Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.
Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha
2015-09-03
Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.
Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H
2015-12-07
This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.
Change of motion and localization of cholesterol molecule during L(alpha)-H(II) transition.
Hayakawa, E; Naganuma, M; Mukasa, K; Shimozawa, T; Araiso, T
1998-01-01
Formation of the inverted hexagonal (H(II)) phase from the lamellar (L(alpha)) phase of bovine brain-extracted phosphatidylcholine (BBPC) and phosphatidylethanolamine (BBPE) was investigated using 31P-NMR with or without cholesterol. When the ratio of BBPC to BBPE was 1:1, the H(II) formation was observed in the presence of 33 mol% cholesterol (i.e., BBPC:BBPE:cholesterol = 1:1:1) at 47 degrees C. The fraction of the H(II) phase in the BBPC/BBPE/cholesterol system could be controlled by the addition of dioleoylglycerol. The change of molecular motion of cholesterol affected by the H(II) formation was measured at various ratios of the L(alpha) to H(II) phase with the time-resolved fluorescence depolarization method, using dehydroergosterol as a fluorescent probe. It is observed that the motion of cholesterol became vigorous in the mixture state of the L(alpha) and the H(II) phases compared to that in the L(alpha) or the H(II) phase only. These facts show that cholesterol has the strong ability to induce the H(II) phase, probably by special molecular motion, which includes change of its location from the headgroup area to the acyl-chain area. PMID:9533700
Molecular theory of lipid-protein interaction and the Lalpha-HII transition.
May, S; Ben-Shaul, A
1999-01-01
We present a molecular-level theory for lipid-protein interaction and apply it to the study of lipid-mediated interactions between proteins and the protein-induced transition from the planar bilayer (Lalpha) to the inverse-hexagonal (HII) phase. The proteins are treated as rigid, membrane-spanning, hydrophobic inclusions of different size and shape, e.g., "cylinder-like," "barrel-like," or "vase-like." We assume strong hydrophobic coupling between the protein and its neighbor lipids. This means that, if necessary, the flexible lipid chains surrounding the protein will stretch, compress, and/or tilt to bridge the hydrophobic thickness mismatch between the protein and the unperturbed bilayer. The system free energy is expressed as an integral over local molecular contributions, the latter accounting for interheadgroup repulsion, hydrocarbon-water surface energy, and chain stretching-tilting effects. We show that the molecular interaction constants are intimately related to familiar elastic (continuum) characteristics of the membrane, such as the bending rigidity and spontaneous curvature, as well as to the less familiar tilt modulus. The equilibrium configuration of the membrane is determined by minimizing the free energy functional, subject to boundary conditions dictated by the size, shape, and spatial distribution of inclusions. A similar procedure is used to calculate the free energy and structure of peptide-free and peptide-rich hexagonal phases. Two degrees of freedom are involved in the variational minimization procedure: the local length and local tilt angle of the lipid chains. The inclusion of chain tilt is particularly important for studying noncylindrical (for instance, barrel-like) inclusions and analyzing the structure of the HII lipid phase; e.g., we find that chain tilt relaxation implies strong faceting of the lipid monolayers in the hexagonal phase. Consistent with experiment, we find that only short peptides (large negative mismatch) can induce the Lalpha --> HII transition. At the transition, a peptide-poor Lalpha phase coexists with a peptide-rich HII phase. PMID:9929479
Transitions induced by solubilized fat into reverse hexagonal mesophases.
Amar-Yuli, Idit; Garti, Nissim
2005-06-25
Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.
Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito
2016-02-09
Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.
Siegel, D P
1986-01-01
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems. PMID:3719075
Vieler, Astrid; Scheidt, Holger A; Schmidt, Peter; Montag, Cindy; Nowoisky, Janine F; Lohr, Martin; Wilhelm, Christian; Huster, Daniel; Goss, Reimund
2008-04-01
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.
Libster, Dima; Aserin, Abraham; Garti, Nissim
2011-04-15
Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical composition and physical properties. Furthermore, we showed a promising opportunity for crystallization of CSA and LSZ in single crystal form as model biomacromolecules for crystallographic structure determination. The main outcomes of our research demonstrated that control of the physical properties of hexagonal LLC on different length scales is key for rational design of these systems as delivery vehicles and crystallization medium for biomacromolecules. Copyright © 2011 Elsevier Inc. All rights reserved.
The phase behavior of cationic lipid-DNA complexes.
May, S; Harries, D; Ben-Shaul, A
2000-01-01
We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951
Ruela, André Luís Morais; Carvalho, Flávia Chiva; Pereira, Gislaine Ribeiro
2016-01-01
Donepezil is a drug usually administered by oral route for Alzheimer disease treatment, but several gastric side effects have been reported as diarrhea, nausea, and anorexia. We explored the phase behavior of lyotropic liquid crystalline (LLC) mesophases composed by monoolein/oleic acid/water for enhanced administration of donepezil. Polarized light microscopy suggested that these systems ranged from isotropic inverse micellar solutions (L2) to viscous and birefringent reverse hexagonal (HII) mesophases according to the amount of water in the ternary systems. Phase transition was observed from a L2 phase to HII mesophase after swelling studies, an interesting property to be explored as a precursor of LLC mesophases for mucosal administration that increases its viscosity in situ. Mucoadhesive properties of LLC mesophases were characterized using a texture analyzer indicating that these systems can have an increased residence time in the site of absorption. Donepezil-free base was incorporated in the evaluated formulations, and their in vitro release was controlled up to 24 h. The phase behavior of the systems demonstrated a great potential for enhanced donepezil administration once these mucoadhesive-controlled release formulations can incorporate the drug and prolong its release, possibly reducing its side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Huang, Leaf; Miao, Lei
2016-11-01
There are much said about Pieter Cullis in this special volume honoring him. He was the pioneer to study the role of hexagonal HII phase in membrane fusion and the one who applied this concept for the design of lipid nanoparticles. He was also the first to utilize remote loading techniques for the delivery of amphipathic bases. At the same time, he is a tremendous entrepreneur and an excellent mentor. He is, without doubt, an exceptional scientist and set us an excellent model to follow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, Allison M; Standaert, Robert F; Jubb, Aaron M
Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HIImore » phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.« less
Accelerated formation of cubic phases in phosphatidylethanolamine dispersions.
Tenchov, B; Koynova, R; Rapp, G
1998-01-01
By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increases with the solute concentration. Such an acceleration has been observed for dielaidoyl PE (DEPE), dihexadecyl PE, and dipalmitoyl PE. It was investigated in detail for DEPE dispersions. For DEPE (10 wt% of lipid) aqueous dispersions at 1 M solute concentration, 10-50 temperature cycles typically result in complete conversion of the Lalpha phase into cubic phase. Most efficient is temperature cycling executed by laser flash T-jumps. In that case the conversion completes within 10-15 cycles. However, the cubic phases produced by laser T-jumps are less ordered in comparison to the rather regular cubic structures produced by linear, uniform temperature cycling at 10 degrees C/min. Temperature cycles at scan rates of 1-3 degrees C/min also induce the rapid formation of cubic phases. All solutes used induce the formation of Im3m (Q229) cubic phase in 10 wt% DEPE dispersions. The initial Im3m phases appearing during the first temperature cycles have larger lattice parameters that relax to smaller values with continuation of the cycling after the disappearance of the Lalpha phase. A cooperative Im3m --> Pn3m transition takes place at approximately 85 degrees C and transforms the Im3m phase into a mixture of coexisting Pn3m (Q224) and Im3m phases. The Im3m/Pn3m lattice parameter ratio is 1. 28, as could be expected from a representation of the Im3m and Pn3m phases with the primitive and diamond infinite periodic minimal surfaces, respectively. At higher DEPE contents ( approximately 30 wt%), cubic phase formation is hindered after 20-30 temperature cycles. The conversion does not go through, but reaches a stage with coexisting Ia3d (Q230) and Lalpha phases. Upon heating, the Ia3d phase cooperatively transforms into a mixture of, presumably, Im3m and Pn3m phases at about the temperature of the Lalpha-HII transition. This transformation is readily reversible with the temperature. The lattice parameters of the DEPE cubic phases are temperature-insensitive in the Lalpha temperature range and decrease with the temperature in the range of the HII phase. PMID:9675186
Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.
Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J
2015-03-31
Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.
Electrostatic control of phospholipid polymorphism.
Tarahovsky, Y S; Arsenault, A L; MacDonald, R C; McIntosh, T J; Epand, R M
2000-12-01
A regular progression of polymorphic phase behavior was observed for mixtures of the anionic phospholipid, cardiolipin, and the cationic phospholipid derivative, 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine. As revealed by freeze-fracture electron microscopy and small-angle x-ray diffraction, whereas the two lipids separately assume only lamellar phases, their mixtures exhibit a symmetrical (depending on charge ratio and not polarity) sequence of nonlamellar phases. The inverted hexagonal phase, H(II,) formed from equimolar mixtures of the two lipids, i.e., at net charge neutrality (charge ratio (CR((+/-))) = 1:1). When one type of lipid was in significant excess (CR((+/-)) = 2:1 or CR((+/-)) = 1:2), a bicontinuous cubic structure was observed. These cubic phases were very similar to those sometimes present in cellular organelles that contain cardiolipin. Increasing the excess of cationic or anionic charge to CR((+/-)) = 4:1 or CR((+/-)) = 1:4 led to the appearance of membrane bilayers with numerous interlamellar contacts, i.e., sponge structures. It is evident that interactions between cationic and anionic moieties can influence the packing of polar heads and hence control polymorphic phase transitions. The facile isothermal, polymorphic interconversion of these lipids may have important biological and technical implications.
Effects of gramicidin-A on the adsorption of phospholipids to the air–water interface
Biswas, Samares C.; Rananavare, Shankar B.; Hall, Stephen B.
2012-01-01
Prior studies suggest that the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of the lipids in pulmonary surfactant to an air–water interface by stabilizing a negatively curved rate-limiting structure that is intermediate between bilayer vesicles and the surface film. This model predicts that other peptides capable of stabilizing negative curvature should also promote lipid adsorption. Previous reports have shown that under appropriate conditions, gramicidin-A (GrA) induces dioleoyl phosphatidylcholine (DOPC), but not dimyristoyl phosphatidylcholine (DMPC), to form the negatively curved hexagonal-II (HII) phase. The studies reported here determined if GrA would produce the same effects on adsorption of DMPC and DOPC that the hydrophobic surfactant proteins have on the surfactant lipids. Small angle X-ray scattering and 31P-nuclear magnetic resonance confirmed that at the particular conditions used to study adsorption, GrA induced DOPC to form the HII phase, but DMPC remained lamellar. Measurements of surface tension showed that GrA in vesicles produced a general increase in the rate of adsorption for both phospholipids. When restricted to the interface, however, in preexisting films, GrA with DOPC, but not with DMPC, replicated the ability of the surfactant proteins to promote adsorption of vesicles containing only the lipids. The correlation between the structural and functional effects of GrA with the two phospholipids, and the similar effects on adsorption of GrA with DOPC and the hydrophobic surfactant proteins with the surfactant lipids fit with the model in which SP-B and SP-C facilitate adsorption by stabilizing a rate-limiting intermediate with negative curvature. PMID:16242116
Formation of compact HII regions possibly triggered by cloud-cloud collision
NASA Astrophysics Data System (ADS)
Ohama, Akio; Torii, Kazufumi; Hasegawa, Keisuke; Fukui, Yasuo
2015-08-01
Compact HII regions are ionized by young high-mass star(s) and ~1000 compact HII regions are cataloged in the Galaxy (Urquhart et al. MNRAS 443, 1555-1586 (2014)). Compact HII regions are one of the major populations of Galactic HII regions. The molecular environments around compact HII regions are however not well understood due to lack of extensive molecular surveys. In order to better understand formation of exciting stars and compact HII regions, we have carried out a systematic study of molecular clouds toward compact HII regions by using the 12CO datasets obtained with the JCMT and NANTEN2 telescopes for l = 10 - 56, and present here the first results.In one of the present samples, RCW166, we have discovered that the HII region is associated with two molecular clouds whose velocity separation is ~10 km s-1 the two clouds show complimentary spatial distributions, where one of the clouds have a cavity-like distribution apparently embracing the other. We present an interpretation that the two clouds collided with each other and the cavity-like distribution represents a hole created by the collision in the larger cloud as modeled by Habe and Ohta (1992). Similar molecular distributions are often found in the other compact HII regions in the present study.A recent study by Torii et al. (2015, arXiv:1503.00070) indicates that the Spitzer bubble RCW120 was formed by cloud-cloud collision where the inside of the cavity is fully ionized by the exiting stars. RCW166, on the other hand, shows that only a small part of the cavity, the compact HII region, is ionized. We thus suggest that RCW166 represents an evolutionary stage corresponding to an earlier phase of RCW120 in the collision scenario.
Starburst in the Interacting HII Galaxy II Zw 40 and in Non-Interacting HII Galaxies
NASA Astrophysics Data System (ADS)
Telles, E.
2010-06-01
In this poster, I summarize the results of our integral field spectroscopic observations of the nearby prototype of HII galaxies, II Zw 40. Observations with GMOS-IFU on GEMINI-North in the optical allowed us to make a detailed kinematic picture of the central starburst, while SINFONI with adaptive optics on the ESO-VLT gave us a near-IR view of the interplay between the ISM phases. Here, I also address the question that not all starbursts require an external trigger such as a galaxy-galaxy encounter, as it seems to be the case for a fraction of low luminosity HII galaxies. We speculate that these may form stars spontaneously like "popcorn in a pan".
Structure-related aspects on water diffusivity in fatty acid-soap and skin lipid model systems.
Norlén, L; Engblom, J
2000-01-03
Simplified skin barrier models are necessary to get a first hand understanding of the very complex morphology and physical properties of the human skin barrier. In addition, it is of great importance to construct relevant models that will allow for rational testing of barrier perturbing/occlusive effects of a large variety of substances. The primary objective of this work was to study the effect of lipid morphology on water permeation through various lipid mixtures (i.e., partly neutralised free fatty acids, as well as a skin lipid model mixture). In addition, the effects of incorporating Azone((R)) (1-dodecyl-azacycloheptan-2-one) into the skin lipid model mixture was studied. Small- and wide-angle X-ray diffraction was used for structure determinations. It is concluded that: (a) the water flux through a crystalline fatty acid-sodium soap-water mixture (s) is statistically significantly higher than the water flux through the corresponding lamellar (L(alpha)) and reversed hexagonal (H(II)) liquid crystalline phases, which do not differ between themselves; (b) the water flux through mixtures of L(alpha)/s decreases statistically significantly with increasing relative amounts of lamellar (L(alpha)) liquid crystalline phase; (c) the addition of Azone((R)) to a skin lipid model system induces a reduction in water flux. However, further studies are needed to more closely characterise the structural basis for the occlusive effects of Azone((R)) on water flux.
Molecular dynamics approach to water structure of HII mesophase of monoolein
NASA Astrophysics Data System (ADS)
Kolev, Vesselin; Ivanova, Anela; Madjarova, Galia; Aserin, Abraham; Garti, Nissim
2012-02-01
The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (HII) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 Å below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO/water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.
Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.
Douliez, Jean-Paul
2010-07-06
It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.
Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O
2013-07-02
The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.
The effect of whole-body cooling on brain metabolism following perinatal hypoxic-ischemic injury.
Corbo, Elizabeth T; Bartnik-Olson, Brenda L; Machado, Sandra; Merritt, T Allen; Peverini, Ricardo; Wycliffe, Nathaniel; Ashwal, Stephen
2012-01-01
Magnetic resonance imaging (MRI) and spectroscopy (MRS) have proven valuable in evaluating neonatal hypoxic-ischemic injury (HII). MRI scores in the basal ganglia of HII/HT(+) neonates were significantly lower than HII/HT(-) neonates, indicating less severe injury and were associated with lower discharge encephalopathy severity scores in the HII/HT(+) group (P = 0.01). Lactate (Lac) was detected in the occipital gray matter (OGM) and thalamus (TH) of significantly more HII/HT(-) neonates (31.6 and 35.3%) as compared to the HII/HT(+) group (10.5 and 15.8%). In contrast, the -N-acetylaspartate (NAA)-based ratios in the OGM and TH did not differ between the HII groups. Our data show that the HT was associated with a decrease in the number of HII neonates with detectable cortical and subcortical Lac as well as a decrease in the number of MRI-detectable subcortical lesions. We retrospectively compared the medical and neuroimaging data of 19 HII neonates who received 72 h of whole-body cooling (HII/HT(+)) with those of 19 noncooled HII neonates (HII/HT(-)) to determine whether hypothermia was associated with improved recovery from the injury as measured by MRI and MRS within the first 14 days of life. MRI scores and metabolite ratios of HII/HT(+) and HII/HT(-) neonates were also compared with nine healthy, nonasphyxiated "control" neonates.
A Complete Census of the ~7000 Milky Way HII Regions
NASA Astrophysics Data System (ADS)
Armentrout, William Paul; Anderson, Loren Dean; Wenger, Trey; Bania, Thomas; Balser, Dana; Dame, Thomas; Dickey, John M.; Dawson, Joanne; Jordan, Christopher H.; McClure-Griffiths, Naomi M.; Andersen, Morten
2018-01-01
HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions to date.To bring us closer to a complete census of high-mass star formation regions in the Milky Way, we have several ongoing observational campaigns. These efforts include (1) Green Bank Telescope radio recombination line (RRL) observations as part of the HII Region Discovery Survey (HRDS); (2) Australia Telescope Compact Array observations of southern HII region candidates in the Southern HII Region Discovery Survey (SHRDS); (3) Green Bank and Gemini North Telescope observations of star formation regions thought to reside at the edge of the star forming disk in the Outer Scutum-Centaurus Arm (OSC); and (4) Very Large Array continuum observations of the faintest HII region candidates in the second and third Galactic quadrants.Together, these observations will detect the RRL emission from all Galactic HII regions with peak cm-wavelength flux densities > 60mJy, establish the outer edge of Galactic high-mass star formation, and determine the number of HII regions in the Galaxy. The HRDS and SHRDS surveys have more than doubled the known population of Galactic HII regions. We use the OSC observations to determine the properties of high-mass star formation in the extreme outer Galaxy and our VLA observations to determine how many of our faint candidates are indeed HII regions. We combine the completeness limits we obtain through these HII region surveys with an HII region population synthesis model to estimate the total number of Galactic HII regions. From this, we predict nearly 7000 HII regions in the Milky Way created by a central star of type B2 or earlier.
The Southern HII Region Discovery Survey: The Bright Catalog
NASA Astrophysics Data System (ADS)
Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine
2018-01-01
HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.
Identification and multi-filter photometry of HII regions from nearby galaxies with J-PLUS
NASA Astrophysics Data System (ADS)
Logroño-García, R.; Vilella-Rojo, G.; López-Sanjuan, C.; Varela, J.; Muniesa, D.; Lamadrid, J. L.; Cenarro, A. J.; J-PLUS, T.
2017-03-01
The Javalambre Photometric Local Universe Survey (J-PLUS) has already started the data acquisition phase at the Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. Benefiting from the large field of view (2 deg^2) and the 12 filters set of the T80Cam at the T80/JAST telescope, we aim to study the properties of HII regions in nearby galaxies (z < 0.015). In this poster, we apply our procedures to the galaxy Messier 101. We have developed a fully automatized pipeline to identify and characterize the nearby universe HII regions. This pipeline: (1) Homogenizes the PSF in the 12 images of the different filters. (2) Estimates realistic photometric errors following Labbé et al. (2003) method. (3) Constructs a detection image showing the excess of Hα+[NII], following Vilella-Rojo et al. (2015) prescriptions. (4) Performs the photometry in the 12 J-PLUS bands using as reference the Hα+NII detection image. (5) Constructs the photo-spectra for each identified HII region. We demonstrate the capabilities of this method by comparing synthetic aperture photometry from SDSS spectra with the Hα flux measured with J-PLUS data. Such comparison can be found in the poster by Vilella-Rojo et al. Once the pipeline is implemented, we will generate a catalog of nearby HII regions at z<0.015 in the 8500deg^2 of J-PLUS. With this catalog, we will study the impact of environment in the 2D star formation properties of nearby galaxies, taking advantage of the unprecedented large contiguous area that J-PLUS will offer.
The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements
NASA Astrophysics Data System (ADS)
Zhang, Kai; Yan, Renbin; MaNGA Team
2016-01-01
Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.
The Southern HII Region Discovery Survey
NASA Astrophysics Data System (ADS)
Wenger, Trey; Miller Dickey, John; Jordan, Christopher; Bania, Thomas M.; Balser, Dana S.; Dawson, Joanne; Anderson, Loren D.; Armentrout, William P.; McClure-Griffiths, Naomi
2016-01-01
HII regions are zones of ionized gas surrounding recently formed high-mass (OB-type) stars. They are among the brightest objects in the sky at radio wavelengths. HII regions provide a useful tool in constraining the Galactic morphological structure, chemical structure, and star formation rate. We describe the Southern HII Region Discovery Survey (SHRDS), an Australia Telescope Compact Array (ATCA) survey that discovered ~80 new HII regions (so far) in the Galactic longitude range 230 degrees to 360 degrees. This project is an extension of the Green Bank Telescope HII Region Discovery Survey (GBT HRDS), Arecibo HRDS, and GBT Widefield Infrared Survey Explorer (WISE) HRDS, which together discovered ~800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees. Similar to those surveys, candidate HII regions were chosen from 20 micron emission (from WISE) coincident with 10 micron (WISE) and 20 cm (SGPS) emission. By using the ATCA to detect radio continuum and radio recombination line emission from a subset of these candidates, we have added to the population of known Galactic HII regions.
NASA Astrophysics Data System (ADS)
Tanioka, Noritaka; Yoshida, Yasunori; Obi, Shinzo; Chiba, Ryoichi; Nakai, Kazumoto
The development of a PCM telemetry system for the Japanese H-II launch vehicle is discussed. PCM data streams acquire and process data from remote terminals which can be located at any place near the data source. The data are synchronized by a clock and are individually controlled by a central PCM data processing unit. The system allows the launch vehicle to acquire data from many different areas of the rocket, with a total of 879 channels. The data are multiplexed and processed into one PCM data stream and are down-linked on a phase-modulated RF carrier.
Novel high pressure hexagonal OsB2 by mechanochemistry
NASA Astrophysics Data System (ADS)
Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.
2014-07-01
Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.
Anomalous fast dynamics of adsorbate overlayers near an incommensurate structural transition.
Granato, Enzo; Ying, S C; Elder, K R; Ala-Nissila, T
2013-09-20
We investigate the dynamics of a compressively strained adsorbed layer on a periodic substrate via a simple two-dimensional model that admits striped and hexagonal incommensurate phases. We show that the mass transport is superfast near the striped-hexagonal phase boundary and in the hexagonal phase. For an initial step profile separating a bare substrate region (or "hole") from the rest of a striped incommensurate phase, the superfast domain wall dynamics leads to a bifurcation of the initial step profile into two interfaces or profiles propagating in opposite directions with a hexagonal phase in between. This yields a theoretical understanding of the recent experiments for the Pb/Si(111) system.
NASA Astrophysics Data System (ADS)
Wenger, Trey V.; Kepley, Amanda K.; Balser, Dana S.
2017-07-01
HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.
A Complete VLA Census of the ~7000 Milky Way HII Regions
NASA Astrophysics Data System (ADS)
Armentrout, William Paul; Anderson, Loren; Wenger, Trey V.; Balser, Dana; Bania, Thomas
2018-01-01
How many HII regions are in the Milky Way? Even with the success of recent surveys, we still do not have an adequate answer to this fundamental question. HII regions are the archetypical tracers of Galactic high-mass star formation, but population synthesis modeling indicates that their detection throughout the Galaxy is incomplete, biased toward the most luminous and nearby complexes. Using mid-infrared (MIR) data from the WISE satellite, we identified over 8000 HII regions and candidates, all of which share the characteristic morphology of 12 micron emission enveloping a core of 22 micron emission. Of these, nearly 4000 candidates have no detectable radio continuum emission from Galactic plane surveys and therefore their classification is unknown. These “radio quiet” candidates could represent a significant population of faint HII regions which are ionized by B-stars and/or are especially distant, or they might not be HII regions at all.We present here a survey of radio quiet HII regions in the second and third Galactic quadrants with the Very Large Array. This was the first systematic study of radio quiet HII region candidates. Nearly 60% of the 145 sources observed were detected by the VLA at X-band (10 GHz) to sub-mJy sensitivities. Coupled with their MIR morphologies, detection of continuum strongly indicate they are HII regions. If 60% of radio quiet candidates throughout the Galaxy prove to be HII regions, the number of expected HII regions in the Milky Way would more than double. Constraining the total number of HII regions within the Milky Way will feed back into stellar population synthesis modeling, informing both the high-mass tail of the Galactic star formation rate and the role of high-mass stars in the evolution of the ISM. We estimate there are between 6500 and 7000 HII regions in Milky Way created by a star of type B2 or earlier.
Metastable phases of silver and gold in hexagonal structure
NASA Astrophysics Data System (ADS)
Jona, F.; Marcus, P. M.
2004-07-01
Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.
The Galactic HII Region Luminosity Function at Infrared and Radio Wavelengths
NASA Astrophysics Data System (ADS)
Mascoop, Joshua; Anderson, Loren; Sandor Makai, Zoltan; Armentrout, William Paul
2018-01-01
HII regions are the clearest indicators of ongoing high-mass star formation. The HII region luminosity function (LF) therefore probes present global star formation properties, and its shape has been related to HII region properties and galaxy Hubble types. Most HII region LF studies to date have been conducted in external galaxies; due to observational difficulties, there have been relatively few studies of the Milky Way HII region LF. Using ~600 HII regions from the WISE Catalog of Galactic HII Regions, we examine the Galactic LF in the first quadrant. Our high-resolution view of Galactic star formation regions allows us to separate nearby sources, and our sample is complete for all HII regions ionized by single O9.5 stars.We analyze the Galactic LF at six infrared wavelengths - where the emission is due to dust - and also at 20 cm, where the emission is from ionized gas. All LFs have a similar shape, showing that infrared LFs can be used in place of ionized gas tracers. All LFs can be described by a single power law with an index of approximately -2, in agreement with previous studes. We find no compelling evidence of a break or "knee" in the LF. Moreover, we see no significant variation in the form of the LF as a function of heliocentric distance, HII region size, or Galactocentric radius.
Polarization-free integrated gallium-nitride photonics
Bayram, C.; Liu, R.
2017-01-01
Gallium Nitride (GaN) materials are the backbone of emerging solid state lighting. To date, GaN research has been primarily focused on hexagonal phase devices due to the natural crystallization. This approach limits the output power and efficiency of LEDs, particularly in the green spectrum. However, GaN can also be engineered to be in cubic phase. Cubic GaN has a lower bandgap (~200 meV) than hexagonal GaN that enables green LEDs much easily. Besides, cubic GaN has more isotropic properties (smaller effective masses, higher carrier mobility, higher doping efficiency, and higher optical gain than hexagonal GaN), and cleavage planes. Due to phase instability, however, cubic phase materials and devices have remained mostly unexplored. Here we review a new method of cubic phase GaN generation: Hexagonal-to-cubic phase transition, based on novel nano-patterning. We report a new crystallographic modelling of this hexagonal-to-cubic phase transition and systematically study the effects of nano-patterning on the GaN phase transition via transmission electron microscopy and electron backscatter diffraction experiments. In summary, silicon-integrated cubic phase GaN light emitters offer a unique opportunity for exploration in next generation photonics. PMID:29307953
On the status report of the H-II launch vehicle
NASA Astrophysics Data System (ADS)
Eto, Takao; Shibato, Yoji; Takatsuka, H.; Fukushima, Y.
1988-10-01
This paper describes the present status of the design and the development of the H-II launch vehicle which is being presently developed by NASDA to meet the demand for larger satellite launches at a lower cost. The H-II systems, including its solid rocket boosters and the guidance and control system, are discussed together with the launch facilities and launch operation. The paper includes diagrams of the H-II systems and a table listing H-II characteristics.
The Southern HII Region Discovery Survey: Preliminary Results
NASA Astrophysics Data System (ADS)
Shea, Jeanine; Wenger, Trey; Balser, Dana S.; Anderson, Loren D.; Armentrout, William P.; Bania, Thomas M.; Dawson, Joanne; Miller Dickey, John; Jordan, Christopher; McClure-Griffiths, Naomi M.
2017-01-01
HII regions are some of the brightest sources at radio frequencies in the Milky Way and are the sites of massive O and B-type star formation. They have relatively short (< 10 Myr) lifetimes compared to other Galactic objects and therefore reveal information about spiral structure and the chemical evolution of the Galaxy. The HII Region Discovery Surveys (HRDS) discovered about 800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees using primarily the Green Bank Telescope. Candidate HII regions were selected from mid-infrared emission coincident with radio continuum emission, and confirmed as HII regions by the detection of radio recombination lines. Here we discuss the Southern HII Region Discovery Survey (SHRDS), a continuation of the HRDS using the Australia Telescope Compact Array over the Galactic longitude range 230 to 360 degrees. We have reduced and analyzed a small sub-set of the SHRDS sources and discuss preliminary results, including kinematic distances and metallicities.
Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim
2018-01-01
In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.
General properties of HII regions in galaxies
NASA Technical Reports Server (NTRS)
Smirnov, M. A.; Komberg, B. V.
1979-01-01
The structure, electron density, and dimensions of HII regions in galaxies are discussed. These parameters are correlated to the chemical composition gradient along the galactic radius, the dimensions of the three largest HII regions in the galaxy, and the amount of hydrogen in the galaxy, as well as the mass, dimensions, and total optical luminosity of the galaxy. The relationships of HII regions to star formation and galactic nucleus activity are discussed and the kinematic properties of the SB and Sab galaxies are related to the size of HII regions.
Micellar hexagonal phases in lyotropic liquid crystals
NASA Astrophysics Data System (ADS)
Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.
1992-09-01
The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.
Phonons and superconductivity in fcc and dhcp lanthanum
NASA Astrophysics Data System (ADS)
Baǧcı, S.; Tütüncü, H. M.; Duman, S.; Srivastava, G. P.
2010-04-01
We have investigated the structural and electronic properties of lanthanum in the face-centered-cubic (fcc) and double hexagonal-close-packed (dhcp) phases using a generalized gradient approximation of the density functional theory and the ab initio pseudopotential method. It is found that double hexagonal-close-packed is the more stable phase for lanthanum. Differences in the density of states at the Fermi level between these two phases are pointed out and discussed in detail. Using the calculated lattice constant and electronic band structure for both phases, a linear response approach based on the density functional theory has been applied to study phonon modes, polarization characteristics of phonon modes, and electron-phonon interaction. Our phonon results show a softening behavior of the transverse acoustic branch along the Γ-L direction and the Γ-M direction for face-centered-cubic and double hexagonal-close-packed phases, respectively. Thus, the transverse-phonon linewidth shows a maximum at the zone boundary M(L) for the double hexagonal-close-packed phase (face-centered-cubic phase), where the transverse-phonon branch exhibits a dip. The electron-phonon coupling parameter λ is found to be 0.97 (1.06) for the double hexagonal-close-packed phase (face-centered-cubic phase), and the superconducting critical temperature is estimated to be 4.87 (dhcp) and 5.88 K (fcc), in good agreement with experimental values of around 5.0 (dhcp) and 6.0 K (fcc). A few superconducting parameters for the double hexagonal-close-packed phase have been calculated and compared with available theoretical and experimental results. Furthermore, the calculated superconducting parameters for both phases are compared between each other in detail.
Hack, Jason B; Goldlust, Eric J; Ferrante, Dennis; Zink, Brian J
2017-10-01
Over 35 million alcohol-impaired (AI) patients are cared for in emergency departments (EDs) annually. Emergency physicians are charged with ensuring AI patients' safety by identifying resolution of alcohol-induced impairment. The most common standard evaluation is an extemporized clinical examination, as ethanol levels are not reliable or predictive of clinical symptoms. There is no standard assessment of ED AI patients. The objective was to evaluate a novel standardized ED assessment of alcohol impairment, Hack's Impairment Index (HII score), in a busy urban ED. A retrospective chart review was performed for all AI patients seen in our busy urban ED over 24 months. Trained nurses evaluated AI patients with both "usual" and HII score every 2 hours. Patients were stratified by frequency of visits for AI during this time: high (≥ 6), medium (2-5), and low (1). Within each category, comparisons were made between HII scores, measured ethanol levels, and usual nursing assessment of AI. Changes in HII scores over time were also evaluated. A total of 8,074 visits from 3,219 unique patients were eligible for study, including 7,973 (98.7%) with ethanol levels, 5,061 (62.7%) with complete HII scores, and 3,646 (45.2%) with health care provider assessments. Correlations between HII scores and ethanol levels were poor (Pearson's R 2 = 0.09, 0.09, and 0.17 for high-, medium-, and low-frequency strata). HII scores were excellent at discriminating nursing assessment of AI, while ethanol levels were less effective. Omitting extrema, HII scores fell consistently an average 0.062 points per hour, throughout patients' visits. The HII score applied a quantitative, objective assessment of alcohol impairment. HII scores were superior to ethanol levels as an objective clinical measure of impairment. The HII declines in a reasonably predictable manner over time, with serial evaluations corresponding well with health care provider evaluations. © 2017 by the Society for Academic Emergency Medicine.
Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH
NASA Astrophysics Data System (ADS)
Zhang, Li; Yuan, Hongsheng; Meng, Yue; Mao, Ho-kwang
2018-03-01
A deep lower-mantle (DLM) water reservoir depends on availability of hydrous minerals which can store and transport water into the DLM without dehydration. Recent discoveries found hydrous phases AlOOH (Z = 2) with a CaCl2-type structure and FeOOH (Z = 4) with a cubic pyrite-type structure stable under the high-pressure–temperature (P-T) conditions of the DLM. Our experiments at 107–136 GPa and 2,400 K have further demonstrated that (Fe,Al)OOH is stabilized in a hexagonal lattice. By combining powder X-ray-diffraction techniques with multigrain indexation, we are able to determine this hexagonal hydrous phase with a = 10.5803(6) Å and c = 2.5897(3) Å at 110 GPa. Hexagonal (Fe,Al)OOH can transform to the cubic pyrite structure at low T with the same density. The hexagonal phase can be formed when δ-AlOOH incorporates FeOOH produced by reaction between water and Fe, which may store a substantial quantity of water in the DLM.
Spiral arms and massive star formation: Analysis of the CO face-on pictures of the galaxy
NASA Technical Reports Server (NTRS)
Clemens, D. P.; Sanders, D. B.; Scoville, N. Z.
1986-01-01
The face-on distribution of molecular gas in the first Galactic quadrant, derived from the Massachusetts-Stony Brook Galactic Plane CO Survey, was compared to the Galactic distribution of giant radio HII regions. The HII regions were found to preferentially select gas regions of higher than average density (more than twice the mean) and showed a strong correlation with the second power of the gas density. Systematic effects were tested with a Monte Carlo simulated HII region distribution and found to be negligible. The 135 HII regions were selected from the radio catalogs of Downes et at. (1980) and Wink et al. (1982). The HII regions were required to be within the CO survey 1 and b limits, within the solar circle, and not part of the 3 kpc expanding arm. The velocities of the HII regions were tabulated by the catalog authors and obvious associations with known objects and H2CO absorptions were used by them to assign distances. The distance assignments were here grouped into two categories; (1) those HII regions with definite distance assignments (85 objects); and (2) those HII regions with less secure distance assignments and those for which no near-far assignment was possible (50 objects).
Hack, Jason B; Goldlust, Eric J; Gibbs, Frantz; Zink, Brian
2014-03-01
Emergency Departments (EDs) care for thousands of alcohol-intoxicated patients annually. No clinically relevant bedside measures currently exist to describe degree of impairment. To assess a group of bedside tests ("Hack's Impairment Index [HII] score") that applies a numerical value to the degree of alcohol-induced impairment in ED patients. A six-month retrospective review of HII score data was performed in a convenience sample of 293 intoxicated ED patients. Patients were scored 0-4 on five tasks, divided by the maximum score (20 if all tasks completed), every 2 hours; and classified by the number of visits: Low-frequency (1 visit); Medium-frequency (2 visits); High-frequency (≥3 visits). Correlations were assessed between HII score, healthcare provider judgment of intoxication, and measured alcohol levels. Study patients had 513 visits; 236 were low-frequency, 26 middle-frequency and 31 high-frequency. Clinical assessment and HII score were strongly correlated (Spearman's rho = 0.82, p < 0.001); clinical assessment and alcohol level less strongly so (rho = 0.49, p < 0.001). Among low-frequency patients, HII score and alcohol level were weakly correlated (r = 0.324, p < 0.001), with no such correlation among high-frequency visitors (r = -0.04, p = 0.89). The mean decline between serial HII scores was 0.126 (95% CI: 0.098-0.154). This pilot study shows the HII score can be performed at the bedside of alcohol-intoxicated patients. The HII declines in a reasonably predictable manner over time; and applies a quantitative, objective assessment of alcohol impairment.
Internal motions of HII regions and giant HII regions
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Kennicutt, Robert C., Jr.
1994-01-01
We report new echelle observations of the kinematics of 30 HII regions in the Large Magellanic Clouds (LMC), including the 30 Doradus giant HII region. All of the HII regions possess supersonic velocity dispersions, which can be attributed to a combination of turbulent motions and discrete velocity splitting produced by stellar winds and/or embedded supernova remnants (SNRs). The core of 30 Dor is unique, with a complex velocity structure that parallels its chaotic optical morphology. We use our calibrated echelle data to measure the physical properties and energetic requirements of these velocity structures. The most spectacular structures in 30 Dor are several fast expanding shells, which appear to be produced at least partially by SNRs.
High-temperature molecular dynamics simulation of aragonite.
Miyake, Akira; Kawano, Jun
2010-06-09
For molecular dynamics simulations using aragonite structure as the initial state, a new phase of space group P6₃22 (hexagonal aragonite) appeared at temperatures above 510 K at a pressure of 1 atm. It was a first-order phase transition which occurs metastably within the stable region of calcite and the dT/dP slope of the phase boundary between orthorhombic and hexagonal aragonite was about 1.25 × 10³ K GPa⁻¹. In the hexagonal aragonite structure, CO₃ groups were rotated by 30° around the c axis and move up and down along the c axis from their position in aragonite, and Ca ions were six-coordinated as they are in calcite. The CaO₆ octahedron of hexagonal aragonite was strongly distorted, whereas in the calcite structure it is an almost ideal octahedron. The transition between hexagonal and orthorhombic aragonite involves only small movements of CO₃ groups. Therefore, it is possible that hexagonal aragonite plays an important part in the metastable formation of aragonite within the stability field of calcite and in the development of sector trilling in aragonite.
Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems
Chen, Yulin; Ma, Ping; Gui, Shuangying
2014-01-01
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330
Amar-Yuli, Idit; Azulay, Doron; Mishraki, Tehila; Aserin, Abraham; Garti, Nissim
2011-12-15
The potential of reverse hexagonal mesophases based on monoolein (GMO) and glycerol (as cosolvent) to facilitate the solubilization of proteins, such as insulin was explored. H(II) mesophases composed of GMO/decane/water were compared to GMO/decane/glycerol/water and GMO/phosphatidylcholine (PC)/decane/glycerol/water systems. The stability of insulin was tested, applying external physical modifications such as low pH and heat treatment (up to 70°C), in which insulin is known to form ordered amyloid-like aggregates (that are associated with several neurodegenerative diseases) with a characteristic cross β-pleated sheet structure. The impact of insulin confinement within these carriers on its stability, unfolding, and aggregation pathways was studied by combining SAXS, FTIR, and AFM techniques. These techniques provided a better insight into the molecular level of the "component interplay" in solubilizing and stabilizing insulin and its conformational modifications that dictate its final aggregate morphology. PC enlarged the water channels while glycerol shrank them, yet both facilitated insulin solubilization within the channels. The presence of glycerol within the mesophase water channels led to the formation of stronger hydrogen bonds with the hosting medium that enhanced the thermal stability of the protein and remarkably affected the unfolding process even after heat treatment (at 70°C for 60 min). Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Milingo, Jackie; Saar, Steven; Marschall, Laurence
2018-01-01
We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period
Li, Dongyu; Tian, Linlin; Huang, Zhen; Shao, Lexi; Quan, Jun; Wang, Yuxiao
2016-04-01
Hexagonal phase NaLuF4:Yb3+/Er3+ nanorods were synthesized hydrothermally. An analysis of the intense green upconversion emissions at 525 nm and 550 nm in hexagonal phase NaLuF4:Yb3/+Er3+ nanorods under excitation power density of 4.2 W/cm2 available from a diode laser emitting at 976 nm, have been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive green upconversion emissions at 525 nm and 550 nm in this material was recorded in the physiological range from 295 to 343 K. The maximum sensitivity derived from the FIR technique of the green upconversion emissions is approximately 0.0044 K-1. Experimental results implied that hexagonal phase NaLuF4:Yb3/+Er3+ nanorods was a potential candidate for optical temperature sensor.
