parabolic range of the GaN conduction band. Our data are indication of a parabolic GaN conduction band up to an energy of approximately 400 meV above the conduction band minimum.

  8. Radaitive decay engineering in GaN Quantum Dots for biomedical application

    NASA Astrophysics Data System (ADS)

    Neogi, Arup; Basu Neogi, Purnima; Morkoc, Hadis

    2003-03-01

    Thin metallic films containing nanoscale surface features result in giant enhancement of linear and nonlinear optical responses. These enhancements are associated with excitation of surface plasmon (SP), collective electromagnetic modes whose characteristics are strongly dependent on the geometric structure of the metallic component of the medium and can be further enhanced via the directional emission from a semiconductor microcavity. The SP energy of Ag (3 eV) is modified ( 2.92 eV) by the GaN dielectric constant with bandgap at 3.4 eV [1] and is the ideal candidate for the resonantly modifying optical responses at metal-semiconductor interface. The spontaneous emission rate in strained GaN quantum dots grown using molecular beam epitaxy can be enhanced and the photoluminescence (PL) is reduced by nearly five times in the presence of a continuous Ag film due to resonant silver-surface plasmon interaction. The PL can also be enhanced using directional coupling through silver nano-shells fabricated by spin coating a silver halide solution over the GaN QDs having a 2 nm AlN cap layer. We also propose the use of radaitive decay engineering effects in wide-bandgap Ag-GaN semiconductor QD system for biomedical application. [1] A. Neogi, et al.; Phys. Rev., 66, 153305 (2002).

  9. An orthogonal oriented quadrature hexagonal image pyramid

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1987-01-01

    An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.

  10. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  11. Hexagonal and Pentagonal Fractal Multiband Antennas

    NASA Technical Reports Server (NTRS)

    Tang, Philip W.; Wahid, Parveen

    2005-01-01

    Multiband dipole antennas based on hexagonal and pentagonal fractals have been analyzed by computational simulations and functionally demonstrated in experiments on prototypes. These antennas are capable of multiband or wide-band operation because they are subdivided into progressively smaller substructures that resonate at progressively higher frequencies by virtue of their smaller dimensions. The novelty of the present antennas lies in their specific hexagonal and pentagonal fractal configurations and the resonant frequencies associated with them. These antennas are potentially applicable to a variety of multiband and wide-band commercial wireless-communication products operating at different frequencies, including personal digital assistants, cellular telephones, pagers, satellite radios, Global Positioning System receivers, and products that combine two or more of the aforementioned functions. Perhaps the best-known prior multiband antenna based on fractal geometry is the Sierpinski triangle antenna (also known as the Sierpinski gasket), shown in the top part of the figure. In this antenna, the scale length at each iteration of the fractal is half the scale length of the preceding iteration, yielding successive resonant frequencies related by a ratio of about 2. The middle and bottom parts of the figure depict the first three iterations of the hexagonal and pentagonal fractals along with typical dipole-antenna configuration based on the second iteration. Successive resonant frequencies of the hexagonal fractal antenna have been found to be related by a ratio of about 3, and those of the pentagonal fractal antenna by a ratio of about 2.59.

  12. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1−x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    SciTech Connect

    Goldenberg, Eda; Ozgit-Akgun, Cagla; Biyikli, Necmi; Kemal Okyay, Ali

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1−x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200 °C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1−x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2 nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4 nm when the annealing duration increased from 30 min to 2 h (800 °C). For all films, the average optical transmission was ∼85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1−x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (λ = 550 nm) with the increased Al content x (0 ≤ x ≤ 1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400 nm). Postdeposition annealing at 900 °C for 2 h considerably lowered the refractive index value of GaN films (2.33–1.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95 eV, and it decreased to 3.90 eV for films annealed at 800 °C for 30 min and 2 h. On the other hand, this value increased to 4.1 eV for GaN films annealed at 900 °C for 2 h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1−x}N films decreased from 5.75 to 5.25 eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not

  13. Self-catalyzed anisotropic growth of GaN spirals

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Sahoo, Prasana; Dhara, S.; Tyagi, A. K.

    2012-06-01

    GaN spirals with homogeneous size are grown using chemical-vapor-deposition technique in a self catalytic process. Raman and photoluminescence (PL) studies reveal wurtzite GaN phase. Nucleation of GaN sphere takes place with the agglomeration Ga clusters and simultaneous reaction with NH3. A growth mechanism involving diffusion limited aggregation process initiating supersaturation and subsequent neck formation along with possible role of thermodynamic fluctuation in different crystalline facets of GaN, is described for the anisotropic spiral structures. Temperature dependent PL spectra show strong excitonic emissions along with the presence of free-to-bound transition.

  14. Later Leaders in Education: Roma Gans--Teacher of Teachers.

    ERIC Educational Resources Information Center

    Almy, Millie

    1990-01-01

    Retired teacher Roma Gans is described in terms of her early life and education, early teaching experience, teaching experience at Teachers College, publishing experience, citizenship, and retirement. (DG)

  15. Highly mismatched GaN1-x Sb x alloys: synthesis, structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Yu, K. M.; Sarney, W. L.; Novikov, S. V.; Segercrantz, N.; Ting, M.; Shaw, M.; Svensson, S. P.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2016-08-01

    Highly mismatched alloys (HMAs) is a class of semiconductor alloys whose constituents are distinctly different in terms of size, ionicity and/or electronegativity. Electronic properties of the alloys deviate significantly from an interpolation scheme based on small deviations from the virtual crystal approximation. Most of the HMAs were only studied in a dilute composition limit. Recent advances in understanding of the semiconductor synthesis processes allowed growth of thin films of HMAs under non-equilibrium conditions. Thus reducing the growth temperature allowed synthesis of group III-N-V HMAs over almost the entire composition range. This paper focuses on the GaN x Sb1-x HMA which has been suggested as a potential material for solar water dissociation devices. Here we review our recent work on the synthesis, structural and optical characterization of GaN1-x Sb x HMA. Theoretical modeling studies on its electronic structure based on the band anticrossing (BAC) model are also reviewed. In particular we discuss the effects of growth temperature, Ga flux and Sb flux on the incorporation of Sb, film microstructure and optical properties of the alloys. Results obtained from two separate MBE growths are directly compared. Our work demonstrates that a large range of direct bandgap energies from 3.4 eV to below 1.0 eV can be achieved for this alloy grown at low temperature. We show that the electronic band structure of GaN1-x Sb x HMA over the entire composition range is well described by a modified BAC model which includes the dependence of the host matrix band edges as well as the BAC model coupling parameters on composition. We emphasize that the modified BAC model of the electronic band structure developed for the full composition of GaN x Sb1-x is general and is applicable to any HMA.

  16. Energetics and magnetism of Co-doped GaN(0001) surfaces: A first-principles study

    SciTech Connect

    Qin, Zhenzhen; Xiong, Zhihua Chen, Lanli; Qin, Guangzhao

    2014-12-14

    A comprehensive first-principles study of the energetics, electronic, and magnetic properties of Co-doped GaN(0001) thin films are presented and the effect of surface structure on the magnetic coupling between Co atoms is demonstrated. It is found that Co atoms prefer to substitute the surface Ga sites in different growth conditions. In particular, a CoN/GaN interface structure with Co atoms replacing the first Ga layer is preferred under N-rich and moderately Ga-rich conditions, while CoGa{sub x}/GaN interface is found to be energetically stable under extremely Ga-rich conditions. It is worth noted that the antiferromagnetic coupling between Co atoms is favorable in clean GaN(0001) surface, but the existence of ferromagnetism would be expected to occur as Co concentration increased in Ga-bilayer GaN(0001) surface. Our study provides the theoretical understanding for experimental research on Co-doped GaN films and might promise the Co:GaN system potential applications in spin injection devices.

  17. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    SciTech Connect

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-21

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality (0002) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by (0002) oriented wurtzite GaN and (111) oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H{sub 2} into Ar and/or N{sub 2} during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H{sub 2} into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted (33{sup ¯}02) orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H{sub 2} into N{sub 2} due to the complex reaction between H{sub 2} and N{sub 2}.

  18. Two-dimensional hexagonal smectic structure formed by topological defects.

    PubMed

    Dolganov, P V; Shuravin, N S; Fukuda, Atsuo

    2016-03-01

    A two-dimensional hexagonal smectic structure formed by point topological defects and intersecting defect walls was discovered. This unique structure was predicted theoretically about 30 years ago but not observed. For a long time the hexagonal structure was a challenge for experimentalists. A different type of self-organization in smectic films was found and used to form the hexagonal structure. Methods applied for building the hexagonal phase can be used for the formation of complicated liquid-crystal structures.

  19. Growth of GaN on Si(111): Surfaces and crystallinity of the epifilms and the transport behavior of GaN/Si heterojunctions

    SciTech Connect

    Xu Zhongjie; Xie Maohai; Zhang Lixia; He Hongtao; Wang Jiannong

    2011-11-01

    Growths of GaN on Si(111) - (7 x 7) substrates by plasma-assisted molecular-beam epitaxy (PA-MBE) have been studied. Optimal conditions of MBE and the effect of a low-temperature (LT) buffer are followed. It is found that irrespective of the growth conditions and the growth strategies (direct versus two-step growth), a thin amorphous-like interface layer always forms. For smooth surfaces and better crystallinity of the epifilms, a LT-buffer preceding the high-temperature deposition is helpful, and the grown GaN films are of nitrogen-polar. Transport measurements of the heterojunctions of GaN on heavily p- and n-doped Si reveal ohmic behavior, whereas that of n-GaN on lightly doped n{sup -}-Si substrate shows rectifying characteristics.

  20. AlN interlayer to improve the epitaxial growth of SmN on GaN (0001)

    NASA Astrophysics Data System (ADS)

    Vézian, S.; Damilano, B.; Natali, F.; Khalfioui, M. Al; Massies, J.

    2016-09-01

    An in situ study of the epitaxial growth of SmN thin films on Ga-polar GaN (0001) templates by molecular beam epitaxy is reported. Using X-ray photoelectron spectroscopy we found that Ga segregates at the surface during the first stages of growth. We showed that the problem related to Ga surface segregation can be simply suppressed by growing a few monolayers of AlN before starting the SmN growth. This results in a significant improvement of the crystallinity of SmN thin films assessed by X-ray diffraction.

  1. Recent advances in the growth, doping and characterization of III V nitride thin films

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Ailey, K. S.; Bremser, M. D.; Carlson, E.; Kern, R. S.; Kester, D. J.; Perry, W. G.; Tanaka, S.; Weeks, T. W.

    Boron nitride thin films have been grown on the (100) surfaces of Si and diamond via ion beam assisted deposition (IBAD) using electron beam evaporation of B in tandem with N and Ar ion bombardment within the ranges of substrate temperature and ion flux of 200-700°C and 0.20-0.30 mA/cm2, respectively. Fourier-transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) revealed a growth sequence of amorphous (a-BN), hexagonal (h-BN) and cubic (c-BN) layers under most conditions. This sequence is attributed primarily to increasing biaxial compressive stress with film thickness due to ion bombardment and some interstitial Ar incorporation. A minimum substrate temperature of 200-300° C is required for nucleation and growth of single phase c-BN by this technique. The initial stage of AlN film growth on α(6H)-SiC(0001) substrates by plasma-assisted, gas source molecular beam epitaxy has been investigated in terms of growth mode and interface defects. Essentially atomically flat AlN surfaces, indicative of two-dimensional growth, were obtained using on-axis substrates. Island-like features were observed on the vicinal surfaces. The coalescence of latter features gave rise to double positioning boundaries as a result of the misalignment of the Si/C bilayer steps with the Al/N bilayers in the growing films. The quality of the thicker AlN films was strongly influenced by the concentration of these boundaries. Monocrystalline GaN and AlxGa1-x N(0001) (0≤x≤1) films, void of oriented domain structures and associated low-angle grain boundaries and with smooth surface morphologies, have been grown via OMVPE on high-temperature monocrystalline AlN(0001) buffer layers, previously deposited on vicinal α(6H)-SiC(0001) wafers, using TEG, TEA and ammonia in a cold-wall, vertical, pancake-style reactor. Abrupt heterojunctions were demonstrated. The PL spectrum of the pure GaN showed strong near band-edge emissions with a FWHM value of 4 me

  2. High optical and structural quality of GaN epilayers grown on (2{sup ¯}01) β-Ga{sub 2}O{sub 3}

    SciTech Connect

    Muhammed, M. M.; Roqan, I. S.; Peres, M.; Franco, N.; Lorenz, K.; Yamashita, Y.; Morishima, Y.; Sato, S.; Kuramata, A.

    2014-07-28

    Producing highly efficient GaN-based optoelectronic devices has been a challenge for a long time due to the large lattice mismatch between III-nitride materials and the most common substrates, which causes a high density of threading dislocations. Therefore, it is essential to obtain alternative substrates with small lattice mismatches, appropriate structural, thermal and electrical properties, and a competitive price. Our results show that (2{sup ¯}01) oriented β-Ga{sub 2}O{sub 3} has the potential to be used as a transparent and conductive substrate for GaN-growth. Photoluminescence spectra of thick GaN layers grown on (2{sup ¯}01) oriented β-Ga{sub 2}O{sub 3} are found to be dominated by intense bandedge emission. Atomic force microscopy studies show a modest threading dislocation density of ∼10{sup 8 }cm{sup −2}. X-ray diffraction studies show the high quality of the single-phase wurtzite GaN thin film on (2{sup ¯}01) β-Ga{sub 2}O{sub 3} with in-plane epitaxial orientation relationships between the β-Ga{sub 2}O{sub 3} and the GaN thin film defined by (010) β-Ga{sub 2}O{sub 3} || (112{sup ¯}0) GaN and (2{sup ¯}01) β-Ga{sub 2}O{sub 3} || (0001) GaN leading to a lattice mismatch of ∼4.7%. Complementary Raman spectroscopy indicates that the quality of the GaN epilayer is high.

  3. On vortex shedding from a hexagonal cylinder

    NASA Astrophysics Data System (ADS)

    Khaledi, Hatef A.; Andersson, Helge I.

    2011-10-01

    The unsteady wake behind a hexagonal cylinder in cross-flow is investigated numerically. The time-dependent three-dimensional Navier-Stokes equations are solved for three different Reynolds numbers Re and for two different cylinder orientations. The topology of the vortex shedding depends on the orientation and the Strouhal frequency is generally higher in the wake of a face-oriented cylinder than behind a corner-oriented cylinder. For both orientations a higher Strouhal number St is observed when Re is increased from 100 to 500 whereas St is unaffected by a further increase up to Re=1000. The distinct variation of St with the orientation of the hexagonal cylinder relative to the oncoming flow is opposite of earlier findings for square cylinder wakes which exhibited a higher St with corner orientation than with face orientation.

  4. Discrete breathers in hexagonal dusty plasma lattices.

    PubMed

    Koukouloyannis, V; Kourakis, I

    2009-08-01

    The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.

  5. Discrete breathers in hexagonal dusty plasma lattices

    SciTech Connect

    Koukouloyannis, V.; Kourakis, I.

    2009-08-15

    The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.

  6. Influence of post-deposition annealing on interfacial properties between GaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect

    Ye, Gang; Wang, Hong Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Geok Ng, Serene Lay; Ji, Rong; Liu, Zhi Hong

    2014-10-13

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaO{sub x} layer of ZrO{sub 2} grown by atomic layer deposition (ALD) on GaN is studied. ZrO{sub 2} films were annealed in N{sub 2} atmospheres in temperature range of 300 °C to 700 °C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500 °C, which could be attributed to the thinning of GaO{sub x} layer associated with low surface defect states due to “clean up” effect of ALD-ZrO{sub 2} on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  7. Photo-assisted RIE of GaN in BCl{sub 3}/Cl{sub 2}/N{sub 2}

    SciTech Connect

    Medelci, N.; Tempez, A.; Berishev, I.; Starikov, D.; Bensaoula, A.

    1999-07-01

    Gallium nitride (GaN) has been under intense investigation due to its unique qualities (wide band gap, chemical and temperature stability) for optoelectronic and high temperature/high power applications. To this end, reactive ion etching (RIE) experiments were performed on GaN thin films using BCl{sub 3}/Cl{sub 2}/Ar. These resulted in etch rates of 1,400 {angstrom}/min at {minus}400 V dc bias. However, rough etched surfaces, nitrogen surface depletion and high chlorine content were observed. In order to remedy these shortcomings, a photo-assisted RIE process using a filtered Xe lamp beam was developed, resulting in higher etch rates but again in nitrogen depleted surfaces. Preliminary results on using nitrogen instead of argon in the process chemistry show a big improvement in photo-assisted etch rates (50%) and Ga/N ratio (0.78 versus 1.25). In this paper, the effects of epilayer doping, dc bias, nitrogen flow rate and photo-irradiation flux on GaN etch rates, surface morphology and composition are presented. Finally, preliminary results on the use of a KrF excimer laser beam in the GaN photo-assisted RIE process are presented.

  8. Influence of post-deposition annealing on interfacial properties between GaN and ZrO2 grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ye, Gang; Wang, Hong; Geok Ng, Serene Lay; Ji, Rong; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Liu, Zhi Hong; Ang, Kian Siong

    2014-10-01

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaOx layer of ZrO2 grown by atomic layer deposition (ALD) on GaN is studied. ZrO2 films were annealed in N2 atmospheres in temperature range of 300 °C to 700 °C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500 °C, which could be attributed to the thinning of GaOx layer associated with low surface defect states due to "clean up" effect of ALD-ZrO2 on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  9. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates

    SciTech Connect

    Chandrasekaran, R.; Moustakas, T. D.; Ozcan, A. S.; Ludwig, K. F.; Zhou, L.; Smith, David J.

    2010-08-15

    This paper reports the growth by molecular beam epitaxy of AlN and GaN thin films on R-plane sapphire substrates. Contrary to previous findings that GaN grows with its (1120) A-plane parallel to the (1102) R-plane of sapphire, our results indicate that the crystallographic orientation of the III-nitride films is strongly dependent on the kinetic conditions of growth for the GaN or AlN buffer layers. Thus, group III-rich conditions for growth of either GaN or AlN buffers result in nitride films having (1120) planes parallel to the sapphire surface, and basal-plane stacking faults parallel to the growth direction. The growth of these buffers under N-rich conditions instead leads to nitride films with (1126) planes parallel to the sapphire surface, with inclined c-plane stacking faults that often terminate threading dislocations. Moreover, electron microscope observations indicate that slight miscut ({approx}0.5 deg. ) of the R-plane sapphire substrate almost completely suppresses the formation of twinning defects in the (1126) GaN films.

  10. Carbon-rich hexagonal (BN)C alloys

    SciTech Connect

    Uddin, M. R.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-06-07

    Thin films of hexagonal boron nitride carbon, h-(BN){sub 1−x}(C{sub 2}){sub x}, alloys in the C-rich side have been synthesized by metal-organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. X-ray diffraction measurements confirmed single hexagonal phase of h-(BN){sub 1−x}(C{sub 2}){sub x} epilayers. Electrical transport and Raman spectroscopy measurements results revealed evidences that homogenous h-(BN){sub 1−x}(C{sub 2}){sub x} alloys with x ≥ 95% can be synthesized by MOCVD at a growth temperature of 1300 °C. The variable temperature Hall-effect measurements suggested that a bandgap opening of about 93 meV with respect to graphite has been obtained for h-(BN){sub 1−x}(C{sub 2}){sub x} with x = 0.95, which is consistent with the expected value deduced from the alloy dependence of the energy gap of homogenous h-(BN){sub 1−x}(C{sub 2}){sub x} alloys. Atomic composition results obtained from x-ray photoelectron spectroscopy measurements revealed that the carrier type in C-rich h-(BN){sub 1−x}(C{sub 2}){sub x} alloys is controlled by the stoichiometry ratio between the B and N via changing the V/III ratio during the growth. The demonstration of bandgap opening and conductivity control in C-rich h-(BN){sub 1−x}(C{sub 2}){sub x} alloys provide feasibilities for realizing technologically significant devices including infrared (IR) emitters and detectors active from near to far IR and multi-spectral IR emitters and detectors.

  11. In situ study of the endotaxial growth of hexagonal CoSi{sub 2} nanoplatelets in Si(001)

    SciTech Connect

    Silva Costa, Daniel da; Kellermann, Guinther; Huck-Iriart, Cristián; Giovanetti, Lisandro J.; Requejo, Félix G.

    2015-11-30

    This investigation aims at studying–by in situ grazing-incidence small-angle x-ray scattering–the process of growth of hexagonal CoSi{sub 2} nanoplatelets endotaxially buried in a Si(001) wafer. The early formation of spherical Co nanoparticles with bimodal size distribution in the deposited silica thin film during a pretreatment at 500 °C and their subsequent growth at 700 °C were also characterized. Isothermal annealing at 700 °C promotes a drastic reduction in the number of the smallest Co nanoparticles and a continuous decrease in their volume fraction in the silica thin film. At the same time, Co atoms diffuse across the SiO{sub 2}/Si(001) interface into the silicon wafer, react with Si, and build up thin hexagonal CoSi{sub 2} nanoplatelets, all of them with their main surfaces parallel to Si(111) crystallographic planes. The observed progressive growths in thickness and lateral size of the hexagonal CoSi{sub 2} nanoplatelets occur at the expense of the dissolution of the small Co nanoparticles that are formed during the pretreatment at 500 °C and become unstable at the annealing temperature (700 °C). The kinetics of growth of the volume fraction of hexagonal platelets is well described by the classical Avrami equation.

  12. Control of normal chirality at hexagonal interfaces

    SciTech Connect

    Haraldsen, Jason T; Fishman, Randy Scott

    2010-01-01

    We study the net chirality created by the Dzyaloshinkii-Moriya interaction (DMI) at the boundary between hexagonal layers of magnetic and non-magnetic materials. It is shown that another mechanism besides elastic torsion is required to understand the change in chirality observed in Dy/Y multilayers during field-cooling. The paper shows that due to the overlap between magnetic and non-magnetic atoms, interfacial steps may produce a DMI normal to the interface in magnetic heterostructures.

  13. Layered graphene structure of a hexagonal carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    2013-06-01

    Experiments show that there is a novel hexagonal carbon polymorph restricted to the space group of P-62c, but the detailed atomic structure is not determined. Here we set carbon atoms occupying P-62c 4f or P-62c 2c and 2d Wyckoff positions, and calculate the total energy of the different cell structures changing the internal parameter by first-principles calculations, which demonstrates that the stable structures in energy (at local minima) are hexagonal carbon (P-62c 2c and 2d) and hexagonal diamond (P-62c 4f, z=1/16). The calculated bulk modulus 437±16 GPa and interlayer distance 2.062 Å of the layered graphene structure P-62c 2c and 2d are in good agreement with those of the proposed new carbon, which indicates that P-62c 2c and 2d is a possible precursor or intermediate hard phase during the structural transformation of carbon.

  14. Turing patterns beyond hexagons and stripes.

    PubMed

    Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2006-09-01

    The best known Turing patterns are composed of stripes or simple hexagonal arrangements of spots. Until recently, Turing patterns with other geometries have been observed only rarely. Here we present experimental studies and mathematical modeling of the formation and stability of hexagonal and square Turing superlattice patterns in a photosensitive reaction-diffusion system. The superlattices develop from initial conditions created by illuminating the system through a mask consisting of a simple hexagonal or square lattice with a wavelength close to a multiple of the intrinsic Turing pattern's wavelength. We show that interaction of the photochemical periodic forcing with the Turing instability generates multiple spatial harmonics of the forcing patterns. The harmonics situated within the Turing instability band survive after the illumination is switched off and form superlattices. The square superlattices are the first examples of time-independent square Turing patterns. We also demonstrate that in a system where the Turing band is slightly below criticality, spatially uniform internal or external oscillations can create oscillating square patterns. PMID:17014248

  15. P-type doping of GaN

    SciTech Connect

    Wong, R.K.

    2000-04-10

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.

  16. GaN Electronics For High Power, High Temperature Applications

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHU,S.N.G.

    2000-06-12

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers. GaN/AlGaN heterojunction bipolar transistors and GaN metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  17. Correlation between magnon and magnetic symmetries of hexagonal RMnO3 (R = Er, Ho, Lu)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Minh Hien; Nguyen, Thi Huyen; Chen, Xiang-Bai; Park, Yeonju; Jung, Young Mee; Lee, D.; Noh, T. W.; Cheong, Sang-Wook; Yang, In-Sang

    2016-11-01

    The correlation between the magnon scattering and the magnetic symmetries of hexagonal RMnO3 (R = Er, Ho) thin films and LuMnO3 single crystal was studied through the 2D Correlation Spectroscopy (2D COS) and Perturbation-Correlation Moving Window 2D (PCMW2D) Correlation Spectroscopy which were performed on the temperature-dependent Raman spectra of RMnO3 (R = Er, Ho, Lu). From the Raman spectra, we observed much stronger intensity and more asymmetrical magnon peak in LuMnO3 single crystal than in ErMnO3 and HoMnO3 thin films. While the ratio between magnon and phonon's linewidth of LuMnO3 and HoMnO3 display an anomalous behavior, that ratio of ErMnO3 is almost stable. The result from PCMW2D also supports these results. In addition, our 2D COS analysis showed that there are more overlap peaks in broad four-spin flipping magnon peak in LuMnO3 than that in ErMnO3 and HoMnO3. The differences of hexagonal RMnO3 (R = Er, Ho, Lu) in magnon scattering are very similar to the actual differences of the magnetic symmetries of these compounds. Therefore, we suggest that the magnon scattering of hexagonal RMnO3 is strongly correlated with the magnetic symmetries of these materials.