Phase stability and mechanical properties of Mo1-xNx with 0 ≤ x ≤ 1
NASA Astrophysics Data System (ADS)
Balasubramanian, Karthik; Huang, Liping; Gall, Daniel
2017-11-01
First-principle density-functional calculations coupled with the USPEX evolutionary phase-search algorithm are employed to calculate the convex hull of the Mo-N binary system. Eight molybdenum nitride compound phases are found to be thermodynamically stable: tetragonal β-Mo3N, hexagonal δ-Mo3N2, cubic γ-Mo11N8, orthorhombic ɛ-Mo4N3, cubic γ-Mo14N11, monoclinic σ-MoN and σ-Mo2N3, and hexagonal δ-MoN2. The convex hull is a straight line for 0 ≤ x ≤ 0.44 such that bcc Mo and the five listed compound phases with x ≤ 0.44 are predicted to co-exist in thermodynamic equilibrium. Comparing the convex hulls of cubic and hexagonal Mo1-xNx indicates that cubic structures are preferred for molybdenum rich (x < 0.3) compounds, and hexagonal phases are favored for nitrogen rich (x > 0.5) compositions, while similar formation enthalpies for cubic and hexagonal phases at intermediate x = 0.3-0.5 imply that kinetic factors play a crucial role in the phase formation. The volume per atom Vo of the thermodynamically stable Mo1-xNx phases decreases from 13.17 to 9.56 Å3 as x increases from 0.25 to 0.67, with plateaus at Vo = 11.59 Å3 for hexagonal and cubic phases and Vo = 10.95 Å3 for orthorhombic and monoclinic phases. The plateaus are attributed to the changes in the average coordination numbers of molybdenum and nitrogen atoms, which increase from 2 to 6 and decrease from 6 to 4, respectively, indicating an increasing covalent bonding character with increasing x. The change in bonding character and the associated phase change from hexagonal to cubic/orthorhombic to monoclinic cause steep increases in the isotropic elastic modulus E = 387-487 GPa, the shear modulus G = 150-196 GPa, and the hardness H = 14-24 GPa in the relatively narrow composition range x = 0.4-0.5. This also causes a drop in Poisson's ratio from 0.29 to 0.24 and an increase in Pugh's ratio from 0.49 to 0.64, indicating a ductile-to-brittle transition between x = 0.44 and 0.5.
NASA Astrophysics Data System (ADS)
Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.
2017-09-01
Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.
Hexagonal OsB 2: Sintering, microstructure and mechanical properties
Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; ...
2015-02-07
In this study, the metastable high pressure ReB 2-type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulusmore » of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics.« less
Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.
Kalkan, B; Sen, S; Clark, S M
2011-09-28
The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics
Water freezing and ice melting
Malolepsza, Edyta; Keyes, Tom
2015-10-12
The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, T S(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubicmore » ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F.X., E-mail: zhangfx@umich.ed; Wang, J.W.; Lang, M.
The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (axbx2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedra remain during the formationmore » of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations. - Graphical abstract: At high pressures, La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5} transform from the orthorhombic phase to an axbx2c superlattice of the orthorhombic structure and then to a hexagonal high-pressure phase. Display Omitted« less
The evolution of young HII regions. I. Continuum emission and internal dynamics
NASA Astrophysics Data System (ADS)
Klaassen, P. D.; Johnston, K. G.; Urquhart, J. S.; Mottram, J. C.; Peters, T.; Kuiper, R.; Beuther, H.; van der Tak, F. F. S.; Goddi, C.
2018-04-01
Context. High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M > 8 M⊙), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. Aim. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments. Methods: We present high-resolution ( 0.5″) ALMA observations of nine HII regions selected from the red MSX source survey with compact radio emission and bolometric luminosities greater than 104 L⊙. We focus on the initial presentation of the data, including initial results from the radio recombination line H29α, some complementary molecules, and the 256 GHz continuum emission. Results: Of the six (out of nine) regions with H29α detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J = 5 - 4)), often (but not always) finding the HII region had cleared its immediate vicinity of molecules. Conclusions: Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29α emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region. Table A.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A99
NASA Astrophysics Data System (ADS)
Hankins, Matthew; Herter, Terry; Lau, Ryan; Morris, Mark; Mills, Elisabeth
2018-01-01
In this dissertation presentation, we analyze mid-infrared imaging of the Arched Filaments and H HII regions in the Galactic center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). Examining these regions are of great interest because they provide insights on star formation in the Galactic center and the interactions massive stars have with the ISM. The Arched Filaments are a collection of molecular cloud ridges which are ionized by the nearby Arches star cluster, and give the appearance of large (~25 pc) arch-like structures. The H HII regions are a collection of HII regions just to the west of the Arches cluster (~5-15 pc). The origin of the stars powering the H HII regions is uncertain, as they may have formed in a nearby molecular cloud or could be ejected members of the Arches cluster. FORCAST observations of these regions were used to study the morphology and heating structure of the HII regions, as well as constrain their luminosities.Color-temperature maps of the Arched Filaments created with the FORCAST data reveals fairly uniform dust temperatures (~70-100 K) across the length filaments. The temperature uniformity of the clouds can be explained if they are heated by the Arches cluster but are located at a larger distance from the cluster than they appear. The density of the Arched Filaments clouds was estimated from the FORCAST data and was found to be below the threshold for tidal shearing, indicating that that the clouds will be destroyed by the strong tidal field near the Galactic center. To the west of the Arched Filaments, there is an interesting collection of HII regions, referred to as the H HII regions. These regions are likely heated by massive O/B type stars, and the morphology of the dust emission associated with these objects indicate a mixture of potential in situ formation mechanisms and interlopers. Interestingly, FORCAST imaging of the H HII regions also reveal several compact sources, which may be young embedded stars. We discuss these sources in the context of star formation scenarios in the Galactic center.
Triggering Star Formation: From the Pillars of Creation to the Formation of Our Solar System
NASA Astrophysics Data System (ADS)
Gritschneder, Matthias; Lin, Douglas N. C.
We study the evolution of molecular clouds under the influence of ionizing radiation. We propose that the Pipe Nebula is an HII region shell swept up by the B2 IV β Cephei star θ Ophiuchi. After reviewing the recent observations, we perform a series of analytical calculations. We are able to show that the current size, mass and pressure of the region can be explained in this scenario. The Pipe Nebula can be best described by a three phase medium in pressure equilibrium. The pressure support is provided by the ionized gas and mediated by an atomic component to confine the cores at the observed current pressure. We then present simulations on the future evolution as soon as the massive star explodes in a supernova. We show that a surviving core at the border of the HII-region (D = 5 pc) is getting enriched sufficiently with supernova material and is triggered into collapse fast enough to be consistent with the tight constraints put by meteoritic data of e.g.26Al on the formation of our Solar System. We therefore propose that the formation of the Solar System was triggered by the shock wave of a type IIa supernova interacting with surviving cold structures similar to the Pillars of Creation at the border of HII-regions.
Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer
NASA Astrophysics Data System (ADS)
Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng
2018-03-01
Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.
The critical density for star formation in HII galaxies
NASA Technical Reports Server (NTRS)
Taylor, Christopher L.; Brinks, Elias; Skillman, Evan D.
1993-01-01
The star formation rate (SFR) in galaxies is believed to obey a power law relation with local gas density, first proposed by Schmidt (1959). Kennicutt (1989) has shown that there is a threshold density above which star formation occurs, and for densities at or near the threshold density, the DFR is highly non-linear, leading to bursts of star formation. Skillman (1987) empirically determined this threshold for dwarf galaxies to be approximately 1 x 10(exp 21) cm(exp -2), at a linear resolution of 500pc. During the course of our survey for HI companion clouds to HII galaxies, we obtained high resolution HI observations of five nearby HII galaxies. HII galaxies are low surface brightness, rich in HI, and contain one or a few high surface brightness knots whose optical spectra resemble those of HII regions. These knots are currently experiencing a burst of star formation. After Kennicutt (1989) we determine the critical density for star formation in the galaxies, and compare the predictions with radio and optical data.
NGC628 with SITELLE : I. Imaging Spectroscopy of 4285 HII region candidates.
NASA Astrophysics Data System (ADS)
Rousseau-Nepton, L.; Robert, C.; Martin, R. P.; Drissen, L.; Martin, T.
2018-02-01
This is the first paper of a series dedicated to nebular physics and the chemical evolution of nearby galaxies by investigating large samples of HII regions with the CFHT imaging spectrograph SITELLE. We present a technique adapted to imaging spectroscopy to identify and extract parameters from 4285 HII region candidates found in the disc of NGC 628. Using both the spatial and spectral capabilities of SITELLE, our technique enables the extraction of the position, dust extinction, velocity, Hα profile, diffuse ionized gas (DIG) background, luminosity, size, morphological type, and the emission line fluxes for individual spaxels and the integrated spectrum for each region. We have produced a well-sampled HII region luminosity function and studied its variation with galactocentric radius and level of the DIG background. We found a slope α of -1.12 ±0.03 with no evidence of a break at high luminosity. Based on the width of the region profile, bright regions are rather compact, while faint regions are seen over a wide range of sizes. The radius function reveals a slope of -1.81 ±0.02. BPT diagrams of the individual spaxels and integrated line ratios confirm that most detections are HII regions. Also, maps of the line ratios show complex variations of the ionisation conditions within HII regions. All this information is compiled in a new catalogue for HII regions. The objective of this database is to provide a complete sample which will be used to study the whole parameter space covered by the physical conditions in active star-forming regions.
Probing the Plasma Structure of HII Regions with Faraday Rotation
NASA Astrophysics Data System (ADS)
Costa, Allison; Spangler, Steven R.
2018-01-01
We are involved in study concerning the modification of magnetic fields in the shells of HII regions. We report Faraday Rotation results of lines on sight through or near HII regions associated with OB associations. In the our studies of the Rosette Nebula (l = 206°, b = -1.2°), we measure positive rotation measure (RM) values in excess of +40 to +1200 rad m-2 due to the shell of the nebula and a background RM of +147 rad m-2 due to the general interstellar medium (Savage et al. 2013, ApJ, 765, 42; Costa et al. 2016, ApJ, 821, 92). We are currently completing an analysis of observations probing an addition HII region, IC 1805 (l = 135°, b = +0.9°), associated with the W4 Superbubble. We measure negative RM values across the region between -68 and -961 rad m-2. We find the highest RM values for lines of sight which intersect the ionized shell of the HII region for the Rosette Nebula, but in the case of IC 1805, the highest RM values are outside the bright shell of the HII region. However, we find that the magnitude of the RM between the two regions is similar. The sign of the RM across each HII region is consistent with the expected polarity of a Galactic magnetic field that follows the Perseus spiral arm in the clockwise direction, as suggested by Han et al. (2006, ApJ, 642, 868) and Van Eck et al. (2011, ApJ, 728, 14).
Developing a standardized measurement of alcohol intoxication.
Benoit, Justin L; Hart, Kimberly W; Soliman, Adam A; Barczak, Christopher M; Sibilia, Robert S; Lindsell, Christopher J; Fermann, Gregory J
2017-05-01
We assessed multiple examinations and assessment tools to develop a standardized measurement of alcohol intoxication to aid medical decision making in the Emergency Department. Volunteers underwent an alcohol challenge. Pre- and post-alcohol challenge, subjects were videotaped performing three standardized clinical examinations: (1) Standardized Field Sobriety Test (SFST) examination, (2) Hack's Impairment Index (HII) examination, and (3) Cincinnati Intoxication Examination (CIE). Emergency clinicians evaluated the level of intoxication using five standardized assessment tools in a blinded and randomized fashion: (1) SFST assessment tool (range 0-18), (2) HII assessment tool (range 0-1), (3) St. Elizabeth Alcohol Intoxication Scale (STE, range 0-17), (4) a Visual Analog Scale (VAS, range 0-100), and (5) a Binary Intoxication Question (BIQ). Construct validity was assessed along with inter- and intra-rater reliability. Median scores pre- and post-alcohol challenge were: SFST 6 (interquartile range 5) and 11 (3), respectively; HII 0 (0.05), 0.1 (0.1); STE 0 (1), 1 (2); VAS 10 (22), 33 (31). For BIQ, 59% and 91% indicated intoxication, respectively. Inter-rater reliability scores were: SFST 0.71 (95% confidence interval 0.48-0.86) to 0.93 (0.88-0.97) depending on examination component; HII 0.90 (0.82-0.95); STE 0.86 (0.75-0.93); VAS 0.92 (0.88-0.94); BIQ 0.3. Intra-rater reliability scores were: SFST 0.74 (0.64-0.82) to 0.87 (0.81-0.91); HII 0.85 (0.79-0.90); STE 0.78 (0.68-0.85); VAS 0.82 (0.74-0.87); BIQ 0.71. VAS reliability was best when paired with the HII and SFST examinations. HII examination, paired with either a VAS or HII assessment tool, yielded valid and reliable measurements of alcohol intoxication. Copyright © 2017 Elsevier Inc. All rights reserved.
Phase equilibria and crystal chemistry of rubidium niobates and rubidium tantalates
NASA Technical Reports Server (NTRS)
Minor, D. B.; Roth, R. S.; Parker, H. S.; Brower, W. S.
1977-01-01
The phase equilibria relations and crystal chemistry of portions of the Rb2O-Nb2O5 and Rb2O-Ta2O5 systems were investigated for structures potentially useful as ionic conductors. A hexagonal tungsten bronze-type (HTB) structure was found in both systems as well as three hexagonal phases with mixed HTB-pyrochlore type structures. Ion exchange experiments between various alkali ions are described for several phases. Unit cell dimensions and X-ray diffraction powder patterns are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knaapila, M.; Lyons, B.P.; Foreman, J.P.
We report on an experimental study of the self-organization and phase behavior of hairy-rod {pi}-conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] - i.e., poly[2,7-(9,9-bis(2-ethylhexyl)fluorene] (PF2/6) - as a function of molecular weight (M{sub n}). The results have been compared to those of phenomenological theory. Samples for which M{sub n}=3-147 kg/mol were used. First, the stiffness of PF2/6, the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2/6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and highermore » M{sub n} (LMW, M{sub n}
Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.
Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi
2017-08-09
The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.
Anandamide and analogous endocannabinoids: a lipid self-assembly study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena
Anandamide, the endogenous agonist of the cannabinoid receptors, has been widely studied for its interesting biological and medicinal properties and is recognized as a highly significant lipid signaling molecule within the nervous system. Few studies have, however, examined the effect of the physical conformation of anandamide on its function. The study presented herein has focused on characterizing the self-assembly behaviour of anandamide and four other endocannabinoid analogues of anandamide, viz., 2-arachidonyl glycerol, arachidonyl dopamine, 2-arachidonyl glycerol ether (noladin ether), and o-arachidonyl ethanolamide (virodhamine). Molecular modeling of the five endocannabinoid lipids indicates that the highly unsaturated arachidonyl chain has a preferencemore » for a U or J shaped conformation. Thermal phase studies of the neat amphiphiles showed that a glass transition was observed for all of the endocannabinoids at {approx} -110 C with the exception of anandamide, with a second glass transition occurring for 2-arachidonyl glycerol, 2-arachidonyl glycerol ether, and virodhamine (-86 C, -95 C, -46 C respectively). Both anandamide and arachidonyl dopamine displayed a crystal-isotropic melting point (-4.8 and -20.4 C respectively), while a liquid crystal-isotropic melting transition was seen for 2-arachidonyl glycerol (-40.7 C) and 2-arachidonyl glycerol ether (-71.2 C). No additional transitions were observed for virodhamine. Small angle X-ray scattering and cross polarized optical microscopy studies as a function of temperature indicated that in the presence of excess water, both 2-arachidonyl glycerol and anandamide form co-existing Q{sub II}{sup G} (gyroid) and Q{sub II}{sup D} (diamond) bicontinuous cubic phases from 0 C to 20 C, which are kinetically stable over a period of weeks but may not represent true thermodynamic equilibrium. Similarly, 2-arachidonyl glycerol ether acquired an inverse hexagonal (HII) phase in excess water from 0 C to 40 C, while virodhamine and arachidonyl dopamine exist as an isotropic L{sub 2} phase, even at very low temperatures. Due to their preferential conformation and lipid self-assembly behaviour, all five endocannabinoids constitute high curvature lipids that can impart membrane stress within a cell membrane which has been linked to a number of membrane and membrane protein associated processes.« less
Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2018-06-01
We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.
Davtyan, Arman; Krause, Thilo; Kriegner, Dominik; Al-Hassan, Ali; Bahrami, Danial; Mostafavi Kashani, Seyed Mohammad; Lewis, Ryan B; Küpers, Hanno; Tahraoui, Abbes; Geelhaar, Lutz; Hanke, Michael; Leake, Steven John; Loffeld, Otmar; Pietsch, Ullrich
2017-06-01
Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In 0.15 Ga 0.85 As/GaAs core-shell-shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core-shell-shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.
Local reionization histories with a merger tree of the HII regions
NASA Astrophysics Data System (ADS)
Chardin, Jonathan; Aubert, Dominique; Ocvirk, Pierre
2014-08-01
Aims: We investigate simple properties of the initial stage of the reionization process around progenitors of galaxies, such as the extent of the initial HII region before its fusion with the UV background, and the duration of its propagation. Methods: We used a set of four reionization simulations with different resolutions and ionizing source prescriptions. By using a merger tree of the HII regions we compiled a catalog of the HII region properties. When the ionized regions undergo a major-merger event, we considered that they belong to the global UV background. From the lifetime of the region and from their volume until this moment we drew typical local reionization histories as a function of time and investigated the relation between these histories and the halo mass progenitors of the regions. We then used an average mass accretion history model (AMAH) to extrapolate the halo mass inside the region from high z to z = 0 to predict the past reionization histories of galaxies we see today. Results: We found that the later an HII region appears during the reionization period, the shorter their related lifetime is and the smaller their volume before they merge with the global UV background. Quantitatively, the duration and extent of the initial growth of an HII region is strongly dependent on the mass of the inner halo and can be as long as ~50% of the reionization epoch. We found that the more massive a halo is today, the earlier it appears and the larger is the extension and the longer the propagation duration of its HII region. Quantitative predictions differ depending on the box size or the source model: small simulated volumes are affected by proximity effects between HII regions, and halo-based source models predict smaller regions and slower I-front expansion than models that use star particles as ionizing sources. Applying this extrapolation to Milky Way-type halos leads to a maximal extent of 1.1 Mpc/h for the initial HII region that established itself in ~150-200 ± 20 Myr. This is consistent with the prediction made using constrained Local Group simulations. For halos with masses similar to those of the Local Group (MW + M31), our result suggests that statistically it has not been influenced by an external front coming from a Virgo-like cluster.
Burkhart, Brett W; Cubonova, Lubomira; Heider, Margaret R; Kelman, Zvi; Reeve, John N; Santangelo, Thomas J
2017-07-01
Many aspects of and factors required for DNA replication are conserved across all three domains of life, but there are some significant differences surrounding lagging-strand synthesis. In Archaea , a 5'-to-3' exonuclease, related to both bacterial RecJ and eukaryotic Cdc45, that associates with the replisome specifically through interactions with GINS was identified and designated GAN (for G INS- a ssociated n uclease). Despite the presence of a well-characterized flap endonuclease (Fen1), it was hypothesized that GAN might participate in primer removal during Okazaki fragment maturation, and as a Cdc45 homologue, GAN might also be a structural component of an archaeal CMG (Cdc45, MCM, and GINS) replication complex. We demonstrate here that, individually, either Fen1 or GAN can be deleted, with no discernible effects on viability and growth. However, deletion of both Fen1 and GAN was not possible, consistent with both enzymes catalyzing the same step in primer removal from Okazaki fragments in vivo RNase HII has also been proposed to participate in primer processing during Okazaki fragment maturation. Strains with both Fen1 and RNase HII deleted grew well. GAN activity is therefore sufficient for viability in the absence of both RNase HII and Fen1, but it was not possible to construct a strain with both RNase HII and GAN deleted. Fen1 alone is therefore insufficient for viability in the absence of both RNase HII and GAN. The ability to delete GAN demonstrates that GAN is not required for the activation or stability of the archaeal MCM replicative helicase. IMPORTANCE The mechanisms used to remove primer sequences from Okazaki fragments during lagging-strand DNA replication differ in the biological domains. Bacteria use the exonuclease activity of DNA polymerase I, whereas eukaryotes and archaea encode a flap endonuclease (Fen1) that cleaves displaced primer sequences. RNase HII and the GINS-associated exonuclease GAN have also been hypothesized to assist in primer removal in Archaea Here we demonstrate that in Thermococcus kodakarensis , either Fen1 or GAN activity is sufficient for viability. Furthermore, GAN can support growth in the absence of both Fen1 and RNase HII, but Fen1 and RNase HII are required for viability in the absence of GAN. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuangbin; Wang, Xiaohan; University of Chinese Academy of Sciences, Beijing 100049
2014-09-01
Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics with x ranging from 0 to 1 were prepared by direct current arc discharge technique and studied by means of x-ray diffraction (XRD) and Raman spectroscopy. The cubic-tetragonal ferroelectric phase transition in Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics was found to occur at x ≈ 0.75. XRD investigation of as-grown BaTiO{sub 3} ceramics revealed co-existence of tetragonal and hexagonal modifications with a small amount of impurity phase BaTi{sub 4}O{sub 9}. No evidences of hexagonal phase were observed in Raman spectra of as-grown BaTiO{sub 3} ceramics, while Raman peaks related to hexagonal phase were clearly observed in the spectrummore » of fine-grain powders prepared from the same ceramics. A core-shell model for BaTiO{sub 3} ceramics prepared by direct current arc discharge technique is proposed. Absence of the hexagonal phase in any Ba{sub x}Sr{sub 1−x}TiO{sub 3} solid solution with x < 1 is discussed in the frame of specific atomic arrangement.« less
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2004-01-01
When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.
Non-Reciprocal on Wafer Microwave Devices
2015-05-27
filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate
Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback
2009-11-10
The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.
The heavy ions in space experiment
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Beahm, L. P.; Stiller, B.
1985-01-01
The Heavy Ions in Space (HIIS) experiment was developed and is currently in orbit onboard the long duration facility (LDEF). The HIIS will record relativistic cosmic ray nuclei heavier than magnesium and stopping nuclei down to helium. The experiment uses plastic track detectors that have a charge resolution of 0.15 charge units at krypton and 0.10 charge units, or better, for nuclei lighter than cobalt. The HIIS has a collecting power of 2 square meter steradians and it has already collected more than a year's data.
Pressure-induced Structural Transformations in LanthanideTitanates: La2TiO5 and Nd2TiO5
DOE Office of Scientific and Technical Information (OSTI.GOV)
F Zhang; J Wang; M Lang
The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a x b x 2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedramore » remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.« less
NASA Astrophysics Data System (ADS)
Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen
2012-09-01
Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.
X-ray ionization of the intergalactic medium by quasars
NASA Astrophysics Data System (ADS)
Graziani, Luca; Ciardi, B.; Glatzle, M.
2018-06-01
We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.
Thermal stability of hexagonal OsB2
NASA Astrophysics Data System (ADS)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.
2014-11-01
The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.
Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.
2016-12-21
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less
Pathways through equilibrated states with coexisting phases for gas hydrate formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malolepsza, Edyta; Keyes, Tom
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Pathways through equilibrated states with coexisting phases for gas hydrate formation
Malolepsza, Edyta; Keyes, Tom
2015-12-01
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
NASA Astrophysics Data System (ADS)
Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.
2017-02-01
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.
Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K
2017-02-15
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.
Defect chaos of oscillating hexagons in rotating convection
Echebarria; Riecke
2000-05-22
Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.
NASA Astrophysics Data System (ADS)
Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim
2018-06-01
Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.
Development and application of coarse-grained models for lipids
NASA Astrophysics Data System (ADS)
Cui, Qiang
2013-03-01
I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang and Arun Yethiraj
VizieR Online Data Catalog: Abundances of M33 HII regions (Magrini+, 2010)
NASA Astrophysics Data System (ADS)
Magrini, L.; Stanghellini, L.; Corbelli, E.; Galli, D.; Villaver, E.
2009-11-01
We analyze the spatial distribution of metals in M33 using a new sample and literature data of HII regions, constraining a model of galactic chemical evolution with HII region and planetary nebula (PN) abundances. We consider chemical abundances of a new sample of HII regions complemented with previous literature data-sets. Supported by a uniform sample of nebular spectroscopic observations, we conclude that: i) the metallicity distribution in M33 is very complex, showing a central depression in metallicity probably due to observational bias; ii) the metallicity gradient in the disk of M33 has a slope of -0.037+/-0.009dex/kpc in the whole radial range up to ~8kpc, and -0.044+/-0.009dex/kpc excluding the central kpc; iii) there is a small evolution of the slope with time from the epoch of PN progenitor formation to the present-time. Description: Emission line fluxes, observed and dereddened of 33 HII regions are presented. Physical and chemical properties, such as electron temperatures and density, ionic and total chemical abundances of He, O, N, Ne, Ar, S, are derived. (3 data files).
Progress report on the Heavy Ions in Space (HIIS) experiment
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Beahm, Lorraine P.; Boberg, Paul R.; Tylka, Allan J.
1993-01-01
One of the objectives of the Heavy Ions In Space (HIIS) experiment is to investigate heavy ions which appear at Long Duration Exposure Facility (LDEF) below the geomagnetic cutoff for fully-ionized galactic cosmic rays. Possible sources of such 'below-cutoff' particles are partially-ionized solar energetic particles, the anomalous component of cosmic rays, and magnetospherically-trapped particles. In recent years, there have also been reports of below-cutoff ions which do not appear to be from any known source. Although most of these observations are based on only a handful of ions, they have led to speculation about 'partially-ionized galactic cosmic rays' and 'near-by cosmic ray sources'. The collecting power of HIIS is order of magnitude larger than that of the instruments which reported these results, so HIIS should be able to confirm these observations and perhaps discover the source of these particles. Preliminary results on below-cutoff heavy-ions are reported. Observations to possible known sources of such ions are compared. A second objective of the HIIS experiment is to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table. A report on the status of this analysis is presented.
Probing the Galactic Structure of the Milky Way with H II Regions
NASA Astrophysics Data System (ADS)
Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas
2018-01-01
Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.
First-principles study of the structural properties of Ge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.J.; Cohen, M.L.
1986-12-15
With the use of an ab initio pseudopotential method, the structural properties of Ge are investigated at normal and high pressures. The pressure-induced structural phase transitions from cubic diamond to ..beta..-Sn, to simple hexagonal (sh), and to double hexagonal close packed (dhcp) are examined. With the possible exception of the dhcp structure, the calculated transition pressures, transition volumes, and axial ratios are in good agreement with experimental results. We find that sh Ge has characteristics similar to those of sh Si; the bonds between hexagonal layers are stronger than intralayer bonds and the transverse phonon modes become soft near themore » transitions from the sh to ..beta..-Sn and the sh to hcp structures. At normal pressures, we compare the crystal energies for the cubic diamond, hexagonal 2H, and hexagonal 4H structures. Because of the similar sp/sup 3/ bonds in these structures, the structural energy differences are less than about 14 meV, and the 2H and 4H phases are metastable with respect to the cubic diamond structure. The equation of state is also presented and compared with experiment.« less
NASA Astrophysics Data System (ADS)
Djordjevic, Julie; Thompson, Mark; Urquhart, James S.
2017-01-01
We present a catalog of compact and ultracompact HII regions for all Galactocentric radii. Previous catalogs focus on the inner Galaxy (Rgal ≤ 8 kpc) but the recent SASSy 870 µm survey allows us to identify regions out to ~20 kpc. Early samples are also filled with false classifications leading to uncertainty when deriving star formation efficiencies in Galactic models. These objects have similar mid-IR colours to HII regions. Urquhart et al. (2013) found that they could use mid-IR, submm, and radio data to identify the genuine compact HII regions, avoiding confusion. They used this method on a small portion of the Galaxy (10 < l < 60), identifying 213 HII regions embedded in 170 clumps. We use ATLASGAL and SASSy, crossmatched with RMS, to sample the remaining galactic longitudes out to Rgal = 20 kpc. We derive the properties of the identified compact HII regions and their host clumps while addressing the implications for recent massive star formation in the outer Galaxy. Observations towards nearby galaxies are biased towards massive stars, affecting simulations and overestimating models for galactic evolution and star formation rates. The Milky Way provides the ideal template for studying factors affecting massive star formation rates and efficiencies at high resolution, thus fine-tuning those models. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. Despite some peaks in known complexes and possible correlation with spiral arms, the outer Galaxy appears to produce massive stars as efficiently as the inner regions. However, many of the potential star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. Follow-up observations will be required to verify this conclusion and are currently in progress.
Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki
2009-09-15
Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less
NASA Astrophysics Data System (ADS)
Kumar, Amit; Meenakshi, Mahto, Rabindra Nath
2018-04-01
We have investigated magnetization properties of the sol-gel prepared SrCo0.95Mn0.05O3 (SCMO) sample with respect to change in structural symmetry. The X-ray diffraction patterns show the crystal structure changes from nH-hexagonal, showing trigonal symmetry (SCMO1), to 2H-hexagonal phase (SCMO2). The trigonal crystal symmetry was obtained at lower annealing temperature (less than 1100 °C), however, the 2H-hexagonal symmetry was obtained at higher annealing temperature. The crystallite size calculated using Debye Scherer formula is found to be ˜ 46 nm and ˜ 33 nm for SCMO1 and SCMO2 samples respectively. The temperature dependence zero field cooled (MZFC) and field cooled (MFC) magnetization curves measured under the applied magnetic field of 500 Oe show magnetic reversibility for the SCMO1 sample. However, MZFC and MFC curves in hexagonal phase show magnetic irreversibility with onset temperature, Tirr ˜ 150 K, exhibits weak ferromagnetic ordering. The temperature variation of magnetization in paramagnetic region was analyzed by following Curie-Weiss law fitting. The χ-1(T) curve shows complete linear behavior with single slope for SCMO1 sample, whereas, the SCMO2 curve exhibit the linear behavior with two distinct slopes. Interestingly the sample in hexagonal phase shows small hysteresis loop at 2 K and 100 K respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. Q.; Sun, X.; McBreen, J.
The authors have utilized synchrotron x-ray radiation to perform ''in situ'' x-ray diffraction studies on Li{sub 1-x}CoO{sub 2} and Li{sub 1-x}NiO{sub 2} cathodes. A C/10 charging rate was used for a Li/Li{sub 1-x}CoO{sub 2} cell. For the Li/Li{sub 1-x}NiO{sub 2} cells, C/13 and C/84 rates were applied. The in situ XRD data were collected during the first charge from 3.5 to 5.2 V. For the Li{sub 1-x}CoO{sub 2} cathode, in the composition range of x = 0 to x = 0.5, a new intermediate phase H2a was observed in addition to the two expected hexagonal phases H1 and H2. Inmore » the region very close to x = 0.5, some spectral signatures for the formation of a monoclinic phase M1 were also observed. Further, in the x = 0.8 to x = 1 region, the formation of a CdI{sub 2} type hexagonal phase has been confirmed. However, this new phase is transformed from a CdCl{sub 2} type hexagonal phase, rather than from a monoclinic phase M2 as previously reported in the literature. For the Li{sub 1-x}NiO{sub 2} system, by taking the advantage of the high resolution in 2{theta} angles through the synchrotron based XRD technique, they were able to identify a two-phase coexistence region of hexagonal phase H1 and H2, which has been mistakenly indexed as a single phase region for monoclinic phase M1. Interesting similarities and differences between these two systems are also discussed.« less
Sot, Jesús; Aranda, Francisco J.; Collado, M.-Isabel; Goñi, Félix M.; Alonso, Alicia
2005-01-01
The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and 31P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93°C (Cer16), 60°C (Cer6), and 54°C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60°C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides. PMID:15695626
Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System
NASA Astrophysics Data System (ADS)
Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.
Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.
Chudinova, V V; Zakharova, E I; Alekseev, S M; Chupin, V V; Evstigneeva, R P
1993-02-01
Interaction of alpha-tocopherol with phospholipids, oleic, ricinoleic acids and linoleic acid hydroperoxides was investigated by means of 31P NMR spectroscopy on a model artificial membranes containing egg phosphatidylcholine and lysophosphatidylcholine. alpha-Tocopherol was shown to support the bilayer organization of lysophospholipids, whereas its introduction into the lecithin-water system stimulated the hexagonal phase formation. Free fatty acids exhibited a synergism to alpha-tocopherol, the effect of the hexagonal phase formation being at most increased by oxygenated acids--ricinoleic acid and linoleic acid hydroperoxides. In accordance with the experimental data, a conclusion about modifying and structuring action of alpha-tocopherol was made. Origin of the alpha-tocopherol's modulating effect on the membrane structure and a possible role of hexagonal phase forming upon its action in the course of peroxidation of lipids was discussed.
Logistics support of the Japanese Experiment Module by the H-II rocket
NASA Astrophysics Data System (ADS)
Shibato, Yoji; Eto, Takao; Fukushima, Yukio; Takatsuka, Hitoshi
1988-10-01
This paper describes salient design features of the Japanese Experiment Module (JEM), which will be attached to the Space Station. Special attention is given to the logistic support of the JEM (which is planned to become operational in 1990s) by the HOPE orbiter, which will be used for the resupply and the retrieval of the JEM, and the H-II rocket, which will be used to launch the HOPE. The concepts of HOPE and the H-II rocket are discussed together with the estimated logistics requirements of this system. Configuration diagrams are included.
The development of H-II rocket solid rocket booster thrust vector control system
NASA Astrophysics Data System (ADS)
Nagai, Hirokazu; Fukushima, Yukio; Kazama, Hiroo; Asai, Tatsuro; Okaya, Shunichi; Watanabe, Yasushi; Muramatsu, Shoji
The development of the thrust-vector-control (TVC) system for the two solid rocket boosters (SRBs) of the H-II rocket, which was started in 1984 and completed in 1989, is described. Special attention is given to the system's design, the trade-off studies, and the evaluation of the SRB-TVC system performance, as well as to problems that occurred in the course of the system's development and to the countermeasures that were taken. Schematic diagrams are presented for the H-II rocket, the SRB, and the SRB-TVC system configurations.
Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin
2015-05-01
A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.
Formation des etoiles massives dans les galaxies spirales
NASA Astrophysics Data System (ADS)
Lelievre, Mario
Le but de cette thèse est de décrire la formation des étoiles massives dans les galaxies spirales appartenant à divers types morphologiques. L'imagerie Hα profonde combinée à une robuste méthode d'identification des régions HII ont permis de détecter et de mesurer les propriétés (position, taille, luminosité, taux de formation d'étoiles) de plusieurs régions HII situées dans le disque interne (R < R25) de dix galaxies mais aussi à leur périphérie (R ≥ R 25). De façon générale, la répartition des régions HII ne montre aucune évidence de structure morphologique à R < R25 (bras spiraux, anneau, barre) à moins de limiter l'analyse aux régions HII les plus grosses ou les plus lumineuses. La répartition des régions HII, de même que leur taille et leur luminosité, sont toutefois sujettes à de forts effets de sélection qui dépendent de la distance des galaxies et qu'il faut corriger en ramenant l'échantillon à une résolution spatiale commune. Les fonctions de luminosité montrent que les régions HII les plus brillantes ont tendance à se former dans la portion interne du disque. De plus, l'analyse des pentes révèle une forte corrélation linéaire par rapport au type morphologique. Aucun pic n'est observé dans les fonctions de luminosité à log L-37 qui révèlerait la transition entre les régions HII bornées par l'ionisation et par la densité. Une relation cubique est obtenue entre la taille et la luminosité des régions HII, cette relation variant toutefois de façon significative entre le disque interne et la périphérie d'une même galaxie. La densité et la dynamique du gaz et des étoiles pourraient influencer de façon significative la stabilité des nuages moléculaires face à l'effondrement gravitationnel. D'une part, l'étendue du disque de régions HII pour cinq galaxies de l'échantillon coïncide avec celle de l'hydrogène atomique. D'autre part, en analysant la stabilité des disques galactiques, on conclue qu'en incluant la densité des étoiles vieilles présentes, on arrive à mieux contraindre le rayon à partir duquel aucune formation d'étoiles ne devrait se produire dans les galaxies.
High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; ...
2017-05-25
High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.
Orthorhombic Zr2Co11 phase revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X. -Z.; Zhang, W. Y.; Sellmyer, D. J.
2014-10-01
The structure of the orthorhombic Zr2Co11 phase was revisited in the present work. Selected-area electron diffraction (SAED) and high-resolution electron microscopy (HREM) techniques were used to investigate the structure. They show the orthorhombic Zr2Co11 phase has a 1-D incommensurate modulated structure. The structure can be approximately described as a B-centered orthorhombic lattice. The lattice parameters of the orthorhombic Zr2Co11 phase have been determined by a tilt series of SAED patterns. A hexagonal network with a modulation wave has been observed in the HREM image and the hexagonal motif is considered as the basic structural unit.
Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei
2013-02-01
High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.
Phase behavior and transitions of self-assembling nano-structured materials
NASA Astrophysics Data System (ADS)
Duan, Hu
Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.
Structure, rheology and shear alignment of Pluronic block copolymer mixtures.
Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J
2009-01-01
The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.
Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes
NASA Astrophysics Data System (ADS)
Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.
2004-08-01
We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.
Chithambararaj, Angamuthuraj; Bose, Arumugam Chandra
2011-01-01
Hexagonal molybdenum oxide (h-MoO(3)) was synthesized by a solution based chemical precipitation technique. Analysis by X-ray diffraction (XRD) confirmed that the as-synthesized powder had a metastable hexagonal structure. The characteristic vibrational band of Mo-O was identified from Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images clearly depicted the morphology and size of h-MoO(3.) The morphology study showed that the product comprises one-dimensional (1D) hexagonal rods. From the electron energy loss spectroscopy (EELS) measurement, the elemental composition was investigated and confirmed from the characteristic peaks of molybdenum and oxygen. Thermogravimetric (TG) analysis on metastable MoO(3) revealed that the hexagonal phase was stable up to 430 °C and above this temperature complete transformation into a highly stable orthorhombic phase was achieved. The optical band gap energy was estimated from the Kubelka-Munk (K-M) function and was found to be 2.99 eV. Finally, the ethanol vapor-sensing behavior was investigated and the sensing response was found to vary linearly as a function of ethanol concentration in the parts per million (ppm) range.
NASA Astrophysics Data System (ADS)
Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng
2018-04-01
Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.
Phase diagram and polarization of stable phases of (Ga1- x In x )2O3
NASA Astrophysics Data System (ADS)
Maccioni, Maria Barbara; Fiorentini, Vincenzo
2016-04-01
The full phase diagram of (Ga1- x In x )2O3 is obtained theoretically. The phases competing for the ground state are monoclinic β (low x), hexagonal (x ˜ 0.5), and bixbyite (large x). Three disconnected mixing regions interlace with two distinct phase-separation regions, and at x ˜ 0.5, the coexistence of hexagonal and β alloys with phase-separated binary components is expected. We also explore the permanent polarization of the phases, but none of them are polar. On the other hand, we find that ɛ-Ga2O3, which was stabilized in recent experiments, is pyroelectric with a large polarization and piezoelectric coupling, and could be used to produce high-density electron gases at interfaces.
Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B
2008-05-19
Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.
Ab initio study of the structural, vibrational and thermal properties of Ge2Sb2Te5
NASA Astrophysics Data System (ADS)
Odhiambo, Henry; Othieno, Herick
2015-05-01
The structural, vibrational and thermal properties of hexagonal as well as cubic Ge2Sb2Te5 (GST) have been calculated from first principles. The relative stability of the possible stacking sequences of hexagonal GST has been confirmed to depend on the choice for the exchange-correlation (XC) energy functional. It is apparent that without the inclusion of the Te 4d orbitals in the valence states, the lattice parameters can be underestimated by as much as 3.9% compared to experiment and all-electron calculations. From phonon dispersion curves, it has been confirmed that the hexagonal phase is, indeed, stable whereas the cubic phase is metastable. In particular, calculations based on the quasi-harmonic approximation (QHA) reveal an extra heat capacity beyond the Dulong-Petit limit at high temperatures for both hexagonal and cubic GST. Moreover, cubic GST exhibits a residual entropy at 0 K, in agreement with experimental studies which attribute this phenomenon to substitutional disorder on the Sb/Ge/v sublattice.
A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.
The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less
Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com
Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method.more » The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.« less
A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes.
Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T; Qian, Jiang; Zhu, Yuntian; Shen, Tongde
2004-09-21
A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of approximately 100 GPa. A hexagonal carbon phase was formed at approximately 75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp(3)-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a(0) = 2.496(4) A, c(0) = 4.123(8) A, and V(0) = 22.24(7) A (3). There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 +/- 0.2 g/cm(3), which is at least compatible to that of diamond (3.52 g/cm(3)). The bulk modulus was determined to be 447 GPa at fixed K' identical with 4, slightly greater than the reported value for diamond of approximately 440-442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond.
A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes
Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T.; Qian, Jiang; Zhu, Yuntian; Shen, Tongde
2004-01-01
A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of ≈100 GPa. A hexagonal carbon phase was formed at ≈75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp3-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a0 = 2.496(4) Å, c0 = 4.123(8) Å, and V0 = 22.24(7) Å 3. There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 ± 0.2 g/cm3, which is at least compatible to that of diamond (3.52 g/cm3). The bulk modulus was determined to be 447 GPa at fixed K′≡4, slightly greater than the reported value for diamond of ≈440–442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond. PMID:15361581
Structure and strain relaxation mechanisms of ultrathin epitaxial Pr2O3 films on Si(111)
NASA Astrophysics Data System (ADS)
Schroeder, T.; Lee, T.-L.; Libralesso, L.; Joumard, I.; Zegenhagen, J.; Zaumseil, P.; Wenger, C.; Lupina, G.; Lippert, G.; Dabrowski, J.; Müssig, H.-J.
2005-04-01
The structure of ultrathin epitaxial Pr2O3 films on Si(111) was studied by synchrotron radiation-grazing incidence x-ray diffraction. The oxide film grows as hexagonal Pr2O3 phase with its (0001) plane attached to the Si(111) substrate. The hexagonal (0001) Pr2O3 plane matches the in-plane symmetry of the hexagonal Si(111) surface unit cell by aligning the ⟨101¯0⟩Pr2O3 along the ⟨112¯⟩ Si directions. The small lattice mismatch of 0.5% results in the growth of pseudomorphic oxide films of high crystalline quality with an average domain size of about 50 nm. The critical thickness tc for pseudomorphic growth amounts to 3.0±0.5nm. The relaxation of the oxide film from pseudomorphism to bulk behavior beyond tc causes the introduction of misfit dislocations, the formation of an in-plane small angle mosaicity structure, and the occurence of a phase transition towards a (111) oriented cubic Pr2O3 film structure. The observed phase transition highlights the influence of the epitaxial interface energy on the stability of Pr2O3 phases on Si(111). A mechanism is proposed which transforms the hexagonal (0001) into the cubic (111) Pr2O3 epilayer structure by rearranging the oxygen network but leaving the Pr sublattice almost unmodified.
From Luminous Hot Stars to Starburst Galaxies
NASA Astrophysics Data System (ADS)
Conti, Peter S.; Crowther, Paul A.; Leitherer, Claus
2012-10-01
1. Introduction; 2. Observed properties; 3. Stellar atmospheres; 4. Stellar winds; 5. Evolution of single stars; 6. Binaries; 7. Birth of massive stars and star clusters; 8. The interstellar environment; 9. From giant HII regions to HII galaxies; 10. Starburst phenomena; 11. Cosmological implications; References; Index.
Different structures formed at HII boundaries
NASA Astrophysics Data System (ADS)
Miao, Jingqi; Cornwall, Paul; Kinnear, Tim
2015-03-01
Hydrodynamic simulations on the evolution of molecular clouds (MCs) at HII boundaries are used to show that radiation driven implosion (RDI) model can create almost all of the different morphological structures, such as a single bright-rimmed cloud (BRC), fragment structure and multiple elephant trunk (ET) structures.
The Expanding Bipolar Conic Shell of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2018-06-01
Symbiotic stars are the most interesting since some systems are believed to host the most massive white dwarf, like SN Ia progenitors. Most recently, Lee and Hyung (2018, LH18) proposed a bipolar conic shell structure for the observed high expansion Hα and Hβ line profiles and other double peak lines observed in 1998 September (phase φ = 10.24): the physical conditions for the white dwarf luminosity and the ionized HII zone, responsible for double Gaussian optical lines including Balmer and Lyman line fluxes, were taken from the P-I model with gas density, nH = 109.85 cm-3 , while the column density for the scattering neutral zone was derived from the broader line components based on the result by Monte Carlo simulations. In this investigation, we examined whether the expanding shells of the bipolar conical geometry as proposed by LH18 would be able to form the other Hα and Hβ line profiles observed in other phases, φ = 11.56 and 11.98 (in 2001 August and 2002 August). We look into the kinematical property of the bipolar conic shell structure responsible for the HII and HI zones and then we discuss the secular variation of the broad line feature and the origin of the bipolar cone, i.e., part of a common envelope formed through the mass inflows from the giant star.
The Massive Stellar Population in the Diffuse Ionized Gas of M33
NASA Technical Reports Server (NTRS)
Hoopes, Charles G.; Walterbos, Rene A. M.
1995-01-01
We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.
F-106 Scheduled Maintenance Study. User’s Manual,
1972-09-01
TO HIST-TlTLE-1. 99030 MOVt HliT-NO-IF-OBS TO HIST-ERR-2. 9OUD0 HHITF HIST-HE^ FROM HIiT -TlTLE. 99050 MOVt III TO HISf-FLAO, 99U60...OCCURANCE INTO APPROPRIATE CHANNEL. 97bl0 MOVt 2L*0 TO HIST-INDEX-2. 97620 HIST-OCCUHANCf. 97b30 ADD 1 TO hIST-INDEX-2, 976*0 MOVt HIiT . VALUE t...WRITE HIST-REC FROM HIST-TITLE. C96970 MOVE IIS T3 HIST-FLAG. C98970 GO TO ENO-HIST. C98970 HIST-ERKOH-4. C98970 MOVt HIiT -ERR-i» TO HIST-TITLE-1
Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.
Odijk, T
1998-01-01
A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924
Young stellar population and star formation history ofW4 HII region/Cluster Complex
NASA Astrophysics Data System (ADS)
Panwar, Neelam
2018-04-01
The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.
The barium iron ruthenium oxide system
NASA Technical Reports Server (NTRS)
Kemmler-Sack, S.; Ehmann, A.
1986-01-01
In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given.
Synthesis and oxygen content dependent properties of hexagonal DyMnO[subscript 3+delta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remsen, S.; Dabrowski, B.; Chmaissem, O.
2011-10-28
Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {le} {delta} {le} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phasesmore » at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx} 350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.« less
Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys
NASA Astrophysics Data System (ADS)
Vinod, E. M.; Ramesh, K.; Sangunni, K. S.
2015-01-01
Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.
Fabrication of stable, wide-bandgap thin films of Mg, Zn and O
Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.
2006-07-25
A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.
Interfaces between hexagonal and cubic oxides and their structure alternatives
Zhou, Hua; Wu, Lijun; Wang, Hui-Qiong; ...
2017-11-14
Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. Here we have found that the structure alternatives are controlled thermodynamically bymore » the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. Finally, this work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.« less
Feast, George C; Lepitre, Thomas; Tran, Nhiem; Conn, Charlotte E; Hutt, Oliver E; Mulet, Xavier; Drummond, Calum J; Savage, G Paul
2017-03-01
The lyotropic phase behaviour of a library of sugar-based amphiphiles was investigated using high-throughput small-angle X-ray scattering (SAXS). Double unsaturated-chain monosaccharide amphiphiles formed inverse hexagonal and cubic micellar (Fd3m) lyotropic phases under excess water conditions. A galactose-oleyl amphiphile from the library was subsequently formulated into hexosome nanoparticles, which have potential uses as drug delivery vehicles. The nanoparticles were shown to be stable at elevated temperatures and non-cytotoxic up to at least 200μgmL -1 . Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.
Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.
De, Amrit; Pryor, Craig E
2014-01-29
Crystalline semiconductors may exist in different polytypic phases with significantly different electronic and optical properties. In this paper, we calculate the electronic structure and optical properties of diamond, Si and Ge in the lonsdaleite (hexagonal diamond) phase using a transferable model empirical pseudopotential method with spin–orbit interactions. We calculate their band structures and extract various relevant parameters. Differences between the cubic and hexagonal phases are highlighted by comparing their densities of states. While diamond and Si remain indirect gap semiconductors in the lonsdaleite phase, Ge transforms into a direct gap semiconductor with a much smaller bandgap. We also calculate complex dielectric functions for different optical polarizations and find strong optical anisotropy. We further provide expansion parameters for the dielectric functions in terms of Lorentz oscillators.
Pressure induced structural phase transition of OsB 2: First-principles calculations
NASA Astrophysics Data System (ADS)
Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.
2010-04-01
Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.
Hexaferrite multiferroics: from bulk to thick films
NASA Astrophysics Data System (ADS)
Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.
2018-03-01
We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.
Phase transition studies of germanium to 1. 25 Mbar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Y.K.; Brister, K.E.; Desgreniers, S.
1986-05-05
New phase transitions in Ge were observed by energy-dispersive x-ray diffraction techniques for pressures up to 125 GPa (1.25 Mbar) as follows: the ..beta..-Sn structure to the simple hexagonal (sh) phase at 75 +- 3 GPa and to the double hexagonal close-packed structure (dhcp) at 102 +- 5 GPa. These are the highest pressures for which a crystalline structure change has been directly observed in any material by x-ray diffraction. Total-energy pseudopotential calculations predict 84 +- 10 GPa for the ..beta..-Sn to sh phase transition and 105 +- 21 GPa for sh to hcp (not dhcp) transition. The role ofmore » 3d core electrons in increasing the transformation pressures in Ge, as compared to Si, is emphasized.« less
The Impact Of Galactic Environment On Star Formation
NASA Astrophysics Data System (ADS)
Kreckel, Kathryn
2016-09-01
While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.
The impact of galactic environment on star formation
NASA Astrophysics Data System (ADS)
Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration
2017-01-01
While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.
Epitaxial growth and photoluminescence of hexagonal CdS 1- xSe x alloy films
NASA Astrophysics Data System (ADS)
Grün, M.; Gerlach, H.; Breitkopf, Th.; Hetterich, M.; Reznitsky, A.; Kalt, H.; Klingshirn, C.
1995-01-01
CdSSe ternary alloy films were grown on GaAs(111) by hot-wall beam epitaxy. The hexagonal crystal phase is obtained. The composition varies from 0 to 40% selenium. Luminescence spectroscopy at low temperatures shows a dominant effect by alloy disorder. Localization of carriers, for example, is still observed at a pulsed optical excitation density of 6 mJ/cm 2. The overall quality of the CdSSe films is sufficient to use them as buffer layers for the growth of hexagonal superlattices.
On the Nature and History of Blue Amorphous Galaxies
NASA Astrophysics Data System (ADS)
Marlowe, Amanda True
1998-07-01
Dwarf galaxies play an important role in our understanding of galaxy formation and evolution. We have embarked on a systematic study of 12 blue amorphous galaxies (BAGs) whose properties suggest that they are dwarf galaxies in a starburst or post-burst state. It seems likely that BAGs are related to other 'starburst' dwarfs such as blue compact dwarfs (BCDs) and HII galaxies. The BAGs in our sample, however, are considerably closer than BCDs and HII galaxies in other samples, and therefore easier to study. These galaxies may offer important insights into dwarf galaxy evolution. In an effort to clarify the role of BAGs in evolutionary scenarios for dwarf galaxies, we present and analyze Hα and UBVI data for our sample. BAGs, like BCDs and HII galaxies, have surface brightness profiles that are exponential in the outer regions but have a predominantly blue central blue excess, suggesting a young burst in an older, redder galaxy. Seven of the galaxies have the bubble or filamentary Hα morphology and double peaked emission lines that are the signature of superbubbles or superwind activity. These galaxies are typically the ones with the strongest central excesses. The starbursting regions are young events compared to the older underlying galaxy, which follow an exponential surface brightness law. Not all of the galaxies develop superwinds: the appearance of superwinds is most sensitive to the concentration and rate of star formation in the starbursting core. The underlying exponential galaxies are very similar to those found in BCDs and HII galaxies, though the 'burst' colors are slightly redder than those found in HII galaxies. BAGs are structurally similar to BCDs and HII galaxies. How BAGs fit into the dwarf galaxy evolutionary debate is less clear. While some compact dIs have properties similar to those of the underlying exponential galaxy in our sample, issues such as mass loss from superwinds, the impact of the starbursting core on the underlying galaxy, and fading complicate the search for BAG progenitor and evolved or faded BAG galaxy classes.
Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim
2017-01-15
Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.
Mechanosynthesis of Precursors for TiC-Cu Cermets
NASA Astrophysics Data System (ADS)
Eremina, M. A.; Lomaeva, S. F.; Burnyshev, I. N.; Kalyuzhnyi, D. G.
2018-04-01
The structural and phase state of the samples obtained by co-grinding of Ti and Cu powders under different conditions (with graphite, in petroleum ether, and in xylene) is investigated. It is demonstrated that after thermal treatment of powders obtained by milling of titanium, copper, and graphite in petroleum ether, both cubic titanium carbide and hexagonal titanium carbohydride are formed, whereas by milling without graphite, only hexagonal carbohydride possessing high thermal stability is formed. CuTi and CuTi2 intermetallic phases are formed under all examined conditions of mechanosynthesis.
Ghosh, Pushpal; Mudring, Anja-Verena
2016-04-21
Oxygen-free Eu(3+)-doped NaGdF4 nanocrystals with high quantum cutting efficiency are accessible at low temperatures (room temperature to 80 °C) using task-specific ionic liquids (ILs) as structure directing agents and only water as solvent. Selective tuning of the shape, morphology and, most importantly, the crystal phase of the host lattice is achieved by changing the alkyl side length, the H-bonding capabilities and the concentration of 1-alkyl-3-methylimidazolium bromide ILs, [C(n)mim]Br. When using [C2mim]Br, hexagonal NaGdF4 nanoparticles are obtained. In the case of methylimidazolium bromides with longer pendant alkyl chains such as butyl (C4), octyl (C8) or decyl (C10), extremely small nanoparticles of the cubic polymorph form, which then convert even at room temperature (RT) to the thermodynamically favored hexagonal modification. To the best of our knowledge, this kind of spontaneous phase transition is not yet reported. The hexagonal nanomaterial shows a substantial quantum cutting efficiency (154%) whilst in the cubic material, the effect is negligible (107%). The easy yet highly phase selective green synthesis of the materials promises large scale industrial application in environmentally benign energy efficient lighting.
The Ultraviolet Emission Spectra of AN HII Region
NASA Astrophysics Data System (ADS)
Cox, Nancy
1991-07-01
ONE OF THE ADVANTAGES OF THE NEW INSTRUMENTS SUCH AS THE HUBBLE SPACE TELESCOPE IS TO BE ABLE TO STUDY THE UNIVERSE AT WAVELENGTHS PREVIOUSLY UNOBSERVABLE FROM UNDER THE EARTH'S ATMOSPHERE. ONE THE THESE IS THE UV REGION OF THE STECTRUM. USING HST'S FOS, I WOULD LIKE TO TAKE A UV SPETRUM OF AN HII REGION, M8, THE LAGOON NEBULA (HOURGLASS REGION). HII REGIONS ARE AREAS OF STARBIRTH AND ARE SAMPLES OF THE INTERSTELLAR MATTER OUT OF WHICH STARS ARE BEING BORN. HOT, YOUNG O STARS WHICH RADIATE STRONGLY IN THE UV ARE EMBEDDED IN M8. MANY EMSSION LINES ARE EXPECTED BETWEEN 912-3300 ANGTROMS. USING WF/PC, AN IMAGE OF THE HOURGALSS WILL BE TAKEN LOOKING FOR FILIMENTARY STRUCTURE AND NEW BORN STARS.
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory
NASA Astrophysics Data System (ADS)
Nath Gupta, Satyendra; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Elghazali, Moaz A.; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.
2018-05-01
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at GPa for NbAs and GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jing; Hu, Enyuan; Nordlund, Dennis
The phase transition, charge compensation, and local chemical environment of Ni in LiNiO 2 were investigated to understand the degradation mechanism. The electrode was subjected to a variety of bulk and surface-sensitive characterization techniques under different charge–discharge cycling conditions. We observed the phase transition from the original hexagonal H1 phase to another two hexagonal phases (H2 and H3) upon Li deintercalation. Moreover, the gradual loss of H3-phase features was revealed during the repeated charges. The reduction in Ni redox activity occurred at both the charge and the discharge states, and it appeared both in the bulk and at the surfacemore » over the extended cycles. In conclusion, the degradation of crystal structure significantly contributes to the reduction of Ni redox activity, which in turn causes the cycling performance decay of LiNiO 2.« less
Crystalline phase transformation of colloidal cadmium sulfide nanocrystals
NASA Astrophysics Data System (ADS)
Ghali, M.; Eissa, A. M.; Mosaad, M. M.
2017-03-01
In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, Eg, where significant increase ˜200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.
Chakraborty, Indrani; Shirodkar, Sharmila N; Gohil, Smita; Waghmare, Umesh V; Ayyub, Pushan
2014-03-19
The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.
New magnetic phase and magnetic coherence in Nd/Sm(001) superlattices
NASA Astrophysics Data System (ADS)
Soriano, S.; Dufour, C.; Dumesnil, K.; Stunault, A.
2006-06-01
In order to investigate magnetic phenomena in Nd and Sm layers separately, resonant x-ray magnetic scattering experiments have been performed to study Nd/Sm(001) superlattices with different relative layers thickness. The samples were grown using molecular beam epitaxy, and optimized to yield dhcp Sm growth and thus a coherent dhcp stacking across the Nd/Sm superlattices. The magnetic phases in Sm layers are very close to the ones evidenced in dhcp thick films. In contrast, the magnetism in Nd layers shows strong differences with the bulk case. In superlattices with a large Sm thickness (>8 nm), no magnetic scattering usually associated with Nd magnetic structure was detected. In superlattices with smaller Sm thickness (<4 nm), new Nd magnetic phases have been observed. A detailed analysis of the propagation of the magnetic structures in the cubic and hexagonal sublattices of both Sm and Nd is presented. Both Sm hexagonal and cubic magnetic phases propagate coherently through 3.7 nm thick Nd layers but remain confined in Sm layers when the Nd layers are 7.1 nm thick. In contrast, the critical Sm thickness allowing a coherent propagation of Nd magnetic order is different for the hexagonal and cubic sublattices above 5 K. Finally, we show that: (i) a spin-density wave and a 4f magnetic order with perpendicular polarization are exclusive on a given crystallographic site (either hexagonal or cubic); (ii) a 4f magnetic order on a crystallographic site does not perturb the establishment of a spin-density wave with a perpendicular polarization on the other site.
NASA Astrophysics Data System (ADS)
Gainaru, C.; Vynokur, E.; Köster, K. W.; Fuentes-Landete, V.; Spettel, N.; Zollner, J.; Loerting, T.; Böhmer, R.
2018-04-01
Using various temperature-cycling protocols, the dynamics of ice I were studied via dielectric spectroscopy and nuclear magnetic resonance relaxometry on protonated and deuterated samples obtained by heating high-density amorphous ices as well as crystalline ice XII. Previous structural studies of ice I established that at temperatures of about 230 K, the stacking disorder of the cubic/hexagonal oxygen lattice vanishes. The present dielectric and nuclear magnetic resonance investigations of spectral changes disclose that the memory of the existence of a precursor phase is preserved in the hydrogen matrix up to 270 K. This finding of hydrogen mobility lower than that of the undoped hexagonal ice near the melting point highlights the importance of dynamical investigations of the transitions between various ice phases and sheds new light on the dynamics in ice I in general.
Equilibrium structures of carbon diamond-like clusters and their elastic properties
NASA Astrophysics Data System (ADS)
Lisovenko, D. S.; Baimova, Yu. A.; Rysaeva, L. Kh.; Gorodtsov, V. A.; Dmitriev, S. V.
2017-04-01
Three-dimensional carbon diamond-like phases consisting of sp 3-hybridized atoms, obtained by linking of carcasses of fullerene-like molecules, are studied by methods of molecular dynamics modeling. For eight cubic and one hexagonal diamond-like phases on the basis of four types of fullerene-like molecules, equilibrium configurations are found and the elastic constants are calculated. The results obtained by the method of molecular dynamics are used for analytical calculations of the elastic characteristics of the diamond- like phases with the cubic and hexagonal anisotropy. It is found that, for a certain choice of the dilatation axis, three of these phases have negative Poisson's ratio, i.e., are partial auxetics. The variability of the engineering elasticity coefficients (Young's modulus, Poisson's ratio, shear modulus, and bulk modulus) is analyzed.
Thermal phase transition behavior of lipid layers on a single human corneocyte cell.
Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru
2013-09-01
We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, A. M.; Coutinho, W. S.; Lima, A. F.
2015-02-21
We have investigated the structural, bonding, and electronic properties of both ferroelectric (FE) and paraelectric (PE) phases of the hexagonal LuMnO{sub 3} compound using calculations based on density functional theory. The structural properties have been determined by employing the generalized gradient approximation with Perdew-Burke-Ernzerhof and Wu-Cohen parameterization. The bonding and electronic properties have been treated by recently developed modified Becke-Johnson exchange potential, which succeeded to open a band gap for both PE and FE phases, in agreement with experimental predictions. The Bader’s topological analysis of electronic density showed that the character of the Lu–O axial bonds changes when the crystalmore » exhibits the PE → FE structural transition. This fact is in agreement with experimental findings. The covalent character of the Lu–O bond significantly increases due to orbital hybridization between the Lu 5d{sub z}{sup 2} and O 2p{sub z}-states. This bonding mechanism causes the ferroelectricity in the hexagonal LuMnO{sub 3} compound.« less
Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers
NASA Astrophysics Data System (ADS)
Zhai, Xuechao; Jin, Guojun
2013-09-01
Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.
PAH 8μm Emission as a Diagnostic of HII Region Optical Depth
NASA Astrophysics Data System (ADS)
Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.
2017-01-01
PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.
H-alpha observations of Sh2-190, Sh2-222, Sh2-229, Sh2-236 HII regions
NASA Astrophysics Data System (ADS)
Sahan, Muhittin
2018-02-01
Hα spectral line (6563Å) profiles of four northern HII regions in the our galaxy (Sh2-190, Sh2-222, Sh2-229, Sh2-236) have been obtained using DEFPOS spectrometer, located at coude focus of 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey). Observations were carried out at nights of 2015 December 24-27 with long exposure times ranging from 900s to 3600s. The LSR velocities and the linewidths (Full Width Half Maximum: FWHM) of the Hα emission lines were found to be in the range of -45.46 kms-1 to +3.57 kms-1 and 38.50 kms-1 to 44.10 kms-1, respectively. The Sh2-229 HII region is the faintest one (211.16 R), while the Sh2-236 HII region (IC410) is brightest source (535.75 R). The LSR velocity and the line width (FWHM) results of the DEFPOS/RTT150 system were compared with the data by several authors given in literature and results of DEFPOS data were found to be in good agreement with data given in literature.
Crystal structure, chemical expansion and phase stability of HoMnO{sub 3} at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selbach, Sverre M., E-mail: selbach@material.ntnu.no; Nordli Lovik, Amund; Bergum, Kristin
Anisotropic thermal and chemical expansion of hexagonal HoMnO{sub 3} was investigated by high temperature X-ray diffraction in inert (N{sub 2}) and oxidizing (air) atmospheres up to 1623 K. A second order structural phase transition directly from P6{sub 3}cm to P6{sub 3}/mmc was found at 1298{+-}4 K in N{sub 2} atmosphere, and 1318{+-}4 K in air. For the low temperature polymorph P6{sub 3}cm the contraction of the c-axis was more rapid in inert than in oxidizing atmosphere. The c-axis of the P6{sub 3}/mmc polymorph of HoMnO{sub 3} displayed anomalously high expansion above 1400 K, which is discussed in relation to chemicalmore » expansion caused by point defects. The a-axis expanded stronger in inert than oxidizing atmosphere. Anisotropic chemical and thermal expansion of the P6{sub 3}cm phase of YMnO{sub 3} in N{sub 2}, air and O{sub 2} atmospheres was found to be qualitatively similar to that of HoMnO{sub 3}. Decomposition of hexagonal HoMnO{sub 3} by two different processes occurs in oxidizing atmosphere above {approx}1200 K followed by nucleation and growth of the perovskite polymorph of HoMnO{sub 3}. A rapid, reconstructive transition from the perovskite back to the hexagonal polymorph was observed in situ at 1623 K upon reduction of the partial pressure of oxygen. A phase stability diagram of the hexagonal and orthorhombic polymorphs is proposed. Finally, distinctly non-linear electrical conductivity was observed for both HoMnO{sub 3} and YMnO{sub 3} in oxidizing atmosphere between 555 and 630 K, and shown to be associated with excess oxygen. - Graphical abstract: Chemical expansion of hexagonal HoMnO{sub 3} is observed during HTXRD in different pO{sub 2}. Oxidizing atmosphere favors the competing perovskite polymorph. Electrical conductivity anomalies related to excess oxygen are found at 550-630 K. Highlights: Black-Right-Pointing-Pointer Thermal evolution of crystal structure of HoMnO{sub 3} studied up to 1623 K in air and N{sub 2}. Black-Right-Pointing-Pointer Anisotropic chemical expansion of HoMnO{sub 3} and YMnO{sub 3} in N{sub 2}, air and O{sub 2}. Black-Right-Pointing-Pointer Hexagonal phase destabilized with respect to perovskite in oxidizing atmosphere. Black-Right-Pointing-Pointer Crystal structure and phase stability discussed in terms of point defect chemistry. Black-Right-Pointing-Pointer Electrical conductivity anomalies associated with excess oxygen at 550-630 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less
Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries
Xu, Jing; Hu, Enyuan; Nordlund, Dennis; ...
2016-11-01
The phase transition, charge compensation, and local chemical environment of Ni in LiNiO 2 were investigated to understand the degradation mechanism. The electrode was subjected to a variety of bulk and surface-sensitive characterization techniques under different charge–discharge cycling conditions. We observed the phase transition from the original hexagonal H1 phase to another two hexagonal phases (H2 and H3) upon Li deintercalation. Moreover, the gradual loss of H3-phase features was revealed during the repeated charges. The reduction in Ni redox activity occurred at both the charge and the discharge states, and it appeared both in the bulk and at the surfacemore » over the extended cycles. In conclusion, the degradation of crystal structure significantly contributes to the reduction of Ni redox activity, which in turn causes the cycling performance decay of LiNiO 2.« less
Optical determination of crystal phase in semiconductor nanocrystals
Lim, Sung Jun; Schleife, André; Smith, Andrew M.
2017-01-01
Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II–VI, III–V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic. Moreover, diffraction methods are low-throughput, incompatible with solution samples and require large sample quantities. Here we report the identification of unambiguous optical signatures of cubic and hexagonal phases in II–VI nanocrystals using absorption spectroscopy and first-principles electronic-structure theory. High-energy spectral features allow rapid identification of phase, even in small nanocrystals (∼2 nm), and may help predict polytypic nanocrystals from differential phase contributions. These theoretical and experimental insights provide simple and accurate optical crystallographic analysis for liquid-dispersed nanomaterials, to improve the precision of nanocrystal engineering and improve our understanding of nanocrystal reactions. PMID:28513577
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Roth, Roland
2018-06-01
By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.
Magnetic ground state of the multiferroic hexagonal LuFe O3
NASA Astrophysics Data System (ADS)
Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.
2018-05-01
The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .
Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions
NASA Astrophysics Data System (ADS)
Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.
2018-05-01
Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.
Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy
NASA Astrophysics Data System (ADS)
Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz
2018-04-01
The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/
Estudo da região HII galática NGC 2579
NASA Astrophysics Data System (ADS)
Riffel, R.; Copetti, M. V. F.
2003-08-01
Desde a descoberta dos gradientes de abundância química em galáxias espirais, as regiões HII galáticas têm sido intensamente estudadas com o objetivo de determinar a forma do gradiente de abundância química na Via-Láctea. Entretanto, a forma do gradiente galático continua controversa e existem muitas regiões HII que continuam inexploradas. A região HII galática NGC 2579 é um objeto que aparece em imagens Ha, como uma pequena mancha brilhante de aproximadamente 2 segundos de arco de diâmetro a 20 segundos de arco ao leste de RCW 20, sendo NGC 2579 muitas vezes confundida com esta última. Apesar de seu alto brilho superficial, NGC 2579 é um objeto pouco estudado provavelmente por problemas de identificação deste objeto. Como parte de um projeto de reavaliação dos gradientes de abundância química das regiões HII na Via-Láctea, estamos realizando um estudo extensivo das propriedades físicas básicas como temperatura eletrônica, densidade eletrônica e composição química da região HII galática NGC 2579. Analisamos dados espectrofotométricos de fenda longa na faixa de 3700Å a 7750Å obtidos com o telescópio de 1.52 m do ESO, Chile, em 2002. Determinamos a temperatura eletrônica usando a razão entre as linhas do [OIII] (l4959+l5007/l4363) e a densidade eletrônica pela razão entre as linhas do [SII] (l6716/l6731). As abundâncias químicas do O, N, Cl, S, Ne e He foram determinadas. Realizamos um estudo de imagens fotométricas nas bandas UBVRI obtidas em 2000 no observatório astronômico San Pedro Mártir, México, para identificar e classificar as estrelas ionizantes de NGC 2579 e determinar a distância deste objeto.
Experimental Investigation of Hexagon Stability in Two Frequency Forced Faraday Waves
NASA Astrophysics Data System (ADS)
Ding, Yu; Umbanhowar, Paul
2003-03-01
We have conducted experiments on a deep layer of silicone oil vertically oscillated with an acceleration a(t) = Am sin(m ω t + φ_m) + An sin(n ω t + φ_n). The stability of hexagonal surface wave patterns is investigated as a function of the overall acceleration, the ratio m:n, and the phase of the two rationally related driving frequencies. When the ratio A_m/An is chosen so the system is near a co-dimension two point, the stability of hexagons above onset is determined by the acceleration amplitude and the relative phase. Recent results by Porter and Silver (J. Porter and M. Silber, Phys. Rev. Lett. 084501, 2002) predicts that the range of pattern stability above onset as a function of acceleration is determined by cos(Φ), where Φ = π/4 - m φn / 2- n φm /2. We have tested this prediction for a number of m:n ratios and for various values of the dimensionless damping coefficient γ. We find that the patterns exhibit the predicted functional dependence on s(Φ) but with an additional phase offset. We measure the phase offset as a function of m:n and γ for varying frequency ω and fluid viscosity 5 cS <= ν <= 30 cS.
Stability, electronic structures and thermoelectric properties of binary Zn–Sb materials
He, Xin; Fu, Yuhao; Singh, David J.; ...
2016-11-03
We report first principles studies of the binary Zn–Sb phases in relation to thermoelectric properties and chemical stability. We identify the unknown structure of the Zn 3Sb 2 phase using particle swarm optimization, finding a tetragonal structure different from the hexagonal Mg 3Sb 2 and the hexagonal or cubic Ca 3Sb 2 phases. All the phases are found to be semiconducting with bandgaps in the range of 0.06–0.77 eV. This semiconducting behavior is understood in Zintl terms as a balance between the Zn:Sb and Sb 3-:½(Sb 2) 4- ratios in the stable crystal structures. With the exception of Zn 3Sbmore » 2, which has a small gap, all the compounds have electronic properties favorable for thermoelectric performance.« less
Transferable model of water with variable molecular size
NASA Astrophysics Data System (ADS)
Kiss, Péter T.; Baranyai, András
2011-06-01
By decreasing the steepness of the repulsive wing in the intermolecular potential, one can extend the applicability of a water model to the high pressure region. Exploiting this trivial possibility, we published a polarizable model of water which provided good estimations not only of gas clusters, ambient liquid, hexagonal ice, but ice VII at very high pressures as well [A. Baranyai and P. Kiss, J. Chem. Phys. 133, 144109 (2010), 10.1063/1.3490660]. This straightforward method works well provided the closest O-O distance is reasonably shorter in the high pressure phase than in hexagonal ice. If these O-O distances are close to each other and we fit the interactions to obtain an accurate picture of hexagonal ice, we underestimate the density of the high-pressure phases. This can be overcome if models use contracted molecules under high external pressure.In this paper we present a method, which is capable to describe the contraction of water molecules under high pressure by using two simple repulsion-attraction functions. These functions represent the dispersion interaction under low pressure and high pressure. The switch function varies between 0 and 1 and portions the two repulsions among the individual particles. The argument of the switch function is a virial-type expression, which can be interpreted as a net force compressing the molecule. We calculated the properties of gas clusters, densities, and internal energies of ambient water, hexagonal ice, ice III, ice VI, and ice VII phases and obtained excellent match of experimental data.
NASA Astrophysics Data System (ADS)
Zhao, Shuwen; Xia, Donglin; Zhao, Ruimin; Zhu, Hao; Zhu, Yiru; Xiong, Yuda; Wang, Youfa
2017-01-01
Hexagonal-phase NaGdF4: Yb, Er upconversion nanocrystals (UCNCs) with tunable morphology and properties were successfully prepared via a thermal decomposition method. The influences of the adding sequence of the precursors on the morphology, chemical composition, luminescence and magnetic properties were investigated by transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), upconversion (UC) spectroscopy, and a vibrating sample magnetometer (VSM). It was found that the resulting nanocrystals, with different sizes ranging from 24 to 224 nm, are in the shape of spheres, hexagonal plates and flakes; moreover, the composition percentage of Yb3+-Er3+ and Gd3+ ions was found to vary in a regular pattern with the adding sequence. Furthermore, the intensity ratios of emission colors (f g/r, f g/p), and the magnetic mass susceptibility of hexagonal-phase NaGdF4: Yb, Er nanocrystals change along with the composition of the nanocrystals. A positive correlation between the susceptibility and f g/r of NaGdF4: Yb, Er was proposed. The decomposition processes of the precursors were investigated by a thermogravimetric (TG) analyzer. The result indicated that the decomposition of the resolved lanthanide trifluoroacetate is greatly different from lanthanide trifluoroacetate powder. It is of tremendous help to recognize the decomposition process of the precursors and to understand the related reaction mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang,W.; Yang, L.; Huang, H.
2007-01-01
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy formore » lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.« less
Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2018-03-20
The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Shukla, Rakesh; Grover, Vinita; Srinivasu, Kancharlapalli; Paul, Barnita; Roy, Anushree; Gupta, Ruma; Tyagi, Avesh Kumar
2018-05-15
Rare earth indates are an interesting class of compounds with rich crystallography. The present study explores the crystallographic phases observed in REInO3 (RE: La-Yb) systems and their dependence on synthesis routes and annealing temperature. All REInO3 compositions were synthesized by a solid state route as well as gel-combustion synthesis (GC) followed by annealing at different temperatures. The systems were well characterized by powder XRD studies and were analysed by Rietveld refinement for the structural parameters. The cell parameters were observed to decrease in accordance with the trend in ionic radii on proceeding from lighter to heavier rare earth ions. Interestingly, the synthesis route and the annealing temperature had a profound bearing on the phase relationships observed in the REInO3 series. The solid state synthesized samples depicted an orthorhombic phase (Pbnm) field for LaInO3 to SmInO3, followed by a hexagonal-type phase (P63cm) for GdInO3 to DyInO3. However, the phase field distribution was greatly influenced upon employing gel-combustion (GC) wherein both single-phasic hexagonal and orthorhombic phase fields were found to shrink. Annealing the GC-synthesized compositions to still higher temperatures (1250 °C) further evolved the phase boundaries. An important outcome of the study is observance of polymorphism in SmInO3 which crystallized in the hexagonal phase when synthesized by GC and orthorhombic phase by solid state synthesis. This reveals the all-important role played by synthesis conditions. The existence and energetics of the two polymorphs have been elucidated and discussed with the aid of theoretical studies.
Epitaxial Garnets and Hexagonal Ferrites.
1982-04-20
goenv.o -,y la)ers were YIG (yttrium iron garnet ) films grown by liquid phase epitaxy w:* ( LPE ) on gadolinium gallium garnet (GGG) substrates. Magnetic...containing three epitaxial layers. In addition to the MSW work oil garnets , LPE of lithium ferrite and hexagonal fertites was studied. A substituted lead...of a stripline. The other layers are epitaxial films , generally YIG (yttrium iron garnet ) with magnetic properties adjusted by suitable modifications
Ring structure in the HII region of NGC 5930
NASA Astrophysics Data System (ADS)
Su, Bu-Mei; Mutel, R. L.; Zhang, Fu-Jing; Li, Yong-Sheng
1992-03-01
Radio continuous observations of the barred spiral galaxy NGC5930 at 2- and 3.6-cm wavelengths have been carried out with the VLA. It has been found that at 2 cm the HII region appears to be a ring structure on which hot spots are distributed. The outer angular diameter of the ring is 2.2 arcsec, and the inner angular diameter - 0.3 arcsec. The center is a hole from which no radio emission has been detected. The electron density in the HII region is 80 - 90 cu cm, and its mass is 10 exp 7 solar mass units. In NGC 5930 there is very strong infrared radiation. The infrared luminosity is 10 exp 6 times larger than the radio luminosity. There is a steep Balmer attenuation. This is a region where a star is being formed violently.
Structural phase transition in monolayer MoTe2 driven by electrostatic doping
NASA Astrophysics Data System (ADS)
Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang
2017-10-01
Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory.
Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D V S; Shekhar, C; Elghazali, Moaz A; Naumov, Pavel G; Medvedev, Sergey A; Felser, C; Waghmare, U V; Sood, A K
2018-05-10
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
Location of WR stars in NGC 6744
NASA Astrophysics Data System (ADS)
Bibby, Joanne; Crowther, Paul; Sandford, Emily
2013-06-01
Following our recent survey of Wolf-Rayet (WR) stars in NGC 6744 we present a preliminary investigation into the location of these stars. Using high spatial resolution Hα images we find that the majority of WR stars are associated with nebular emission, albeit faint in many cases. We can use this HII association to constrain the lifetime and mass of the WR star since HII regions are such short-lived.
Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S
2013-02-11
Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.
Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface
NASA Astrophysics Data System (ADS)
Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.
2014-03-01
The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.
Fullerene-derivative PC61BM forms three types of phase-pure monolayer on the surface of Au(111)
NASA Astrophysics Data System (ADS)
Li, Wen-Jie; Du, Ying-Ying; Zhang, Han-Jie; Chen, Guang-Hua; Sheng, Chun-Qi; Wu, Rui; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; He, Pi-Mo; Li, Hong-Nian
2016-12-01
We have studied the packing structures of C60-derivative PC61BM on the surface of Au(111) in ultrahigh vacuum using scanning tunneling microscopy. The Au(111) has a triangle-like reconstructed surface, which results in some packing structures different from those reported for low coverages. PC61BM can form three types of phase-pure monolayer, namely, the compact straight molecular double-row monolayer, the hexagonal-packing monolayer and the glassy monolayer. The different types of monolayer form for different molecular densities and different annealing temperatures. In addition to the already known inter-molecular interactions (Van de Waals interaction and hydrogen bond), the steric effect of the phenyl-butyric-acid-methyl-ester side tail plays conspicuous role in the molecular self-assembly at high coverages. The steric effect makes it difficult to prepare a hexagonal-packing monolayer at room temperature and decides the instability of the hexagonal-packing monolayer prepared by thermal annealing.
Facile synthesis of Co3O4 hexagonal plates by flux method
NASA Astrophysics Data System (ADS)
Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li
2018-01-01
Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.
NGC 3503 and its molecular environment
NASA Astrophysics Data System (ADS)
Duronea, N. U.; Vasquez, J.; Cappa, C. E.; Corti, M.; Arnal, E. M.
2012-01-01
Aims: We present a study of the molecular gas and interstellar dust distribution in the environs of the Hii region NGC 3503 associated with the open cluster Pis 17 with the aim of investigating the spatial distribution of the molecular gas linked to the nebula and achieving a better understanding of the interaction of the nebula and Pis 17 with their molecular environment. Methods: We based our study on 12CO(1-0) observations of a region of ~0.6° in size obtained with the 4-m NANTEN telescope, unpublished radio continuum data at 4800 and 8640 MHz obtained with the ATCA telescope, radio continuum data at 843 MHz obtained from SUMSS, and available IRAS, MSX, IRAC-GLIMPSE, and MIPSGAL images. Results: We found a molecular cloud (Component 1) having a mean velocity of -24.7 km s-1 ,compatible with the velocity of the ionized gas, which is associated with the nebula and its surroundings. Adopting a distance of 2.9 ± 0.4 kpc, the total molecular mass yields (7.6 ± 2.1) × 103M⊙ and density yields 400 ± 240 cm-3. The radio continuum data confirm the existence of an electron density gradient in NGC 3503. The IR emission shows a PDR bordering the higher density regions of the nebula. The spatial distribution of the CO emission shows that the nebula coincides with a molecular clump, and the strongest CO emission peak is located close to the higher electron density region. The more negative velocities of the molecular gas (about -27 km s-1), are coincident with NGC 3503. Candidate young stellar objects (YSOs) were detected toward the Hii region, suggesting that embedded star formation may be occurring in the neighborhood of the nebula. The clear electron density gradient, along with the spatial distribution of the molecular gas and PAHs in the region indicates that NGC 3503 is a blister-type Hii region that has probably undergone a champagne phase.