  18. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    NASA Astrophysics Data System (ADS)

    Choudhary, B. S.; Singh, A.; Tanwar, S.; Tyagi, P. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2016-04-01

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  19. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  20. GaN photovoltaic leakage current and correlation to grain size

    SciTech Connect

    Matthews, K. D.; Chen, X.; Hao, D.; Schaff, W. J.; Eastman, L. F.

    2010-10-15

    GaN p-i-n solar PV structures grown by rf plasma assisted molecular beam epitaxy (MBE) produce high performance IV characteristics with a leakage current density of less than 1x10{sup -4} mA cm{sup -2} at 0.1 V forward bias and an on-resistance of 0.039 {Omega} cm{sup 2}. Leakage current measurements taken for different size diodes processed on the same sample containing the solar cells reveal that current density increases with diode area, indicating that leakage is not a large function of surface leakage along the mesa. Nonannealed Pt/Au Ohmic p-contacts produce a contact resistivity of 4.91x10{sup -4} {Omega} cm{sup -2} for thin Mg doped contact layers with sheet resistivity of 62196 {Omega}/{open_square}. Under concentrated sunlight the cells produce an open-circuit voltage of 2.5 V and short circuit currents as high as 30 mA cm{sup -2}. Multiple growths comprised the study and on each wafer the IV curves representing several diodes showed considerable variation in parasitic leakage current density at low voltages on some wafers and practically no variation on others. It appears that a smaller grain size within the GaN thin film accounts for higher levels of dark current.

  1. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  2. Hexagonal single crystal domains of few-layer graphene on copper foils.

    PubMed

    Robertson, Alex W; Warner, Jamie H

    2011-03-01

    Hexagonal-shaped single crystal domains of few layer graphene (FLG) are synthesized on copper foils using atmospheric pressure chemical vapor deposition with a high methane flow. Scanning electron microscopy reveals that the graphene domains have a hexagonal shape and are randomly orientated on the copper foil. However, the sites of graphene nucleation exhibit some correlation by forming linear rows. Transmission electron microscopy is used to examine the folded edges of individual domains and reveals they are few-layer graphene consisting of approximately 5-10 layers in the central region and thinning out toward the edges of the domain. Selected area electron diffraction of individual isolated domains reveals they are single crystals with AB Bernal stacking and free from the intrinsic rotational stacking faults that are associated with turbostratic graphite. We study the time-dependent growth dynamics of the domains and show that the final continuous FLG film is polycrystalline, consisting of randomly connected single crystal domains.

  3. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Lin, Hsin-I.

    2014-02-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.

  4. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays.

    PubMed

    Kuo, Shou-Yi; Lin, Hsin-I

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  5. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.

    2015-05-01

    Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.

  6. Method of growing GaN films with a low density of structural defects using an interlayer

    DOEpatents

    Bourret-Courchesne, Edith D.

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  7. Derivation of the surface free energy of ZnO and GaN using in situ electron beam hole drilling.

    PubMed

    Ghatak, Jay; Huang, Jun-Han; Liu, Chuan-Pu

    2016-01-01

    Surface free energy, as an intrinsic property, is essential in determining the morphology of materials, but it is extremely difficult to determine experimentally. We report on the derivation of the SE of different facets of ZnO and GaN experimentally from the holes developed using electron beam drilling with transmission electron microscopy. Inverse Wullf's construction is employed to obtain polar maps of the SE of different facets to study different nanomaterials (ZnO and GaN) in different morphologies (nanorod, nanobelt and thin film) to prove its versatility and capability. The results show that the SE of ZnO{10-13} is derived to be 0.99 J m(-2), and the SE of ZnO{10-10} is found to be less than {0002} and {11-20}. A GaN thin film also exhibits a similar trend in the SE of different facets as ZnO and the SE of GaN{10-13} is determined to be 1.36 J m(-2).

  8. Derivation of the surface free energy of ZnO and GaN using in situ electron beam hole drilling.

    PubMed

    Ghatak, Jay; Huang, Jun-Han; Liu, Chuan-Pu

    2016-01-01

    Surface free energy, as an intrinsic property, is essential in determining the morphology of materials, but it is extremely difficult to determine experimentally. We report on the derivation of the SE of different facets of ZnO and GaN experimentally from the holes developed using electron beam drilling with transmission electron microscopy. Inverse Wullf's construction is employed to obtain polar maps of the SE of different facets to study different nanomaterials (ZnO and GaN) in different morphologies (nanorod, nanobelt and thin film) to prove its versatility and capability. The results show that the SE of ZnO{10-13} is derived to be 0.99 J m(-2), and the SE of ZnO{10-10} is found to be less than {0002} and {11-20}. A GaN thin film also exhibits a similar trend in the SE of different facets as ZnO and the SE of GaN{10-13} is determined to be 1.36 J m(-2). PMID:26646378

  9. GaN: Defect and Device Issues

    SciTech Connect

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  10. The reconstructed edges of the hexagonal BN

    NASA Astrophysics Data System (ADS)

    Zhao, Ruiqi; Gao, Junfeng; Liu, Zhongfan; Ding, Feng

    2015-05-01

    As an important two-dimensional material which shows exceptional mechanical and chemical stability, superior electronic properties, along with broad applications, the hexagonal-BN (h-BN) has drawn great attention recently. Here we report a systematic study on the structural stability, electronic and magnetic properties of various h-BN edges, including both bare and hydrogen-terminated ones. It is found that along the armchair (AC) direction, the pristine edge is the most stable one because of the formation of a triple B\\z.tbd N bond, while, along the zigzag (ZZ) directions, the reconstructed ones, ZZB + N and ZZN57 are more stable. The pristine edges are more stable in bare BN in most cases if saturated with hydrogen. By applying the theory of Wulff construction, we predicted that an unpassivated BN domain prefers the hexagonal shape enclosed with bare AC edges i.e., AC-Ns, AC, AC-Bs if the feedstock varies from N-rich to B-rich. However, the evolution from ZZN edged triangular domain, to hexagonal domain enclosed with AC edges, and ZZB edged triangle may occur if the edges are terminated by hydrogen atoms. Further calculation shows that these edges present rich type-dependent properties and thus are important for various applications. This theoretical study showed that controlling the morphologies of BN domains and BN edges is crucial for various applications.As an important two-dimensional material which shows exceptional mechanical and chemical stability, superior electronic properties, along with broad applications, the hexagonal-BN (h-BN) has drawn great attention recently. Here we report a systematic study on the structural stability, electronic and magnetic properties of various h-BN edges, including both bare and hydrogen-terminated ones. It is found that along the armchair (AC) direction, the pristine edge is the most stable one because of the formation of a triple B\\z.tbd N bond, while, along the zigzag (ZZ) directions, the reconstructed ones, ZZB + N

  11. Solubilization of nutraceuticals into reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Aserin, Abraham; Garti, Nissim

    2008-08-21

    The solubilization of four bioactive molecules with different polarities, in three reverse hexagonal (HII) systems has been investigated. The three HII systems were a typical reverse hexagonal composed of glycerol monooleate (GMO)/tricaprylin/water and two fluid hexagonal systems containing either 2.75 wt % Transcutol or ethanol as a fourth component. The phase behavior of the liquid crystalline phases in the presence of ascorbic acid, ascorbyl palmitate, D-alpha-tocopherol and D-alpha-tocopherol acetate were determined by small-angle X-ray scattering (SAXS) and optical microscopy. Differential scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) techniques were utilized to follow modifications in the thermal behavior and in the vibrations of different functional groups upon solubilizing the bioactive molecules. The nature of each guest molecule (in both geometry and polarity) together with the different HII structures (typical and fluids) determined the corresponding phase behavior, swelling or structural transformations and its location in the HII structures. Ascorbic acid was found to act as a chaotropic guest molecule, localized in the water-rich core and at the interface. The AP was also a chaotropic guest molecule with its head located in the vicinity of the GMO headgroup while its tail embedded close to the surfactant tail. D-alpha-tocopherol and D-alpha-tocopherol acetate were incorporated between the GMO tails; however, the D-alpha-tocopherol was located closer to the interface. Once Transcutol or ethanol was present and upon guest molecule incorporation, partial migration was detected.

  12. Wargaming in Both Rectilinear and Hexagonal Spaces

    NASA Technical Reports Server (NTRS)

    Hoover, Alex

    2012-01-01

    There are two main approaches to managing wargame entity interactions (movement, line of sight, area of effect, etc) freespace and gridded In the freespace approach, the units exist as entities in a continuous volume of (usually) Cartesian 3D space. They move in any direction (based on interaction with "terrain" that occupies the same space) and interact with each other based on references and displacements from their position in that space. In the gridded approach, space is broken up into (usually regular) shaped pieces. Units are considered to occupy the entire volume of one of these pieces, movement, line of sight, and other interactions are based on the relationships among the spaces rather than the absolute positions of the units themselves. Both approaches have advantages and drawbacks. The general issue that this discussion has addressed is that there is no "perfect" approach to implementing a wargaming battlespace. Each of them (and this extends to others not discussed) has different sets of advantages and disadvantages. Nothing will change that basic nature of the various approaches, nor would it be desirable to do so. Along with the advantages, the challenges define the feel of the game and focus the thinking of the players on certain aspects and away from others. The proposed approach to combining square and hexagonal approaches, which we will call the rhombus interface, leverages rhombuses constructed from equilateral triangles into which the hexagon can be decomposed to bridge the gap between the approaches, maintain relative consistency between the two as much as possible, and provide most of the feel of the hexagonal approach.

  13. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    SciTech Connect

    Huang, Zheng; Lü, Tie-Yu; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2015-09-15

    We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type) semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  14. Diamagnetic response in zigzag hexagonal silicene rings

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng

    2016-09-01

    Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin-orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin-orbit coupling strength and exchange field.

  15. Diagonal form factors and hexagon form factors

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfeng; Petrovskii, Andrei

    2016-07-01

    We study the heavy-heavy-light (HHL) three-point functions in the planar {N} = 4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program [1]. We prove the conjecture of Bajnok, Janik and Wereszczynski [2] on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  16. Method for exfoliation of hexagonal boron nitride

    NASA Technical Reports Server (NTRS)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  17. Preparation and optical spectroscopy of Eu{sup 3+}-doped GaN luminescent semiconductor from freeze-dried precursors

    SciTech Connect

    El-Himri, Abdelouahad; Perez-Coll, Domingo; Nun-tilde ez, Pedro . E-mail: pnunez@ull.es; Martin, Inocencio R.; Lavin, Victor; Rodriguez, Vicente D.

    2004-11-01

    Pure and 0.5% and 5mol% Eu{sup 3+} doped GaN nanoparticles have been prepared by ammonolysis of the corresponding freeze-dried precursors. A single hexagonal phase with the wurtzite structure was obtained as determined by X-ray Powder Diffraction. The crystallite size determined by XRD was lower than 10nm. From optical spectroscopy characterization, it is found that the Eu{sub 2}O{sub 3} formation is avoided by using nitrates as starting reagent. Fluorescence line narrowing spectra show excitation wavelength dependence, which is indicative that the Eu{sup 3+} ions are well dispersed in the prepared samples. The environment distribution occupied by the Eu{sup 3+} ions has been analyzed by crystal-field calculation and the results are compared with those for other materials.

  18. Hexagonal phase stabilization and magnetic orders of multiferroic L u1 -xS cxFe O3

    NASA Astrophysics Data System (ADS)

    Lin, L.; Zhang, H. M.; Liu, M. F.; Shen, Shoudong; Zhou, S.; Li, D.; Wang, X.; Yan, Z. B.; Zhang, Z. D.; Zhao, Jun; Dong, Shuai; Liu, J.-M.

    2016-02-01

    Hexagonal LuFe O3 has drawn a lot of research attention due to its contentious room-temperature multiferroicity. Due to the instability of hexagonal phase in the bulk form, most experimental studies focused on LuFe O3 thin films which can be stabilized by strain using proper substrates. Here we report on the hexagonal phase stabilization, magnetism, and magnetoelectric coupling of bulk LuFe O3 by partial Sc substitution of Lu. First, our first-principles calculations show that the hexagonal structure can be stabilized by partial Sc substitution, while the multiferroic properties, including the noncollinear magnetic order and geometric ferroelectricity, remain robustly unaffected. Therefore, L u1 -xS cxFe O3 can act as a platform to check the multiferroicity of LuFe O3 and related materials in the bulk form. Second, the magnetic characterizations on bulk L u1 -xS cxFe O3 demonstrate a magnetic anomaly (probable antiferromagnetic ordering) above room temperature, ˜425-445 K, followed by magnetic transitions in low temperatures (˜167-172 K). In addition, a magnetoelectric response is observed in the low-temperature region. Our study provides useful information on the multiferroic physics of hexagonal R Fe O3 and related systems.

  19. GaN for LED applications

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.

    1973-01-01

    In order to improve the synthesis of GaN the effect of various growth and doping parameters has been studied. Although Be, Li, Mg, and Dy can be used to overcompensate native donors, the most interesting acceptor element is Zn. The emission spectrum and the luminescence efficiency depend on the growth temperature (below 800 C), on the partial pressure of the doping impurity, and on the duration of growth. Blue-green electroluminescence with a power efficiency of 0.1 percent and a brightness of 850 fL (at 0.6 mA and 22.5 V) was obtained. Some diodes allow the color of the emitted light to change by reversing the polarity of the bias. Continuous operation of a diode over a period of 5 months showed no evidence of degradation. The luminescence properties of ion-implanted GaN were studied. Delay effects were found in the electroluminescence of diodes, although, with a dc bias, a 70-MHz modulation was possible.

  20. Nylon flocked swab severely reduces Hexagon Obti sensibility.

    PubMed

    Frippiat, Christophe; De Roy, Gilbert; Fontaine, Louis-Marie; Dognaux, Sophie; Noel, Fabrice; Heudt, Laeticia; Lepot, Laurent

    2015-02-01

    Hexagon Obti immunological blood test and flocked swab are widely used in forensic laboratories. Nevertheless, up to now, no compatibility tests have been published between sampling with the ethylene oxide treated flocked swab and the Hexagon Obti blood detection strip. In this study, we investigated this compatibility. Our work shows that sampling with ethylene oxide treated flocked swab reduces by a factor of at least 100 the detection threshold of blood using the Hexagon Obti immunological test. PMID:25575014

  1. DNA translocation through hydrophilic nanopore in hexagonal boron nitride.

    PubMed

    Zhou, Zhi; Hu, Ying; Wang, Hao; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua

    2013-01-01

    Ultra-thin solid-state nanopore with good wetting property is strongly desired to achieve high spatial resolution for DNA sequencing applications. Atomic thick hexagonal boron nitride (h-BN) layer provides a promising two-dimensional material for fabricating solid-state nanopores. Due to its good oxidation resistance, the hydrophilicity of h-BN nanopore device can be significantly improved by UV-Ozone treatment. The contact angle of a KCl-TE droplet on h-BN layer can be reduced from 57° to 26° after the treatment. Abundant DNA translocation events have been observed in such devices, and strong DNA-nanopore interaction has been revealed in pores smaller than 10 nm in diameter. The 1/f noise level is closely related to the area of suspended h-BN layer, and it is significantly reduced in smaller supporting window. The demonstrated performance in h-BN nanopore paves the way towards base discrimination in a single DNA molecule.

  2. DNA Translocation through Hydrophilic Nanopore in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Wang, Hao; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua

    2013-11-01

    Ultra-thin solid-state nanopore with good wetting property is strongly desired to achieve high spatial resolution for DNA sequencing applications. Atomic thick hexagonal boron nitride (h-BN) layer provides a promising two-dimensional material for fabricating solid-state nanopores. Due to its good oxidation resistance, the hydrophilicity of h-BN nanopore device can be significantly improved by UV-Ozone treatment. The contact angle of a KCl-TE droplet on h-BN layer can be reduced from 57° to 26° after the treatment. Abundant DNA translocation events have been observed in such devices, and strong DNA-nanopore interaction has been revealed in pores smaller than 10 nm in diameter. The 1/f noise level is closely related to the area of suspended h-BN layer, and it is significantly reduced in smaller supporting window. The demonstrated performance in h-BN nanopore paves the way towards base discrimination in a single DNA molecule.

  3. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  4. Ultrasensitive Thin-Film-Based Alx Ga1-x N Piezotronic Strain Sensors via Alloying-Enhanced Piezoelectric Potential.

    PubMed

    Wang, Chao-Hung; Lai, Kun-Yu; Li, Yi-Chang; Chen, Yen-Chih; Liu, Chuan-Pu

    2015-10-28

    Alx Ga1-x N thin-film-based piezotronic strain sensors with ultrahigh strain sensitivity are fabricated through alloying of AlN with GaN. The strain sensitivity of the ternary compound Alx Ga1-x N is higher than those of the individual binary compounds GaN and AlN. Such a high performance can be attributed to the piezoelectric constant enhancement via intercalation of Al atoms into the GaN matrix, the effect of residual strain, and a suppressed screening effect.

  5. Reconstruction of the polar interface between hexagonal LuFeO3 and intergrown Fe3O4 nanolayers

    PubMed Central

    Akbashev, A. R.; Roddatis, V. V.; Vasiliev, A. L.; Lopatin, S.; Amelichev, V. A.; Kaul, A. R.

    2012-01-01

    We report the observation of an unusual phase assembly behavior during the growth of hexagonal LuFeO3 thin films which resulted in the formation of epitaxial Fe3O4 nanolayers. The magnetite layers were up to 5 nm thick and grew under the conditions at which Fe2O3 is thermodynamically stable. These Fe3O4 nanolayers act as buffer layers promoting a highly epitaxial growth of the hexagonal LuFeO3 thin film up to 150 nm thick. Using scanning transmission electron microscopy, we show that the interface between (001) LuFeO3 and (111) Fe3O4 can be reconstructed in two ways depending on the sequence in which these compounds grow on each other. We suggest the polarity of the interface is the reason behind the observed interface reconstruction and epitaxial stabilization of magnetite. PMID:22993697

  6. Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures

    SciTech Connect

    Barrera, Sergio C. de la; Feenstra, Randall M.

    2015-03-02

    A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in the current–voltage characteristics are explained in terms of the electrostatically-induced band gap, gate voltage modulation, density of states near the band edge, and resonances with the upper sub-band. These observations are compared to ones from similar heterostructures formed with monolayer graphene.

  7. GaN quantum dots by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Daudin, B.; Adelmann, C.; Gogneau, N.; Sarigiannidou, E.; Monroy, E.; Fossard, F.; Rouvière, J. L.

    2004-03-01

    The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski-Krastanow (SK) or of the Frank-Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.

  8. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures.

  9. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures. PMID:27414518

  10. GaN grown on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  11. Nanoheteroepitaxial growth of GaN on Si nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Hersee, S. D.; Sun, X. Y.; Wang, X.; Fairchild, M. N.; Liang, J.; Xu, J.

    2005-06-01

    Nanoheteroepitaxial growth of GaN by metal-organic chemical-vapor deposition on dense arrays of (111) Si nanopillars has been investigated. Scanning electron microscopy, cross-sectional transmission electron microscopy, and electron-diffraction analysis of 0.15-μm-thick GaN layers indicate single-crystal films. Most of the mismatch defects were in-plane stacking faults and the threading dislocation concentration was <108cm-2 at the interface and decreased away from the interface. High-resolution transmission electron microscopy indicated that grain-boundary defects could heal and were followed by high quality, single-crystal GaN. Facetted voids were also present at the GaN /Si interface and are believed to be an additional strain-energy reduction mechanism. The unusual defect behavior in these samples appears to be related to the high compliance of the nanopillar silicon substrate.

  12. Epitaxy growth kinetics of GaN films

    NASA Astrophysics Data System (ADS)

    Wu, Bei; Ma, Ronghui; Zhang, Hui

    2003-03-01

    Group III nitrides, such as GaN, AlN and InGaN, have attracted a lot of attention due to the development of blue-green and ultraviolet light emitting diodes and lasers. A GaN crystal can be grown from the vapor phase by either evaporation of Gallium (Ga) metal or sublimation of GaN powder in ammonia (NH 3) atmosphere at a temperature-controlled growth furnace. In this paper, an integrated GaN growth model using a sublimation growth model has been developed based on the conservation of momentum, mass, chemical species and energy together with necessary boundary conditions that account for heterogeneous chemical reactions both at the source and seed surfaces. For the growth rate, the effects of the gas-flow rate, source temperature, temperature difference, and the gap width of the growth cell on the growth process have been studied.

  13. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  14. A Centrosymmetric Hexagonal Magnet with Superstable Biskyrmion Magnetic Nanodomains in a Wide Temperature Range of 100-340 K.

    PubMed

    Wang, Wenhong; Zhang, Ying; Xu, Guizhou; Peng, Licong; Ding, Bei; Wang, Yue; Hou, Zhipeng; Zhang, Xiaoming; Li, Xiyang; Liu, Enke; Wang, Shouguo; Cai, Jianwang; Wang, Fangwei; Li, Jianqi; Hu, Fengxia; Wu, Guangheng; Shen, Baogen; Zhang, Xi-Xiang

    2016-08-01

    Superstable biskyrmion magnetic nanodomains are experimentally observed for the first time in a hexagonal MnNiGa, a common and easily produced centrosymmetric material. The biskyrmion states in MnNiGa thin plates, as determined by the combination of in situ Lorentz transmission electron microscopy images, magnetoresistivity, and topological Hall effect measurements, are surprisingly stable over a broad temperature range of 100-340 K. PMID:27192410

  15. Hexagonal boron nitride and water interaction parameters.

    PubMed

    Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems. PMID:27131542

  16. Hexagonal boron nitride and water interaction parameters.

    PubMed

    Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  17. The hexagon hypothesis: Six disruptive scenarios.

    PubMed

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.

  18. Combinatorics of giant hexagonal bilayer hemoglobins.

    PubMed

    Hanin, L G; Vinogradov, S N

    2000-01-01

    The paper discusses combinatorial and probabilistic models allowing to characterize various aspects of spacial symmetry and structural heterogeneity of the giant hexagonal bilayer hemoglobins (HBL Hb). Linker-dodecamer configurations of HBL are described for two and four linker types (occurring in the two most studied HBL Hb of Arenicola and Lumbricus, respectively), and the most probable configurations are found. It is shown that, for HBL with marked dodecamers, the number of 'normal-marked' pairs of dodecamers in homological position follows a binomial distribution. The group of symmetries of the dodecamer substructure of HBL is identified with the dihedral group D6. Under natural symmetry assumptions, the total dipole moment of the dodecamer substructure of HBL is shown to be zero. Biological implications of the mathematical findings are discussed.

  19. Hexagonal boron nitride grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Akasaka, T.; Makimoto, T.

    2008-11-01

    Hexagonal boron nitride (h-BN) has a potential for optical device applications in the deep ultraviolet spectral region. For several decades, only amorphous and turbostratic boron nitride (BN) films had been grown by chemical vapor deposition and metalorganic vapor phase epitaxy. By introducing flow-rate modulation epitaxy (FME), which enables us to reduce parasitic reactions and lower the optimal growth temperature, we have succeeded in growing single-phase h-BN epitaxial films on nearly lattice-matched (1 1 1) Ni substrates. The h-BN epitaxial films exhibit near-band-gap ultraviolet luminescence at a wavelength of 227 nm in cathodoluminescence at room temperature. The combination of FME and the lattice-matched substrate paves the way for the epitaxial growth of high-quality h-BN.

  20. Quantum emission from hexagonal boron nitride monolayers.

    PubMed

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  1. The hexagon hypothesis: Six disruptive scenarios.

    PubMed

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity. PMID:26420396

  2. Quantum emission from hexagonal boron nitride monolayers.

    PubMed

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing. PMID:26501751

  3. Quantum emission from hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  4. Quantum emission from hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Tran, Toantrong; Bray, Kerem; Ford, Michael J.; Toth, Milos; MTEE Collaboration

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Here, we demonstrate room-temperature, polarized single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. The emitters emit at the red and the near infrared spectral range and exhibit narrowband ultra bright emission (~full width at half maximum of below 10 nm with more than three million counts/s). Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  5. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    SciTech Connect

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde

  6. Search for ferromagnetic ordering in Pd doped wide band gap semiconductors GaN and ZnO

    NASA Astrophysics Data System (ADS)

    Kessler, P.; Müller, K.; Geruschke, T.; Timmers, H.; Byrne, A. P.; Vianden, R.

    2010-04-01

    GaN and ZnO are possible candidates for dilute magnetic semiconductors with Curie temperatures above room temperature. Doping with transition metals like Co, Mn or Fe could be a simple way to create such systems. The perturbed angular correlation (PAC) probe 100Pd/100Rh is isoelectronic to cobalt and therefore a perfect tool to investigate the incorporation of transition metals into these compounds as well as the influence of other impurities on internal magnetic fields. The (0001) and (10bar{1}10) surfaces of ZnO single crystals, freestanding GaN films, and GaN thin films (6 μm) on sapphire substrates were recoil-implanted with the 100Pd/100Rh probe. The probe was produced using the fusion evaporation reaction 92Zr(12C, 4n)100Pd at a beam energy of 69 MeV. Subsequently, the incorporation of the probe was studied by PAC spectroscopy during an isochronal annealing program. First results without and with an applied external magnetic field are indicative of a strongly disturbed lattice vicinity of Pd impurities in both hosts. No signs of spontaneous ferromagnetic ordering were observed.

  7. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  8. Regularly patterned multi-section GaN nanorod arrays grown with a pulsed growth technique.