NASA Astrophysics Data System (ADS)
Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.
2000-11-01
We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.
Raman Scattering Study of the Soft Phonon Mode in the Hexagonal Ferroelectric Crystal KNiCl 3
NASA Astrophysics Data System (ADS)
Machida, Ken-ichi; Kato, Tetsuya; Chao, Peng; Iio, Katsunori
1997-10-01
Raman spectra of some phonon modes of the hexagonal ferroelectriccrystal KNiCl3are obtained in the temperature range between 290 K and 590 K, which includes the structural phase transition point T2(=561 K) at which previous measurements of dielectric constant and spontaneouspolarization as a function of temperature had shown that KNiCl3 undergoes a transition between polar phases II and III. An optical birefringence measurement carried outas a complement to the present Raman scattering revealed that this transition is of second order. Towards this transition point, the totally symmetric phonon mode with the lowest frequency observed in the room-temperature phasewas found to soften with increasing temperature.The present results provide new information on the phase-transitionmechanism and the space groups of thehigher (II)- and lower (III)-symmetric phases around T2.
NASA Astrophysics Data System (ADS)
Dopita, Michael; Nicholls, David
2012-07-01
Although the analysis of HII region emission lines provides the main way of probing the chemical evolution of the universe throughout cosmic time, currently significant (factor of 2) discrepancies exist between the different methods (principally the strong line, electron temperature and recombination line methods) used to calibrate the cosmic chemical abundance scale. Although effects such as temperature fluctuations and geometrical effects have been invoked, these fail to explain the observations, particularly in the UV. Here we will show that there exists good grounds for supposing that the electrons in HII regions, as in other space plasmas, are not distributed according to a Boltzmann law. Rather, they follow a κ- distribution with κ ˜ 10. With this novel formulation, we can resolve the abundance discrepancies which have plagued this field for over three decades. Interestingly enough, the size of the correction in emission line strengths increases as we go into the UV.
MSX Colors of Radio-Selected HII Regions in the Milky Way
NASA Astrophysics Data System (ADS)
Giveon, U.; Becker, R. H.; Helfand, D. J.; White, R. L.
2004-12-01
Investigation of the color properties of sources in the MSX catalog reveals two populations - a blue population composed of mainly evolved stars, masers and molecular clouds, and a red population composed mainly HII regions, planetary nebulae, and unclassified radio sources. We compare the MSX catalog to 5 GHz VLA maps of the first quadrant of the Galactic plane (350o
Li, Joaquim; Gustavsson, Charlotte; Piculell, Lennart
2016-05-24
Detailed time- and space-resolved SAXS experiments show the variation with hydration of liquid crystalline structures in ethanol-cast 5-80 μm thick films of polyion-surfactant ion "complex salts" (CS). The CS were dodecyl- (C12) or hexadecyl- (C16) trimethylammonium surfactants with polyacrylate (DP 25 or 6000) counter-polyions. The experiments were carried out on vertical films in humid air above a movable water bath, so that gradients of hydration were generated, which could rapidly be altered. Scans over different positions along a film, kept fixed relative to the bath, showed that the surfactant aggregates of the various liquid-crystalline CS structures grow in cross-sectional area with decreasing hydration. This behavior is attributed to the low water content. Studies of films undergoing rapid dehydration, made possible by the original experimental setup, gave strong evidence that some of the investigated systems remain kinetically trapped for minutes in a nonequilibrium Pm3n micellar cubic phase before switching to the equilibrium P6mm 2D hexagonal phase. Both the length of the polyion and the length of the surfactant hydrocarbon "tail" affect the kinetics of the phase transition. The slowness of the cubic-to-hexagonal structural transition is attributed to the fact that it requires major rearrangements of the polyions and surfactant ions relative to each other. By contrast, other structure changes, such as between the hexagonal and rectangular phases, were observed to occur much more rapidly.
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Damasco, Jossana A; Chen, Guanying; Shao, Wei; Ågren, Hans; Huang, Haoyuan; Song, Wentao; Lovell, Jonathan F; Prasad, Paras N
2014-08-27
Hexagonal NaYbF4:Tm(3+) upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm(3+) nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd(3+)) can convert NaYbF4:Tm(3+) 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm(3+) 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd(3+) 30%/Tm(3+) 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline.
2015-01-01
Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline. PMID:25027118
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan
2014-12-15
Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less
An orthogonal oriented quadrature hexagonal image pyramid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1987-01-01
An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.
X-ray diving in the center of Sh2-129: looking for the driving source of Ou4
NASA Astrophysics Data System (ADS)
Grosso, Nicolas
2012-10-01
The outflow phenomenon is associated both with the early and the last phase of the stellar evolution. Recently, a unique bipolar outflow with an angular size of 1.2 degrees was discovered in the blister HII region Sh2-129. Ou4, nicknamed "The Giant Squid", is to our knowledge the bipolar outflow with the largest angular size ever found. We propose joint XMM-Newton/EPIC (35 ks) and Chandra/HRC-I (16 ks) observations to look for the driving source of Ou4 and to clarify the nature of this object.
Wu, Changzheng; Xie, Wei; Zhang, Miao; Bai, Liangfei; Yang, Jinlong; Xie, Yi
2009-01-01
Although about 200,000 metric tons of gamma-MnO(2) are used annually worldwide for industrial applications, the gamma-MnO(2) structure is still known to possess a highly ambiguous crystal lattice. To better understand the gamma-MnO(2) atomic structure, hexagon-based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon-based nanoarchitectures, clearly show the coexistence of akhtenskite (epsilon-MnO(2)), pyrolusite (beta-MnO(2)), and ramsdellite in the so-called gamma-MnO(2) phase and verified the heterogeneous phase assembly of the gamma-MnO(2) state, which violates the well-known "De Wolff" model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous gamma-MnO(2) assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous gamma-MnO(2) system have structural similarities and a high lattice matches with pyrolusite (beta-MnO(2)). The as-obtained gamma-MnO(2) nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase-change materials of inorganic salts, such as phase separation and supercooling-effects, thereby showing prospect in energy-saving applications in future "smart-house" systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Jianle, E-mail: zhuangjianle@126.com; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275; Yang, Xianfeng
Both cubic and hexagonal NaYF{sub 4} were synthesized in different reaction systems via hydro/solvo-thermal route. The effects of reaction temperature, solvents, and additives on the synthesis of NaYF{sub 4} have been studied in detail. It has been shown that phase transformation from cubic NaYF{sub 4} to hexagonal NaYF{sub 4} always occurred. The sequence of the ability for inducing the phase transformation was ethanol>H{sub 2}O>acetic acid. It is found that ethanol can not only facilitate the formation of hexagonal NaYF{sub 4} but also control the growth of the crystal. This is quite unusual for the growth of H-NaYF{sub 4}. The up-conversionmore » emission properties of Yb/Er co-doped NaYF{sub 4} have also been investigated and the results demonstrated some general principles for improving up-conversion emission. - Graphical abstract: Additives and solvents can induce the phase transformation of NaYF{sub 4}, typically the use of organic sodium salt and ethanol. - Highlights: • The effect of additives and solvents on the synthesis of NaYF{sub 4} was studied in detail. • Ethanol can facilitate the formation of H-NaYF{sub 4} while acetic acid restrain it. • Three general principles for improving up-conversion emission were summarized.« less
Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi; Xiong, Ren-Gen
2015-06-21
A new organic-inorganic hexagonal perovskite-type compound with the formula ABX3, thiazolium tribromocadmate(ii) (1), in which thiazolium cations are situated in the space between the one-dimensional chains of face-sharing CdBr(6) octahedra, has been successfully synthesized. Systematic characterizations including differential scanning calorimetry measurements, variable-temperature structural analyses, and dielectric measurements reveal that it undergoes two structural phase transitions, at 180 and 146 K. These phase transitions are accompanied by remarkable dielectric relaxation and anisotropy. The thiazolium cations remain orientationally disordered during the two phase transition processes. The origins of the phase transitions at 180 and 146 K are ascribed to the slowing down and reorientation of the molecular motions of the cations, respectively. Moreover, the dielectric relaxation process well described by the Cole-Cole equation and the prominent dielectric anisotropy are also connected with the dynamics of the dipolar thiazolium cations.
Air separation and oxygen storage properties of hexagonal rare-earth manganites
NASA Astrophysics Data System (ADS)
Abughayada, Castro
This dissertation presents evaluation results of hexagonal Y1-x RxMnO3+delta (R = Er, Y, Dy, Pr, La, Tb and Ho) rare-earth manganites for prospective air separation applications. In these materials, oxygen content is sensitively dependent on the surrounding conditions of temperature and/or oxygen partial pressure, and therefore they exhibit the ability to selectively absorb, store, and release significant amounts of separated oxygen from air. This study presents a full characterization of their thermogravimetric characteristics and air separation capabilities. With the expected potential impact of oxygen content on the physical properties of these materials, the scope of this work is expanded to explore other relevant properties such as magnetic, transport, and dilatometric characteristics. Single-phase polycrystalline samples of these materials were achieved in the hexagonal P63cm phase through solid state reaction at elevated temperatures. Further annealings under reducing conditions were required for samples with large rare-earth cations in order to suppress the competing perovskite structure and form in the anticipated hexagonal phase. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger R ionic radii show rapid and reversible incorporation of significant amounts of excess oxygen (0.41 > delta > 0) at an unusual low temperature range ~190-325 °C. The reversible oxygen storage characteristics of HoMnO3+delta and related materials shown by the fast incorporation and release of interstitial oxygen at easily accessible elevated temperatures of ~300 °C demonstrate the feasibility and potential for low-cost thermal swing adsorption TSA process for oxygen separation and enrichment from air. Neutron and X-ray powder diffraction measurements confirmed the presence of three line compounds RMnO3+delta, the oxygen stoichiometric P6 3cm (delta = 0 for all R), the intermediate oxygen content superstructure phase R3c (delta ~ 0.28 for R = Ho, Dy, Dy0.5Y0.5, and Dy0.3Y0.7) constructed by tripling the c-axis of the original unit cell, and the highly oxygen-loaded Pca21 phase (delta = 0.40 for all R). In-situ synchrotron diffraction showed thermal stability of these single phases and their coexistence ranges, demonstrating that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. The magnetic properties of the multiferroic RMnO3+delta were found to be dependent on the oxygen content of these compounds. Below the magnetic ordering temperatures, samples with higher oxygen content showed slightly decreased magnetization relative to the less oxygenated ones. Dilatometry measurements suggest that the thermal expansion coefficient TEC of the oxygen-loaded Pca21 phase is slightly larger than that of the stoichiometric P63cm phase. The calculated Pca21 to P63cm chemical expansion coefficient 14.38 x 10-3 [mole-O]-1 was found to be within the expected range for the hexagonal Y0.97La0.03MnO3+delta sample.
Epitaxial Garnets and Hexagonal Ferrites.
1983-12-01
operating at frequencies between 1 GHz and 25 GHz. 2. Investigate LPE growth of lithium ferrite with the objective of preparing low-loss, large area films ...and hexagonal ferrites when the series of contracts began in 1975. At that time the liquid phase epitaxy method for growth of magnetic garnet films ...principal interest in epitaxial garnets was for magnetic bubble memories. For this Uapplication the films had to be about 3pm thick with low defect density
Epitaxial Garnets and Hexagonal Ferrites.
1980-02-28
shaped LPE garnet samples with 31.5um film thickness. We were informed that initial evalu- ation showed acceptably low insertion loss and that the material...frequencies above 25 GHz. c. Furnish up to eight (8) liquid phase epitaxy yttrium iron garnet films to RADC/EEA for testing and evaluation. These tasks...a "Method for Controlling Resonance Frequency of Yttrium Iron Garnet Films ." A patent, "Epitaxial Growth of M-type Hexagonal Ferrite Films on Spinel
A Chandra X-ray Mosaic of the Onsala 2 Star-Forming Region
NASA Astrophysics Data System (ADS)
Skinner, Steve L.; Sokal, Kimberly; Guedel, Manuel
2018-01-01
Multiple lines of evidence for active high-mass star-formation in the Onsala 2 (ON2) complex in Cygnus include masers, compact HII (cHII) regions, and massive outflows. ON2 is thought to be physically associated with the young stellar cluster Berkeley 87 which contains several optically-identified OB stars and the rare oxygen-type (WO) Wolf-Rayet star WR 142. WO stars are undergoing advanced nuclear core burning as they approach the end of their lives as supernovae, and only a few are known in the Galaxy. We present results of a sensitive 70 ks Chandra ACIS-I observation of the northern half of ON2 obtained in 2016. This new observation, when combined with our previous 70 ks ACIS-I observation of the southern half in 2009, provides a complete X-ray mosaic of ON2 at arcsecond spatial resolution and reveals several hundred X-ray sources. We will summarize key results emerging from our ongoing analysis including the detection of an embedded population of young stars revealed as a tight grouping of X-ray sources surrounding the cHII region G75.77+0.34, possible diffuse X-ray emission (or unresolved faint point sources) near the cHII region G75.84+0.40, and confirmation of hard heavily-absorbed X-ray emission from WR 142 that was seen in the previous 2009 Chandra observation.
Effect of fatty acids on self-assembly of soybean lecithin systems.
Godoy, C A; Valiente, M; Pons, R; Montalvo, G
2015-07-01
With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015 Elsevier B.V. All rights reserved.
High-entropy alloys in hexagonal close-packed structure
Gao, Michael C.; Zhang, B.; Guo, S. M.; ...
2015-08-28
The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Lastly, experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.
NASA Astrophysics Data System (ADS)
Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi
2018-05-01
Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.
NASA Astrophysics Data System (ADS)
Yoon, Jong Moon; Shin, Dong Ok; Yin, You; Seo, Hyeon Kook; Kim, Daewoon; In Kim, Yong; Jin, Jung Ho; Kim, Yong Tae; Bae, Byeong-Soo; Ouk Kim, Sang; Lee, Jeong Yong
2012-06-01
Mushroom-shaped phase change memory (PCM) consisting of a Cr/In3Sb1Te2 (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl2. The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in2.
Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations
Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...
2016-06-22
Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less
dos Reis, Deusiano Florêncio; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; de Morais, Paula Benevides
2017-01-01
Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities. PMID:28085090
Reis, Deusiano Florêncio Dos; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; Morais, Paula Benevides de
2017-01-12
Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities.
Surface Photometric Properties of HII Galaxies
NASA Astrophysics Data System (ADS)
Vajgel, B.; Telles, E.
2009-05-01
HII galaxies are dwarf galaxies undergoing violent star formation. They were firstly selected by objective-prism spectroscopy and were object of extensive studies to characterize their physical conditions of the interstellar medium. Their SFR together with their low Z raised the question whether some of them can be truly ``young'' galaxies. To infer the SFH, one needs information in a large spectral range. We obtained images in the optical region of the spectrum with the 0.6 m B&C and the 1.6 m telescopes at the Laboratório Nacional de Astrofísica, for a sample of 50 objects in B, V, R and I, which combined with recent evolutionary models, enable us to deduce the stellar population content and its spatial distribution. These seem to be the nearest youngest galaxies that can be studied in detail, and their structural properties offer important indications about the evolutionary relation and the origin of dwarf galaxies in the universe. With this sample we built a morphological catalogue with broad-band photometry, including the structural analysis through the brightness profiles. The initial analysis suggests that the galaxies can be segregated in two broad classes, in agreement with what had already been proposed in the literature; Type I have irregular envelopes with signs of perturbation and turn out to the more luminous sub-sample; while Type II have regular external isophotes and are less luminous. The brightness profiles are well represented by exponential fits, as in irregular and elliptical dwarf galaxies. However, HII galaxies are more compact in comparison with their more diffuse counterparts. We study the behavior of the HII galaxies in the metallicity-luminosity plane. This relation, interpreted as a relation between the mass and the metallicity of dwarf galaxies of low surface brightness (dE and dIrr), has direct implications for their formation and evolution, and over the possible evolutionary links between HII galaxies and other types of dwarf galaxies.
Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals.
Anderson, D M; Gruner, S M; Leibler, S
1988-01-01
Bicontinuous cubic phases, composed of bilayers arranged in the geometries of periodic minimal surfaces, are found in a variety of different lipid/water systems. It has been suggested recently that these cubic structures arrive as the result of competition between two free-energy terms: the curvature energy of each monolayer and the stretching energy of the lipid chains. This scenario, closely analogous to the one that explains the origin of the hexagonal phases, is investigated here by means of simple geometrical calculations. It is first assumed that the lipid bilayer is of constant thickness and the distribution of the (local) mean curvature of the phospholipid-water interfaces is calculated. Then, assuming the mean curvature of these interfaces is constant, the distribution of the bilayer's thickness is calculated. Both calculations quantify the fact that the two energy terms are frustrated and cannot be satisfied simultaneously. However, the amount of the frustration can be smaller for the cubic phase than for the lamellar and hexagonal structures. Therefore, this phase can appear in the phase diagram between the other two, as observed in many recent experiments. PMID:3399497
NASA Astrophysics Data System (ADS)
Usmani, B.; Vijay, V.; Chhibber, R.; Dixit, A.
2016-11-01
The thin-film structures of DC/FR magnetron-sputtered ZrO x /ZrC-ZrN/Zr tandem solar-selective coatings are investigated using X-ray diffraction and room-temperature Raman spectroscopic measurements. These studies suggest that the major contribution is coming from h-ZrN0.28, c-ZrC, h-Zr3C2 crystallographic phases in ZrN-ZrC absorber layer, in conjunction with mixed ZrO x crystallographic phases. The change in structure for thermally annealed samples has been examined and observed that cubic and hexagonal ZrO x phase converted partially into tetragonal and monoclinic ZrO x phases, whereas hexagonal and cubic ZrN phases, from absorber layer, have not been observed for these thermally treated samples in air. These studies suggest that thermal treatment may lead to the loss of ZrN phase in absorber, degrading the thermal response for the desired wavelength range in open ambient conditions in contrast to vacuum conditions.
NASA Astrophysics Data System (ADS)
Suresh, Pittala; Vijaya Laxmi, K.; Anil Kumar, P. S.
2018-02-01
Single phase polycrystalline LuFe1-xNixO3 (x = 0 - 0.3) (LFNO) nanoparticles are synthesized using the sol-gel method. X-ray diffraction measurements revealed that the crystal structure of Ni-doped samples is isomorphic to hexagonal LuFeO3 (LFO). The phase pure hexagonal P63cm symmetry exists for 0 ≤ x ≤ 0.3, and the secondary phases appear for x ≥ 0.4. Raman spectra show a shift in the mode frequency corresponding to the changes in Lu-O and Fe-O bond lengths with Ni doping. An enhancement in the magnetization is observed for LFNO throughout the temperature range (400-5 K) compared to LFO. The antiferromagnetic state of LFO becomes ferrimagnetic at low temperatures, and a net magnetization is observed at room temperature with Ni doping. As Ni concentration increases, a systematic increment in the ferroelectric polarization is observed. This enhancement in polarization is believed to be due to the distortion in FeO5 cage, while the improvement in magnetic properties is due to the induced magnetic interactions, caused by the Fe-Ni interactions on the triangular lattice with Ni doping in LuFeO3.
Current status of the CALET mission
NASA Astrophysics Data System (ADS)
Mori, Masaki
2017-01-01
The CALorimeteric Electron Telescope (CALET) is a Japanese-led international mission being developed as part of the utilization plan for the International Space Station (ISS). CALET was launched by an H-II B rocket utilizing the Japanese developed HTV (H-II Transfer Vehicle) in August 2015, and has been measuring high-energy electrons, cosmic rays as well as gamma rays above 10 GeV to about 10 TeV with high accuracy. In this paper we describe the current status of the CALET mission focused on gamma-ray observations.
Navy Virginia (SSN 774) Class Attack Submarine Procurement: Background and Issues for Congress
2016-10-25
proposed plan include the following: GD/EB is to be the prime contractor for designing and building Ohio replacement boats; HII/NNS is to be a...boats, and HII/NNS would receive 22%-23%; GD/EB is to continue as prime contractor for the Virginia-class program, but to help balance out projected...execute this strategy, GDEB has been selected as the prime contractor for OR with the responsibilities to deliver the twelve OR [Ohio replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahab, Rizwan; Ansari, S.G.; Kim, Y.S.
Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 deg. C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300-350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm{sup -1}. Raman scattering exhibits a sharp and strong E{sub 2} mode atmore » 437 cm{sup -1} which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p{sub 3/2}) and 1044.3 eV (Zn 2p{sub 1/2}), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.« less
Structures, phase transitions, and magnetic properties of C o3Si from first-principles calculations
NASA Astrophysics Data System (ADS)
Zhao, Xin; Yu, Shu; Wu, Shunqing; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming
2017-07-01
C o3Si was recently reported to exhibit remarkable magnetic properties in the nanoparticle form [B. Balasubramanian et al., Appl. Phys. Lett. 108, 152406 (2016)], 10.1063/1.4945987, yet better understanding of this material should be promoted. Here we report a study on the crystal structures of C o3Si using an adaptive genetic algorithm and discuss its electronic and magnetic properties from first-principles calculations. Several competing phases of C o3Si have been revealed from our calculations. We show that the hexagonal C o3Si structure reported in experiments has lower energy in the nonmagnetic state than in the ferromagnetic state at zero temperature. The ferromagnetic state of the hexagonal structure is dynamically unstable with imaginary phonon modes and transforms into a new orthorhombic structure, which is confirmed by our structure searches to have the lowest energy for both C o3Si and C o3Ge . Magnetic properties of the experimental hexagonal structure and the lowest-energy structures obtained from our structure searches are investigated in detail.
IRAS 01202+6133 : A Possible Case of Protostellar Collapse Triggered by a Small HII Region
NASA Astrophysics Data System (ADS)
Kang, Sung-Ju; Kerton, C.
2012-01-01
The molecular gas surrounding an HII region is thought to be a place where star formation can be induced. One of the main questions in the study of star formation is how protostars accrete material from their parent molecular clouds and observations of infall motions are needed to provide direct evidence for accretion. This poster will present an analysis of submm spectroscopic observations of the submm/infrared source IRAS 01202+6133 located on the periphery of the HII region KR 120. HCO+(J=3-2) spectra of this source show a classic blue-dominated double-peaked profile indicative of infall motions that would be expected to occur in the envelope surrounding a young protostellar object. The HCO+ spectrum toward the core was fitted using models incorporating both outflow and infall components along with basic assumptions regarding excitation temperature trends within molecular cloud cores. Using the models, we derive physical properties of the infall kinematics and the envelope structure.
Populações estelares em galáxias HII
NASA Astrophysics Data System (ADS)
Westera, P.; Cuisinier, F.; Telles, E.; Kehrig, C.
2003-08-01
Analisamos o conteúdo estelar de 74 galáxias HII a partir do contínuo observado nos espectros ópticos dessas galáxias, utilizando métodos de síntese de população estelar. Descobrimos que todas as galáxias para as quais encontramos soluções contêm uma população estelar velha que domina a massa estelar, e numa maioria dessas também encontramos evidência de uma população de idade intermediaria além da geração jovem que está se formando agora. Concluímos que a formação estelar dessas galáxias se realiza em surtos individuais, Esses surtos são interrompidos por longos períodos de inatividade, com os primeiros consumindo a maior parte do gás. Sugerimos, portanto, que as galáxias HII sejam galáxias anãs normais flagradas em um período de surto.
Akbar, Samina; Boswell, Jacob; Worsley, Carys; Elliott, Joanne M; Squires, Adam M
2018-06-19
We present an attractive method for the fabrication of long, straight, highly crystalline, ultrathin platinum nanowires. The fabrication is simply achieved using an inverse hexagonal (H II ) lyotropic liquid crystal phase of the commercial surfactant phytantriol as a template. A platinum precursor dissolved within the cylindrical aqueous channels of the liquid crystal phase is chemically reduced by galvanic displacement using stainless steel. We demonstrate the production of nanowires using the H II phase in the phytantriol/water system which we obtain either by heating to 55 °C or at room temperature by the addition of a hydrophobic liquid, 9- cis-tricosene, to relieve packing frustration. The two sets of conditions produced high aspect nanowires with diameters of 2.5 and 1.7 nm, respectively, at least hundreds of nanometers in length, matching the size of the aqueous channels in which they grow. This versatile approach can be extended to produce highly uniform nanowires from a range of metals.
The phases and magnetic properties of (Ti, Co), and Cr doped Zn 2Y-type hexagonal ferrite
NASA Astrophysics Data System (ADS)
Chang, Y. H.; Wang, C. C.; Chin, T. S.; Yen, F. S.
1988-04-01
The phases and magnetic properties of Y-type hexagonal ferrite, Ba 2Zn 2 (Ti, Co) yFe 12-2 yO 22 doped with two sets of ions, (Ti, Co) and Cr were studied. In (Ti, Co) - doped ferrites the second phase appears at y ⩾ 0.6, which is a spinel type with the formula of (Zn 1-ηCo η)(Fe 2-δCo δ)O 4. Two resonant peaks are observed in ESR studies at the fields of 1020 and 2430 Oe, respectively, at a frequency of 9.684 GHz. The linewidth increases with the addition of the dopants. In chromium doped ferrite, two phases are identified as the amount of chromium is up to 0.2: spinel type of Zn(Fe 2-ɛCr ɛ)O 4 and orthorhombic BaCr 2O 4. Although the amount of Cr used does not influence the resonant field of the unique peak of the derivative curves from ESR, it eventually enlarges the linewidth.
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Li, Youbin; Li, Xiaolong; Xue, Zhenluan; Jiang, Mingyang; Zeng, Songjun; Hao, Jianhua
2017-05-01
Doping has played a vital role in constructing desirable hybrid materials with tunable functions and properties via incorporating atoms into host matrix. Herein, a simple strategy for simultaneously modifying the phase, size, and upconversion luminescence (UCL) properties of the NaLnF 4 (Ln = Y, Yb) nanocrystals by high-temperature coprecipitation through nonequivalent M 2+ doping (M = Mg 2+ , Co 2+ ) has been demonstrated. The phase transformation from cubic to hexagonal is readily achieved by doping M 2+ . Compared with Mg-free sample, a remarkable enhancement of overall UCL (≈27.5 times) is obtained by doping Mg 2+ . Interestingly, owing to the efficient UCL, red UCL-guided tiny tumor (down to 3 mm) diagnosis is demonstrated for the first time. The results open up a new way of designing high efficient UCL probe with combination of hexagonal phase and small size for tiny tumor detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...
2014-04-03
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Wang, Zhihao; Li, Ji-Guang; Zhu, Qi; Ai, Zhengrong; Li, Xiaodong; Sun, Xudong; Kim, Byung-Nam; Sakka, Yoshio
2017-01-01
Abstract Hexagonal (Gd0.95RE0.05)PO4·nH2O nanowires ~300 nm in length and ~10 nm in diameter have been converted from (Gd0.95RE0.05)2(OH)5NO3·nH2O nanosheets (RE = Eu, Tb) in the presence of monoammonium phosphate (NH4H2PO4) and ethylene diamine tetraacetic acid (EDTA). They were characterized by X-ray diffraction, thermogravimetry, electron microscopy, and Fourier transform infrared and photoluminescence spectroscopies. It is shown that EDTA played an essential role in the morphology development of the nanowires. The hydrothermal products obtained up to 180 °C are of a pure hexagonal phase, while monoclinic phosphate evolved as an impurity at 200 °C. The nanowires undergo hexagonal→monoclinic phase transformation upon calcination at ≥600 °C to yield a pure monoclinic phase at ~900 °C. The effects of calcination on morphology, excitation/emission, and fluorescence decay kinetics were investigated in detail with (Gd0.95Eu0.05)PO4 as example. The abnormally strong 5D0→7F4 electric dipole Eu3+ emission in the hexagonal phosphates was ascribed to site distortion. The process of energy migration was also discussed for the optically active Gd3+ and Eu3+/Tb3+ ions. PMID:28740561
Two-dimensional liquid crystalline growth within a phase-field-crystal model.
Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng
2015-07-01
By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.
Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr
2015-10-15
The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less
Shape Analysis of HII Regions - I. Statistical Clustering
NASA Astrophysics Data System (ADS)
Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred
2018-04-01
We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.
NASA Astrophysics Data System (ADS)
Waller, W. H.; Murphy, E. J.; Gherz, R. D.; Polomski, E.; Woodward, C. E.; Fazio, G. G.; Rieke, G. H.; Spitzer/M33 Research Team
2005-12-01
From the Orion Nebula to the Hubble Deep Field, starburst activity can be seen transforming galaxian clouds of gas into populous clusters of stars. The pyrotechnics and chemical enrichment associated with this activity have led to outcomes as ubiquitous as interstellar dust and as exquisite as life on Earth. In this talk, I will focus on the circumstances of star formation in the environmental context of ongoing starburst activity. I begin with the premises that (1) the formation of a single star takes time, (2) the formation of a populous cluster takes even more time, and (3) ''stuff'' happens in the interim. Hubble images of the Orion Nebula and Eagle Nebula show how hot stars can excavate neighboring clouds of gas and photoevaporate the star-forming cores that are exposed. Hubble observations of giant HII regions in M33 reveal a significant variation in the stellar populations, such that the most metal-rich HII regions contain the greatest proportions of the most massive stars. ISO and Spitzer observations of these same HII regions reveal corresponding variations in the nebular content. These multi-wavelength diagnostics of the stellar-nebular feedback in galaxian starbursts suggest a star-forming mechanism which is subject to photo-evaporative ablation -- an erosive process that is systematically mediated by the metal abundance and corresponding amounts of protective dust in the starbursting environment.
On the Deduction of Galactic Abundances with Evolutionary Neural Networks
NASA Astrophysics Data System (ADS)
Taylor, M.; Diaz, A. I.
2007-12-01
A growing number of indicators are now being used with some confidence to measure the metallicity(Z) of photoionisation regions in planetary nebulae, galactic HII regions(GHIIRs), extra-galactic HII regions(EGHIIRs) and HII galaxies(HIIGs). However, a universal indicator valid also at high metallicities has yet to be found. Here, we report on a new artificial intelligence-based approach to determine metallicity indicators that shows promise for the provision of improved empirical fits. The method hinges on the application of an evolutionary neural network to observational emission line data. The network's DNA, encoded in its architecture, weights and neuron transfer functions, is evolved using a genetic algorithm. Furthermore, selection, operating on a set of 10 distinct neuron transfer functions, means that the empirical relation encoded in the network solution architecture is in functional rather than numerical form. Thus the network solutions provide an equation for the metallicity in terms of line ratios without a priori assumptions. Tapping into the mathematical power offered by this approach, we applied the network to detailed observations of both nebula and auroral emission lines from 0.33μ m-1μ m for a sample of 96 HII-type regions and we were able to obtain an empirical relation between Z and S_{23} with a dispersion of only 0.16 dex. We show how the method can be used to identify new diagnostics as well as the nonlinear relationship supposed to exist between the metallicity Z, ionisation parameter U and effective (or equivalent) temperature T*.
Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition
NASA Astrophysics Data System (ADS)
Slepko, Alexander; Demkov, Alexander A.
2015-02-01
Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.
Atomic scale modelling of hexagonal structured metallic fission product alloys
Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.
2015-01-01
Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629
Spatiotemporal multiplexing based on hexagonal multicore optical fibres
Chekhovskoy, I. S.; Sorokina, M. A.; Rubenchik, A. M.; ...
2017-12-27
Based on a genetic algorithm, we have solved in this paper the problem of finding the parameters of optical Gaussian pulses which make their efficient nonlinear combining possible in one of the peripheral cores of a 7-core hexagonal fibre. Two approaches based on individual selection of peak powers and field phases of the pulses launched into the fibre are considered. Finally, the found regimes of Gaussian pulse combining open up new possibilities for the development of devices for controlling optical radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velten, Sven; Streubel, Robert; Farhan, Alan
We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.
Static high-pressure structural studies on Dy to 119 GPa
NASA Astrophysics Data System (ADS)
Patterson, Reed; Saw, Cheng K.; Akella, Jagannadham
2004-05-01
Structural phase transitions in the rare-earth metal dysprosium have been studied in a diamond anvil cell to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp→Sm-type→dhcp→hR24 (hexagonal)→bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa, respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-10-18
(Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.
NASA Astrophysics Data System (ADS)
Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert
2009-03-01
We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.
1978-12-01
4 L-7 hiI<±b fd .rvc~ a .3",d,! i:; ba ’-ii~ y :nztructl~n :).L a -- flattctod r~-%3 i Pazo u-3 and r.). 1yzj. f r 3n- the road-rmy, S11eet 13...Program " Final Report Bowling Green Reservoir Dam (MO 10262) 6. PERFORMING-ORG. REPORT NUMBER Pike County, Missouri 7. AUTHOR( a ) S. CONTRACT OR GRANT...if possible. If a classification is required, identify the classified items on the page by the appropriate symbol. CC; -ETION GUIDE General. Make
The GA sulfur-iodine water-splitting process - A status report
NASA Astrophysics Data System (ADS)
Besenbruch, G. E.; Chiger, H. D.; McCorkle, K. H.; Norman, J. H.; Rode, J. S.; Schuster, J. R.; Trester, P. W.
The development of a sulfur-iodine thermal water splitting cycle is described. The process features a 50% thermal efficiency, plus all liquid and gas handling. Basic chemical investigations comprised the development of multitemperature and multistage sulfuric acid boost reactors, defining the phase behavior of the HI/I2/H2O/H3PO4 mixtures, and development of a decomposition process for hydrogen iodide in the liquid phase. Initial process engineering studies have led to a 47% efficiency, improvements of 2% projected, followed by coupling high-temperature solar concentrators to the splitting processes to reduce power requirements. Conceptual flowsheets developed from bench models are provided; materials investigations have concentrated on candidates which can withstand corrosive mixtures at temperatures up to 400 deg K, with Hastelloy C-276 exhibiting the best properties for containment and heat exchange to I2.
The GA sulfur-iodine water-splitting process - A status report
NASA Technical Reports Server (NTRS)
Besenbruch, G. E.; Chiger, H. D.; Mccorkle, K. H.; Norman, J. H.; Rode, J. S.; Schuster, J. R.; Trester, P. W.
1981-01-01
The development of a sulfur-iodine thermal water splitting cycle is described. The process features a 50% thermal efficiency, plus all liquid and gas handling. Basic chemical investigations comprised the development of multitemperature and multistage sulfuric acid boost reactors, defining the phase behavior of the HI/I2/H2O/H3PO4 mixtures, and development of a decomposition process for hydrogen iodide in the liquid phase. Initial process engineering studies have led to a 47% efficiency, improvements of 2% projected, followed by coupling high-temperature solar concentrators to the splitting processes to reduce power requirements. Conceptual flowsheets developed from bench models are provided; materials investigations have concentrated on candidates which can withstand corrosive mixtures at temperatures up to 400 deg K, with Hastelloy C-276 exhibiting the best properties for containment and heat exchange to I2.
Battleship tank firing test of H-II launch vehicle - First stage
NASA Astrophysics Data System (ADS)
Watanabe, Atsutaro; Endo, Mamoru; Yamazaki, Isao; Maemura, Takashi; Namikawa, Tatsuo
1991-06-01
The H-II launch vehicle capable of placing 2-ton-class payloads on geostationary orbits is outlined, and focus is placed on its propulsion system. The development status of the project, including component development, preliminary battleship tank firing test (BFT-1), battleship tank firing test (BFT-2), and flight-type tank firing test (CFT) is discussed. The configuration and schematic diagram of BFT-2 are presented, and the firing test results of BFT-2 first series are analyzed, including engine performance, interface compatibility, and pressurization of subsystems.
Japan's launch vehicle program update
NASA Astrophysics Data System (ADS)
Tadakawa, Tsuguo
1987-06-01
NASDA is actively engaged in the development of H-I and H-II launch vehicle performance capabilities in anticipation of future mission requirements. The H-I has both two-stage and three-stage versions for medium-altitude and geosynchronous orbits, respectively; the restart capability of the second stage affords considerable mission planning flexibility. The H-II vehicle is a two-stage liquid rocket primary propulsion design employing two solid rocket boosters for secondary power; it is capable of launching two-ton satellites into geosynchronous orbit, and reduces manufacture and launch costs by extensively employing off-the-shelf technology.
NASA Astrophysics Data System (ADS)
Hernandez-Jimenez, J. A.; Pastoriza, G.; Sanmartim, D.; Winge, C.; Bonatto, C.; Krabbe, A. C.; Rodrigues, I.
2017-07-01
We present a study of two complexes of HII regions in the main galaxy of minor merger AM 2306-721. The observations were obtained with the GMOS-IFU on the Gemini South telescope. By using different discrimination criteria, we determined that shock-ionized gas fraction ranges between 0% and 35%, which are in good agreement with numerical models. Thus, we conclude that almost all the mechanical energy from stellar winds and supernovae is being irradiated.
1977-09-01
vdI1 SCCLRITY CLASSIFICATIOlN OF THIS PAGE(When DMae ffnifod) Block 20 (Cont): ------ AFCS control laws are examined. Associated documents are: Volume I...both the HII gain and LO gain outputs. Both were traced to defective components. In the former, the HII gain output amplifier AR4 was replaced and in...the latter, a relay in the relay module was defective . 613 S. . ......-. . . 6.2.2.4 ExcessivC Time Lag During the BARO altitude hold evaluation, the
NASA Astrophysics Data System (ADS)
Waters, Kevin; Pandey, Ravindra
2018-04-01
A new B-N monolayer material (BN2) consisting of a network of extended hexagons is predicted using density functional theory. The distinguishable nature of this 2D material is found to be the presence of the bonded N atoms (N-N) in the lattice. Analysis of the phonon dispersion curves show this phase of BN2 to be stable. The calculated elastic properties exhibit anisotropic mechanical properties that surpass graphene in the armchair direction. The BN2 monolayer is metallic with in-plane p states dominating the Fermi level. Novel applications resulting from a strong anisotropic mechanical strength together with the metallic properties of the BN2 sheet with the extended hexagons with N-N bonds may enable future innovation at the nanoscale.
Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang
2018-04-03
The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charfeddine, S.; LVMU, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cédria, BP 73 Soliman 8027; Zehani, K.
We have synthesized the intermetallic Tb{sub 2}Fe{sub 17} compound in hexagonal crystal structure by arc-melting without annealing. X-ray diffraction pattern has been refined by Rietveld method. The crystal structure is hexagonal with P6{sub 3}/mmc space group (Th{sub 2}Ni{sub 17}-type). The Mössbauer spectrum of Tb{sub 2}Fe{sub 17} compound has been analyzed with seven magnetic sextets assigned to the inequivalent crystallographic sites. The temperature dependence of magnetization data revealed that Tb{sub 2}Fe{sub 17} exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of Curie temperature (T{sub C}=412 K). The relative cooling power around the magnetic transition and the Arrott plotsmore » are also reported. - Graphical abstract: A 3D surface showing the temperature and applied magnetic field dependencies of the magnetization for Tb{sub 2}Fe{sub 17} compound (left). Rietveld analysis of the XRD pattern (right). Crystal structure for the hexagonal P6{sub 3}/mmc Tb{sub 2}Fe{sub 17} (bottom). Display Omitted - Highlights: • Tb{sub 2}Fe{sub 17} single-phase synthesized by simple arc-melting without any heat treatment. • The crystal structure is hexagonal with P6{sub 3}/mmc space group. • The magnetic entropy change of the sample was determined by Maxwell relation. • Hyperfine parameters, magnetic and magnetocaloric properties were studied.« less
Phase transformation in tantalum under extreme laser deformation
Lu, C. -H.; Hahn, E. N.; Remington, B. A.; ...
2015-10-19
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less
Phase Transformation in Tantalum under Extreme Laser Deformation
Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.
2015-01-01
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106
Phase diagram of the CF{sub 4} monolayer and bilayer on graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Petros; Hess, George B., E-mail: gbh@virginia.edu
2014-05-21
We report an experimental study of physisorbed monolayers and bilayers of CF{sub 4} on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric C–F stretch mode ν{sub 3} near 1283 cm{sup −1} in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changesmore » to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.« less
Silicon Nitride Equation of State
NASA Astrophysics Data System (ADS)
Swaminathan, Pazhayannur; Brown, Robert
2015-06-01
This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.
NASA Astrophysics Data System (ADS)
Gabay, A. M.; Hadjipanayis, G. C.