    PubMed

    Tu, Charng-Gan; Su, Chia-Ying; Liao, Che-Hao; Hsieh, Chieh; Yao, Yu-Feng; Chen, Hao-Tsung; Lin, Chun-Han; Weng, Chi-Ming; Kiang, Yean-Woei; Yang, C C

    2016-01-15

    The growth of regularly patterned multi-section GaN nanorod (NR) arrays based on a pulsed growth technique with metalorganic chemical vapor deposition is demonstrated. Such an NR with multiple sections of different cross-sectional sizes is formed by tapering a uniform cross section to another through stepwise decreasing of the Ga supply duration to reduce the size of the catalytic Ga droplet. Contrast line structures are observed in either a scanning electron microscopy or transmission electron microscopy image of an NR. Such a contrast line-marker corresponds to a thin Ga-rich layer formed at the beginning of GaN precipitation of a pulsed growth cycle and illustrates the boundary between two successive growth cycles in pulsed growth. By analyzing the geometry variation of the contrast line-markers, the morphology evolution in the growth of a multi-section NR, including a tapering process, can be traced. Such a morphology variation is controlled by the size of the catalytic Ga droplet and its coverage range on the slant facets at the top of an NR. The comparison of emission spectra between single-, two-, and three-section GaN NRs with sidewall InGaN/GaN quantum wells indicates that a multi-section NR can lead to a significantly broader sidewall emission spectrum.

  9. Structural domain walls in polar hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  10. GaN Technology for Power Electronic Applications: A Review

    NASA Astrophysics Data System (ADS)

    Flack, Tyler J.; Pushpakaran, Bejoy N.; Bayne, Stephen B.

    2016-06-01

    Power semiconductor devices based on silicon (Si) are quickly approaching their limits, set by fundamental material properties. In order to address these limitations, new materials for use in devices must be investigated. Wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN) have suitable properties for power electronic applications; however, fabrication of practical devices from these materials may be challenging. SiC technology has matured to point of commercialized devices, whereas GaN requires further research to realize full material potential. This review covers fundamental material properties of GaN as they relate to Si and SiC. This is followed by a discussion of the contemporary issues involved with bulk GaN substrates and their fabrication and a brief overview of how devices are fabricated, both on native GaN substrate material and non-native substrate material. An overview of current device structures, which are being analyzed for use in power switching applications, is then provided; both vertical and lateral device structures are considered. Finally, a brief discussion of prototypes currently employing GaN devices is given.

  11. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  12. Effect of photocatalytic oxidation technology on GaN CMP

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-01-01

    GaN is so hard and so chemically inert that it is difficult to obtain a high material removal rate (MRR) in the chemical mechanical polishing (CMP) process. This paper discusses the application of photocatalytic oxidation technology in GaN planarization. Three N-type semiconductor particles (TiO2, SnO2, and Fe2O3) are used as catalysts and added to the H2O2-SiO2-based slurry. By optical excitation, highly reactive photoinduced holes are produced on the surface of the particles, which can oxidize OH- and H2O absorbed on the surface of the catalysts; therefore, more OH* will be generated. As a result, GaN MRRs in an H2O2-SiO2-based polishing system combined with catalysts are improved significantly, especially when using TiO2, the MRR of which is 122 nm/h. The X-ray photoelectron spectroscopy (XPS) analysis shows the variation trend of chemical composition on the GaN surface after polishing, revealing the planarization process. Besides, the effect of pH on photocatalytic oxidation combined with TiO2 is analyzed deeply. Furthermore, the physical model of GaN CMP combined with photocatalytic oxidation technology is proposed to describe the removal mechanism of GaN.

  13. GaN resistive hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Yun, Feng; Chevtchenko, Serguei; Moon, Yong-Tae; Morkoç, Hadis; Fawcett, Timothy J.; Wolan, John T.

    2005-08-01

    GaN epilayers grown by organometallic vapor phase epitaxy have been used to fabricate resistive gas sensors with a pair of planar ohmic contacts. Detectible sensitivity to H2 gas for a wide range of gas mixtures in an Ar ambient has been realized; the lowest concentration tested is ˜0.1% H2 (in Ar), well below the lower combustion limit in air. No saturation of the signal is observed up to 100% H2 flow. Real-time response to H2 shows a clear and sharp response with no memory effects during the ramping cycles of H2 concentration. The change in current at a fixed voltage to hydrogen was found to change with sensor geometry. This appears to be consistent with a surface-adsorption-induced change of conductivity; a detailed picture of the gas sensing mechanism requires further systematic studies.

  14. Surfactant assisted growth of MgO films on GaN

    SciTech Connect

    Paisley, Elisibeth A.; Shelton, T C; Mita, S; Gaddy, Brian E.; Irving, D L; Christen, Hans M; Sitar, Z; Biegalski, Michael D; Maria, Jon Paul

    2012-01-01

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface due to stabilizing the {111} rocksalt facet. MBE growth of MgO in water terminates after several monolayers, and is attributed to saturation of surface active sites needed to facilitate the Mg oxidation reaction. MgO films prepared by PLD grow continuously, this occurs due to the presence of excited oxidizing species in the laser plasma eliminate the need for catalytic surface sites. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly two order of magnitude reduction in leakage current density for the smoother surfactant-assisted samples. Collectively, these data verify numerous predictions and calculations regarding the role of H-termination in regulating the habit of MgO crystals.

  15. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution

    NASA Astrophysics Data System (ADS)

    Schuster, Fabian; Winnerl, Andrea; Weiszer, Saskia; Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin

    2015-01-01

    In this work, we present a detailed study on GaN nanowire doping, which is vital for device fabrication. The nanowires (NWs) are grown by means of molecular beam epitaxy on diamond (111) substrates. Dopant atoms are found to facilitate nucleation, thus an increasing NW density is observed for increasing dopant fluxes. While maintaining nanowire morphology, we demonstrate the incorporation of Si and Mg up to concentrations of 9 × 1020cm-3 and 1 × 1020cm-3 , respectively. The dopant concentration in the nanowire cores is determined by the thermodynamic solubility limit, whereas excess dopants are found to segregate to the nanowire surface. The strain state of the NWs is investigated by X-ray diffraction, which confirms a negligible strain compared to planar thin films. Doping-related emissions are identified in low-temperature photoluminescence spectroscopy and the temperature quenching yields ionization energies of Si donors and Mg acceptors of 17 meV and 167 meV, respectively. At room temperature, luminescence and absorption spectra are found to coincide and the sub-band gap absorption is suppressed in n-type NWs. The charge carrier distribution in doped GaN nanowires is simulated under consideration of surface states at the non-polar side facets. For doping concentrations below 1017cm-3 , the nanowires are depleted of charge carriers, whereas they become highly conductive above 1019cm-3 .

  16. Comparison of presumptive blood test kits including hexagon OBTI.

    PubMed

    Johnston, Emma; Ames, Carole E; Dagnall, Kathryn E; Foster, John; Daniel, Barbara E

    2008-05-01

    Four presumptive blood tests, Hexagon OBTI, Hemastix(R), Leucomalachite green (LMG), and Kastle-Meyer (KM) were compared for their sensitivity in the identification of dried bloodstains. Stains of varying blood dilutions were subjected to each presumptive test and the results compared. The Hexagon OBTI buffer volume was also reduced to ascertain whether this increased the sensitivity of the kit. The study found that Hemastix(R) was the most sensitive test for trace blood detection. Only with the reduced buffer volume was the Hexagon OBTI kit as sensitive as the LMG and KM tests. However, the Hexagon OBTI kit has the advantage of being a primate specific blood detection kit. This study also investigated whether the OBTI buffer within the kit could be utilized for DNA profiling after presumptive testing. The results show that DNA profiles can be obtained from the Hexagon OBTI kit buffer directly.

  17. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.

    PubMed

    Watzlawick, Hildegard; Morabbi Heravi, Kambiz; Altenbuchner, Josef

    2016-10-15

    Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is

  18. Highly mismatched GaN1‑x Sb x alloys: synthesis, structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Yu, K. M.; Sarney, W. L.; Novikov, S. V.; Segercrantz, N.; Ting, M.; Shaw, M.; Svensson, S. P.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2016-08-01

    Highly mismatched alloys (HMAs) is a class of semiconductor alloys whose constituents are distinctly different in terms of size, ionicity and/or electronegativity. Electronic properties of the alloys deviate significantly from an interpolation scheme based on small deviations from the virtual crystal approximation. Most of the HMAs were only studied in a dilute composition limit. Recent advances in understanding of the semiconductor synthesis processes allowed growth of thin films of HMAs under non-equilibrium conditions. Thus reducing the growth temperature allowed synthesis of group III-N–V HMAs over almost the entire composition range. This paper focuses on the GaN x Sb1‑x HMA which has been suggested as a potential material for solar water dissociation devices. Here we review our recent work on the synthesis, structural and optical characterization of GaN1‑x Sb x HMA. Theoretical modeling studies on its electronic structure based on the band anticrossing (BAC) model are also reviewed. In particular we discuss the effects of growth temperature, Ga flux and Sb flux on the incorporation of Sb, film microstructure and optical properties of the alloys. Results obtained from two separate MBE growths are directly compared. Our work demonstrates that a large range of direct bandgap energies from 3.4 eV to below 1.0 eV can be achieved for this alloy grown at low temperature. We show that the electronic band structure of GaN1‑x Sb x HMA over the entire composition range is well described by a modified BAC model which includes the dependence of the host matrix band edges as well as the BAC model coupling parameters on composition. We emphasize that the modified BAC model of the electronic band structure developed for the full composition of GaN x Sb1‑x is general and is applicable to any HMA.

  19. Phonon modes and metal-insulator transition in GaN crystals under pressure

    NASA Astrophysics Data System (ADS)

    Falkovsky, L. A.; Knap, W.; Chervin, J. C.; Wisniewski, P.

    1998-05-01

    Close inspection of experimental results given by Perlin and co-workers [Phys. Status Solidi B 198, 223 (1996); Phys. Rev. B 45, 83 (1992)] shows that three phenomena were observed in that work: optical-phonon shift and splitting under pressures, which can be explained in a symmetry consideration for the Γ point of hexagonal crystals; inhomogeneous broadening and shift of phonon frequencies due to strain fluctuations which are described in the present paper using Dyson's equation for the phonon Green's function; phonon hardening and decreasing of width in the metal-insulator transition in GaN under pressure of about 22 GPa. The last effect results from the interaction between electrons and optical phonons, but this interaction makes no impact on the line shape (Fano effect). We find that the phonon line shape in semiconductors with small carrier concentration is determined by strain fluctuations or imperfections. Estimates show that the electron-phonon interaction is the reason why optical phonons are not detected in typical metals.

  20. Ultracold Quantum Gases in Hexagonal Optical Lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    2010-03-01

    Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording

  1. Radiation Damage Mechanisms for Luminescence in Eu-doped GaN

    SciTech Connect

    Tringe, J W; Castelaz, J M; Felter, T E; Wetzel, C; Talley, C E; Morse, J D; Stevens, C G

    2005-11-01

    Thin films of Eu-doped GaN are irradiated with 500 keV He{sup +} ions to understand radiation damage mechanisms and to quantify luminescence efficiency. Ion beam induced luminescence was monitored spectroscopically as function of fluence. Behavior observed is consistent with simultaneous creation of non-radiative defects and destruction of luminescent centers associated with the 4f-4f core-level transition in Eu{sup 3+}. This model contrasts with a previous description which takes into account only non-radiative defect generation in GaN:Eu. Based on light from a BaF{sub 2} scintillator standard, the luminescent energy generation efficiency of GaN:Eu films doped to {approx}3 x 10{sup 18} cm{sup -3} Eu is estimated to be {approx}0.1%.

  2. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  3. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

    PubMed Central

    2013-01-01

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090

  4. Fluorescent Defects in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Exarhos, Annemarie L.; Oser, Kameron; Hopper, David A.; Grote, Richard R.; Bassett, Lee C.

    Mono- and few-layer hexagonal boron nitride (h-BN) can host defects whose electronic states lie deep within the bandgap, similar to the nitrogen-vacancy color center in bulk diamond. Here, we study defect creation in h-BN through irradiation and thermal annealing. We employ confocal photoluminescence (PL) imaging and spectroscopy under various excitation energies on both supported and suspended h-BN to identify and characterize the emission of isolated defect centers. Polarization- and temperature-dependent measurements of the observed PL are used to map out the electronic structure of the defects, enabling optical control of fluorescent defects in h-BN. This knowledge, coupled with the spatial confinement to 2D and the unique electrical, optical, and mechanical properties of h-BN, will enable the use of these defects for quantum sensing and other applications in quantum information processing. Work supported by the ARO (W911NF-15-1-0589) and NSF MRSEC (DMR-1120901).

  5. Phase transformation of strontium hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Bilovol, V.; Martínez-García, R.

    2015-11-01

    The phase transformation of strontium hexagonal ferrite (SrFe12O19) to magnetite (Fe3O4) as main phase and strontium carbonate (SrCO3) as secondary phase is reported here. SrFe12O19 powder was obtained by a heat treatment at 250 °C under controlled oxygen flow. It was observed that the phase transformation occurred when the SrFe12O19 ferrite was heated up to 625 °C in confinement conditions. This transformation took place by a combination of three factors: the presence of stresses in the crystal lattice of SrFe12O19 due to a low synthesis temperature, the reduction of Fe3+ to Fe2+ during the heating up to 625 °C, and the similarity of the coordination spheres of the iron atoms present in the S-block of SrFe12O19 and Fe3O4. X-ray diffraction analysis confirmed the existence of strain and crystal deformation in SrFe12O19 and the absence of them in the material after the phase transformation. Dispersive X-ray absorption spectroscopy and Fe57 Mössbauer spectroscopy provided evidences of the reduction of Fe3+ to Fe2+ in the SrFe12O19 crystal.

  6. Hyperbolic phonon polaritons in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Dai, Siyuan

    2015-03-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.

  7. Bootstrapping the Three-Loop Hexagon

    SciTech Connect

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  8. Penta-hepta defect motion in hexagonal patterns

    SciTech Connect

    Tsimring, L.S.

    1995-05-22

    The structure and dynamics of penta-hepta defects (PHD`s) in hexagonal patterns are studied in the framework of coupled amplitude equations for the underlying plane waves. An analytical solution for the phase field of moving PHD is found in the far field, which generalizes the static solution due to Pismen and Nepomnyashchy. The mobility tensor of the PHD is calculated using a combined analytical and numerical approach. The results for the velocity of a PHD climbing in slightly nonoptimal hexagonal patterns are compared with numerical simulations of amplitude equations. The interaction of penta-hepta defects in optimal hexagonal patterns is considered.

  9. Defect Chaos of Oscillating Hexagons in Rotating Convection

    SciTech Connect

    Echebarria, Blas; Riecke, Hermann

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found. (c) 2000 The American Physical Society.

  10. Harmonic surface acoustic waves on gallium nitride thin films.

    PubMed

    Justice, Joshua; Lee, Kyoungnae; Korakakis, D

    2012-08-01

    SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, lambda0 = 20 μm. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2pi/lambda and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated. PMID:22899127

  11. Harmonic surface acoustic waves on gallium nitride thin films.

    PubMed

    Justice, Joshua; Lee, Kyoungnae; Korakakis, D

    2012-08-01

    SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, lambda0 = 20 μm. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2pi/lambda and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated.

  12. ALD TiO2-Al2O3 Stack: An Improved Gate Dielectrics on Ga-polar GaN MOSCAPs

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Meyer, III, Harry M.

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  13. Metalorganic chemical vapor deposition of GaN and InGaN on ZnO substrate using Al2O3 as a transition layer

    NASA Astrophysics Data System (ADS)

    Li, Nola; Wang, Shen-Jie; Huang, Chung-Lung; Feng, Zhe Chuan; Valencia, Adriana; Nause, Jeff; Summers, Christopher; Ferguson, Ian

    2008-08-01

    Al2O3 films were deposited on the Zn face of ZnO (0001) substrates as a transition layer by atomic layer deposition (ALD). The as-deposited 20 and 50nm Al2O3 films were transformed to polycrystalline α-Al2O3 phase after optimal annealing at 1100°C after 10 and 20 minutes, respectively, as identified by high resolution x-ray diffraction (HRXRD). Furthermore, GaN and InGaN layers were grown on annealed 20 and 50nm Al2O3 deposited ZnO substrates by metalorganic chemical vapor deposition (MOCVD) using NH3 as a nitrogen source at high growth temperature. Wurtzite GaN was only seen on the 20nm Al2O3/ZnO substrates. Room temperature photoluminescence (RT-PL) shows the near band-edge emission of GaN red-shifted, which might be from oxygen incorporation forming a shallow donor-related level in GaN. Raman scattering also indicated the presence of a wellcrystallized GaN layer on the 20nm Al2O3/ZnO substrate. InGaN was grown on bare ZnO as well as Al2O3 deposited ZnO substrates. HRXRD measurements revealed that the thin Al2O3 layer after annealing was an effective transition layer for the InGaN films grown epitaxially on ZnO substrates. Auger Electron Spectroscopy (AES) atomic depth profile shows a decrease in Zn in the InGaN layer. Moreover, (0002) InGaN layers were successfully grown on 20nm Al2O3/ZnO substrates after 10min annealing in a high temperature furnace.

  14. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  15. High Voltage GaN Schottky Rectifiers

    SciTech Connect

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  16. Optoelectronic properties of hexagonal boron nitride epilayers

    NASA Astrophysics Data System (ADS)

    Cao, X. K.; Majety, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2013-01-01

    This paper summarizes recent progress primarily achieved in authors' laboratory on synthesizing hexagonal boron nitride (hBN) epilayers by metal organic chemical vapor deposition (MCVD) and studies of their structural and optoelectronic properties. The structural and optical properties of hBN epilayers have been characterized by x-ray diffraction (XRD) and photoluminescence (PL) studies and compared to the better understood wurtzite AIN epilayers with a comparable energy bandgap. These MOCVD grown hBN epilayers exhibit highly efficient band-edge PL emission lines centered at around 5.5 eVat room temperature. The band-edge emission of hBN is two orders of magnitude higher than that of high quality AlN epilayers. Polarization-resolved PL spectroscopy revealed that hEN epilayers are predominantly a surface emission material, in which the band-edge emission with electric field perpendicular to the c-axis (Eemi⊥c) is about 1.7 times stronger than the component along the c-axis (Eemillc). This is in contrast to AIN, in which the band­ edge emission is known to be polarized along the c-axis, (Eemillc). Based on the graphene optical absorption concept, the estimated band-edge absorption coefficient of hBN is about 7x105 cm-1, which is more than 3 times higher than the value for AlN (~2x105 cm-1 . The hBN epilayer based photodetectors exhibit a sharp cut-off wavelength around 230 nm, which coincides with the band-edge PL emission peak and virtually no responses in the long wavelengths. The dielectric strength of hBN epilayers exceeds that of AlN and is greater than 4.5 MV/cm based on the measured result for an hBN epilayer released from the host sapphire substrate.

  17. Stability of Carbon Incorpoated Semipolar GaN(1101) Surface

    NASA Astrophysics Data System (ADS)

    Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori

    2011-08-01

    The structural stability of carbon incorporated GaN(1101) surfaces is theoretically investigated by performing first-principles pseudopotential calculations. The calculated surface formation energies taking account of the metal organic vapor phase epitaxy conditions demonstrate that several carbon incorporated surfaces are stabilized depending on the growth conditions. Using surface phase diagrams, which are obtained by comparing the calculated adsorption energy with vapor-phase chemical potentials, we find that the semipolar surface forms NH2 and CH2 below ˜1660 K while the polar GaN(0001) surface with CH3 is stabilized below ˜1550 K. This difference could be one of possible explanations for p-type doping on the semipolar GaN(1101) surface.

  18. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  19. Curvature and bow of bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Foronda, Humberto M.; Romanov, Alexey E.; Young, Erin C.; Roberston, Christian A.; Beltz, Glenn E.; Speck, James S.

    2016-07-01

    We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substrates as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.

  20. High-Sensitivity GaN Microchemical Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  1. ECR, ICP, and RIE plasma etching of GaN

    SciTech Connect

    Shul, R.J.; McClellan, G.B.; Rieger, D.J.; Hafich, M.J.

    1996-06-01

    The group III-nitrides continue to generate interest due to their wide band gaps and high dielectric constants. These materials have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs). Realization of more advanced devices; including lasers and high temperature electronics, requires dry etch processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {mu}m/min. In this paper, we compare electron cyclotron resonance (ECR), inductively coupled plasma (ICP), and reactive ion etch (RIE) etch results for GaN. These are the first ICP etch results reported for GaN. We also report ECR etch rates for GaN as a function of growth technique.

  2. Desorption Induced Formation of Negative Nanowires in GaN

    SciTech Connect

    Stach, E.A.; Kim, B.-J.

    2011-06-01

    We report in-situ transmission electron microscopy studies of the formation of negative nanowires created by thermal decomposition of single crystal GaN. During annealing, vertical negative nanowires are formed in [0 0 0 1] by preferential dissociation of GaN along the 1 0 {bar 1} 0 prism planes, while lateral negative nanowires grow in close-packed 1 0 {bar 1} 0 by the self-catalytic solid-liquid-vapor (SLV) mechanism. Our quantitative measurements show that the growth rates of the laterally grown negative nanowires are independent of the wire diameter, indicating that the rate-limiting step is the decomposition of GaN on the surface of the Ga droplets that catalyze their creation. These nanoscale features offer controllable templates for the creation and integration of a broad range of nanoscale materials systems, with potential applications in nanoscale fluidics.

  3. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750–800, 900, and 130–180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  4. Surface morphology of GaN: Flat versus vicinal surfaces

    SciTech Connect

    Xie, M.H.; Seutter, S.M.; Zheng, L.X.; Cheung, S.H.; Ng, Y.F.; Wu, H.; Tong, S.Y.

    2000-07-01

    The surface morphology of GaN films grown by molecular beam epitaxy (MBE) is investigated by scanning tunneling microscopy (STM). A comparison is made between flat and vicinal surfaces. The wurtzite structure of GaN leads to special morphological features such as step pairing and triangularly shaped islands. Spiral mounds due to growth at screw threading dislocations are dominant on flat surfaces, whereas for vicinal GaN, the surfaces show no spiral mound but evenly spaced steps. This observation suggests an effective suppression of screw threading dislocations in the vicinal films. This finding is confirmed by transmission electron microscopy (TEM) studies. Continued growth of the vicinal surface leads to step bunching that is attributed to the effect of electromigration.

  5. Mg doping and its effect on the semipolar GaN(1122) growth kinetics

    SciTech Connect

    Lahourcade, L.; Wirthmueller, A.; Monroy, E.; Chauvat, M. P.; Ruterana, P.; Laufer, A.; Eickhoff, M.

    2009-10-26

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(1122) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(1122). We observe an enhancement of Mg incorporation in GaN(1122) compared to GaN(0001). Typical structural defects or polarity inversion domains found in Mg-doped GaN(0001) were not observed for the semipolar films investigated in the present study.

  6. Temperature dependent growth of GaN nanowires using CVD technique

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Vikram; Singh, R.

    2016-05-01

    Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.

  7. Synthesis and characterizations of nanoscale single crystal GaN grown by ion assisted gas source MBE

    NASA Astrophysics Data System (ADS)

    Cui, Bentao; Cohen, P. I.

    2004-03-01

    Nanoscale patterns could be induced by ion bombardment [1, 2]. In this study, an in-situ real time light scattering technique, combined with Reflection High Energy Electron Diffraction (RHEED), were used to study the surface morphology evolution during the ion beam assisted growth of GaN in a gas source MBE system. Ga was provided by a thermal effusion cell. Ammonia was used as the nitrogen source. A hot-filament Kaufman ion source was used to supply sub-KeV ion beams. Sapphire and MOCVD GaN templates were used as the substrates. A custom-designed Desorption Mass Spectrometer (DMS) was used to calibrate the growth temperature and determine the growth rate. Before growing GaN, the sapphire substrates were pretreated in an ion flux and then annealed for cleaning. The sapphire surface was then nitrided in ammonia at 1100K for about 10 min. After nitridation, a thin GaN buffer layer was prepared by a sequence of adsorption and annealing steps. During the growth, the short-range surface morphology and film quality were monitored in situ by RHEED. In a real-time way, the long-range surface morphology was monitored in-situ by light scattering technique. Photodiode array detector and CCD camera were used to record the reflected light scattering intensity and spectra profile respectively. Periodical patterns, such as ripple, have been observed during ion bombardment on GaN with or without growth. A linear theory (from Bradley and Harper 1988 [3]) has been modified to explain the dependence of ripple wavelength on ion species and ion energy. Partially supported by the National Science Foundation and the Air Force Office of Scientific Research. [1]. J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 82, 2330 (1998); J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 84, 5800 (2000). [2]. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt et al.. Science 285, 1551 (1999). [3]. R. M. Bradley

  8. Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth

    SciTech Connect

    Dasgupta, Sansaptak; Nidhi,; Brown, David F.; Wu, Feng; Keller, Stacia; Speck, James S.; Mishra, Umesh K.

    2010-04-05

    Ultralow Ohmic contact resistance and a self-aligned device structure are necessary to reduce the effect of parasitic elements and obtain higher f{sub t} and f{sub max} in high electron mobility transistors (HEMTs). N-polar (0001) GaN HEMTs, offer a natural advantage over Ga-polar HEMTs, in terms of contact resistance since the contact is not made through a high band gap material [Al(Ga)N]. In this work, we extend the advantage by making use of polarization induced three-dimensional electron-gas through regrowth of graded InGaN and thin InN cap in the contact regions by plasma (molecular beam epitaxy), to obtain an ultralow Ohmic contact resistance of 27 OMEGA mum to a GaN 2DEG.

  9. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    SciTech Connect

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G.; Niermann, T.; Lehmann, M.; Thapa, S. B.; Haeberlen, M.; Storck, P.; Schroeder, T.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  10. Dislocation luminescence in GaN single crystals under nanoindentation.