2018-05-01
Recently, Fe-based rare-earth-free compounds with non-cubic crystal structures were proposed as a base for permanent magnets which would not rely on critical elements. In this work, two series of alloys, Zr27Fe73-wSiw (0 ≤ w ≤ 15) and Zr33-xFe52+xSi15 (0 ≤ x ≤ 11), were prepared and characterized after annealing at 1538 K in order to determine the fundamental magnetic properties of the C36 and C14 hexagonal Laves phase compounds. A mixture of the cubic C15 and Zr6Fe23 structures was observed instead of the expected C36 structure. The hexagonal C14 was found in all Zr33-xFe52+xSi15 alloys with its lattice parameters linearly decreasing as the Fe(Si) atoms occupy the Zr sites in the Laves phase crystal structure. The solubility limit of Fe in the C14 structure at 1538 K corresponds to x = 9.5. The Curie temperature of the C14 compounds increases with deviation from the Laves phase stoichiometry from 290 K to 530 K. The room-temperature spontaneous magnetization also increases reaching, after correcting for the non-magnetic impurities, a value of 6.7 kG. The magnetocrystalline anisotropy of the off-stoichiometric C14 Laves phase was found to be uniaxial with the easy magnetization direction parallel to the hexagonal axis. Unfortunately, the anisotropy field, which does not exceed 10 kOe, is not sufficiently high to make the compounds interesting as permanent magnet materials.
Looking for high-mass young stellar objects: H2O and OH masers in ammonia cores
NASA Astrophysics Data System (ADS)
Codella, C.; Cesaroni, R.; López-Sepulcre, A.; Beltrán, M. T.; Furuya, R.; Testi, L.
2010-02-01
Context. The earliest stages of high-mass star formation have yet to be characterised well, because high-angular resolution observations are required to infer the properties of the molecular gas hosting the newly formed stars. Aims: We search for high-mass molecular cores in a large sample of 15 high-mass star-forming regions that are observed at high-angular resolution, extending a pilot survey based on a smaller number of objects. Methods: The sample was chosen from surveys of H2O and OH masers to favour the earliest phases of high-mass star formation. Each source was first observed with the 32-m single-dish Medicina antenna in the (1, 1) and (2, 2) inversion transitions at 1.3 cm of ammonia, which is an excellent tracer of dense gas. High-resolution maps in the NH3(2, 2) and (3, 3) lines and the 1.3 cm continuum were obtained successively with the VLA interferometer. Results: We detect continuum emission in almost all the observed star-forming regions, which corresponds to extended and UCHii regions created by young stellar objects with typical luminosities of ˜10^4~L⊙. However, only in three cases do we find a projected overlap between Hii regions and H2O and OH maser spots. On the other hand, the VLA images detect eight ammonia cores closely associated with the maser sources. The ammonia cores have sizes of ˜10^4 AU, and high masses (up to 104M⊙), and are very dense (from ˜10^6 to a few ×10^9 cm-3). The typical relative NH3 abundance is ≤10-7, in agreement with previous measurements in high-mass star-forming regions. Conclusions: The statistical analysis of the distribution between H2O and OH masers, NH3 cores, and Hii regions confirms that the earliest stages of high-mass star formation are characterised by high-density molecular cores with temperatures of on average ≥30 K, either without a detectable ionised region or associated with a hypercompact Hii region.
Infrared emission of young HII regions: a Herschel/Hi-GAL study
NASA Astrophysics Data System (ADS)
Cesaroni, R.; Pestalozzi, M.; Beltrán, M. T.; Hoare, M. G.; Molinari, S.; Olmi, L.; Smith, M. D.; Stringfellow, G. S.; Testi, L.; Thompson, M. A.
2015-07-01
Context. Investigating the relationship between radio and infrared emission of Hii regions may help shed light on the nature of the ionizing stars and the formation mechanism of early-type stars in general. Aims: We have taken advantage of recent unbiased surveys of the Galactic plane such as Herschel/Hi-GAL and VLA/CORNISH to study a bona fide sample of young Hii regions located in the Galactic longitude range 10°-65° by comparing the mid- and far-IR continuum emission to the radio free-free emission at 5 GHz. Methods: We have identified the Hi-GAL counterparts of 230 CORNISH Hii regions and reconstructed the spectral energy distributions of 204 of these by complementing the Hi-GAL fluxes with ancillary data at longer and shorter wavelengths. Using literature data, we obtained a kinematical distance estimate for 200 Hii regions with Hi-GAL counterparts and determined their luminosities by integrating the emission of the corresponding spectral energy distributions. We have also estimated the mass of the associated molecular clumps from the (sub)millimeter flux densities. Results: Our main finding is that for ~1/3 of the Hii regions the Lyman continuum luminosity appears to be greater than the value expected for a zero-age main-sequence star with the same bolometric luminosity. This result indicates that a considerable fraction of young, embedded early-type stars presents a "Lyman excess" possibly due to UV photons emitted from shocked material infalling onto the star itself and/or a circumstellar disk. Finally, by comparing the bolometric and Lyman continuum luminosities with the mass of the associated clump, we derive a star formation efficiency of 5%. Conclusions: The results obtained suggest that accretion may still be present during the early stages of the evolution of Hii regions, with important effects on the production of ionizing photons and thus on the circumstellar environment. More reliable numerical models describing the accretion process onto massive stars are required to shed light on the origin of the observed Lyman excess. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAM P (France); MPIA (Germany); IAPS, OAP/OAT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA , LAM (France); IAPS, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NA OC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA).Appendix A is available in electronic form at http://www.aanda.org
Beyond the Solar Circle - Tracing Trends in Massive Star Formation for the Inner and Outer Galaxy
NASA Astrophysics Data System (ADS)
Djordjevic, Julie; Thompson, Mark; Urquhart, James
2018-01-01
Observations towards nearby galaxies are biased towards massive stars, affecting simulations and typically overestimating models for galactic evolution and star formation rates. The Milky Way provides an ideal template for studying the key factors that affect these massive star formation rates and efficiencies at high resolution, fine-tuning those models. We examine trends in massive star formation through the Galactic distribution of compact and ultracompact HII regions (UC HII regions) identified and confirmed as genuine via multi-wavelength inspection of submillimeter, radio, and infrared survey data. Previous catalogs focused on the inner Galaxy (RGC ≤ 8.5 kpc) but results from the recently completed SASSy 850 µm survey with JCMT’s SCUBA-2 show potential star forming clumps out to ~20 kpc. We follow a similar approach to Urquhart et at. (2013) who compiled a catalog of UC HII regions by cross matching CORNISH 5 GHz data with ATLASGAL 870 µm and GLIMPSE 3-color images. The CORNISH survey, however, was limited to the range 10° < l < 60° . By utilizing the RMS radio and infrared catalogs which cover the entire Galactic plane, we can examine the remaining ATLASGAL regions (300° < l < 10° ) as well as the SASSy ranges (60° < l < 240°). With this method we more than doubled the sample size of the CORNISH study, finding a grand total of 539 embedded UC HII regions across the Galaxy. We derive their properties and also look at the parameters of the host clumps to determine the implications for massive star formation rates and efficiencies as a function of galactocentric radius. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. However, many of the potentially star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. This begs the question whether there really is less star formation in this area or whether simply a lack of available data. Hence, we also present early results from follow-up radio observations with the VLA on selected SASSy clumps.
NASA Astrophysics Data System (ADS)
Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey
2015-03-01
Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.
An open, component-based information infrastructure for integrated health information networks.
Tsiknakis, Manolis; Katehakis, Dimitrios G; Orphanoudakis, Stelios C
2002-12-18
A fundamental requirement for achieving continuity of care is the seamless sharing of multimedia clinical information. Different technological approaches can be adopted for enabling the communication and sharing of health record segments. In the context of the emerging global information society, the creation of and access to the integrated electronic health record (I-EHR) of a citizen has been assigned high priority in many countries. This requirement is complementary to an overall requirement for the creation of a health information infrastructure (HII) to support the provision of a variety of health telematics and e-health services. In developing a regional or national HII, the components or building blocks that make up the overall information system ought to be defined and an appropriate component architecture specified. This paper discusses current international priorities and trends in developing the HII. It presents technological challenges and alternative approaches towards the creation of an I-EHR, being the aggregation of health data created during all interactions of an individual with the healthcare system. It also presents results from an ongoing Research and Development (R&D) effort towards the implementation of the HII in HYGEIAnet, the regional health information network of Crete, Greece, using a component-based software engineering approach. Critical design decisions and related trade-offs, involved in the process of component specification and development, are also discussed and the current state of development of an I-EHR service is presented. Finally, Human Computer Interaction (HCI) and security issues, which are important for the deployment and use of any I-EHR service, are considered.
Silicon nitride equation of state
NASA Astrophysics Data System (ADS)
Brown, Robert C.; Swaminathan, Pazhayannur K.
2017-01-01
This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.
Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals
NASA Astrophysics Data System (ADS)
Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.
2018-03-01
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.
Nanocrystalline hexagonal diamond formed from glassy carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less
Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min
2017-08-25
Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB 2 type) or kagome lattices (for AB 3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.
Structure of ice crystallized from supercooled water
Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.
2012-01-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652
Structure of ice crystallized from supercooled water.
Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G
2012-01-24
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regmi, Yagya; Rogers, Bridget; Labbe, Nicole
We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less
Regmi, Yagya; Rogers, Bridget; Labbe, Nicole; ...
2017-07-13
We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less
Nanocrystalline hexagonal diamond formed from glassy carbon
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; ...
2016-11-29
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less
Formation of hexagonal and cubic ice during low-temperature growth
Thürmer, Konrad; Nie, Shu
2013-01-01
From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592
Water masers in NGC7538 region
NASA Astrophysics Data System (ADS)
Kameya, Osamu
We observed H2O masers towards NGC7538 molecular-cloud core using VERA (VLBI Experiment of Radio Astrometry). This region is in the Perseus arm at a distance of about 2.7 kpc and is famous for its multiple, massive star formation. There are three areas there, N(IRS1-3), E(IRS9), and S(IRS11), each having a strong IR source(s), ultra-compact HII region(s), bipolar outflow, high-density core, and OH/H2O/CH3OH masers. We made differential VLBI observations towards the NGC7538 H2O maser sources at N and S and a reference source, Cepheus A H2O maser, simultaneously. The Cepheus A region is separated by 2 degrees from the NGC7538 region. The positions of H2O masers in N and S regions, distributed around the ultra-compact HII regions, are basically consistent with those found by means of interferometric observations of past 29 years. The masers may come from interface regions between the ultra-compact HII regions and the environments of dense molecular gas.
Vibration test of 1/5 scale H-II launch vehicle
NASA Astrophysics Data System (ADS)
Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.
In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.
The Cosmic Abundance of 3He: Green Bank Telescope Observations
NASA Astrophysics Data System (ADS)
Balser, Dana; Bania, Thomas
2018-01-01
The Big Bang theory for the origin of the Universe predicts that during the first ~1,000 seconds significant amounts of the light elements (2H, 3He, 4He, and 7Li) were produced. Many generations of stellar evolution in the Galaxy modifies these primordial abundances. Observations of the 3He+ hyperfine transition in Galactic HII regions reveals a 3He/H abundance ratio that is constant with Galactocentric radius to within the uncertainties, and is consistent with the primordial value as determined from cosmic microwave background experiments (e.g., WMAP). This "3He Plateau" indicates that the net production and destruction of 3He in stars is approximately zero. Recent stellar evolution models that include thermohaline mixing, however, predict that 3He/H abundance ratios should slightly decrease with Galactocentric radius, or in places in the Galaxy with lower star formation rates. Here we discuss sensitive Green Bank Telescope (GBT) observations of 3He+ at 3.46 cm in a subset of our HII region sample. We develop HII region models and derive accurate 3He/H abundance ratios to better constrain these new stellar evolution models.
Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.
2016-07-20
Experimental determination of atomistic mechanisms linking crystal structures during a compression driven solid-solid phase transformation is a long standing and challenging scientific objective. Also, when using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. Furthermore, this approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.
Vortex circulation patterns in planar microdisk arrays
Velten, Sven; Streubel, Robert; Farhan, Alan; ...
2017-06-26
We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.
Static High Pressure Structural studies on Dy to 119 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J R; Saw, C K; Akella, J
2003-11-12
Structural phase transitions in the rare-earth metal Dysprosium have been studied in a Diamond Anvil Cell (DAC) to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp {yields} Sm-type {yields} dhcp {yields} hR24 (hexagonal) {yields} bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2010-01-01
A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.
Thermal stability of simple tetragonal and hexagonal diamond germanium
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca; ...
2017-11-07
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Thermal stability of simple tetragonal and hexagonal diamond germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2
NASA Astrophysics Data System (ADS)
Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.
2002-11-01
We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.
High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
NASA Astrophysics Data System (ADS)
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.
2017-05-01
High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.
Duwal, Sakun; Yoo, Choong-Shik
2016-02-16
Pressure-induced structural and electronic transformations of tungsten disulfide (WS 2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2H c phase to hexagonal 2H a phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS 2 under non-hydrostatic compression. Interestingly, this transition ismore » absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS 2 that may occur at low temperature near the metallization.« less
The α–ω phase transition in shock-loaded titanium
Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.; ...
2017-07-28
Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less
Phase composition and microstructure of WC-Co alloys obtained by selective laser melting
NASA Astrophysics Data System (ADS)
Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.
2018-03-01
Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-01-01
(Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839
Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization.
Jurašin, D; Pustak, A; Habuš, I; Šmit, I; Filipović-Vinceković, N
2011-12-06
A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase. © 2011 American Chemical Society
Pressure-induced phase transition in titanium alloys
NASA Astrophysics Data System (ADS)
Murugeswari, R.; Rajeswarapalanichamy, R.; Benial, A. Milton Franklin
2018-05-01
The structural, elastic, magnetic and electronic properties of titanium-based ferromagnetic (FM) TiX (X = Fe, Co, Ni) alloys are investigated by the first principles calculations based on density functional theory using the Vienna ab initio simulation code. At ambient pressure, all the three alloys TiFe, TiCo and TiNi are highly stable in CsCl structure. The calculated lattice parameters and ground state properties are in good agreement with the available theoretical and experimental results. The density of states explains that these alloys possess the metallic nature at normal and high pressures. A pressure-induced structural phase transitions from CsCl to NaCl phase at 46 GPa and NaCl to ZB phase at 49 GPa in TiFe, CsCl to ZB phase in TiCo at 52 GPa, CsCl to hexagonal phase at 22 GPa and hexagonal to ZB phase at 66 GPa in TiNi are observed. The calculated Debye temperatures of TiX (X = Fe, Co, Ni) alloys are in good agreement with earlier reports. Binding energy shows that the TiCo is the most stable alloy. The magnetic property of TiX (X = Fe, Co, Ni) alloys reveals that TiFe is stable in nonmagnetic phase and the other two alloys, TiCo and TiNi, are stable in FM phase at normal pressure.
Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites
NASA Astrophysics Data System (ADS)
Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.
2018-03-01
In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.
Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan
2015-05-22
Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu,Y.; Li, M.; Bansil, R.
2007-01-01
We examined the kinetics of the transformation from the lamellar (LAM) to the hexagonally packed cylinder (HEX) phase for the triblock copolymer, polystyrene-b-poly (ethylene-co-butylene)-b-polystyrene (SEBS) in dibutyl phthalate (DBP), a selective solvent for polystyrene (PS), using time-resolved small-angle X-ray scattering (SAXS). We observe the HEX phase with the EB block in the cores at a lower temperature than that observed for the LAM phase due to the solvent selectivity of DBP for the PS block. Analysis of the SAXS data for a deep temperature quench well below the LAM-HEX transition shows that the transformation occurs in a one-step process. Wemore » calculate the scattering using a geometric model of rippled layers with adjacent layers totally out of phase during the transformation. The agreement of the calculations with the data further supports the continuous transformation mechanism from the LAM to HEX for a deep quench. In contrast, for a shallow quench close to the order-order transition, we find agreement with a two-step nucleation and growth mechanism.« less
First-principles study of crystallographic slip modes in ω-Zr.
Kumar, Anil; Kumar, M Arul; Beyerlein, Irene J
2017-08-21
We use first-principles density functional theory to study the preferred modes of slip in the high-pressure ω phase of Zr. The generalized stacking fault energy surfaces associated with shearing on nine distinct crystallographic slip modes in the hexagonal ω-Zr crystal are calculated, from which characteristics such as ideal shear stress, the dislocation Burgers vector, and possible accompanying atomic shuffles, are extracted. Comparison of energy barriers and ideal shear stresses suggests that the favorable modes are prismatic 〈c〉, prismatic-II [Formula: see text] and pyramidal-II 〈c + a〉, which are distinct from the ground state hexagonal close packed α phase of Zr. Operation of these three modes can accommodate any deformation state. The relative preferences among the identified slip modes are examined using a mean-field crystal plasticity model and comparing the calculated deformation texture with the measurement. Knowledge of the basic crystallographic modes of slip is critical to understanding and analyzing the plastic deformation behavior of ω-Zr or mixed α-ω phase-Zr.
Hsu, Chia -Hsiu; Huang, Zhi -Quan; Crisostomo, Christian P.; ...
2016-01-14
We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror Chern numbers, indicating that the system can host topologically protected edge states. Our computations show that the electronic spectrum of a planar Sb/Bi nanoribbon with armchair or zigzag edges contains two Dirac cones within the band gap and an even number of edge bands crossing themore » Fermi level. Lattice constant of the planar Sb honeycomb is found to nearly match that of hexagonal-BN. As a result, the Sb nanoribbon on hexagonal-BN exhibits gapped edge states, which we show to be tunable by an out-of the-plane electric field, providing controllable gating of edge state important for device applications.« less
NASA Astrophysics Data System (ADS)
VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.
2015-10-01
A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.
NASA Astrophysics Data System (ADS)
Vinaykumar, R.; Mazumder, R.; Bera, J.
2017-05-01
Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.
In situ observation of shear-driven amorphization in silicon crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Zhong, Li; Fan, Feifei
Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.
Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Chih-Hao; Yue, Kan; Wang, Jing
Controlling self-assembled nanostructures in thin films allows the bottom-up fabrication of ordered nanoscale patterns. Here we report the unique thickness-dependent phase behavior in thin films of a bolaform-like giant surfactant, which consists of butyl- and hydroxyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS and DPOSS) cages telechelically located at the chain ends of a polystyrene (PS) chain with 28 repeating monomers on average. In the bulk, BPOSS-PS28-DPOSS forms a double gyroid (DG) phase. Both grazing incidence small angle X-ray scattering and transmission electron microscopy techniques are combined to elucidate the thin film structures. Interestingly, films with thicknesses thinner than 200 nm exhibit anmore » irreversible phase transition from hexagonal perforated layer (HPL) to compressed hexagonally packed cylinders (c-HEX) at 130 °C, while films with thickness larger than 200 nm show an irreversible transition from HPL to DG at 200 °C. The thickness-controlled transition pathway suggests possibilities to obtain diverse patterns via thin film self-assembly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tillard, Monique, E-mail: mtillard@univ-montp2.fr
X-ray single-crystal structure has been established for new compositions in intermetallic systems of tin and gallium. Crystals were successfully obtained in alloys prepared from elements. The structure of SmGaSn{sub 2} (cubic Pm3̄m, a=4.5778(8) Å, Z=1, R1=0.012) is described with atomic disorder at all Sn/Ga positions and the structure of Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} (hexagonal, P6{sub 3}/mmc, a=4.2233(9), c=17.601(7) Å, Z=1, R1=0.062) raises an interesting question about existence of a composition domain for CaGaSn. Finally, Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} should be considered as a particular composition of Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}, a compound assumed to exist in the range x ~more » 0−1. Partial atomic ordering characterizes the Sn/Ga puckered layers of hexagons whose geometries are analyzed and discussed comparatively with analogous arrangements in AlB{sub 2} related hexagonal compounds. The study is supported by rigid band model and DFT calculations performed for different experimental and hypothetic arrangements. - Graphical abstract: A phase width for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x} belonging to the hexagonal YPtAs structure-type. - Highlights: • Single crystals of mixed tin gallium ternary intermetallics were obtained. • Partial ordering at metal sites and phase width are evidenced for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}. • Layer deviation to flatness is studied comparatively with related structures. • Geometry and stability analyses based on DFT calculations are provided.« less
NASA Astrophysics Data System (ADS)
Harrison, William T. A.; Dussack, Laurie L.; Vogt, Thomas; Jacobson, Allan J.
1995-11-01
The hydrothermal syntheses and crystal structures of (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO6 octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH+4 or Cs+ cations provide charge balance. The full H-bonding scheme in (NH4)2(WO3)3SeO3 has been elucidated from Rietveld refinement against neutron powder diffraction data. The WO6 octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO6 unit in both these phases. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural with their molybdenum(VI)-containing analogues (NH4)2(MoO3)3SeO3 and Cs2 (MoO3)3SeO3. Crystal data: (NH4)2(WO3)3SeO3, Mr = 858.58, hexagonal, space group P63 (No. 173), a = 7.2291(2) Å, c = 12.1486(3) Å, V = 549.82(3) Å3, Z = 2, Rp = 1.81%, and Rwp = 2.29% (2938 neutron powder data). Cs2(WO3)3SeO3, Mr = 1088.31, hexagonal, space group P63 (no. 173), a = 7.2615(2) Å, c = 12.5426(3) Å, V = 572.75(3) Å3, Z = 2, Rp = 4.84%, and Rwp = 5.98% (2588 neutron powder data).
Fonseca-Santos, Bruno; Dos Santos, Aline Martins; Rodero, Camila Fernanda; Gremião, Maria Palmira Daflon; Chorilli, Marlus
From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G″), as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brgoch, Jakoah; Klob, Simon D.; Denault, Kristin A.
The preparation of Eu 2+-substituted barium aluminum silicates is achieved using a rapid microwave-assisted preparation. The phase evolution of two BaAl 2Si 2O 8:Eu 2+ polymorphs, the higher temperature hexagonal phase (hexacelsian), and the lower temperature monoclinic phase (celsian), is explored by varying the ramp time and soak time. This preparation method significantly reduces the reaction time needed to form these phases compared to conventional solid state routes. The luminescent properties of the two phases are identified under UV excitation with the hexagonal phase emitting in the UV region (λ em = 372 nm) and the monoclinic phase emitting inmore » the blue region (λ em = 438 nm). The differences in optical properties of the two polymorphs are correlated to the coordination number and arrangement of the alkali earth site. The optical properties of the monoclinic phase can be further tuned through the substitution of Sr 2+, forming the solid solution (Ba 1–xSr x)Al 2Si 2O 8:Eu 2+. Changes in the crystal structure due to Sr 2+ substitution produce a surprising blue-shift in the emission spectrum, which is explained by a greater dispersion of bond lengths in the (Ba/Sr)–O polyhedra. The entire monoclinic solid solution exhibits excellent quantum yields of nearly 90 %, owing to the structural rigidity provided by the highly connected tetrahedral network.« less
Observation of topological edge states of acoustic metamaterials at subwavelength scale
NASA Astrophysics Data System (ADS)
Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie
2018-05-01
Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.
Martensitic and austenitic transformations in core-surface cubic nanoparticles
NASA Astrophysics Data System (ADS)
Özüm, S.; Yalçın, O.; Erdem, R.; Bayrakdar, H.; Eker, H. N.
2015-01-01
As a continuation of our recently published work, we have used the pair approximation in Kikuchi version to investigate martensitic and austenitic transformations in homogeneous (HM) and composite (CM) cubic nanoparticles (CNPs) based on the Blume-Emery-Griffiths model. A single cubic nanoparticle made of a core surrounded by a surface is considered as shaped in two dimensional (2D) square arrays instead of hexagonal array. From the phase diagrams of HM and CM-CNPs it has been observed that the martensitic-austenitic transformations (MT-AT) occurred. The influence of the exchange coupling and single-ion anisotropy parameters in the model Hamiltonian on the MT-AT is studied and analyzed in comparison with the results for hexagonal nanoparticles. Significant changes of the phase transition points and hysteresis behaviours depending upon the particle structure have been discussed.
NASA Astrophysics Data System (ADS)
Kadlec, C.; Goian, V.; Rushchanskii, K. Z.; Kužel, P.; Ležaić, M.; Kohn, K.; Pisarev, R. V.; Kamba, S.
2011-11-01
Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability μa [H(ω) oriented within the hexagonal plane] below the Néel temperature TN. This excitation softens from 41 to 32 cm-1 upon heating and finally disappears above TN. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity ɛc within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases upon heating toward room temperature, thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both ɛc and ɛa spectra, and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons, however their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon-paramagnon differential absorption processes. The latter is enabled by strong short-range in-plane spin correlations in the paramagnetic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linsky, Jeffrey L.; Bushinsky, Rachel; Ayres, Tom
2012-07-20
We compare high-resolution ultraviolet spectra of the Sun and thirteen solar-mass main-sequence stars with different rotational periods that serve as proxies for their different ages and magnetic field structures. In this, the second paper in the series, we study the dependence of ultraviolet emission-line centroid velocities on stellar rotation period, as rotation rates decrease from that of the Pleiades star HII314 (P{sub rot} = 1.47 days) to {alpha} Cen A (P{sub rot} = 28 days). Our stellar sample of F9 V to G5 V stars consists of six stars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescopemore » (HST) and eight stars observed with the Space Telescope Imaging Spectrograph on HST. We find a systematic trend of increasing redshift with more rapid rotation (decreasing rotation period) that is similar to the increase in line redshift between quiet and plage regions on the Sun. The fastest-rotating solar-mass star in our study, HII314, shows significantly enhanced redshifts at all temperatures above log T = 4.6, including the corona, which is very different from the redshift pattern observed in the more slowly rotating stars. This difference in the redshift pattern suggests that a qualitative change in the magnetic-heating process occurs near P{sub rot} = 2 days. We propose that HII314 is an example of a solar-mass star with a magnetic heating rate too large for the physical processes responsible for the redshift pattern to operate in the same way as for the more slowly rotating stars. HII314 may therefore lie above the high activity end of the set of solar-like phenomena that is often called the 'solar-stellar connection'.« less
NASA Technical Reports Server (NTRS)
Livermore, R. C.; Jones, T.; Richard, J.; Bower, R. G.; Ellis, R. S.; Swinbank, A. M.; Rigby, J. R.; Smail, Ian; Arribas, S.; Rodriguez-Zaurin, J.;
2013-01-01
We present Hubble Space Telescope/Wide Field Camera 3 narrow-band imaging of the Ha emission in a sample of eight gravitationally lensed galaxies at z = 1-1.5. The magnification caused by the foreground clusters enables us to obtain a median source plane spatial resolution of 360 pc, as well as providing magnifications in flux ranging from approximately 10× to approximately 50×. This enables us to identify resolved star-forming HII regions at this epoch and therefore study their Ha luminosity distributions for comparisons with equivalent samples at z approximately 2 and in the local Universe. We find evolution in the both luminosity and surface brightness of HII regions with redshift. The distribution of clump properties can be quantified with an HII region luminosity function, which can be fit by a power law with an exponential break at some cut-off, and we find that the cut-off evolves with redshift. We therefore conclude that 'clumpy' galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves follow similar scaling relations to those at z = 0, but their HII regions are larger and brighter and thus appear as clumps which dominate the morphology of the galaxy. A simple theoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disc shows that the clumpy morphologies of high-z galaxies are driven by the competing effects of higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclic frequencies which stabilize the disc.
Imanaka, Hiroyuki; Yamadzumi, Daisuke; Yanagita, Keisuke; Ishida, Naoyuki; Nakanishi, Kazuhiro; Imamura, Koreyoshi
2016-03-01
In immobilizing target biomolecules on a solid surface, it is essential (i) to orient the target moiety in a preferred direction and (ii) to avoid unwanted interactions of the target moiety including with the solid surface. The preferred orientation of the target moiety can be achieved by genetic conjugation of an affinity peptide tag specific to the immobilization surface. Herein, we report on a strategy for reducing the extent of direct interaction between the target moiety and surface in the immobilization of hexahistidine peptide (6His) and green fluorescent protein (GFP) on a hydrophilic polystyrene (PS) surface: Ribonuclease HII from Thermococcus kodakaraensis (cHII) was genetically inserted as a "cushion" between the PS-affinity peptide tag and target moiety. The insertion of a cushion protein resulted in a considerably stronger immobilization of target biomolecules compared to conjugation with only a PS affinity peptide tag, resulting in a substantially enhanced accessibility of the detection antibody to the target 6His peptide. The fluorescent intensity of the GFP moiety was decreased by approximately 30% as the result of fusion with cHII and the PS-affinity peptide tag but was fully retained in the immobilization on the PS surface irrespective of the increased binding force. Furthermore, the fusion of cHII did not impair the stability of the target GFP moiety. Accordingly, the use of a proteinaceous cushion appears to be promising for the immobilization of functional biomolecules on a solid surface. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:527-534, 2016. © 2016 American Institute of Chemical Engineers.
Zlebnik, Natalie E; Carroll, Marilyn E
2015-03-01
Aerobic exercise and the attention-deficit/hyperactivity disorder medication, atomoxetine (ATO), are two monotherapies that have been shown to suppress reinstatement of cocaine-seeking in an animal model of relapse. The present study investigated the effects of combining wheel running and ATO versus each treatment alone on cocaine-seeking precipitated by cocaine and cocaine-paired cues in rats with differing susceptibility to drug abuse (i.e., high vs. low impulsive). Rats were screened for high (HiI) or low impulsivity (LoI) based on their performance on a delay-discounting task and then trained to self-administer cocaine (0.4 mg/kg/inf) for 10 days. Following 14 days of extinction, both groups were tested for reinstatement of cocaine-seeking precipitated by cocaine or cocaine-paired cues in the presence of concurrent running wheel access (W), pretreatment with ATO, or both (W+ATO). HiI rats acquired cocaine self-administration more quickly than LoI rats. While both individual treatments and W+ATO significantly attenuated cue-induced cocaine seeking in HiI and LoI rats, only W+ATO was effective in reducing cocaine-induced reinstatement compared with vehicle treatment. There were dose-dependent and phenotype-specific effects of ATO with HiI rats responsive to the low but not high ATO dose. Floor effects of ATO and W on cue-induced reinstatement prevented the assessment of combined treatment effects. These findings demonstrated greater attenuation of cue- versus cocaine-induced reinstatement by ATO and W alone and recapitulate impulsivity phenotype differences in both acquisition of cocaine self-administration and receptivity to treatment.
MS_RHII-RSD, a Dual-Function RNase HII-(p)ppGpp Synthetase from Mycobacterium smegmatis
Murdeshwar, Maya S.
2012-01-01
In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme RelMsm. This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The relMsm knockout strain of M. smegmatis (ΔrelMsm) is expected to show a (p)ppGpp null [(p)ppGpp0] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRelMsm in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response. PMID:22636779
MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis.
Murdeshwar, Maya S; Chatterji, Dipankar
2012-08-01
In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme Rel(Msm). This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The rel(Msm) knockout strain of M. smegmatis (Δrel(Msm)) is expected to show a (p)ppGpp null [(p)ppGpp(0)] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRel(Msm) in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response.
Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.
2017-01-01
Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium. PMID:28195226
NASA Astrophysics Data System (ADS)
Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; van Aert, S.; van Tendeloo, G.; Krok, F.
2017-02-01
Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.
High pressure phase transitions in the rare earth metal erbium to 151 GPa.
Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K
2011-08-10
High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.
High pressure phase transitions in the rare earth metal erbium to 151 GPa
NASA Astrophysics Data System (ADS)
Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.
2011-08-01
High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.
NASA Astrophysics Data System (ADS)
Cohen, Martin; Green, Anne J.
2001-08-01
We report on the comparison of images of a region of the Galactic plane (centred on l=312°) as seen by the Midcourse Space Experiment (MSX) at 8.3μm and by the Molonglo Observatory Synthesis Telescope (MOST) at 843MHz in the radio continuum. We note that the survey from each telescope is without peer and occupies a niche in panoramic coverage with high spatial resolution. Using independent classification of sources in the selected region, a detailed comparison of the two surveys was made. The aim of the project was to seek global characteristics for different types of source, with a view to establishing predictive criteria for identification and hence emission mechanisms. Several strong trends were found. There is a complete absence in this field of any detected MSX counterparts to non-thermal radio sources. Almost every Hii region in the radio image has its MSX counterpart, in the form of a polycyclic aromatic hydrocarbon halo in the neutral zone surrounding the ionized gas. Both surveys show large-scale `braided' filamentary structures, extending over 1°, which appear to be produced by thermal processes. These filaments may be structures in the warm ionized phase of the interstellar medium or extended haloes around Hii regions. The comparisons in this paper were made using both preliminary MSX 8.3-μm results with 46-arcsec resolution and final MSX images with the intrinsic 20-arcsec resolution of the instruments.
NASA Astrophysics Data System (ADS)
Stassun, Keivan; David, Trevor J.; Conroy, Kyle E.; Hillenbrand, Lynne; Stauffer, John R.; Pepper, Joshua; Rebull, Luisa M.; Cody, Ann Marie
2016-06-01
Prior to K2, only one eclipsing binary in the Pleiades was known (HD 23642). We present the discovery and characterization of three additional eclipsing binaries (EBs) in this ~120 Myr old benchmark open cluster. Unlike HD 23642, all three of the new EBs are low mass (Mtot < 1 M⊙) and thus their components are still undergoing pre-main-sequence contraction at the Pleiades age. Low mass EBs are rare, especially in the pre-main-sequence phase, and thus these systems are valuable for constraining theoretical stellar evolution models. One of the three new EBs is single-lined with a K-type primary (HII 2407). The second (HCG 76) comprises two nearly equal-mass 0.3 M⊙ stars, with masses and radii measured with precisions of better than 3% and 5%, respectively. The third (MHO 9) has an M-type primary with a secondary that is possibly quite close to the hydrogen-burning limit, but needs additional follow-up observations to better constrain its parameters. We use the precise parameters of HCG 76 to test the predictions of stellar evolution models, and to derive an independent distance to the Pleiades of 132±5 pc. Finally, we present tentative evidence for differential rotation in the primary component of the newly discovered Pleiades EB HII 2407, and we also characterize a newly discovered transiting Neptune-sized planet orbiting an M-dwarf in the Hyades.
Hess, Aaron T; Robson, Matthew D
2017-03-01
To present a framework in which time-varying gradients are applied with RF spoiling to reduce unwanted signal, particularly at high flip angles. A time-varying gradient spoiler scheme compatible with RF spoiling is defined, in which spoiler gradients cycle through the vertices of a hexagon, which we call hexagonal spoiling. The method is compared with a traditional constant spoiling gradient both in the transition to and in the steady state. Extended phase graph (EPG) simulations, phantom acquisitions, and in vivo images were used to assess the method. Simulations, phantom and in vivo experiments showed that unwanted signal was markedly reduced by employing hexagonal spoiling, both in the transition to and in the steady state. For adipose tissue at 1.5 Tesla, the unwanted signal in the steady state with a 60 ° flip angle was reduced from 22% with constant spoiling to 2% with hexagonal spoiling. A time-varying gradient spoiler scheme that works with RF spoiling, called "hexagonal spoiling," has been presented and found to offer improved spoiling over the traditional constant spoiling gradient. Magn Reson Med 77:1231-1237, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Broadening and shifting of Bragg reflections of nanoscale-microtwinned LT-Ni3Sn2
NASA Astrophysics Data System (ADS)
Leineweber, Andreas; Krumeich, Frank
2013-12-01
The effect of nanoscale microtwinning of long-range ordered domains in LT-Ni3Sn2 on its diffraction behaviour was studied by X-ray powder diffraction and electron microscopy. LT-Ni3Sn2 exhibits a Ni2In/NiAs-type structure with a superstructure breaking the symmetry relative to the hexagonal high-temperature (HT) to the orthorhombic low-temperature (LT) phase, implying three different twin-domain orientations. The microstructure was generated by annealing HT-Ni3Sn2 considerably below the order-disorder transition temperature, establishing the LT phase avoiding too much domain coarsening. High-resolution electron microscopy reveals domain sizes of 100-200 Å compatible with the Scherrer broadening of the superstructure reflections recorded by X-ray diffraction. Whereas the orthorhombic symmetry of the LT phase leads in powder-diffraction patterns from coarse-domain size material to splitting of the fundamental reflections, this splitting does not occur for the LT-Ni3Sn2 with nanoscale domains. Instead, a (pseudo)hexagonal indexing is possible giving hexagonal lattice parameters, which are, however, incompatible with the positions of the superstructure reflections. This can be attributed to interference between X-rays scattered by the differently oriented, truly orthorhombic domains leading to merging of the fundamental reflections. These show pronounced anisotropic microstrain-like broadening, where the integral breadths ? on the reciprocal d-spacing scale of a series of higher order reflection increase in a non-linear fashion with upward curvature with the reciprocal d-spacings ? of these reflections. Such a type of unusual microstrain broadening appears to be typical for microstructures which are inhomogeneous on the nanoscale, and in which the structural inhomogeneities lead to small phase shifts of the scattered radiation from different locations (e.g. domains).
NASA Astrophysics Data System (ADS)
Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.
2018-04-01
The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.
NASA Astrophysics Data System (ADS)
Corrêa, Cássia B.; Ramos, Nuno V.; Monteiro, Jaime; Vaz, Luis G.; Vaz, Mario A. P.
2012-10-01
The use of implants to rehabilitation of total edentulous, partial edentulous or single tooth is increasing, it is due to the high rate of success that this type of treatment present. The objective of this study was to analyze the mechanical behavior of different positions of two dental implants in a rehabilitation of 4 teeth in the region of maxilla anterior. The groups studied were divided according the positioning of the implants. The Group 1: Internal Hexagonal implant in position of lateral incisors and pontic in region of central incisors; Group 2: Internal Hexagonal implant in position of central incisors and cantilever of the lateral incisors and Group3 - : Internal Hexagonal implants alternate with suspended elements. The Electronic Speckle Pattern Interferometry (ESPI) technique was selected for the mechanical evaluation of the 3 groups performance. The results are shown in interferometric phase maps representing the displacement field of the prosthetic structure.
Investigation on the formation of lonsdaleite from graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greshnyakov, V. A.; Belenkov, E. A., E-mail: belenkov@csu.ru
2017-02-15
Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility ofmore » stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.« less
Bendersky, L. A.; Boettinger, W. J.
1993-01-01
Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488
Peselnick, L.; Meister, R.
1965-01-01
Variational principles of anisotropic elasticity have been applied to aggregates of randomly oriented pure-phase polycrystals having hexagonal symmetry and trigonal symmetry. The bounds of the effective elastic moduli obtained in this way show a considerable improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be in most cases a good approximation when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1965 The American Institute of Physics.
Topological dynamics of vortex-line networks in hexagonal manganites
NASA Astrophysics Data System (ADS)
Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing
2018-01-01
The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.
The violent interstellar medium in Messier 31
NASA Technical Reports Server (NTRS)
Brinks, Elias; Braun, Robert; Unger, Stephen W.
1990-01-01
Taurus observations in the line of H alpha and Very Large Array (VLA) HI mapping of the HII complex No. 722 in M31, reveal what seems to be a spherical cavity 330 pc in diameter blown out by a stellar association of over 20(exp 6) years old. Evidence of induced star formation which was initiated less than 5(exp 6) years ago is present in the form of bright HII emission and numerous O, B and Wolf-Rayet stars which are found within the shell surrounding the cavity. The energy necessary to create the HI shell is estimated to be about 5(exp 51) erg.
Deep echelle spectrophotometry of S 311, a Galactic HII region located outside the solar circle
NASA Astrophysics Data System (ADS)
García-Rojas, J.; Esteban, C.; Peimbert, A.; Peimbert, M.; Rodríguez, M.; Ruiz, M. T.
2005-09-01
We present echelle spectrophotometry of the Galactic HII region S 311. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10400 Årange. We have measured the intensities of 263 emission lines; 178 are permitted lines of H0, D0 (deuterium), He0, C0, C+, N0, N+, O0, O+, S+, Si0, Si+, Ar0 and Fe0; some of them are produced by recombination and others mainly by fluorescence. Physical conditions have been derived using different continuum- and line-intensity ratios. We have derived He+, C++ and O++ ionic abundances from pure recombination lines as well as abundances from collisionally excited lines for a large number of ions of different elements. We have obtained consistent estimations of t2 applying different methods. We have found that the temperature fluctuations paradigm is consistent with the Te(HeI) versus Te(HI) relation for HII regions, in contrast with what has been found for planetary nebulae. We report the detection of deuterium Balmer lines up to Dδ in the blue wings of the hydrogen lines, whose excitation mechanism seems to be continuum fluorescence.
Ionized gas clouds near the Sagittarius Arm tangent
NASA Astrophysics Data System (ADS)
Hou, Li-Gang; Dong, Jian; Gao, Xu-Yang; Han, Jin-Lin
2017-04-01
Radio recombination lines (RRLs) are the best tracers of ionized gas. Simultaneous observations of multi-transitions of RRLs can significantly improve survey sensitivity. We conducted pilot RRL observations near the Sagittarius Arm tangent by using the 65-m Shanghai Tian Ma Radio Telescope (TMRT) equipped with broadband feeds and a digital backend. Six hydrogen RRLs (H96 α - H101α) at C band (6289 MHz-7319 MHz) were observed simultaneously toward a sky area of 2° × 1.2° by using on-the-fly mapping mode. These transitions were then stacked together for detection of ionized gas. Star forming complexes G48.6+0.1 and G49.5-0.3 were detected in the integrated intensity map. We found agreements between our measured centroid velocities and previous results for the 21 known HII regions in the mapped area. For more than 80 cataloged HII region candidates without previous RRL measurements, we obtained new RRL spectra at 30 targeted positions. In addition, we detected 25 new discrete RRL sources with spectral S/N > 5 σ, and they were not listed in the catalogs of previously known HII regions. The distances for 44 out of these 55 new RRL sources were estimated.
Physical and genetic map of Streptococcus thermophilus A054.
Roussel, Y; Pebay, M; Guedon, G; Simonet, J M; Decaris, B
1994-01-01
The three restriction endonucleases SfiI, BssHII, and SmaI were found to generate fragments with suitable size distributions for mapping the genome of Streptococcus thermophilus A054. A total of 5, 8, and 24 fragments were produced with SfiI, BssHII, and SmaI, respectively. An average genome size of 1,824 kb was determined by summing the total fragment sizes obtained by digestions with these three enzymes. Partial and multiple digestions of genomic DNA in conjunction with Southern hybridization were used to map SfiI, BssHII, and SmaI fragments. All restriction fragments were arranged in a unique circular chromosome. Southern hybridization analysis with specific probes allowed 23 genetic markers to be located on the restriction map. Among them, six rrn loci were precisely located. The area of the chromosome containing the ribosomal operons was further detailed by mapping some of the ApaI and SgrAI sites. Comparison of macrorestriction patterns from three clones derived from strain A054 revealed two variable regions in the chromosome. One was associated with the tandem rrnD and rrnE loci, and the other was mapped in the region of the lactose operon. Images PMID:8002562
MSX Colors of Radio-Selected HII Regions in the Milky Way
NASA Astrophysics Data System (ADS)
Giveon, U.; Becker, R. H.; Helfand, D. J.; White, R. L.
2003-12-01
Investigation of the color-space properties of mid-infrared sources in the MSX Galactic plane catalog reveals two distinct populations - a blue population composed mainly of evolved stars, masers and molecular clouds, and a red population comprising sources of a nebular nature - HII regions, planetary nebulae, and unclassified radio sources. We compare the MSX catalog to 5 GHz VLA maps of the first quadrant of the Galactic plane. A catalog extracted from these maps was published first by Becker et al., but we have re-reduced the data with significantly improved calibration and mosaicing procedures, resulting in an increase of ˜ 60% in the number of detected sources. Comparison of the radio and infrared catalogs resulted in a sample of 491 matches, out of which we estimate 38 to be false counterparts, all of them from the MSX red population. The radio sources with infrared counterparts are found to have extremely small scale height (FWHM of 14' or ˜ 35 pc), and have thermal radio spectrum. These properties suggest that the sample is dominated by HII regions, most of them are previously uncataloged. This research is supported be the National Science Foundation.
The mixed reality of things: emerging challenges for human-information interaction
NASA Astrophysics Data System (ADS)
Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma
2017-05-01
Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.
The observed spiral structure of the Milky Way
NASA Astrophysics Data System (ADS)
Hou, L. G.; Han, J. L.
2014-09-01
Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to increase the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. The distances for many of them have been determined in the literature with trigonometric, photometric, and/or kinematic methods. Aims: We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of the Milky Way. Methods: We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photometric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the current IAU standard, R0 = 8.5 kpc and Θ0 = 220 km s-1, and the most recent updated values of R0 = 8.3 kpc and Θ0 = 239 km s-1, after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers. Results: The distribution of tracers shows at least four segments of arms in the first Galactic quadrant, and three segments in the fourth quadrant. The Perseus Arm and the Local Arm are also delineated by many bright HII regions. The arm segments traced by massive star forming regions and GMCs are able to match the HI arms in the outer Galaxy. We found that the models of three-arm and four-arm logarithmic spirals are able to connect most spiral tracers. A model of polynomial-logarithmic spirals is also proposed, which not only delineates the tracer distribution, but also matches the observed tangential directions. Appendix A is available in electronic form at http://www.aanda.orgFull Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A125 and also at the authors' webpage: http://zmtt.bao.ac.cn/milkyway/
Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom
2018-01-01
Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall physical environment in typical star-forming galaxies.
Massive Molecular Outflows Toward Methanol Masers: by Eye and Machine Learning
NASA Astrophysics Data System (ADS)
de Villiers, Helena
2013-07-01
The best known evolutionary state of massive stars is that of the UC HII region, occurring a few 10^5 years after the initial formation of a massive YSO. Currently objects in the "hot core" phase, occurring prior to the UC HII region, are studied with great interest. Because the YSO is still supposed to be accreting at this stage, one would expect outflows from the central object to develop during this phase, entraining surrounding cold molecular gas in their wake. During this time, 6.7 GHz (Class II) methanol masers will also turn on. They are uniquely associated with massive YSO's, thus serve as a useful signpost. We searched for molecular outflows with the JCMT and HARP focal plane array in a sample of targets toward 6.7 GHz methanol maser coordinates within 20 < Glon < 34. We found 58 CO clumps but only 47 of them were closely associated with the methanol masers. Their spectra were analyzed for broadened line wings, which were found to be present in 46 of the spectra, indicating either bi- or mono-polar outflows. This is a 98% detection frequency. The velocity ranges of these spectrum wings were used to create two dimensional blue and red maps. The out flows' physical parameters were calculated and compared with literature. We created a catalog of kinematic distances and properties of all the 13CO outflows associated with Class II methanol masers, as well as their associated H_2 core and virial masses as derived from the C18O data. In the the light of our results we emphasize the need for an automated detection process, especially with the increasing number of wide-area surveys. We are currently exploring the use of machine learning algorithms (specifically Support Vector Machines) in the detection of high velocity structures in p-p-v cubes.
The Hardest Superconducting Metal Nitride
Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; ...
2015-09-03
Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less
The Hardest Superconducting Metal Nitride
NASA Astrophysics Data System (ADS)
Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng
2015-09-01
Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, V. Arumai; Chithambararaj, A.; Bose, A. Chandra, E-mail: acbose@nitt.edu
2016-05-23
The present work aims to synthesize single phase h-MoO{sub 3} nanocrytals by chemical precipitation method exposed under different reaction atmospheres. The reaction atmosphere have been successfully tuned as air, nitrogen and argon and studied its effects on structural, functional, morphology and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and diffuse reflectance spectroscopy (DRS) measurements. The XRD result indicates that the sample exhibits characteristic hexagonal phase of MoO{sub 3}. The crystallite size is estimated by well known Scherrer’s method. The crystallite size is relative small in the case of sample prepared atmore » argon atmosphere. The functional groups such as Mo-O, N-H and O-H are identified from FT-IR spectroscopy. The particle exhibits rod like morphology with perfect hexagonal cross-section. The optical absorption observed at 420-450 nm corresponds to fundamental optical absorption by h-MoO{sub 3}. The band gap values are estimated using Kublka-Munk (K-M) function and found to be 2. 87 eV, 2.93 eV and 2.97 eV for samples synthesized under air, nitrogen and argon, respectively.« less
Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate
Zorko, A.; Pregelj, M.; Gomilšek, M.; Jagličić, Z.; Pajić, D.; Telling, M.; Arčon, I.; Mikulska, I.; Valant, M.
2015-01-01
Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. PMID:25572803
NASA Astrophysics Data System (ADS)
Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.
2017-12-01
The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.
Effect of temperature on the magnetic properties of nano-sized M-type barium hexagonal ferrites
NASA Astrophysics Data System (ADS)
Tchouank Tekou Carol, T.; Sharma, Jyoti; Mohammed, J.; Kumar, Sachin; Srivastava, A. K.
2017-07-01
The application of M-type hexagonal ferrites in electronic devices is increasing with technological advancement. This is due to the possibility of improving the physical and magnetic properties to suit the desired application. Enhanced magnetic properties make hexagonal ferrites suitable for hyper frequency and radar absorbing application. In this paper, we investigated the effect of heat-treatment temperature on the structural and magnetic properties of M-type barium hexagonal ferrites with chemical composition Ba1-xAlxFe12-yMnyO19 (x=0.6 and y=0.3) synthesized by sol-gel auto-combustion method and sintered at 750°C, 850°C, 950°C and 1050°C. Characterisations of the prepared samples were done using Fourier transform-infrared (FT-IR), and vibrating sample magnetometer (VSM). The formation of M-type hexaferrite has been confirmed from XRD. The presence of two prominent peaks between 400 cm-1 and 600 cm-1 in the spectra of Fourier transform-infrared spectroscopy (FT-IR) also shows the formation of ferrite phase. Saturation magnetisation (MS), remnant magnetisation (Mr), coercivity (Hc) and squareness ratio (SR) were calculated from the M-H loop obtained from vibrating sample magnetometer (VSM).
Nanoscale heterogeneity as remnant hexagonal-type local structures in shocked Cu-Pb and Zr
NASA Astrophysics Data System (ADS)
Tayal, Akhil; Conradson, Steven D.; Batuk, Olga N.; Fensin, Saryu; Cerreta, Ellen; Gray, George T.; Saxena, Avadh
2017-09-01
Extended X-ray absorption fine structure spectroscopy was used to determine the local structure in: (1) Zr that had undergone quasistatic elongation; (2) Zr that had undergone plastic deformation by shock at pressures above and below the ω-phase transformation; and (3) shocked Cu that contained a few percent of insoluble Pb. Below the transition pressure, Zr samples showed only general disorder as increases in the widths of the Zr-Zr pair distributions. Above this pressure, Zr that was a mixture of the original hcp and the high pressure ω-phase when measured by diffraction showed two sets of peaks in its distribution corresponding to these two phases. Some of the ones from the ω-phase were at distances substantially different from those calculated from the diffraction pattern, although they are still consistent with small domains exhibiting stacking faults associated with hexagonal-type structural components exhibiting variability in the [0001] basal plane spacing. A similar result, new pairs at just over 3 and 4 Å consistent with hexagonal-type stacking faults in addition to the original fcc structure, is found in shocked Cu despite the absence of a second diffraction pattern and peak pressures being far below those expected to induce an fcc to hcp transition. This result, therefore, demonstrates that the correlation between high strain rates and reduced stacking fault energy continues down to the length scale of atom pairs. These findings are significant as: (1) a microscopic description of the behavior of systems far from equilibrium; (2) a demonstration of the importance of strain rate at short length scales; and (3) a bridge between the abruptness of macroscopic pressure-induced phase transitions and the continuity of martensitic ones over their fluctuation region in terms of the inverse relationship between the length scale of the martensitic texture, manifested here as ordered lattice distortions and the lower pressure at which such texture first appears relative to the bulk transition pressure.
Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)
NASA Astrophysics Data System (ADS)
Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.
2005-06-01
Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.
Structural characterization of a new high-pressure phase of GaAsO4.
Santamaría-Pérez, David; Haines, Julien; Amador, Ulises; Morán, Emilio; Vegas, Angel
2006-12-01
As in SiO2 which, at high pressures, undergoes the alpha-quartz-->stishovite transition, GaAsO4 transforms into a dirutile structure at 9 GPa and 1173 K. In 2002, a new GaAsO4 polymorph was found by quenching the compound from 6 GPa and 1273 K to ambient conditions. The powder diagram was indexed on the basis of a hexagonal cell (a=8.2033, c=4.3941 A, V=256.08 A3), but the structure did not correspond to any known structure of other AXO4 compounds. We report here the ab initio crystal structure determination of this hexagonal polymorph from powder data. The new phase is isostructural to beta-MnSb2O6 and it can be described as a lacunary derivative of NiAs with half the octahedral sites being vacant, but it also contains fragments of the rutile-like structure.
NASA Astrophysics Data System (ADS)
Hannachi, Amira; Maghraoui-Meherzi, Hager
2017-03-01
Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.
Crystal growth and upconversion luminescent properties of KLu2F7:Yb,Er nanocrystals
NASA Astrophysics Data System (ADS)
Xu, Dekang; Yao, Lu; Lin, Hao; Yang, Shenghong; Zhang, Yueli
2018-05-01
Crystal growth of KLu2F7 nanocrystals is investigated by dosage- and time-dependent analysis. XRD patterns reveal the phase transition along with the dosage of fluorine source and reaction times, where the cubic-phase KLu3F10 turns into orthorhombic KLu2F7. TEM images show that the dimensions of as-prepared samples are below a hundred nanometers, with different shapes from hexagonal plate to hexagonal rod. The upconversion properties of the as-prepared samples are investigated. It is found that the upconversion emission is lowered as the shape of the samples varies. Moreover, the orthorhombic KLu2F7:Yb,Er nanocrystals present more enormous upconversion luminescence than the cubic counterparts. In a word, the orthorhombic nanocrystals are found to be good candidate for upconversion luminescence and of great importance for potential applications in solar cells, multicolor display and bioimaging.
NASA Astrophysics Data System (ADS)
Choi, Eun-Ae; Kang, Joongoo; Chang, K. J.
2006-12-01
We perform first-principles pseudopotential calculations to study the influence of Mn doping on the stability of two polytypes, wurtzite and zinc-blende, in GaN . In Mn δ -doped GaN and GaMnN alloys, we find similar critical concentrations of the Mn ions for stabilizing the zinc-blende phase against the wurtzite phase. Using a slab geometry of hexagonal lattices, we find that it is energetically unfavorable to form inversion domains with Mn exposure, in contrast to Mg doping. At the initial stage of epitaxial growth, a stacking fault that leads to the cubic bonds can be generated with the Mn exposure to the Ga-polar surface. However, the influence of the Mn δ -doped layer on the formation of the cubic phase is only effective for GaN layers deposited up to two monolayers. We find that the Mn ions are energetically more stable on the growth front than in the bulk, indicating that these ions act as a surfactant. Thus it is possible to grow cubic GaN if the Mn ions are periodically supplied or diffuse out from the Mn δ -doped layer to the growth front during the growth process.
Pressure-dependent structure of the null-scattering alloy Ti 0.676 Zr 0.324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeidler, Anita; Guthrie, Malcolm; Salmon, Philip S.
2015-05-13
The room temperature structure of the alloy Ti0.676Zr0.324Ti0.676Zr0.324 was measured by X-ray diffraction under compression at pressures up to ~30GPa. This alloy is used as a construction material in high pressure neutron-scattering research and has a mean coherent neutron scattering length of zero, that is, it is a so-called null-scattering alloy. A broad phase transition was observed from a hexagonal close-packed α-phase to a hexagonal ω-phase, which started at a pressure of ≲12GPa≲12GPa and was completed by ~25GPa. The data for the α-phase were fitted by using a third-order Birch–Murnaghan equation of state, giving an isothermal bulk modulus B0=87(4)GPaB0=87(4)GPa andmore » pressure derivative B'0=6.6(8)B0'=6.6(8). The results will help to ensure that accurate structural information can be gained from in situ high pressure neutron diffraction work on amorphous and liquid materials where the Ti0.676Zr0.324Ti0.676Zr0.324 alloy is used as a gasket material.« less
Fabrication of oriented hydroxyapatite film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami
2017-08-01
Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.
Reconstructive structural phase transitions in dense Mg
NASA Astrophysics Data System (ADS)
Yao, Yansun; Klug, Dennis D.
2012-07-01
The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.
Reconstructive structural phase transitions in dense Mg.
Yao, Yansun; Klug, Dennis D
2012-07-04
The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.
Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jahangeer; Department of Chemistry, College of Science, King Saud University, Riyadh 11451; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu
2016-10-15
Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed bymore » powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.« less
The structure of ice crystallized from supercooled water
NASA Astrophysics Data System (ADS)
Murray, Benjamin
2013-03-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)
NASA Astrophysics Data System (ADS)
Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran
2017-03-01
Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.
NASA Astrophysics Data System (ADS)
Akman, Nurten; Özdoğan, Cem
2018-04-01
We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.
Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan
2015-01-01
Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures. PMID:25998415
Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites
NASA Astrophysics Data System (ADS)
Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.
2017-07-01
Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.
Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy
NASA Astrophysics Data System (ADS)
Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.
2018-06-01
A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0 → 5 T. The most interesting observation is the ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.
Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, J.A., E-mail: mtp09jd@sheffield.ac.uk; Freeman, C.L.; Harding, J.H.
Interatomic potentials recently developed for the modelling of BaTiO{sub 3} have been used to explore the stabilisation of the hexagonal polymorph of BaTiO{sub 3} by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti{submore » 2} sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni{sup 2+} and Fe{sup 3+} ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti{sub 2}/O{sub 1} cluster and (b) Ti{sub 2}/O{sub 2} cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.« less
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Post-pyrite transition in SiO2
NASA Astrophysics Data System (ADS)
Ho, K.; Wu, S.; Umemoto, K.; Wentzcovitch, R. M.; Ji, M.; Wang, C.
2010-12-01
Here we propose a new phase of SiO2 beyond the pyrite-type phase. SiO2 is one of the most important minerals in Earth and planetary sciences. So far, the pyrite-type phase has been identified experimentally as the highest-pressure form of SiO2. In solar giants and extrasolar planets whose interior pressures are considerably higher than that on Earth, a post-pyrite transition in SiO2 may occur at ~ 1 TPa as a result of the dissociation of MgSiO3 post-perovskite into MgO and SiO2 [Umemtoto et al., Science 311, 983 (2006)]. Several dioxides considered to be low-pressure analogs of SiO2 have a phase with cotunnite-type (PbCl2-type) structure as the post-pyrite phase. However, a first-principles structural search using a genetic algorithm shows that SiO2 should undergo a post-pyrite transition to a hexagonal phase, not to the cotunnite phase. The hexagonal phase is energetically very competitive with the cotunnite-type one. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering and NSF under ATM-0428774 (VLab), EAR-0757903, and EAR-1019853. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The computations were performed at the National Energy Research Supercomputing Centre (NERSC) and the Minnesota Supercomputing Institute (MSI).
Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method
NASA Astrophysics Data System (ADS)
Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas
2018-03-01
The detection of the (semi)metal-insulator phase transition can be extremely difficult if the local order parameter which characterizes the ordered phase is unknown. In some cases, it is even impossible to define a local order parameter: the most prominent example of such system is the spin liquid state. This state was proposed to exist in the Hubbard model on the hexagonal lattice in a region between the semimetal phase and the antiferromagnetic insulator phase. The existence of this phase has been the subject of a long debate. In order to detect these exotic phases we must use alternative methods to those used for more familiar examples of spontaneous symmetry breaking. We have modified the Backus-Gilbert method of analytic continuation which was previously used in the calculation of the pion quasiparticle mass in lattice QCD. The modification of the method consists of the introduction of the Tikhonov regularization scheme which was used to treat the ill-conditioned kernel. This modified Backus-Gilbert method is applied to the Euclidean propagators in momentum space calculated using the hybrid Monte Carlo algorithm. In this way, it is possible to reconstruct the full dispersion relation and to estimate the mass gap, which is a direct signal of the transition to the insulating state. We demonstrate the utility of this method in our calculations for the Hubbard model on the hexagonal lattice. We also apply the method to the metal-insulator phase transition in the Hubbard-Coulomb model on the square lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez, G.C.Mondragón, E-mail: guillermo.mondragon-rodriguez@dlr.de; Gönüllü, Y.; Ferri, Davide
2015-01-15
Highlights: • Solid solution formation BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} with a new wet chemical synthesis method. • Rhodium in the BaTiO{sub 3} perovskite stabilizes the hexagonal structure. • New Rh segregation mechanism for hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} upon reduction. - Abstract: Perovskite-type oxides of composition BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} were prepared following a new chemical route that avoids the formation of hydroxyl species and precipitation, and allows the homogeneous distribution of Rh in the final mixed metal oxide. The high dispersion of Rh and the formation of the solid solution between Rh and the BaTiO{sub 3} perovskite is confirmedmore » by means of X-ray diffraction (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). The presence of Rh stabilized the hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} phase, which decomposes into barium orthotitanate (BaTi{sub 2}O{sub 4}) and metallic Rh° in reducing environment. This phase transition starts already at 700 °C and is only partially completed at 900 °C suggesting that part of the Rh present in the perovskite lattice might not be easily reduced by hydrogen. These aspects and further open questions are discussed.« less
Rapid thermal annealing of WSi x. In-situ resistance measurements
NASA Astrophysics Data System (ADS)
Nobili, C.; Bosi, M.; Ottaviani, G.; Queirolo, G.; Bacci, L.
1991-11-01
In-situ sheet resistance measurements have been performed on amorphous WSi 2.5 alloy films deposited by low pressure chemical vapour deposition either on thermal oxide or on polysilicon. The heat treatments were performed in vacuum up to 1000°C at a heating rate ranging from 5 to 6000°C/min. The temperature was measured with a thermocouple placed underneath and in contact with the sample; the film sheet resistance was measured with a four-point probe in van der Pauw configuration. The in-depth elemental composition was determined by 2 MeV 4He + backscattering technique. Nuclear reaction was used to monitor the quantity of flourine present in the sample. The phases formed were identified by X-ray diffraction. The sheet resistance versus temperature curves are all similar and present, after a small initial decrease, first a sharp increase followed, after about 200°C, by a decrease. X-ray diffraction measurements indicate that the increase is due to the amorphous-hexagonal phase transformation; the decrease is due to the formation of the tetragonal WSi 2 phase. The temperature at which the two variations occur increases with the heating rate indicating thermally activated processes. The activation energies are 1.4 ±0.1 and 2.4 ±0.1 eV for the amorphous-hexagonal and hexagonal-tetragonal transformation, respectively. Silicon segregation at the inner interface occurs only on the samples where the silicide alloy was deposited on polysilicon and for heating rates lower than 200°C/min. The total flourine content is not affected by the kind of heat treatment performed.
NASA Astrophysics Data System (ADS)
Goel, Vishya
Nanoparticles containing rare earth ions have the ability to absorb and convert infrared light into visible light. The purpose of this work is to synthesize rare earth ion-doped NaYF4 nanoparticles in their most efficient form, the hexagonal phase. These nanoparticles are then used in ligand exchange and energy transfer studies. The synthesis procedure produces gram scale quantities of nanoparticles. Such a scale is important for reproducibility and application of these materials. Oleylamine-capped NaYF4 nanoparticles were synthesized and were doped with 2 % Er3+ and 20 % Yb3+ using a thermal decomposition method. The procedure was optimized in terms of precursor concentration and injection rate. The samples were characterized using photoluminescence spectroscopy, transmission electron microscopy, and X-ray diffraction. Photoluminescence spectra were collected using infrared excitation (980 nm). Control of the temperature and injection resulted in 15 nm (diameter) hexagonal phase NaYF4:Er3+,Yb3+ nanoparticles capped with oleylamine. The nanoparticles exhibited bright emission in the red (640 nm) and green (540 nm) portions of the visible spectrum. The surface of the nanoparticles was modified with decanoic acid, dodecanedioic acid, or dodecane sulfonic acid using a ligand exchange reaction. Energy transfer was studied from the oleylamine-capped nanoparticles to the fluorophores Nile Red, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran, and poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene). Successful surface ligand exchange was achieved and the preliminary exploration of upconverting nanoparticles as an energy transfer donor was performed.
VizieR Online Data Catalog: Giant HII regions BOND abundances (Vale Asari+, 2016)
NASA Astrophysics Data System (ADS)
Vale Asari, N.; Stasinska, G.; Morisset, C.; Cid Fernandes, R.
2017-10-01
BOND determines nitrogen and oxygen gas-phase abundances by using strong and semistrong lines and comparing them to a grid of photoionization models in a Bayesian framework. The code is written in python and its source is publicly available at http://bond.ufsc.br. The grid of models presented here is included in the 3MdB data base (Morisset, Delgado-Inglada & Flores-Fajardo 2015RMxAA..51..103M, see https://sites.google.com/site/mexicanmillionmodels/) under the reference 'BOND'. The Bayesian posterior probability calculated by bond stands on two pillars: our grid of models and our choice of observational constraints (from which we calculate our likelihoods). We discuss each of these in turn. (2 data files).
First-principles study of crystallographic slip modes in ω-Zr
Kumar, Anil; Kumar, M. Arul; Beyerlein, Irene Jane
2017-08-21
We use first-principles density functional theory to study the preferred modes of slip in the high-pressure ω phase of Zr. The generalized stacking fault energy surfaces associated with shearing on nine distinct crystallographic slip modes in the hexagonal ω-Zr crystal are calculated, from which characteristics such as ideal shear stress, the dislocation Burgers vector, and possible accompanying atomic shuffles, are extracted. Comparison of energy barriers and ideal shear stresses suggests that the favorable modes are prismatic < c >, prismatic-II <101¯0> and pyramidal-II < c+a >, which are distinct from the ground state hexagonal close packed α phase of Zr.more » Operation of these three modes can accommodate any deformation state. The relative preferences among the identified slip modes are examined using a mean-field crystal plasticity model and comparing the calculated deformation texture with the measurement. In conclusion, knowledge of the basic crystallographic modes of slip is critical to understanding and analyzing the plastic deformation behavior of ω-Zr or mixed α-ω phase-Zr.« less
Roychowdhury, Subhajit; Jana, Manoj K; Pan, Jaysree; Guin, Satya N; Sanyal, Dirtha; Waghmare, Umesh V; Biswas, Kanishka
2018-04-03
Crystalline solids with intrinsically low lattice thermal conductivity (κ L ) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ L of 0.35 Wm -1 K -1 in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ L in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alkali oxide-tantalum, niobium and antimony oxide ionic conductors
NASA Technical Reports Server (NTRS)
Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.
1975-01-01
The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brent; Clifford, Dustin; Carpenter, Everett E., E-mail: aelgendy@vcu.edu, E-mail: ecarpenter2@vcu.edu
A phase transition, from orthorhombic Fe{sub 3}C to hexagonal Fe{sub 7}C{sub 3}, was observed using a wet synthesis mediated by hexadecyltrimethylammonium chloride (CTAC). In this study, CTAC has been shown to control carbide phase, morphology, and size of the iron carbide nanostructures. Fe{sub 7}C{sub 3} hexagonal prisms were formed with an average diameter of 960 nm, the thickness of 150 nm, and Fe{sub 3}C nanostructures with an approximate size of 50 nm. Magnetic studies show ferromagnetic behavior with M{sub s} of 126 emu/g, and H{sub c} of 170 Oe with respect to Fe{sub 7}C{sub 3} and 95 emu/g and 590 Oe with respect to Fe{sub 3}C. Themore » thermal studies using high temperature x-ray diffraction show stability of Fe{sub 7}C{sub 3} up to 500 °C. Upon slow cooling, the Fe{sub 7}C{sub 3} phase is recovered with an intermediate oxide phase occurring around 300 °C. This study has demonstrated a simple route in synthesizing iron carbides for an in depth magnetic study and crystal phase transition study of Fe{sub 7}C{sub 3} at elevated temperatures.« less
Nguyen, Andrew H; Molinero, Valeria
2015-07-23
Clathrate hydrates and ice I are the most abundant crystals of water. The study of their nucleation, growth, and decomposition using molecular simulations requires an accurate and efficient algorithm that distinguishes water molecules that belong to each of these crystals and the liquid phase. Existing algorithms identify ice or clathrates, but not both. This poses a challenge for cases in which ice and hydrate coexist, such as in the synthesis of clathrates from ice and the formation of ice from clathrates during self-preservation of methane hydrates. Here we present an efficient algorithm for the identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in molecular simulations. CHILL+ uses the number of staggered and eclipsed water-water bonds to identify water molecules in cubic ice, hexagonal ice, and clathrate hydrate. CHILL+ is an extension of CHILL (Moore et al. Phys. Chem. Chem. Phys. 2010, 12, 4124-4134), which identifies hexagonal and cubic ice but not clathrates. In addition to the identification of hydrates, CHILL+ significantly improves the detection of hexagonal ice up to its melting point. We validate the use of CHILL+ for the identification of stacking faults in ice and the nucleation and growth of clathrate hydrates. To our knowledge, this is the first algorithm that allows for the simultaneous identification of ice and clathrate hydrates, and it does so in a way that is competitive with respect to existing methods used to identify any of these crystals.
VizieR Online Data Catalog: CALIFA color/metallicity gradients connections (Marino+, 2016)
NASA Astrophysics Data System (ADS)
Marino, R. A.; Gil de Paz, A.; Sanchez, S. F.; Sanchez-Blazquez, P.; Cardiel, N.; Castillo-Morales, A.; Pascual, S.; Vilchez, J.; Kehrig, C.; Molla, M.; Mendez-Abreu, J.; Catalan-Torrecilla, C.; Florido, E.; Perez, I.; Ruiz-Lara, T.; Ellis, S.; Lopez-Sanchez, A. R.; Gonzalez Delgado, R. M.; de Lorenzo-Caceres, A.; Garcia-Benito, R.; Galbany, L.; Zibetti, S.; Cortijo, C.; Kalinova, V.; Mast, D.; Iglesias-Paramo, J.; Papaderos, P.; Walcher, C. J.; Bland-Hawthorn, J.
2016-03-01
We have selected the 350 galaxies observed by the CALIFA survey (Sanchez et al., 2012A&A...538A...8S) at the CAHA 3.5m telescope with Potsdam Multi Aperture Spectrograph (PMAS) in the PPak mode and processed by the CALIFA v1.5 pipeline up to September 2014. The SDSS g' and r' SB and (g'-r') color profiles were derived using the DR10 data products, in particular, we used the swarp mosaicking code (Ahn et al., 2014ApJS..211...17A). We obtain spectroscopic information for ~15130 HII regions (or complexes) from our 324 CALIFA data cubes using HII explorer. (2 data files).
Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk
NASA Astrophysics Data System (ADS)
Bruce, John
2011-01-01
From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.
Physical Conditions in Low Ionization Regions of the Orion Nebula
NASA Technical Reports Server (NTRS)
Baldwin, J. A.; Crotts, A.; DuFour, R. J.; Ferland, G. J.; Heathcote, S.; Hester, J. J.; Korista, K. T.; Martin, P. J.; ODell, C. R.
1996-01-01
We reexamine the spectroscopic underpinnings of recent claims that low ionization (O(I)) and (Fe(II)) lines from the Orion H(II) region are produced in a region where the iron-carrying grains have been destroyed and the electron density is surprisingly high. Our new HST and CTIO observations show that previous reported detections of(O(I)) lambda 5577 were strongly affected by telluric emission. Our line limits consistent with a moderate density (approx. 10(exp 4)/cu. cm photoionized gas. We show that a previously proposed model of the Orion H(II) region reproduces the observed (O(I)) and (Fe(II)) spectrum. These lines are fully consistent with formation in a moderate density dusty region.
NASA Astrophysics Data System (ADS)
Mendes, R. G. B.; Barreto, F. C. Sá; Santos, J. P.
2018-04-01
The mean field approximation results in the mixedspin 1/2 Ising model and spin 1 Blume-Capel model, in the hexagonal nanowire system, are obtained from the Bogoliubov inequality. The Gibbs free energy, magnetization, and critical frontiers are obtained. Besides the stable branches of the order parameters, we obtain the metastable and unstable parts of these curves and also find phase transitions of the metastable branches of the order parameters. The classification of the stable, metastable, and unstable states is made by comparing the free energy values of these states.
Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate
NASA Astrophysics Data System (ADS)
Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.
2018-01-01
We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.
Microwave-Assisted Synthesis Cd Metal Hexagonal Nanosheets
NASA Astrophysics Data System (ADS)
Sun, Yidong; She, Houde; Bai, Wencai; Li, Liangshan; Zhou, Hua
2018-07-01
Sodium borohydride (NaBH4) as reducing agent, oleic acid (OA) as surfactant, deionized water as the dispersant, reducing cadmium nitrate (Cd(NO3)2 · 4H2O) can get Cd nanosheets by microwave method. Room temperature photoluminescence (PL) spectrum for Cd nanosheets recorded under xenon light wavelength of 325 nm exhibited obviously emission bands at 331, 379, and 390 nm. By analyzing the results of XRD and TEM, the nanosheets are thought as hexagonal phase and the size is about 20 nm. This synthesis performs in a lower temperature. Moreover our method is quite simple and the cost of the experiment is relatively lower.
2013-01-01
Background For decades, copper sulphide has been renowned as the superior optical and semiconductor materials. Its potential applications can be ranged from solar cells, lithium-ion batteries, sensors, and catalyst systems. The synthesis methodologies of copper sulphide with different controlled morphology have been widely explored in the literature. Nevertheless, the understanding on the formation chemistry of CuS is still limited. The ultimate approach undertaking in this article is to investigate the formation of CuS hexagonal plates via the optimization of reaction parameters in hydrothermal reaction between copper (II) nitrate and sodium thiosulphate without appending any assistant agent. Results Covellite (CuS) hexagonal plates were formed at copper ion: thiosulphate ion (Cu2+:S2O32−) mole ratio of 1:2 under hydrothermal treatment of 155°C for 12 hours. For synthesis conducted at reaction temperature lower than 155°C, copper sulphate (CuSO4), krohnite (NaCu2(SO4)(H2O)2] and cyclooctasulphur (S8) were present as main impurities with covellite (CuS). When Cu2+:S2O32− mole ratio was varied to 1: 1 and 1: 1.5, phase pure plate-like natrochalcite [NaCu2(SO4)(H2O)] and digenite (Cu9S5) were produced respectively. Meanwhile, mixed phases of covellite (CuS) and cyclooctasulphur (S8) were both identified when Cu2+:S2O32− mole ratio was varied to 1: 2.5, 1: 3 and 1: 5 as well as when reaction time was shortened to 1 hour. Conclusions CuS hexagonal plates with a mean edge length of 1 μm, thickness of 100 nm and average crystallite size of approximately (45 ± 2) nm (Scherrer estimation) were successfully synthesized via assisting agent- free hydrothermal method. Under a suitable Cu2+:S2O32− mole ratio, we evidenced that the formation of covellite (CuS) is feasible regardless of the reaction temperature applied. However, a series of impurities were attested with CuS if reaction temperature was not elevated high enough for the additional crystallite phase decomposition. It was also identified that Cu2+:S2O32− mole ratio plays a vital role in controlling the amount of cyclooctasulphur (S8) in the final powder obtained. Finally, reaction time was recognized as an important parameter in impurity decomposition as well as increasing the crystallite size and crystallinity of the CuS hexagonal plates formed. PMID:23575312
Effect of Se substitution on the phase change properties of Ge2Sb2Te5
NASA Astrophysics Data System (ADS)
Shekhawat, Roopali; Rangappa, Ramanna; Gopal, E. S. R.; Ramesh, K.
2018-05-01
Ge2Sb2Te5 popularly known as GST is being explored for non-volatile phase change random access memory(PCRAM) applications. Under high electric field, thin films of amorphous GST undergo a phase change from amorphous to crystalline with a high contrast in electrical resistivity (about 103). The phase change is between amorphous and metastable NaCl structure occurs at about 150°C and not to the stable hexagonal phase which occurs at a high temperature (> 250 °C). In GST, about 50 % of Te substituted by Se (Ge2Sb2Te2.5Se2.5) is found to increase the contrast in electrical resistivity by 7 orders of magnitude (about 4 orders of magnitude higher than GST). The phase transition in Se added GST also found to be between amorphous and the stable hexagonal structure. The threshold voltage at which the Ge2Sb2Te2.5Se2.5 switches to the high conducting state increases to 9V as compared to 2V in GST. Interestingly, the threshold current decrease to 1mA as compared to 1.8mA in GST indicating the Se substitution reduces the power needed for switching between the low and high conducting states. The reduction in power needed for phase change, high contrast in electrical resistivity with high thermal stability makes Ge2Sb2Te2.5Se2.5 as a better candidate for PCRAM.
[NEII] Line Velocity Structure of Ultracompact HII Regions
NASA Astrophysics Data System (ADS)
Okamoto, Yoshiko K.; Kataza, Hirokazu; Yamashita, Takuya; Miyata, Takashi; Sako, Shigeyuki; Honda, Mitsuhiko; Onaka, Takashi; Fujiyoshi, Takuya
Newly formed massive stars are embedded in their natal molecular clouds and are observed as ultracompact HII regions. They emit strong ionic lines such as [NeII] 12.8 micron. Since Ne is ionized by UV photons of E>21.6eV which is higher than the ionization energy of hydrogen atoms the line probes the ionized gas near the ionizing stars. This enables to probe gas motion in the vicinity of recently-formed massive stars. High angular and spectral resolution observations of the [NeII] line will thus provide siginificant information on structures (e.g. disks and outflows) generated through massive star formation. We made [NeII] spectroscopy of ultracompact HII regions using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2m Subaru Telescope in July 2002. Spatial and spectral resolutions were 0.5"" and 10000 respectively. Among the targets G45.12+0.13 shows the largest spatial variation in velocity. The brightest area of G45.12+0.13 has the largest line width in the object. The total velocity deviation amounts to 50km/s (peak to peak value) in the observed area. We report the velocity structure of [NeII] emission of G45.12+0.13 and discuss the gas motion near the ionizing star.
Multi-Wavelength Diagnostics of Starbirth in Starbursts
NASA Astrophysics Data System (ADS)
Waller, William
2005-07-01
From the Orion Nebula to the Hubble Deep Field, starburst activity can be seen transforming galaxian clouds of gas into populous clusters of stars. The pyrotechnics and chemical enrichment associated with this activity have led to outcomes as ubiquitous as interstellar dust and as exquisite as life on Earth. In this talk, I will focus on the circumstances of star formation in the environmental context of ongoing starburst activity. I begin with the premises that (1) the formation of a single star takes time, (2) the formation of a populous cluster takes even more time, and (3) ``stuff'' happens in the interim. Hubble images of the Orion Nebula and Eagle Nebula show how hot stars can excavate neighboring clouds of gas and photoevaporate the star-forming cores that are exposed. Hubble observations of giant HII regions in M33 reveal a significant variation in the stellar populations, such that the most metal-rich HII regions contain the greatest proportions of the most massive stars. ISO and Spitzer observations of these same HII regions reveal corresponding variations in the nebular response. These multi-wavelength diagnostics of the stellar-nebular feedback in galaxian starbursts suggest a star-forming mechanism which is subject to photo-evaporative ablation -- an erosive process that is mediated by the metal abundance and corresponding amounts of protective dust in the starbursting environment.
NASA Astrophysics Data System (ADS)
Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig
2018-03-01
In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.
NASA Astrophysics Data System (ADS)
Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang
2018-05-01
Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.
Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice
NASA Astrophysics Data System (ADS)
Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro
2018-02-01
The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.
NASA Astrophysics Data System (ADS)
Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq
2016-12-01
The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.
Galactic Supernova Remnant Candidates Discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team
2018-01-01
There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
[Humus composition of petroleum hydrocarbon-contaminated soil].
Feng, Jun; Tang, Li-Na; Zhang, Jin-Jing; Dou, Sen
2008-05-01
An abandoned petroleum well which had been exploited for about twenty years in Songyuan city of Jilin Province, China, was selected to study the compositions and characteristics of soil humus using revised humus composition method and Simon-Kumada method. Soil samples were collected at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5 and 10.5 m apart from the well head. Results show that the petroleum contents increase from 0.08 g/kg (10.5 m to the well head) to 153.3 g/kg (0.5 m to the well head). With the increase in petroleum content, the contents of soil organic carbon and water soluble organic carbon increase; for total soil humus, the contents of extractable humus (HE) and humic acid (HA) decrease whereas that of humin (HM) increase; the percentage of HA/HE (PQ 72.0%-8.05%) decrease and HM/HE ratio (31.4-76.7) increase; for different combined humus, the contents of loosely combined humus (HI) and stably combined humus (HII) have a decrease tendency while that of tightly combined humus (HIII) increase; the HI/HII ratio (0.19-0.39) shows an increase tendency, whereas HI/HIII ratio (0.032-0.003) and HII/HIII ratio (0.096-0.009) decrease; the PQs of HI (3.21%-1.42%) and HIII (58.1%-35.5%) also decrease, and the range of PQ change is less in HI than in HII; the color coefficient (deltalogk) of water soluble organic matter (WSOM) decreases, whereas no obvious change for HA. The above results indicate that petroleum hydrocarbon promotes the formation of HM but not HA. The decrease in HA is mainly due to the restraining effect of petroleum hydrocarbon on the formation of stably combined HA. Petroleum hydrocarbon leads molecular structure of WSOM more complex but no effect on molecular structure of HA.
Formation of structures around HII regions: ionization feedback from massive stars
NASA Astrophysics Data System (ADS)
Tremblin, P.; Audit, E.; Minier, V.; Schmidt, W.; Schneider, N.