    PubMed

    Huang, Jun; Xu, Ke; Fan, Ying Min; Wang, Jian Feng; Zhang, Ji Cai; Ren, Guo Qiang

    2014-01-01

    This work presents an experimental study on the dislocation luminescence in GaN by nanoindentation, cathodoluminescence, and Raman. The dislocation luminescence peaking at 3.12 eV exhibits a series of special properties in the cathodoluminescence measurements, and it completely disappears after annealing at 500°C. Raman spectroscopy shows evidence for existence of vacancies in the indented region. A comprehensive investigation encompassing cathodoluminescence, Raman, and annealing experiments allow the assignment of dislocation luminescence to conduction-band-acceptor transition involving Ga vacancies. The nanoscale plasticity of GaN can be better understood by considering the dislocation luminescence mechanism.

  11. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  12. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ∼0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10{sup −8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  13. Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics.

    PubMed

    Li, Junshuai; Yu, HongYu; Li, Yali

    2012-05-17

    Investigation of solar energy harvesting in hexagonally arranged Si nanowire (NW) arrays is performed through optimizing the structural parameters, such as array periodicity (P), Si NW diameter (D) and length (L). The results demonstrate that there exist wide P and D/P 'windows' for the Si NW arrays, locating around 600 nm and 0.833 (i.e., D=500 nm), respectively, for achieving enhanced light absorption compared to their thin film counterparts with the same thickness, but with much less materials consumption. Calculation of the ultimate efficiency (UE) indicates that the light trapping capability is not monotonically increased with L, and that UE vibration is found when L is >1000 nm. Comparison of the light absorption spectra for hexagonally and squarely arranged Si NW arrays demonstrates that these two most widely employed array symmetries in practice have little impact on the light trapping capability.

  14. Fabrication and characteristics of hexagonal Zn nanowires prepared by heating a mixture of Zn and graphite powders.

    PubMed

    Kim, Hyoun Woo; Kwon, Yong Jung; Cho, Hong Yeon; Na, Han Gil; Lee, Chongmu

    2014-12-01

    We report the fabrication of thin (< 100 nm) hexagonal Zn nanowires in a conventional reactor, by heating a mixture of Zn and graphite powders. By material characterization, the products were identified as one-dimensional nanowires of serpent-like morphology with a hexagonal Zn phase. The main growth mechanism of the Zn nanowires was proposed to be a vapor-solid process, which was corroborated by the absence of any tip catalyst. Raman spectra of the Zn nanowires exhibited a prominent peak at around 570 cm(-1). X-ray photoelectron spectroscopy revealed that the surface of the Zn nanowires was clearly oxygen-deficient in comparison to that of ZnO nanowires. Photoluminescence analysis indicated that the Zn nanowires exhibited emission bands centered at 1.6, 2.0, 2.4, 3.0, and 3.3 eV, respectively. PMID:25970988

  15. First-principles study of d0 ferromagnetism in alkali-metal doped GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Yong

    2016-08-01

    The d0 ferromagnetism in GaN has been studied based on density functional theory. Our results show that GaN with sufficient hole become spin-polarized. Alkali-metal doping can introduce holes in GaN. Among them, both of Li- and Na-doping induce ferromagnetism in GaN and Na-doped GaN behaves as half-metallic ferromagnet. Moreover, at a growth temperature of 2000 K under N-rich condition, both concentrations can exceed 18%, which is sufficient to produce detectable macroscopic magnetism in GaN. The Curie temperature of Li- and Na-doped GaN is estimated to be 304 and 740 K, respectively, which are well above room temperature.

  16. The extended family of hexagonal molybdenum oxide

    SciTech Connect

    Hartl, Monika; Daemen, Luke; Lunk, J H; Hartl, H; Frisk, A T; Shendervich, I; Mauder, D; Feist, M; Eckelt, R

    2009-01-01

    Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.

  17. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper

    NASA Astrophysics Data System (ADS)

    Tay, Roland Yingjie; Park, Hyo Ju; Ryu, Gyeong Hee; Tan, Dunlin; Tsang, Siu Hon; Li, Hongling; Liu, Wenwen; Teo, Edwin Hang Tong; Lee, Zonghoon; Lifshitz, Yeshayahu; Ruoff, Rodney S.

    2016-01-01

    Atomically smooth hexagonal boron nitride (h-BN) films are considered as a nearly ideal dielectric interface for two-dimensional (2D) heterostructure devices. Reported mono- to few-layer 2D h-BN films, however, are mostly small grain-sized, polycrystalline and randomly oriented. Here we report the growth of centimetre-sized atomically thin h-BN films composed of aligned domains on resolidified Cu. The films consist of monolayer single crystalline triangular and hexagonal domains with size of up to ~10 μm. The domains converge to symmetrical multifaceted shapes such as ``butterfly'' and ``6-apex-star'' and exhibit ~75% grain alignment for over millimetre distances as verified through transmission electron microscopy. Scanning electron microscopy images reveal that these domains are aligned for over centimetre distances. Defect lines are generated along the grain boundaries of mirroring h-BN domains due to the two different polarities (BN and NB) and edges with the same termination. The observed triangular domains with truncated edges and alternatively hexagonal domains are in accordance with Wulff shapes that have minimum edge energy. This work provides an extensive study on the aligned growth of h-BN single crystals over large distances and highlights the obstacles that are needed to be overcome for a 2D material with a binary configuration.Atomically smooth hexagonal boron nitride (h-BN) films are considered as a nearly ideal dielectric interface for two-dimensional (2D) heterostructure devices. Reported mono- to few-layer 2D h-BN films, however, are mostly small grain-sized, polycrystalline and randomly oriented. Here we report the growth of centimetre-sized atomically thin h-BN films composed of aligned domains on resolidified Cu. The films consist of monolayer single crystalline triangular and hexagonal domains with size of up to ~10 μm. The domains converge to symmetrical multifaceted shapes such as ``butterfly'' and ``6-apex-star'' and exhibit ~75% grain

  18. Deep traps in n-type GaN epilayers grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kamyczek, P.; Placzek-Popko, E.; Zielony, E.; Gumienny, Z.; Zytkiewicz, Z. R.

    2014-01-14

    In this study, we present the results of investigations on Schottky Au-GaN diodes by means of conventional DLTS and Laplace DLTS methods within the temperature range of 77 K–350 K. Undoped GaN layers were grown using the plasma-assisted molecular beam epitaxy technique on commercial GaN/sapphire templates. The quality of the epilayers was studied by micro-Raman spectroscopy (μ-RS) which proved the hexagonal phase and good crystallinity of GaN epilayers as well as a slight strain. The photoluminescence spectrum confirmed a high crystal quality by intense excitonic emission but it also exhibited a blue emission band of low intensity. DLTS signal spectra revealed the presence of four majority traps: two high-temperature and two low-temperature peaks. Using the Laplace DLTS method and Arrhenius plots, the apparent activation energy and capture cross sections were obtained. For two high-temperature majority traps, they were equal to E{sub 1} = 0.65 eV, σ{sub 1} = 8.2 × 10{sup −16} cm{sup 2} and E{sub 2} = 0.58 eV, σ{sub 2} = 2.6 × 10{sup −15} cm{sup 2} whereas for the two low-temperature majority traps they were equal to E{sub 3} = 0.18 eV, σ{sub 3} = 9.7 × 10{sup −18} cm{sup 2} and E{sub 4} = 0.13 eV, σ{sub 4} = 9.2 × 10{sup −18} cm{sup 2}. The possible origin of the traps is discussed and the results are compared with data reported elsewhere.

  19. Preparation and structure of a solid-state hypervalent-iodine polymer containing iodine and oxygen atoms in fused 12-atom hexagonal rings.

    PubMed

    Richter, Helen W; Koser, Gerald F; Incarvito, Christopher D; Rheingold, Arnold L

    2007-07-01

    The treatment of dilute aqueous solutions of [hydroxy(tosyloxy)iodo]benzene with aqueous Mg(ClO4)2 produced thin elongated-hexagonal plates exhibiting a supramolecular structure in which tetra-mu-oxopentaiodanyl dication repeat units are joined to each other by significantly ionic bonds and each unit is associated with two perchlorate ions. The linearly extended cationic structure is formed from the 12-atom hexagonal rings of alternating iodine and oxygen atoms, a novel structure. Each 12-membered ring forms a nearly planar hexagonal shape with sides defined by almost linear O-I-O segments (175.7+/-1.6) degrees. The apexes are occupied by bridging oxide ligands where the I-O-I angles deviate only slightly from an ideal 120 degrees hexagonal angle (116.8+/-1.2) degrees, consistent with sp2 hybridization of the bridging oxygen atoms that participate in three-center four-electron bonds with iodine. These 12-atom hexagons are slightly "chair" distorted at the oxygen atoms. The planes of the rings are separated by layers containing the phenyl rings. The perchlorate ions reside in void spaces created by the three-up, three-down arrangement of the phenyl rings around each 12-membered I-O ring and are positioned directly above and below the I-O rings. PMID:17569525

  20. Plasma chemistry dependent ECR etching of GaN

    SciTech Connect

    Shul, R.J.; Ashby, C.I.H.; Rieger, D.J.

    1995-12-31

    Electron cyclotron resonance (ECR) etching of GaN in Cl{sub 2}/H{sub 2}/Ar, C1{sub 2}/SF{sub 6}/Ar, BCl{sub 3}/H{sub 2}/Ar and BCl{sub 3}/SF{sub 6}/Ar plasmas is reported as a function of percent H{sub 2} and SF{sub 6}. GaN etch rates were found to be 2 to 3 times greater in Cl{sub 2}/H{sub 2}/Ar discharges than in BCl{sub 3}/H{sub 2}/Ar discharges independent of the H{sub 2} concentration. In both discharges, the etch rates decreased as the H{sub 2} concentration increased above 10%. When SF{sub 6} was substituted for H{sub 2}, the GaN etch rates in BCl{sub 3}-based plasmas were greater than those for the Cl{sub 2}-based discharges as the SF{sub 6} concentration increased. GaN etch rates were greater in Cl{sub 2}/H{sub 2}/Ar discharges as compared to Cl{sub 2}SF{sub 6}/Ar discharges whereas the opposite trend was observed for BCl{sub 3}-based discharges. Variations in surface morphology and near-surface stoichiometry due to plasma chemistries were also investigated using atomic force microscopy and Auger spectroscopy, respectively.

  1. Photoluminescence of Zn-implanted GaN

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Hutchby, J. A.

    1974-01-01

    The photoluminescence spectrum of Zn-implanted GaN peaks at 2.87 eV at room temperature. The emission efficiency decreases linearly with the logarithm of the Zn concentration in the range from 1 x 10 to the 18th to 20 x 10 to the 18th Zn/cu cm.

  2. Properties of H, O and C in GaN

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.

    1996-04-01

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  3. Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals.

    PubMed

    Liu, Xinfeng; Ha, Son Tung; Zhang, Qing; de la Mata, Maria; Magen, César; Arbiol, Jordi; Sum, Tze Chien; Xiong, Qihua

    2015-01-27

    We report on the synthesis and optical gain properties of regularly shaped lead iodide (PbI2) platelets with thickness ranging from 10-500 nm synthesized by chemical vapor deposition methods. The as-prepared single crystalline platelets exhibit a near band edge emission of ∼ 500 nm. Whispering gallery mode (WGM) lasing from individual hexagonal shaped PbI2 platelets is demonstrated in the temperature-range of 77-210 K, where the lasing modes are supported by platelets as thin as 45 nm. The finite-difference time-domain simulation and the edge-length dependent threshold confirm the planar WGM lasing mechanism in such hexagonal shaped PbI2 platelet. Through a comprehensive study of power-dependent photoluminescence (PL) and time-resolved PL spectroscopy, we ascribe the WGM lasing to be biexcitonic in nature. Moreover, for different thicknesses of platelet, the lowest lasing threshold occurs in platelets of ∼ 120 nm, which attributes to the formation of a good Fabry-Pérot resonance cavity in the vertical direction between the top and bottom platelet surfaces that enhances the reflection. Our present study demonstrates the feasibility of planar light sources based on layered semiconductor materials and that their thickness-dependent threshold characteristic is beneficial for the optimization of layered material based optoelectronic devices.

  4. Covalent bonding and J-J mixing effects on the EPR parameters of Er3 + ions in GaN crystal

    NASA Astrophysics Data System (ADS)

    Rui-Peng, Chai; Long, Li; Liang, Liang; Qing, Pang

    2016-07-01

    The EPR parameters of trivalent Er3+ ions doped in hexagonal GaN crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er3+ ion and the replaced Ga3+ ion apart from the intrinsic covalency of host GaN. Furthermore, the J-J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J-J mixing contribution is from the manifold 2K15/2, which accounts for about 2.5%. The next important J-J contribution arises from the crystal-field mixture between the ground state 4I15/2 and the first excited state 4I13/2, and is usually less than 0.2%. The contributions from the rest states may be ignored. Project supported by the Foundation of Education Department of Shaanxi Province, China (Grant No. 16JK1461).

  5. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution

    SciTech Connect

    Schuster, Fabian Winnerl, Andrea; Weiszer, Saskia; Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin

    2015-01-28

    In this work, we present a detailed study on GaN nanowire doping, which is vital for device fabrication. The nanowires (NWs) are grown by means of molecular beam epitaxy on diamond (111) substrates. Dopant atoms are found to facilitate nucleation, thus an increasing NW density is observed for increasing dopant fluxes. While maintaining nanowire morphology, we demonstrate the incorporation of Si and Mg up to concentrations of 9× 10{sup 20}cm{sup −3} and 1 × 10{sup 20}cm{sup −3}, respectively. The dopant concentration in the nanowire cores is determined by the thermodynamic solubility limit, whereas excess dopants are found to segregate to the nanowire surface. The strain state of the NWs is investigated by X-ray diffraction, which confirms a negligible strain compared to planar thin films. Doping-related emissions are identified in low-temperature photoluminescence spectroscopy and the temperature quenching yields ionization energies of Si donors and Mg acceptors of 17 meV and 167 meV, respectively. At room temperature, luminescence and absorption spectra are found to coincide and the sub-band gap absorption is suppressed in n-type NWs. The charge carrier distribution in doped GaN nanowires is simulated under consideration of surface states at the non-polar side facets. For doping concentrations below 10{sup 17}cm{sup −3}, the nanowires are depleted of charge carriers, whereas they become highly conductive above 10{sup 19}cm{sup −3}.

  6. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    NASA Astrophysics Data System (ADS)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  7. GaN as a radiation hard particle detector

    NASA Astrophysics Data System (ADS)

    Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O'Shea, V.

    2007-06-01

    Semiconductor tracking detectors at experiments such as ATLAS and LHCb at the CERN Large Hadron Collider (LHC) will be subjected to intense levels of radiation. The proposed machine upgrade, the Super-LHC (SLHC), to 10 times the initial luminosity of the LHC will require detectors that are ultra-radiation hard. Much of the current research into finding a detector that will meet the requirements of the SLHC has focused on using silicon substrates with enhanced levels of oxygen, for example Czochralski silicon and diffusion oxygenated float zone silicon, and into novel detector structures such as 3D devices. Another avenue currently being investigated is the use of wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN). Both SiC and GaN should be intrinsically more radiation hard than silicon. Pad and guard ring structures were fabricated on three epitaxial GaN wafers. The epitaxial GaN thickness was either 2.5 or 12 μm and the fabricated detectors were irradiated to various fluences with 24 GeV/c protons and 1 MeV neutrons. Detectors were characterised pre- and post-irradiation by performing current-voltage ( I- V) and charge collection efficiency (CCE) measurements. Devices fabricated on 12 μm epitaxial GaN irradiated to fluences of 1016 protons cm-2 and 1016 neutrons cm-2 show maximum CCE values of 26% and 20%, respectively, compared to a maximum CCE of 53% of the unirradiated device.

  8. Substitutional and interstitial carbon in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Wright, A. F.

    2002-09-01

    First-principles theoretical results are presented for substitutional and interstitial carbon in wurtzite GaN. Carbon is found to be a shallow acceptor when substituted for nitrogen (CN) and a shallow donor when substituted for gallium (CGa). Interstitial carbon (CI) is found to assume different configurations depending on the Fermi level: A site at the center of the c-axis channel is favored when the Fermi level is below 0.9 eV (relative to the valence band maximum) and a split-interstitial configuration is favored otherwise. Both configurations produce partly filled energy levels near the middle of the gap, and CI should therefore exhibit deep donor behavior in p-type GaN and deep acceptor behavior in n-type GaN. Formation energies for CN, CGa, and CI are similar, making it likely that CN acceptors will be compensated by other carbon species. CGa is predicted to be the primary compensating species when growth occurs under N-rich conditions while channel CI is predicted to be the primary compensating species under Ga-rich growth conditions. Self-compensation is predicted to be more significant under Ga-rich growth conditions than under N-rich conditions. Experimental evidence for self-compensation is discussed. Four carbon complexes are discussed. CN-VGa is found to be unstable when the Fermi level is above the middle of the gap due to the high stability of gallium vacancies (VGa). The CN-VGa complex was previously suggested as a source of the broad 2.2 eV luminescence peak often observed in n-type GaN. The present results indicate that this is unlikely. The CI-CN complex is capable of forming in carbon doped GaN grown under Ga-rich conditions if the mobility of the constituents is high enough. Experimental evidence for its existence is discussed.

  9. Electrical properties and electronic structure of Si-implanted hexagonal boron nitride films

    SciTech Connect

    He, B.; Yuen, M. F.; Zhang, W. J.; Qiu, M.

    2014-07-07

    Si ion implantation with a set of ion energies and ion doses was carried out to dope hexagonal boron nitride (hBN) thin films synthesized by radio-frequency magnetron sputtering. Hall effect measurements revealed n-type conduction with a low resistivity of 0.5 Ω cm at room temperature, corresponding to an electron concentration of 2.0 × 10{sup 19} cm{sup −3} and a mobility of 0.6 cm{sup 2}/V s. Temperature-dependent resistivity measurements in a wide temperature range from 50 to 800 K demonstrated two shallow donor levels in the hBN band gap induced by Si doping, which was in consistence with the theoretical calculation by density function theory.

  10. Intrinsic magnetic properties of hexagonal LuFeO{sub 3} and the effects of nonstoichiometry

    SciTech Connect

    Moyer, Jarrett A. E-mail: schlom@cornell.edu; Schiffer, Peter; Misra, Rajiv; Mundy, Julia A.; Brooks, Charles M.; Heron, John T.; Muller, David A.; Schlom, Darrell G. E-mail: schlom@cornell.edu

    2014-01-01

    We used oxide molecular-beam epitaxy in a composition-spread geometry to deposit hexagonal LuFeO{sub 3} (h-LuFeO{sub 3}) thin films with a monotonic variation in the Lu/Fe cation ratio, creating a mosaic of samples that ranged from iron rich to lutetium rich. We characterized the effects of composition variation with x-ray diffraction, atomic force microscopy, scanning transmission electron microscopy, and superconducting quantum interference device magnetometry. After identifying growth conditions leading to stoichiometric film growth, an additional sample was grown with a rotating sample stage. From this stoichiometric sample, we determined stoichiometric h-LuFeO{sub 3} to have a T{sub N} = 147 K and M{sub s} = 0.018 μ{sub B}/Fe.

  11. Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2015-11-11

    We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current. PMID:26509431

  12. Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation

    NASA Astrophysics Data System (ADS)

    Zihlmann, Simon; Makk, Péter; Vaz, Carlos A. F.; Schönenberger, Christian

    2016-03-01

    Ferromagnetic contacts are widely used to inject spin polarized currents into non-magnetic materials such as semiconductors or 2-dimensional materials like graphene. In these systems, oxidation of the ferromagnetic materials poses an intrinsic limitation on device performance. Here we investigate the role of ex situ transferred chemical vapour deposited hexagonal boron nitride (hBN) as an oxidation barrier for nanostructured cobalt and permalloy electrodes. The chemical state of the ferromagnets was investigated using x-ray photoemission electron microscopy because of its high sensitivity and lateral resolution. We have compared the oxide thickness formed on ferromagnetic nanostructures covered by hBN to uncovered reference structures. Our results show that hBN reduces the oxidation rate of ferromagnetic nanostructures suggesting that it could be used as an ultra-thin protection layer in future spintronic devices.

  13. Self-Assembly of Hexagonal Rod Arrays Based on Capillary Forces.

    PubMed

    Oliver; Bowden; Whitesides

    2000-04-15

    A series of well-ordered, extended mesostructures has been generated from hexagonal polyurethane rods (15x3.2 mm) by self-assembly using capillary forces. The surface of one or more sides of the rods was rendered hydrophilic by exposure to an oxygen plasma. This modification determined the pattern of hydrophobic and hydrophilic faces; the hydrophobic sides were coated with a thin film of a hydrophobic lubricant. Agitation of the rods in an approximately isodense aqueous environment resulted in their self-assembly, in a process reflecting the action of capillary forces, into an array whose structure depends on the pattern of hydrophobic sides; capillarity also aligned the ends of the rods. We also carried out experiments in reaction chambers that restricted the motion of the rods; this restriction served to increase the size and regularity of the assemblies. Copyright 2000 Academic Press.

  14. The stability and surface termination of hexagonal LuFeO3.

    PubMed

    Cao, Shi; Paudel, Tula R; Sinha, Kishan; Jiang, Xuanyuan; Wang, Wenbin; Tsymbal, Evgeny Y; Xu, Xiaoshan; Dowben, Peter A

    2015-05-01

    The surface termination and the nominal valence states for hexagonal LuFeO3 thin films grown on Al2O3(0 0 0 1) substrates were characterized by angle resolved x-ray photoemission spectroscopy. The Lu 4f, Fe 2p and O 1s core level spectra indicate that both the surface termination and the nominal valence depend on surface preparation, but the stable surface terminates in a Fe-O layer. This is consistent with the results of density functional calculations which predict that the Fe-O termination of LuFeO3(0 0 0 1) surface is energetically favorable and stable over a broad range of temperatures and oxygen partial pressures when it is reconstructed to eliminate surface polarity. PMID:25791898

  15. Exchange stiffness, magnetization, and spin waves in cubic and hexagonal phases of cobalt

    SciTech Connect

    Liu, X.; Steiner, M.M.; Sooryakumar, R.; Prinz, G.A.; Farrow, R.F.; Harp, G.

    1996-05-01

    We utilize Brillouin light scattering to investigate the magnetic properties of the hexagonal-close-packed as well as the body- and face-centered cubic phases of elemental cobalt stabilized as thin epilayers. Expressions for the dependence of the surface and bulk magnons on applied magnetic field and in-plane propagation direction yield the exchange stiffness constant {ital D}, saturation magnetization {ital M}, and magnetic anisotropy fields of the cobalt atoms synthesized in these distinct crystal structures. Estimates of {ital D} and {ital M} are also calculated from the electronic band structure for the different crystalline phases. Satisfactory agreement is found between theory and experiment. The implications of these results towards our understanding of magnetic properties of itinerant ferromagnets are discussed. {copyright} {ital 1996 The American Physical Society.}

  16. Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures

    SciTech Connect

    Kamalakar, M. Venkata Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-11-24

    Hexagonal boron nitride (h-BN) is a large bandgap insulating isomorph of graphene, ideal for atomically thin tunnel barrier applications. In this letter, we demonstrate large area chemical vapor deposited (CVD) h-BN as a promising spin tunnel barrier in graphene spin transport devices. In such structures, the ferromagnetic tunnel contacts with h-BN barrier are found to show robust tunneling characteristics over a large scale with resistances in the favorable range for efficient spin injection into graphene. The non-local spin transport and precession experiments reveal spin lifetime ≈500 ps and spin diffusion length ≈1.6 μm in graphene with tunnel spin polarization ≈11% at 100 K. The electrical and spin transport measurements at different injection bias current and gate voltages confirm tunnel spin injection through h-BN barrier. These results open up possibilities for implementation of large area CVD h-BN in spintronic technologies.

  17. Ab initio engineering of materials with stacked hexagonal tin frameworks

    NASA Astrophysics Data System (ADS)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  18. Ab initio engineering of materials with stacked hexagonal tin frameworks.

    PubMed

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  19. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  20. Stabilization of 4H hexagonal phase in gold nanoribbons

    PubMed Central

    Fan, Zhanxi; Bosman, Michel; Huang, Xiao; Huang, Ding; Yu, Yi; Ong, Khuong P.; Akimov, Yuriy A.; Wu, Lin; Li, Bing; Wu, Jumiati; Huang, Ying; Liu, Qing; Eng Png, Ching; Lip Gan, Chee; Yang, Peidong; Zhang, Hua

    2015-01-01

    Gold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials. PMID:26216712

  1. Ab initio engineering of materials with stacked hexagonal tin frameworks

    PubMed Central

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  2. Microstructural Investigation of SexTe100-x Thin Films Deposited on Si(100) Substrates by X-ray Diffractometer and Transmission Electron Microscopy Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Eun Tae; Lee, Jeong Yong; Kim, Yong Tae

    2007-11-01

    The microstructural properties of SexTe100-x (x=16,29,38) thin films are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. SexTe100-x thin films have a Te hexagonal structure and Te{011} interplanar spacing decreases because some Se atoms occupy Te atomic sites, forming Se helical chains within the Te helical chains. By increasing the Se contents from 16 to 29 at. %, Se5.95Te1.05 monoclinic and Se hexagonal structures coexist in a grain and at 38 at. %, a Se hexagonal structure is observed within the Te hexagonal grain. This means that SexTe100-x thin films maintain the Te hexagonal structure and that phase separation does not occur owing to the short diffusion time.

  3. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    SciTech Connect

    Tay, Roland Yingjie; Tsang, Siu Hon; Loeblein, Manuela; Chow, Wai Leong; Loh, Guan Chee; Toh, Joo Wah; Ang, Soon Loong; Teo, Edwin Hang Tong

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  4. Piezoelectric MEMS resonators based on ultrathin epitaxial GaN heterostructures on Si

    NASA Astrophysics Data System (ADS)

    Leclaire, P.; Frayssinet, E.; Morelle, C.; Cordier, Y.; Théron, D.; Faucher, M.