2015-03-01
We present a new model for the formation of dense clumps and pillars around HII regions based on shocks curvature at the interface between a HII region and a molecular cloud. UV radiation leads to the formation of an ionization front and of a shock ahead. The gas is compressed between them forming a dense shell at the interface. This shell may be curved due to initial interface or density modulation caused by the turbulence of the molecular cloud. Low curvature leads to instabilities in the shell that form dense clumps while sufficiently curved shells collapse on itself to form pillars. When turbulence is high compared to the ionized-gas pressure, bubbles of cold gas have sufficient kinetic energy to penetrate into the HII region and detach themselves from the parent cloud, forming cometary globules. Using computational simulations, we show that these new models are extremely efficient to form dense clumps and stable and growing elongated structures, pillars, in which star formation might occur (see Tremblin et al. 2012a). The inclusion of turbulence in the model shows its importance in the formation of cometary globules (see Tremblin et al. 2012b). Globally, the density enhancement in the simulations is of one or two orders of magnitude higher than the density enhancement of the classical ``collect and collapse`` scenario. The code used for the simulation is the HERACLES code, that comprises hydrodynamics with various equation of state, radiative transfer, gravity, cooling and heating. Our recent observations with Herschel (see Schneider et al. 2012a) and SOFIA (see Schneider et al. 2012b) and additional Spitzer data archives revealed many more of these structures in regions where OB stars have already formed such as the Rosette Nebula, Cygnus X, M16 and Vela, suggesting that the UV radiation from massive stars plays an important role in their formation. We present a first comparison between the simulations described above and recent observations of these regions.
Massive Stars and the Ionization of the Diffuse Medium
NASA Astrophysics Data System (ADS)
Kahre, Lauren E.; Walterbos, Rene A. M.
2015-08-01
Diffuse ionized Gas (DIG, sometimes called the warm ionized medium or WIM) has been recognized as a major component of the interstellar medium (ISM) in disk galaxies. A general understanding of the characteristics of the DIG is emerging, but several questions remain unanswered. One of these is the ionization mechanism for this gas, believed to be connected to OB stars and HII regions. Using 5-band (NUV (2750 A), U, V, B, and I) photometric imaging data from the Hubble Space Telescope (HST) Legacy Extragalactic Ultraviolet Survey (LEGUS) and ground-based Halpha data from the Local Volume Legacy (LVL) survey and HST Halpha data from LEGUS, we will investigate the photoionization of HII regions and DIG in nearly 50 galaxies. The 5-band photometry will enable us to determine properties of the most massive stars and reddening corrections for specific regions within a galaxy. Luminosities and ages for groups and clusters will be obtained from SED-fitting of photometric data. For individual stars ages will be determined from isochrone-fitting using reddening-corrected color-magnitude diagrams. We can then obtain estimates of the ionizing luminosities by matching these photometric properties for massive stars and clusters to various stellar atmosphere models. We will compare these predictions to the inferred Lyman continuum production rates from reddening-corrected ground- and HST-based Halpha data for HII regions and DIG. This particular presentation will demonstrate the above process for a set of selected regions in galaxies within the LEGUS sample. It will subsequently be expanded to cover the full LEGUS sample, with the overall goals of obtaining a better understanding of the radiative energy feedback from massive stars on the ISM, particularly their ability to ionize the surrounding ISM over a wide range of spatial scales and SFR surface densities, and to connect the ionization of the ISM to HII region morphologies.
Seike, Yasushi; Fukumori, Ryoko; Senga, Yukiko; Oka, Hiroki; Fujinaga, Kaoru; Okumura, Minoru
2004-01-01
A new and simple method for the determination of hydroxylamine in environmental water, such as fresh rivers and lakes using hypochlorite, followed by its gas choromatographic detection, has been developed. A glass vial filled with sample water was sealed by a butyl-rubber stopper and aluminum cap without head-space, and then sodium hypochlorite solution was injected into the vial through a syringe to convert hydroxylamine to nitrous oxide. The head-space in the glass vial was prepared with 99.9% grade N2 using a gas-tight syringe. After the glass vial was shaken for a few minutes, nitrous oxide in the gas-phase was measured by a gas chromatograph with an electron-capture detector. The dissolved nitrous oxide in the liquid-phase was calculated according to the solubility formula. The proposed method was applied to the analysis of fresh-water samples taken from Iu river and Hii river, flowing into brackish Lakes Nakaumi and Shinji, respectively.
Hough, Greg; Hama, Susan; Aboulhosn, Jamil; Belperio, John A.; Saggar, Rajan; Van Lenten, Brian J.; Ardehali, Abbas; Eghbali, Mansoureh; Reddy, Srinivasa; Fogelman, Alan M.; Navab, Mohamad
2015-01-01
Abstract Pulmonary arterial hypertension (PAH) is characterized by abnormal elaboration of vasoactive peptides, endothelial cell dysfunction, vascular remodeling, and inflammation, which collectively contribute to its pathogenesis. We investigated the potential for high-density lipoprotein (HDL) dysfunction (i.e., proinflammatory effects) and abnormal plasma eicosanoid levels to contribute to the pathobiology of PAH and assessed ex vivo the effect of treatment with apolipoprotein A-I mimetic peptide 4F on the observed HDL dysfunction. We determined the “inflammatory indices” HII and LII for HDL and low-density lipoprotein (LDL), respectively, in subjects with idiopathic PAH (IPAH) and associated PAH (APAH) by an in vitro monocyte chemotaxis assay. The 4F was added ex vivo, and repeat LII and HII values were obtained versus a sham treatment. We further determined eicosanoid levels in plasma and HDL fractions from patients with IPAH and APAH relative to controls. The LIIs were significantly higher for IPAH and APAH patients than for controls. Incubation of plasma with 4F before isolation of LDL and HDL significantly reduced the LII values, compared with sham-treated LDL, for IPAH and APAH. The increased LII values reflected increased states of LDL oxidation and thereby increased proinflammatory effects in both cohorts. The HIIs for both PAH cohorts reflected a “dysfunctional HDL phenotype,” that is, proinflammatory HDL effects. In contrast to “normal HDL function,” the determined HIIs were significantly increased for the IPAH and APAH cohorts. Ex vivo 4F treatment significantly improved the HDL function versus the sham treatment. Although there was a significant “salutary effect” of 4F treatment, this did not entirely normalize the HII. Significantly increased levels for both IPAH and APAH versus controls were evident for the eicosanoids 9-HODE, 13-HODE, 5-HETE, 12-HETE, and 15-HETE, while no statistical differences were evident for comparisons of IPAH and APAH for the determined plasma eicosanoid levels in the HDL fractions. Our study has further implicated the putative role of “oxidant stress” and inflammation in the pathobiology of PAH. Our data suggest the influences on the “dysfunctional HDL phenotype” of increased oxidized fatty acids, which are paradoxically proinflammatory. We speculate that therapies that target either the “inflammatory milieu” or the “dysfunctional HDL phenotype,” such as apoA-I mimetic peptides, may be valuable avenues of further research in pulmonary vascular diseases. PMID:26697171
The growth mechanism of grain boundary carbide in Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang
2013-07-15
The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less
Hydration of dimethyldodecylamine-N-oxide: enthalpy and entropy driven processes.
Kocherbitov, Vitaly; Söderman, Olle
2006-07-13
Dimethyldodecylamine-N-oxide (DDAO) has only one polar atom that is able to interact with water. Still, this surfactant shows very hydrophilic properties: in mixtures with water, it forms normal liquid crystalline phases and micelles. Moreover, there is data in the literature indicating that the hydration of this surfactant is driven by enthalpy while other studies show that hydration of surfactants and lipids typically is driven by entropy. Sorption calorimetry allows resolving enthalpic and entropic contributions to the free energy of hydration at constant temperature and thus directly determines the driving forces of hydration. The results of the present sorption calorimetric study show that the hydration of liquid crystalline phases of DDAO is driven by entropy, except for the hydration of the liquid crystalline lamellar phase which is co-driven by enthalpy. The exothermic heat effect of the hydration of the lamellar phase arises from formation of strong hydrogen bonds between DDAO and water. Another issue is the driving forces of the phase transitions caused by the hydration. The sorption calorimetric results show that the transitions from the lamellar to cubic and from the cubic to the hexagonal phase are driven by enthalpy. Transitions from solid phases to the liquid crystalline lamellar phase are entropically driven, while the formation of the monohydrate from the dry surfactant is driven by enthalpy. The driving forces of the transition from the hexagonal phase to the isotropic solution are close to zero. These sorption calorimetric results are in good agreement with the analysis of the binary phase diagram based on the van der Waals differential equation. The phase diagram of the DDAO-water system determined using DSC and sorption calorimetry is presented.
NASA Astrophysics Data System (ADS)
Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi
2017-12-01
PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.
Structure of dental gallium alloys.
Herø, H; Simensen, C J; Jørgensen, R B
1996-07-01
The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.
Improvement of oxygen storage properties of hexagonal YMnO3+δ by microstructural modifications
NASA Astrophysics Data System (ADS)
Klimkowicz, Alicja; Świerczek, Konrad; Kobayashi, Shuntaro; Takasaki, Akito; Allahyani, Wadiah; Dabrowski, Bogdan
2018-02-01
Hexagonal YMnO3+δ is shown to be an effective temperature-swing oxygen storage material working at low temperatures (150-300 °C) in pure oxygen if adequately processed or obtained having sub-micrometer primary particles with limited number of big agglomerates. A substantial increase of a practical oxygen storage capacity is observed for a sample synthesized by a solid-state method, which was subjected to a high impact mechanical milling. However, even better properties can be achieved for the sol-gel technique-produced YMnO3+δ. The reversible incorporation and release of the oxygen is associated with a structural transformation between stoichiometric YMnO3 (Hex0) phase and a mixture of oxygen-loaded Hex1 with δ ≈ 0.28 and Hex2 with δ ≈ 0.41 phases, as documented by in situ structural X-ray diffraction studies, supported by thermogravimetric experiments. Contrary to HoMnO3+δ, it was not possible to obtain single phase Hex1 material in oxygen, as well as to oxidize YMnO3 in air. Results confirm crucial role of the ionic size of rare earth element Ln on the oxygen storage-related properties and stability of the oxygen-loaded LnMnO3+δ phases.
Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J
2013-07-15
Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.
Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.
2013-07-15
Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less
Internal variation of electron temperature in HII regions
NASA Astrophysics Data System (ADS)
Oliveira, V. A.
2017-11-01
It is usual to think that if you calculate the same physical propriety from different methods you must find the same result, or within the margin of error. However, this is not the case if you calculate the abundance of heavy elements in photoionized nebulae. In fact, it is possible to find a value at least two times bigger, according to whether you estimate from recombination lines or from collisionally excited emission lines. This is called AD problem, and since 1967 the astronomers think about it and we do not have any final conclusion yet. This work aims to bring a small light to the path of a solution of AD problem, specifically for HII regions and, perhaps, to all types of photoionized nebulae.
NASA Astrophysics Data System (ADS)
Kolbin, A. I.; Shimansky, V. V.
2014-04-01
We developed a code for imaging the surfaces of spotted stars by a set of circular spots with a uniform temperature distribution. The flux from the spotted surface is computed by partitioning the spots into elementary areas. The code takes into account the passing of spots behind the visible stellar limb, limb darkening, and overlapping of spots. Modeling of light curves includes the use of recent results of the theory of stellar atmospheres needed to take into account the temperature dependence of flux intensity and limb darkening coefficients. The search for spot parameters is based on the analysis of several light curves obtained in different photometric bands. We test our technique by applying it to HII 1883.
NASA Astrophysics Data System (ADS)
Kim, Jaenam; Lee, Chongsoo; Jin, Youngsool
2018-03-01
Correlations of stoichiometry and phase structure of MgxZny in hot-dipped Zn-Mg-Al coating layer which were modified by additive element have been established on the bases of diffraction and phase transformation principles. X-ray diffraction (XRD) results showed that MgxZny in the Zn-Mg-Al coating layers consist of Mg2Zn11 and MgZn2. The additive elements had a significant effect on the phase fraction of Mg2Zn11 while the Mg/Al ratio had a negligible effect. Transmission electron microscope (TEM) assisted selected area electron diffraction (SAED) results of small areas MgxZny were indexed dominantly as MgZn2 which have different Mg/Zn stoichiometry between 0.10 and 0.18. It is assumed that the MgxZny have deviated stoichiometry of the phase structure with additive element. The deviated Mg2Zn11 phase structure was interpreted as base-centered orthorhombic by applying two theoretical validity: a structure factor rule explained why the base-centered orthorhombic Mg2Zn11 has less reciprocal lattice reflections in the SAED compared to hexagonal MgZn2, and a phase transformation model elucidated its reasonable lattice point sharing of the corresponding unit cell during hexagonal MgZn2 (a, b = 0.5252 nm, c = 0.8577 nm) transform to intermediate tetragonal and final base-centered orthorhombic Mg2Zn11 (a = 0.8575 nm, b = 0.8874 nm, c = 0.8771 nm) in the equilibrium state.
Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun
2017-01-26
Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.
Homotopy-Theoretic Study & Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites
Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2016-01-01
Essential structural properties of the non-trivial “string-wall-bounded” topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a “string-wall-bounded” configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials. PMID:27324701
NASA Astrophysics Data System (ADS)
Aradi, E.; Naidoo, S. R.; Billing, D. G.; Wamwangi, D.; Motochi, I.; Derry, T. E.
2014-07-01
The vibrational mode for the cubic symmetry of boron nitride (BN) has been produced by boron ion implantation of hexagonal boron nitride (h-BN). The optimum fluence at 150 keV was found to be 5 × 1014 ions/cm2. The presence of the c-BN phase was inferred using glancing incidence XRD (GIXRD) and Fourier Transform Infrared Spectroscopy (FTIR). After implantation, Fourier Transform Infrared Spectroscopy indicated a peak at 1092 cm-1 which corresponds to the vibrational mode for nanocrystalline BN (nc-BN). The glancing angle XRD pattern after implantation exhibited c-BN diffraction peaks relative to the implantation depth of 0.4 μm.
Instrument Overview of the JEM-EUSO Mission
NASA Technical Reports Server (NTRS)
Kajino, F.; Yamamoto, T.; Sakata, M.; Yamamoto, Y.; Sato, H.; Ebizuka, N.; Ebisuzaki, T.; Uehara, Y.; Ohmori, H.; Kawasaki, Y.;
2007-01-01
JEM-EUSO with a large and wide-angle telescope mounted on the International Space Station (ISS) has been planned as a space mission to explore extremes of the universe through the investigation of extreme energy cosmic rays by detecting photons which accompany air showers developed in the earth's atmosphere. JEM-EUSO will be launched by Japanese H-II Transfer Vehicle (HTV) and mounted at the Exposed Facility of Japanese Experiment Module (JEM/EF) of the ISS in the second phase of utilization plan. The telescope consists of high transmittance optical Fresnel lenses with a diameter of 2.5m, 200k channels of multi anode-photomultiplier tubes, focal surface front-end, readout, trigger and system electronics. An infrared camera and a LIDAR system will be also used to monitor the earth's atmosphere.
NASA Astrophysics Data System (ADS)
El Abed, A.; Gaudin, E.; Darriet, J.; Whangbo, M.-H.
2002-02-01
Magnetic susceptibility measurements were carried out for two hexagonal perovskite-type oxides Sr1+x(Mn1-xNix)O3 with slightly different compositions (i.e., x={1}/{3} and 0.324). A significant difference in the susceptibilities of the two phases demonstrates the need to control phase compositions accurately. Sr4/3(Mn2/3Ni1/3)O3 consists of two spin sublattices, i.e., the Mn4+ and the Ni2+ ion sublattices. Spin dimer analysis was carried out to examine the relative strengths in the spin exchange interactions of the Mn4+ ion sublattice. The temperature dependence of the magnetic susceptibility of Sr4/3(Mn2/3Ni1/3)O3 was found consistent with a picture in which the Mn4+ ion sublattice has weakly interacting antiferromagnetically coupled (Mn4+)2 dimers, the Ni2+ ion sublattice acts as a paramagnetic system, and the two sublattices are nearly independent.
Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M
2014-06-01
Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.
Structural and dielectric behaviors of Bi4Ti3O12 - lyotropic liquid crystalline nanocolloids
NASA Astrophysics Data System (ADS)
Shukla, Ravi K.; Raina, K. K.
2018-03-01
We investigated the structural and dielectric dynamics of nanocolloids comprising lyotropic liquid crystals and bismuth titanate (Bi4Ti3O12) spherical nanoparticles (≈16-18 nm) of varying concentration 0.05 and 0.1 wt%. The lyotropic liquid crystalline mixture was prepared by a binary mixture of cetylpyridinuium chloride and ethylene glycol mixed in 5:95 wt% ratio. Binary lyotropic mixture exhibited hexagonal lyotropic phase. Structural and textural characterizations of nanocolloids infer that the nanoparticles were homogeneously dispersed in the liquid crystalline matrix and did not perturb the hexagonal ordering of the lyotropic phase. The dielectric constant and dielectric strength were found to be increased with the rise in the Bi4Ti3O12 nanoparticles concertation in the lyotropic matrix. A significant increase of one order was observed in the ac conductivity of colloidal systems as compared to the non-doped lyotropic liquid crystal. Relaxation parameters of the non-doped lyotropic liquid crystal and colloidal systems were computed and correlated with other parameters.
Spherical boron nitride particles and method for preparing them
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2003-11-25
Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.
Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12
NASA Astrophysics Data System (ADS)
Suzuki, Takashi; Mizuno, Takuyou; Takezawa, Kohki; Kamikawa, Shuhei; Andreev, Alexander V.; Gorbunov, Denis I.; Henriques, Margarida S.; Ishii, Isao
2018-05-01
The distorted kagome-lattice compound Nd3Ru4Al12 has the hexagonal structure. This compound is reported as a ferromagnet in which spins are aligned along the c-axis with the Curie temperature TC = 39 K . The nature of localized f-electrons is expected in Nd3Ru4Al12, and magnetic anisotropy can be attributed to a crystal electric field (CEF) effect. We performed ultrasonic measurements on a Nd3Ru4Al12 single-crystalline sample in order to investigate the phase transition at TC and the CEF effect. All longitudinal and transverse elastic moduli increase monotonically with decreasing temperature, and no clear elastic softening due to a quadrupole interaction is detected under the hexagonal CEF. This result is in contrast to an isomorphic compound Dy3Ru4Al12 with a remarkable elastic softening of the transverse modulus C44. At the ferromagnetic phase transition, the moduli show obvious elastic anomalies, suggesting characteristic couplings between a strain and a magnetic order parameter.
NASA Astrophysics Data System (ADS)
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
2017-01-01
The atomic volume of rare earth metal dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 and 7 K in a diamond anvil cell using angle dispersive X-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close-packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (TN) that changes rapidly with increasing pressure. Our experimental measurement shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature TN at all pressures up to 35 GPa.
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
Reichardt, J; Hess, M; Macke, A
2000-04-20
Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.
Iron Oxides of Mars: Evidence for Contemporary Weathering
NASA Technical Reports Server (NTRS)
Huguenin, R. L.
1985-01-01
Reflectance spectra of Mars were analyzed using a multiple high order derivative spectroscopy technique. Among the results of the analysis was the presence of suites of bands in each of the spectra that can be attributed to Fe(3e) phases. Several of the spectra contained bands that are very close to the band positions in the laboratory spectra of goethite, an hexagonal hydrated ferric oxide. Spectra of other areas showed absorption bands that were within 3% of the positions for hematite, and hexagonal close packed unhydrated Fe203. Remaining areas showed bands that are intermediate in position to the goethite and hematite bands, suggesting that there may be mixtures of goethite and hematite, and/or intermediate (partially dehydrated goethite) phases present in those areas. Both bright areas and dark areas showed suites of goethite bands and hematite bands, and there does not therefore appear to be a correlation with albedo. The areas that showed the goethite bands are, however, within zones of ongoing or historically frequent dust cloud activity, and the areas with the hematite bands were outside of the zones of frequent dust cloud activity. This suggests the possiblility that the more hydrated phase may occur within a mobile dust component.
Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong
2015-03-01
As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glasss transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder x ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structure transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
Influence of ibuprofen on phospholipid membranes
NASA Astrophysics Data System (ADS)
Jaksch, Sebastian; Lipfert, Frederik; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Fischer, Stefan F.; Nickel, Bert
2015-02-01
A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α -phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.
Magnetic phase boundaries of CsMnF3: XY-to-Ising crossover and the virtual bicritical point
NASA Astrophysics Data System (ADS)
Shapira, Y.; Oliveira, N. F., Jr.; Chang, T. S.
1980-02-01
The ordering temperature Tc of the easy-plane hexagonal antiferromagnet CsMnF3 was measured as a function of magnetic field H, up to 120 kOe. Tc was determined from the thermal expansion anomaly at constant H. At H=0, TN≡Tc(0)=51.4 K. When H--> is in the hexagonal plane, the boundary Tc(H) is bow shaped: with increasing H, Tc first increases, then passes through a maximum, and later decreases. The maximum Tc is ~37 mK above TN, and it occurs at H≅29.5 kOe. The bow-shaped phase boundary is attributed to the XY-to-Ising crossover which is induced by the magnetic field, as discussed by Fisher, Nelson, and Kosterlitz. Fits to the phase boundary Tc(H) give a crossover exponent φ=1.185+/-0.03 for one sample and φ=1.184+/-0.025 for another, compared to the theoretical value φ(n=2)=1.175+/-0.015. When H--> is perpendicular to the hexagonal plane, Tc decreases monotonically with increasing H, but the decrease is not in accordance with mean-field theory, which predicts a decrease proportional to H2. The deviation from mean-field behavior is attributed to a virtual bicritical point (VBP) with Heisenberg symmetry, which exists mathematically at a negative value of H2. Although the VBP cannot be observed directly, it affects the behavior in the observable region of H2>=0. Physically, a magnetic field applied perpendicular to the easy plane enhances the Heisenberg-to-XY symmetry breaking, which at H=0 is solely due to the weak easy-plane uniaxial anisotropy. The enhanced symmetry breaking causes a non-mean-field dependence of Tc on H. An equation derived on this basis gives a good description of the phase boundary Tc(H). This equation contains three adjustable parameters, two of which can also be estimated without recourse to the phase boundary Tc(H). The values for these two parameters obtained from a best fit to Tc(H) agree with the independent estimates.
The quantum phase-transitions of water
NASA Astrophysics Data System (ADS)
Fillaux, François
2017-08-01
It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.
Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Shishun; Zuo, Ruzhong, E-mail: piezolab@hfut.edu.cn; Liu, Yi
2013-03-15
Graphical abstract: Different morphologies are obtained for the electrospun niobium oxide nanofibers with different phase structures. The nanofibers of the two phase structures present different band gap value and the light absorption. Hexagonal phase nanofibers show better photocatalytic activity compared with the orthorhombic nanofibers. Highlights: ► Niobium oxide nanofibers of two phase structures were fabricated by electrospinning. ► Photocatalytic properties of the niobium oxide nanofibers were first explored. ► Nanofibers of different phase structures showed different photocatalytic activities. ► Reasons for the differences in the photocatalysis were carefully discussed. - Abstract: Niobium oxide (Nb{sub 2}O{sub 5}) nanofibers have been synthesizedmore » by sol–gel based electrospinning technique. Pure hexagonal phase (H-Nb{sub 2}O{sub 5}) and orthorhombic phase (O-Nb{sub 2}O{sub 5}) nanofibers were obtained by thermally annealing the electrospun Nb{sub 2}O{sub 5}/polyvinylpyrrolidone composite fibers in air at 500 °C and 700 °C, respectively. The fibers were characterized using the X-ray diffraction, scanning electron microscopy, specific surface area analyzer and UV–vis diffuse reflectance spectroscopy. Photocatalytic activities of the obtained nanofibers were evaluated depending on the degradation of methyl orange. The results indicate that the heat-treatment temperature, the crystalline structure and the morphology affected the physical and chemical properties of the as-prepared Nb{sub 2}O{sub 5} nanofibers. The H-Nb{sub 2}O{sub 5} nanofibers obtained at lower temperature showed better potential for the application as a promising photocatalyst.« less
Structure-property relationship of cast Ti-Nb alloys.
Lee, C M; Ju, C P; Chern Lin, J H
2002-04-01
The present work is a study of the microstructure, mechanical properties and corrosion behaviour of a series of binary Ti-Nb alloys with Nb contents up to 35 wt%, with emphasis placed on the structure-property relationship of the alloys. The results indicate that crystal structure and morphology of the Ti-Nb alloys are sensitive to the Nb content. The cast c.p. Ti has a hexagonal alpha phase with a lath type morphology. The alloys containing 15 wt% or less Nb are dominated by a hexagonal alpha' phase with an acicular, martensitic structure. When containing 17.5-25 wt% Nb, the alloys are primarily comprised of an orthorhombic alpha" phase. With 27.5 wt% Nb, metastable beta phase starts to be retained. With Nb contents higher than 30 wt%, the equi-axed beta phase is almost entirely retained. Small amounts of omega phase are detected in alloys containing 27.5 and 30 wt% Nb. Among all present alloys, Ti-10Nb and Ti-27.5Nb exhibit the highest strengths, while the alpha"-dominated (17.5 and 20Nb) and beta-dominated (> 30Nb) alloys have the lowest moduli. All Ti-Nb alloys show excellent corrosion resistance in Hank's solution at 37 degrees C. From the present data, the microhardness, bending strength and modulus of the various phases in Ti-Nb alloys are compared and tentatively summarized as follows: Microhardness: omega > alpha' > alpha" > beta > alpha (c.p. Ti) Bending strength: omega > alpha' > alpha" > beta > alpha (c.p. Ti) Bending modulus: omega > alpha (c.p. Ti) > alpha' > alpha" > beta
He, Meng; Huang, Peng; Zhang, Chunlei; Ma, Jiebing; He, Rong; Cui, Daxiang
2012-05-07
Herein, we introduce a facile, user- and environmentally friendly (n-octanol-induced) oleic acid (OA)/ionic liquid (IL) two-phase system for the phase- and size-controllable synthesis of water-soluble hexagonal rare earth (RE = La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)) and n-octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n-octanol-induced) OA/IL two-phase system, the formation of the RE fluoride nanocrystals, and the distinctive size- and morphology-controlling capacity of the system are presented. BmimPF(6) is versatile in term of crystal-phase manipulation, size and shape maintenance, and providing water solubility in a one-step reaction. The luminescent properties of Er(3+)-, Ho(3+)-, and Tm(3+)-doped LaF(3), NaGdF(4), and NaYF(4) nanocrystals were also studied. It is worth noting that the as-prepared products can be directly dispersed in water due to the hydrophilic property of Bmim(+) (cationic part of the IL) as a capping agent. This advantageous feature has made the IL-capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF(4):Yb,Er nanocrystals before and after silica coating was conducted for further biological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physical properties of the ionized gas and brightness distribution in NGC4736
NASA Astrophysics Data System (ADS)
Rodrigues, I.; Dottori, H.; Cepa, J.; Vilchez, J.
1998-03-01
In this work we study the galaxy NGC4736, using narrow band interference filters imaging centered at the emission lines {Oii} {3727+3729}, Hβ, {Oiii} {5007}, Hα, {Sii} {6716+6730} and {Siii} {9070} and nearby continua. We have obtained sizes, positions, emission line absolute fluxes, and continua intensities for 90 Hii regions, mainly distributed in a ring-like structure of 3.2kpc in diameter. The Hα luminosities are in the range 37.3 <= log L_Hα <= 39.4 ergs(-1) . The Hii regions size distribution presents a characteristic diameter D_0 = 115pc and verifies the relation log (L_Hα ) ~D(3) . The temperature of the ionizing sources and the metallicity of the Hii regions are respectively in the ranges 3.410(4) <~T_⋆ <~ 4.010(4) K and 8.5 <~12 + log (O/H) <~9.3. The masses of the ionizing clusters are in the range 510(3) <~M_T/M_sun <~210(5) . The continua radial surface brightness distribution is better fitted by the superposition of a de Vaucouleurs', a thin and a thick exponential disk laws. The monochromatic colors show that outside the star forming ring the disk presents a younger stellar population than inside it. Tables 3 and 4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
The first CO+ image: I. Probing the HI/H2 layer around the ultracompact HII region Mon R2
Treviño-Morales, S. P.; Fuente, A.; Sánchez-Monge, Á.; Pilleri, P.; Goicoechea, J. R.; Ossenkopf-Okada, V.; Roueff, E.; Rizzo, J. R.; Gerin, M.; Berné, O.; Cernicharo, J.; Gónzalez-García, M.; Kramer, C.; García-Burillo, S.; Pety, J.
2016-01-01
The CO+ reactive ion is thought to be a tracer of the boundary between a HII region and the hot molecular gas. In this study, we present the spatial distribution of the CO+ rotational emission toward the Mon R2 star-forming region. The CO+ emission presents a clumpy ring-like morphology, arising from a narrow dense layer around the HII region. We compare the CO+ distribution with other species present in photon-dominated regions (PDR), such as [CII] 158 µm, H2 S(3) rotational line at 9.3 µm, polycyclic aromatic hydrocarbons (PAHs) and HCO+. We find that the CO+ emission is spatially coincident with the PAHs and [CII] emission. This confirms that the CO+ emission arises from a narrow dense layer of the HI/H2 interface. We have determined the CO+ fractional abundance, relative to C+ toward three positions. The abundances range from 0.1 to 1.9 ×10−10 and are in good agreement with previous chemical model, which predicts that the production of CO+ in PDRs only occurs in dense regions with high UV fields. The CO+ linewidth is larger than those found in molecular gas tracers, and their central velocity are blue-shifted with respect to the molecular gas velocity. We interpret this as a hint that the CO+ is probing photo-evaporating clump surfaces. PMID:27721515
Crystal structure of solid molecular hydrogen under high pressures
NASA Astrophysics Data System (ADS)
Cui, T.; Ma, Y.; Zou, G.
2002-11-01
In an effort to achieve a comprehensive understanding of the structure of dense H2, we have performed path-integral Monte Carlo simulations for three combinations of pressures and temperatures corresponding to three phases of solid hydrogen. Our results suggest three kinds of distribution of molecules: orientationally disordered hexagonal close packed (hcp), orientationally ordered hcp with Pa3-type local orientation order and orientationally ordered orthorhombic structure of Cmca symmetry, for the three phases.
Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.
Tang, Yuanzhi; Webb, Samuel M; Estes, Emily R; Hansel, Colleen M
2014-09-20
Manganese (Mn) oxides, which are generally considered biogenic in origin within natural systems, are the only oxidants of Cr(iii) under typical environmental conditions. Yet the influence of Mn biooxide mineral structural evolution on Cr(iii) oxidation under varying geochemical conditions is unknown. In this study we examined the role of light, organic carbon, pH, and the structure of biogenic Mn oxides on Cr(iii) oxidation. Aging of Mn oxides produced by a marine bacterium within the widespread Roseobacter clade resulted in structural ripening from a colloidal hexagonal to a particulate triclinic birnessite phase. The structurally diverse Mn oxides were then reacted with aqueous Cr(iii) within artificial seawater in the presence or absence of carbon and light. Here we found that Cr(iii) oxidation capacity was highest at near neutral pH and in the combined presence of carbon and light. Mn oxide ripening from a hexagonal to a triclinic birnessite phase led to decreased Cr(iii) oxidation in the presence of carbon and light, whereas no change in reactivity was observed in the absence of carbon and/or in the dark. As only minimal Cr(iii) oxidation was observed in the absence of Mn oxides, these results strongly point to coupled Mn oxide- and photo-induced generation of organic and/or oxygen radicals involved in Cr(iii) oxidation. Based on Mn oxide concentration and structural trends, we postulate that Mn(ii) produced from the oxidation of Cr(iii) by the primary Mn oxide is recycled in the presence of organics and light conditions, (re)generating secondary hexagonal birnessite and thereby allowing for continuous oxidation of Cr(iii). In the absence of this Mn oxide regeneration, Cr(iii) induced structural ripening of the hexagonal birnessite precludes further Cr(iii) oxidation. These results highlight the complexity of reactions involved in Mn oxide mediated Cr(iii) oxidation and suggest that photochemical carbon reactions are requisite for sustained Cr(iii) oxidation and persistence of reactive Mn oxides.
On domain symmetry and its use in homogenization
Barbarosie, Cristian A.; Tortorelli, Daniel A.; Watts, Seth E.
2017-03-08
The present study focuses on solving partial differential equations in domains exhibiting symmetries and periodic boundary conditions for the purpose of homogenization. We show in a systematic manner how the symmetry can be exploited to significantly reduce the complexity of the problem and the computational burden. This is especially relevant in inverse problems, when one needs to solve the partial differential equation (the primal problem) many times in an optimization algorithm. The main motivation of our study is inverse homogenization used to design architected composite materials with novel properties which are being fabricated at ever increasing rates thanks to recentmore » advances in additive manufacturing. For example, one may optimize the morphology of a two-phase composite unit cell to achieve isotropic homogenized properties with maximal bulk modulus and minimal Poisson ratio. Typically, the isotropy is enforced by applying constraints to the optimization problem. However, in two dimensions, one can alternatively optimize the morphology of an equilateral triangle and then rotate and reflect the triangle to form a space filling D 3 symmetric hexagonal unit cell that necessarily exhibits isotropic homogenized properties. One can further use this D 3 symmetry to reduce the computational expense by performing the “unit strain” periodic boundary condition simulations on the single triangle symmetry sector rather than the six fold larger hexagon. In this paper we use group representation theory to derive the necessary periodic boundary conditions on the symmetry sectors of unit cells. The developments are done in a general setting, and specialized to the two-dimensional dihedral symmetries of the abelian D 2, i.e. orthotropic, square unit cell and nonabelian D 3, i.e. trigonal, hexagon unit cell. We then demonstrate how this theory can be applied by evaluating the homogenized properties of a two-phase planar composite over the triangle symmetry sector of a D 3 symmetric hexagonal unit cell.« less
Three-dimensional phase-field simulations of directional solidification
NASA Astrophysics Data System (ADS)
Plapp, Mathis
2007-05-01
The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.
Study of vibrational modes and specific heat of wurtzite phase of BN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Daljit, E-mail: daljit.jt@gmail.com; Sinha, M. M.
2016-05-06
In these days of nanotechnology the materials like BN is of utmost importance as in hexagonal phase it is among hardest materials. The phonon mode study of the materials is most important factor to find structural and thermodynamcal properties. To study the phonons de launey angular force (DAF) constant model is best suited as it involves many particle interactions. Therefore in this presentation we have studied the lattice dynamical properties and specific heat of BN in wurtzite phase using DAF model. The obtained results are in excellent agreement with existing results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.
High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.
Equation of state and phase transformations study of Nd at ultra-high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Smith, G.S.; Weir, S.
1991-10-01
Neodymium was investigated to 96.0 GPa pressure in a diamond-anvil ell at room temperature. The observed structural sequence as a function of pressure is dhcp-fcc- six layered'' structure. In the diffraction pattern hexagonal doublets; notably 102, 006 and 100, 108; appear as single reflection when the c/a ratio is 4.899. However, when cc/a approaches 4.7, the splitting is clear. So far in this study, no monoclinic phase or tetragonal phase were observed. 1 fig., 18 refs.
NASA Astrophysics Data System (ADS)
Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.
2018-01-01
A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.
VizieR Online Data Catalog: Multiwavelength study of HII region S311 (Yadav+, 2016)
NASA Astrophysics Data System (ADS)
Yadav, R. K.; Pandey, A. K.; Sharma, S.; Ojha, D. K.; Samal, M. R.; Mallick, K. K.; Jose, J.; Ogura, K.; Richichi, A.; Irawati, P.; Kobayashi, N.; Eswaraiah, C.
2017-11-01
We observed the HII region S311 (centred on RA(2000)=07:52:24, DE(2000)=-26:24:58.40) in NIR broad-bands J (1.25um), H (1.63um) and Ks (2.14um) on 2010 March 3 using the Infrared Side Port Imager (ISPI) camera mounted on the CTIO Blanco 4-m telescope. We consider only those sources having error <0.1mag in all three bands, resulting in a final catalogue of 2671 point sources. The Spitzer-IRAC observations for the S311 region (PID 20726) were made on 2006 May 3 using the 3.6, 4.5, 5.8 and 8.0um bands and were downloaded from the Spitzer heritage archive (SHA). (4 data files).
El medio interestelar en los alrededores de la region HII Sh2-183
NASA Astrophysics Data System (ADS)
Cichowolski, S.; Cappa, C. E.; Blanco, A.; Eppens, L.; Ertini, K.; Leiva, M. M.
2017-10-01
We present a multiwavelength study of the HII region Sh2-183, located at (,) = (123.3,+3.0) at a distance of 7.0 1.5 kpc from the Sun. Based on the radio continuum data we estimated the amount of ionized gas, the electronic density, and the number of ionizing photons needed to keep the region ionized, which is important since the star/s responsible of the region was/were not detected yet. On the other hand, based on IRAS data we have analyzed the dust temperature and distribution. The Hi line data allowed the detection of a shell-like structure surrounding the ionized gas and the CO data revealed the presence of 6 molecular clouds probably related to Sh2-183, which harbor several young stellar object candidates.
Synthesis, analysis and processing of novel materials in the yttrium oxide-aluminum oxide system
NASA Astrophysics Data System (ADS)
Marchal, Julien Claudius
In the current work, liquid feed flame spray pyrolysis (LF-FSP) was used to create three novel nanopowders in the Y2O3-Al 2O3 system: alpha-Al2O3, YAG (garnet Y3Al5O12) and hexagonal Y3Al 5O12. For example, LF-FSP combustion of metalloorganic yttrium and aluminum precursors in a 3/5 ratio forms hexagonal Y3Al5O 12, a newly discovered crystalline phase detailed in this work. The resulting 15-35 nm average particle size, single crystal nanopowders were characterized by TGA-DTA, XRD, HR-TEM, electron diffraction and FTIR. The data was used to establish a model for the crystal structure of this new phase (hexagonal, with crystal parameter of a = 0.736 nm, c = 1.052) consisting of a superlattice of substituted hexagonal YAlO3. YAG has been extensively investigated for its applications as scintillators, phosphors and as a laser host. Fully dispersible, unaggregated single crystal YAG nanopowders with average particle sizes of 35-50 nm were obtained from hexagonal Y3Al5O12 after annealing at 850°C-1200°C (for 2h-8d). The resulting YAG nanopowder was processed into green bodies using cold isostatic pressing after adding binders. 99%+ dense monoliths were obtained after sintering at 1400°C in vacuum (6-8 h), while maintaining grain sizes < 500 nm. The ability to sinter while keeping sub-micron grains differs from present techniques (where translucency is obtained through exaggerated grain growth to 5-10 microns) reported in the literature for sintering polycrystalline YAG, and is the first step for improving polycrystalline YAG laser host optical properties. LF-FSP processing of transition Al2O3 nanopowders converts them to single crystal alpha-Al2O3 nanopowders, previously thought impossible to obtain. The alpha-Al2O 3 nanopowders thus obtained, consist of unaggregated 30-40 nm single particles. These nanopowders were characterized by XRD, HR-TEM, SEM, DLS, FTIR. Green bodies of alpha-Al2O3 nanopowders were sintered to 99% density without sintering aids at 1400°C (6-8 h). After HIPing at 1400°C and 138 MPa, the pellets exhibited some transparency. LF-FSP thus allows synthesis of large quantities of previously unavailable alpha-Al 2O3 nanopowders necessary for developing nanograined alpha-Al 2O3 ceramic monoliths for transparent armors, polycrystalline laser hosts and prosthetic implants. Most importantly, it demonstrates the use of LF-FSP to modify the crystalline phase of nanopowders, without causing aggregation.
The Dissipation Range of Interstellar Turbulence
NASA Astrophysics Data System (ADS)
Spangler, Steven R.; Buffo, J. J.
2013-06-01
Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.
Sheng, Yuewen; Wang, Xiaochen; Fujisawa, Kazunori; Ying, Siqi; Elias, Ana Laura; Lin, Zhong; Xu, Wenshuo; Zhou, Yingqiu; Korsunsky, Alexander M; Bhaskaran, Harish; Terrones, Mauricio; Warner, Jamie H
2017-05-03
We show that hexagonal domains of monolayer tungsten disulfide (WS 2 ) grown by chemical vapor deposition (CVD) with powder precursors can have discrete segmentation in their photoluminescence (PL) emission intensity, forming symmetric patterns with alternating bright and dark regions. Two-dimensional maps of the PL reveal significant reduction within the segments associated with the longest sides of the hexagonal domains. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. Monolayers of WS 2 hexagonal islands transferred to new substrates still exhibit this PL segmentation, ruling out local strain in the regions as the dominant cause. High-power laser irradiation causes preferential degradation of the bright segments by sulfur removal, indicating the presence of a more defective region that is higher in oxidative reactivity. Atomic force microscopy (AFM) images of topography and amplitude modes show uniform thickness of the WS 2 domains and no signs of segmentation. However, AFM phase maps do show the same segmentation of the domain as the PL maps and indicate that it is caused by some kind of structural difference that we could not clearly identify. These results provide important insights into the spatially varying properties of these CVD-grown transition metal dichalcogenide materials, which may be important for their effective implementation in fast photo sensors and optical switches.
NASA Astrophysics Data System (ADS)
Wang, Shubin; Zheng, Yu
2014-02-01
Hexagonal boron nitride (h-BN) coatings with different thickness were prepared on quartz fibers to improve mechanical properties of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite. Scanning electron microscopy (SEM), push-out test and single edge notched beam (SENB) in three point bending test were employed to study morphology, interface shear strength and fracture toughness of the composite. The results showed that h-BN coatings changed the crack growth direction and weaken the interface shear strength efficiently. When the h-BN coating was 308.2 nm, the interface shear strength was about 5.2 MPa, which was about one-quarter of that of the sample without h-BN coatings. After the heating process for obtaining composite, the h-BN nanometer-sized grains would grow up to micron-sized hexagonal grains. Different thickness h-BN coatings had different structure. When the coatings were relatively thin, the hexagonal grains were single layer structure, and when the coatings were thicker, the hexagonal grains were multiple layer structure. This multiple layer interface phase would consume more power of cracks, thus interface shear strength of the composite decreased steadily with the increasing of h-BN coatings thickness. When the coating thickness was 238.8 nm, KIC reaches the peak value 3.8 MPa m1/2, which was more than two times of that of composites without h-BN coatings.
Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.
The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less
Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode
Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.; ...
2017-08-04
The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less
Cohen, D E; Angelico, M; Carey, M C
1990-01-01
Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch-enriched SUVs, in accordance with the metastable phase diagram. These experiments are consistent with the hypothesis that sn-1 palmitoyl L species are subselected for bile, in part, by physical-chemical interactions of intracellular BS concentrations with Ch-poor membranes and that the subsequent evolution of Ch-rich vesicles and Ch-saturated mixed micelles occurs via a transitional hexagonal (rod) phase. These liquid-crystalline states are likely to be transient in Ch-unsaturated biles, but may persist in Ch-supersaturated human biles because of their high Ch contents which retard or inhibit these phase transitions.
NASA Technical Reports Server (NTRS)
Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.; Kleis, Thomas
1995-01-01
It has long been known that low-energy solar energetic particles (SEP's) are partially-ionized. For example, in large, so-called 'gradual' solar energetic particle events, at approximately 1 MeV/nucleon the measured mean ionic charge state, Q, of Fe ions is 14.1 +/- 0.2, corresponding to a plasma temperature of approximately 2 MK in the coronal or solar-wind source material. Recent studies, which have greatly clarified the origin of solar energetic particles and their relation to solar flares, suggest that ions in these SEP events are accelerated not at a flare site, but by shocks propagating through relatively low-density regions in the interplanetary medium. As a result, the partially-ionized states observed at low energies are expected to continue to higher energies. However, up to now there have been no high-energy measurements of ionic charge states to confirm this notion. We report here HIIS observations of Fe-group ions at 50-600 MeV/nucleon, at energies and fluences which cannot be explained by fully-ionized galactic cosmic rays, even in the presence of severe geomagnetic cutoff suppression. Above approximately 200 MeV/nucleon, all features of our data -- fluence, energy spectrum, elemental composition, and arrival directions -- can be explained by the large SEP events of October 1989, provided that the mean ionic charge state at these high energies is comparable to the measured value at approximately 1 MeV/nucleon. By comparing the HIIS observations with measurements in interplanetary space in October 1989, we determine the mean ionic charge state of SEP Fe ions at approximately 200-600 MeV/nucleon to be Q = 13.4 plus or minus 1.0, in good agreement with the observed value at approximately 1 MeV/nucleon. The source of the ions below approximately 200 MeV/nucleon is not yet clear. Partially-ionized ions are less effectively deflected by the Earth's magnetic field than fully-ionized cosmic rays and therefore have greatly enhanced access to low-Earth orbit. Moreover, at the high energies observed in HIIS, these ions can penetrate typical amounts of shielding. We discuss the significance of the HIIS results for estimates of the radiation hazard posed by large SEP events to satellites in low-Earth orbit, including the proposed Space Station orbit. Finally, we comment on previous reports of low-energy below-cutoff Fe-group ions, which some authors have interpreted as evidence for partially-ionized galactic cosmic rays. The LDEF flux levels are much smaller than the corresponding fluxes in these previous reports, implying that the source of these ions has an unusual solar-cycle variation and/or strongly increases with decreasing altitude.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes
NASA Astrophysics Data System (ADS)
O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.
2017-11-01
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.
O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D
2017-11-24
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
NASA Astrophysics Data System (ADS)
Hosokawa, Yuichi; Wada, Kodai; Tanaka, Masaki; Tomita, Koji; Takashiri, Masayuki
2018-02-01
High-purity hexagonal bismuth telluride (Bi2Te3) nanoplates were prepared by a solvothermal synthesis method, followed by the fabrication of nanoplate thin films by the drop-casting technique. The Bi2Te3 nanoplates exhibited a single-crystalline phase with a rhombohedral crystal structure. The nanoplates had a flat surface with edge sizes ranging from 500 to 2000 nm (average size of 1000 nm) and a thickness of less than 50 nm. The resulting Bi2Te3 nanoplate thin films were composed of well-aligned hexagonal nanoplates along the surface direction with an approximate film thickness of 40 µm. To tightly connect the nanoplates together within the thin films, thermal annealing was performed at different temperatures. We found that the thermoelectric properties, especially the Seebeck coefficient, were very sensitive to the annealing temperature. Finally, the optimum annealing temperature was determined to be 250 °C and the Seebeck coefficient and power factor were -300 µV/K and 3.5 µW/(cm·K2), respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podberezskaya, N. V., E-mail: podberez@niic.nsc.ru; Bolotina, N. B., E-mail: nb-bolotina@mail.ru; Komarov, V. Yu., E-mail: komarov-v-y@niic.nsc.ru
Hexagonal YBaCo{sub 4}O{sub 7} crystals (sp. gr. P6{sub 3}mc, a{sub h} = 6.3058(4) Å, c{sub h} = 10.2442(7) Å, Z = 2) are saturated with oxygen to the YBaCo{sub 4}O{sub 8.4} composition and studied by X-ray diffraction (XRD) analysis. The saturation is completed by a structural first-order phase transition to orthorhombic crystals (sp. gr. Pbc2{sub 1}, a{sub o} = 31.8419(2) Å, b{sub o} = 10.9239(5) Å, c{sub o} = 10.0960(5) Å, Z = 20). The connection of two lattices is expressed in terms of the action of matrix (500/120/001) on the hexagonal basis. Five structural fragments of the same typemore » but with different degrees of order alternate along the long axis of the oxygen-saturated orthorhombic structure. The XRD data on single crystals differ from the results obtained by other researchers on ceramic samples; possible causes of these differences are discussed.« less
Thermodynamic Behavior of Nano-sized Gold Clusters on the (001) Surface
NASA Technical Reports Server (NTRS)
Paik, Sun M.; Yoo, Sung M.; Namkung, Min; Wincheski, Russell A.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We have studied thermal expansion of the surface layers of the hexagonally reconstructed Au (001) surface using a classical Molecular Dynamics (MD) simulation technique with an Embedded Atomic Method (EAM) type many-body potential. We find that the top-most hexagonal layer contracts as temperature increases, whereas the second layer expands or contracts depending on the system size. The magnitude of expansion coefficient of the top layer is much larger than that of the other layers. The calculated thermal expansion coefficients of the top-most layer are about -4.93 x 10(exp -5)Angstroms/Kelvin for the (262 x 227)Angstrom cluster and -3.05 x 10(exp -5)Angstroms/Kelvin for (101 x 87)Angstrom cluster. The Fast Fourier Transform (FFT) image of the atomic density shows that there exists a rotated domain of the top-most hexagonal cluster with rotation angle close to 1 degree at temperature T less than 1000Kelvin. As the temperature increases this domain undergoes a surface orientational phase transition. These predictions are in good agreement with previous phenomenological theories and experimental studies.
Crystal structure, magnetic properties and advances in hexaferrites: A brief review
NASA Astrophysics Data System (ADS)
Jotania, Rajshree
2014-10-01
Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.
Role of stacking disorder in ice nucleation
NASA Astrophysics Data System (ADS)
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria
2017-11-01
The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Role of stacking disorder in ice nucleation.
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria
2017-11-08
The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Consolidation of cubic and hexagonal boron nitride composites
Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; ...
2015-12-08
When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less
NASA Astrophysics Data System (ADS)
Shu, Shiwen; Yu, Dabin; Wang, Yan; Wang, Feng; Wang, Zirong; Zhong, Wu
2010-10-01
This paper reports on the thermal-induced performance of hexagonal metastable In 2O 3 nanocrystals involving in phase transition and assembly, with particular emphasis on the assembly for the preparation of functional materials. For In 2O 3 nanocrystals, the metastable phase was found to be thermally unstable and transform to cubic phase when temperature was higher than 600 °C, accompanied by assembly as well as evolution of optical properties, but the two polymorphs coexisted at the temperature ranging from 600 to 900 °C, during which the content of product phase and crystal size gradually increased upon increasing temperature. The assembly of In 2O 3 nanocrystals can be developed to fabricate In 2O 3 functional materials, such as various ceramic materials, or even desired nano- or micro-structures, by using metastable In 2O 3 nanocrystals as precursors or building blocks. The electrical resistivity of In 2O 3 conductive film fabricated by a hot-pressing route was as low as 3.72×10 -3 Ω cm, close to that of In 2O 3 single crystal, which is important for In 2O 3 that is always used as conductive materials. The findings should be of importance for both the wide applications of In 2O 3 in optical and electronic devices and theoretical investigations on crystal structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.
InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD)more » and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.« less
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.
Abraham, Alex; Chatterji, Apratim
2018-04-21
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.
2017-10-27
Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the numbermore » of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.« less
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions
NASA Astrophysics Data System (ADS)
Abraham, Alex; Chatterji, Apratim
2018-04-01
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces
NASA Astrophysics Data System (ADS)
Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica
2007-06-01
We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, W.T.A.; Dussack, L.L.; Jacobson, A.J.
The hydrothermal syntheses and crystal structures of (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO{sub 6} octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH{sub 4}{sup +} or Cs{sup +} cations provide charge balance. The full H-bonding scheme in (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} has been elucidated from Rietveld refinement againstmore » neutron powder diffraction data. The WO{sub 6} octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO{sub 6} unit in both these phases. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural with their molybdenum(VI)-containing analogues (NH{sub 4}){sub 2}(MoO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2} (MoO{sub 3}){sub 3}SeO{sub 3}. Crystal data: (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 858.58, hexagonal, space group P6{sub 3} (No. 173), a = 7.2291(2) {angstrom}, c = 12.1486(3) {angstrom}, V = 549.82(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 1.81%, and R{sub wp} = 2.29% (2938 neutron powder data). Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 1088.31, hexagonal, space group P6{sub 3} (no. 173), a = 7.2615(2) {angstrom}, c = 12.5426(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 4.84%, and R{sub wp} = 5.98% (2588 neutron powder data).« less
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui
2016-04-01
We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.
VLBI observations of 6 GHz OH masers in three ultra-compact H Ii regions
NASA Astrophysics Data System (ADS)
Desmurs, J. F.; Baudry, A.
1998-12-01
Following our successful analysis of VLBI observations of the (2) Pi_ {3/ 2}, J={5/ 2}, F=3-3 and F=2-2 excited OH emission at 6035 and 6031 MHz in W3(OH), we have analyzed the same transitions in three other ultra-compact HII regions, M17, ON1, and W51. The restoring beams were in the range 6 to 30 milliarc sec. The F=3-3 and 2-2 hyperfine transitions of OH were both mapped in ON1. Seven 6035 MHz LCP or RCP maser components were identified in ON1. They are distributed over a region whose diameter is similar to that of the compact HII region, namely ~ 0.4 - 0.5 arc sec. In contrast with the F=3-3 line emission, the F=2-2 transition at 6031 MHz is nearly an order of magnitude weaker than the peak 6035 MHz emission. In M17, we observed fringes only in the 6035 MHz line. The detected OH components appear to be projected on to the compact HII region. We report also on weak VLBI detection of the 6035 MHz emission from W51. This emission seems to be located between two active ultra-compact HII regions in a complex area which deserves further investigation. The 5 cm OH minimum brightness temperatures range from about 3 10(7) K in W51 to 8 10(9) K in ON1. Variability of the 6035 or 6031 MHz emission is well established and suggests that the 5 cm OH masers are not fully saturated. The high spectral and spatial resolutions achieved in this work allowed us to identify Zeeman pairs and hence to derive the magnetic field strength. In ON1 and W51 the field lies in the range 4 to 6 mG with a trend for higher field at 6031 MHz than at 6035 MHz in ON1. In M17 no Zeeman splitting was observed and the magnetic field appears to be weaker than 1 mG.
Growth and phase transformations of Ir on Ge(111)
NASA Astrophysics Data System (ADS)
Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.
2017-12-01
The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.
Mantha, Sriteja; McDaniel, Jesse G.; Perroni, Dominic V.; ...
2016-12-27
Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water concentration-dependent lyotropic liquid crystal (LLC) morphologies that are sensitive to surfactant molecular structure, and na- ture of the headgroups and counterions. Recently, an interesting dependence of the aqueous phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker sur- factants. In this work, we investigate this “odd/even effect” using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, 7 non-terminal carbon atomsmore » in the tails, and either 3, 4, 5, or 6 carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76 respectively). We find that the relative electrostatic repulsion be- tween headgroups in the different morphologies is correlated with qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup ori- entations of Na-74 and Na-76 compared to Na-73 and Na-75 surfactants lead to differences in linker-linker packing, and long-range headgroup/headgroup electrostatic repulsion, which affects the delicate electrostatic balance between hexagonal and gyroid phases. Finally, much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.« less
In-situ X-ray diffraction study of phase transformations in the Am-O system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebreton, Florent, E-mail: florent.lebreton@cea.fr; GEMH, ENSCI, 87065 Limoges; Belin, Renaud C., E-mail: renaud.belin@cea.fr
2012-12-15
In the frame of minor actinides recycling, americium can be transmuted by adding it in UO{sub 2} or (U, Pu)O{sub 2} fuels. Americium oxides exhibiting a higher oxygen potential than U or Pu oxides, its addition alters the fuel properties. To comprehend its influence, a thorough knowledge of the Am-O phase equilibria diagram and of thermal expansion behavior is of main interest. Due to americium scarcity and high radiotoxicity, few experimental reports on this topic are available. Here we present in-situ high-temperature XRD results on the reduction from AmO{sub 2} to Am{sub 2}O{sub 3}. We show that fluorite (Fm-3m) AmO{submore » 2} is reduced to cubic (Ia-3) C Prime -type Am{sub 2}O{sub 3+{delta}}, and then into hexagonal (P6{sub 3}/mmc) A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. We also demonstrate the transitional existence of the monoclinic (C2/m) B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion behavior of the hexagonal Am{sub 2}O{sub 3} between room temperature and 1840 K. - Graphical abstract: Americium dioxide was in situ studied by high-temperature X-ray diffraction. First, fluorite AmO{sub 2} is reduced to cubic C Prime -type Am{sub 2}O{sub 3+{delta}} and then transforms into hexagonal A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. Then, we demonstrate the transitional existence of monoclinic B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion of A-type Am{sub 2}O{sub 3} between room temperature and 1840 K. This work may contribute to a better understanding of Am oxide behavior. Highlights: Black-Right-Pointing-Pointer We realize an in-situ high-temperature X-ray diffraction study on an AmO{sub 2} sample. Black-Right-Pointing-Pointer Fluorite AmO{sub 2} transforms to cubic Am{sub 2}O{sub 3+{delta}} and then to hexagonal Am{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Little-known monoclinic Am{sub 2}O{sub 3} is observed during the cubic-to-hexagonal transition. Black-Right-Pointing-Pointer Lattice parameter thermal expansion of hexagonal Am{sub 2}O{sub 3} is given up to 1840 K. Black-Right-Pointing-Pointer We give additional data on AmO{sub 2} lattice parameter expansion under self-irradiation.« less
In search of the elusive IrB 2: Can mechanochemistry help?
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2015-10-20
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
In search of the elusive IrB 2: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
Structural phase transition at high temperatures in solid molecular hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Cui, T.; Takada, Y.; Cui, Q.; Ma, Y.; Zou, G.
2001-07-01
We study the effect of temperature up to 1000 K on the structure of dense molecular para-hydrogen (p-H2) and ortho-deuterium (o-D2), using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.
Model forecasting of phase composition of electrolytic alloys Co-Ni-Mn (part 1)
NASA Astrophysics Data System (ADS)
Schmidt, V. V.; Zhikhareva, I. G.
2018-03-01
With the help of four criteria for phase formation, a model forecasting of the phase composition of electrolytic alloy Co-Ni-Mn was carried out; the expected phases were calculated. The boundaries of the chemical content of the metal-solvent (Co) in these phases are determined, depending on the ratio of metal ions in the electrolyte of deposition. Model forecasting of the phase composition of Co-Ni-Mn alloys makes it possible to predict the type and number of Co phases (hexagonal close-packed - HCP-α-Co, face-centered cubic - FCC-β-Co) depending on the mole fraction of the solvent metal (Co). In the first approximation, the forecast allows one to determine the phase and chemical composition of the coating, which corresponds to the specified operational properties.
Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.
2000-04-03
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less
NASA Astrophysics Data System (ADS)
Maciel, W. J.; Costa, R. D. D.; Cavichia, O.
2018-01-01
Photoionized nebulae, comprising HII regions and planetary nebulae, are excellent laboratories to investigate the nucleosynthesis and chemical evolution of several elements in the Galaxy and other galaxies of the Local Group. Our purpose in this investigation is threefold: (i) to compare the abundances of HII regions and planetary nebulae in each system in order to investigate the differences derived from the age and origin of these objects, (ii) to compare the chemical evolution in different systems, such as the Milky Way, the Magellanic Clouds, and other galaxies of the Local Group, and (iii) to investigate to what extent the nucleosynthesis contributions from the progenitor stars affect the observed abundances in planetary nebulae, especially for oxygen and neon, which places constraints on the amount of these elements that can be produced by intermediate mass stars.
Japanese Cargo Ship Launches to ISS on This Week @NASA - August 21, 2015
2015-08-21
On Aug. 19, the On Aug. 19, the Japan Aerospace Exploration Agency launched its “Kounotori” H-II Transfer Vehicle, or HTV-5 from the Tanegashima Space Center to the International Space Station. The unpiloted cargo spacecraft is loaded with almost five tons of supplies and scientific experiments. It will spend about five weeks at the station. Also, National Aviation Day, First Atlantic hurricane of 2015, New hurricane mission, Spotlight on The Martian and more! launched its “Kounotori” H-II Transfer Vehicle, or HTV-5 from the Tanegashima Space Center to the International Space Station. The unpiloted cargo spacecraft is loaded with almost five tons of supplies and scientific experiments. It will spend about five weeks at the station. Also, National Aviation Day, First Atlantic hurricane of 2015, New hurricane mission, Spotlight on The Martian and more!
Perfis de temperatura eletrônica em regiões HII
NASA Astrophysics Data System (ADS)
Copetti, M. V. F.
2003-08-01
As flutuações de temperatura eletrônica em regiões HII, inicialmente propostas para explicar as discrepâncias entre os valores de temperatura obtidos por diferentes métodos, têm sido apontadas como a causa mais provável das enormes diferenças encontradas entre as abundâncias químicas medidas através de linhas excitadas colisionalmente e de linhas de recombinação. Recentemente têm sido reportadas tentativas de detecção e quantificação diretas das flutuações de temperatura eletrônica através de medidas ponto a ponto, obtidas por meio de espectroscopia de fenda longa, das razões de linhas [OIII]l4263/l5007 e [NII]l5755/l6584, principais sensores de temperatura. Neste trabalho, utilizamos o código numérico de fotoionização Cloudy para avaliar a confiabilidade desse procedimento. Concluímos que, para valores de densidade eletrônica e de temperatura efetiva da estrela ionizante típicos das regiões HII, os perfis superficiais de temperatura obtidos via medidas do sensor [OIII]l4263/l5007 são bons traçadores dos gradientes internos de temperatura eletrônica. Já os perfis de temperatura eletrônica medidos por meio da razão [NII]l5755/l6584 não reproduzem os gradientes verdadeiros de temperatura.
Enigmatic Extinction: An Investigation of the 2175Å Extinction Bump in M101
NASA Astrophysics Data System (ADS)
Danowski, Meredith E.; Cook, Timothy; Gordon, Karl D.; Chakrabarti, Supriya; Lawton, Brandon L.; Misselt, Karl A.
2014-06-01
Evidence from studies of starburst galaxies indicates that active formation of high mass stars modifies the UV dust extinction curve as seen by a lack of the characteristic 2175Å bump. For over 45 years, the source of the 2175Å extinction feature has yet to be positively identified. Small aromatic/PAH grains are suggested as a leading contender in dust grain models. The face-on spiral galaxy M101 is an ideal laboratory for the study of dust, with many well-studied HII regions and a steep metallicity and ionization gradient.The Interstellar Medium Absorption Gradient Experiment Rocket (IMAGER) probes the correlation between dust extinction, and the metallicity and radiation environment in M101 at ultraviolet wavelengths. IMAGER simultaneously images M101 in three 400Å-wide bandpasses, measuring the apparent strength of the 2175Å bump and the UV continuum.Combining data from IMAGER with high S/N far- and near- UV observations from the MAMA detectors on the Hubble STIS instrument, we examine the apparent strength of the 2175Å bump in HII regions of M101. With additional infrared data from Spitzer, the DIRTY radiative transfer model, and stellar evolution models, we probe the correlation between the 2175Å feature and the aromatic/PAH features across HII regions of varying metallicity and radiation field hardness. The results of this experiment will directly impact our understanding of the nature of dust and our ability to accurately account for the effects of dust on observations at all redshifts.
High mass star formation in the galaxy
NASA Technical Reports Server (NTRS)
Scoville, N. Z.; Good, J. C.
1987-01-01
The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.
Xiong, W; Zhou, Yunshen; Hou, Wenjia; ...
2015-11-10
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing
2014-09-24
In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.
Parvizi, Paria; Jubeli, Emile; Raju, Liji; Khalique, Nada Abdul; Almeer, Ahmed; Allam, Hebatalla; Manaa, Maryem Al; Larsen, Helge; Nicholson, David; Pungente, Michael D; Fyles, Thomas M
2014-01-30
This study seeks correlations between the molecular structures of cationic and neutral lipids, the lipid phase behavior of the mixed-lipid lipoplexes they form with plasmid DNA, and the transfection efficacy of the lipoplexes. Synthetic cationic pyridinium lipids were co-formulated (1:1) with the cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and these lipids were co-formulated (3:2) with the neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol. All lipoplex formulations exhibited plasmid DNA binding and a level of protection from DNase I degradation. Composition-dependent transfection (beta-galactosidase and GFP) and cytotoxicity was observed in Chinese hamster ovarian-K1 cells. The most active formulations containing the pyridinium lipids were less cytotoxic but of comparable activity to a Lipofectamine 2000™ control. Molecular structure parameters and partition coefficients were calculated for all lipids using fragment additive methods. The derived shape parameter values correctly correlated with observed hexagonal lipid phase behavior of lipoplexes as derived from small-angle X-ray scattering experiments. A transfection index applicable to hexagonal phase lipoplexes derived from calculated parameters of the lipid mixture (partition coefficient, shape parameter, lipoplex packing) produced a direct correlation with transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1999-08-01
Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.
Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing
NASA Astrophysics Data System (ADS)
Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan
2015-03-01
We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.
Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao
2018-01-09
Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.
Lee, Yih Hong; Lee, Hiang Kwee; Ho, Jonathan Yong Chew; Yang, Yijie; Ling, Xing Yi
2016-08-15
Current substrate-less SERS platforms are limited to uncontrolled aggregation of plasmonic nanoparticles or quasi-crystalline arrays of spherical nanoparticles, with no study on how the lattice structures formed by nanoparticle self-assembly affect their detection capabilities. Here, we organize Ag octahedral building blocks into two large-area plasmonic metacrystals at the oil/water interface, and investigate their in situ SERS sensing capabilities. Amphiphilic octahedra assemble into a hexagonal close-packed metacrystal, while hydrophobic octahedra assemble into an open square metacrystal. The lower packing density square metacrystal gives rise to much stronger SERS enhancement than the denser packing hexagonal metacrystal, arising from the larger areas of plasmonic hotspots within the square metacrystal at the excitation wavelength. We further demonstrate the ability of the square metacrystal to achieve quantitative ultratrace detection of analytes from both the aqueous and organic phases. Detection limits are at the nano-molar levels, with analytical enhancement factors reaching 10(8). In addition, multiplex detection across both phases can be achieved in situ without any loss of signal quantitation.
NASA Astrophysics Data System (ADS)
Yang, Yujie; Wang, Fanhou; Huang, Duohui; Shao, Juxiang; Tang, Jin; Ur Rehman, Khalid Mehmood; Wu, Zhen
2018-04-01
Sn-Mg co-substituted M-type SrCaLa hexaferrites Sr0.5Ca0.2La0.3Fe12.0-2x(SnMg)xO19 (0.0 ≤ x ≤ 0.5) have been synthesized by ball milling and calcining. The results of X-ray diffraction show that a single magnetoplumbite phase is exhibited in all the samples and no impurity phase is observed in the structure. Lattice constants (c and a) increase with increasing Sn-Mg content (x) from 0.0 to 0.5. Platelet like structure exhibited by FE-SEM micrographs confirms the hexagonal structure of the synthesized samples. The saturation magnetization (Ms) first increases with increasing SnMg content (x) from 0.0 to 0.1, and then decreases when Sn-Mg content (x) ≥ 0.1. The remanent magnetization (Mr), Mr/Ms ratio, coercivity (Hc), magnetic anisotropy field (Ha) and first anisotropy constant (K1) decrease with increasing Sn-Mg content (x) from 0.0 to 0.5.
Phase composition and magnetism of sol-gel synthesized Ga-Fe-O nanograins
NASA Astrophysics Data System (ADS)
Rećko, K.; Waliszewski, J.; Klekotka, U.; Soloviov, D.; Ostapczuk, G.; Satuła, D.; Biernacka, M.; Balasoiu, M.; Basa, A.; Kalska-Szostko, B.; Szymański, K.
2018-02-01
We have succeeded in synthesizing orthorhombic Ga(1-x)Fe(1+x)O3 (-0.05? x?0.5), hexagonal GayFe(2-y)O3 (0?y?1.8) and cubic Ga(1+z)Fe(2-z)O4 (-0.1?z?0.8) nanograins of gallium ferrites using conventional precursors and an organic environment of Pechini scenario under atmospheric-pressure conditions (SG method). Phase composition and homogeneity were analyzed using X-ray diffraction. Small angle neutron scattering disclosed ellipsoidal particle shapes of gallium iron oxides (GFO) crystallizing in orthorhombic (o-GFO) and hexagonal (h-GFO) symmetry and parallelepiped shapes of Ga(1+y)Fe(2-y)O4 (c-GFO) grains. Despite local agglomeration among the magnetic grains, the scanning electron microscopy and transmission electron microscopy images point to faced-elliptical shapes. The Mössbauer spectroscopy with magnetization measurements was carried out in the temperature range of 5-295 K. The analysis of gallium ferrites magnetism demonstrates that iron atoms locate with various probabilities in crystallographic positions and the spontaneous magnetization preserves up to room temperature (RT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less
Structural, electrical and magnetic study of Nd-Ni substituted W-type Hexaferrite
NASA Astrophysics Data System (ADS)
Khan, Imran; Sadiq, Imran; Ali, Irshad; Rana, Mazhar-Ud-Din; Najam-Ul-Haq, Muhammad; Shah, Afzal; Shakir, Imran; Naeem Ashiq, Muhammad
2016-01-01
A series of Nd-Ni substituted W-type hexaferrites with composition Sr1-xNdxCo2NiyFe16-yO27 (where x=0.0, 0.025, 0.050, 0.075, 0.1 and y=0.0, 0.25, 0.50, 0.75, 1) has been prepared by the chemical co-precipitation method. The effect of rare earth Nd substitution at strontium site while Ni at iron site on microstructure, electrical and magnetic properties has been investigated. All the XRD patterns of the synthesized materials show single W-type hexagonal phase without any other intermediate phases. SEM images show that the particles are homogeneous and hexagonal platelet-like shape. DC electrical resistivity measurements were carried out in temperature range of 298-673 K showing metal-to-semiconductor transition when doped with Nd-Ni. The magnetic properties such as saturation magnetization, remanence, squareness ratio and coercivity were calculated from hysteresis loops and were observed to increase with the increase in Nd-Ni concentration up to a certain substitution level which is beneficial for high density recording media.
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
2017-01-01
The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less
A flexible, bolaamphiphilic template for mesoporous silicas.
Yuen, Alexander K L; Heinroth, Falk; Ward, Antony J; Masters, Anthony F; Maschmeyer, Thomas
2013-08-28
A novel symmetrical bolaamphiphile, containing two N-methylimidazolium head-groups bridged by a 32-methylene linker, was synthesized and characterized. A variety of mesoporous silicas was prepared using the bolaamphiphile as a "soft template". The effects of absolute surfactant concentration and synthesis conditions upon the morphologies of these silicas were investigated. For a given surfactant concentration, particle morphology; pore size; and pore ordering were modified through control of the template to silica-precursor ratio and synthesis conditions. Observed morphologies included: lenticular core-shell nanoparticles and decorticated globules, truncated hexagonal plates, and sheets. In all cases the mesopores are aligned along the shortest axis of the nanomaterial. Decorticated materials displayed surface areas of up to 1200 m(2) g(-1) and pore diameters (D(BJH)) of 24-28 Å. Small-angle X-ray diffraction and transmission electron microscopy measurements revealed that the majority of the materials has elliptical pores arranged in rectangular lattices (c2mm). Adoption of this symmetry group is a result of the template aggregate deformation from a regular hexagonal phase of cylindrical rods to a ribbon phase under the synthetic conditions.
NASA Astrophysics Data System (ADS)
Widanarto, W.; Ardenti, E.; Ghoshal, S. K.; Kurniawan, C.; Effendi, M.; Cahyanto, W. T.
2018-06-01
To minimize the signal degradation, many electronic devices require efficient microwave absorbers with very low reflection-losses within the X-band. We prepared a series of trivalent neodymium-ion (Nd3+) substituted barium-natural ferrite using a modified solid-state reaction method. The effect of the Nd3+-ion content on the structure, surface morphology, magnetic properties, and microwave reflection loss was studied. The composites were characterized using X-ray diffraction, a vibrating sample magnetometer, scanning electron microscopy, and a vector network analyzer. The XRD patterns of the sample without Nd3+ reveal the presence of BaFe12O19 (hexagonal) and BaFe2O4 (rhombohedral) phases. Furthermore, a new hexagonal crystal phase of Ba6Nd2Fe4O15 appeared after substituting Nd3+. The average size of the prepared barium-natural ferrite particles was estimated to be between 0.4 and 0.8 μm. Both saturation magnetization and microwave reflection losses of these barium-ferrites were significantly reduced by increasing the Nd3+ content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Department of Physics and Astrophysics, University of Delhi, Delhi, 110 007; Saxena, Nupur
This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.
NASA Astrophysics Data System (ADS)
Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong
2016-04-01
We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.
Divorced Eutectic Solidification of Mg-Al Alloys
NASA Astrophysics Data System (ADS)
Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo
2015-08-01
We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.
High-mass Star Formation and Its Initial Conditions
NASA Astrophysics Data System (ADS)
Zhang, C. P.
2017-11-01
In this thesis, we present four works on the infrared dark clouds, fragmentation and deuteration of compact and cold cores, hyper-compact (HC) HII regions, and infrared dust bubbles, respectively. They are not only the products of early high-mass star formation, but reflect different evolutionary sequences of high-mass star formation. (1) Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope, we obtained HCO^+, HNC, N_2^+, and C^{18}O emission in six IRDCs (infrared dark clouds), and study their dynamics, stability, temperature, and density. (2) Fragmentation at the earliest phases is an important process of massive star formation. Eight massive precluster clumps (G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71) were selected from the SCUBA (submillimetre Common-User Bolometer Array) 850 μm and 450 μm data. The VLA (Very Large Array) at 1.3 cm, PbBI at 3.5 mm and 1.3 mm, APEX (Atacama Pathfinder Experiment telescope) at 870 μm observations were followed up, and archival infrared data at 4.5 μm, 8.0 μm, 24 μm, and 70 μm were combined to study the fragmentation and evolution of these clumps. We explored the habitats of the massive clumps at large scale, cores/condensations at small scale, and the fragmentation process at different wavelengths. Star formation in these eight clumps may have been triggered by the UC (ultra-compact) HII regions nearby. (3) The formation of hyper-compact (HC) HII regions is an important stage in massive star formation. We present high angular resolution observations carried out with the SMA (Submillimeter Array) and the VLA (Very Large Array) toward the HC HII region G35.58-0.03. With the 1.3 mm SMA and 1.3 cm VLA, we detected a total of about 25 transitions of 8 different species and their isotopologues (CO, CH_3CN, SO_2, CH_3CCH, OCS, CS, H30α/38β, and NH_{3}). G35.58-0.03 consists of an HC HII core with electron temperature Te* ≥ 5500 K, emission measure EM ≈ 1.9×10^{9} pc\\cdotcm^{-6}, local volume electron density ne= 3.3×10^{5} cm^{-3}, FWHM ≈ 43.2 km\\cdots^{-1} for radio recombination lines from both H30α and H38β at its intrinsic core size 3714 au. The H30α line shows evidence of an ionized outflow driving a molecular outflow. The molecular envelope shows evidence of infall and outflow with an infall rate of 0.033 M_{⊙}\\cdotyr^{-1} and a mass loss rate 0.052 M_{⊙}\\cdotyr^{-1}. The derived momenta (˜0.05 M_{⊙}\\cdot{km}\\cdot{s}^{-1}) are comparable for both the infalling and outflowing gas per year. It is suggested that the infall is predominant and the envelope mass of the dense core is increasing rapidly, but accretion in the inner part might have already been halted. (4) OB type stars have strong free-free radiation. The ultraviolet radiation from ionizing stars may heat the dust and ionize the gas to sweep up an expanding bubble, probably accompanied by formation of next generation of stars. The position-velocity diagram clearly shows that N68 may be expanding outward. The structure of bubble S51, carried with shell and front side, is exhibited with ^{13}CO and C^{18}O emission. Both outflow and inflow may exist in the shell of the bubble S51. They may represent the next generation of stars whose formation was triggered by the bubble expanding into the molecular gas. For the bubble N131, we aim to further explore the molecular clumps and star formation at a higher spatial resolution compared with previous CO observations, and try to speculate its origin. The bubble N131 is likely originated in a filamentary nebula, within which the strong stellar wind from a group of massive stars broke up a pre-existing filamentary nebula into the clumps AD and BC, and sweeped up the surrounded material onto the ringlike shell of the bubble N131.
NASA Astrophysics Data System (ADS)
Marcus, P. M.; Jona, F.
2005-05-01
A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.
NASA Astrophysics Data System (ADS)
Yoo, Byungseok; Pines, Darryll J.
2018-05-01
This paper investigates the use of uniaxial comb-shaped Fe-Ga alloy (Galfenol) patches in the development of a Magnetostrictive Phased Array Sensor (MPAS) for the Guided Wave (GW) damage inspection technique. The MPAS consists of six highly-textured Galfenol patches with a <100> preferred orientation and a Hexagonal Magnetic Circuit Device (HMCD). The Galfenol patches individually aligned to distinct azimuthal directions were permanently attached to a thin aluminum plate specimen. The detachable HMCD encloses a biasing magnet and six sensing coils with unique directional sensing preferences, equivalent to the specific orientation of the discrete Galfenol patches. The preliminary experimental tests validated that the GW sensing performance and directional sensitivity of the Galfenol-based sensor were significantly improved by the magnetic shape anisotropy effect on the fabrication of uniaxial comb fingers to a Galfenol disc patch. We employed a series of uniaxial comb-shaped Galfenol patches to form an MPAS with a hexagonal sensor configuration, uniformly arranged within a diameter of 1". The Galfenol MPAS was utilized to identify structural damage simulated by loosening joint bolts used to fasten the plate specimen to a frame structure. We compared the damage detection results of the MPAS with those of a PZT Phased Array Sensor (PPAS) collocated to the back surface of the plate. The directional filtering characteristic of the Galfenol MPAS led to acquiring less complicated GW signals than the PPAS using omnidirectional PZT discs. However, due to the detection limit of the standard hexagonal patterned array, the two array sensors apparently identified only the loosened bolts located along one of the preferred orientations of the array configuration. The use of the fixed number of the Galfenol patches for the MPAS construction constrained the capability of sensing point multiplication of the HMCD by altering its rotational orientation, resulting in such damage detection limitation of the MPAS.
Virial expansion for almost diagonal random matrices
NASA Astrophysics Data System (ADS)
Yevtushenko, Oleg; Kravtsov, Vladimir E.
2003-08-01
Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\
Polymorphism of phosphoric oxide
Hill, W.L.; Faust, G.T.; Hendricks, S.B.
1943-01-01
The melting points and monotropic relationship of three crystalline forms of phosphoric oxide were determined by the method of quenching. Previous vapor pressure data are discussed and interpreted to establish a pressure-temperature diagram (70 to 600??) for the one-component system. The system involves three triple points, at which solid, liquid and vapor (P4O10) coexist in equilibrium, namely: 420?? and 360 cm., 562?? and 43.7 cm. and 580?? and 55.5 cm., corresponding to the hexagonal, orthorhombic and stable polymorphs, respectively, and at least two distinct liquids, one a stable polymer of the other, which are identified with the melting of the stable form and the hexagonal modification, respectively. Indices of refraction of the polymorphs and glasses were determined. The density and the thermal, hygroscopic and structural properties of the several phases are discussed.
Coupling of phonons with excitons bound to different donors and acceptors in hexagonal GaN
NASA Astrophysics Data System (ADS)
Korona, K. P.; Wysmoek, A.; Kuhl, J.; Kamiska, M.; Baranowski, J. M.; Look, D. C.; Park, S. S.
2006-06-01
Time-resolved measurements of GaN with different donors (oxygen or silicon) and acceptors (zinc or magnesium) showed pronounced bound exciton lines and their phonon replicas. The analysis included three phonon modes characteristic for the wurtzite (hexagonal) phase: A1(LO), E1(TO) and E2H. It was shown that relative amplitudes of replicas depended upon the chemical nature of the defects that the bind excitons. The replicas were stronger for acceptor- than for donor-related features. Huang-Rhys factors S = 0.06 +/- 0.02 and S = 0.025 +/- 0.01, were found for the A0X and the D0X LO replicas, respectively. A significant difference in phonon coupling to silicon and oxygen donor bound excitons has been observed.
Heat transfer to four fineness-ratio-1.6 hexagonal prisms with various corner radii at Mach 6
NASA Technical Reports Server (NTRS)
Hunt, J. L.
1972-01-01
An investigation was conducted in the Langley 20-inch Mach 6 tunnel to define the aerodynamic heat transfer to the radioisotope fuel cask (heat source) of the SNAP-19/Pioneer power system. The shape of the SNAP-19/Pioneer heat source is that of a hexagonal prism with flat ends; the fineness ratio, based on maximum (edge to edge) diameter, is 1.61. Phase-change-paint heat-transfer data and schlieren photographs were obtained on four possible 1/2-scale entry configurations of the SNAP-19/Pioneer heat source. Tests were conducted over a wide range of attitudes and at nominal Reynolds numbers, based on the length of the unablated configuration, of 33,000; 84,000; and 2,200,000.
Random telegraph noise in 2D hexagonal boron nitride dielectric films
NASA Astrophysics Data System (ADS)
Ranjan, A.; Puglisi, F. M.; Raghavan, N.; O'Shea, S. J.; Shubhakar, K.; Pavan, P.; Padovani, A.; Larcher, L.; Pey, K. L.
2018-03-01
This study reports the observation of low frequency random telegraph noise (RTN) in a 2D layered hexagonal boron nitride dielectric film in the pre- and post-soft breakdown phases using conductive atomic force microscopy as a nanoscale spectroscopy tool. The RTN traces of the virgin and electrically stressed dielectric (after percolation breakdown) were compared, and the signal features were statistically analyzed using the Factorial Hidden Markov Model technique. We observe a combination of both two-level and multi-level RTN signals in h-BN, akin to the trends commonly observed for bulk oxides such as SiO2 and HfO2. Experimental evidence suggests frequent occurrence of unstable and anomalous RTN traces in 2D dielectrics which makes extraction of defect energetics challenging.
Hexagonal boron nitride and water interaction parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less
The hexagon hypothesis: Six disruptive scenarios.
Burtles, Jim
2015-01-01
This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, J. R.
We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existencemore » of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.« less