    2016-10-01

    We present the first results for microelectromechanical (MEMS) resonators fabricated on epitaxial nitride semiconductors with thin buffers engineered for MEMS and NEMS applications. These results are used to assess the use of thin buffers for GaN MEMS fabrication. On a 700 nm thick AlGaN/GaN epilayer, a high tensile stress is observed to increase the resonant frequency. The electromechanical coupling efficiencies of integrated transducers are assessed and compared with previously obtained results on commercially available 2 µm thick epilayers used for power transistor applications. A 28 nm V-1 actuation efficiency is measured on the 700 nm thick structure which is slightly better than the one measured on the 2 µm buffer. The electrical response of a gateless detector designed as a piezoresistance is obtained and a gauge factor of 60 is estimated. These results show that material issues can be unlocked to exploit the potentialities of III-nitrides for NEMS applications.

  5. Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer

    NASA Astrophysics Data System (ADS)

    Rajan, Akhil; Rogers, David J.; Ton-That, Cuong; Zhu, Liangchen; Phillips, Matthew R.; Sundaram, Suresh; Gautier, Simon; Moudakir, Tarik; El-Gmili, Youssef; Ougazzaden, Abdallah; Sandana, Vinod E.; Teherani, Ferechteh H.; Bove, Philippe; Prior, Kevin A.; Djebbour, Zakaria; McClintock, Ryan; Razeghi, Manijeh

    2016-08-01

    Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling.

  6. Morphology of open films of discotic hexagonal columnar liquid crystals as probed by grazing incidence X-ray diffraction.

    PubMed

    Grelet, Eric; Dardel, Sébastien; Bock, Harald; Goldmann, Michel; Lacaze, Emmanuelle; Nallet, Frédéric

    2010-04-01

    The structure and the orientation of thermotropic hexagonal columnar liquid crystals are studied by grazing incidence X-ray diffraction (GIXD) for different discotic compounds in the geometry of open supported thin films. Whatever the film deposition mode (either spin-coating or vacuum evaporation) and the film thickness, a degenerate planar alignment with the liquid crystalline columns parallel to the substrate is found. However, if a specific thermal process is applied to the liquid crystal film, homeotropic anchoring (columns normal to the interface) can be stabilized in a metastable state. PMID:20411293

  7. Backscattering by hexagonal ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2013-08-01

    Light backscattering by randomly oriented hexagonal ice crystals of cirrus clouds is considered within the framework of the physical-optics approximation. The fine angular structure of all elements of the Mueller matrix in the vicinity of the exact backward direction is first calculated and discussed. In particular, an approximate equation for the differential scattering cross section is obtained. Its simple spectral dependence is discussed. Also, a hollow of the linear depolarization ratio around the exact backward direction inherent to the long hexagonal columns is revealed.

  8. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    Al-Hamdani, Yasmine S.; Ma, Ming; Alfè, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    2015-05-01

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  9. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo.

    PubMed

    Al-Hamdani, Yasmine S; Ma, Ming; Alfè, Dario; von Lilienfeld, O Anatole; Michaelides, Angelos

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT. PMID:25978876

  10. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    SciTech Connect

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alfè, Dario; Lilienfeld, O. Anatole von

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  11. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg

  12. Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots.

    PubMed

    Lin, T N; Inciong, M R; Santiago, S R M S; Yeh, T W; Yang, W Y; Yuan, C T; Shen, J L; Kuo, H C; Chiu, C H

    2016-03-18

    We demonstrate a new doping scheme where photo-induced carriers from graphene quantum dots (GQDs) can be injected into GaN and greatly enhance photoluminescence (PL) in GaN epilayers. An 8.3-fold enhancement of PL in GaN is observed after the doping. On the basis of time-resolved PL studies, the PL enhancement is attributed to the carrier transfer from GQDs to GaN. Such a carrier transfer process is caused by the work function difference between GQDs and GaN, which is verified by Kelvin probe measurements. We have also observed that photocurrent in GaN can be enhanced by 23-fold due to photo-induced doping with GQDs. The improved optical and transport properties from photo-induced doping are promising for applications in GaN-based optoelectronic devices.

  13. Computational synthesis of single-layer GaN on refractory materials

    SciTech Connect

    Singh, Arunima K.; Hennig, Richard G.

    2014-08-04

    The synthesis of single-layer materials relies on suitable substrates. In this paper, we identify suitable substrates for the stabilization and growth of single-layer GaN and characterize the effect of the substrate on the electronic structure of single-layer GaN. We identify two classes of epitaxial substrates, refractory metal diborides and transition-metal dichalcogenides. We find that the refractory diborides provide epitaxial stabilization for the growth and functionalization of single layer GaN. We show that chemical interactions of single layer GaN with the diboride substrates result in n-type doping of the single-layer GaN. Transition-metal dichalcogenides, on the other hand, although epitaxially matched, cannot provide sufficient thermodynamic stabilization for the growth of single layer GaN. Nonetheless, energy band alignments of GaN/metal chalcogenides show that they make good candidates for heterostructures.

  14. Fabrication and characterization of GaN nanowire doubly clamped resonators

    SciTech Connect

    Maliakkal, Carina B. Mathew, John P.; Hatui, Nirupam; Rahman, A. Azizur; Deshmukh, Mandar M.; Bhattacharya, Arnab

    2015-09-21

    Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ∼90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are of the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.

  15. Fabrication and characterization of GaN nanowire doubly clamped resonators

    NASA Astrophysics Data System (ADS)

    Maliakkal, Carina B.; Mathew, John P.; Hatui, Nirupam; Rahman, A. Azizur; Deshmukh, Mandar M.; Bhattacharya, Arnab

    2015-09-01

    Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ˜90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are of the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.

  16. Study of radiation detection properties of GaN pn diode

    NASA Astrophysics Data System (ADS)

    Sugiura, Mutsuhito; Kushimoto, Maki; Mitsunari, Tadashi; Yamashita, Kohei; Honda, Yoshio; Amano, Hiroshi; Inoue, Yoku; Mimura, Hidenori; Aoki, Toru; Nakano, Takayuki

    2016-05-01

    Recently, GaN, which has remarkable properties as a material for optical devices and high-power electron devices, has also attracted attention as a material for radiation detectors. We previously suggested the use of BGaN as a neutron detector material. However, the radiation detection characteristics of GaN itself are not yet adequately understood. For realizing a BGaN neutron detector, the understanding of the radiation detection characteristics of GaN, which is a base material of the neutron detector, is important. In this study, we evaluated the radiation detection characteristics of GaN. We performed I-V and energy spectrum measurements under alpha ray, gamma ray, and thermal neutron irradiations to characterize the radiation detection characteristics of a GaN diode. The obtained results indicate that GaN is an effective material for our proposed new BGaN-based neutron detector.

  17. Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots

    PubMed Central

    Lin, T. N.; Inciong, M. R.; Santiago, S. R. M. S.; Yeh, T. W.; Yang, W. Y.; Yuan, C. T.; Shen, J. L.; Kuo, H. C.; Chiu, C. H.

    2016-01-01

    We demonstrate a new doping scheme where photo-induced carriers from graphene quantum dots (GQDs) can be injected into GaN and greatly enhance photoluminescence (PL) in GaN epilayers. An 8.3-fold enhancement of PL in GaN is observed after the doping. On the basis of time-resolved PL studies, the PL enhancement is attributed to the carrier transfer from GQDs to GaN. Such a carrier transfer process is caused by the work function difference between GQDs and GaN, which is verified by Kelvin probe measurements. We have also observed that photocurrent in GaN can be enhanced by 23-fold due to photo-induced doping with GQDs. The improved optical and transport properties from photo-induced doping are promising for applications in GaN-based optoelectronic devices. PMID:26987403

  18. Comparative study of GaN mesa etch characteristics in Cl{sub 2} based inductively coupled plasma with Ar and BCl{sub 3} as additive gases

    SciTech Connect

    Rawal, Dipendra Singh Arora, Henika; Sehgal, Bhupender Kumar; Muralidharan, Rangarajan

    2014-05-15

    GaN thin film etching is investigated and compared for mesa formation in inductively coupled plasma (ICP) of Cl{sub 2} with Ar and BCl{sub 3} gas additives using photoresist mask. Etch characteristics are studied as a function of ICP process parameters, viz., ICP power, radio frequency (RF) power, and chamber pressure at fixed total flow rate. The etch rate at each ICP/RF power is 0.1–0.2 μm/min higher for Cl{sub 2}/Ar mixture mainly due to higher Cl dissociation efficiency of Ar additive that readily provides Cl ion/radical for reaction in comparison to Cl{sub 2}/BCl{sub 3} mixture. Cl{sub 2}/Ar mixture also leads to better photoresist mask selectivity. The etch-induced roughness is investigated using atomic force microscopy. Cl{sub 2}/Ar etching has resulted in lower root-mean-square roughness of GaN etched surface in comparison to Cl{sub 2}/BCl{sub 3} etching due to increased Ar ion energy and flux with ICP/RF power that enhances the sputter removal of etch product. The GaN surface damage after etching is also evaluated using room temperature photoluminescence and found to be increasing with ICP/RF power for both the etch chemistries with higher degree of damage in Cl{sub 2}/BCl{sub 3} etching under same condition.

  19. Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy.

    PubMed

    Schuster, Fabian; Hetzl, Martin; Weiszer, Saskia; Garrido, Jose A; de la Mata, María; Magen, Cesar; Arbiol, Jordi; Stutzmann, Martin

    2015-03-11

    In this work the position-controlled growth of GaN nanowires (NWs) on diamond by means of molecular beam epitaxy is investigated. In terms of growth, diamond can be seen as a model substrate, providing information of systematic relevance also for other substrates. Thin Ti masks are structured by electron beam lithography which allows the fabrication of perfectly homogeneous GaN NW arrays with different diameters and distances. While the wurtzite NWs are found to be Ga-polar, N-polar nucleation leads to the formation of tripod structures with a zinc-blende core which can be efficiently suppressed above a substrate temperature of 870 °C. A variation of the III/V flux ratio reveals that both axial and radial growth rates are N-limited despite the globally N-rich growth conditions, which is explained by the different diffusion behavior of Ga and N atoms. Furthermore, it is shown that the hole arrangement has no effect on the selectivity but can be used to force a transition from nanowire to nanotube growth by employing a highly competitive growth regime.

  20. Structural and magnetic characterization of Sm-doped GaN grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dehara, Kentaro; Miyazaki, Yuta; Hasegawa, Shigehiko

    2016-05-01

    We have investigated structural, optical and magnetic properties of Sm-doped GaN thin films grown by plasma-assisted molecular beam epitaxy. Reflection high-energy electron diffraction and X-ray diffraction reveal that Ga1- x Sm x N films with a SmN mole fraction of ˜8% or below are grown on GaN templates without segregation of any secondary phases. With increasing SmN mole fraction, the c-axis lattice parameter of the GaSmN films linearly increases. GaSmN films with low Sm concentrations exhibit inner-4f transitions of Sm3+ in photoluminescence spectra. The present findings show that Sm atoms are substituted for some Ga atoms as trivalent ions (Sm3+). The Ga1- x Sm x N films display hysteresis loops in magnetization versus external magnetic field (M-H) curves even at 300 K. We will discuss the origin of these features together with the corresponding temperature dependences of magnetization.

  1. Absolute surface energy calculations of Wurtzite (0001)/(000-1): a study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. We used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches, for both GGA and HSE. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 at CUHK.

  2. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  3. Growth kinetics and characterizations of gallium nitride thin films by remote PECVD

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Bachmann, K. J.; Lucovsky, G.

    1993-01-01

    Thin films of GaN have been deposited at relatively low growth temperatures by remote plasma-enhanced chemical-vapor deposition (RPECVD), using a plasma excited NH3, and trimethylgallium (TMG), injected downstream from the plasma. The activation energy for GaN growth has been tentatively assigned to the dissociation of NH groups as the primary N-atom precursors in the surface reaction with adsorbed TMG, or TMG fragments. At high He flow rates, an abrupt increase in the growth rate is observed and corresponds to a change in the reaction mechanism attributed to the formation of atomic N. XRD reveals an increased tendency to ordered growth in the (0001) direction with increasing growth temperature, He flow rate, and RF plasma power. IR spectra show the fundamental lattice mode of GaN at 530 cm without evidence for vibrational modes of hydrocarbon groups.

  4. Trap states in enhancement-mode double heterostructures AlGaN/GaN high electron mobility transistors with different GaN channel layer thicknesses

    NASA Astrophysics Data System (ADS)

    He, Yunlong; Li, Peixian; Wang, Chong; Li, Xiangdong; Zhao, Shenglei; Mi, Minhan; Pei, Jiuqing; Zhang, Jincheng; Ma, Xiaohua; Hao, Yue

    2015-08-01

    This is the report on trap states in enhancement-mode AlGaN/GaN/AlGaN double heterostructures high electron mobility transistors by fluorine plasma treatment with different GaN channel layer thicknesses. Compared with the thick GaN channel layer sample, the thin one has smaller 2DEG concentration, lower electron mobility, lower saturation current, and lower peak transconductance, but it has a higher threshold voltage of 1.2 V. Deep level transient spectroscopy measurements are used to obtain the accurate capture cross section of trap states. By frequency dependent capacitance and conductance measurements, the trap state density of (1.98-2.56) × 1012 cm-2 eV-1 is located at ET in a range of (0.37-0.44) eV in the thin sample, while the trap state density of (2.3-2.92) × 1012 cm-2 eV-1 is located at ET in a range of (0.33-0.38) eV in the thick one. It indicates that the trap states in the thin sample are deeper than those in the thick one.

  5. Trap states in enhancement-mode double heterostructures AlGaN/GaN high electron mobility transistors with different GaN channel layer thicknesses

    SciTech Connect

    He, Yunlong; Wang, Chong Li, Xiangdong; Zhao, Shenglei; Mi, Minhan; Pei, Jiuqing; Zhang, Jincheng; Hao, Yue; Li, Peixian; Ma, Xiaohua

    2015-08-10

    This is the report on trap states in enhancement-mode AlGaN/GaN/AlGaN double heterostructures high electron mobility transistors by fluorine plasma treatment with different GaN channel layer thicknesses. Compared with the thick GaN channel layer sample, the thin one has smaller 2DEG concentration, lower electron mobility, lower saturation current, and lower peak transconductance, but it has a higher threshold voltage of 1.2 V. Deep level transient spectroscopy measurements are used to obtain the accurate capture cross section of trap states. By frequency dependent capacitance and conductance measurements, the trap state density of (1.98–2.56) × 10{sup 12 }cm{sup −2} eV{sup −1} is located at E{sub T} in a range of (0.37–0.44) eV in the thin sample, while the trap state density of (2.3–2.92) × 10{sup 12 }cm{sup −2} eV{sup −1} is located at E{sub T} in a range of (0.33–0.38) eV in the thick one. It indicates that the trap states in the thin sample are deeper than those in the thick one.

  6. Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms.

    PubMed

    Ding, Liyong; Chen, Huan; Wang, Qingqian; Zhou, Tengfei; Jiang, Qingqing; Yuan, Yuhong; Li, Jinlin; Hu, Juncheng

    2016-01-18

    Porous BiOCl hexagonal prisms have been successfully prepared through a simple solvothermal route. These novel BiOCl HPs with porous structures are assembled from nanoparticles and exhibit high activity and selectivity toward the photocatalytic aerobic oxidation of benzyl alcohol to benzaldehyde and degradation of methyl orange. PMID:26592759

  7. Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires.

    PubMed

    Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Li, Xinzheng; Zhang, Xixiang; Shen, Bo

    2016-02-10

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about 2-fold larger in magnitude than those on the (0001̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  8. Photogrammetric processing of hexagon stereo data for change detection studies

    NASA Astrophysics Data System (ADS)

    Padmanabha, E. Anantha; Shashivardhan Reddy, P.; Narender, B.; Muralikrishnan, S.; Dadhwal, V. K.

    2014-11-01

    Hexagon satellite data acquired as a part of USA Corona program has been declassified and is accessible to general public. This image data was acquired in high resolution much before the launch of civilian satellites. However the non availability of interior and exterior orientation parameters is the main bottle neck in photogrammetric processing of this data. In the present study, an attempt was made to orient and adjust Hexagon stereo pair through Rigorous Sensor Model (RSM) and Rational Function Models (RFM). The study area is part of Western Ghats in India. For rigorous sensor modelling an arbitrary camera file is generated based on the information available in the literature and few assumptions. A terrain dependent RFM was generated for the stereo data using Cartosat-1 reference data. The model accuracy achieved for both RSM and RFM was better than one pixel. DEM and orthoimage were generated with a spacing of 50 m and Ground Sampling Distance (GSD) of 6 m to carry out the change detection with a special emphasis on water bodies with reference to recent Cartosat-1 data. About 72 new water bodies covering an area of 2300 hectares (23 sq. km) were identified in Cartosat-1 orthoimage that were not present in Hexagon data. The image data from various Corona programs like Hexagon provide a rich source of information for temporal studies. However photogrammetric processing of the data is a bit tedious due to lack of information about internal sensor geometry.

  9. Giant Hexagonal Superstructures in Diblock-Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Haluska, Christopher K.; Góźdź, Wojciech T.; Döbereiner, Hans-Günther; Förster, Stephan; Gompper, Gerhard

    2002-11-01

    We have observed polymersomes of high genus with their vesicle wall organized on the micrometer scale either in a double bilayer connected by a lattice of passages or a tubular network with hexagonal symmetry. Experimentally found shape classes are identified within a theoretical phase diagram based on the bending energy of the polymer membrane. Pronounced morphological changes could be induced and controlled by temperature.

  10. On the Structure of a New Superhard Hexagonal Carbon Phase

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liang, Yongcheng; Guo, Zaoyang; Bordas, Stéphane

    2010-05-01

    Molecular dynamics simulations show that graphite will transform into a superhard phase under cold compression. Recent experiments show that there is a sp3-rich hexagonal carbon polymorph (a0 = 2.496 Å, c0 = 4.123 Å) with a bulk modulus of 447 GPa and average density about 3.6 g/cm3, restricted to the space group of P-62c (No. 190), but the detailed atomic structure was not obtained [Wang et al., P. Natl. Acad. Sci. 101(38), 13699]. Here we set carbon atoms occupying P-62c 4f Wyckoff positions of P-62c, and calculate the total energy of the different structures changing the internal parameter z by first-principles calculations using geometry optimisation algorithm in CASTEP code, which shows that the stable structures in energy (at local minimum points) are hexagonal carbon (z = 1/4) and hexagonal diamond (z = 1/16). The calculated mechanical properties and lattice parameters of the structure P-62c 4f (z = 1/4) are in good agreement with those of the new hexagonal carbon proposed by Wang et al., which indicates that the atomic structure is a possible candidate.

  11. Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms.

    PubMed

    Ding, Liyong; Chen, Huan; Wang, Qingqian; Zhou, Tengfei; Jiang, Qingqing; Yuan, Yuhong; Li, Jinlin; Hu, Juncheng

    2016-01-18

    Porous BiOCl hexagonal prisms have been successfully prepared through a simple solvothermal route. These novel BiOCl HPs with porous structures are assembled from nanoparticles and exhibit high activity and selectivity toward the photocatalytic aerobic oxidation of benzyl alcohol to benzaldehyde and degradation of methyl orange.

  12. Direct growth of freestanding GaN on C-face SiC by HVPE

    PubMed Central

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-01-01

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra. PMID:26034939

  13. Si in GaN -- On the nature of the background donor

    SciTech Connect

    Wetzel, C.; Chen, A.L.; Suski, T.; Ager, J.W. III; Walukiewicz, W.

    1996-08-01

    A characterization of the Si impurity in GaN is performed by Raman spectroscopy. Applying hydrostatic pressure up to 25 GPa the authors study the behavior of the LO phonon-plasmon mode in a series of high mobility Si doped GaN films. In contrast to earlier results on unintentionally doped bulk GaN crystals no freeze out of the free carriers could be observed in Si doped samples. The authors find that Si is a shallow hydrogenic donor throughout the pressure range studied. This result positively excludes Si incorporation as a dominant source of free electrons in previously studied bulk GaN samples.

  14. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  15. Dislocation-induced nanoparticle decoration on a GaN nanowire.

    PubMed

    Yang, Bing; Yuan, Fang; Liu, Qingyun; Huang, Nan; Qiu, Jianhang; Staedler, Thorsten; Liu, Baodan; Jiang, Xin

    2015-02-01

    GaN nanowires with homoepitaxial decorated GaN nanoparticles on their surface along the radial direction have been synthesized by means of a chemical vapor deposition method. The growth of GaN nanowires is catalyzed by Au particles via the vapor-liquid-solid (VLS) mechanism. Screw dislocations are generated along the radial direction of the nanowires under slight Zn doping. In contrast to the metal-catalyst-assisted VLS growth, GaN nanoparticles are found to prefer to nucleate and grow at these dislocation sites. High-resolution transmission electron microscopy (HRTEM) analysis demonstrates that the GaN nanoparticles possess two types of epitaxial orientation with respect to the corresponding GaN nanowire: (I) [1̅21̅0]np//[1̅21̅0]nw, (0001)np//(0001)nw; (II) [1̅21̅3]np//[12̅10]nw, (101̅0)np//(101̅0)nw. An increased Ga signal in the energy-dispersive spectroscopy (EDS) profile lines of the nanowires suggests GaN nanoparticle growth at the edge surface of the wires. All the crystallographic results confirm the importance of the dislocations with respect to the homoepitaxial growth of the GaN nanoparticles. Here, screw dislocations situated on the (0001) plane provide the self-step source to enable nucleation of the GaN nanoparticles.

  16. Structural defects in GaN revealed by Transmission Electron Microscopy

    SciTech Connect

    Liliental-Weber, Zuzanna

    2014-09-08

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  17. Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity.

    PubMed

    Fernández-Garrido, Sergio; Kong, Xiang; Gotschke, Tobias; Calarco, Raffaella; Geelhaar, Lutz; Trampert, Achim; Brandt, Oliver

    2012-12-12

    We experimentally investigate whether crystal polarity affects the growth of GaN nanowires in plasma-assisted molecular beam epitaxy and whether their formation has to be induced by defects. For this purpose, we prepare smooth and coherently strained AlN layers on 6H-SiC(0001) and SiC(0001̅) substrates to ensure a well-defined polarity and an absence of structural and morphological defects. On N-polar AlN, a homogeneous and dense N-polar GaN nanowire array forms, evidencing that GaN nanowires form spontaneously in the absence of defects. On Al-polar AlN, we do not observe the formation of Ga-polar GaN NWs. Instead, sparse N-polar GaN nanowires grow embedded in a Ga-polar GaN layer. These N-polar GaN nanowires are shown to be accidental in that the necessary polarity inversion is induced by the formation of Si(x)N. The present findings thus demonstrate that spontaneously formed GaN nanowires are irrevocably N-polar. Due to the strong impact of the polarity on the properties of GaN-based devices, these results are not only essential to understand the spontaneous formation of GaN nanowires but also of high technological relevance.

  18. Self-induced GaN nanowire growth: surface density determination

    NASA Astrophysics Data System (ADS)

    Koryakin, A. A.; Repetun, L.; Sibirev, N. V.; Dubrovskii, V. G.

    2016-08-01

    A new numerical approach for the determination of the GaN nanowire surface density on an AlN/Si substrate as a function of the growth time and gallium flux is presented. Within this approach, the GaN island solid-like coalescence and island-nanowire transition are modeled by the Monte-Carlo method. We show the importance of taking into consideration the island coalescence for explaining that the maximum of GaN island surface density is several times larger than the maximum of GaN nanowire surface density. Also, we find that the nanowire surface density decreases with an increase of the gallium flux.

  19. Mismatch relaxation by stacking fault formation of AlN islands in AlGaN/GaN structures on m-plane GaN substrates

    SciTech Connect

    Smalc-Koziorowska, Julita; Sawicka, Marta; Skierbiszewski, Czeslaw; Grzegory, Izabella

    2011-08-08

    We study the mismatch relaxation of 2-5 nm thin elongated AlN islands formed during growth of AlGaN on bulk m-plane GaN by molecular beam epitaxy. The relaxation of these m-plane AlN layers is anisotropic and occurs through the introduction of stacking faults in [0001] planes during island coalescence, while no relaxation is observed along the perpendicular [1120] direction. This anisotropy in the mismatch relaxation and the formation of stacking faults in the AlN islands are explained by the growth mode of the AlN platelets and their coalescence along the [0001] direction.

  20. UV-photoassisted etching of GaN in KOH

    SciTech Connect

    Cho, H.; Donovan, S.M.; Abernathy, C.R.; Lambers, E.S.; Pearton, S.J.; Auh, K.H.; Han, J.; Shul, R.J.

    1999-03-01

    The etch rate of GaN under ultraviolet-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias, and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n {approximately} 3 {times} 10{sup 16} cm{sup {minus}3}) GaN are {ge} 1,000 {angstrom} {center_dot} min{sup {minus}1}. The etching is diffusion-limited under the conditions with an activation energy of {approximately} 0.8 kCal{center_dot}mol{sup {minus}1}. The etched surfaces are rough, but retain their stoichiometry.

  1. Status of GaN HEMT performance and reliability

    NASA Astrophysics Data System (ADS)

    Green, Daniel S.; Brown, J. D.; Vetury, R.; Lee, S.; Gibb, S. R.; Krishnamurthy, K.; Poulton, M. J.; Martin, J.; Shealy, J. B.

    2008-02-01

    This report will focus on the status of GaN HEMT based amplifier technology development at RFMD. This technology is based around GaN on semi-insulating SiC substrates for optimal thermal performance. RFMD's 0.5μm gate technology features high performance advanced field plate structures, including a unit power cell producing high gain (21dB), high power density (3-5W/mm at 28V) and high efficiency (65-70 percent) at cellular frequencies. We will report on transistor and module performance relevant to applications ranging from high power, high bandwidth amplifiers, to switches and ICs for radar, electronic warfare, cellular infrastructure and homeland security. Additionally, we will report on reliability results that demonstrate capability for dependable, high voltage operation.

  2. GaN UV detectors for protein studies

    NASA Astrophysics Data System (ADS)

    Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Manolopoulos, S.; O'Shea, V.

    2006-07-01

    GaN and its ternary alloy AlGaN have been investigated as UV detector materials for applications in protein structure studies. Interdigitated metal-semiconductor-metal (MSM) finger photodiodes, with finger spacings/widths of 5 and 10 μm, were successfully fabricated on six different GaN/AlGaN materials. Current-Voltage ( I- V) characteristics and spectral response measurements were made on completed devices. The results showed negligible difference in performance between the 5 μm finger spacing/width diode design and the 10 μm finger spacing/width diode design. Using these results, a 46 channel diode array, with a finger spacing/width of 10 μm, was successfully fabricated on 2.5 μm thick epitaxial GaN. This 46 channel diode array will be used in a protein structure experiment at the Daresbury SRS.

  3. ITON Schottky contacts for GaN based UV photodetectors

    NASA Astrophysics Data System (ADS)

    Vanhove, N.; John, J.; Lorenz, A.; Cheng, K.; Borghs, G.; Haverkort, J. E. M.

    2006-12-01

    Lateral Schottky ultraviolet detectors were fabricated in GaN using indium-tin-oxynitride (ITON) as a contact metal. The GaN semiconductor material was grown on 2 in. sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The Schottky contact has been realized using ITON that has been deposited using sputter techniques. I- V characteristics have been measured with and without UV illumination. The device shows photo-to-dark current ratios of 10 3 at -1 V bias. The spectral responsivity of the UV detectors has been determined. The high spectral responsivity of more than 30 A/W at 240 nm is explained by a high internal gain caused by generation-recombination centers at the ITON/GaN interface. Persistent photocurrent effect has been observed in UV light (on-off) switching operation, time constant and electron capture coefficient of the transition has been determined.

  4. Thermal functionalization of GaN surfaces with 1-alkenes.

    PubMed

    Schwarz, Stefan U; Cimalla, Volker; Eichapfel, Georg; Himmerlich, Marcel; Krischok, Stefan; Ambacher, Oliver

    2013-05-28

    A thermally induced functionalization process for gallium nitride surfaces with 1-alkenes is introduced. The resulting functionalization layers are characterized with atomic force microscopy and X-ray photoelectron spectroscopy and compared to reference samples without and with a photochemically generated functionalization layer. The resulting layers show very promising characteristics as functionalization for GaN based biosensors. On the basis of the experimental results, important characteristics of the functionalization layers are estimated and a possible chemical reaction scheme is proposed. PMID:23617559

  5. Photoluminescence of ion-implanted GaN

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Hutchby, J. A.

    1976-01-01

    Thirty-five elements were implanted in GaN. Their photoluminescence spectra were measured and compared to those of an unimplanted control sample. Most impurities emit a peak at about 2.15 eV. Mg, Zn, Cd, Ca, As, Hg, and Ag have more characteristic emissions. Zn provides the most efficient recombination center. A set of midgap states is generated during the damage-annealing treatment.

  6. Optical properties of Yb ions in GaN epilayer

    NASA Astrophysics Data System (ADS)

    Jadwisienczak, W. M.; Lozykowski, H. J.

    2003-07-01

    In recent years, an important effort in semiconductor materials research has been devoted to III-nitrides semiconductors doped with rare earth ions due to the high potential of these materials in light-emitting device applications. Ytterbium (Yb 3+) is one of a few lanthanide ions which have not been investigated as an optically active center in these materials yet. In this paper we report the observation of luminescence from GaN films grown on sapphire (0 0 0 1) substrate by metal organic chemical vapor deposition and doped by implantation with Yb 3+ ions. The high resolution photo- and cathodoluminescence spectra of GaN:Yb 3+ were studied at different excitation conditions in temperatures ranging from 8 to 330 K and revealed weak thermal quenching. The luminescence emission lines are assigned to transitions between the spin-orbit levels 2F 5/2 → 2F 7/2 of Yb 3+ (4f 13). The analysis of the Yb luminescence spectra allowed us to suggest the energy level diagram of the crystal-field-split 4f 13 levels for the Yb ion center. The most probable lattice location of Yb in GaN is the substitutional Ga site. Furthermore, the luminescence kinetics of internal transitions of Yb 3+ incorporated in GaN was investigated by means of decay and time-resolved luminescence measurements. It was found that the ytterbium decay is non-exponential with dominant exponential term of ˜100 μs with little dependence on the ambient temperature. The results indicate that Yb-doped GaN epilayer may be suitable as a material for near infrared optoelectronic devices.

  7. TOPICAL REVIEW: Polar and nonpolar GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Daudin, Bruno

    2008-11-01

    Growth, structural and optical properties of GaN quantum dots are reviewed, with a special emphasis on plasma-assisted molecular beam epitaxy. The versatility of this technique makes it particularly adapted to growth of quantum dots, either polar (c-plane) or nonpolar (a-plane and m-plane). After describing in detail the growth process and analyzing the morphology of the dots, we review the optical properties of these nanostructures and discuss the properties of single dots.

  8. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes

    SciTech Connect

    Gawrisch, K.; Parsegian, V.A. ); Hajduk, D.A.; Tate, M.W.; Gruner, S.M. ); Fuller, N.L.; Rand, R.P. )

    1992-03-24

    The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from {minus}5 to +50C. At temperature above 22C, the dispersions form an inverse (H{sub II}) phase at all water concentrations. Below 25C, an H{sub II} phase occurs at high water concentrations, an L{sub {alpha}} phase is formed at intermediate water concentrations, and finally the system switches back to an H{sub II} phase at low water concentrations. The enthalpy of the L{sub {alpha}}-H{sub II}-phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using {sup 31}P and {sup 2}H NMR and X-ray diffraction. The authors measured the trapped water volumes in H{sub II} and L{sub {alpha}} phases as a function of osmotic pressure. The change of the H{sub II}-phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The H{sub II}-L{sub {alpha}}-H{sub II} double-phase transition at temperatures below 22C can be shown to be a consequence of (1) the greater degree of hydration of the H{sub II} phase in excess water and (2) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams.

  9. Coating MCPs with AlN and GaN

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhakim; Starikov, David; Boney, Chris

    2006-01-01

    A development effort underway at the time of reporting the information for this article is devoted to increasing the sensitivity of microchannel plates (MCPs) as detectors of photons and ions by coating the MCPs with nitrides of elements in period III of the periodic table. Conventional MCPs are relatively insensitive to slowly moving, large-mass ions for example, ions of biomolecules under analysis in mass spectrometers. The idea underlying this development is to coat an MCP to reduce its work function (decrease its electron affinity) in order to increase both (1) the emission of electrons in response to impingement of low-energy, large-mass ions and (2) the multiplying effect of secondary electron emission. Of particular interest as coating materials having appropriately low or even negative electron affinities are gallium nitride, aluminum nitride, and ternary alloys of general composition Al(x)Ga(1-x)N (where 0thin films of AlN and GaN both undoped and doped with Si were deposited on commercial MCPs by radio-frequency molecular-beam epitaxy (also known as plasma-assisted molecular-beam epitaxy) at temperatures <200 C. This deposition technique is particularly suitable because (1) MCPs cannot withstand the higher deposition-substrate temperatures used to decompose constituent compounds in some other deposition techniques and (2) in this technique, the constituent Al, Ga, and N

  10. UV-Photoassisted Etching of GaN in KOH

    SciTech Connect

    Abernathy, C.R.; Auh, K.H.; Cho, H.; Donovan, S.M.; Han, J.; Lambers, E.S.; Pearton, S.J.; Ren F.; Shul, R.J.

    1998-11-12

    The etch rate of GaN under W-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n - 3x 10^12Gcm-3) GaN are 2 1000 .min-l. The etching is diffusion limited under our conditions with an activation energy of - 0.8kCal.mol-1. The etched surfaces are rough, but retain their stoichiometry. PEC etching is found to selectively reveal grain boundaries in GaN under low light illumination conditions. At high lamp powers the rates increase with sample temperature and the application of bias to the PEC cell, while they go through a maximum with KOH solution molarity. The etching is diffusion-limited, producing rough surface morphologies that are suitable in a limited number of device fabrication steps. The surfaces however appear to remain relatively close to their stoichiometric composition.

  11. Magnesium diffusion profile in GaN grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Benzarti, Z.; Halidou, I.; Bougrioua, Z.; Boufaden, T.; El Jani, B.

    2008-07-01

    The diffusion of magnesium has been studied in GaN layers grown on sapphire substrate by atmospheric pressure metalorganic vapor-phase-epitaxy (MOVPE) in a "home-made" reactor. Secondary Ion Mass Spectroscopy (SIMS) was used to visualise the Mg profiles in two kinds of multi-sublayer GaN structures. One structure was grown with a variable flow of Ga precursor (TMG) and the second one with a variable growth temperature. In both cases, the Mg dopant precursor (Cp 2Mg) flow was kept constant. Using the second Fick's law to fit the experimental SIMS data, we have deduced an increasing then a saturating Mg diffusion coefficient versus the Mg concentration. Mg incorporation was found to get higher for lower growth rate, i.e. when TMG flow is reduced. Furthermore, based on the temperature-related behaviour we have found that the activation energy for Mg diffusion coefficient in GaN was 1.9 eV. It is suggested that Mg diffuses via substitutional sites.

  12. Metal contacts on ZnSe and GaN

    SciTech Connect

    Duxstad, K J

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  13. Dislocation core structures in Si-doped GaN

    SciTech Connect

    Rhode, S. L. Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  14. Epitaxially-Grown GaN Junction Field Effect Transistors

    SciTech Connect

    Baca, A.G.; Chang, P.C.; Denbaars, S.P.; Lester, L.F.; Mishra, U.K.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-05-19

    Junction field effect transistors (JFET) are fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition (MOCVD). The DC and microwave characteristics of the device are presented. A junction breakdown voltage of 56 V is obtained corresponding to the theoretical limit of the breakdown field in GaN for the doping levels used. A maximum extrinsic transconductance (gm) of 48 mS/mm and a maximum source-drain current of 270 mA/mm are achieved on a 0.8 µ m gate JFET device at VGS= 1 V and VDS=15 V. The intrinsic transconductance, calculated from the measured gm and the source series resistance, is 81 mS/mm. The fT and fmax for these devices are 6 GHz and 12 GHz, respectively. These JFETs exhibit a significant current reduction after a high drain bias is applied, which is attributed to a partially depleted channel caused by trapped hot-electrons in the semi-insulating GaN buffer layer. A theoretical model describing the current collapse is described, and an estimate for the length of the trapped electron region is given.

  15. Structure and electronic properties of GaN tubelike clusters and single-walled GaN nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Liren; Zou, Yanbo; Zhu, Hengjiang

    2015-06-01

    Extensive studies of the geometric structures, stabilities and electronic properties of gallium nitride (GaN)n tubelike clusters and single-walled GaN nanotubes (GaNNTs) were carried out using density-functional theory (DFT) calculations. A family of stable tubelike structures with Ga-N alternating arrangement was observed when n≥8 and their structural units (four-membered rings (4MRs) and six-membered rings (6MRs)) obey the general developing formula. The size-dependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully. They also illustrate the reason why GaNNTs can be synthesized experimentally. Our results also reveal that the single-walled GaNNTs, which as semiconductors with a large bandgap, can be prepared by using the proper assembly of tubelike clusters.

  16. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  17. Improved characteristics of suspended membrane GaN light-emitting diodes on a silicon platform with reflective mirror

    NASA Astrophysics Data System (ADS)

    Li, Xin; Gao, Xumin; Bai, Dan; Shi, Zheng; Zhu, Hongbo; Wang, Yongjin

    2016-06-01

    We propose the suspended membrane GaN light-emitting diodes with reflective mirror on silicon platform by back wafer processing. Silicon substrate under emission region is removed. Suspended membrane is thinned from backside and evaporated a reflective metal mirror. Multiple optical and electrical measurements are taken to characterize the performance of LEDs. Current density of suspended LED with reflective mirror is improved from 383.08 to 641.03 mA/mm2 compared to common LED. The reflectivity is 2.72 times of common LED in visible range. Emitted light increased by 330 % at 3 mA current in electroluminescent measurements. Light emission improvements are more obvious at larger current.

  18. Flexible GaN Light-Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots.

    PubMed

    Chung, Kunook; Yoo, Hyobin; Hyun, Jerome K; Oh, Hongseok; Tchoe, Youngbin; Lee, Keundong; Baek, Hyeonjun; Kim, Miyoung; Yi, Gyu-Chul

    2016-09-01

    The epitaxial lateral overgrowth (ELOG) of GaN microdisks on graphene microdots and the fabrication of flexible light-emitting diodes (LEDs) using these microdisks is reported. An ELOG technique with only patterned graphene microdots is used, without any growth mask. The discrete micro-LED arrays are transferred onto Cu foil by a simple lift-off technique, which works reliably under various bending conditions. PMID:27346527

  19. Multi-wavelength emitting InGan/GaN quantum well grown on V-shaped gan(1101) microfacet.

    PubMed

    Kang, Eun-Sil; Ju, Jin-Woo; Kim, Jin Soo; Ahn, Haeng-Keun; Lee, June Key; Kim, Jin Hyeok; Shin, Dong-Chan; Lee, In-Hwan

    2007-11-01

    InGaN/GaN multiple quantum wells (MQWs) were successfully grown on the inclined GaN(1101) microfacets. Conventional photolithography and subsequent growth of GaN were employed to generate the V-shaped microfacets along (1120) direction. The well-developed microfacets observed by scanning electron microscopy and the clear transmission electron microscope interfacial images indicated that the MQW was successfully grown on the GaN microfacets. Interestingly, cathodoluminescence (CL) spectra measured on the microfacets showed a continuous change in the luminescence peak positions. The CL peaks were shifted to a longer wavelength from 420 nm to 440 nm as the probing points were changed along upward direction. This could be attributed to the nonuniform distribution of the In composition and/or the wavefunction overlapping between adjacent wells. Present works thus propose a novel route to fabricate a monolithic white light emitting diode without phosphors by growing the InGaN/GaN MQWs on (1101) facet.

  20. Structural effects of field emission from GaN nanofilms on SiC substrates

    SciTech Connect

    Chen, Cheng-Cheng; Wang, Ru-Zhi Zhu, Man-Kang; Yan, Hui; Liu, Peng; Wang, Bi-Ben

    2014-04-21

    GaN nanofilms (NFs) with different structures are grown on SiC substrates by pulsed laser deposition under different conditions. The synthesized GaN NFs are studied by X-ray diffraction, field-emission (FE) scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The GaN NFs are composed of diversified GaN nanoparticles with a diameter of 9–38 nm, thickness of 10–50 nm, and roughness of 0.22–13.03 nm. FE from the GaN NFs is structure dependent, which is explained by stress changing the band gap of the NFs. By structure modulation, the turn-on field of GaN NFs can be as low as 0.66 V/μm at a current density of 1 μA/cm{sup 2}, with a current density of up to 1.1 mA/cm{sup 2} at a field of 4.18 V/μm. Fowler-Nordheim curves of some samples contain multiple straight lines, which originate from the structural change and diversification of GaN nanoparticles under an applied field. Overall, our results suggest that GaN NFs with excellent FE properties can be prepared on SiC substrates, which provides a new route to fabricate high-efficiency FE nanodevices.

  1. Opportunities and challenges in GaN metal organic chemical vapor deposition for electron devices

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koh; Yamaoka, Yuya; Ubukata, Akinori; Arimura, Tadanobu; Piao, Guanxi; Yano, Yoshiki; Tokunaga, Hiroki; Tabuchi, Toshiya

    2016-05-01

    The current situation and next challenge in GaN metal organic chemical vapor deposition (MOCVD) for electron devices of both GaN on Si and GaN on GaN are presented. We have examined the possibility of increasing the growth rate of GaN on 200-mm-diameter Si by using a multiwafer production MOCVD machine, in which the vapor phase parasitic reaction is well controlled. The impact of a high-growth-rate strained-layer-superlattice (SLS) buffer layer is presented in terms of material properties. An SLS growth rate of as high as 3.46 µm/h, which was 73% higher than the current optimum, was demonstrated. As a result, comparable material properties were obtained. Next, a typical result of GaN doped with Si of 1 × 1016 cm-3 grown at the growth rate of 3.7 µm/h is shown. For high-voltage application, we need a thick high-purity GaN drift layer with a low carbon concentration, of less than 1016 cm-3. It is shown that achieving a high growth rate by precise control of the vapor phase reaction is still challenge in GaN MOCVD.

  2. The structure and electronic properties of hexagonal Fe2Si

    NASA Astrophysics Data System (ADS)

    Tang, Chi Pui; Tam, Kuan Vai; Xiong, Shi Jie; Cao, Jie; Zhang, Xiaoping

    2016-06-01

    On the basis of first principle calculations, we show that a hexagonal structure of Fe2Si is a ferromagnetic crystal. The result of the phonon spectra indicates that it is a stable structure. Such material exhibits a spin-polarized and half-metal-like band structure. From the calculations of generalized gradient approximation, metallic and semiconducting behaviors are observed with a direct and nearly 0 eV band gap in various spin channels. The densities of states in the vicinity of the Fermi level is mainly contributed from the d-electrons of Fe. We calculate the reflection spectrum of Fe2Si, which has minima at 275nm and 3300nm with reflectance of 0.27 and 0.49, respectively. Such results may provide a reference for the search of hexagonal Fe2Si in experiments. With this band characteristic, the material may be applied in the field of novel spintronics devices.

  3. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    SciTech Connect

    Kaplan, D. Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV.

  4. A new interlayer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Akıner, Tolga; Mason, Jeremy K.; Ertürk, Hakan

    2016-09-01

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6–12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6–12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction.

  5. A new interlayer potential for hexagonal boron nitride.

    PubMed

    Akıner, Tolga; Mason, Jeremy K; Ertürk, Hakan

    2016-09-28

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6-12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6-12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction. PMID:27452331

  6. Zonal wavefront estimation using an array of hexagonal grating patterns

    SciTech Connect

    Pathak, Biswajit E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R. E-mail: brboruah@iitg.ernet.in

    2014-10-15

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  7. Zonal wavefront estimation using an array of hexagonal grating patterns

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2014-10-01

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  8. Calculation of Accurate Hexagonal Discontinuity Factors for PARCS

    SciTech Connect

    Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

    2007-11-01

    In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

  9. Topological states in two-dimensional hexagon lattice bilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun

    2016-10-01

    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  10. A new interlayer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Akıner, Tolga; Mason, Jeremy K.; Ertürk, Hakan

    2016-09-01

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6-12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6-12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction.

  11. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... their delicate appearance, thin, feathery clouds of ice crystals called cirrus may contribute to global warming. Some scientists ... July 9, 2002 - Thin, feathery clouds of ice crystals over the Caribbean Sea. project:  MISR ...

  12. Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wen, Yao; Shang, Xunzhong; Dong, Ji; Xu, Kai; He, Jun; Jiang, Chao

    2015-07-01

    Atomically thin hexagonal boron nitride (h-BN) has been demonstrated to be an excellent dielectric layer as well as an ideal van der Waals epitaxial substrate for fabrication of two-dimensional (2D) atomic layers and their vertical heterostructures. Although many groups have obtained large-scale monolayer h-BN through low pressure chemical vapor deposition (LPCVD), it is still a challenge to grow clean monolayers without the reduction of domain size. Here we report the synthesis of large-area (4 × 2 cm2) high quality monolayer h-BN with an ultraclean and unbroken surface on copper foil by using LPCVD. A detailed investigation of the key factors affecting growth and transfer of the monolayer was carried out in order to eliminate the adverse effects of impurity particles. Furthermore, an optimized transfer approach allowed the nondestructive and clean transfer of the monolayer from copper foil onto an arbitrary substrate, including a flexible substrate, under mild conditions. Atomic force microscopy indicated that the root-mean-square (RMS) roughness of the monolayer h-BN on SiO2 was less than 0.269 nm for areas with fewer wrinkles. Selective area electron diffraction analysis of the h-BN revealed a pattern of hexagonal diffraction spots, which unambiguously demonstrated its highly crystalline character. Our work paves the way toward the use of ultraclean and large-area monolayer h-BN as the dielectric layer in the fabrication of high performance electronic and optoelectronic devices for novel 2D atomic layer materials.

  13. Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis

    NASA Astrophysics Data System (ADS)

    Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Néji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed

    2011-07-01

    Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3), has been prepared by hydrothermal method at a temperature of 180 °C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4, two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2SO 4).

  14. Near-infrared electroluminescence at room temperature from neodymium-doped gallium nitride thin films

    SciTech Connect

    Kim, Joo Han; Holloway, Paul H.

    2004-09-06

    Strong near-infrared (NIR) electroluminescence (EL) at room temperature from neodymium (Nd)-doped gallium nitride (GaN) thin films is reported. The Nd-doped GaN films were grown by radio-frequency planar magnetron cosputtering of separate GaN and metallic Nd targets in a pure nitrogen ambient. X-ray diffraction data did not identify the presence of any secondary phases and revealed that the Nd-doped GaN films had a highly textured wurtzite crystal structure with the c-axis normal to the surface of the film. The EL devices were fabricated with a thin-film multilayered structure of Al/Nd-doped GaN/Al{sub 2}O{sub 3}-TiO{sub 2}/indium-tin oxide and tested at room temperate. Three distinct NIR EL emission peaks were observed from the devices at 905, 1082, and 1364 nm, arising from the radiative relaxation of the {sup 4}F{sub 3sol2} excited-state energy level to the {sup 4}I{sub 9sol2}, {sup 4}I{sub 11sol2}, and {sup 4}I{sub 13sol2} levels of the Nd{sup 3+} ion, respectively. The threshold voltage for all the three emission peaks was {approx}150 V. The external power efficiency of the fabricated EL devices was {approx}1x10{sup -5} measured at 40 V above the threshold voltage.

  15. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  16. Competing structures in two dimensions: Square-to-hexagonal transition

    NASA Astrophysics Data System (ADS)

    Gränz, Barbara; Korshunov, Sergey E.; Geshkenbein, Vadim B.; Blatter, Gianni

    2016-08-01

    We study a system of particles in two dimensions interacting via a dipolar long-range potential D /r3 and subject to a square-lattice substrate potential V (r ) with amplitude V and lattice constant b . The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant a , which competes against the square symmetry of the underlying substrate lattice. We determine the minimal-energy states at fixed external pressure p generating the commensurate density n =1 /b2=(4/3 ) 1 /2/a2 in the absence of thermal and quantum fluctuations, using both analytical techniques based on the harmonic and continuum elastic approximations as well as numerical relaxation of particle configurations. At large substrate amplitude V >0.2 eD, with eD=D /b3 the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing V , the square lattice turns unstable with respect to a zone-boundary shear mode and deforms into a period-doubled zigzag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at V ≈0.074 eD towards a nonuniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as V ≈0.046 eD, a further solitonic transition establishes a second nonuniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude V . At small but finite amplitude V , the hexagonal phase is distorted and hexatically locked at an angle of φ ≈3 .8∘ with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various nontrivial lattice- and modulated phases.

  17. Lambda modes of the neutron diffusion equation in hexagonal geometry

    SciTech Connect

    Barrachina, T.; Ginestar, D.; Verdu, G.

    2006-07-01

    A nodal collocation method is proposed to compute the dominant Lambda modes of nuclear reactor core with a hexagonal geometry. This method is based on a triangular mesh and assumes that the neutronic flux can be approximated as a finite expansion in terms of Dubiner's polynomials. The method transforms the initial differential eigenvalue problem into a generalized algebraic one, from which the dominant modes of the reactor can be computed. The performance of the method is tested with two benchmark problems. (authors)

  18. Supercritical fluid synthesis of magnetic hexagonal nanoplatelets of magnetite.

    PubMed

    Li, Zhonglai; Godsell, Jeffrey F; O'Byrne, Justin P; Petkov, Nikolay; Morris, Michael A; Roy, Saibal; Holmes, Justin D

    2010-09-15

    A supercritical fluid technique was used to prepare hexagonal nanoplatelets of magnetite. Ferrocene was used as the Fe source, and sc-CO(2) acted as both a solvent and oxygen source in the process. Powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and magnetic measurements were used to characterize the products. It was found that the morphology and structure of the product strongly depended on the reaction conditions.

  19. Honeybee combs: how the circular cells transform into rounded hexagons.

    PubMed

    Karihaloo, B L; Zhang, K; Wang, J

    2013-09-01

    We report that the cells in a natural honeybee comb have a circular shape at 'birth' but quickly transform into the familiar rounded hexagonal shape, while the comb is being built. The mechanism for this transformation is the flow of molten visco-elastic wax near the triple junction between the neighbouring circular cells. The flow may be unconstrained or constrained by the unmolten wax away from the junction. The heat for melting the wax is provided by the 'hot' worker bees.

  20. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    NASA Astrophysics Data System (ADS)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  1. Step-induced misorientation of GaN grown on r-plane sapphire

    SciTech Connect

    Smalc-Koziorowska, J.; Dimitrakopulos, G. P.; Sahonta, S.-L.; Komninou, Ph.; Tsiakatouras, G.; Georgakilas, A.

    2008-07-14

    In the growth of nonpolar (1120) a-plane GaN on r-plane (1102) sapphire by plasma-assisted molecular beam epitaxy, misoriented crystallites are observed close to the substrate. They have average diameter {approx}10 nm and are oriented with the (0001){sub GaN} plane approximately parallel to the (2113){sub sapph.} plane and [0110]{sub GaN} parallel [1101]{sub sapph.}. This semipolar orientation is promoted by a low misfit (2.4%) between (1011){sub GaN} and (1210){sub sapph.} planes. Its introduction, after nitridation treatment, is due to GaN nucleation on (2113){sub sapph.} step facets inclined at 26 deg. relative to the r-plane. Two variants are observed, leading to twinning when they abut inside the epilayer.

  2. Lateral epitaxial overgrowth of GaN on Si(111). Progress report

    SciTech Connect

    1998-09-01

    The lateral epitaxial overgrowth of GaN on Si(111) substrates was achieved using an extension of the standard LEO process on GaN/Al{sub 2}O{sub 3} substrates, and the reduction of the dislocation density was demonstrated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The growth on the Si(111) substrate was initiated with the deposition of a thin AlN buffer layer to avoid the formation of potentially detrimental silicon nitride at the interface. The wafers were then patterned with a SiO{sub 2} layer in which 5 micron wide opening separated by 35 microns were etched using buffered HF. After reloading the samples in the MOCVD chamber, the LEO growth was performed using the authors` standard parameters. There are a few unresolved issues concerning the effect of the AlN buffer thickness and its chemical compatibility with the SiO{sub 2} mask layer, but after a basic optimization they were able to obtain 5 microns of lateral overgrowth with smooth sidewalls in a reproducible manner. They are currently investigating the use of mask materials other than SiO{sub 2} to achieve LEO on Si(111) over a wider range of process parameters.

  3. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    PubMed

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  4. Hexagonal Undersampling for Faster MR Imaging near Metallic Implants

    PubMed Central

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2014-01-01

    Purpose Slice encoding for metal artifact correction (SEMAC) acquires a 3D image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study is to provide a technique for faster imaging around metallic implants by undersampling k-space. Methods Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity index (SSIM). Results Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. Conclusion The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. PMID:24549782

  5. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    SciTech Connect

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  6. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE PAGES

    Zou, Yongtao; Li, Qiang; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; et al

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bondingmore » in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  7. Cubic and hexagonal liquid crystals as drug delivery systems.

    PubMed

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  8. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    PubMed Central

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  9. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  10. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    DOE PAGES

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-02-07

    In this study, the metastable high pressure ReB2-type hexagonal OsB2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ±more » 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB2 bulk ceramics.« less

  11. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    PubMed

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-01-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318

  12. Discovery of Superconductivity in Hard Hexagonal ε-NbN

    NASA Astrophysics Data System (ADS)

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-01

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  13. Polarity of semipolar wurtzite crystals: X-ray photoelectron diffraction from GaN(101⁻1) and GaN(202⁻1) surfaces

    SciTech Connect

    Romanyuk, O. Jiříček, P.; Bartoš, I.; Paskova, T.

    2014-09-14

    Polarity of semipolar GaN(101⁻1) (101⁻1⁻) and GaN(202⁻1) (202⁻1⁻) surfaces was determined with X-ray photoelectron diffraction (XPD) using a standard MgKα source. The photoelectron emission from N 1s core level measured in the a-plane of the crystals shows significant differences for the two crystal orientations within the polar angle range of 80–100° from the (0001) normal. It was demonstrated that XPD polar plots recorded in the a-plane are similar for each polarity of the GaN(101⁻1) and GaN(202⁻1) crystals if referred to (0001) crystal axes. For polarity determinations of all important GaN(h0h⁻l) semipolar surfaces, the above given polar angle range is suitable.

  14. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  15. Atomic scale design and control of cation distribution in hexagonal ferrites for passive and tunable microwave magnetic device applications

    NASA Astrophysics Data System (ADS)

    Geiler, Anton L.

    A vast body of knowledge on the structure and properties of hexagonal ferrites has been accumulated in the last sixty years driven in part by the technological significance of these materials in diverse applications, such as permanent magnets, microwave devices, and magnetic recording media. In this work, the Alternating Target Laser Ablation Deposition (ATLAD) technique is applied in the growth of epitaxial hexagonal ferrite films. As a result, unique magnetic properties, including 50 degrees increase in the Neel temperature and 20% increase in the saturation magnetization compared to conventionally prepared materials, are realized by controlling the cation distribution at the atomic scale. Lowest energy distributions resulting from the localization of Mn cations in the spinel block of the hexagonal M-type unit cell were theoretically determined by ab-initio calculations. ATLAD deposition routine was designed to deposit epitaxial thin films with the cation distribution identified by ab-initio calculations. The films were fully characterized in terms of composition, crystal structure, surface morphology, static and dynamic magnetic properties, and cation distribution. Enhanced magnetic moment (+20%) and Neel temperature (+50 K) were measured in the films. These improved magnetic properties were correlated with the occupation and valence of specific interstitial sites by Mn cations, in good agreement with theoretical predictions. The localization of Mn cations in 4fIV and 12k sublattices has fundamentally modified superexchange interactions in the unit cell, as confirmed by spinwave resonance measurements. A novel approach to the design of tunable microwave devices based on hexagonal and cubic ferrites by taking advantage of the magnetoelectric effect is presented. The proposed planar and compact devices, including phase shifters and filters, were designed in microstrip geometry with low magnetic bias field requirements. The devices were designed and simulated using

  16. Fabrication of low-density GaN/AlN quantum dots via GaN thermal decomposition in MOCVD.

    PubMed

    Zhang, Jin; Li, Senlin; Xiong, Hui; Tian, Wu; Li, Yang; Fang, Yanyan; Wu, Zhihao; Dai, Jiangnan; Xu, Jintong; Li, Xiangyang; Chen, Changqing

    2014-01-01

    With an appropriate high anneal temperature under H2 atmosphere, GaN quantum dots (QDs) have been fabricated via GaN thermal decomposition in metal organic chemical vapor deposition (MOCVD). Based on the characterization of atomic force microscopy (AFM), the obtained GaN QDs show good size distribution and have a low density of 2.4 × 10(8) cm(-2). X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the GaN QDs were formed without Ga droplets by thermal decomposition of GaN.

  17. Thermal stability of hexagonal OsB2

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-11-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  18. Thermal stability of hexagonal OsB2

    SciTech Connect

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A; Payzant, E Andrew

    2014-01-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 C and cooling in vacuo down to 225 C. During the heating, the sacrificial reaction 2OsB2+3O2 2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276 426 C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  19. Transitions induced by solubilized fat into reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Garti, Nissim

    2005-06-25

    Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase

  20. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Chen, Jianli; Cheng, Hongjuan; Zhang, Song; Lan, Feifei; Qi, Chengjun; Xu, Yongkuan; Wang, Zaien; Li, Jing; Lai, Zhanping

    2016-10-01

    In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

  1. Features of molecular beam epitaxy of the GaN (0001) and GaN (0001-bar) layers with the use of different methods of activation of nitrogen

    SciTech Connect

    Mizerov, A. M. Jmerik, V. N.; Kaibyshev, V. K.; Komissarova, T. A.; Masalov, S. A.; Ivanov, S. V.

    2009-08-15

    The results of comparative studies of the growth kinetics of the GaN layers of different polarity during ammonia molecular beam epitaxy and plasma-assisted molecular beam epitaxy (PA MBE) of nitrogen with the use of sapphire substrates and GaN(0001-bar)/c-Al{sub 2}O{sub 3} templates grown by gas-phase epitaxy from metalorganic compounds are presented. The possibility is shown of obtaining the GaN layers with an atomically smooth surface during molecular beam epitaxy with plasma activation of nitrogen. For this purpose, it is suggested to carry out the growth in conditions enriched with metal near the mode of formation of the Ga drops at a temperature close to the decomposition temperature of GaN (TS {approx} 760 deg. C). The conclusion is made that an increase in the growth temperature positively affects the structural, optical, and electrical properties of the GaN (0001-bar) layers. A high quality of the GaN (0001) films grown by the PA MBE method at a low temperature of {approx}700 deg. C on the GaN/c-Al{sub 2}O{sub 3} templates is shown.

  2. A preliminary description of the Gan-Hang failed rift, southeastern china

    NASA Astrophysics Data System (ADS)

    Goodell, P. C.; Gilder, S.; Fang, X.

    1991-10-01

    belt), red beds, and volcanically derived U deposits. Scismic study of P-wave velocities has produced an earth model which shows substantial crustal thinning under the Gan-Hang rift. The region has been included in the southeastern China Mesozoic fault-depression system, and has not generally been recognized as a distinct "failed rift".

  3. Visible fiber lasers excited by GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  4. GaN Nanowire Devices: Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Scott, Reum

    The development of microelectronics in the last 25 years has been characterized by an exponential increase of the bit density in integrated circuits (ICs) with time. Scaling solid-state devices improves cost, performance, and power; as such, it is of particular interest for companies, who gain a market advantage with the latest technology. As a result, the microelectronics industry has driven transistor feature size scaling from 10 μm to ~30 nm during the past 40 years. This trend has persisted for 40 years due to optimization, new processing techniques, device structures, and materials. But when noting processor speeds from the 1970's to 2009 and then again in 2010, the implication would be that the trend has ceased. To address the challenge of shrinking the integrated circuit (IC), current research is centered on identifying new materials and devices that can supplement and/or potentially supplant it. Bottom-up methods tailor nanoscale building blocks---atoms, molecules, quantum dots, and nanowires (NWs)---to be used to overcome these limitations. The Group IIIA nitrides (InN, AlN, and GaN) possess appealing properties such as a direct band gap spanning the whole solar spectrum, high saturation velocity, and high breakdown electric field. As a result nanostructures and nanodevices made from GaN and related nitrides are suitable candidates for efficient nanoscale UV/ visible light emitters, detectors, and gas sensors. To produce devices with such small structures new fabrication methods must be implemented. Devices composed of GaN nanowires were fabricated using photolithography and electron beam lithography. The IV characteristics of these devices were noted under different illuminations and the current tripled from 4.8*10-7 A to 1.59*10 -6 A under UV light which persisted for at least 5hrs.

  5. Devices for medical diagnosis with GaN lasers

    NASA Astrophysics Data System (ADS)

    Kwasny, Miroslaw; Mierczyk, Zygmunt

    2003-10-01

    This paper presents laser-induced fluroescence method (LIF) employing endogenous ("autofluroescence") and exogenous fluorophores. LIF is applied for clinical diagnosis in dermatology, gynaecology, urology, lung tumors as well as for early dentin caries. We describe the analysers with He-Ne, He-Cd, and SHG Nd:YAG lasers and new generation systems based on blue semiconductor GaN lasers that have been implemented into clinical practice till now. The LIF method, fundamental one for many medical applications, with excitation radiation of wavelength 400 nm could be appl,ied only using tunable dye lasers or titanium lasers adequte for laboratory investigations. Development of GaN laser shows possibility to design portable, compact diagnostic devices as multi-channel analysers of fluorescence spectra and surface imaging devoted to clinical application. The designed systems used for spectra measurement and registration of fluorescence images include lasers of power 5-30 mW and generate wavelengths of 405-407 nm. They are widely used in PDT method for investigation of superficial distribution of accumulation kinetics of all known photosensitizers, their elimination, and degradation as well as for treatment of superficial lesions of mucosa and skin. Excitation of exogenous porphrins in Soret band makes possible to estimate their concentration and a period of healthy skin photosensitivity that occurs after photosensitiser injections. Due to high sensitivity of spectrum analysers, properties of photosensitisers can be investigated in vitro (e.g. their aggregation, purity, chromatographic distributions) when their concentrations are 2-3 times lower in comparison to concentrations investigated with typical spectrofluorescence methods. Dentistry diagnosis is a new field in which GaN laser devices can be applied. After induction with blue light, decreased autofluorescence intensity can be observed when dentin caries occur and strong characteristic bands of endogenous porphyrines

  6. Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications

    PubMed Central

    2013-01-01

    GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377

  7. Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Zheng, Liang; Deng, Jiangxia; Zheng, Peng; Wu, Qiong; Deng, Longjiang; Qin, Huibin

    2016-09-01

    In this work, hexagonal barium ferrite thin films have been deposited on Pt/MgO(111) substrates by pulsed laser deposition. The anneal temperature dependence of crystal structures, extents of diffusion and magnetic properties have been studied. X-ray diffraction patterns reveal that the crystal structure changes from the hexagonal to the spinel when the anneal temperature increases. The texture with c-axis perpendicular to the film plane and the small c-axis dispersion angles (△ɵc) have been obtained in the film annealed at 950 °C for 10 h. Both the X-ray photoelectron spectroscopy profiles and energy dispersive spectrometer show that the diffusions of Mg2+and Fe3+cations are more obvious when the annealing temperature is higher than 950 °C. The film annealed at 950 °C show anisotropic and hard magnetic properties. The magnetic properties of film annealed at 1050 °C are soft. In order to study the cation diffusions between thin film and substrate, the concentration profiles of cations (Ba2+, Fe3+, Mg2+) have been measured by XPS for a thin film with a thickness of 130 nm annealed at 950°C and 1050°C, as shown in Fig. 3. When Ta is 950°C, as shown in Fig. 3(a), diffusions between the film and the substrate are scarcely detected. However, obvious inter-diffusions have been found for Mg2+ cation and Fe3+ cation when it is annealed at 1050°C. An obvious diffusion has not been found for Ba2+ cation at both annealing temperatures.

  8. Radiation enhanced basal plane dislocation glide in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Vergeles, Pavel S.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2016-05-01

    A movement of basal plane segments of dislocations in GaN films grown by epitaxial lateral overgrowth under low energy electron beam irradiation (LEEBI) was studied by the electron beam induced current (EBIC) method. Only a small fraction of the basal plane dislocation segments were susceptible to irradiation and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide (REDG) in the structure with strong pinning. A dislocation velocity under LEEBI with a beam current lower than 1 nA was estimated as about 10 nm/s. The results assuming the REDG for prismatic plane dislocations were presented.

  9. Chlorine-based plasma etching of GaN

    SciTech Connect

    Shul, R.J.; Briggs, R.D.; Pearton, S.J.; Vartuli, C.B.; Abernathy, C.R.; Lee, J.W.; Constantine, C.; Baratt, C.

    1997-02-01

    The wide band gap group-III nitride materials continue to generate interest in the semiconductor community with the fabrication of green, blue, and ultraviolet light emitting diodes (LEDs), blue lasers, and high temperature transistors. Realization of more advanced devices requires pattern transfer processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {micro}m/min. The utilization of high-density chlorine-based plasmas including electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) systems has resulted in improved GaN etch quality over more conventional reactive ion etch (RIE) systems.

  10. High field effects of GaN HEMTs.

    SciTech Connect

    Barker, Joy; Shul, Randy John

    2004-09-01

    This report represents the completion of a Laboratory-Directed Research and Development (LDRD) program to develop and fabricate geometric test structures for the measurement of transport properties in bulk GaN and AlGaN/GaN heterostructures. A large part of this study was spent examining fabrication issues related to the test structures used in these measurements, due to the fact that GaN processing is still in its infancy. One such issue had to do with surface passivation. Test samples without a surface passivation, often failed at electric fields below 50 kV/cm, due to surface breakdown. A silicon nitride passivation layer of approximately 200 nm was used to reduce the effects of surface states and premature surface breakdown. Another issue was finding quality contacts for the material, especially in the case of the AlGaN/GaN heterostructure samples. Poor contact performance in the heterostructures plagued the test structures with lower than expected velocities due to carrier injection from the contacts themselves. Using a titanium-rich ohmic contact reduced the contact resistance and stopped the carrier injection. The final test structures had an etch constriction with varying lengths and widths (8x2, 10x3, 12x3, 12x4, 15x5, and 16x4 {micro}m) and massive contacts. A pulsed voltage input and a four-point measurement in a 50 {Omega} environment was used to determine the current through and the voltage dropped across the constriction. From these measurements, the drift velocity as a function of the applied electric field was calculated and thus, the velocity-field characteristics in n-type bulk GaN and AlGaN/GaN test structures were determined. These measurements show an apparent saturation velocity near to 2.5x10{sup 7} cm/s at 180 kV/cm and 3.1x10{sup 7} cm/s, at a field of 140 kV/cm, for the bulk GaN and AlGaN heterostructure samples, respectively. These experimental drift velocities mark the highest velocities measured in these materials to date and confirm

  11. Role of oxygen at screw dislocations in GaN.

    PubMed

    Arslan, I; Browning, N D

    2003-10-17

    Here we report the first direct atomic scale experimental observations of oxygen segregation to screw dislocations in GaN using correlated techniques in the scanning transmission electron microscope. The amount of oxygen present in each of the three distinct types of screw dislocation core is found to depend on the evolution and structure of the core, and thus gives rise to a varying concentration of localized states in the band gap. Contrary to previous theoretical predictions, the substitution of oxygen for nitrogen is observed to extend over many monolayers for the open core dislocation. PMID:14611410

  12. H enhancement of N vacancy migration in GaN.

    SciTech Connect

    Wixom, Ryan R.; Wright, Alan Francis

    2005-06-01

    We have used density functional theory to investigate diffusion of V{sub N}{sup +} in the presence of H{sup +}. Optimal migration pathways were determined using the climbing image nudged elastic band and directed dimer methods. Our calculations indicate that the rate-limiting barrier for VN{sub N}{sup +} migration will be reduced by 0.58 eV by interplay with H{sup +}, which will enhance migration by more than an order of magnitude at typical GaN growth temperatures.

  13. Stress related aspects of GaN technology physics

    NASA Astrophysics Data System (ADS)

    Suhir, Ephraim

    2015-03-01

    Simple, easy-to-use and physically meaningful analytical models have been developed for the assessment of the combined effect of the lattice and thermal mismatch on the induced stresses in an elongated bi-material assembly, as well as on the thermal mismatch on the thermal stresses in a tri-material assembly, in which the lattice mismatched stresses are eliminated in one way or another. This could be done, e.g., by using a polished or an etched substrate. The analysis is carried out in application to Gallium Nitride (GaN)-Silicon Carbide (SiC) and GaN-diamond (C) filmsubstrate assemblies. The calculated data are obtained, assuming that no annealing or other stress reduction means is applied. The data agree reasonably well with the reported (available) in-situ measurements. The most important conclusion from the computed data is that even if a reasonably good lattice match takes place (as, e.g., in the case of a GaN film fabricated on a SiC substrate, when the mismatch strain is only about 3%) and, in addition, the temperature change (from the fabrication/growth temperature to the operation temperature) is significant (as high as 1000 °C), the thermal stresses are still considerably lower than the lattice-mismatch stresses. Although there are structural and technological means for further reduction of the lattice-mismatch stresses (e.g., by high temperature annealing or by providing one or more buffering layers, or by using patterned or porous substrates), there is still a strong incentive to eliminate completely the lattice mismatch stresses. This seems to be indeed possible, if polished or otherwise flattened (e.g., chemically etched) substrates and sputter deposited GaN film is employed. In such a case only thermal stresses remain, but even these could be reduced, if necessary, by using compliant buffering layers, including layers of variable compliance, or by introducing variable compliance into the properly engineered substrate. In any event, it is expected

  14. Photoluminescence enhancement from GaN by beryllium doping

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  15. The influence of Fe doping on the surface topography of GaN epitaxial material

    NASA Astrophysics Data System (ADS)

    Lei, Cui; Haibo, Yin; Lijuan, Jiang; Quan, Wang; Chun, Feng; Hongling, Xiao; Cuimei, Wang; Jiamin, Gong; Bo, Zhang; Baiquan, Li; Xiaoliang, Wang; Zhanguo, Wang

    2015-10-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 1019 cm-3. High resistivity GaN epitaxial material which is 1 × 109 Ω·cm is achieved. Project supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences (No. YYY-0701-02), the National Natural Science Foundation of China (Nos. 61204017, 61334002), the State Key Development Program for Basic Research of China, and the National Science and Technology Major Project.

  16. Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Zhu, Lin-Li

    2016-08-01

    Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).

  17. Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Zhu, Lin-Li

    2016-08-01

    Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).

  18. One-step graphene coating of heteroepitaxial GaN films.

    PubMed

    Choi, Jae-Kyung; Huh, Jae-Hoon; Kim, Sung-Dae; Moon, Daeyoung; Yoon, Duhee; Joo, Kisu; Kwak, Jinsung; Chu, Jae Hwan; Kim, Sung Youb; Park, Kibog; Kim, Young-Woon; Yoon, Euijoon; Cheong, Hyeonsik; Kwon, Soon-Yong

    2012-11-01

    Today, state-of-the-art III-Ns technology has been focused on the growth of c-plane nitrides by metal-organic chemical vapor deposition (MOCVD) using a conventional two-step growth process. Here we show that the use of graphene as a coating layer allows the one-step growth of heteroepitaxial GaN films on sapphire in a MOCVD reactor, simplifying the GaN growth process. It is found that the graphene coating improves the wetting between GaN and sapphire, and, with as little as ~0.6 nm of graphene coating, the overgrown GaN layer on sapphire becomes continuous and flat. With increasing thickness of the graphene coating, the structural and optical properties of one-step grown GaN films gradually transition towards those of GaN films grown by a conventional two-step growth method. The InGaN/GaN multiple quantum well structure grown on a GaN/graphene/sapphire heterosystem shows a high internal quantum efficiency, allowing the use of one-step grown GaN films as 'pseudo-substrates' in optoelectronic devices. The introduction of graphene as a coating layer provides an atomic playground for metal adatoms and simplifies the III-Ns growth process, making it potentially very useful as a means to grow other heteroepitaxial films on arbitrary substrates with lattice and thermal mismatch.

  19. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy

    PubMed Central

    2012-01-01

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining. PMID:23270331

  20. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.

    PubMed

    Zhong, Aihua; Hane, Kazuhiro

    2012-01-01

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining. PMID:23270331

  1. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  2. Design, fabrication and characterising of 100 W GaN HEMT for Ku-band application

    NASA Astrophysics Data System (ADS)

    Chunjiang, Ren; Shichang, Zhong; Yuchao, Li; Zhonghui, Li; Yuechan, Kong; Tangsheng, Chen

    2016-08-01

    Ku-band GaN power transistor with output power over 100 W under the pulsed operation mode is presented. A high temperature A1N nucleation together with an Fe doped GaN buffer was introduced for the developed GaN HEMT. The AlGaN/GaN hetero-structure deposited on 3 inch SiC substrate exhibited a 2DEG hall mobility and density of ˜2100 cm2/(V·s) and 1.0 × 1013 cm-2, respectively, at room temperature. Dual field plates were introduced to the designed 0.25 μm GaN HEMT and the source connected field plate was optimized for minimizing the peak field plate near the drain side of the gate, while maintaining excellent power gain performance for Ku-band application. The load-pull measurement at 14 GHz showed a power density of 5.2 W/mm for the fabricated 400 μm gate periphery GaN HEMT operated at a drain bias of 28 V. A Ku-band internally matched GaN power transistor was developed with two 10.8 mm gate periphery GaN HEMT chips combined. The GaN power transistor exhibited an output power of 102 W at 13.3 GHz and 32 V operating voltage under pulsed operation mode with a pulse width of 100 μs and duty cycle of 10%. The associated power gain and power added efficiency were 9.2 dB and 48%, respectively. To the best of the authors' knowledge, the PAE is the highest for Ku-band GaN power transistor with over 100 W output power.

  3. Annealing effects on polycrystalline GaN using nitrogen and ammonia ambients

    NASA Astrophysics Data System (ADS)

    Ariff, A.; Zainal, N.; Hassan, Z.

    2016-09-01

    This paper describes effects of using post-annealing treatment in different conditions on the properties of polycrystalline GaN layer grown on m-plane sapphire substrate by electron beam (e-beam) evaporator. Without annealing, GaN surface was found to have a low RMS roughness with agglomeration of GaN grains in a specific direction and the sample consisted of gallium oxide (Ga2O3) material. When the post-annealing treatment was carried out in N2 ambient at 650 °C, initial re-crystallization of the GaN grains was observed while the evidence of Ga2O3 almost disappeared. As the NH3 annealing was conducted at 950 °C, more effect of re-crystallization occurred but with less grains coalescence. Three dominant XRD peaks of GaN in (10 1 bar 0) , (0002) and (10 1 bar 1) orientations were evident. Near band edge (NBE) related emission in GaN was also observed. The significant improvement was attributed to simultaneous recrystallization and effective reduction of N deficiency density. The post-annealing in a mixture of N2 and NH3 ambient at 950 °C was also conducted, but has limited the effectiveness of the N atoms to incorporate on the GaN layer due to 'clouding' effect by the inert N2 gas. Further increase in the annealing temperature at 980 °C and 1100 °C, respectively caused severe deteriorations of the structural and optical properties of the GaN layer. Overall, this work demonstrated initial potential in improving polycrystalline GaN material in simple and inexpensive manner.

  4. Hexagon functions and the three-loop remainder function

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; Drummond, James M.; von Hippel, Matt; Pennington, Jeffrey

    2013-12-01

    We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar = 4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polylogarithms. We also employ a more restricted class of hexagon functions which have the correct branch cuts and certain other restrictions on their symbols. We classify all the hexagon functions through transcendental weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a set of first-order differential equations. The three-loop remainder function is a particular weight-six hexagon function, whose symbol was determined previously. The differential equations can be integrated numerically for generic values of the cross ratios, or analytically in certain kinematic limits, including the near-collinear and multi-Regge limits. These limits allow us to impose constraints from the operator product expansion and multi-Regge factorization directly at the function level, and thereby to fix uniquely a set of Riemann ζ valued constants that could not be fixed at the level of the symbol. The near-collinear limits agree precisely with recent predictions by Basso, Sever and Vieira based on integrability. The multi-Regge limits agree with the factorization formula of Fadin and Lipatov, and determine three constants entering the impact factor at this order. We plot the three-loop remainder function for various slices of the Euclidean region of positive cross ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of the three-loop to the two-loop remainder function is relatively constant, and close to -7.

  5. Hexagonal assembly of a restricting TRIM5α protein

    PubMed Central

    Ganser-Pornillos, Barbie K.; Chandrasekaran, Viswanathan; Pornillos, Owen; Sodroski, Joseph G.; Sundquist, Wesley I.; Yeager, Mark

    2011-01-01

    TRIM5α proteins are restriction factors that protect mammalian cells from retroviral infections by binding incoming viral capsids, accelerating their dissociation, and preventing reverse transcription of the viral genome. Individual TRIM5 isoforms can often protect cells against a broad range of retroviruses, as exemplified by rhesus monkey TRIM5α and its variant, TRIM5-21R, which recognize HIV-1 as well as several distantly related retroviruses. Although capsid recognition is not yet fully understood, previous work has shown that the C-terminal SPRY/B30.2 domain of dimeric TRIM5α binds directly to viral capsids, and that higher-order TRIM5α oligomerization appears to contribute to the efficiency of capsid recognition. Here, we report that recombinant TRIM5-21R spontaneously assembled into two-dimensional paracrystalline hexagonal lattices comprising open, six-sided rings. TRIM5-21R assembly did not require the C-terminal SPRY domain, but did require both protein dimerization and a B-box 2 residue (Arg121) previously implicated in TRIM5α restriction and higher-order assembly. Furthermore, TRIM5-21R assembly was promoted by binding to hexagonal arrays of the HIV-1 CA protein that mimic the surface of the viral capsid. We therefore propose that TRIM5α proteins have evolved to restrict a range of different retroviruses by assembling a deformable hexagonal scaffold that positions the capsid-binding domains to match the symmetry and spacing of the capsid surface lattice. Capsid recognition therefore involves a synergistic combination of direct binding interactions, avidity effects, templated assembly, and lattice complementarity. PMID:21187419

  6. A laboratory model of Saturn’s North Polar Hexagon

    NASA Astrophysics Data System (ADS)

    Barbosa Aguiar, Ana C.; Read, Peter L.; Wordsworth, Robin D.; Salter, Tara; Hiro Yamazaki, Y.

    2010-04-01

    A hexagonal structure has been observed at ˜76°N on Saturn since the 1980s (Godfrey, D.A. [1988]. Icarus 76, 335-356). Recent images by Cassini (Baines, K., Momary, T., Roos-Serote, M., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2007]. Geophys. Res. Abstr. 9, 02109; Baines, K., Momary, T., Fletcher, L., Kim, J., Showman, A., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2009]. Geophys. Res. Abstr. 11, 3375) have shown that the feature is still visible and largely unchanged. Its long lifespan and geometry has puzzled the planetary physics community for many years and its origin remains unclear. The measured rotation rate of the hexagon may be very close to that of the interior of the planet ( Godfrey, D.A. [1990]. Science 247, 1206-1208; Caldwell, J., Hua, X., Turgeon, B., Westphal, J.A., Barnet, C.D. [1993]. Science 206, 326-329; Sánchez-Lavega, A., Lecacheux, J., Colas, F., Laques, P. [1993]. Science 260, 329-332), leading to earlier interpretations of the pattern as a stationary planetary wave, continuously forced by a nearby vortex (Allison, M., Godfrey, D.A., Beebe, R.F. [1990]. Science 247, 1061-1063). Here we present an alternative explanation, based on an analysis of both spacecraft observations of Saturn and observations from laboratory experiments where the instability of quasi-geostrophic barotropic (vertically uniform) jets and shear layers is studied. We also present results from a barotropic linear instability analysis of the saturnian zonal wind profile, which are consistent with the presence of the hexagon in the North Pole and absence of its counter-part in the South Pole. We propose that Saturn's long-lived polygonal structures correspond to wavemodes caused by the nonlinear equilibration of barotropically unstable zonal jets.

  7. Orthodox etching of HVPE-grown GaN

    SciTech Connect

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  8. Size dictated thermal conductivity of GaN

    NASA Astrophysics Data System (ADS)

    Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-09-01

    The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.

  9. DX-like behavior of oxygen in GaN

    SciTech Connect

    Wetzel, Christian; Amano, Hiroshi; Akasaki, Isamu; Ager III, Joel W.; Grzegory, Izabella; Meyer, Bruno K.

    2001-02-01

    The role of oxygen as a shallow donor and a DX-state in GaN is elucidated by recent Raman experiments under hydrostatic pressure and the findings of first principles OK calculations. A pressure induced transfer of electrons from a shallow donor state to a deep DX-like state of the same donor can be correlated with vibrational gap modes by monitoring the freeze-out dynamics. Both features are unique to oxygen doped GaN and cannot be observed in Si-doped material. The gap modes can be well explained by a linear chain model of impurity vibrations of substitutional O on the N site. A mode variation, and switching steps in its pressure behavior, which occurs in parallel to the carrier freeze-out are proposed to reflect three different charge states of the strongly localized states of O. This DX-type behavior as well as the experimental threshold pressure values are in excellent agreement with the theory results.

  10. High Quality, Low Cost Ammonothermal Bulk GaN Substrates

    SciTech Connect

    Ehrentraut, D; Pakalapati, RT; Kamber, DS; Jiang, WK; Pocius, DW; Downey, BC; McLaurin, M; D'Evelyn, MP

    2013-12-18

    Ammonothermal GaN growth using a novel apparatus has been performed on c-plane, m-plane, and semipolar seed crystals with diameters between 5 mm and 2 in. to thicknesses of 0.5-3 mm. The highest growth rates are greater than 40 mu m/h and rates in the 10-30 mu m/h range are routinely observed for all orientations. These values are 5-100x larger than those achieved by conventional ammonothermal GaN growth. The crystals have been characterized by X-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), optical spectroscopy, and capacitance-voltage measurements. The crystallinity of the grown crystals is similar to or better than that of the seed crystals, with FWHM values of about 20-100 arcsec and dislocation densities of 1 x 10(5)-5 x 10(6) cm(-2). Dislocation densities below 10(4) cm(-2) are observed in laterally-grown crystals. Epitaxial InGaN quantum well structures have been successfully grown on ammonothermal wafers. (C) 2013 The Japan Society of Applied Physics

  11. Properties of GaN grown on sapphire substrates

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Debnam, W. J.; Fripp, A. L.

    1978-01-01

    Epitaxial growth of GaN on sapphire substrates using an open-tube growth furnace has been carried out to study the effects of substrate orientation and transfer gas upon the properties of the layers. It has been found that for the (0001) substrates, surface appearance was virtually independent of carrier gas and of doping levels. For the (1(-1)02) substrates surface faceting was greatly reduced when He was used as a transfer gas as opposed to H2. Faceting was also reduced when the GaN was doped with Zn, and the best surfaces for the (1(-1)02) substrates were obtained in a Zn-doped run using He as the transfer gas. The best sample in terms of electrical properties for the (1(-1)02) substrate had a mobility greater than 400 sq cm/V per sec and a carrier concentration of about 10 to the 17th per cu cm. This sample was undoped and used He as the transfer gas. The best (0001) sample was also grown undoped with He as the transfer gas and had a mobility of 300 sq cm/V per sec and a carrier concentration of 1 x 10 to the 18th per cu cm.

  12. Si Donor Incorporation in GaN Nanowires.

    PubMed

    Fang, Zhihua; Robin, Eric; Rozas-Jiménez, Elena; Cros, Ana; Donatini, Fabrice; Mollard, Nicolas; Pernot, Julien; Daudin, Bruno

    2015-10-14

    With increasing interest in GaN based devices, the control and evaluation of doping are becoming more and more important. We have studied the structural and electrical properties of a series of Si-doped GaN nanowires (NWs) grown by molecular beam epitaxy (MBE) with a typical dimension of 2-3 μm in length and 20-200 nm in radius. In particular, high resolution energy dispersive X-ray spectroscopy (EDX) has illustrated a higher Si incorporation in NWs than that in two-dimensional (2D) layers and Si segregation at the edge of the NW with the highest doping. Moreover, direct transport measurements on single NWs have shown a controlled doping with resistivity from 10(2) to 10(-3) Ω·cm, and a carrier concentration from 10(17) to 10(20) cm(-3). Field effect transistor (FET) measurements combined with finite element simulation by NextNano(3) software have put in evidence the high mobility of carriers in the nonintentionally doped (NID) NWs. PMID:26426262

  13. Magneto-ballistic transport in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Santoruvo, Giovanni; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison

    2016-09-01

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ˜25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  14. Isospin correlations in two-partite hexagonal optical lattices

    NASA Astrophysics Data System (ADS)

    Prada, Marta; Richter, Eva-Maria; Pfannkuche, Daniela

    2014-07-01

    Two-component mixtures in optical lattices reveal a rich variety of different phases. We employ an exact diagonalization method to obtain the relevant correlation functions in hexagonal optical lattices which characterize those phases. We relate the occupation difference of the two species to the magnetic polarization. "Iso" -magnetic correlations disclose the nature of the system, which can be of easy-axis type, bearing phase segregation, or of easy-plane type, corresponding to super-counter-fluidity. In the latter case, the correlations reveal easy-plane segregation, involving a highly entangled state. We identify striking correlated supersolid phases appearing within the superfluid limit.

  15. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  16. Inter-layer potential for hexagonal boron nitride.

    PubMed

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  17. Backscattering peak of hexagonal ice columns and plates.

    PubMed

    Borovoi, A; Grishin, I; Naats, E; Oppel, U

    2000-09-15

    The backward cross section of hexagonal ice crystals of arbitrary orientation is calculated for visible light by means of a ray-tracing code. It is shown that backscattering of the tilted crystals is caused by a corner-reflector-like effect. A very large peak of backscattering is found for a tilt of 32.5 degrees between the principal particle axis and the incidence direction. This peak is caused by multiple total internal reflections for part of the rays that are incident upon the skewed rectangular faces. Slant lidar measurements for remote sensing of cirrus clouds are proposed.

  18. Molecular dynamics of halogenated graphene - hexagonal boron nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Nemnes, G. A.; Visan, Camelia; Anghel, D. V.; Manolescu, A.

    2016-08-01

    The hybrid graphene - hexagonal boron nitride (G-hBN) systems offer new routes in the design of nanoscale electronic devices. Using ab initio density functional theory calculations we investigate the dynamics of zig-zag nanoribbons a few interatomic distances wide. Several structures are analyzed, namely pristine graphene, hBN and G-hBN systems. By passivating the nanoribbon edges with hydrogen and different halogen atoms, one may tune the electronic and mechanical properties, like the band gap energies and the natural frequencies of vibration.

  19. Temperature dependent cubic and hexagonal close packing in micellar structures.

    PubMed

    Wolff, Nicole; Gerth, Stefan; Gutfreund, Philipp; Wolff, Max

    2014-11-14

    The interfacial structure and phase diagram of a micellar solution formed by the three block copolymer (EO20-PO70-EO20) also known as P123 solved in deuterated water close to a solid boundary is investigated with respect to temperature. We find a hysteretic behavior of the d-spacing of the micellar crystal and a spontaneous change in the lateral correlation length going hand in hand with a structural reorganization between cubic and hexagonal. The phase transitions may be initiated by a change in the shape of the micelles from spherical to elongated together with a minimization of the polymer water interface. PMID:25212786

  20. Inter-layer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  1. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-05-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm‑1K‑1(+141 Wm‑1K‑1/ ‑24 Wm‑1K‑1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.

  2. Field emission characteristics from graphene on hexagonal boron nitride

    SciTech Connect

    Yamada, Takatoshi; Masuzawa, Tomoaki; Ebisudani, Taishi; Okano, Ken; Taniguchi, Takashi

    2014-06-02

    An attempt has been made to utilize uniquely high electron mobility of graphene on hexagonal boron nitride (h-BN) to electron emitter. The field emission property of graphene/h-BN/Si structure has shown enhanced threshold voltage and emission current, both of which are key to develop novel vacuum nanoelectronics devices. The field emission property was discussed along with the electronic structure of graphene investigated by Fowler-Nordheim plot and ultraviolet photoelectron spectroscopy. The result suggested that transferring graphene on h-BN modified its work function, which changed field emission mechanism. Our report opens up a possibility of graphene-based vacuum nanoelectronics devices with tuned work function.

  3. Stable three-dimensional metallic carbon with interlocking hexagons

    PubMed Central

    Zhang, Shunhong; Wang, Qian; Chen, Xiaoshuang; Jena, Puru

    2013-01-01

    Design and synthesis of 3D metallic carbon that is stable under ambient conditions has been a long-standing dream. We predict the existence of such phases, T6- and T14-carbon, consisting of interlocking hexagons. Their dynamic, mechanical, and thermal stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Unlike the previously studied K4 and the simple cubic high pressure metallic phases, the structures predicted in this work are stable under ambient conditions. Equally important, they may be synthesized chemically by using benzene or polyacenes molecules. PMID:24191020

  4. How big should hexagonal ice crystals be to produce halos?

    PubMed

    Mishchenko, M I; Macke, A

    1999-03-20

    It has been hypothesized that the frequent lack of halos in observations of cirrus and contrails and laboratory measurements is caused by small ice crystal sizes that put the particles outside the geometrical optics domain of size parameters. We test this hypothesis by exploiting a strong similarity of ray tracing phase functions for finite hexagonal and circular ice cylinders and using T-matrix computations of electromagnetic scattering by circular cylinders with size parameters up to 180 in the visible. We conclude that well-defined halos should be observable for ice crystal size parameters of the order of 100 and larger and discuss remote-sensing implications of this result. PMID:18305781

  5. Carbon nanotube quantum dots on hexagonal boron nitride

    SciTech Connect

    Baumgartner, A. Abulizi, G.; Gramich, J.; Schönenberger, C.; Watanabe, K.; Taniguchi, T.

    2014-07-14

    We report the fabrication details and low-temperature characteristics of carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.

  6. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  7. Characterization of bulk grown GaN and AlN single crystal materials

    NASA Astrophysics Data System (ADS)

    Raghothamachar, Balaji; Bai, Jie; Dudley, Michael; Dalmau, Rafael; Zhuang, Dejin; Herro, Ziad; Schlesser, Raoul; Sitar, Zlatko; Wang, Buguo; Callahan, Michael; Rakes, Kelly; Konkapaka, Phanikumar; Spencer, Michael

    2006-01-01

    Sublimation method, spontaneously nucleated as well as seeded on SiC substrates, has been employed for growing AlN bulk crystals. For GaN growth, in addition to the sublimation method using sapphire substrates, ammonothermal growth (analogous to the hydrothermal method) on HVPE GaN seeds is also being used. Thick plates/films of AlN and GaN grown by these methods have been characterized by synchrotron white beam X-ray topography (SWBXT) and high resolution X-ray diffraction (HRXRD). Results from a recent set of growth experiments are discussed.

  8. Characterization of Bulk Grown GaN and AlN Single Crystal Materials

    SciTech Connect

    Raghothamachar,B.; Bai, J.; Dudley, M.; Dalmau, R.; Zhuang, D.; Herro, Z.; Schlesser, R.; Sitar, Z.; Wang, B.; Callahan, M.

    2006-01-01

    Sublimation method, spontaneously nucleated as well as seeded on SiC substrates, has been employed for growing AlN bulk crystals. For GaN growth, in addition to the sublimation method using sapphire substrates, ammonothermal growth (analogous to the hydrothermal method) on HVPE GaN seeds is also being used. Thick plates/films of AlN and GaN grown by these methods have been characterized by synchrotron white beam X-ray topography (SWBXT) and high resolution X-ray diffraction (HRXRD). Results from a recent set of growth experiments are discussed.

  9. Density Functional Theory for Green Chemical Catalyst Supported on S-Terminated GaN(0001)

    NASA Astrophysics Data System (ADS)

    Yokoyama, Mami; Tsukamoto, Shiro; Ishii, Akira

    2011-12-01

    A novel function of nitried-based semiconductor is successfully developed for organic synthesis, in which palladium supported on the surface of S-terminated GaN(0001) serves as a unique green chemical catalyst. In this study we determined the structure of Pd-catalyst supported on S-terminated GaN(0001) surface by means of the density functional theory (DFT) within a Local Density Approximation (LDA). The important role of S on the case of GaN substrate is to make the number of the valence electron to be close to 0, it happened same way for GaAs substrate.

  10. Morphology evolution and emission properties of InGaN/GaN multiple quantum wells grown on GaN microfacets using crossover stripe patterns by selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Zhenlong; Chen, Peng; Yang, Guofeng; Xu, Zhou; Xu, Feng; Jiang, Fulong; Zhang, Rong; Zheng, Youdou

    2015-03-01

    We investigate the morphological evolution of selective area epitaxy (SAE) GaN microfacets structures on crossover stripe patterns as a function of temperature, and the emission properties of semipolar InGaN/GaN multiple quantum wells (MQWs) grown on these microstructures with semipolar facets are also studied. The shapes of inner rings gradually change from nearly rectangular to hexagonal when the GaN growth temperature elevates, as a result of growth rates and surface stability varies with elevated temperatures. Three types of semipolar facets ({1 1 -2 2}, {2 1 -3 3} and {1 -1 0 1} facets) can be identified on the inner rings of these structures, which are verified by the emission properties of semipolar InGaN/GaN MQWs. The emission wavelengths of MQWs on these semipolar facets are ordered as {1 -1 0 1} > {2 1 -3 3} > {1 1 -2 2}, which is attributed to variations of growth rate and indium incorporation on different planes during InGaN growth. Furthermore, the indium composition of MQWs changes with the morphological evolution.

  11. Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Ruh, H.; Noh, Y. K.; Kim, M. D.; Oh, J. E.

    2010-03-01

    The microstructural properties of a GaN layer grown on a patterned sapphire substrate (PSS) were studied in detail using transmission electron microscope techniques to determine dislocation and growth behaviors. Regular and uniform recrystallized GaN islands were observed on the protruding pattern. On a flat sapphire surface, the crystallographic orientation relationship of ⟨1¯21¯0⟩GaN on FS//⟨11¯00⟩sapphire and {11¯01}GaN on FS//{12¯13}sapphire existed between the GaN and the substrate. On the other hand, the orientation relationship of ⟨1¯21¯0⟩GaN layer//⟨1¯21¯0⟩GaN island on IS//⟨11¯00⟩sapphire and {11¯01}GaN layer//{0002}GaN island on IS//{12¯13}sapphire was confirmed among the GaN layer, the recrystallized GaN islands on an inclined sapphire surface and the PSS. The flat surface among the protruding patterns began to fill rapidly with GaN. Then, the GaN gradually overgrew the protruding pattern and coalesced near the summit as the growth time increased. The generation of threading dislocations was observed in the vicinity of the coalescence points near the top of the protruding patterns.

  12. Magnetotransport of Epitaxial Graphene on Hexagonal SiC Surface Grown with Metal Plate Capping

    NASA Astrophysics Data System (ADS)

    Park, Kibog; Jin, Han Byul; Jung, Sungchul; Kim, Junhyoung; Chae, Dong-Hun; Kim, Wan-Seop; Park, Jaesung

    High quality epitaxial graphene (EG) was grown on a Si-face hexagonal SiC substrate by capping the surface with a metal plate (Molybdenum, Tungsten) during UHV annealing. The growth temperature was ~ 950 degree C, significantly lower than the conventional UHV annealing. The crystallinity of EG film was examined with Raman spectrum measurements. Almost no D-peak and a large narrow 2D-peak ensure that a thin (mono- or bi-layer) EG film was grown with a negligible number of defects. The electrical properties of EG film were also characterized by performing magnetotransport measurements with Hall-bar structures. The carrier type was found to be n-type, the sheet carrier density be (3.6-9.2)x1012 /cm2, and the Hall mobility be ~2100 cm2/Vs. Due to the relatively high carrier density, the Quantum Hall Effect was observed only for high filling factors up to 14 T. However, clear Shubnikov-de-Hass oscillations were observed, indicating that the random carrier scattering due to impurities or defects is minimal in the EG film grown with metal plate capping. Supported by NRF in South Korea (2014M2B2A9031944).

  13. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films.

    PubMed

    Sutter, Peter; Lahiri, Jayeeta; Albrecht, Peter; Sutter, Eli

    2011-09-27

    The growth of large-area hexagonal boron nitride (h-BN) monolayers on catalytic metal substrates is a topic of scientific and technological interest. We have used real-time microscopy during the growth process to study h-BN chemical vapor deposition (CVD) from borazine on Ru(0001) single crystals and thin films. At low borazine pressures, individual h-BN domains nucleate sparsely, grow to macroscopic dimensions, and coalescence to form a closed monolayer film. A quantitative analysis shows borazine adsorption and dissociation predominantly on Ru, with the h-BN covered areas being at least 100 times less reactive. We establish strong effects of hydrogen added to the CVD precursor gas in controlling the in-plane expansion and morphology of the growing h-BN domains. High-temperature exposure of h-BN/Ru to pure hydrogen causes the controlled edge detachment of B and N and can be used as a clean etching process for h-BN on metals.

  14. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films.

    PubMed

    Sutter, Peter; Lahiri, Jayeeta; Albrecht, Peter; Sutter, Eli

    2011-09-27

    The growth of large-area hexagonal boron nitride (h-BN) monolayers on catalytic metal substrates is a topic of scientific and technological interest. We have used real-time microscopy during the growth process to study h-BN chemical vapor deposition (CVD) from borazine on Ru(0001) single crystals and thin films. At low borazine pressures, individual h-BN domains nucleate sparsely, grow to macroscopic dimensions, and coalescence to form a closed monolayer film. A quantitative analysis shows borazine adsorption and dissociation predominantly on Ru, with the h-BN covered areas being at least 100 times less reactive. We establish strong effects of hydrogen added to the CVD precursor gas in controlling the in-plane expansion and morphology of the growing h-BN domains. High-temperature exposure of h-BN/Ru to pure hydrogen causes the controlled edge detachment of B and N and can be used as a clean etching process for h-BN on metals. PMID:21793550

  15. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets.

    PubMed

    Zhu, Jian; Kang, Joohoon; Kang, Junmo; Jariwala, Deep; Wood, Joshua D; Seo, Jung-Woo T; Chen, Kan-Sheng; Marks, Tobin J; Hersam, Mark C

    2015-10-14

    Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics. Here, we employ isopycnic density gradient ultracentrifugation for the preparation of monodisperse, thickness-sorted h-BN inks, which are subsequently layer-by-layer assembled into ultrathin dielectrics with low leakage currents of 3 × 10(-9) A/cm(2) at 2 MV/cm and high capacitances of 245 nF/cm(2). The resulting solution-processed h-BN dielectric films enable the fabrication of graphene field-effect transistors with negligible hysteresis and high mobilities up to 7100 cm(2) V(-1) s(-1) at room temperature. These h-BN inks can also be used as coatings on conventional dielectrics to minimize the effects of underlying traps, resulting in improvements in overall device performance. Overall, this approach for producing and assembling h-BN dielectric inks holds significant promise for translating the superlative performance of two-dimensional heterostructure devices to large-area, solution-processed nanoelectronics. PMID:26348822

  16. Thermally induced fluid reversed hexagonal (H(II)) mesophase.

    PubMed

    Amar-Yuli, Idit; Wachtel, Ellen; Shalev, Deborah E; Moshe, Hagai; Aserin, Abraham; Garti, Nissim

    2007-12-01

    In the present study we characterized the microstructures of the Lc and HII phases in a glycerol monooleate (GMO)/tricaprylin (TAG)/water mixture as a function of temperature. We studied the factors that govern the formation of a low-viscosity HII phase at relatively elevated temperatures (>35 degrees C). This phase has very valuable physical characteristics and properties. The techniques used were differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The reverse hexagonal phase exhibited relatively rapid flow of water in the inner channels within the densely packed cylindrical aggregates of GMO with TAG molecules located in the interstices. The existence of two water diffusion peaks reflects the existence of both mobile water and hydration water at the GMO-water interface (hydrogen exchange between the GMO hydroxyls and water molecules). Above 35 degrees C, the sample became fluid yet hexagonal symmetry was maintained. The fluidity of the HII phase is explained by a significant reduction in the domain size and also perhaps cylinder length. This phenomenon was characterized by higher mobility of the GMO, lower mobility of the water, and a significant dehydration process.

  17. Faint Luminescent Ring over Saturn’s Polar Hexagon

    NASA Astrophysics Data System (ADS)

    Adriani, Alberto; Moriconi, Maria Luisa; D’Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico

    2015-07-01

    Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610–3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.

  18. DNA-Cationic Lipid Complexes: Lamellar and Inverted Hexagonal Phases

    NASA Astrophysics Data System (ADS)

    Koltover, I.; Salditt, T.; Raedler, J.; Safinya, C.

    1998-03-01

    Cationic lipid-DNA (CL-DNA) complexes can be efficient non-viral vectors for gene therapy. However, it is not known why transfection rates vary widely for complexes with different lipid compositions. We have discovered a transition between two distinct liquid crystalline (LC) structures of the complex by varying the lipid composition: a lamellar structure ( J. Raedler, I. Koltover, T. Salditt, C. Safinya, Science 275, 810 (1997)) and a novel LC phase with DNA double-strands surrounded by lipid monolayers arranged on a regular hexagonal lattice. The CL-DNA complexes with the two structures interact differently with giant negatively charged liposomes, which represent the simplest model of cellular membranes. We demonstrate the generality of the lamellar-hexagonal transformation by observing it in complexes of cationic lipid with two other negatively charged biopolymers - polyglutamic acid (PGA), a model polypeptide and poly-thymine (polyT), a model single-stranded oligo-nucleotide. We identify the interactions leading to the transformations between the two complex phases for the three different polyelectrolytes. Supported by NSF DMR-9624091 and a Los Alamos CULAR grant No.STB/UC:95-146.

  19. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  20. Band gap effects of hexagonal boron nitride using oxygen plasma

    SciTech Connect

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.